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Abstract. In 1989, Dicks and Dunwoody proved the Almost Stability Theo-
rem, which has among its corollaries the Stallings-Swan theorem that groups
of cohomological dimension one are free. In this article, we use a nestedness re-

sult of Bergman, Bowditch, and Dunwoody to simplify somewhat the proof of
the finitely generable case of the Almost Stability Theorem. We also simplify

the proof of the non finitely generable case.
The proof we give here of the Almost Stability Theorem is essentially self

contained, except that in the non finitely generable case we refer the reader
to the original argument for the proofs of two technical lemmas about groups
acting on trees.
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1. Introduction

Throughout, G will denote a discrete, multiplicative group.
Unexplained terminology and notation used in the first two sections will be

defined in Section 3.

1.1. Definitions. For any sets E and Z, we write Maps(E,Z) to denote the set
of all maps of sets from E to Z, with each v ∈ Maps(E,Z) written as v : E → Z,
e 7→ ⟨v, e⟩. For any v, w ∈ Maps(E,Z), we write

v▽w := {e ∈ E | ⟨v, e⟩ ̸= ⟨w, e⟩};
if this set is finite, then we say that v and w are almost equal, and write v =a w.
Almost equality is an equivalence relation on Maps(E,Z); its equivalence classes
are called almost equality classes.

If E and Z are (left) G-sets, then Maps(E,Z) is a G-set, with the conjugation
G-action, that is, if v ∈ Maps(E,Z), g ∈ G, and e ∈ E, then ⟨gv, e⟩ := g⟨v, g−1e⟩,
and, hence, g⟨v, e⟩ = ⟨gv, ge⟩.

A G-set is said to be G-free if each element’s G-stabilizer is trivial, and is said
to be G-quasifree if each element’s G-stabilizer is finite. �

The following is one form of [5, III.8.5]; see Remarks 1.3(ii) below.

1.2. The Almost Stability Theorem. If E and Z are any G-sets such that E is
G-quasifree and each element’s G-stabilizer stabilizes some element of Z, then each
G-stable almost equality class in Maps(E,Z) is the vertex G-set of some G-tree.
Any such G-tree automatically has G-quasifree edge G-set.
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The purpose of this article is to give a revised proof of Theorem 1.2 that incor-
porates various simplifications which have become available since the original proof
was published.

Let B(G) denote the Boolean algebra of almost right G-stable subsets of G. For
G finitely generated, Bergman [1] defined a well-ordered measure on B(G), and
Bowditch and Dunwoody [2, 8.1] used the well-orderedness of Bergman’s measure
to show that each Boolean G-subalgebra of B(G) is generated by some nested
G-subset. We shall recall their proofs, and then use their results to simplify the
proof of the case of Theorem 1.2 where G is finitely generable. Although it closely
follows part of the proof in [5], this argument had not been recorded before now;
Bowditch and Dunwoody [2, 14.2] had noted the weaker conclusion that each G-sta-
ble almost equality class embeds in the vertex G-set of some G-tree, in the case
where G is finitely generable and Z = Z/2Z.

In the complementary case, where G is not finitely generable, we shall describe
some further simplifications in the proof of Theorem 1.2.

The proof we give of the Almost Stability Theorem 1.2 is essentially self con-
tained, except that in the non finitely generable case we refer the reader to the
original argument in [5] for the proofs of two technical lemmas about groups acting
on trees.

The article has the following structure.
In Section 2, to provide motivation, we digress to show that Theorem 1.2 yields

one form of the result of Stallings [17, 6.8] and Swan [19] that groups of cohomo-
logical dimension one are free.

In Section 3, we record rather a large number of definitions, which will provide
much of the basic terminology that we shall be using.

In Section 4, we recall from [6] and [5] Dunwoody’s construction of trees from
nested sets, here with a simplification by Roller [14].

In Section 5, we recall from [1] Bergman’s well-ordered measure, and we recall
from [2] the Bowditch-Dunwoody construction of nested generating sets.

In Section 6, we use the results of Section 4 and the nested sets of Section 5 to
construct a tree, and we deduce a result from [5] which strengthened a result of
Dunwoody [6].

In Section 7, to provide motivation, we digress to deduce one form of Stallings’
Ends Theorem [18, 4.1].

In Section 8, we recall from [5] the deduction of the finitely generable case of
Theorem 1.2 from the results of Section 6.

We then consider the non finitely generable case, closely following [5] but with
an improved transfinite induction procedure.

In Section 9, we record, without proofs, two lemmas about trees proved in [5].
In Section 10, we fix notation that applies for the remainder of the proof.
In Section 11, we give results and proofs about finitely generable extensions.
In Section 12, we give results and proofs about countably generable extensions.
In Section 13, we give the proof of the general case.
In Section 14, we give the proof of the analogue for extensions.
In this article, we shall work with trees, and not discuss Bass-Serre theory. We

shall mention in each of the two digressions that certain information about trees
may be translated by Bass-Serre theory into information about groups.

1.3. Remarks. Let E and Z be any G-sets, and V be any G-stable almost equality
class in the G-set Maps(E,Z).

(i). We denote by Complete(V ) the G-graph with vertex G-set V and edge G-set
{(v, w) ∈ V × V | v ̸= w}, where each edge (v, w) has initial vertex v and terminal
vertex w; here, the G-stabilizer of (v, w) is a subgroup of the G-stabilizer of v▽w,
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and v▽w is a finite, nonempty subset of E. Thus, if E is G-quasifree, then the
edge G-set of Complete(V ) is also G-quasifree, and, in particular, any G-tree with
vertex G-set V has G-quasifree edge G-set.

(ii). Consider the following conditions.

(a) G stabilizes each element of Z.
(b) E is such that each element’s G-stabilizer stabilizes some element of Z;

equivalently, there exists some G-map from E to Z; equivalently, G sta-
bilizes some element of Maps(E,Z).

(c) Each finite subgroup of G stabilizes some element of V .
(z) E is G-quasifree.

Notice that (b) and (z) are the hypotheses in Theorem 1.2. Since equivalence
classes are nonempty by definition, V ̸= ∅, and Maps(E,Z) ̸= ∅; hence, if E ̸= ∅,
then Z ̸= ∅. It is easy to see that (a) ⇒ (b) and that (c)+(z) ⇒ (b). It is not
difficult to use properties of almost equality to prove that (b) implies (c). Thus, if
(z) holds, then (b) ⇔ (c) .

In 1989, Dicks and Dunwoody [5, III.8.5] proved the case of Theorem 1.2 where
(a) holds. In this article, we shall see that (b), as opposed to (a), is the condition
that was used in that proof.

Since (c) is a necessary condition for the G-set V to be the vertex G-set of a
G-tree, we now see that Theorem 1.2 says that if (z) holds, then the G-set V is the
vertex G-set of some G-tree if and only if (b) holds.

(iii). In Theorem 1.2, each hypothesis on E determines a corresponding condi-
tion on Complete(V ), and we have the following formulation: If E is G-quasifree,
then, first, the edge G-set of Complete(V ) is G-quasifree, and, secondly, the G-set
Maps(E,Z) has some G-stable element if and only if the G-set consisting of the
maximal subtrees of Complete(V ) has some G-stable element.

In the simplest case, where V is the almost equality class of a G-stable element v
of Maps(E,Z), there exists a G-stable maximal subtree of Complete(V ) with edge
set {v} × (V−{v}). �

2. Digression 1: The Stallings-Swan Theorem

In this section, to motivate interest in the Almost Stability Theorem, we recall
how it implies the Stallings-Swan result that groups of cohomological dimension
one are free. This and many other applications may be found in [5, Chapter IV].

Let ZG denote the integral group ring, and ωZG denote its augmentation ideal.
In 1953, Fox [9, (2.3)] proved, but did not state, that if the group G is free, then

the left ZG-module ωZG is free. In 1956, this implication was made explicit by
Cartan and Eilenberg [3, X.5], who further observed that if G is a nontrivial free
group, then the projective dimension of the left ZG-module Z is equal to 1. In
1957, Eilenberg and Ganea [8] defined ‘the dimension of a group G’, now called the
cohomological dimension of G, to be the projective dimension of the left ZG-mod-
ule Z. Thus, by definition, G has cohomological dimension at most one if and only
if the left ZG-module ωZG is projective. Hence, by Fox’s result, all free groups have
cohomological dimension at most one. Eilenberg and Ganea remarked that they
did not know whether or not all groups of cohomological dimension one are free. In
1968, Stallings [17, 6.8] proved that all finitely generable groups of cohomological
dimension one are free; in 1969, Swan [19] proved that all groups of cohomological
dimension one are free. In the academic year within this same period, 1968–9,
Serre gave a course on what is now called Bass-Serre theory, and one of the many
new results presented was the fact that the group G is free if and only if G acts
freely on some tree [15, I.3.2.15 and I.3.3.4]. To my knowledge, neither direction
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had previously been stated in the literature in exactly this form. It seems plausible
that Dehn knew the ‘only if’ direction in 1910, in the context of his work on Cayley
graphs in [4]. Reidemeister came close to knowing the ‘if’ direction in 1932 in the
context of his tree-based proof in [13, 4.20] of the Nielsen-Schreier theorem that all
subgroups of free groups are free.

In summary then, the left ZG-module ωZG is projective if and only if the group
G is free if and only if G acts freely on some tree.

The currently known proofs of the Almost Stability Theorem 1.2 use many of
the arguments of Stallings and Swan. We shall now recall that one form of their
theorem is in turn a consequence of Theorem 1.2.

2.1. The Stallings-Swan Theorem. If the left ZG-module ωZG is projective,
then G acts freely on some tree.

Proof. By hypothesis, there exists some left ZG-module Q such that the left
ZG-module ωZG ⊕ Q is free. There then exists some free left Z-module A such
that the (free) left ZG-modules ωZG⊕Q and AG := ZG⊗ZA are isomorphic, and
may be identified. In a natural way, Maps(G,A) is a left ZG-module, and we may
identify AG with the (G-stable) almost equality class of 0 in Maps(G,A); here, it
is to be understood that G stabilizes each element of A. Each element r of AG has
a unique expression as p + q with p ∈ ωZG and q ∈ Q, and here we shall write
r = p⊕ q.

Let g and x represent variable elements of G ranging over all of G.
We set ĝ−x := (g−x)⊕ 0 ∈ ωZG⊕Q = AG ⊆ Maps(G,A).

Notice that ĝ−x =a 0 in Maps(G,A) and ⟨ĝ−x, x⟩ ∈ A. Essentially following

Specker [16], we consider the element v of Maps(G,A) defined by ⟨v, x⟩ := ⟨1̂−x, x⟩,
and show that gv = ĝ−1 + v =a 0 + v in Maps(G,A) as follows:

⟨gv, x⟩ = g⟨v, g−1x⟩ def v
= g⟨ ̂1−g−1x, g−1x⟩

= ⟨ĝ−x, x⟩ = ⟨ĝ−1 + 1̂−x, x⟩ def v
= ⟨ĝ−1 + v, x⟩.

Hence, the almost equality class v+AG in Maps(G,A) is G-stable. By the Almost
Stability Theorem 1.2, the G-set v +AG is the vertex G-set of some G-tree.

It remains to show that the vertex G-set v +AG is G-free. Suppose then that
we have some g ∈ G and some r ∈ AG such that g(v + r) = v + r in Maps(G,A),

that is, (1−g)r = (g−1)v = ĝ−1. Write r = p⊕ q with p ∈ ωZG and q ∈ Q.
Then (1− g)p⊕ (1− g)q = (g − 1)⊕ 0 in ωZG⊕Q. Thus, g(p+ 1) = p+ 1 in
ZG ⊆ Maps(G,Z). Hence, p+ 1 is constant on each ⟨g⟩-orbit ⟨g⟩x in G. Since
p ∈ ωZG, 0 ̸= p+ 1 =a 0 in Maps(G,Z). Hence, ⟨g⟩ is finite. Now the augmenta-
tion map carries p+ 1 to a Z-multiple of |⟨g⟩| and also to 1. Thus, |⟨g⟩| = 1. Hence,
g = 1, as desired. �
2.2.Remark. The foregoing argument applies to give Dunwoody’s characterization
of the groups G such that the left RG-module ωRG is projective, where R is any
nonzero associative ring with 1 and ωRG denotes the augmentation ideal of the
group ring RG; see [6, 1.1], [5, IV.3.13]. �

3. Terminology

In this section, we collect together definitions of many of the concepts that we
shall be using.

3.1. Notation. We write f |D to indicate the map obtained from a map f by
restricting the domain of f to a subdomain D.
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We shall find it useful to have notation for intervals in Z that is different from
the notation for intervals in R. Let i, j ∈ Z. We define the sequence

[[i↑j]] :=

{
(i, i+ 1, . . . , j − 1, j) ∈ Zj−i+1 if i 6 j,

() ∈ Z0 if i > j.

The subset of Z underlying [[i↑j]] is denoted [i↑j] := {i, i+ 1, . . . , j − 1, j}.
We set [[i↑∞[[ := (i, i+ 1, i+ 2, . . .) and [i↑∞[ := {i, i+ 1, i+ 2, . . .} .
Suppose we have a set V and a map [i↑j] → V , ℓ 7→ vℓ. We define the corre-

sponding sequence in V by

v[[i↑j]] :=

{
(vi, vi+1, · · · , vj−1, vj) ∈ V i−j+1 if i 6 j,

() ∈ V 0 if i > j.

By abuse of notation, we shall also express this sequence as (vℓ | ℓ ∈ [[i↑j]]), although
“ℓ ∈ [[i↑j]]” on its own will not be assigned a meaning. The set of terms of v[[i↑j]] is
denoted v[i↑j].

We set v[[i↑∞[[ := (vi, vi+1, vi+2, . . .) and v[i↑∞[ := {vi, vi+1, vi+2, . . .}. �
3.2. Definitions. By a well-ordered set, we mean a set S together with a total
order @ such that, for each nonempty subset T of S, there exists some x ∈ T such
that, for each t ∈ T , x ⊑ t. It is then usual to treat the total order as “less than”,
and to use phrases such as “all strictly descending sequences are finite”.

An ordinal is a set β such that, first, each element of β is equal to some subset
of β, and, secondly, β is well-ordered by ∈ ; see [12, 2.10].

