THE GLOBAL DIMENSIONS OF MEXED COPRODUGT/ TENSOR=PRODUCT ALGEHRAS

by George M. bergman

If K is a Tilsldy 1%t is known that ths free associative slgebrs on n > 0O
indeterminates, K< Xlgou»g Xﬁ = hees 18f% global dimension 1, while if we
impose the commubativity relations Xﬁxj = xjxi (3,3 < n) this becomes the
commuting polynomial ring K[Xlaeaa$xhlg with global dimension n. ([6]9[7]3 cf.[qJJ
What heppens if we introduce only some chosen subset of ﬁhe‘above n{n=1)/2
comautativity relations? 1 shall show in this note that the left global
dimension of the resulting algebre is as small as it omn conceivably be, namely
it is equal to the largest m wsuch that some m of our indetermin&tes arc all
made to commute with each otherz 1l.e., such thet our algebra confeine & commubting
polynomiel suﬁalgebra KLXilgooag xgmj (i3 R e0o €1, < njs |
We shall get this result by induetion on the mumber of indeterminet s,
showingz that if R is such a ring, iﬁeézhf;:aheg mgﬁ fof[xl‘ﬁ.,wxn], or R ocan
bes written in & nice wey a8 & coproductnof smaller ringe of the same sort. In
this case, we apply a result of Dicks to bound the dimensdl on of this copmduct
in terms of bthe dimensions of the smeller rings.
Cansidér the following generalizetion of the above construgtion. Start
with & famdly of K-algebras R19¢999 Rhs form their coproduct as Kmalgepras,
and then impose, for any subset of the n(xn=1)/2 peirs of riﬁgs }‘Lly Rey
relations seying thet all elements of R, ocommute with ell elanents of Rjn
the result is & kind of mixture of the coproduct and tensor product cors truct one

on K=algobras. We shall use the same methods fto prove a bound on the ripht

Key words: global dimension of & mized cormubting-noncommuting polynomial
sliebra; of a mixed tensor=coprodust algebres graph with no complete subgraph
of > n werticess finitely coloruble praph.
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global dimension of the rasélﬁing ring Ky im torms of the global dimnsions of
the rings of the fom Ry @..8 By~ erising from femilios of indices {iysesssi ]}
for Whi“h.iii cormutativity conditions have been imposed. However, the formula
we will get is not as simple a8 in Hhe polynomial caaéa end it appears that it
'is pot bhe best possible (B3). .

T do not know whether these ressults remain trwe if infinively many indeterminates
X; or algebras Ry are allowsd. In 84 it ie shown thet they will bs true =
whené%erw the graph descyibing the comnubativity relations we impose 1is
finitely colorable!

All ringzs and elgebras mre asseolative with 1.

Notes I would appreciate
any references on global
dimensions of tensor
product algebrast



81, Statenemt and proof of the main resulis {with one step defefmd).

et I bs e seb, ed A Ix1l e symmetric antireflexive relation.
(T.e., (1,3) € A => (Jol) € A3 (15i) never in 4A). If K is= comnutative ring
and (Ri)iel o funily of Keelgebras, let us form the coproduct Aorer
the Ri in the category of Ke=algebras, end factor ocubt the ideel genersted by
{ xy =yx | x &R, 4o V€ R s (3p,3) € A}, We shall denote the resulting ring

A 1
by ¥ Ry Given H< 1, we shall abbreviate ﬁg”“(l x 1) R, o ¥ R

7 I U, V and W are rings, given with homomorphisms U ==V, U >,
then V sud W are ealled Usripngs. In this situation, the coproduct of

Vv anrd W in the sebegory of Uerings will be denoted V.LLU W. This is also
the puchout of the ulagrm U%:‘; in the cebegory of rings, somebimes known

sg H:io “free moduct of ¥ and W with emelgamation of U“;, or an ‘raelganstion

0 ¥ and W.™ One easily seos the followings

Lemaa 1. Iet I, A Ri be 88 in the first paragraph above, and suppose 1 = Gul,

with A ¢ {G x G) w (B x H). Then
A

g o b o) Ula G RO
Gal "1

We shall use the above obgervetlon in conjunction with a result ol Viarren
Dicks, which says thet if ¥ and W aro U-rings, such thet V“U‘U W is
flat as a right U, V and Wemodule, then

