
LECTURE NOTES ON MCCOOL’S PRESENTATIONS FOR STABILIZERS

WARREN DICKS*

Abstract. Let F be any free group with a finite basis, let S be any finite set of conjugacy
classes of elements of F , and let Aut(F, S) denote the group of all automorphisms of F
which carry S to itself. In 1975, McCool described a finite presentation for Aut(F, S); even
the fact that Aut(F, S) is finitely generable had not been noted previously. McCool’s proof
has some subtle points, and the standard treatments leave some details to the reader. We
give a self-contained, detailed proof of a slight generalization of McCool’s result. We also
give proofs of all the background results of Dyck, Dehn, Nielsen, Reidemeister, Schreier,
Gersten, Higgins&Lyndon, Whitehead, and Rapaport.

Our viewpoint is mainly graph-theoretic. We lift Higgins&Lyndon’s arguments from
outer automorphisms to automorphisms by using graph-theoretic techniques due to Gersten,
as opposed to using Rapaport’s technique of adding a new variable. We lift McCool’s
arguments about finite, two-dimensional CW-complexes to arguments about groups acting
on trees, where they may be made rigorous.

1. Introduction

1.1. Definitions. Let G be a group. By a straight word in G, we mean an element of G.
By a cyclic word in G, we mean the G-conjugacy class of an element of G. By a word in G,
we mean a straight-or-cyclic word in G. Let AutG denote the group of all automorphisms
of G, acting on the right, written as exponents. In a natural way, AutG acts on the set
of all words in G, and on the set of all sets of words in G. If S is any set of words in G,
then we define Aut(G,S) := {φ ∈ AutG : S φ = S}, which is a subgroup of AutG called the
(AutG)-stabilizer of S. �
1.2. Historical notes. Let F be a free group with a finite basis (free-generating set), and
S and S ′ be finite sets of words in F .

Nielsen(1919) used an elegant algebraic argument to obtain a finite generating set for
AutF . Later, Nielsen(1924) used a very difficult algebraic argument to obtain a finite
presentation for AutF . His proof used a rewriting algorithm and a Dehn tree; although we
shall not discuss Nielsen’s proof, we shall see that both of these tools are still very important
in the theory. Chandler&Magnus(1982) wrote that ‘an unsystematic poll taken by Magnus
in 1970 seems to indicate that for about a decade after the death of Nielsen in 1959 there
existed no living mathematician who had read Nielsen’s paper in detail or would have been
able to derive his result. This situation changed dramatically’ when McCool(1974 and 1975b)
obtained a new finite presentation for AutF and a new proof of Nielsen’s finite presentation
for AutF .
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Whitehead(1936) associated with S a finite graph Γ(S) (described in Historical notes 9.3
below), and gave a difficult topological proof that Γ(S) is connected, from which it follows
that Γ(S) may be constructed by using a simple algorithm. By comparing Γ(S) and Γ(S ′),
one sees whether or not the set {φ ∈ AutF : S φ = S ′} is empty, and one finds an element
if any exist. Rapapport(1958) introduced a rewriting algorithm, and gave a very difficult
algebraic proof that Γ(S) is connected. Higgins&Lyndon(1962) introduced a more powerful
rewriting algorithm, and gave a relatively simple algebraic proof that Γ(S) is connected.
These efforts to understand Whitehead’s work were rewarded with an unexpected result
when McCool(1975a) refined the Higgins&Lyndon algorithm and showed how to read off a
finite presentation for Aut(F, S) from Γ(S) ; even the fact that Aut(F, S) is finitely generable
had not been noted previously. �

The purpose of these notes is to present a self-contained proof, with all details checked,
of an explicit finite presentation for Aut(F, S). The proof has some subtle points, and
the standard treatments leave several details to the reader. We use most of the results
already mentioned, together with later techniques introduced by Serre(1977), Hoare(1979),
and Gersten(1984a). Let us now outline the course.

In Section 2, we collect together much of the basic vocabulary and notation we shall be
using. In Section 3, we formally explain free groups, bases, and presentations. In Section 4,
we formally explain graphs and Serre’s definition of their fundamental groups; this section
produces free groups from graphs, while the next section produces trees from free groups. In
Section 5, we explain Schreier graphs, Dehn trees, Dyck normal forms, and the length of a
finite set of words in a free group. In Section 6, we use the Schreier-Serre technique to prove
the Nielsen-Schreier theorem that subgroups of free groups are free, and then we describe
Reidemeister-Schreier presentations for subgroups.

In the remainder of the course, we study Aut(F ) for a free group F with a finite basis.
In Section 7, we give Nielsen’s finite generating set for Aut(F ) and Nielsen’s original proof.
In Section 8, we present Whitehead’s larger finite generating family for Aut(F ), which has
the advantage of behaving extraordinarily well with respect to lengths of finite sets of words.
In Section 9, we list McCool’s relators, state McCool’s explicit finite presentation of AutF ,
and state explicitly McCool’s finite presentation for Aut(F, S). We then finally know where
we are headed. In Section 10, we give Gersten’s graph-theoretic description of Whitehead’s
generating family, and start to accumulate some of its properties. In Section 11, we state
and prove six rules for Whitehead’s generators which encapsulate the set of rules given by
Higgins&Lyndon, which in turn greatly simplified the set of rules given by Rapaport. In
Section 12, we record the consequences of five of the six rules; in particular, the relators
given in Section 9 are relators. In Section 13, we introduce Rapaport’s important concept
of decreasing a peak, here expressed in terms of groups acting on trees. In Section 14, we
perform the most strenuous part which is to prove that the McCool peaks are Rapaport
decreasable via the Higgins&Lyndon rewriting rules. In Section 15, we record Rapaport’s
consequence of this result. In Section 16, we give proofs for the presentations stated in
Section 9.

1.3. Historical notes. Possibly the most famous example of Aut(F, S) is the algebraic
n-string-braid group of Artin(1925 and 1947), wherein F is a free group with basis
{t1, t2, . . . , tn} and S is the set {t1·t2· · ·tn, t	1 , t	2 , . . . , t	n}; here, we are writing t	i to de-
note the cyclic word which is the F -conjugacy class of ti. One of the many important results
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that Artin obtained in 1925 was a finite presentation for Aut(F, S). His proof used algebra
and topology. In 1947, he wrote the following about his 1925 paper: “Most of the proofs are
entirely intuitive...It is possible to correct the proofs. The difficulties that one encounters
if one tries to do so come from the fact that projection of the braid, which is an excellent
tool for intuitive investigations, is a very clumsy one for rigorous proofs.”. Magnus(1934)
gave an algebraic proof of Artin’s 1925 presentation by applying a procedure which had been
invented in 1927 by Artin’s colleagues Reidemeister and Schreier. �

McCool(1975a) wrote that ‘the idea of exhibiting Aut(F, S) as the fundamental group of
a finite complex was shown to me by Lyndon. My original proof...was much more tedious.’.
The straightforward translation from fundamental groups to groups acting on trees does not
seem to me to add tedium, and it is the only language that I have found in which I could
write out rigorous proofs.