The three lower-case Greek letters α, β, and γ will be used to denote ordinals.
We let Ord denote the class of all ordinals, and, for α, β ∈ Ord , we define α < β

to mean α ∈ β. Thus, for each β ∈ Ord , β = {α ∈ Ord | α < β}.
Let S be any set. By the axiom of choice, S can be well-ordered, and, hence,

there exists some α ∈ Ord such that there exists some bijective map of sets from
α to S. The minimum of the set consisting of such α is denoted |S|. We write
ω0 :=

∣∣ [0↑∞[
∣∣; thus, ω0 is the smallest infinite ordinal, the set of finite ordinals.

By abuse of notation, we view the elements of [0↑∞[ as finite ordinals. �
3.3. Definitions. Let V be any set.

We denote by P(V ) the set of all subsets of V , and view P(V ) as a Boolean
algebra in the usual way.

Let A and B be any elements of P(V ).
We write Ac := {v ∈ V | v ̸∈ A}.
We say that A and B are nested if ∅ ∈ {A ∩B,A ∩Bc, Ac ∩B,Ac ∩Bc}.
We write A−B := A ∩Bc.
We write A ∨B to denote A ∪B in the situation where A ∩B = ∅.
We write A▽B := (A−B)∨ (B−A). If A▽B is a finite set, we say that A and B

are almost equal, and write A =a B.
For any subset E of P(V ), we denote by ⟨E ⟩B the Boolean subalgebra of P(V )

generated by E.
For each v ∈ V , we write v∗∗ := {A ∈ P(V ) | v ∈ A} ∈ P(P(V )). �

3.4. Definitions. We define the rank of the group G by

rank(G) := min{ |S| : S is a subset of G which generates G}.
For any subgroup H of G, we define the rank of G relative to H by

rank(G rel H) := min{ |S| : S is a subset of G such that S ∪H generates G}.
By a G-set, we mean a set V together with a map G× V → V, (g, v) 7→ gv, such

that, for each v ∈ V , 1v = v and, for each (g1, g2) ∈ G×G, g1(g2v) = (g1g2)v.
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By a right G-set, we mean a set V together with a map V ×G→ V , (v, g) 7→ vg,
such that, for each v ∈ V , v1 = v and, for each (g1, g2) ∈ G×G, (vg1)g2 = v(g1g2).
(Here, V is a G-set with gv := vg−1.) All concepts defined for G-sets are understood
to have analogues for right G-sets.

Consider any G-set V . For each subset W of V , we write

GW := {gw | g ∈ G,w ∈W}.
If GW = W , we say that W is a G-stable subset of V and a G-subset of V . For
each v ∈ V , we define the G-stabilizer of v to be Gv := {g ∈ G | gv = v} 6 G,
and the G-orbit of v to be Gv := {gv | g ∈ G}, a G-subset of V . We let
G\V := {Gv | v ∈ V }, a partition of V . We say that V is G-finite if G\V is fi-
nite. A G-transversal in V is a subset of V which contains exactly one element of
each G-orbit of V . A subgroup H of G is said to stabilize an element v of V if
Hv = {v} or, equivalently, Hv = H or, equivalently, H 6 Gv; if H stabilizes some
element of V , we say that H is a G-substabilizer for V . We let G -substabs(V )
denote the set of G-substabilizers for V .

Consider any G-sets V and W . By a G-map φ : V → W , v 7→ φ(v), we mean a
map of sets such that, for each (g, v) ∈ G × V , φ(gv) = gφ(v). There exists some
G-map from V to W if and only if G -substabs(V ) ⊆ G -substabs(W ).

A G-set V is said to be G-incompressible if each self G-map of V is bijective, or,
equivalently, for each (v, w) ∈ V × V , if Gv 6 Gw, then Gv = Gw and Gv = Gw.
If V is not G-incompressible, we say that V is G-compressible.

We now consider the right G-set G. Any A ∈ P(G) is said to be almost right
G-stable if, for each g ∈ G, Ag =a A. We write B(G) to denote the Boolean
subalgebra of P(G) consisting of all the almost right G-stable elements. For each
subgroup H of G, any A ∈ P(G) is said to be almost a right H-set if A is almost
equal to some right H-subset of G. For each subset E of P(G), we let Almosts(E)
denote the set consisting of all those subgroups H of G which have the property
that each element of E is almost a right H-set. �
3.5. Definitions. By a graph X, we mean a quadruple (V(X),E(X), ιX , τX) where
V(X) and E(X) are two disjoint sets and ιX and τX are maps from E(X) to V(X).
Where X is clear from the context, we write ι for ιX and τ for τX . We define
|X| := |V(X) ∨ E(X)|. We say that V(X) is the vertex set of X and that E(X) is
the edge set of X, and that ι and τ are the incidence maps of X. We say that the
elements of V(X) are the vertices of X, and the elements of E(X) are the edges
of X. For each edge e of X, we say that e is incident to ιe and τe, and that ιe is
the initial vertex of e and that τe is the terminal vertex of e.

A G-graph X is a graph for which V(X), E(X) are G-sets, and ι, τ are G-maps.
Passing to G-orbits gives a quotient graph G\X. Here X is G-finite if G\X is finite,
that is, |G\X| is finite.

For any subset S of G, the Cayley graph X(G,S) is defined as the G-graph with
vertex G-set G, edge G-set G×S with G-action g1(g2, s) := (g1g2, s), and incidence
maps assigning to each edge (g, s) ∈ G× S the initial vertex g and the terminal
vertex gs.

Let X be any graph.
A subgraph of X is a graph whose vertex set and edge set are subsets of the

vertex set and edge set of X, respectively, and whose incidence maps agree with
those of X.

For each vertex v of X, the valence of v in X is

|{e ∈ E(X) : ιe = v}| + |{e ∈ E(X) : τe = v}|.
We say that X is locally finite if each vertex’s valence is finite.
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We create a set E−1(X) together with a bijective map E(X) → E−1(X), e 7→ e−1,
called inversion. We define E±1(X) := E(X) ∨ E−1(X). We extend ι to a map
ι : E±1(X) → V(X) by setting ι(e−1) := τe for each e ∈ E(X). Similarly, we
extend τ to a map τ : E±1(X) → V(X) by setting τ(e−1) := ιe for each e ∈ E(X).
We extend inversion to a map E±1(X) → E±1(X), e 7→ e−1, by defining (e−1)−1 := e
for each e ∈ E(X).

By an X-path, we shall mean any sequence p = (v0, e1, v1, e2, . . . , en, vn) such
that n ∈ [0↑∞[ , v[[0↑n]] is a sequence in V(X), e[[1↑n]] is a sequence in E±1(X), and,
for each i ∈ [1↑n], ι(ei) = vi−1 and τ(ei) = vi. We define the inverse of p to be
p−1 := (vn, e

−1
n , . . . , e−1

2 , v1, e
−1
1 , v0). We say that p is reduced if, for each i ∈ [2↑n],

ei ̸= e−1
i−1. We say that p joins v0 to vn, and that the pair (v0, vn) is X-joined. We

define length(p) := n. If there exists no X-path joining v0 to vn of smaller length,
then we say that the X-distance between v0 and vn is n. For each finite subset S
of E(X), we define the number of times p crosses S to be |{i ∈ [1↑n] : ei ∈ S±1}|;
if this number is positive, we say that p crosses S. Where S consists of a single
edge, we shall usually speak of paths crossing that edge rather than crossing S.

We say thatX is connected if each pair of vertices ofX isX-joined. The maximal
nonempty connected subgraphs of X are called the components of X.

For any subset E′ of E(X), the graph obtained from X by collapsing E′, denoted
X/E′, is the graph with edge set E′c := E(X)−E′, vertex set the set of components
ofX−E′c, and the induced incidence maps. For example, X/E(X) maps bijectively
to the set of components of X, and here every edge of X gets collapsed.

For each A ∈ P(V(X)), we define the coboundary of A (in X) as

δX(A) := {e ∈ E(X) | (ιe, τe) ∈
(
(A×Ac) ∨ (Ac ×A)

)
}

= {e ∈ E(X) | A ∈ (ιe)∗∗ ▽ (τe)∗∗};
where X is clear from the context we write δA in place of δX(A).

The Boolean algebra of X, denoted B(X), is defined as the Boolean subalgebra
of P(V(X)) consisting of all the elements with finite coboundary in X.

We say that X is a tree if, for each (v, w) ∈ V(X)×V(X), there exists a unique
reduced X-path that joins v to w. A G-tree is a G-graph which is a tree. We
say that X is a forest if, for each (v, w) ∈ V(X)× V(X), there exists at most one
reduced X-path that joins v to w. A G-forest is a G-graph which is a forest.

Let T be any G-tree. We say that T is G-incompressible if the G-set V(T ) is
G-incompressible. An edge e of T is said to be G-compressible if there exists some
(v, w) ∈ {(ιe, τe), (τe, ιe)} such that Gv ̸= Gw and Gv 6 Gw; here, Gw = Ge. �

In the following, the important conclusion B(X) = B(G) is due to Specker [16].

3.6. Lemma. Let S be any generating set of G, and set X := X(G,S). Then X is
a nonempty, connected, G-free G-graph, and V(X) = G. Moreover, if S is finite,
then X is locally finite, X is G-finite, and B(X) = B(G).

Proof. Clearly, X is a nonempty, G-free G-graph, and V(X) = G. Also, X/E(X)
is a G-set with one G-orbit, and the image of 1 in X/E(X) is stabilized by S. Since
S generates G, we see that the image of 1 in X/E(X) is stabilized by G. Hence,
X has exactly one component.

Now suppose that S is finite. Then X is locally finite and G-finite. It remains
to verify that B(X) = B(G).

Consider any A ∈ P(G). For each s ∈ S,

A▽(As−1) = {g ∈ G | g ∈ A−As−1 or g ∈ As−1 −A}
= {g ∈ G | g ∈ A, gs ∈ Ac or g ∈ Ac, gs ∈ A},
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and, hence,

(3.6.1) A▽(As−1) = {g ∈ G | (g, s) ∈ δ(A)}.
Suppose that A ∈ B(G). For each element s of the finite set S, A▽(As−1) is a

finite set. It follows from (3.6.1) that δ(A) is a finite set, that is, A ∈ B(X).
Suppose that A ∈ B(X). For each s ∈ S, by (3.6.1), A▽As−1 is a finite set, that

is, A =a As
−1. Since S generates G, it follows that A ∈ B(G). �

4. Building trees from nested sets

This section reviews results of Dunwoody [6] with modifications by Dicks and
Dunwoody [5] and Roller [14].

4.1. Notation. Let V be any set, and E be any subset of the Boolean algebra P(V ).
We say that E is c-stable if, for each A ∈ E, we have Ac ∈ E.
We say that E is finitely separating if, for all v, w ∈ V , v∗∗ ∩ E =a w

∗∗ ∩ E; note
that v∗∗ ∩ E = {d ∈ E | v ∈ d}.

We say that E is nested if, for each (e, f) ∈ E× E, e and f are nested in V , that
is, ∅ ∈ {e ∩ f, e ∩ f c, ec ∩ f, ec ∩ f c}.

For each e ∈ E, we define

ιe := {d ∈ E | d ⊇ e or d ⊃ ec}, τe := {e, ec}, and τ ′e := {d ∈ E | d ⊃ e or d ⊇ ec}.
If E ̸= ∅, we define T(E) to be the graph for which the edge set is E, the vertex

set is {ιe, τe | e ∈ E} ⊆ P(P(V )), and each e ∈ E has initial vertex ιe and terminal
vertex τe.

If E ̸= ∅, we define U(E) to be the graph for which the edge set is E, the vertex
set is {ιe, τ ′e | e ∈ E} ⊆ P(P(V )), and each e ∈ E has initial vertex ιe and terminal
vertex τ ′e.

If E = ∅, we define both T(E) and U(E) to be the graph for which the edge set
is the empty set E and the vertex set is {E} ⊆ P(P(V )). �
4.2. Example. Let T be a tree. It is sometimes natural to think of the vertices of T
as certain sets of edges of T , and it is sometime natural to think of the edges of T
as certain sets of vertices of T ; to achieve this formally, we create ‘double duals’ of
the edges of T . For each e ∈ E(T ), we set

e∗∗ := {v ∈ V(T ) | the reduced T -path from v to τe crosses e};
then e∗∗ is the vertex set of that component of T−{e} which contains ιe; hence,
δT (e

∗∗) = {e}; hence, e∗∗ ∈ B(T ). Set E(T ) := {e∗∗ | e ∈ E(T )}. For each e ∈ E(T ),

ιU(E(T ))(e
∗∗) = {d ∗∗ ∈ E(T ) | d ∗∗ ⊇ e∗∗ or d ∗∗ ⊃ (e∗∗)c}

= {d ∗∗ ∈ E(T ) | ιT e ∈ d ∗∗} = (ιT e)
∗∗ ∩ E(T ).

There is a natural identification T = U(E(T )). �
The following is due to Dunwoody [6, 2.1] with modifications from [5, II.1.5].

The proof given here incorporates the approach of Roller [14].

4.3. Theorem. With Notation 4.1, if V is any set and E is any c-stable, finitely
separating, nested subset of P(V ) such that ∅ ̸∈ E, then the following hold.

(i) T(E) is a tree with edge set E, and, for any e, f ∈ E, the T(E)-distance between
ιe and ιf equals |(ιe)▽(ιf)|.

(ii) There exists a natural map V → V(T(E)), v 7→ v∗∗ ∩ E. In detail, if E ̸= ∅,
then, for each v ∈ V, there exists some ⊆-minimal element e of v∗∗ ∩ E, and
then v∗∗ ∩ E = ιe.
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Proof. The case where E = ∅ is straightforward, and we shall assume that E ̸= ∅.
(i). Here, U(E) is the graph for which the edge set is E, the vertex set is

{ιe | e ∈ E}, and each e ∈ E has initial vertex ιe and terminal vertex τ ′e = ι(ec).
For each e ∈ E(U(E)) = E, ec ̸= e, ecc = e, ι(ec) = τ(e), and τ(ec) = ι(e). By a re-
stricted U(E)-path, we shall mean any sequence p = e[[1↑n]] in E such that n ∈ [1↑∞[
and, for each i ∈ [2↑n], ι(ei) = τ(ei−1) and ei ̸= eci−1.

For each e ∈ E, (ιe)▽(ι(ec)) = {e, ec}, and ιe is a c-transversal in E, or ‘orienta-
tion’, in the sense of a subset O of E such that E = O ∨ {fc | f ∈ O}.