Lgl.,diim-(v _LLU W) < wax(l. gl.dim. V, l.gl.dim, W, 1+ l.gl.dim U). Actually,

Dicks' resulb [59 Corn'?] concerns "eolimits of trees of rings", and the sbove
is the simpleat nontrivial case, where the tree has the form Y.,__Em. 1}' We
shall prove in 82 that if every Ri is frse as a ngmdule, on & basis conbuining

1 (oo if Ry i3 8 polynomial or group algebra over K, or if K is a figld)

then *g‘ Ry 1is in fact free ad u right module over every *ﬁﬁ By (F « 1), so



thet Dicks' Theorem is applicable. In this seotion, we wiil
study l.glodim. @“'; R ssswoing this résult,

To help in visualization, let us note that = symmetrie entireflezive
relaetion A < I x I corresponds to an unoriented graph IA with veftestat I
we define I, to have an edge commecting 1 end J {i, je T} if end only
if (i,j) e A. If J is awy aubaét of I, ‘the subgraph JAﬂ{J % ) RN
will be abbreviated JA’

Reoall thaet e complete graph is ome with an edge connecting every pailr

of vertices. Thus, the complete subgraphs of 1’.& gorrespond to the subscbs

Je I such that every two vertices in J are commectod by an edge {in IA).,
Triviel observationss Any nonenpty graph oontains a complete l=vortox

subgraph (one vertex, no edges), and any graph contains a complete Qevertex

sub,raph (the empty subgraph o

Theorem 2. Let K be a commutative ring, T o finite set, say of cardimality
n> 0, A« I x I e symetric antireflexive relabion, and m  the largest
nw ber of vertices in s complete subgraph of IA.

Iet (X ) be indeterminates, and
i'iel

R =K< xi(s.ez) i Kixf xéxi ((i,j)ea) >
&
- ﬂbl Kin]s
Then
{1) 1.gledim. R = m+ gl.dim K

Proof, We suppose inductively that the Theorem is true for 211 I{wgli-:_;obru:s
sonukructed in this manner om fewer than =n indeterminates.

How it IA is the complete grapgh on tho vertexz=set I, then R 1is
the cummubing polynomial ring KE}{i (fvé'l)},,@l snd the result is classical [6]. (In

particulnr, this observebion covers the case m = Uy since this implies I = @.)
® b

-Q-



In the conbrary case, we may 6homse a vertex J € 1 which is not connected

with all othsr vertices. Let us write I a5 a disjoint wnion {ilo Puw 9

where P is the set of verbices connected Uy an.edge to Js emd Q -the set of

vertices other than J which are net so eonnéctadq Q is ﬁonempty by cholce of J.
Since no edge connects s polnt of § %o Jj, we sec That A S

{{5}v P)2y {Pew Q)En Henoe by lemwe 1 and the result of Dicks® quobed, the loft

global dimension of R will be less than or equal to the maximum of the

thres numberss

(2) Lo glodim. {.3}@? K[z, 1s
(3) 1.gl.dim w‘i"ﬂ@ K[z -
(4 1+ l.gl.dim K[;gi}

Now the sets {jlu Pa PyQ and P appearing in (2)3 (3), (4) each have
Pewer them n elements, 50 we can spply owr inductive hypothesis to bound the
left global dimensions of the algebrss in question. We see that each of these
dimensiong is < m + gl.dim. K. Bubt in the case of (4), we need, and can gel,
o bet.er esbtimete. I claim that every complete subgraph of PA. has sﬁrlictly
fewer tham m vertices., Indsed, if PA. had & complete m=vertex subgraph, then
since J 1is joined to emch vorbex of P Iﬁ would have a complete mt+l=vertex
subgraph, contradicting owr choloce of m, Henve the 'global dimension ol earing
in (4) is < wmw=l + gl.aim, K (Note thet this argument is walid ¢ven in the
mimimel cage. m.= 1, where it implies thet P =f, and the ring in (4)
is just K itself,) Henoe, udding 1, we sSse That (4), like (2) and {(3),
is <m+ gl. dim. K, 80 loglodime R € m+ gl.dim. K.