Although there are some innovations in these notes, we have not explained anything alien
to the period 1882–1984, we have explained only a small portion of what was learned about
free groups in that period, and we have explained nothing at all about the massive activity
in the reseach on free groups since 1984. We believe that at least the information we have
given about McCool’s presentations is up-to-date.

2. Basic vocabulary and notation

2.1. Definitions. Following Bourbaki, we let N denote the set of finite cardinals; thus,
N := {0, 1, 2, . . . , }.

For any sets A and B, we denote the disjoint union of A and B by A ⊔B.
For any set S and subsets A and B of S, we write A−B := {a ∈ A : a /∈ B}.
Let A be any set. We denote the cardinal of A by |A|. For each ℓ ∈ N, we let A× ℓ

denote the ℓth Cartesian power of A; thus, the elements of A× ℓ are ℓ-tuples of elements of A,
(a1, a2, . . . , aℓ). An A-sequence is an element of A× ℓ for some ℓ ∈ N, and ℓ is then called the
length of the A-sequence. A set S is said to be a family of elements of A if there is specified
a set map S → A; by abuse of notation, we then treat each element of S as if it were equal
to its image in A. �
2.2. Definitions. Let G be a group.
We denote the associative binary operation by G×2 → G, (h, g) 7→ h·g. We denote the

identity element by 1, and the inversion operation byG→ G, g 7→ g−1. (On the two occasions
where we abelianize G, we shall change the notation for the operation to +.)

For all g, h ∈ G, we set gh := h−1·g·h and hg := h·g·h−1.
For each h ∈ G, the set hG := {h g : g ∈ G} is called the G-conjugacy class of h, which is

a cyclic word in G.
For subsets A, B of G, we write A·B := {a·b | a ∈ A, b ∈ B}, AB := {ab | a ∈ A, b ∈ B},

AB := {ab | a ∈ A, b ∈ B}, A−1 := {a−1 | a ∈ A}, and A±1 := A ∪ A−1. For an element g
of G, we write A·g := A·{g}, and similarly for g·A.
For each subset S of G, we set ⟨S⟩ := {s1·s2· · ·sℓ : (s1, s2, . . . , sℓ) is an S±1-sequence}.

Then ⟨S⟩ is the inclusion-smallest subgroup of G which includes S. We call ⟨S⟩ the subgroup
of G generated by S. If ⟨S⟩ = G, we say that S is a generating set for G. We say that G is
finitely generable if there exists some finite generating set for G. By the normal closure of S
in G, we mean ⟨ GS⟩, which is the inclusion-smallest normal subgroup of G which includes S.
Analogous terminology is used with families of elements of G in place of subsets of G.
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We set G(·2) :=
⟨
{g 2 | g ∈ G}

⟩
, which is a normal subgroup of G. For all x, y ∈ G,

x·y·x−1·y−1 = x2·(x−1·y)2·(y−1)2 ∈ G(·2). The quotient group G/G(·2) may be viewed as a
vector space over the field F2 of two elements. We set rank(G;F2) := dimF2(G/G

(·2)).
Consider any G-sequence σ = (g1, g2, . . . , gℓ). We say that σ is reduced if gi+1 ̸= g−1i for

each i ∈ {1, 2, . . . , ℓ−1}, and σ is cyclically reduced if (g1, g2, . . . , gℓ, g1, g2, . . . , gℓ) is reduced.
For each g ∈ G, we say that σ is for g if g1·g2· · ·gℓ = g. For each cyclic word x in G, we say
that σ is for x if g1·g2· · ·gℓ ∈ x.

By a right-multiplicative G-set A, we mean a set A given with a map A×G→ A denoted
(a, g) 7→ a·g such that the following hold: for each a ∈ A, we have a·1 = a; for all a ∈ A
and g, h ∈ G, we have a·(g·h) = (a·g)·h. For each a ∈ A, we write Ga := {g ∈ G : a·g = a},
which is a subgroup of G called the G-stabilizer of a. If the map A×G→ A were de-
noted (a, g) 7→ ag, we would say that A is a right-exponential G-set. If A is either a
right-multiplicative G-set or a right-exponential G-set, we say that A is a right G-set. We
define left-multiplicative, left-exponential, and left G-sets analogously. If A is a left or right
G-set, we say that A is a G-set and we write Ga to denote the G-stabilizer of a, for each
a ∈ A.

If A and B are right-multiplicative G-sets, then a map φ : A→ B, a 7→ φ(a), is said
to be a right-multiplicative G-map if φ(a·g) = (φ(a))·g for all (a, g) ∈ A×G. We de-
fine right-exponential G-maps, right G-maps, left-multiplicative G-maps, left-exponential
G-maps, left G-maps, and G-maps analogously.

For each subgroup H of G, we write H\G := {H·g | g ∈ G} and G/H := {g·H | g ∈ G}; in
a natural way, these are right-multiplicative and left-multiplicative G-sets respectively. �

3. Free groups and presentations

3.1. Definitions. Let E be any set. Set E±1 := E×{1,−1} and A :=
⊔
ℓ∈N

(
(E±1)× ℓ

)
. Let the

unique element of (E±1)× 0 be denoted 1A. We view E as the subset E×{1} of E±1, and, we
view E±1 as the subset (E±1)× 1 of A. On A, we have a unary operation called inversion,

A→ A, a 7→ a−1, where (e1, . . . , eℓ)
−1 := (e−1ℓ , . . . , e−11 ),

where, for each (e, ϵ) ∈ E±1, (e, ϵ)−1 := (e,−ϵ) ∈ E±1. On A, we also have a binary operation
called concatenation,

A× 2 → A, (a, b) 7→ a} b, where (e1, . . . , eℓ)}(f1, . . . , fm) := (e1, . . . , eℓ, f1, . . . , fm).