Consider any e, f ∈ E. Set [e, f [ := {d ∈ E | e ⊆ d ⊂ f}, and define [e, f ], ]e, f ]
and ]e, f [ analogously. These sets are finite by the finitely separating condition,
since we may choose v ∈ e and w ∈ fc, and find that [e, f ] ⊆ v∗∗−w∗∗. We write
e ≺ f to mean [e, f [ = {e} or, equivalently, ]e, f ] = {f}. Now

ιe = {d ∈ E | e ⊆ d or ec ⊂ d}, E− ιf = {d ∈ E | d ⊂ f or d ⊆ fc},
and also e = f or e ⊂ f or e ⊆ fc or ec ⊂ f or ec ⊂ fc. We then see that

ιe− ιf = ιe ∩ (E− ιf) = [e, f [ ∪ [e, fc] ∪ ]ec, f [ ∪ ]ec, fc],

and that the latter union is empty if and only if e = f or ec ≺ f . Thus, ιe ⊆ ιf
if and only if e = f or ec ≺ f . Since ([ec, f [ )c = [f c, e[ , the condition ec ≺ f is
invariant under interchanging e and f , and we see that ιe = ιf if and only if e = f
or ec ≺ f . By interchanging e and ec, we see that τ ′e = ιf if and only if f = ec or
e ≺ f . (This paragraph is based on the elegant presentation of Roller [14, §2.6-§2.7]
and is simpler than the discussion in [5, II.1.5].)

A restricted U(E)-path p = e[[1↑n]], n ∈ [1↑∞[ , may then be viewed as an unre-
finable increasing sequence e1 ≺ e2 ≺ · · · ≺ en in E. Since e1 ⊆ en, neither e1 = ecn
nor en ≺ e1 are possible; thus, τ ′en ̸= ιe1. Hence, in U(E), no vertex is joined to
itself by a restricted U(E)-path.

We shall now see that, in U(E), any vertex is joined to any other vertex by a re-
stricted U(E)-path. By the nestedness of E, for any e, f ∈ E, there exist e′ ∈ {e, ec}
and f ′ ∈ {f, fc} such that e′ ⊆ f ′. Since the set [e′, f ′] is finite, there exists some
unrefinable increasing sequence

e′ = e1 ≺ e2 ≺ · · · ≺ en = f ′ in E, n ∈ [1↑∞[ ;

this gives a restricted U(E)-path which meets the vertices of e and f , as desired.
We may pass from the graph U(E) to the graph T(E) by detaching each edge

from its terminal vertex and giving the elements of each unordered pair of edges
{e, ec}, e ∈ E, a new common terminal vertex. Hence, T(E) is a tree.

The T(E)-distance formula follows since, for each e ∈ E, (ιe)▽(ι(ec)) = {e, ec}
and (ιe, e, τe, (ec)−1, ι(ec)) is a reduced T(E)-path.

(ii). We show first that v∗∗ ∩ E has ⊆-minimal elements. Since E ̸= ∅, there
exists some f ∈ E. We may assume that v ∈ f , for otherwise we may replace f
with f c. Since ∅ ̸∈ E, there exists some w ∈ f c, and we have

f ∈ {e ∈ E | v ∈ e ⊆ f} ⊆ {e ∈ E | v ∈ e, w ∈ ec} = (v∗∗ ∩ E)− (w∗∗ ∩ E).

The latter set is finite, since E is finitely separating. Thus {e ∈ E | v ∈ e ⊆ f} is
finite and nonempty, and hence has a⊆-minimal element, which is then a⊆-minimal
element of {e ∈ E | v ∈ e}, as desired.

Let e be a ⊆-minimal element of v∗∗ ∩ E. We shall show that v∗∗ ∩ E = ιe.
Let d ∈ ιe. Then either d ⊇ e or e ⊃ d c. If d ⊇ e then d ⊇ e ⊇ {v} and, hence,

d ∈ v∗∗ ∩ E. If e ⊃ d c, then, by the ⊆-minimality of e, v ∈ (d c)c = d, and, hence
d ∈ v∗∗ ∩ E. Thus, ιe ⊆ v∗∗ ∩ E.

Conversely, suppose that d ∈ E− ιe. Then d c ∈ ιe ⊆ v∗∗∩E. Hence, d ∈ E−v∗∗.
Thus, E− ιe ⊆ E− v∗∗.

Now v∗∗ ∩ E = ιe, as desired. �
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4.4. Corollary. Let V be any set, and E be any finitely separating, nested subset
of P(V ) such that ∅ ̸∈ E, V ̸∈ E, and, for each e ∈ E, ec ̸∈ E. With Notation 4.1,
the following hold.

(i). U(E) is a tree with edge set E, and, for any v, w ∈ E, the U(E)-distance
between v and w equals |v▽w|.

(ii). There exists a natural map V → V(U(E)), v 7→ v∗∗ ∩ E.

Proof. Set Ec := {ec | e ∈ E}. By Theorem 4.3, T(E ∨ Ec) is a tree with edge
set E ∨ Ec. Now T(E ∨ Ec)/Ec = U(E), and the result follows. (Alternatively,
U(E) = U(E ∨ Ec)− Ec, the tree obtained from U(E ∨ Ec) by choosing the orienta-
tion E.) �

5. Building nested sets from graphs

We now review theory developed by Bergman in [1].

5.1. Definitions. We introduce a new symbol t, and view the power-series
ring Z[[t]] as an ordered abelian group with the total order @ such that∑

ℓ∈[0↑∞[

cℓt
ℓ @

∑
ℓ∈[0↑∞[

dℓt
ℓ

if and only if there exists some ℓ0 ∈ [0↑∞[ such that cℓ0 < dℓ0 and, for each
ℓ ∈ [0↑ℓ0[ , cℓ = dℓ. We view the polynomial ring Z[t] as a subset of Z[[t]].

Let X be any connected, locally finite graph.
For any set P of X-paths with the property that, for each ℓ ∈ [0↑∞[ , the set

Pℓ := {p ∈ P : length(p) = ℓ} is finite, we write

Σ(P ) :=
∑
p∈P

tlength(p) =
∑

ℓ∈[0↑∞[

|Pℓ| tℓ ∈ Z[[t]].

For any element A of B(X), we let P(A) denote the set of all X-paths which
begin in A and end in Ac, necessarily crossing δA. Since X is locally finite and
δA is finite, we see that P(A) has only finitely many elements of any given length.
We write ΣP(A) := Σ(P(A)). Inversion of paths carries P(A) bijectively to P(Ac);
hence, ΣP(A) = ΣP(Ac). We write

ΣP(B(X)) := {ΣP(A) | A ∈ B(X)} ⊆ Z[[t]].
For any Boolean subalgebra A of B(X), any element C of A is said to be

A-reducible if
C ∈ ⟨ {D ∈ A : ΣP(D) @ ΣP(C)} ⟩B;

otherwise, C is said to be A-irreducible. We let irr(A) denote the set of all
A-irreducible elements of A. Notice that ∅ and V(X) are A-reducible. �

The following is the G-finite case of a result of Bergman [1, Lemma 2].

5.2. Theorem. If X is any connected, locally finite, G-finite G-graph, then
ΣP(B(X)) is a well-ordered subset of Z[[t]].

Proof. We shall show that a larger subset of Z[[t]] is well-ordered.
Let S denote the set of all finite subsets of E(X).
Consider any S ∈ S. We denote by P(S) the set of all those X-paths that cross

S an odd number of times. For each ℓ ∈ [0↑∞[ , we denote by Pℓ(S) the set of all
elements of P(S) whose length equals ℓ. Since S is finite and X is locally finite,
Pℓ(S) is finite; |Pℓ(S)| is an even number since Pℓ(S) is stable under path inversion.
Clearly, |P0(S)| = 0 and |P1(S)| = 2|S|. We write

ΣP(S) := Σ(P(S)) =
∑

ℓ∈[0↑∞[

|Pℓ(S)| tℓ and ΣP(S) := {ΣP(S) : S ∈ S} ⊆ 2tZ[[t]].
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For any A ∈ B(X), we have δA ∈ S, and P(δA), the set of X-paths that cross
δA an odd number of times, equals P(A) ∨ P(Ac); hence, ΣP(δA) = 2ΣP(A). Thus,
2ΣP(B(X)) ⊆ ΣP(S), and it suffices to show that ΣP(S) is well-ordered.

Consider any map S− : [0↑∞[ → S, n 7→ Sn, such that the composite map
ΣP(S−) : [0↑∞[ → Z[[t]], n 7→ ΣP(Sn), is decreasing. It suffices to show that there
exists some infinite subset N of [0↑∞[ such that {ΣP(Sn) | n ∈ N} has exactly one
element. Without loss of generality, we may assume that, for each n ∈ [0↑∞[ ,
Sn ̸= ∅.

Let K denote the set consisting of those k ∈ [1↑∞[ for which there exist

an infinite subset N of [0↑∞[ , a map [1↑k] → S−{∅}, i 7→ Ri, and a map(5.2.1)

N× [1↑k] → G, (n, i) 7→ gn,i, such that, for each n ∈ N, Sn =
k∪
i=1

gn,iRi.

In the case where k = 1,

{ΣP(Sn) | n ∈ N} = {ΣP(gn,1R1) | n ∈ N} = {ΣP(R1)},
which gives the desired result. We shall show that K ̸= ∅ and that, for each k ∈ K,
either k = 1 or k−1 ∈ K. This implies that 1 ∈ K, which completes the proof.

We now show that |S0| ∈ K, and, hence, K ̸= ∅. Let us choose a finite
G-transversal R in the G-finite G-set E(X). Consider any n ∈ [0↑∞[ . Since n > 0
and ΣP(S−) is decreasing, ΣP(Sn) ⊑ ΣP(S0). Hence,

2|Sn|t ⊑ ΣP(Sn) ⊑ ΣP(S0) @ 2(|S0|+ 1)t.

Thus, |Sn| < |S0|+ 1. Set k := |S0|. Then 1 6 |Sn| 6 k, and we may choose a sur-
jective map [1↑k] → Sn, i 7→ sn,i. For each i ∈ [1↑k], there exists a unique rn,i ∈ R
such that sn,i ∈ Grn,i, and we may choose some gn,i ∈ G such that gn,irn,i = sn,i.
We have a map rn,− : [1↑k] → R, i 7→ rn,i. Since

|{rn,− | n ∈ [0↑∞[ }| 6 |R|k < ω0,

there exists some infinite subset N of [0↑∞[ and some map r− : [1↑k] → R, i 7→ ri,
such that, for each n ∈ N, rn,− = r−, and, hence,

Sn =
k∪
i=1

gn,i{rn,i} =
k∪
i=1

gn,i{ri}.

We have (5.2.1), and k ∈ K.
For any R, S ∈ S−{∅}, we let d(R,S) denote the length of the minimum-length

X-paths that cross both R and S. Set d := d(R,S) ∈ [1↑∞[ . The X-distance,
in the usual sense, from R to S equals max{d−2, 0}. It may be seen that
Pd(R) ∩ Pd(S) is nonempty and consists of the minimum-length X-paths with the
properties that exactly one edge (the first or last) lies in R and exactly one edge
(the last or first) lies in S. For each ℓ ∈ [0↑d[ ,

Pℓ(R ∪ S) = Pℓ(R) ∨ Pℓ(S) and |Pℓ(R ∪ S)| = |Pℓ(R)|+ |Pℓ(S)| ,
while

Pd(R ∪ S) ⊆ Pd(R) ∪ Pd(S) and |Pd(R ∪ S)| < |Pd(R)|+ |Pd(S)| .
(If d = 1, then R ∩ S ̸= ∅ and Pd(R ∪ S) = Pd(R) ∪ Pd(S), while if d > 2, then
R ∩ S = ∅ and Pd(R ∪ S) ⊂ Pd(R) ∪ Pd(S).)

Now suppose that we have some k ∈ K with k > 2; we shall show that k−1 ∈ K.
Here, we have (5.2.1). Consider any n ∈ N. We set

dn := min{d(gn,iRi, gn,jRj) | i, j ∈ [1↑k] with i < j} ∈ [1↑∞[ .

We first prove that {dN | N ∈ N} is finite. For each ℓ ∈ [0↑∞[ , set

cℓ :=
k∑
i=1

|Pℓ(Ri)| =
k∑
i=1

|Pℓ(gn,iRi)|.
Then
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|Pdn(Sn)| = |Pdn(
k∪
i=1

gn,iRi)| 6 |
k∪
i=1

Pdn(gn,iRi)| <
k∑
i=1

|Pdn(gn,iRi)| = cdn .

For each ℓ ∈ [0↑dn[ ,

|Pℓ(Sn)| = |Pℓ(
k∪
i=1

gn,iRi)| = |
k∨
i=1

Pℓ(gn,iRi)| =
k∑
i=1

|Pℓ(gn,iRi)| = cℓ.

Hence, dn−1∑
ℓ=0

cℓt
ℓ ⊑ ΣP(Sn) @

dn∑
ℓ=0

cℓt
ℓ.

Now consider anym ∈ N such thatm > n. Then ΣP(Sm) ⊑ ΣP(Sn), since ΣP(S−)
is decreasing. Hence,

dm−1∑
ℓ=0

cℓt
ℓ ⊑ ΣP(Sm) ⊑ ΣP(Sn) @

dn∑
ℓ=0

cℓt
ℓ.

Thus, dm−1 < dn. Hence, dm 6 dn. It follows that {dN | N ∈ N} is finite, and we
may assume it has exactly one element, d∗, by replacing N with a suitable infinite
subset.

Fix in, jn ∈ [1↑k] such that in < jn and

d(gn,inRin , gn,jnRjn) = dn = d∗.

Now
{
(iN , jN ) : N ∈ N

}
is finite, and we may assume it has exactly one element,

(i∗, j∗), by replacing N with a suitable infinite subset. By renumbering the Ri, we
may assume that (i∗, j∗) = (1, k). Now

d∗ = d(gn,1R1, gn,kRk) = d(R1, g
−1
n,1gn,kRk).

Since X is locally finite and R1 and Rk are finite sets of edges, there exist
only finitely many elements in the G-orbit of Rk whose X-distance from R1 equals
max{d∗−2, 0}. Thus, {g−1

N,1gN,kRk | N ∈ N} is finite, and we may assume that it
has exactly one element, R∗, by replacing N with a suitable infinite subset. Now
g−1
n,1gn,kRk = R∗, and then gn,1R1 ∪ gn,kRk = gn,1(R1 ∪R∗). Here, we may replace
R1 with R1 ∪R∗ and k with k−1, and we see that k−1 ∈ K.