To get precise squaliby, lebt i ,..., 1 De vertices of en me—element

1



complete subgraph of Iﬁf Note that there exist K-slpebrs maps

K[ﬁi}‘“”g x_,_mj = R = Kgxilso@a@ xﬂm]

which compose to the idontiby. {For the second mep, one can send all indeterminates
Xi (i ﬁ i19,,°$im) to 0y, or 0 1,) This means that KEKilg.,ﬂ@ Eanj is a retract
of R in the category of EKealgebras, end this implies Q{l] 81) that l.gl.dim R

> l.gl.dim K[Kilawo@ xlmj = m+ gl.dim, E. This completes .
the proof of (1).}}

Exemples: et K be a field, aﬁd ;.ﬁ &152@5@$95@6}; For %& ﬁh@ complete
_graph on 6 vertices, with 15 edges, R g -ﬁ@ﬁlgaaawﬁggg:wﬁiga-has global
dimension 6. If we delete anmy one edge, the glob@l dimension goes down to  B.
If we remove another edge mot heving a'vartex in comuon with the first, the
global dimension becomes éa and if we now delete the unique edge having no
wertcx in common with those o, it goes down to 3 (=ee {5&)55 though this
ring has 12 of the original 15 commwibativity folations! We can gebt globel
dimension 2 8till keeping 9 of owr 16 \réﬁaﬁions (Sbjg but to bring the

dimension down to 1, we would have to disoard all commutativity relations.

(5a) (5b).




If we replace the K[X_ll by arﬁitrary K=algebras Ris the devélopmersof Theorem 2
almost seems to go through, replasing -~ the definition B = the largest
number of vertices in a complete subgraph of IA“ by "m = the maximum, over
all complebe subgraphs :':J& < I, of the left global dimension of @;f R,

‘ the %terms corrsesponding to

=8 Ri,“ The one difficulty thaet comes up concernsﬂj(é), We can still note
that the mexinal complete subgrephs of P& are all non-meximel in I,, bub
this no longer insures thet the global dimensions of the susoclated tensor
prm.iuc”cs. @J Ri are a‘t:rictly. lesé then bthe 1@3‘@63'&: dimension of sucﬁ a hensor product.
So to make our induchive prool work, we need & correction term.

Ir JA._ is a complete subgraph of EAj, let us define the depth of J
in I by dI(J}'-@ the maximum over ell complete subgraphs J;‘ e L
cont: ining J& , of |J¥ = J|. In particular, the depth of the enpty

subsroph is the meximumn number of verbices in e oomplete subgraph of I,

Theorem 3. et K be & commubative ring, I & finite set, and 4 =« I x X
a syrmmotric sntireflexive relation. For each 1ie I, let Ri be a K=algobra

which 18 free as o K=module on a basi g containing 1. Thon for R = %y Ry,
(6} l.gl.dim. B < sup; (dI(J) + loglodim. @, R:‘L)*‘

where JA ranges over all complete subgraphs of IA . (including‘,‘ the cmpby
graph. ) .

Procf. As for Theorem l. In considering {4), we nobe that our inducltive
estinebe of the globnl dimension appearing There will be strictly less than
the desired estimates for l.gl.dim. B, since every complete subgreph of P
will mve depth in P smaller by et lesmst one than its depth in J. Honce

the whole term (4) is no ;wreater than our desired cstimate ol 1. glodim. R. ||



We note that for & family Ri whose tensor produots have global dimension
Jiven by the swme formule as those of bhe rings K{xijs the sams formala 25 in

theorem 2 will bound the global dimension of R. We easily deduces

Gorollary 4. Given ,K, I, and & es in Theorem 2, defins the group”

G = (% (ie1) | XX, = X-jx-i((isj)e 19)2
Then the group algebra KG = @?‘g’ K{Kig le] hes left global dimension
m + gl.dim. K. Nore generally, this is the left global dimension of any ring
R obtuined from the R of Theorem 2 by universally inverting scome subget
of the X,. (I.8.5 the ring @%Rig where some R, are K[zi]g, and others
are K[, lefl],,u

Moré generally, Theorem 3 cem cléarly be ppplied to any family of group rings KGi.
e mow turn Lo our neglected homework of verifying that the flatness hypothesis

of Diclks? Theirem on the global dimension of coproducts was setisfied iy we

neaded it.