Then A is a monoid, in that concatenation is associative and 1A is the identity element. Let
A denote the set of all those subsets S of A× 2 such that the following hold: S is an equivalence
relation on A; for each a ∈ A, we have (a−1} a, 1A) ∈ S; for all (a, a′), (b, b′) ∈ S, we have
(a} b, a′} b′) ∈ S. For each S ∈ A, we let A/S denote the set of S-equivalence classes; it is
straightforward to show that A/S has a unique group structure such that the quotient map
A→ A/S is an inversion-respecting monoid morphism. In A× 2, set S0 :=

∩
S∈A

S. It is clear

that S0 ∈ A. We call A/S0 the free group on E, and denote it by F(E). Thus, F(E) is a
group with a specified set map E → F(E); moreover, we claim that, for each group G, each
set map E → G is the composite of our set map E → F(E) with a unique group morphism
F(E)→ G. To verify this claim, we note that, first, the set map E → G is the composite
of the inclusion map E → A with an inversion-respecting monoid morphism A→ G, which
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determines an element S ∈ A in a natural way, and, secondly, we may then construct maps
F(E)→ A/S → G, and the proof of the claim follows. Here, we say that the group morphism
F(E)→ G is induced by the set map E → G.
Exercise: The map E±1 → F(E) is injective.
Exercise: rank(F(E);F2) = |E|.
We shall often treat E as a subset of F(E), and here no ambiguity arises from the two

definitions of E±1. �
3.2. Definitions. We say that a group G is a free group if there exists some set E such
that G is isomorphic to F(E), or, equivalently, there exists some set map E → G such that
the induced group morphism F(E)→ G is an isomorphism. In the latter event, we say that
the set map E → G is a G-basis ; it is necessarily injective. For any subset E of G, if the
inclusion map E → G is a G-basis, then we say that the subset E is a G-basis. �
3.3. Definitions. Let E be any set, R be any family of elements of F(E), and N be the
normal closure in F(E) of R. We write ⟨E |R ⟩ to denote the group F(E)/N .
For any group G, we write G = ⟨E |R ⟩ when there is specified an isomorphism from
⟨E |R ⟩ to G, or, equivalently, there is specified a set map E → G such that the induced
group morphism F(E)→ G is surjective and has kernel N . By abuse of notation, we then
say that ⟨E |R ⟩ is a presentation for G; here, it is important to specify the set map E → G.
If, moreover, the sets E and R are finite, then we say that ⟨E |R ⟩ is a finite presentation
for G. We say that G is finitely presentable if there exists some finite presentation for G. �

4. Building free groups out of graphs

4.1. Definitions (Classic). By a graph, we mean a quintuple ( Γ,VΓ,EΓ, ι, τ) such that Γ
is a set, VΓ and EΓ are disjoint subsets of Γ whose union is Γ, and ι and τ are maps from
EΓ to VΓ. We use the same symbol Γ to denote both the graph and the set. We call
VΓ and EΓ the vertex-set and edge-set of Γ respectively, and call their elements Γ-vertices
and Γ-edges respectively. The maps ι and τ are called the initial and terminal incidence
functions respectively.

For each subset Υ of Γ, we write VΥ := Υ ∩ VΓ and EΥ := Υ ∩ EΓ. We say that Υ is
a subgraph of Γ if EΥ ⊆ {e ∈ EΓ : {ι(e), τ(e)} ⊆ VΥ}; if equality holds, we say that Υ is a
full subgraph of Γ.

We set E±1Γ := (EΓ)±1 ⊆ F(EΓ). For e ∈ EΓ, we set ι(e−1) := τ(e) and τ(e−1) := ι(e).
For each v ∈ VΓ, we set linkΓ(v) := {e ∈ E±1Γ : ιe = v}. By the Γ-valence of v, we mean
| linkΓ(v)|.
By a Γ-path, we mean a sequence of the form p = (v0, e1, v1, e2, v2, . . . , vℓ−1, eℓ, vℓ) where

ℓ ∈ N and, for each i ∈ {1, 2, . . . , ℓ}, ei ∈ E±1Γ, vi−1 = ιei, and vi = τei. We sometimes find

it helpful to depict p as v0
e1−→−v1

e2−→−v2 · · · vℓ−1
eℓ−→−vℓ. We say p is a path from v0 to vℓ,

p connects v0 to vℓ, p initiates at v0, p terminates at vℓ, and p has length ℓ. If vℓ = v0, then
we say that p is a closed path based at v0. If ei ̸= e−1i−1 for each i ∈ {2, 3, . . . , ℓ}, then we
say that p is a reduced path. We sometimes abbreviate p to (e1, e2, . . . , eℓ), even if ℓ = 0
when v0 is specified. For each e ∈ E±1Γ, by the number of times p traverses e, we mean∣∣{i ∈ {1, 2, . . . , ℓ} : ei ∈ {e}±1}∣∣. We call the element e1·e2 · · · eℓ of ⟨EΓ | ∅⟩ the Γ-label of p.
By a subpath of p, we mean any subsequence of p of the form (vi, ei+1, vi+1, . . . , ej, vj) where
i, j ∈ {0, 1, . . . , ℓ} and i 6 j.
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For v, w ∈ VΓ, we let Γ-Paths(v, w) denote the set of all Γ-paths from v to w; we then
have the inversion map

Γ-Paths(v, w)→ Γ-Paths(w, v), p 7→ p−1,

where (e1, e2, . . . , eℓ)
−1 := (e−1ℓ , . . . , e−12 , e−11 ). For u, v, w ∈ VΓ, we have the concatenation

map Γ-Paths(u, v)× Γ-Paths(v, w)→ Γ-Paths(u,w), (p1, p2) 7→ p1} p2,
where (e1, e2, . . . , eℓ)} (e′1, e

′
2, . . . , e

′
m) := (e1, e2, . . . , eℓ, e

′
1, e
′
2, . . . , e

′
m). The Γ-label of a con-

catenation of two Γ-paths equals the product of the Γ-labels of the two Γ-paths. If a Γ-path p
is closed and p} p is reduced, we say that p is cyclically reduced. For any v ∈ VΓ and any
subset W of VΓ, we let Γ-Paths(v,W ) denote the set of all Γ-paths which initiate at v and
terminate at some element of W .
We say that Γ is a tree if VΓ ̸= ∅ and, for all v, w ∈ VΓ, there exists a unique reduced

Γ-path from v to w. We say that Γ is connected if, for all v, w ∈ VΓ, there exists a Γ-path
from v to w. By a component of Γ, we mean a maximal nonempty, connected subgraph
of Γ. Thus, Γ equals the disjoint union of its components. We say that Γ is a forest if each
component of Γ is a tree. It may be seen that Γ is a forest if and only if every reduced,
closed Γ-path has length zero.
Let G be a group. We say that a graph is a (left or right) (multiplicative or exponential)

G-graph if both the vertex-set and the edge-set are G-sets, and the initial and terminal
incidence functions are G-maps.