This completes the proof of Theorem 5.2. �
The following is the locally finite case of a result of Bowditch and Dunwoody [2,

§8], which was based on work of Bergman [1, Lemma 1] and Dunwoody and Swen-
son [7, Lemma 3.3].

5.3. Theorem. Let X be any connected, locally finite, G-finite G-graph, and A be
any Boolean G-subalgebra of B(X). Then irr(A) is a c-stable, nested G-subset of A
such that ∅ ̸∈ irr(A) and ⟨ irr(A) ⟩B = A.

Proof. It is clear that irr(A) is a c-stable G-subset of A such that ∅ ̸∈ irr(A). By
Theorem 5.2, ΣP(A) is well-ordered, and then a standard argument shows that
⟨ irr(A) ⟩B = A. It remains to show that irr(A) is nested.

Consider any A′, B′ ∈ irr(A). It suffices to show that A′ and B′ are nested. Let
us choose (A,B) ∈ {A′, A′c}×{B′, B′c} to make ΣP(A∩B) as @-small as possible.
In particular, ΣP(A ∩B) ⊑ ΣP(A ∩Bc), and we see that

A = (A ∩B) ∪ (A ∩Bc) ∈ ⟨ {C ∈ A | ΣP(C) ⊑ ΣP(A ∩Bc)} ⟩B.
Since A is A-irreducible, it is not the case that ΣP(A ∩Bc) @ ΣP(A). Thus,

(5.3.1) ΣP(A) ⊑ ΣP(A ∩Bc).

For any elements C, D of B(X), let us define P(C,D) := P(C) ∩ P(Dc) and
ΣP(C,D) := Σ(P(C,D)) ∈ Z[[t]]. If C ∩D = ∅, then P(C,D) is the set of all
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X-paths which begin in C and end in D, and, here, ΣP(C,D) = ΣP(D,C). Set

a := ΣP(A ∩B,Ac ∩B), b := ΣP(A ∩B,Ac ∩Bc), c := ΣP(A ∩Bc, Ac),

d := ΣP(A ∩Bc, A ∩B).
It is not difficult to see that

(a+ b)+ c = ΣP(A,Ac) = ΣP(A)
(5.3.1)

⊑ ΣP(A∩Bc) = ΣP(A∩Bc, Ac ∪B) = c+ d.

Hence, b ⊑ d−a. By interchanging A and B, we see that b ⊑ a−d, also. Thus,
b ⊑ 0. Hence, there exists no X-path which begins in A ∩B and ends in Ac ∩Bc;
hence, A∩B or Ac∩Bc is empty; and, hence, A′ and B′ are nested, as desired. �
5.4. Remarks. Throughout this section, we have considered connected, locally fi-
nite, G-finiteG-graphs; these include the Cayley graphs of finitely generated groups,
which are the graphs we shall be using. Both Bergman [1] and Bowditch [2] con-
sider more general situations. Bergman obtains similar results about connected,
locally finite G-graphs. Bowditch obtains results about countable groups. We have
not seen any way to use these generalizations for our narrow objective of improving
the proof of Theorem 1.2. In [5, II.2.20], nested generating sets were constructed
for Boolean algebras of arbitrary connected graphs. �

6. Building trees from the Boolean algebra of a group

In this section we shall prove a substantial part of the finitely generable case of
Theorem 1.2.

Recall Definitions 3.4 and 3.5. The following result is implicit in the finitely
generable case of the Almost Stability Theorem. Dunwoody [6, 4.7] showed that
G -substabs(V(T )) ⊆ Almosts(F).

6.1. Theorem. Suppose that rank(G) < ω0. For each G-finite G-subset F of B(G),
there exists some G-finite G-tree T such that G -substabs(V(T )) = Almosts(F) and
E(T ) is G-quasifree.

Proof. Let S be any finite generating set of G, and set X := X(G,S). By
Lemma 3.6, X is a connected, locally finite, G-finite, G-free G-graph, V(X) = G,
and B(X) = B(G).

Set A := ⟨F ⟩B in B(G) = B(X).
By Theorem 5.3, ⟨ irr(A) ⟩B = A, and irr(A) is a c-stable, nested G-subset of A

such that ∅ ̸∈ irr(A).
Since F is G-finite, there exists some c-stable, G-finite G-subset E of irr(A) such

that F ⊆ ⟨E ⟩B, and then E is nested, ∅ ̸∈ E, and ⟨E ⟩B = A.
We shall now see that E is finitely separating. Consider any edge e ofX. For each

A ∈ E, since Ge = {1}, there exist only finitely many g ∈ G such that ge ∈ δ(A),
or, equivalently, e ∈ δ(g−1A). Since E is G-finite, we then see that there exist only
finitely many B ∈ E such that e ∈ δB, that is, (ιe)∗∗ ∩ E =a (τe)∗∗ ∩ E. Since X is
connected, it follows that E is finitely separating.

Now E is a c-stable, finitely separating, nested G-subset of P(G) and ∅ ̸∈ E. By
Theorem 4.3(i), T(E) is a G-tree with edge G-set E. The edge G-set of X is G-free,
and, hence, B(X) − {∅,V(X)} is G-quasifree. Hence, E is G-quasifree, that is,
E(T(E)) is G-quasifree. Since E is G-finite, we see that T(E) is G-finite.

It remains to show that G -substabs(V(T(E))) = Almosts(F). Since

⟨E ⟩B = A = ⟨F ⟩B,
it is not difficult to show that Almosts(E) = Almosts(A) = Almosts(F), and it
suffices to show that G -substabs(V(T(E))) = Almosts(E). Notice that if E = ∅,
then T(E) is a single vertex stabilized by all subgroups of G, in which case it is
clear that G -substabs(V(T(E))) = Almosts(E). Thus, we may assume that E ̸= ∅.
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We shall use the following observations. Consider any e, f ∈ E. Notice that, for
each g ∈ G,

(gf ∈ 1∗∗) ⇔ (1 ∈ gf) ⇔ (g−1 ∈ f) ⇔
(
g ∈ f−1 := {g−1 | g ∈ f} ∈ P(G)

)
.

With careful interpretation, we may write G{f} ∩ 1∗∗ = f−1{f} in P(P(G)). By
Theorem 4.3(i),(ii), ιe =a 1∗∗∩ E in P(P(G)), and, hence, G{f} ∩ ιe =a G{f} ∩ 1∗∗.
We record

(6.1.1) f−1{f} =a G{f} ∩ ιe in P(P(G)).

Now consider any H ∈ G -substabs(V(T(E))). Then there exists some e ∈ E such
that H stabilizes ιe or τe. Consider any f ∈ E. Notice that (6.1.1) implies that

f−1 =a {g ∈ G | gf ∈ ιe} in P(G),

since these are right Gf -sets and Gf is finite. Hence, f =a {g ∈ G | f ∈ gιe}, which
is a right Gιe-set. Similarly, f =a {g ∈ G | f ∈ gι(ec)} and, hence,

f =a {g ∈ G | f ∈ ιge and f ∈ ι(gec)},
which is a right Gτe-set. Thus, f is almost a right H-set. Thus, H ∈ Almosts(E).

For the converse, we now consider any H ∈ Almosts(E). Consider any e ∈ E and
any finite G-transversal F in the G-finite G-set E. For each f ∈ F , we have f ∈ E,
and, hence, there exists some right H-subset Af of G such that f =a Af in P(G).
We may then form the H-set

w :=
∪
f∈F

(A−1
f {f}) =a

∪
f∈F

(f−1{f}) (6.1.1)
=a

∪
f∈F

(G{f} ∩ ιe) = ιe in P(P(G)).

Set d := |(ιe)▽(w)| ∈ [0↑∞[ . For each h ∈ H,

d = |(hιe)▽(hw)| = |(hιe)▽(w)| and |(hιe)▽(ιe)| 6 |(hιe)▽(w)|+ |(w)▽(ιe)| = 2d.

By Theorem 4.3(i), the T(E)-distance between ιe and hιe is at most 2d. Hence, the
subtree of T(E) spanned by Hιe has finite diameter. Consider any H-subtree T of
T(E) of minimum possible diameter. Then T has at most one edge, for, otherwise,
deleting from T all vertices of valence one and the edges incident thereto leaves an
H-subtree of smaller diameter. It follows that H stabilizes some vertex of T(E).
Thus, H ∈ G -substabs(V(T(E))). �

7. Digression 2: Stallings’ ends theorem

In this section, we shall deduce a form of Stallings’ celebrated Ends Theorem [18,
4.1], a result which inspired much subsequent work in combinatorial group theory,
including all the theory discussed in this article.

In the case where G is finitely generable and S is any finite generating set of G,
let S denote the set of finite subsets of E(X(G,S)), and, for each E ∈ S, let φ(E)
denote the set of infinite components of X(G,S)−E. Then (φ(E) | E ∈ S) forms an
inverse directed system, and, by a 1945 argument of Freudenthal [10, 6.16.1], the
resulting inverse limit is independent of the choice of finite generating set S. The
elements of this inverse limit are called the ends of the group G.

We wish to consider the graph-theoretical conditions

(a) G is finitely generable and has more than one end.
(b) There exists some G-tree such that the edge G-set is G-quasifree and no

vertex is G-stable.

and the group-theoretical conditions

(a′) B(G) has some element A such that both A and G−A are infinite.
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(b′) Either G is countably infinite and locally finite, or there exists some
finite subgroup B of G such that G is a free product with amalgamation
C ∗B D where B < C and B < D or G is an HNN extension C ∗B φ
where B 6 C and φ : B → C is a monomorphism.

In 1949, Specker [16] showed that if G is finitely generable, then (a)⇔(a′). Sub-
sequently, it became a common practice to use some cohomological form of (a′) as
a definition for ‘G has more than one end’ even if G is not finitely generable and,
hence, ends of G are not defined.

By Bass-Serre theory, (b)⇔(b′); see [15], [5, I.4.12].
It is not difficult to show that (b)+(b′)⇒(a′); see [5, IV.6.10].
In 1970, Stallings [18, 4.1] proved that (a)⇒(b′); notice that no finitely generable

group is both infinite and locally finite. He remarked that a communication from
Dunwoody inspired his short proof of his key lemma [18, 1.5] (which is actually
the Cayley-graph case of a result of Bergman [1, Theorem 1]). In 1979, Dun-
woody [6, 4.4] proved directly that if G is finitely generable, then (a′)⇒(b); this is
the restatement of Stallings’ result in which the graph-theoretic hypothesis (a) is
replaced with the group-theoretic condition (a′) and the group-theoretic conclusion
(b′) is replaced with the graph-theoretic condition (b).

7.1. Stallings’ Ends Theorem. If G is finitely generable and there exists some
element A in B(G) such that A and G−A are infinite, then there exists some G-tree
such that no vertex is G-stable, the edge G-set is G-quasifree, and the number of
G-orbits of edges equals 1.

Proof. Set F := {gA | g ∈ G} ⊆ B(G). By Theorem 6.1, there exists some G-finite
G-tree T such that G -substabs(V(T )) = Almosts(F) and E(T ) is G-quasifree. No-
tice that G ̸∈ Almosts({A}) = Almosts(F) = G -substabs(V(T )). Now we collapse
G-orbits of edges of T , one G-orbit at a time. At some first stage, a G-stable vertex
appears, and then the G-orbit of edges that has just been collapsed is the edge
G-set of a G-tree which has the desired properties. �
7.2. Remarks. In 1968, Stallings [17] had proved a special case of (a)⇒(b′), and
had written the following: “Since “ends” are, after all, a topological kind of thing,
there is no need to make a profuse apology for a topological kind of proof. However,
maybe there is some algebraic translation of this which will go over to infinitely
generated groups.” An algebraic translation which went over to all groups was
given in 1989 when Dicks and Dunwoody proved in [5, IV.6.10] that (a′)⇒(b′).
An important advance in the theory had been made by Holt in 1981, who showed
in [11] that if G is locally finite, then (a′)⇒(b′); notice that no locally finite group
is an HNN extension or a proper free product with amalgamation. �

8. The finitely generable case of the Almost Stability Theorem

Recall Definitions 1.1. We may now prove the case of the Almost Stability
Theorem 1.2 where G is finitely generable.

8.1. Theorem. Suppose that rank(G) < ω0. If E and Z are any G-sets such that
E is G-quasifree and each element’s G-stabilizer stabilizes some element of Z, then
each G-stable almost equality class in the G-set Maps(E,Z) is the vertex G-set of
some G-tree.

Proof. Let V be any G-stable almost equality class in Maps(E,Z). We shall prove
a sequence of three equalities which will relate V to a G-incompressible G-tree.

Let S be any finite generating set of G, and set X := X(G,S). Then X is a
connected, locally finite, G-finite, G-free G-graph, V(X) = G, and B(X) = B(G).

As V is nonempty, we may choose an element v of V .
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Consider any e ∈ E. We then have a map ⟨−v, e⟩ : G→ Z, g 7→ ⟨gv, e⟩, and we
shall be interested in the set of fibres thereof, {⟨−v, e⟩−1({z}) | z ∈ Z}. The set of
edges of X which are broken by this same map ⟨−v, e⟩ : V(X) → Z is

δ(⟨−v, e⟩) := {(g, s) ∈ E(X) | ⟨ιX(g, s)v, e⟩ ̸= ⟨τX(g, s)v, e⟩}.
Thus,(

(g, s) ∈ δ(⟨−v, e⟩)
)
⇔

(
⟨gv, e⟩ ̸= ⟨gsv, e⟩

)
⇔
(
(e ∈ (gv)▽(gsv) = g(v▽(sv))

)
.

Hence,
δ(⟨−v, e⟩) = {(g, s) ∈ E(X) | g−1e ∈ v▽(sv)}.

For each s ∈ S, v▽(sv) is finite, since v =a sv in Maps(E,Z). Since Ge and S
are finite, we see that δ(⟨−v, e⟩) is finite. Since X is connected, the set of fibres
of ⟨−v, e⟩ is finite, and each fibre of ⟨−v, e⟩ is then an element of B(X) = B(G).

Set EG := {e ∈ E : ⟨−v, e⟩ is not constant}. Then
EG = {e ∈ E : δ(⟨−v, e⟩) ̸= ∅} =

∪
g∈G

∪
s∈S

(g(v▽(sv))).