2. Normal forms in ﬁﬁ% Ry, and module=I{reeness,

fet I be a set (not necesserily finite), emd 4 & I x I = symmtric
anbireflexive relati_ona let K be a comaubeblive rimg, and for each 1 € [,
lot R, bee K-nlgebra which as & E=module s fres on & basis By w{l} (14 Bi)"
We shall assume these data fixed throughout th:};a section.

ist B denote the disjoint wwion of tﬁs By, Each element x & B will be
ssid to be "associsted to® the index i € I such that z s B.. 8 will denote
the free Bemigroup with 1 on the seb Bal

Iet R = ﬁi R;- Since R ie generated by the immges of the Ris, it will
be spanned a8 a K-module by products of the images of the elements of B. (eounting
the empby product 1), i.e.; by the maturel imege of 8. We shall oall these
products “momomials”, and de‘no'be them by the semeo symbols as slements of § of

which they ere immges, though the mep § - R is generally not 1=1;



Bubt we will be cmreful to disbinguish betwsen speaking of two mopomiale as being
%oqual in R%, -of being Yequal®, which willioeen,7in 8%,

Note that if a momomial Tyoes Xy has two sucosasive bterms A F ol both
asscciated with the sams index i € I,  then by wribing the produst x?xp+i
€ Ri as o E=linger combination of elements of Biw{1}3 we can Fpdussd X1e 0 %, in R
%o o linear combinetion. of monomiels of shorter length. More genmerelly, if
Xyo o 0%y, haE two t@rms,xi andr§q'€p<q}1 associsted ﬁiﬁh the seme index 1 € I,
and if all Germs x_ ocourring between these gi,e,g pP<s<q)arse
associated with indiees J such that (i,j) € A, then in R we cen
commute xp past these terms till it 1s edjacent to Xgo and then reduce
our monomial as above to & linear combination of shorter monomials.

We deducs that .B will Dbe’ spenned as a K-module by those monomials
Kyoeeky with the property that sny two #efma xy and xq therein, that
are associsted with the seme index i € I, are separeted by at lesst one
intermediate term % sssociated with an index j. such that {i,j) ¢ A. We
shell eall such Hyeoo Ry Tacoepteble monomials", and denote the set of
acceptable monomisls 8° ¢ 8.

Hote that en ecoeptable monomial oan still heve sdjecent terms
x_x associabed with indices i mnd j such thet (i,j) € 8, snd in

pprl (also acceptable)
this casas, it will be equal in R %o tn%hmonomial obtained by transposing
these terms. To obbtain inverisnts of accepbable monomisls under such
transposition, let us associate Lo any acoepiable monomial XjeenXy & partial
ordering of its terms, setbing
(73 x?‘% X if p<g and there axiata & Seglence
P=5, <...<8 =g such thet, weiting i{v) for the

1

index associnted with =x, , we have (1)i(wm)) A (v<ul
v .



Again, we are being sleppy in our notebiom, sinee & monomisl may reveut
terms of B, 80 that it is ngt really the Terms .x? {members of B} that are
being pertislly ordered, bubt, if you will, thelr subscripts pg or, il you
prefer, the pairs (p, xp), In any osse, our point is that we cbtein from
our monomial & finibte partially ordered set, With its vertices labaled with
certain slements of B, possibly with repetitions. This partielly orderad
set will (By {7) and the definition of acceptable monomial) have the propertics
that any btwo vertices labeled with elemsnts of B associated o indices
i, j such that (i,3) ¢ A must be releted under our ordering {one # the others
note thal this includes the case 1 = j)}; and when one vertex covers snother

(is o minimal verbex » than it), the aSsoccleted indices in 1 must be distinct.