4.2. Definitions (Schreier(1927), modified by Serre(1977)). Let Γ be a nonempty connected
graph.

Let Γ0 be a maximal subtree of Γ. By Zorn’s lemma, VΓ0 = VΓ. For any vertices u, v
of Γ, we let Γ0[u, v] denote the Γ-label of the unique reduced Γ0-path from u to v; notice that
Γ0[v, v] = 1, and that Γ0[v, u]·Γ0[u,w] = Γ0[v, w], for each u ∈ VΓ. Set E ′Γ := EΓ−EΓ0.
Let v0 be a Γ-vertex, chosen to serve as a basepoint. Let π(Γ, v0) denote the set consisting

of the Γ-labels of the closed Γ-paths based at v0. It is not difficult to see that π(Γ, v0) is a
subgroup of F(EΓ).

We have four group morphisms:

F(E ′Γ)
embed−−−→ F(EΓ), g 7→ gembed, sends each e ∈ E ′Γ to e ∈ EΓ;

F(EΓ)
deflate−−−→ F(E ′Γ), g 7→ gdeflate, sends each e ∈ EΓ0 to 1, each e ∈ E ′Γ to e ∈ E ′Γ;

π(Γ, v0)
include−−−−→ F(EΓ), g 7→ ginclude, is the inclusion map;

F(EΓ)
inflate−−−→ π(Γ, v0), g 7→ ginflate, sends each e ∈ EΓ to einflate := Γ0[v0, ιe]·e·Γ0[τe, v0].

We shall show that the two composite maps

π(Γ, v0)
include−−−−→ F(EΓ)

deflate−−−→ F(E ′Γ) and F(E ′Γ)
embed−−−→ F(EΓ)

inflate−−−→ π(Γ, v0)

are mutually inverse.
For each e ∈ E ′Γ,

edeflate ◦ embed ◦ inflate = eembed ◦ inflate = Γ0[v0, ιe]·e·Γ0[τe, v0],

and, also,

eembed ◦ inflate ◦ include ◦ deflate = (Γ0[v0, ιe]·e·Γ0[τe, v0])
include ◦ deflate = 1·e·1 = e,

which verifies one of the identity maps.
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For each e ∈ EΓ0,

edeflate ◦ embed ◦ inflate = 1embed ◦ inflate = 1 = Γ0[v0, ιe]·Γ0[ιe, τe]·Γ0[τe, v0] = Γ0[v0, ιe]·e·Γ0[τe, v0].

We have now seen that, for each e ∈ EΓ±1, edeflate ◦ embed ◦ inflate = Γ0[v0, ιe]·e·Γ0[τe, v0] . An
arbitrary element of π(Γ, v0) equals e1·e2 · · · eℓ for some Γ-path

v0
e1−→− v1

e2−→− · · · eℓ−→− vℓ = v0,
and then

(e1·e2 · · · eℓ)include ◦ deflate ◦ embed ◦ inflate = (e1·e2 · · · eℓ)deflate ◦ embed ◦ inflate

= Γ0[v0, v0]·e1·Γ0[v1, v0]·Γ0[v0, v1]·e2 · · · eℓ·Γ0[vℓ, v0]

= 1·e1·1·e2 · · · 1·eℓ = e1·e2 · · · eℓ,
which verifies the other identity map.

We have now proved that π(Γ, v0) = ⟨E ′Γ|∅⟩ = ⟨E Γ|E Γ0⟩ with the map E Γ→ π(Γ, v0),
e 7→ Γ0[v0, ιe]·e·Γ0[τe, v0]. In particular, π(Γ, v0) is a free group. �

5. Building trees out of free groups

5.1. Notation (after Schreier(1927)). Let G be any group, E be any family of elements of G,
and V be any right-multiplicative G-set. The Schreier graph for V with respect to E, denoted
VxE, is the graph with vertex-set V and edge-set V×E, in which each edge (v, e) has initial
vertex v and terminal vertex v·e. The (VxE)-paths (v, (v, e), v·e) and (v·e, (v, e)−1, v) are

depicted as v
·e−→−v·e and v·e ·e

−1

−−→−v respectively. We sometimes identify E±1(VxE) with
V×(E±1).
A (VxE)-path p will sometimes be depicted in the form

v0
·e1−→−v1

·e2−→−v2 →−· · · →−vℓ−1
·eℓ−→−vℓ

for a unique E±1-sequence (e1, e2, . . . , eℓ), called the E±1-label of p. Then p is a reduced
(VxE)-path if and only the right E±1-label of p is a reduced E±1-sequence. We define the
Schreier-label of p to be e1·e2 · · · eℓ ∈ ⟨E | ∅⟩. Notice that v0·(e1·e2 · · · eℓ) = vℓ. For each
v ∈ V , (VxE)-Paths(v, V ) is mapped onto ⟨E | ∅⟩ by taking Schreier-labels, and a path
initiating at v with Schreier-label g terminates at v·g.
For any subset W of V , we write WxE to denote the full subgraph of VxE with

vertex-set W ; recall that this means that the edge-set of WxE consists of all (VxE)-edges
whose initial and terminal vertices lie in W .
For any subgroup H of F , one may form (H\F )xE. If H E F , then (H\F )xE is also

called the Cayley graph for the group H\F with respect to E.
The Schreier-labels of (F\F )xE agree with the

(
(F\F )xE

)
-labels of Definitions 4.1, and

taking Schreier-labels of (VxE)-paths is interchangeable with applying the natural graph
morphism from VxE to (F\F )xE. �
5.2. Theorem (Dehn). For any free group F and any F -basis E, the graph FxE is a tree.

Proof ( Fox(1953), streamlined by Dicks(1980)). Set T := FxE. To reduce the number of
parentheses, for each (v, e) ∈ F×E = ET , let us set v⊗e := (v, e); thus, ι(v⊗e) = v and
τ(v⊗e) = v·e.

Clearly, T is nonempty.
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Let ∼ denote the inclusion-minimal equivalence relation on VT such that, for each T -edge
v⊗e, we have ι(v⊗e) ∼ τ(v⊗e). For each v ∈ VT , let [v] denote the ∼ -equivalence class
of v; then, for each e ∈ E, we have [v] = [v·e] . There exists a left-multiplicative-F -set
isomorphism between the set of components of T and the set of ∼ -equivalence classes. For
each e ∈ E, we have [1] = [1·e] = [e·1] = e·[1]. Hence, the F -stabilizer of [1] includes E, which
generates F . Thus, for all g ∈ F , [1] = g·[1] = [g]. Hence, [1] = F . Thus, T is connected.