Since
∪
s∈S

(v▽(sv)) is finite, we see that EG is G-finite.

For g ∈ G, e ∈ E, z ∈ Z, we have g(⟨−v, e⟩−1({z})) = ⟨−v, ge⟩−1({gz}). Set
F := {⟨−v, e⟩−1({z}) | z ∈ Z, e ∈ E}. Then F is a G-finite G-subset of B(G).

We shall now prove

(8.1.1) G -substabs(V ) ⊆ Almosts(F),

that is, for each H ∈ G -substabs(V ), each ⟨−v, e⟩−1({z}) ∈ F is almost equal to
some right H-set.

Proof of (8.1.1). Here, e ∈ E, z ∈ Z, and H stabilizes some element w of V . Since
w =a v and Ge is finite, we see that, for all but finitely many g ∈ G , we have
⟨v, g−1e⟩ = ⟨w, g−1e⟩, that is, g−1⟨gv, e⟩ = g−1⟨gw, e⟩, that is, ⟨gv, e⟩ = ⟨gw, e⟩.
Thus ⟨−v, e⟩ =a ⟨−w, e⟩. In particular, ⟨−v, e⟩−1({z}) =a ⟨−w, e⟩−1({z}), and the
latter set is easily seen to be a right H-set. This completes the proof of (8.1.1). �

We shall next prove

(8.1.2) G -substabs(V ) ⊇ Almosts(F).

Proof of (8.1.2). Consider any H ∈ Almosts(F). It suffices to construct some
w ∈ Maps(E,Z) such that w =a v and H stabilizes w.

Set EH := {e ∈ E : ⟨−v, e⟩|H is not constant}, an H-subset of EG. Thus,
for h ∈ H and e ∈ E − EH , we have ⟨hv, e⟩ = ⟨v, e⟩, and we see that H stabilizes
⟨v,− ⟩|E−EH

.
Consider any e ∈ EG. We saw above that ⟨−v, e⟩ takes only finitely many values

in Z, and we are assuming that, for each z ∈ Z, ⟨−v, e⟩−1({z}) is almost equal to a
right H-subset of G. Hence, ⟨−v, e⟩|H is almost equal to a constant map, and, also,
for all but finitely many g in a right H-transversal in G, ⟨−v, e⟩|gH is constant;
here, ⟨g−v, e⟩|H is constant, g−1⟨g−v, e⟩|H is constant, ⟨−v, g−1e⟩|H is constant,
g−1e ∈ E−EH , and Hg−1e ∩ EH = ∅. It follows that Ge ∩ EH is H-finite.

We also saw above that EG is G-finite. It now follows that EH is H-finite.
Let us deal first with the case where H is infinite. For each e ∈ E, as ⟨−v, e⟩|H is

almost equal to a constant map and H is infinite, there exists a unique ze ∈ Z such
that, for all but finitely many h ∈ H, ⟨hv, e⟩ = ze. For each e ∈ E and h0 ∈ H, we
see that, for all but finitely many h ∈ H, ⟨h0hv, e⟩ = ze, and then

⟨hv, h−1
0 e⟩ = h−1

0 ⟨h0hv, e⟩ = h−1
0 ze;
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thus, zh−1
0 e = h−1

0 ze. Set w : E → Z, e 7→ ⟨w, e⟩ := ze; then H stabilizes w, since

⟨h0w, e⟩ = h0⟨w, h−1
0 e⟩ = h0zh−1

0 e = ze = ⟨w, e⟩.

For each e ∈ E−EH , ⟨v, e⟩ = ze = ⟨w, e⟩; thus, ⟨v,− ⟩|E−EH
= ⟨w,− ⟩|E−EH

. For
each e ∈ EH , for all but finitely many h ∈ H, ⟨hv, e⟩ = ze = ⟨w, e⟩, and here

⟨v, h−1e⟩ = h−1⟨hv, e⟩ = h−1⟨w, e⟩ = ⟨h−1w, h−1e⟩ = ⟨w, h−1e⟩.
Since EH is H-finite, we see that ⟨v,− ⟩|E =a ⟨w,− ⟩|E . Hence, w ∈ V and
H ∈ G -substabs(V ).

It remains to deal with the case where H is finite. Here, the H-finite set
EH is finite. Since G -substabs(E) ⊆ G -substabs(Z) by hypothesis, there exists
some G-stable u ∈ Maps(E,Z). Define w to be the element of Maps(E,Z) such
that ⟨w,− ⟩|E−EH

= ⟨v,− ⟩|E−EH
and ⟨w,− ⟩|EH

= ⟨u,− ⟩|EH
. Since H stabilizes

both ⟨v,− ⟩|E−EH
and ⟨u,− ⟩|EH

, we see that H stabilizes w. Since EH is finite,
⟨w,− ⟩|E =a ⟨v,− ⟩|E . Hence w ∈ V and H ∈ G -substabs(V ).

This completes the proof of (8.1.2). �
By combining (8.1.1) and (8.1.2), we find that

(8.1.3) G -substabs(V ) = Almosts(F).

By Theorem 6.1, since F is a G-finite G-subset of B(G), there exists some G-finite
G-tree T1 such that E(T1) is G-quasifree and

(8.1.4) Almosts(F) = G -substabs(V(T1)).

By successively collapsing G-orbits of any G-compressible edges of T1, we arrive
at a G-incompressible G-tree T2 such that

(8.1.5) G -substabs(V(T1)) = G -substabs(V(T2)).

In summary,

G -substabs(V )
(8.1.3)
= Almosts(F)

(8.1.4)
= G -substabs(V(T1))

(8.1.5)
= G -substabs(V(T2)).

As G -substabs(V ) = G -substabs(V(T2)), there exist G-maps φ : V→V(T2) and
ψ : V(T2)→V . Since V(T2) is G-incompressible, the G-map φ ◦ ψ : V(T2) → V(T2)
must be bijective. Hence ψ is injective, and we may identify V(T2) with a G-subset
of V , and T2 with a G-subtree of the G-graph Complete(V ). The G-subgraph T3
of Complete(V ) with vertex G-set V and edge G-set

E(T3) := E(T2) ∪ {(v, φ(v)) | v ∈ V−V(T2)}
is a maximal subtree of Complete(V ), as desired. �

9. Preliminary results about trees

In the remainder of this article we shall describe some simplifications which may
be made in the proof of the general case of the Almost Stability Theorem. We will
not simplify the proofs of the preliminary results about trees. We collect together
the statements of these here, for the convenience of the reader. The proofs currently
known are rather technical and will not be given here.

9.1.Definitions. Let T = (V ,E, ι, τ) be any G-tree such that E is G-quasifree. Let
F be any G-forest with G-quasifree edge G-set such that the G-set of components
of F is V . Thus, F =

∨
w∈V

Tw, for each w ∈ V , Tw is a Gw-tree with Gw-quasifree

edge Gw-set, and, for each g ∈ G, g(Tw) = Tgw.

We shall now extend F to a G-graph F ∨ E by adding E to the edge G-set
of F and extending the incidence maps ι and τ to E as follows. Let S be any
G-transversal in E. Consider any e ∈ S. Then Ge is a finite subgroup of Gι(e), and,
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hence, Ge stabilizes some vertex of the Gι(e)-tree Tι(e). We take some Ge -stable
vertex of Gι(e) to be ιe. For each g ∈ G, we define ι(ge) := g(ι(e)), which is

well-defined. This defines ι : E → V(F ). We define τ : E → V(F ) in a similar
manner. This completes the definition of F ∨ E.

Collapsing the edges of the subforest F in F ∨ E leaves the tree T . It follows
that F ∨E is a G-tree with G-quasifree edge G-set. We say that F ∨E is a G-tree
obtained from T by G-equivariantly blowing up each w ∈ V to Tw. �
9.2. Definitions. Let T be any G-finite G-tree with G-quasifree edge G-set. For
each n ∈ [1↑∞[ , set En(T ) := {e ∈ E(T ) : |Ge| = n}, and set

size(T ) := |G\E(T )| − |G\V(T )| +
∑

n∈[1↑∞[

|G\En(T )|tn ∈ Z[t]. �

9.3. Lemma. Let T be any G-tree with G-quasifree edge G-set, w be any vertex
of T , and H be any subgroup of Gw. If rank(G rel H) < ω0, then the following
hold.

(i) rank(Gw rel H) < ω0.
(ii) For each v ∈ V(T )−Gw, rank(Gv) < ω0.
(iii) There exists some G-finite G-incompressible G-tree T such E(T ) is G-quasi-

free and G -substabs(V(T )) = G -substabs(V(T )).

Proof. (i) and (ii) hold by [5, III.8.1], for example.
(iii). Let S be any finite subset of G such that 1 ∈ S and H ∪S generates G. Let

T0 be any finite subtree of T containing Sw. Then G(T0) is a G-finite G-subforest
of T . Moreover, G(T0)/E(G(T0)) consists of a single G-orbit in which the image of
w is stabilized by H ∪ S; that is, G(T0) has only one component. Thus, G(T0) is a
G-finite G-subtree of T .

For each v ∈ V(T ), Gv stabilizes both v and {G(T0)}. It follows thatGv stabilizes
the (unique) vertex of G(T0) which is closest to v. Hence

G -substabs(V(G(T0))) = G -substabs(V(T )).

Now successively collapsing G-orbits of G-compressible edges in G(T0) leaves a
G-finite G-incompressible G-tree T such that E(T ) is G-quasifree and

G -substabs(V(T )) = G -substabs(V(G(T0))) = G -substabs(V(T ));

see [5, III.7.2]. �
9.4. Lemma. Let T1 and T2 be any G-finite, G-incompressible G-trees with
G-quasifree edge G-sets. If G -substabs(V(T2)) ⊆ G -substabs(V(T1)), then the
following hold.

(i) 3|G\T2| 6 |G\T1|.
(ii) size(T2) ⊑ size(T1) in Z[t].
(iii) If size(T2) = size(T1), then G -substabs(V(T2)) = G -substabs(V(T1)).

Proof. By [5, III.7.5], |G\E(T1)|+ |G\V(T1)| > |G\V(T2)| and (ii) and (iii) hold.
By (ii), |G\E(T1)| − |G\V(T1)| > |G\E(T2)| − |G\V(T2)|. By multiplying the for-
mer inequality by 2 and adding the result to the latter inequality, we see that (i)
holds. �

10. Notation used in the proof of the general case

Throughout the remainder of the article, the following will apply.

10.1.Notation. Let E and Z be any G-sets, and V be any G-stable almost equality
class in the G-set Maps(E,Z).

Suppose that there exists some G-stable element in Maps(E,Z) and that E is
G-quasifree.
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By Remarks 1.3(i), the connected G-graph Complete(V ) has G-quasifree edge
G-set.

Here V is nonempty. Let us fix v0 ∈ V .
For any subset E′ of E, we have E = E′ ∨ (E−E′), and we identify

Maps(E,Z) = Maps(E′, Z)×Maps(E−E′, Z) =
∨

w∈Maps(E−E′,Z)

(Maps(E′, Z)×{w}),

where, for each w ∈ Maps(E−E′, Z), we write Maps(E′, Z)×{w} for the fibre over
w of the restriction map

Maps(E,Z) → Maps(E−E′, Z), v 7→ ⟨v,− ⟩|E−E′ .

For each v ∈ Maps(E,Z), we identify

{v} = {⟨v,− ⟩|E′} × {⟨v,− ⟩|E−E′},
and by abuse of notation we shall write

v = ⟨v,− ⟩|E′ × ⟨v,− ⟩|E−E′ .

We denote by πE′ the self-map of Maps(E,Z) defined by

πE′(v) := ⟨v,− ⟩|E′ × ⟨v0,− ⟩|E−E′ ;

thus, the image of πE′ equals the fibre over ⟨v0,− ⟩|E−E′ .
We denote by V(E′) the image of V under the restriction/projection map

Maps(E,Z) → Maps(E′, Z). Then V(E′) is a GE′-stable almost equality class in
Maps(E′, Z). Similarly, we also have a GE′ -stable almost equality class V(E−E′)
in Maps(E−E′, Z), and we have the identifications

V = V(E′)×V(E−E′) =
∨

w∈V(E−E′)

(V(E′)× {w}).

We may construct V as GE′ -set by blowing up each w ∈ V(E−E′) to the (GE′)w-set
V(E′) × {w} ⊆ V . The restriction map Maps(E,Z) → Maps(E′, Z) carries
V(E′)× {w} bijectively to V (E′) respecting the (GE′)w-action. For some purposes,
we shall be able to identify V(E′) × {w} with the (GE′)w-stable almost equality
class V(E′) in Maps(E′, Z).

Set w0 := ⟨v0,− ⟩|E−E′ ∈ V (E − E′). We write

V(E′) := V(E′)× {w0} = {v ∈ V : ⟨v,− ⟩|E−E′ = ⟨v0,− ⟩|E−E′},
the fibre over w0. Then v0 ∈ V(E′) ⊆ V . Also, πE′ maps V to V(E′) fixing each
element of V(E′) and respecting the (GE′)w0-action.

Consider any subgroup H of G.
We define EH := {e ∈ E : ⟨−v0, e⟩|H is not constant}, an H-subset of E. Notice

that H stabilizes ⟨v0,− ⟩|E−EH
, and EH is the smallest H-subset of E with this

property. Also,

V(EH) = {v ∈ V : ⟨v,− ⟩|E−EH
= ⟨v0,− ⟩|E−EH

} = V (EH)× {⟨v0,− ⟩|E−EH
},

and V(EH) is an H-subset of V that is isomorphic to the H-stable almost equality
class V(EH) in Maps(EH , Z).

We wish to show that some maximal subtree of Complete(V ) is G-stable. It
suffices to show there exists some G-subtree TG of Complete(V ) with vertex G-set
V(EG), for then V itself is the vertex G-set of the G-subtree of Complete(V ) with
edge G-set E(TG) ∪ {(v, πEG

(v)) | v ∈ V−V(EG)}.
Let ast denote the class consisting of all those groups for which the Almost

Stability Theorem 1.2 holds. �
To show that G ∈ ast, we may assume that Notation 10.1 holds, and it suffices

to show there exists some G-subtree of Complete(V ) with vertex G-set V(EG).
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11. Finitely generable extensions

The following result is a modified version of [5, III.7.6] differing mainly in the
additional hypothesis that G ∈ ast. The important points are that this weaker form
now suffices for our purposes and the proof is simplified in two places by the addi-
tional assumption.