L%mmm B, let xlaaoxp and yla.@yP be ascoeptable monondisls of the same
length. Then the following conditlons are equivalents
{a) yl.uyp cen be obtalned Irom xloooxp by e series of transpogitions
of adjstent terms Xgo Eg.y asaosiebed to indices i,.J such.that (i,j)eh.
{b) There is wr isomorphism betwsen the pertlally ordered sets essociated
with these two monomisls, which preserves the B-~labels on the vertices.
Equivalentlys there exists s permutation me SP sguch thatb
Xg = Fp(p)e Ond FgLmp An XpeeeX, T ooy Fpee) R YpeYE
Furthor, whon this is true, the isomorphism of (b) (equivalently, the ¥)
is unigua. |
Proof. (a) =» {b)s We easily see that each transposzition leaves the
isomorphism class of labsled partially ordered set unchanged.
(b) = (a)s If m ‘is not the identity, there will be some 8 swh that
R(s) >R (s+1). We see that x;, and xg,; mush be unrelated under £

{otherwise ® would not respect the partiel orduring), hence
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they must be associated with a pair of indices (i,j) € 4. Hence wo mey

tranpose them, vransforming Xy o Mxp to a mopnomiel the order of whose terms

iz "closer”™ to that of 5’1“"“% {fowsr peirs of terms =5 xj, ‘oocwrring in di {ferent
orders ;. Reposting this procedure, we see that Kyoor Ky must be trensformed

in & Tinibe number of steps inte ylouoy o

: of the Lemme
To see the last assertion, note that in owr partially ordéred sets, any two

vertices bearing the same A

Jebel in B must bo rclated under Y . Since the sets are finite, there cannct

there fore be more than-one order=preserving-end labél-pirégerving.Dbi jeotion. “

Let us write the equivalent conditions of the nbove Lerma xl...,zp a
Yy p.yP. This gives an equivelence relation on the sét $%  of acceptuble
monomials, We shall write 8!/~ = 8", and represent the equivalence class
of xl‘,,‘f;{p bg{xlxp] ¢ 5% Glearly, the map §' -> R factors through
8% e shall moon show that this mgp is 1l=1, and i{}a imege ié & K-basis of BR-
But tirst we need n result on the sbructurs of S¥,
Por any subset J¢ I, lot us dofime S% %o bo the set
of all | [xl“"’xp] & 8" such that a}l Ty € UJ By, let us also define S*“’J
to be the set of all [xl.,ug & 5% such that in the pertially ordered set
associated with this element, no maximal vertex is labsled with a member of any
| B, for i e J. We note that the maximal verbices ’of the partially ordered set
associated with [xle. Jtp] corre_spond to thoge ‘terms that oen .be. i‘;’r&mposed to
rightmost position. (B.g., if .x §.B,, ye ng 2.€ By, {isj.)@ {i,k) €.4,
j Ak, then in the pertially ordered set essociated with [mzjw % and 2.
are both naximel, )
Note bhat if Eyl“ y] & S and [zla“a‘] € S“ ‘then yl”,yqzl,“z
will be an accepteble mcnomialo Fwtherg {yl.“yqzl °°Zrl wi]l be ds t,ermnod
by the equivelence classes [yl ..,yq] and [zl“. 3,,],,, since any ‘transpomt‘;on

of terms that cen be performed in the latier elements can certeinly be duplicated

in the produst. In fack, we havas



12

lomms 6. Iet J ¢ I. Then for sny elenent [_xl..aoxp] € 8%, there exist unique
: “ ] ‘ =l “sa -

elements [ylanyq] € S"BJa [zlowzxj & ESJ,,, such that [xln“xp] ()1“«3’%51 : zr]
Proof. To get ths existence of such o decomposition, simply look for a meximal
term of owr given element assocluted with an index in Jp 1if there is one, transpose
it %o the last position. Then treat the remaining string of pel terms the
seme wey (it mey contain meximal terms thet were not maximal in the original
element, bocause they were “covered®™ by the first term extracted}. Iterate
the procedure until we are left with a string Yyre g (¢ >0) with no
maxime 1l terms associated with an index in J, followsd Wy a string with all terms
assoclated to indices in Jd.