For each set S, we let Z[S] denote the additive abelianization of F(S). The maps
ι, τ : ET → VT induce group morphisms ι̂, τ̂ : Z[ ET ]→ Z[ VT ]. If T were not a tree,
there would exist some positive-length, reduced, closed T -path p; then p would have some
positive-length, closed subpath p′ which traverses each T -edge at most once; and then the
abelianization map F(ET )→ Z[ ET ] would carry the T -label of p′ to a nonzero element of
the kernel of τ̂−ι̂. Thus, to show that T is a tree, it suffices to show that τ̂−ι̂ is injective. In a
natural way, Z[ ET ] is a left-multiplicative F -set, and we may form the semi-direct-product

group ( F Z[ ET ]
{0} {1} ) with matrix-style multiplication, wherein each element ( a b0 1 ) is denoted

⌈a, b⌉. Since E is an F -basis, there exists a unique group morphism F → ( F Z[ ET ]
{0} {1} ),

g 7→ ⌈φg, αg⌉, such that ⌈φe, αe⌉ = ⌈e, 1⊗e⌉ for each e ∈ E. For all v, g ∈ F ,
⌈φ(v·g), α(v·g)⌉ = ⌈φv, αv⌉·⌈φg, αg⌉ = ⌈(φv)·(φg), (φv)(αg) + αv⌉.

The map φ : F → F is an identity map, since φe = e and φ(v·g) = (φv)·(φg). The map
α : F → Z[ ET ] satisfies αe = 1⊗e and α(v·g) = (φv)·(αg) + αv. Thus, we have a map
α : VT → Z[ ET ] such that, for each v⊗e ∈ ET ,

α
(
τ(v⊗e)

)
−α

(
ι(v⊗e)

)
= α(v·e)−α(v) = (φv)·(αe) = (v)·(1⊗e) = v⊗e.

Now α induces a Z -module morphism α̂ : Z[ VT ]→ Z[ ET ], and the composite

Z[ ET ] τ̂−ι̂−−→ Z[ VT ] α̂−→ Z[ ET ]
is the identity map on Z[ ET ], since it carries each v⊗e ∈ ET to itself. Hence, τ̂−ι̂ is
injective, as desired. �
5.3. Definitions (Dyck(1882)). With Notation 5.1, for each straight word x in F , there
exists some reduced E±1-sequence (e1, e2, . . . , eℓ) for x. Here,

1
·e1−→−e1

·e2−→−e1·e2 →−· · · →−e1·e2 · · · eℓ−1
·eℓ−→−e1·e2 · · · eℓ−1·eℓ = x

is a reduced (FxE)-path from 1 to x, which is unique by Theorem 5.2. Thus, (e1, e2, . . . , eℓ)
is unique. We set E -length(x) := ℓ. For each e ∈ E±1, we set

#(e∈x;E) :=
∣∣{i ∈ {1, 2, . . . , ℓ} : ei ∈{e}±1}∣∣.

For each positive integer i, we set x[i;E] := ei if i 6 ℓ, and we set x[i;E] := 1 if i > ℓ; thus,
x[i;E] ∈ {1} ∪ E±1.

For each cyclic word x in F , there exists some cyclically reduced E±1-sequence (e1, . . . , eℓ)
for x. In Example 5.4 below, we shall see that (e1, . . . , eℓ) is then unique up to cyclic
permutation. We set E -length(x) := ℓ. For each e ∈ E±1, we set

#(e∈x;E) :=
∣∣{i ∈ {1, 2, . . . , ℓ} : ei ∈{e}±1}∣∣.

For each finite set X of words in F , we set E -length(X) :=
∑
x∈X

E -length(x) and, for each
e∈E, we set #(e∈X;E) :=

∑
x∈X

#(e∈x;E).
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Often, when X is either a word in F or a finite set or words in F , and E is clear from the
context, we set #(e∈X) := #(e∈X;E), and x[i] := x[i;E]. Then #(e−1 ∈X) = #(e∈X)
and E -length(X) :=

∑
e∈E

#(e∈X). �

5.4. Example. Let F be any free group, E be any F -basis, and V be the right-exponential
F -set which is the set F itself with the conjugation action V × F → V , (v, g) 7→ vg = g−1·v·g.
We wish to describe the graph VxE.
Consider any v ∈ V .
Define ~(v) := E -length(v). We then have a map ~ : V → N, and we envision it as a sort

of topographical height-function on VxE.
By the v-component, we shall mean the (VxE)-component which contains v. The vertex-set

of the v-component is the F -conjugacy class of v.
If |E| = 0, then (VxE) is a topological point, with exactly one vertex and no edges.
If |E| = 1, then the v-component is a topological circle, with exactly one vertex and one

edge.
Let us now consider the case where |E| > 2. If v = 1, then the v-component has exactly

one vertex and |E| edges. Let us now consider the case where v ̸= 1.
If the reduced E±1-sequence for v is cyclically reduced, then there exist exactly two

length-one (VxE)-paths initiating at v and terminating in a (VxE)-vertex which is ~-equal
to v; here, all the other length-one (VxE)-paths initiating at v terminate in (VxE)-neigh-
bours which are ~-greater than v, by two.
If the reduced E±1-sequence for v is not cyclically reduced, then v has exactly one ~-smaller

(VxE)-neighbour, by two, and all the other (VxE)-neighbours are ~-greater, by two.
It follows that the v-component consists of some trees attached to a topological circle

whose vertex-set is given by the set of distinct cyclic permutations of some cyclically reduced
E±1-sequence; all reduced paths leading out of the circle are ~-increasing.

One consequence is that, for the reduced E±1-sequences of the elements of a cyclic word
in F , the ones that are cyclically reduced are all the same up to cyclic permutation.

By an ~-valley, we mean a (VxE)-path which is the concatenation of three subpaths along
which ~ is decreasing on the first, constant on the second, and increasing on the third; any of
the three subpaths may have length zero. If two (VxE)-vertices are joined by a (VxE)-path,
then they are joined by an ~-valley. Similar behaviour will be a recurring theme in these
notes. �
5.5. Historical notes (excerpted from Chandler&Magnus(1982)). Dyck(1882) initiated the
study of free groups, using the terminology die allgemeinste Gruppe aus m erzeugenden
Operationen. He asserted that each element of a free group with basis E has a unique
reduced E±1-sequence, and gave an intuitive argument; the first rigorous published proof
was given by Artin(1926), that proof being joint work with Schreier. Max Dehn, who was a
mentor of both Nielsen and Magnus, invented the terminology freie1Gruppe, and constructed
the tree of Theorem 5.2 above, by using Dyck’s result. Nielsen(1921 and 1924) introduced
Dehn’s terminology and tree into the literature. �

1Excerpted from the Oxford English Dictionary: The Teutonic word frei originally meant ‘beloved’,
whence Freund, but its sense became altered when it was employed to distinguish family members from
slaves in households. The converse process occurred in Latin where liberi, literally the ‘free’ members of the
household, came to mean ‘children’.
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6. Subgroups of free groups

6.1. Definitions (Schreier(1927), modified by Serre(1977)). Recall Notation 5.1, and let F
be a free group, E be an F -basis, W be a right-multiplicative F -set, and Γ be a connected
full subgraph of WxE. In particular, (VΓ)xE = Γ.
Let v0 be a Γ-vertex chosen to be a basepoint of Γ, and let π(Γ, v0) denote the set consisting

of the Schreier-labels of the closed Γ-paths based at v0. It is not difficult to see that π(Γ, v0)
is a subgroup of F . Let Γ0 be a maximal subtree of Γ, and set E ′Γ := EΓ−EΓ0. For

each v ∈ VΓ, denote by
→
v ∈ F the Schreier-label of the reduced Γ0-path from v0 to v, and

set
←
v :=

→
v
−1
, which is the Schreier-label of the reduced Γ0-path from v to v0. For each

(v, e) ∈ EΓ ⊆ VΓ× E, set
→−−←
(v, e) :=

→
v · e ·←−−v·e ∈ F ; as

→−−←
(v, e) is the Schreier-label of a closed

Γ-path based at v0, we see that
→−−←
(v, e) ∈ π(Γ, v0). If (v, e) ∈ EΓ0, then

→−−←
(v, e) is the Schreier-

label of a closed Γ0-path based at v0, and, hence, is trivial. Set
−−→
VΓ := {→v : v ∈ VΓ} ⊆ F and

→−−←
E ′Γ := {

→−−←
(v, e) : (v, e) ∈ E ′Γ

}
⊆ π(Γ, v0) 6 F.

It is not difficult to see that the map VΓ→
→
VΓ is bijective, and that π(Γ, v0)·

−−→
VΓ is the set

consisting of the Schreier-labels of the Γ-paths initiating at v0.

We claim that
→−−←
E ′Γ is a basis of π(Γ, v0), and that the map E ′Γ→

→−−←
E ′Γ is bijective.

Here EΓ ⊆ VΓ× E, and the second-coordinate map EΓ→ E induces a group morphism
⟨EΓ | ∅⟩ → F , g 7→ g, called the Schreier-label map. Recall from Definitions 4.2 that π(Γ, v0)
is a free subgroup of ⟨EΓ | ∅⟩ with basis the family ( Γ0[v0, ιe]·e·Γ0[τe, v0] : e ∈ E ′Γ). Each
reduced Γ-path may be reconstructed from its Γ-label in ⟨EΓ | ∅⟩, and also from its initial
vertex together with its Schreier-label in F . It follows that the map π(Γ, v0)→ π(Γ, v0),
g 7→ g, is an isomorphism, and the claim is proved.

The free subgroup π(Γ, v0) of F will be very important in our study. In the case where Γ is
finite, the algorithm for constructing a π(Γ, v0)-basis amounts to choosing a maximal subtree
and reading the Schreier-label of the path that travels in the subtree from the basepoint to
the initial vertex of each edge outside the tree, traverses said edge, and travels in the subtree
back to the basepoint.

We now wish to obtain more information about the free subgroup π(Γ, v0) of F . Recall that

Fv0 := {g ∈ F : v0·g = v0}. Set ṼΓ := {g ∈ F : v0·g ∈ VΓ}; then ṼΓ is a left-multiplicative

Fv0-subset of F which contains 1. Thus, ṼΓxE is a left-multiplicative Fv0-subforest of the

left-multiplicative F -tree FxE. Let T denote the component of ṼΓxE which contains the
vertex 1. Recall that F(v0,T ) := {g ∈ Fv0 : g·T = T}. We wish to show that π(Γ, v0) = F(v0,T ).
Since 1 ∈ VT , we have F(v0,T ) ⊆ {g ∈ Fv0 : g ∈ VT}. Since the action of Fv0 permutes the

components of ṼΓxE, we see that F(v0,T ) ⊇ {g ∈ Fv0 : g ∈ VT}, and then equality holds. The

map ṼΓ→ VΓ, g 7→ v0·g, induces a graph map ṼΓxE → (VΓ)xE = Γ. For each g ∈ F ,
we have v0·g ∈ VΓ if and only if g ∈ ṼΓ; further, for each e ∈ E±1, v0·g·e ∈ VΓ if and

only if g·e ∈ ṼΓ. Thus the induced map linkṼΓxE(g)→ linkΓ(v0·g) is bijective. Hence,
the set of Schreier-labels of the set of reduced Γ-paths which initiate at v0 equals the
set of Schreier-labels of the set of reduced T -paths which initiate at 1; in other words,

π(Γ, v0)·
−−→
VΓ = VT . For each g ∈ F , we have g ∈ π(Γ, v0) if and only if g is the Schreier-label
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of a reduced Γ-path from v0 to v0, and this happens if and only if v0·g = v0 and g ∈ VT . It
follows that π(Γ, v0) = F(v0,T ), as claimed.

Consider any g ∈ VT . We have v0·g ∈ VΓ and
−−−→
v0·g ∈ Fv0·g ⊆ VT . The element

−−−→
v0·g

of Fv0·g is called the Schreier representative of Fv0 ·g. Let (e1, e2, . . . , eℓ) be the reduced
E±1-expression for g. Since Γ = VΓxE, the reduced Γ-path initiating at v0 and having
Schreier-label (e1, e2, . . . , eℓ) is

v0
(v0,e1)−−−→−v0·e1

(v0·e1,e2)−−−−−→−v0·e1·e2 →−· · · →−v0·g.
For each i ∈ {1, 2, . . . , ℓ}, set vi := v0·e1·e2·eℓ. We have then written our Γ-path as

v0
(v0,e1)−−−→−v1

(v1,e2)−−−→−v2 →−· · · →−vℓ,
and vℓ = v0 if and only if g ∈ Fv0 . The foregoing may be viewed as an algorithm for deciding
if a given element of VT lies in Fv0 . If g ∈ Fg0 , then, in F ,
−→−−←−
(v0, e1) ·

−→−−←−
(v1, e2)· · ·

−−→−−←−−
(vℓ−1, eℓ) = (

→
v0·e1·

←
v1)·(

→
v1·e2·

←
v2)· · ·(

−−→
vℓ−1·eℓ·

←
vℓ) =

→
v0·e1·e2· · ·eℓ·

←−−
vℓ = 1·g·1.