11.1. Theorem. Let Notation 10.1 hold, and suppose that the following hold:
G ∈ ast; rank(G rel H) < ω0; for each g ∈ G−H, gEH ∩EH = ∅; and, there exists
some H-subtree TH of Complete(V ) with vertex H-set V(EH) . Then there exists
some G-subtree TG of Complete(V ) with vertex G-set V(EG) such that TH ⊆ TG.

Proof. Let S be a finite subset of G such that H ∪ S generates G.
Set V∞ := {v ∈ V(EG)−G(V(EH)) : Gv is infinite}. For the moment, let W be

any finite subset of V∞. In (11.1.6), we shall see that V∞ is G-finite, and then take
W to be a G-transversal in V∞.

It is not difficult to show that, for each g ∈ G−H, πEH
sends every element of

gV(EH) to the single point ⟨gv0,− ⟩|EH
×⟨v0,− ⟩|E−EH

. Recall that πEH
fixes each

element of V(EH). We may then use the set map πEH
to construct a graph map

G(TH) → TH which collapses each edge in (G−H)(TH) and acts as the identity
map on TH . Thus, whenever two vertices of TH are joined by a (G−H)(TH)-path,
the two vertices must be equal. It then follows that G(TH) is a G-subforest of
Complete(V ). Set Y := G(W ) ∨G(TH), also a G-subforest of Complete(V ).

For any subset E′ of E, we have the restriction map V(Y ) → Maps(E′, Z),
v 7→ ⟨v,− ⟩|E′ .

The map V(Y ) → P(P(V(Y ))), v 7→ v∗∗ := {ε ∈ P(V(Y )) | v ∈ ε}, will be identi-
fied with the map V(Y ) → Maps(P(V(Y )),Z2), v 7→ ⟨v,− ⟩|P(V(Y )), where, for each
(v, ε) ∈ V(Y )× P(V(Y )), we set

⟨v, ε⟩ :=

{
1 ∈ Z2 if v ∈ ε,

0 ∈ Z2 if v ∈ εc := V(Y )−ε.

For each subset E of P(V(Y )), we have the restriction map V(Y ) → Maps(E ,Z2),
v 7→ ⟨v,− ⟩|E .

For each e ∈ E(TH), we set

(11.1.1) e∗∗ :={v∈V(Y ) | the reduced TH -path from πEH
(v) to τTH

(e) crosses e}.
Here, ιTH

(e) ∈ e∗∗. For each g ∈ G−H, gV(EH) is mapped to a single point in
V(EH) by πEH

. It follows that δY (e
∗∗) = {e}. For each h ∈ H, we have (he)∗∗ =

h(e∗∗). For each g ∈ G−H, we write (ge)∗∗ := g(e∗∗), and this is well-defined. For
each subgraph Y ′ of Y , we define E(Y ′) := {e∗∗ ∩ V(Y ′) | e ∈ E(Y ′)}. For each
e ∈ E(Y ), δY (e

∗∗) = {e}. It follows that E(Y ′) is isomorphic as G-set to E(Y ′).
We shall now see the following.

(11.1.2) E(Y ) is finitely seperating for V(Y ).

Proof of (11.1.2). Consider v, w ∈ V(Y ). We shall show ⟨v,− ⟩|E(Y ) =a ⟨w,− ⟩|E(Y ).
For all but finitely many g in a right H-transversal in G, ⟨v,− ⟩|gEH

= ⟨w,− ⟩|gEH
,

and here ⟨v, g−⟩|EH
=⟨w, g−⟩|EH

, hence g−1⟨v, g−⟩|EH
= g−1⟨w, g−⟩|EH

, hence
⟨g−1v,− ⟩|EH

= ⟨g−1w,− ⟩|EH
, hence ⟨g−1v,− ⟩|E(TH) = ⟨g−1w,− ⟩|E(TH) by (11.1.1),

hence g⟨g−1v,− ⟩|E(TH) = g⟨g−1w,− ⟩|E(TH), hence ⟨v, g−⟩|E(TH) = ⟨w, g−⟩|E(TH),
and hence ⟨v,− ⟩|gE(TH) = ⟨w,− ⟩|gE(TH).

For all g ∈ G, ⟨g−1v,− ⟩|E(TH) and ⟨g−1w,− ⟩|E(TH) differ only on the elements

of E(TH) corresponding to the elements of E(TH) crossed by the reduced TH -path
from πEH

(g−1v) to πEH
(g−1w), hence ⟨g−1v,− ⟩|E(TH) =a ⟨g−1w,− ⟩|E(TH), hence
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g⟨g−1v,− ⟩|E(TH) =a g⟨g−1w,− ⟩|E(TH), hence ⟨v, g−⟩|E(TH) =a ⟨w, g−⟩|E(TH), and
hence ⟨v,− ⟩|gE(TH) =a ⟨w,− ⟩|gE(TH).

This completes the proof of (11.1.2). �
Consider any e, f ∈ E(Y ) with e ̸= f . Since δY (e

∗∗) = {e} and δY (f
∗∗) = {f},

it follows that exactly one of the four sets

e∗∗ ∩ f∗∗, e∗∗ ∩ f∗∗c, e∗∗c ∩ f∗∗, e∗∗c ∩ f∗∗c

has empty coboundary in Y ; we denote that set by re,f . Thus re,f is the vertex set
of a union of components of Y ; also, e∗∗ and f∗∗ are nested in V(Y ) if and only if
re,f = ∅.

Set R := {re,f | e, f ∈ E(Y ), e ̸= f} − {∅}.
We shall now prove the following crucial facts.

R is G-quasifree.(11.1.3)

R is finitely separating for V(Y ).(11.1.4)

Proof of (11.1.3) and (11.1.4). We form a G-subgraph X of Complete(V ) by
adding to Y a G-finite G-set of edges that will be specified. We begin as follows.

Recall that v0 ∈ V(EH), that S is a finite subset ofG such thatH∪S generatesG,
and that W is a finite subset of V∞. We take as our first approximation

X := Y ∪ {(gv0, gsv0) | g ∈ G, s ∈ S −Gv0} ∪ {(gv0, gw) | g ∈ G,w ∈W},
a G-subgraph of Complete(V ) obtained by adding to Y a G-finite G-set of edges. In
X/E(X), each element of TH is identified with v0, and the image of v0 is stabilized
by H∪S and, hence, is stabilized by G; also, each element ofW is identified with v0,
and each element of G(W ) is then identified with v0. Hence, X/E(X) consists of a
single G-orbit with a single point, and, therefore, X is connected.

We shall now show that E(Y ) ⊆ B(X). By (11.1.2), E(Y ) is finitely separating for
V(Y ) (= V(X)). Hence, for each edge (v, w) in E(X), there exist only finitely many
e ∈ E(Y ) such that (v, w) ∈ δX(e∗∗). Thus, for each edge (v, w) in E(X)−E(Y ),
there exist only finitely many e ∈ E(Y ) such that (v, w) ∈ δX(e∗∗). Hence, for
each edge (v, w) in E(X)−E(Y ), and each e ∈ E(Y ), there exist only finitely
many g ∈ G such that (v, w) ∈ δX(ge∗∗), or, equivalently, g−1(v, w) ∈ δX(e∗∗).
Since E(X)−E(Y ) is G-finite, and δY (e

∗∗) = {e}, we see that δX(e∗∗) is finite. It
follows that E(Y ) ⊆ B(X).

In particular, for each e ∈ E(Y ), X − δX(e∗∗) has only a finite number of com-
ponents.

Also, R ⊆ ⟨E(Y )⟩B ⊆ B(X). Since X is connected with G-quasifree edge G-set,
while ∅ ̸∈ R and V(X) ̸∈ R, we see that each element of R has nonempty, finite
coboundary in X, and, hence, (11.1.3) holds.

We have seen that each edge in E(X)−E(Y ) lies in δX(e∗∗) for only finitely
many e ∈ E(Y ). Since E(X)−E(Y ) is G-finite, we see that the G-set

E′ := {e ∈ E(Y ) | δX(e∗∗) ∩ (E(X)−E(Y )) ̸= ∅}
is G-finite. Notice that E′ = {e ∈ E(Y ) | δX(e∗∗) ̸= {e}}.

In particular, the G-subset of E(Y ) consisting of those e ∈ E(Y ) such that
X − δX(e∗∗) has more than two components is G-finite, and, for any such e, we
may connect every component of X − δX(e∗∗) to every other component using a
finite set of edges of Complete(V ). Thus adding to X a suitable G-finite G-set of
edges of Complete(V ) ensures that, for each e ∈ E(Y ), X − δX(e∗∗) has exactly
two components. This is the final form we want for X, and we may assume that
this is the X that we had from the start, and the definition for E′ now refers to
the new X.
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We next prove that R is G-finite, and for this it suffices to prove the G-finiteness
of the G-set consisting of all the pairs (e, f) ∈ E(Y )× E(Y ) such that e∗∗ and f∗∗

are not nested for V(X).
Consider any such (e, f). In particular, e ̸= f .
Consider first the case where δX(e∗∗) = {e}. Since X − δX(f∗∗) has two com-

ponents, we see that X − (δX(f∗∗) ∪ δX(e∗∗)) has at most three components, and,
hence, e∗∗ and f∗∗ are nested for V(X).

Thus, we may assume that e and f lie in the G-finite G-set E′, and then it
remains to show that for a given e there are only finitely many possibilities for f .
Let A be any finite, connected subgraph of X containing δX(e∗∗). For any f ∈ E′,
for all but finitely many g ∈ G, δX(f∗∗)∩ gA = ∅, and then δX((g−1f)∗∗) ∩A = ∅.
By the G-finiteness of E′, for all but finitely many f ∈ E′, δX(f∗∗) ∩ A = ∅. If
δX(f∗∗) ∩ A = ∅, then the connected graph A lies entirely in either f∗∗ or f∗∗c.
Since A ⊇ δX(e∗∗), then f∗∗c ∩ δX(e∗∗) = ∅ or f∗∗ ∩ δX(e∗∗) = ∅, respectively. If
f∗∗c ∩ δX(e∗∗) = ∅, then, since f∗∗c is the vertex set of a connected subgraph of X,
f∗∗c lies entirely in either e∗∗ or e∗∗c, and, hence, e∗∗ and f∗∗ are nested. A similar
argument applies if f∗∗ ∩ δX(e∗∗) = ∅.

Thus, R is G-finite. For any edge (v, w) of X and any r ∈ R, there exist only
finitely many g ∈ G such that g(v, w) ∈ δX(r), or, equivalently, (v, w) ∈ δX(g−1r).
By the G-finiteness of R, ⟨v,− ⟩|R =a ⟨w,− ⟩|R. Since X is connected, it follows
that R is finitely separating for V(X) (= V(Y )).

This completes the proof of (11.1.4). �
By (11.1.3), R is G-quasifree, and, by (11.1.4), the image of the map

V(Y ) → Maps(R,Z2), v 7→ ⟨v,− ⟩|R,
lies in a G-stable almost equality class. Since G ∈ ast, the latter G-stable almost
equality class is then the vertex G-set of some G-tree with G-quasifree edge G-set,
and we let Tbottom denote such a G-tree. Here we have a G-map

V(Y ) → V(Tbottom) ⊆ Maps(R,Z2), v 7→ ⟨v,− ⟩|R.
Consider any u ∈ V(Tbottom). Let Vu ⊆ V(Y ) denote the fibre over u. Since

each element of R is the vertex set of a union of components of Y , we see that Vu
is the vertex set of some subforest Yu of Y that is a union of components of Y. In
particular, each component of Y lies entirely in a fibre, and we have a fibration of
Y into unions of components.

We shall now see the following.

There exists some Gu-tree Tu and some Gu-graph map Yu → Tu which(11.1.5)
is bijective on edges.

Proof of (11.1.5). By (11.1.2), E(Yu) is finitely separating for V(Yu).
We claim that E(Yu) is nested for V(Yu). Consider any e, f ∈ E(Yu) with

e ̸= f . We shall show that re,f ∩ V(Yu) = ∅. This is clear if re,f = ∅.
Thus we may suppose that re,f ̸= ∅, and, hence re,f ∈ R. For each v ∈ Vu,
we see that ⟨v,− ⟩|R = ⟨u,− ⟩|R = u. In particular, ⟨v, re,f ⟩ = ⟨u, re,f ⟩. In par-
ticular, ⟨ιY (e), re,f ⟩ = ⟨u, re,f ⟩. Now recall that ⟨ιY (e), re,f ⟩ = 0. Hence
⟨v, re,f ⟩ = ⟨u, re,f ⟩ = ⟨ιY (e), re,f ⟩ = 0. Thus re,f ∩ V(Yu) = ∅. This proves the
claim.

Hence E(Yu) is a nested, finitely separating, Gu-subset of P(V(Yu)). It follows
from Corollary 4.4 that Tu := U(E(Yu)) is aGu-tree withGu-edge set E(Yu) ≃ E(Yu)
and there exists a natural Gu-map V(Yu) → V(Tu). For each edge e of Yu, it follows
from (11.1.1) that (⟨ιe,− ⟩|E(Y ))▽(⟨τe,− ⟩|E(Y )) = {e∗∗}. It can then be seen that we
have a Gu-graph map Yu → Tu that is bijective on edges; it is surjective on vertices
if Yu is nonempty. This completes the proof of (11.1.5). �
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We now create a G-tree denoted Tmiddle by G-equivariantly blowing up each
vertex u of Tbottom to the Gu-tree Tu. Then Tmiddle is a G-tree with G-quasifree
edge G-set, and there is specified a G-graph map Y → Tmiddle which is injective on
edges.

Since G ∈ ast, there exists some G-tree TG with vertex G-set V(EG) and
G-quasifree edge G-set.

We now create a G-tree denoted Ttop by G-equivariantly blowing up each vertex
v of Tmiddle to the Gv-tree TG using the incidence maps for Y to make each element
of E(Y ) ⊆ E(Tmiddle) incident to appropriate copies of elements of V(Y ) ⊆ V(TG).
Then Ttop is a G-tree with G-quasifree edge G-set, Ttop contains the G-forest Y
as a G-subgraph, and there is specified a G-map V(Ttop) → V(EG) which is the
identity map on V(Y ).