To get uniquensss, nbdte that &loa.zr} must consist of precisely

these terms of Xlowo% which arée assoclabted to indices in J, and are not

¢ esny terms associeted with indices in I = J. 8
Wa can now proves

Proposition 7. The images in R of the distinot elements of 8" (are distinod

and) form s K-besis of . R.

Proof. Let M be an sbstract free K-module on the besis S%. We shall show

thet M may be made & right R-module in a natural wey, snd that the actions

on this wodule of images of distinet elamsr;ts of 8" are K-linearly independeont.

(The ides here goes back to a trick of wen der Wagrden's. Cf.. [3] §11.2 (28%).)
Fui‘ any 1 € I, oonsider lerme 8, with J = {i}. We see that every meuber .

of 8%
i

{i}
et n bijection S’_:{i} X (Biu{lj) -+ 8%, given by ([yl.,.yq]',, Z)} e [yloa.yqz],

will be of the form (&} (z € By) or [1), so the lemus says that we

But Biwﬁl} is a K-bosis for Ry, 80 this decomposition allows us to give

the free f~module M on 8" a structure of free right R, -module on the besiu



S-:{i}”’ whioh exbends our given Kemodule structure. Doing this for all i ¢ I,
we geb a structures of right H!K Rimmoduleo
Now teke amy {i,j) € &. Ws ses that sfzi' 5) will consist of elements
8
[227] = [z7z), 2z« Biui.l}@ z? = B,u{l}. (Beceuse olements of B, and B,j
L
are transposably with each otheér, we can form no acceptable monomial of length
> 2 from them -~ see definition of accepitable monomial.) This gives us a
bijection 8% - . x (B.uw{1}) = (B.u{l)) = 8% Since (B;u{1}) x {B.u{l}
3 "iigy * (Bel)) = (Bgud1)) 1o(1)) x (3p(1})
g o K-basis of the Kenlgebra R:I. @ Rja this allows us to define a structure
of (free) right R, 8 ijmndul@ on M. This clearly extends the structures of
Riw and ijmodule already defined. That means thet the Rj_-wmodﬁle opérations
and the - ijmodule pperations on N must commute with one another (since the
imsges of Ry end R;'l in By 8 Rj cormute. J Since we have this for all
pairs (i,j) € A, our “K R; -module structure must in‘fac“!: give a *A R~
» 2 I 3
module structure, by the definition of ﬁ*} R,-
Now note that for any [xla.ntp] & 5%, +the module~achtion on the element
{l] € ¥ of the oorreéponding e lement xl“ox};)e R (my sloppy nobation:) will

give [xlmxpj € M, It follows that the acbtion of any nombriviel K-linear

combinabion in R of the images of olementé of 8% will semd [1] %o & nonzoro

eleament of M, Hence such a nontrivial linesar combination is nonzero in R,
i,0., the images of the elements of 8" are linearly independent. Since we

already know thet they span R, this completes the proof of our Theorem, i

lemna 6 now olearly gives our desired freeness results

Proposition B, For any dJ & L ﬂ’? Ri is free as a right module over *?’ Ri"

with bazis (the injective image of) BféJ- i

This complotes the proof of the rosults of tho preceding section.

AC



3.  Improving Theoram Jo

Let us remark .. that the "depth® terms dE(J} thét we had to
introduce in Theorem & cannot be dropped. For the simplest emmpieg Lot
I=4{1, 2}, 4 =g, so thet we are looking at Il.gl.dim. By ~LL}£ Rg- Dicks?
result. says that this is < max{l.gl.dim Bys l.gl.dim. Ry 1+ l.gl.dim. X).
The last term is the term of (6) ocorresponding to J = # § The result is
felse without ite For instance if -K‘ is & field and Rls R2 are nontrivial

alFove
oxtension fields, the inequality reads 1< mx(0, 0, 1+0). If X =Z end

1
ef this sort whers the meximm 18 determined by a nonempty J, let

R % R2 = 7 [3.1 it reads 2 < max{l, 1, }.+1).([?..9 Bx. 12. 1] ). For an example

1 A be the graph l-ﬂ-ﬂ-=_~2-=-;-=3,, K a field, Ry and Rg nontrivial

field extensions of K, and Rg poelynomial ring KEhlg,.,etz:j« Then
R= (R i, Rz)[‘“l@“wtr]» and since R, ]| Ry hes glovel dimeneion 1,
this polynomiel ring has global dimension l+r = dI({Z}) + 1.gl.dim Ry ({6] ).
The tensor-product bterms with the largest global dimensions are

B9 Ry, R2®R59 end Ros nll of which just have global dimension r.