On omitting those
−→−−←−
(vi−1, ei) such that (vi−1, ei) ∈ EΓ0, we obtain the reduced

→−−←
E ′Γ

±1

-sequence

for g. Converting the E±1-sequence of an element of VT into its
→−−←
E ′Γ

±1

-sequence is called
Schreier rewriting. �
6.2. Schreier’s Theorem. Let F be any free group, E be any F -basis, and H be any subgroup
of F . Set Γ := (H\F )xE and v0 := H·1 ∈ VΓ. Then π( Γ, v0) = H. In particular, H is a
free group, and, for each maximal subtree Γ0 of Γ, there exists an H-basis EΓ−EΓ0 → H.

Proof. With Definitions 6.1, we take W := H\F . Then ṼΓ = F , T = ṼΓxE = FxE, and
π(Γ, v0) = Fv0,T = Fv0 = H. �

In particular, we have the following; see Historical notes 6.5 below.

6.3. The Nielsen-Schreier Theorem. Subgroups of free groups are free. �
6.4. Definitions. Let G be any group, ⟨E | R ⟩ be any presentation for G, and H be any
subgroup of G. We shall now describe the Reidemeister-Schreier presentation for H.
Set F := F(E), let N denote the kernel of the implicitly given map φ : F → G, and let us

identify G = ⟨E | R ⟩ = F/N . Here, N = ⟨ FR ⟩ 6 F . Since G = N\F , we see that G and
H\G are right-multiplicative F -sets. Set Γ := (H\G)xE and v0 := H·1 ∈ VΓ, let Γ0 be any
maximal subtree of Γ, and set E ′Γ := EΓ−EΓ0.

Using Definitions 6.1, we now proceed to prove that H = ⟨
→−−←
E ′Γ |

−→
VΓR ⟩. This is called the

Reidemeister-Schreier presentation for H corresponding to the presentation ⟨E | R ⟩ for G.
It depends on the choice of Γ0.

Set H̃ := {f ∈ F : φ(f) ∈ H}; thus, H̃ is a subgroup of F which includes N , and

H̃/N = H. As right-multiplicative F -sets, H̃\F ≃ (H̃/N)\(F/N) = H\G. Thus, we may

identify Γ with (H̃\F )xE. By Theorem 6.2,
→−−←
E ′Γ is an H̃-basis.

We claim that H̃·
−−→
VΓ = F . Consider any f ∈ F , and set v := H̃·f ∈ VΓ. Since

→
v

is the Schreier-label of the Γ0-path from H̃·1 to H̃·f , we have (H̃·1)·→v = H̃·f . Now

f ∈ H̃·f = H̃·→v ⊆ H̃·
→

VΓ , as desired.
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Since N = ⟨ FR⟩ and F = H̃·
−−→
VΓ, we see that the normal closure of

−→
VΓR in H̃ is N . Hence,

H = H̃/N = ⟨
→−−←
E ′Γ |

−→
VΓR ⟩, as desired. By Definitions 6.1, Schreier rewriting converts the

E±1-sequence of each element of
→
VΓR into its

→−−←
E ′Γ

±1

-sequence, and this is an important aspect
of a presentation.

Notice that in the case where ⟨E | R ⟩ is a finite presentation for G and H is a finite-index

subgroup of G, the graph Γ is finite, and ⟨
→−−←
E ′Γ |

−→
VΓR ⟩ is a finite presentation for H. �

6.5. Historical notes. Nielsen(1921) proved that finitely generated subgroups of free groups
are free, by giving a practical algebraic algorithm for passing from a finite generating set
to a basis; the algorithm is visible in the proof of Theorem 7.2 below. Stallings(1983) gave
a practical graph-theoretic algorithm for passing from a finite generating set to the finite,
connected, basepointed graph from which Schreier read off a basis.

Let G be any group, ⟨E | R ⟩ be any presentation for G, and H be any subgroup of
G. In connection with his seminal work on knot theory, Reidemeister(1927) produced by
direct calculation a finite presentation for H in the case where H is a finite-index, normal
subgroup of G, and both E and R are finite. Schreier(1927) used Dehn trees to refine the
argument, and gave an explicit presentation for H in the general case. He called the resulting
rewriting procedure ‘das Reidemeistersche Verfahren’, while Reidemeister(1932) called it ‘der
Ersetzungsvorschriften nach Schreier’. The first consequence that Schreier noticed was that
subgroups of free groups are free. According to Chandler&Magnus(1982), Dehn said that
he had always known this result because connected subgraphs of trees are trees. �

7. Nielsen’s generating set for AutF

7.1. Notation. Let E be a finite set and write F := F(E).
When we write, say, (e1 ↔ e2, e3 7→ e−11 ·e3·e4)wrtE with {e1, e2, e3, e4} ⊆ E±1, we shall

mean the unique element of AutF which sends e1 to e2, e2 to e1, e3 to e−11 ·e3·e4, and each
element of E−{e1, e2, e3}±1 to itself; it will be implicit that such an automorphism exists.
The letters ‘wrt’ are to be read as ‘with respect to’. Similar notation will be used for any
free group and any basis thereof.

Let Sym(E±1) denote the group of all permutations of E±1, acting right-exponentially.
Let Sym±(E

±1) denote the centralizer of the inversion permutation in Sym(E±1); thus, any
φ ∈ Sym(E±1) will lie in Sym±(E

±1) if and only if (e−1)φ = (eφ)−1 for all e ∈ E±1. Each
element of Sym±(E

±1) extends to a unique element of AutF , and we view the resulting group
morphism as an embedding; that is, Sym±(E

±1) will be viewed as a subgroup of AutF . It is

well known that {(e↔ f)wrtE : e, f ∈ E±1, e ̸= f} is a generating set for Sym±(E
±1). �

7.2. Theorem (Nielsen(1919)). With Notation 7.1, set

E0 :=
{
(e↔f)wrtE | e, f ∈ E±1, e ̸= f

}
,

E1 :=
{
(e 7→ e·f)wrtE | e, f ∈ E±1, {e}±1 ̸= {f}±1

}
,

and E := E0 ∪ E1. Then E generates AutF .