We now make some adjustments to Ttop.
Recall that Y = G(W ) ∨ G(TH). We may choose a finite subtree T0 of Ttop

which contains the finite set {v0} ∪ Sv0 ∪ W , and set T+ := G(T0) ∪ Y . Then
T+ is a connected G-subgraph of Ttop. Now T+ is a G-tree with G-quasifree edge
G-set, T+ contains the G-forest Y as a G-subgraph, T+ − Y is G-finite, and there
is specified a G-map V(T+) → V(EG) which is the identity map on V(Y ).

Then T+/E(Y ) is a G-finite G-tree with G-quasifree edge G-set. While it re-
mains possible, we successively collapse G-orbits of edges of T+ which become
G-compressible edges in T+/E(Y ); we thus eventually obtain a quotient G-tree of
T+, denoted T . Then T is a G-tree with G-quasifree edge G-set, T contains the
G-forest Y as a G-subgraph, T−Y is G-finite, T/E(Y ) is G-incompressible, and
there is specified a G-map V(T ) → V(EG) which is the identity map on V(Y ).

Recall that V∞ := {v ∈ V(EG) − G(V(EH)) : Gv is infinite} and that W is an
arbitrary finite subset of V∞. We shall now prove the following.

(11.1.6) V∞ is G-finite.

Proof of (11.1.6). Letting v0 denote the component of Y containing v0, we may
write Y/E(Y ) = G(v0) ∨G(W ).

Now T/E(Y ) is a G-finite, G-incompressible G-tree with G-quasifree edge G-set,
G(v0) ∨G(W ) ⊆ V(T/E(Y )), and there is specified a G-map

V(T/E(Y ))−Gv0 → V(EG)

which is the identity map on G(W ).
Let W ′ be an arbitrary finite subset of V∞ which contains a G-transversal in the

intersection of V∞ with the G-finite image of the G-map

V(T/E(Y ))−Gv0 → V(EG).

Then G(W ′) ⊇ G(W ).
The entire foregoing argument applies with W ′ in place of W , and we get a

G-finite, G-incompressible G-tree T ′/E(Y ) with G-quasifree edge G-set, such that
G(v0) ∨G(W ′) ⊆ V(T ′/E(Y )) and there is specified a G-map

V(T ′/E(Y ))−Gv0 → V(EG)

which is the identity map on G(W ′).
By the choice of W ′, each infinite subgroup of G that stabilizes an element

of V(T/E(Y )) stabilizes an element of Gv0 ∨G(W ′) ⊆ V(T ′/E(Y )). Each finite
subgroup of G stabilizes an element of V(T ′/E(Y )). Hence

G -substabs(V(T/E(Y ))) ⊆ G -substabs(V(T ′/E(Y ))).

By Lemma 9.4(i), 3|G\(T/E(Y ))| > |G\(T ′/E(Y ))|. Since V(T ′/E(Y )) ⊇ G(W ′),
we see that 3|G\(T/E(Y ))| > |G\G(W ′)|. Thus, we have a finite upper bound on
the number of G-orbits in V∞. This completes the proof of (11.1.6). �
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By (11.1.6), we may assume thatW is taken to be a G-transversal in V∞ from the
start. Then V∞ = G(W ) ⊆ V(T ), and any infinite subgroup of G which stabilizes
an element of V(EG) stabilizes an element of V(T ). Each finite subgroup of G
stabilizes an element of V(T ). Thus,

G -substabs(V(EG)) ⊆ G -substabs(V(T )),

and, hence, there exists a G-map φ : V(EG) → V(T ) which is the identity on
V(EH). We already have a G-map ψ : V(T ) → V(EG) which is the identity on

V(EH). Since T/E(Y ) is G-incompressible, the composite V(T )
ψ→ V(EG)

φ→ V(T )
is bijective, and we may identify V(T ) with a G-subset of V(EG) respecting the
embeddings of V(EH) in V(T ) and V(EG). We may then expand T to a G-subtree
TG of Complete(V ) with vertex G-set V(EG) and edge G-set

E(T ) ∪ {(v, φ(v)) | v ∈ V(EG)−V(T )}.
This completes the proof of Theorem 11.1. �

12. Countably generable extensions

The following is [5, III.8.3].

12.1. Lemma. Let Notation 10.1 hold. If rank(G rel H) < ω0, then EG −G(EH)
is G-finite.

Proof. Let S be a finite subset of G such that H ∪ S generates G, and set
F :=

∪
s∈S

(v0▽(sv0)). For each s in the finite set S, sv0 =a v0, and, hence, F is

a finite subset of EG. Set E′ := G(EH ∪ F ). Then E′ is a G-subset of EG. Also,
⟨v0,− ⟩|E−E′ is stabilized by each g ∈ S ∪H, and, hence, is stabilized by G. Thus
EG ⊆ E′, and then EG−G(EH) ⊆ G(F ) and EG−G(EH) isG-finite, as desired. �

The following is part of the proof of [5, III.8.5].

12.2. Proposition. Let Notation 10.1 hold.
Suppose that, for each g ∈ G−H, gEH ∩ EH = ∅.
Suppose that H 6 K 6 G and rank(K rel H) < ω0.
Then there exists some L such that H 6 K 6 L 6 G, rank(L rel H) 6 ω0, and,

for each g ∈ G−L, gEL ∩ EL = ∅.

Proof. We recursively construct an ascending sequence L[[0↑∞[[ of subgroups of G
such that, for each n ∈ [0↑∞[ , the following hold.

(1) rank(Ln rel H) < ω0.
(2) {g ∈ G | gELn

∩ ELn
̸= ∅} ⊆ Ln+1.

We set L0 := K. Here (1) holds with n = 0.
Suppose that we are given some m ∈ [0↑∞[ and Lm satisfying (1) with n = m.

Let SH be an H-transversal in EH . Let Sm be an Lm-transversal in ELm
−Lm(EH).

Set F := {g ∈ G | gSm ∩ (SH ∪ Sm) ̸= ∅}. Set Lm+1 := ⟨Lm ∪ F ⟩ 6 G.
Since, for all g ∈ G−H, gEH ∩ EH = ∅, we see that SH is a G-transversal in

G(EH). By Lemma 12.1, Sm is finite. Hence G(Sm) ∩ SH is finite. Recall that E
is G-quasifree. Hence F is finite. Thus (1) holds with n = m+ 1.

Consider any g ∈ G such that gELm
∩ELm

̸= ∅. We wish to show that g ∈ Lm+1.
Notice that Sm ∪ SH is an Lm-transversal in ELm

. Hence, on replacing g with
an element of LmgLm, we may assume that g(Sm ∪ SH) ∩ (Sm ∪ SH) ̸= ∅. If
gSm ∩ (Sm ∪ SH) ̸= ∅, then g ∈ F ⊆ Lm+1. If gSH∩Sm ̸= ∅, then g ∈ F−1 ⊆ Lm+1.
If gSH ∩ SH ̸= ∅, then gEH ∩ EH ̸= ∅ and g ∈ H 6 Lm+1. Thus (2) holds with
n = m.

This completes the recursive construction of L[[0↑∞[[.
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Set L :=
∪

n∈[0↑∞[

Ln.

Then K = L0 6 L.
By (1), rank(L rel H) 6 ω0.
We have EL =

∪
n∈[0↑∞[

ELn
. For any g ∈ G such that gEL ∩ EL ̸= ∅, there exist

m, n ∈ [0↑∞[ such that gELm ∩ ELn ̸= ∅, and then, by (2), g ∈ Lmax{m,n}+1 6 L.
Thus, L has all the desired properties. �
In the remainder of the section we build a corresponding tree TL.
The following is a modification of [5, III.8.2].

12.3. Lemma. Let Notation 10.1 hold, and suppose that H 6 K 6 G.
Suppose that rank(G rel H) < ω0, and that, for each g ∈ G−H, gEH ∩EH = ∅.
Suppose that rank(K rel H) < ω0.
Suppose that, for each L with K 6 L 6 G and rank(L rel K) < ω0,

(a) L ∈ ast, and,
(b) if LEK = EL, then, for all g ∈ L−K, gEK ∩ EK = ∅.

Suppose that TH is an H-subtree of Complete(V ) with vertex H-set V(EH).
Suppose that TK is a K-subtree of Complete(V ) with vertex K-set V(EK) such

that TH ⊆ TK .
Then there exists some G-subtree TG of Complete(V ) with vertex G-set V(EG)

such that TK ⊆ TG.

Proof. We recursively define a descending sequence G[[0↑∞[[ of subgroups of G con-
taining K as follows. We set G0 := G, and, given n ∈ [0↑∞[ and Gn, we define
Gn+1 to be the Gn-stabilizer of ⟨v0,− ⟩|E−Gn(EK) ∈ Maps(E−Gn(EK), Z).

We set E0 = EG and, for each n ∈ [0↑∞[, we set En+1 = Gn(EK). Then E[[0↑∞[[

is a descending sequence of subsets of EG containing EK .
Consider n ∈ [0↑∞[. Then En+1 = Gn(EK) ⊆ EGn

. It may be shown that

Gn = {g ∈ G : ⟨gv0,− ⟩|E−En
= ⟨v0,− ⟩|E−En

},
and then that EGn

⊆ En. For each g ∈ G−Gn, ⟨gv0,− ⟩|E−En
̸= ⟨v0,− ⟩|E−En

, and,
hence, gV(En)∩V(En) = ∅, since V (En) = V(En)× {⟨v0,− ⟩|E−En

}. In particular,
GV (En) = Gn.

We shall now show the following.

For each n ∈ [0↑∞[ , the chain of subsets(12.3.1)
V(EH) ⊆ V(En) ⊆ V(EG) ⊆ V extends to a chain of subgraphs

TH ⊆ TEn
⊆ T (n) ⊆ Complete(V ) such that T (n) is a G-tree with

vertex G-set V(EG), and TEn is a Gn-tree with vertex Gn-set V(En).

Proof of (12.3.1). Notice that V(E0) = V(EG). By (a), G ∈ ast. By Theorem 11.1,
there exists some G-subtree of Complete(V ) with vertex G-set V(EG) contain-
ing TH . Here we have the desired conditions for n = 0.

Suppose then that we are given n ∈ [0↑∞[ and T (n) and TEn . Notice that
GTEn

= Gn.
We have

V(En) = V (En)× {⟨v0,− ⟩|E−En} = V(En+1)×V(En−En+1)× {⟨v0,− ⟩|E−En}
=

∨
w∈V(En−En+1)×{⟨v0,−⟩|E−En}

(V(En+1)× {w}).

Now V(En−En+1) is a Gn-stable almost equality class in Maps(En−En+1, Z).
By (a), Gn ∈ ast. Hence, there exists someGn-tree with vertexGn-set V(En−En+1)
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and Gn-quasifree edge Gn-set. Equivalently, there exists some Gn-tree T with
vertex Gn-set V(En−En+1)× {⟨v0,− ⟩|E−En

} and with Gn-quasifree edge Gn-set.
Let w0 := ⟨v0,− ⟩|E−En+1

∈ V(E−En+1).

We now take w ∈ V(T ) = V(En−En+1)×{⟨v0,− ⟩|E−En} and consider two cases,
where in Case 1 w ̸∈ Gn(w0) and in Case 2 w = w0, and here (Gn)w0 = Gn+1 > K.

By Lemma 9.3, in Case 1, rank((Gn)w) < ω0, while in Case 2, we have
rank(Gn+1 rel K) < ω0.

In Case 1, by Theorem 8.1, (Gn)w ∈ ast, and there then exists some (Gn)w-tree
with (Gn)w-quasifree edge (Gn)w-set and vertex (Gn)w-set V(En+1). Equivalently,
there exists some (Gn)w-tree Tw with (Gn)w-quasifree edge (Gn)w-set and vertex
(Gn)w-set V(En+1)× {w}.

In Case 2, by (a), Gn+1 ∈ ast. By Theorem 11.1, there exists some Gn+1-subtree
T−
w0

of Complete(V ) with vertex Gn+1-set V(EGn+1
) such that TH ⊆ T−

w0
. Then T−

w0

can be extended to some Gn+1-subtree, denoted Tw0
and TEn+1

, of Complete(V )

with vertex Gn+1-set V(En+1) = V(En+1)× {w0}.
We now Gn-equivariantly blow up each vertex w of T to Tw and get a Gn-tree T

with Gn-vertex set V(En) having a Gn+1-subtree TEn+1
with vertex Gn+1-set

V(En+1) such that TH ⊆ TEn+1
.

The G-tree T (n) has a Gn-subtree TEn
with vertex Gn-set V(En) = V(T ). We

now build T (n+1) from T (n) by G-equivariantly removing the edges in TEn and
replacing them with the edges of the new Gn-tree T, which has the same vertex
Gn-set as TEn

. This completes the proof of (12.3.1). �
We next show the following.

(12.3.2) The descending sequence of subgroups G[[0↑∞[[ is eventually constant.

Proof of (12.3.2). Here we may assume that all the terms of G[[0↑∞[[ are infinite
subgroups.

The G-set V(T (0)/E(G(TH))) is obtained from V(EG) by identifying all the
elements of gV(EH) with each other, for each g ∈ G. Since rank(G rel H) < ω0,

by Lemma 9.3(iii) there exists some G-finite G-incompressible G-tree T
(ω0)

such

that E(T
(ω0)

) is G-quasifree and

G -substabs(V(T
(ω0)

)) = G -substabs(V(T (0)/E(G(TH)))).

Consider any n ∈ [0↑∞[.
The G-set V(T (n)/E(G(TEn

))) is obtained from V(EG) by identifying all the
elements of gV(En) with each other, for each g ∈ G. Since rank(G rel H) < ω0, by

Lemma 9.3(iii) there exists some G-finite G-incompressible G-tree T
(n)

such that

E(T
(n)

) is G-quasifree and

G -substabs(V(T
(n)

)) = G -substabs(V(T (n)/E(G(TEn
)))).

Since V(EH) ⊆ V(En), we see that there exists a natural G-map

V(T (0)/E(G(TH))) → V(T (n)/E(G(TEn))).

Hence,

G -substabs(V(T (0)/E(G(TH)))) ⊆ G -substabs(V(T (n)/E(G(TEn)))),

and this is equivalent to

G -substabs(V(T
(ω0)

)) ⊆ G -substabs(V(T
(n)

)).