Un the other hand, it is easy to seec that in some ceses Theorem & iv not
the best estimate we ocan make. For instance, if IA is itself a complete
greph, then R = 8; Ry, SO l.zl.dim. R iz equal %o the J = I term of (8},
end the others mey be discarded, even if they are larger! For a less trivial
but similar exmmple, if I, is the union of two complete mbgiaphs G, and H.& ({82}
below) then Dicks' result (piud our Lemme 1) immedistely bounds I.gl.dim. R by

max{ 1.gledim. ats[;%- R, logl.dinm, *1? Ry, 1+ l.gl.dim, z&‘éwﬁ Ry }s
g0 most Lorms of (6) do not eppear, and the Gall term appears with correction

berm 1 which is {in gemeral) less than its depth.
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The problem is to organlze the aebove sort of observetion inkto a general

result strengthening Theorem 3! The problem can be rormulated purely
combinatoriallys Supposs I, is a i’iﬁite graph, and g is a nonnepgetive
integer-veiued function .onm the set of all subsets J ¢ I {corresponding
o 1l.gl.dim. @sﬁf R‘.l.) Assums thet for any two subsebs
G, H is, such that no edge of IA, cornects a vertex of G = H bte a vertex
of H = G, the function g has the property
(8) g(Gult) < max(g(G), g(H)s 1+ g(GeH)}).
Then tho argument of Theorem 3 tells us that g{1) < supJ(di(J) + g(J)), whore
the supremm 1s uvver 211 J which are -va:téstets of complete subgraphs of I,
bub ve would like to know, wiat is the best estimate one can nelke of g{I)s in
tarmé of the g(J)} for these subsets?

Considerat‘ién of (8a) and similar ekamples suggests thut perhaps in (©)
we can resbriet the aprémum to those J which are intersections of maximal
complobe subgraphs of I, end replace dy(J) by the funotion which assigns
%o such s J the length =n of the longest chain of iubersections yielding Js

J()% JORJIQ ,Mg(dom .,',,ﬂdn) = J. {(Esch J; & maximel complute subgraph ).
But an atbempt to prove such s result suggésﬁ that it mmy just be a first
approxinational For insbange, if we put together [ipure {8b) from
the subgrephs determined by the vertex-sets {1,2;3,4} and {35455}, we Find
that the uaximel complete subgraph of their intersection, numely the whole
subsraph determined By (3,4}, is not an intersection of neximnl complste
subgriphs of our original graph. Novertheless, we can get the formula sugreshed
above {in fact, without the J = B torml) by tacking onto {3,455}, first {1,3},

and bhen {2s4}. We cannot do thls sord of thing in {8c), but we can pet



owr desired estimete [this time with the J = @ term) by dbuildinmg the graph up
from {1,%2,3) and {2,3,4,5), But such arguments seem erbitrary, and might rot axist
for sufficlently complicated graphs..

It would be interssting to know whether, at least, for every finibe greph I
there exists unigue best.formule of the form g(I) < max(n(J) + g{J)) (n an
integer-valued function depending Jjust on the lattice structure of i,, J reanging
pver some subset of the ‘ - " conmplete sﬁbgraphs of I).s walid for
21l g satisfying (9). Certainly, at lesst, one can construct from I e finite list
of such formules, whoss ™nin® {(not nscessarily an expreésion of the same sort)

will be truly the best estimmte for g(I) in terms of these g(J}.

B4, Infin’ e index-sebs I

Do Theorems 2 end 4 remsin true 4T the hypothesis "I finite® is deleted?

hen the bounds they give on the global dimension sre w , bhey trivielly “hold.
It thé bownd is finite, I do not know in general, but thore ie a weskor asswhpblon
than finiteness of IA under which we can prove these results.

