Multiple fractional integral with Hurst parameter
less than 1/2
Xavier Bardina and Maria Jolis
Departament de Matemàtiques, Edifici C, Universitat Auṭnoma
de Barcelona
08193 Bellaterra, Barcelona, Spain
Abstract
We construct a multiple Stratonovich-type integral with
respect to the fractional Brownian motion with Hurst parameter
$H<\frac12$. This integral is obtained by a limit of Riemann sums
procedure in the Sol\'{e} and Utzet (1990) sense. We also define the
suitable traces to obtain the Hu-Meyer formula that gives the Stratonovich integral as a sum of It\^{o} integrals of these traces.
Our approach is intrinsic in the sense that we do not make use of
the integral representation of the fractional Brownian motion in
terms of the ordinary Brownian motion.
Keywords: fractional Brownian motion, Hu-Meyer formula, It\^{o}-type multiple integral, Stratonovich multiple integral.
Published in: Stochastic processes and their applications,
116 (3) (2006) 463-479.