By Lemma 9.4(i), 3|G\T (ω0)| > |G\T (n)|, and we have now shown that, as n varies

over [0↑∞[ , |G\T (n)| has a finite bound. By definition, size(T
(n)

) is an element of
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Z[t] with non-negative coefficients, and we now see that the sum of the coefficients
has a finite bound.

Since V (En+1) ⊆ V(En), we see that there exists a natural G-map

V(T (n+1)/E(G(TEn+1
))) → V(T (n)/E(G(TEn

))).

Hence,

G -substabs(V(T (n+1)/E(G(TEn+1)))) ⊆ G -substabs(V(T (n)/E(G(TEn)))),

and this is equivalent to G -substabs(V(T
(n+1)

)) ⊆ G -substabs(V(T
(n)

)). Now, by

Lemma 9.4(ii), we see that size(T
(n+1)

) ⊒ size(T
(n)

). Thus, size(T
(n)

) increases
with n ∈ [0↑∞[ . It is not difficult to use the foregoing boundedness restraint to

show that there exists some n ∈ [0↑∞[ such that size(T
(n+1)

) = size(T
(n)

).

By Lemma 9.4(iii), G -substabs(V(T
(n+1)

)) = G -substabs(V(T
(n)

)), and this is
equivalent to

G -substabs(V(T (n+1)/E(G(TEn+1
)))) = G -substabs(V(T (n)/E(G(TEn

)))).

Since Gn+1 is infinite and the edge G-set of T (n+1)/E(G(TEn+1
)) is G-quasifree,

we see that T (n+1)/E(G(TEn+1
)) has at most one Gn+1-stable vertex. Since Gn+1

stabilizes the image of V(En+1), we see that the image of V(En+1) is the unique
Gn+1-stable vertex of T (n+1)/E(G(TEn+1

)). Since T (n)/E(G(TEn
)) has a Gn-stable

vertex, namely the image of V(En), we see that Gn stabilizes some vertex of
T (n+1)/E(G(TEn+1

)), and, as such a vertex is then Gn+1-stable, it must be the
image of V(En+1). Thus, Gn 6 GV (En+1) = Gn+1. This completes the proof
of (12.3.2). �

By (12.3.2), there exists some n ∈ [1↑∞[ such that Gn = Gn−1. Hence

GnEK = En+1 ⊆ EGn
⊆ En = Gn−1EK = GnEK .

Thus GnEK = EGn
= En. By (b), for all g ∈ Gn−K, gEK ∩ EK = ∅. By (a)

and Theorem 11.1, there exists a Gn-subtree T of Complete(V ) with vertex Gn-set
V(En) such that TK ⊆ T .

We now build TG from T (n) by G-equivariantly removing the edges in TEn
and

replacing them with the edges of the new Gn-tree T , which has the same vertex
Gn-set as TEn . This completes the proof. �

The following is a modification of [5, III.8.4].

12.4. Theorem. Let Notation 10.1 hold.
Suppose that rank(G rel H) 6 ω0, and that, for each g ∈ G−H, gEH ∩EH = ∅.
Suppose that, for each subgroup K of G, if H 6 K and rank(K rel H) < ω0,

then K ∈ ast.
Suppose that TH is some H-subtree of Complete(V ) with vertex H-set V(EH) .
Then there exists some G-subtree TG of Complete(V ) with vertex G-set V(EG)

such that TH ⊆ TG.

Proof. Let g[[1↑∞[[ be a sequence in G such that H ∪ g[1↑∞[ generates G.
We now recursively construct an ascending sequence of subgroups G[[0↑∞[[ of G

such that G0 = H, and, for each n ∈ [1↑∞[ , the following hold.

(1) gn ∈ Gn.
(2) rank(Gn rel H) < ω0.
(3) Whenever Gn 6 K 6 G and rank(K rel H) < ω0 and K(EGn

) = EK , then,
for each k ∈ K−Gn, kEGn ∩ EGn = ∅.
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Suppose that we are given n ∈ [1↑∞[ and Gn−1. Let K denote the set of those
subgroups K of G such that K contains Gn−1 ∪{gn} and rank(K rel H) < ω0. By
Lemma 12.1, for each K ∈ K, EK−K(EH) is K-finite. Hence, K\(EK−K(EH))
achieves a minimum value as K ranges over K. We take Gn to be an ele-
ment of K where this minimum is achieved. Then Gn−1 6 Gn, gn ∈ Gn, and
rank(Gn rel H) < ω0. Consider any subgroup K of G such that K contains Gn
and rank(K rel H) < ω0 and K(EGn

) = EK . Then K ∈ K. By minimality for Gn,

|Gn\(EGn
−Gn(EH))| 6 |K\(EK−K(EH))|

= |K\(K(EGn
)−(KGn)(EH))|

6 |K\(K(EGn
−Gn(EH)))|

6 |Gn\(EGn−Gn(EH))|.
We have equality throughout, and then

K(EGn
)−(KGn)(EH) = K(EGn

−Gn(EH)),

and, for each k ∈ K−Gn, k(EGn
− Gn(EH)) ∩ (EGn

− Gn(EH)) = ∅, while, by
hypothesis, kGn(EH) ∩Gn(EH) = ∅. Let S be a right Gn-transversal in K. Then

K(EGn
) = (K(EGn

)−(KGn)(EH)) ∨ (KGn)(EH)

=
∨
s∈S

s(EGn −Gn(EH)) ∨
∨
s∈S

sGn(EH) =
∨
s∈S

sEGn .

Hence, for each k ∈ K−Gn, kEGn
∩ EGn

= ∅. This completes the recursive
construction of G[[0↑∞[[.

We next recursively construct an ascending sequence T[[0↑∞[[ of subtrees of
Complete(V ) containing TH such that, for each n ∈ [0↑∞[ , Tn is a Gn-subtree
of Complete(V ) with vertex Gn-set V(EGn

).
We take T0 := TH . Suppose that we are given n ∈ [0↑∞[ and Tn. By

Lemma 12.3, there exists some Gn+1-subtree of Complete(V ) with vertex Gn+1-set
V(EGn+1) such that Tn ⊆ Tn+1. This completes the recursive construction of
T[[0↑∞[[.

We now take TG :=
∪

n∈[0↑∞[

Tn. �

We shall use two different forms of this result.

12.5. Corollary. Let Notation 10.1 hold.
Suppose that |G| 6 ω0.
Then there exists some G-subtree TG of Complete(V ) with vertex G-set V(EG).

Proof. We take H = {1} in Theorem 12.4. Here, EH = ∅ and, for each subgroup
K of G, if rank(K) < ω0, then K ∈ ast by Theorem 8.1. �
12.6. Corollary. Let Notation 10.1 hold.

Suppose that rank(G rel H) 6 ω0, and that, for each g ∈ G−H, gEH ∩EH = ∅.
Suppose that every subgroup of G lies in ast.
Suppose that TH is some H-subtree of Complete(V ) with vertex H-set V(EH) .
Then there exists some G-subtree TG of Complete(V ) with vertex G-set V(EG)

such that TH ⊆ TG. �

13. The proof

Proof of the Almost Stability Theorem 1.2. We may assume that Notation 10.1
holds and it suffices to show that there exists some G-subtree of Complete(V )
with vertex G-set V(EG).

By Corollary 12.5, we may assume that ω0 < |G|.
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By transfinite induction, we may assume that, for each subgroup H of G, if
|H| < |G|, then H ∈ ast.

Set γ := |G| and choose a bijective map γ → G, β 7→ gβ . We shall recursively
construct an ascending chain of subgroups (Gβ | β 6 γ) of G and, at the same time,
an ascending chain of subtrees (Tβ | β 6 γ) of Complete(V ). For each β 6 γ, we
shall set Eβ := EGβ

, Vβ := V(Eβ), and the following will hold.

(1) {gα | α < β} ⊆ Gβ .
(2) |Gβ | 6 max{ω0, |β|}.
(3) For each g ∈ G−Gβ , gEβ ∩ Eβ = ∅.
(4) V(Tβ) = Vβ and Gβ E(Tβ) = E(Tβ).

Suppose that we are given some β 6 γ and a chain of subgroups (Gα | α < β)
and a chain of subtrees (Tα | α < β) satisfying (1)–(4) at each step.

Case 1. β = 0.
We define G0 := {1} and T0 = {v0}. Here E0 = ∅, V0 = {v0} and conditions

(1)–(4) hold in Case 1.

Case 2. β is a successor ordinal.
By Proposition 12.2, there exists some subgroup Gβ of G with the properties

that Gβ−1 ∪ {gβ−1} ⊆ Gβ and rank(Gβ rel Gβ−1) 6 ω0 and, for each g ∈ G−Gβ ,
gEβ ∩ Eβ = ∅. Hence, (3) holds.

Then {gα | α < β} = {gα | α < β−1} ∪ {gβ−1} ⊆ Gβ−1 ∪ {gβ−1} ⊆ Gβ , and (1)
holds.

Since rank(Gβ rel Gβ−1) 6 ω0, we have |Gβ | 6 max{ω0, |Gβ−1|}. Now
|Gβ | 6 max{ω0, |Gβ−1|} 6 max{ω0, |β−1|} 6 max{ω0, |β|}, and (2) holds.

Since |β−1| 6 β−1 < β 6 γ, we also have |Gβ | 6 max{ω0, |β−1|} < γ, and then
every subgroup of Gβ lies in ast, by the transfinite induction hypothesis. By Corol-
lary 12.6, there exists some Gβ-subtree Tβ of Complete(V ) with vertex Gβ-set Vβ
such that the Tβ−1 ⊆ Tβ . Hence, (4) holds.

Now conditions (1)–(4) hold in Case 2.

Case 3. β is a limit ordinal.
Here, we set Gβ :=

∪
α<β

Gα and Tβ :=
∪
α<β

Tα.

Notice that Eβ =
∪
α<β

Eα and Vβ =
∪
α<β

Vα. Hence (4) holds.

For each α < β, we have α+1 < β and gα ∈ Gα+1 ⊆ Gβ . Hence (1) holds.
Notice that ω0 6 |β|. Thus

|Gβ | = |
∪
α<β

Gα| 6
∑
α<β

|Gα| 6
∑
α<β

max{ω0, |α|} 6
∑
α<β

|β| 6 |β|2 = |β|;

see, for example, [12, Theorem 3.5] and [12, Lemma 5.2]. Hence (2) holds.
For each g ∈ G, if gEβ ∩ Eβ ̸= ∅, then there exist α1 < β and α2 < β such that

gEα1
∩ Eα2

̸= ∅, and then g ∈ Gmax{α1,α2} 6 Gβ . Hence (3) holds.
Thus conditions (1)–(4) hold in Case 3.

This completes the recursive construction.
By (1), Gγ = G. By (4), Tγ is a G-subtree of Complete(V ) with vertex

G-set V(EG). This completes the proof. �
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14. Arbitrary extensions

With a similar argument, we get the relative version, [5, III.8.5].

14.1. Theorem. Let Notation 10.1 hold.
Suppose that, for each g ∈ G−H, gEH ∩ EH = ∅, and that there exists some

H-subtree TH of Complete(V ) with vertex H-set V(EH) . Then there exists some
G-subtree TG of Complete(V ) with vertex G-set V(EG) such that TH ⊆ TG.

Proof. Set γ := |G|, and choose a bijective map γ → G, β 7→ gβ . We shall re-
cursively construct an ascending chain of subgroups (Gβ | β 6 γ) of G and, at the
same time, an ascending chain of subtrees (Tβ | β 6 γ) of Complete(V ). For each
β 6 γ, we shall write Eβ := EGβ

, Vβ := V(Eβ), and the following will hold.

(1) {gα | α < β} ⊆ Gβ .
(2) For each g ∈ G−Gβ , gEβ ∩ Eβ = ∅.
(3) V(Tβ) = Vβ and Gβ E(Tβ) = E(Tβ).

Suppose that we are given some β 6 γ and a chain of subgroups (Gα | α < β)
and a chain of subtrees (Tα | α < β) satisfying (1)–(3) at each step.

Case 1. β = 0.
We define G0 := H and T0 = TH . Now conditions (1)–(3) hold in Case 1.

Case 2. β is a successor ordinal.
By Proposition 12.2, there exists some subgroup Gβ of G with the properties

that Gβ−1 ∪ {gβ−1} ⊆ Gβ and rank(Gβ rel Gβ−1) 6 ω0 and, for each g ∈ G−Gβ ,
gEβ ∩ Eβ = ∅. Hence, (2) holds.

Then {gα | α < β} ⊆ Gβ−1 ∪ {gβ−1} ⊆ Gβ , and (1) holds.
By Theorem 1.2, every subgroup of Gβ lies in ast. By Corollary 12.6, there

exists some Gβ-subtree Tβ of Complete(V ) with vertex Gβ-set Vβ such that the
Tβ−1 ⊆ Tβ . Hence, (3) holds.

Now conditions (1)–(3) hold in Case 2.

Case 3. β is a limit ordinal.
Here, we define Gβ :=

∪
α<β

Gα and Tβ :=
∪
α<β

Tα.

Notice that Eβ =
∪
α<β

Eα and Vβ =
∪
α<β

Vα. Hence (3) holds.

For each α < β, we have α+1 < β and gα ∈ Gα+1 ⊆ Gβ . Hence (1) holds.
For each g ∈ G, if gEβ ∩ Eβ ̸= ∅, then there exist α1 < β and α2 < β such that

gEα1
∩ Eα2

̸= ∅, and then g ∈ Gmax{α1,α2} 6 Gβ . Hence (2) holds.
Thus conditions (1)–(3) hold in Case 3.

This completes the recursive construction.
By (1), Gγ = G. By (3), Tγ is a G-subtree of Complete(V ) with vertex

G-set V(EG). Since T0 = TH , this completes the proof. �
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[4] M. Dehn,Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69, (1910) 137–168.

[5] Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced

Mathematics 17, Cambridge University Press, Cambridge, 1989.
Errata at http://mat.uab.cat/~dicks/DDerr.html



AN IMPROVED PROOF OF THE ALMOST STABILITY THEOREM 31

[6] M. J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London

Math. Soc. (3) 38 (1979), 193–215.
[7] M. J. Dunwoody and E. L. Swenson, The algebraic torus theorem, Invent. Math. 140 (2000),

605–637.

[8] Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract
groups, Ann. of Math. 65 (1957), 517–518.

[9] Ralph H. Fox, Free differential calculus. I Derivation in the free group ring, Ann. of Math.
(2) 57 (1953), 547–560.
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