Recell that the chromatic number  H(I,) of a greph I, is dofined es
the lenst csrdinsl o such thet I ocsn be parbltioned into & disjoint subseta

{*colored with & colors") so that no two vertices in the same subset are
connected by an odge. Nots that a graph with chrometic number @@ oennot conteln
s complete subgreph with more than & vertices. The converse is false; in facl,
there exist graphs with no complete B=vertex subgraphs, that have infinite

chrometic number.

Proposition 9, Theorems 2 and 4 remain true if the sasumption ““!‘Il =n<m”

is replaced by eqﬁ,(lﬁ) =n <@,

16



Broof. It will suffice to show this for Theorem 4, since this pgensralizes
Theeram 2. . We will use induction on ﬁKIA)a but our induetiwve statement will

be a little stronger than the Pormulation of Theorem 4; némely, it will suy thet for

any graph IA” any fumily of K-algebras Ry, and any K=glpebra S, such that

S and the Ri are free as K=modules on bases conbteining 1, we have
(10) l.gl.dim. S 8 (#A R, ) <« sup (d (J) + L.gl.dim, S @ ($(ﬁ} }).
RIE T M “ g B

ﬁhere J& renges over all complebe subgrapﬁs of Iéo We shnll now prove (10)
assuming the correaponding result for all chromatic numbers < n.

For n = 0, (10} redusss to l.gl.dim. § = l.gl.dim. S, Assuming n > 0,
we decompose I inbo n sets es in the definition of chromatic number, and
let G donote the union of n=l of these, and H +the remsining one. Then
GA is o greph of chromatic number n~l, 8o by inductive hypothesis,
logledim. & @(&% rRi) is bounded by the right hand side of (10). Now for
each 3 & H, let P(J) denobte the set of verBices of I %o which [ is
cornected by sn edge. A% no two points of H ere so connected, P(j) « G, so
our induetive hypothesis applies %o this set. By considering the dupths of
complete subgraphs, as in the proof of Theorem 4, .

we See  that l.gl.dim. § & (% R,) is strictly less than the right hend

&
P(j) 1
side of (10). Finally, we look at P(jlu{j}- The subgraph (F(J) {3})A ¢ I,
ney ot have sliromatic number less than n, but we note thet becsuse J is

connuebod to all other verbtices of this subrraph,

5 ¢ wﬁj)u{j) R;) ® (S 8Rs) @ (“ﬁ(j) Ry )

Sinee P(3) has ciromastic number < n, we may apply our induetive hypobhosis
-~ with 5§ 8 Rj in plece of 8. Ope verifies {1 leave this to the reader) that

the exnresiion we et is bounded by the right-hand-side of (10).

L



We row note that the ring we want to study, 5 @ (ﬁ% Rj)a ean be

expressed us the colimit of the tree of rings

o =
3]

by

A A '
5@ (% Ret o T o 3@ (» »J ranging over E

?(J)u{jg A4)

where the edges ere thﬁ rings S @ (¢P( ) i} By Dick's rusult (a

more goneral case than that used in 81) tho left global dinension of this ring
will be less than or equ&x %o the supremum of the left global dimensions of
the vertices of thiu tree, and 1 + the left global dimcnsions of the edges.
By the preceding caleulutions, this supremum is Soundoé by the ripght hand aide

of (IO)QH

Concoivably, one might be able to extend this result to more general graphs
by applying Dicks® result for still mere gemnsral trees, and/or by more subtle
graph-the oretiec analyﬁisﬁ but I don't see how. |

We remark thet for an infinite graph IA” & ring #% R, will be the direet
1imit o’ the rings debermined by finite subgraphs (or graphs with [inite chrometlc
nunbers), so we can apply results on homological dimensions of direct limits
([8] Thoorem 2.3, or [0]). Buk for |I| = B, those .add p "dircot linit

tax® 0f mtl to our estimete of the global dimsmslom, which I would like %o

somehow avold payinga and they are of no help startiang at ﬁﬁmﬂg
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