Weak convergence for the stochastic heat equation
driven by Gaussian white noise
Xavier Bardina, Maria Jolis and Lluís Quer-Sardanyons
Departament de Matemàtiques, Edifici C, Universitat Autònoma
de Barcelona
Abstract
In this paper, we consider a quasi-linear stochastic heat equation on [0, 1], with Dirichlet boundary conditions and controlled by the space-time white noise. We formally replace the random perturbation by a family of noisy inputs depending on a parameter n \in N such that approximate the white noise in some sense. Then, we provide sufficient conditions ensuring that the real-valued mild solution of the SPDE perturbed by this family of noises converges in law, in the space C([0, T]x[0, 1]) of continuous functions, to the solution of the white noise driven SPDE. Making use of a suitable continuous functional of the stochastic convolution term, we show that it suffices to tackle the linear problem. For this, we prove that the corresponding family of laws is tight and we identify the limit law by showing the convergence of the finite dimensional distributions. We have also considered two particular families of noises to that our result applies. The first one involves a Poisson process in the plane and has been motivated by a one-dimensional result of Stroock, which states that some family of processes converges in law to a Brownian motion. The second one is constructed in terms of the kernels associated to the extension of Donsker's theorem to the plane.
Keywords: stochastic heat equation; white noise; weak convergence; two-parameter Poisson process; Donsker kernels.
Published in: Electronic Journal of Probability, 15 (39), 1267-1295, 2010.