Proof (Nielsen, essentially). We use the notation of Definitions 5.3, and whenX is an element
of F or a finite subset of F , we set ||X|| := E -length(X). For a finite subsetX of F , a positive
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integer i, and an element e of E±1, we write #(e,X, i) :=
∣∣{x ∈ X : x[i] = e}

∣∣. We fix an
arbitrary total order ≻ on E±1, and, for e1, e2 ∈ E±1, we say that e1 is ≻-greater than e2 if
e1 ≻ e2. For finite subsets X and Y of F , we say that X is length-lexicographically greater
than Y , and write X A Y , if either ||X|| > ||Y || or all of the following hold: ||X|| = ||Y ||;
there exist some positive integer i and some e ∈ E±1 such that #(e,X, i) ̸= #(e, Y, i), and, if
i0 denotes the least such i and e0 denotes the≻-greatest e such that #(e,X, i0) ̸= #(e, Y, i0),
then #(e0, X, i0) > #(e0, Y, i0). If X is not length-lexicographically greater than Y , we
write X ̸A Y . It is straightforward to check that the relation A is transitive; it is clearly
anti-reflexive.

Let φ be an arbitrary element of AutF , and set X := (E±1)φ.
For each X-sequence (x, y) such that {x}±1 ̸= {y}±1 and {x}±1 A {x·y}±1, we say that

the set Y := (X−{x}±1) ∪ {x·y}±1 is a Nielsen successor of X. Notice that X A Y ; also, if

we set e := xφ
−1

and f := yφ
−1
, then e, f ∈ E±1, {e}±1 ̸= {f}±1, and

Y =
(
(E±1−{e}±1) ∪ {e·f}±1

)φ
= (E±1)((e7→e·f)wrtE)◦φ.

Since E0 generates Sym±(E
±1), to show that E generates AutF it now suffices to show that

there exists some finite sequence X0, X1, . . . , Xℓ such that X0 = X, Xℓ = E±1, and, for each
i ∈ {0, 1, . . . , ℓ−1}, Xi+1 is a Nielsen successor of Xi.

Consider any finite sequence X = X0, X1, . . . , Xℓ such that, for each i ∈ {0, 1, . . . , ℓ−1},
Xi+1 is a Nielsen successor of Xi. Since X0 A X1 A · · · A Xℓ, the Xi are all distinct and
||X|| = ||X0|| > ||X1|| > · · · > ||Xℓ||. Thus, there are only finitely many possible options
for ℓ, and we may assume that our ℓ is the greatest possible option. By replacing X with Xℓ,
we may assume thatX has no Nielsen successors, and it suffices to show thatX = E±1. Now,
for each X-sequence (x, y), if {x}±1 ̸= {y}±1, then {x}±1 ̸A {x·y}±1; also, {x}±1 ̸A {y·x}±1,
since we may replace (x, y) with (x−1, y−1).

For any F -sequence (g1, g2, . . . , gℓ), we define g1∗g2∗ · · · ∗gℓ ∈ F ⊔ {0} by

g1∗g2∗ · · · ∗gℓ :=

{
g1·g2· · · · gℓ if ||g1·g2· · · · gℓ|| = ||g1||+ ||g2||+ · · · + ||gℓ||,
0 otherwise.

Suppose that (x, y) is some length-two, reduced X-sequence. There exists a unique
length-three F -sequence (a, b, c) such that x = a∗b−1, y = b∗c−1, and x·y = a∗c−1. We call
b the E±1-cancellation in (x, y). We claim that ||a|| > ||b||. Suppose not; that is, ||b|| > ||a||,
and, hence, ||y|| > ||x·y||. It is not difficult to see that x ̸= y. Now {y}±1 A {x·y}±1, and
this is a contradiction, as desired. Hence, ||a|| > 1

2
||x|| > ||b|| and a ̸= 1. With (y−1, x−1) in

place of (x, y), this says that ||c|| > 1
2
||y|| > ||b|| and c ̸= 1.

Suppose that (x, y, z) is some length-three, reduced X-sequence. Let b and c denote
the E±1-cancellation in (x, y) and (y, z) respectively, and set y ′ := b−1·y·c. We claim that
y = b∗y ′∗c−1 and y ′ ̸= 1. Set a := x·b and d := z−1·c. Then
x = a∗b−1, y = b∗(y′·c−1) = (b·y′)∗c−1, z = c∗d−1, x·y = a∗(y′·c−1), y·z = (b·y′)∗d−1,

and, by the previous paragraph, ||y′·c−1|| > 1
2
||y|| > ||c||. It follows that y′·c−1 = y′∗c−1.

Hence, y = b∗y ′∗c−1. It remains to show that y′ ̸= 1. We suppose that y′ = 1, and derive a
contradiction. We now have

x = a∗b−1, y = b∗c−1, z = c∗d−1, x·y = a∗c−1, y·z = b∗d−1,
and, by the previous paragraph, ||a|| > ||b|| 6 ||c|| and ||b|| > ||c|| 6 ||d||. In particular,
||b|| = ||c||. Since y ̸= 1, we have b ̸= c, and then y ̸= x and y ̸= z. Since ||a|| > ||b|| = ||c||,
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it is not difficult to see that if {b} A {c}, then
{x}±1 = {a∗b−1, b∗a−1} A {a∗c−1, c∗a−1} = {x·y}±1.

This is a contradiction. Hence, {c} A {b}. Since ||d|| > ||b|| = ||c||, we see that

{z}±1 = {c∗d−1, d∗c−1} A {b∗d−1, d∗b−1} = {y·z}±1.
This is a contradiction, and the claim is proved.

Consider any e ∈ E±1. There exists a (unique) reduced X-sequence (x1, x2, . . . , xℓ) for e.
Here, ℓ > 1. Set b0 := bℓ := 1, and, for each i ∈ {1, 2, . . . , ℓ−1}, let bi denote the E±1-cancel-
lation in (xi, xi+1). For each i ∈ {1, 2, . . . , ℓ}, set x′i := b−1i−1·xi·bi. For each i ∈ {2, 3, . . . , ℓ−1},
the previous paragraph applies to (xi−1, xi, xi+1) and shows that xi = bi−1∗x′i∗b−1i and x′i ̸= 1.
These assertions hold also for i = 1 and for i = ℓ, by the penultimate paragraph. Now
e = x1x2 · · ·xℓ = x′1∗x′2∗ · · · ∗x′ℓ. We see that 1 6 ℓ 6 ||x′1∗x′2∗ · · · ∗x′ℓ|| = ||e|| = 1. Hence,
ℓ = 1 and e = x1 ∈ X. Thus, E±1 ⊆ X, as desired. �
7.3. Historical note. Chandler&Magnus(1982) discuss some proofs in the literature prior
to Nielsen’s that are not rigorous. �

We shall not use the following interesting result, and we leave its proof as an exercise.

7.4. Corollary (Nielsen). For any e1, e2 ∈ E with e1 ̸= e2,{
(e1↔f)wrtE : f ∈

(
E−{e1}

)
∪ {e−11 }

}
∪

{
(e2 ↔ e−12 , e1 7→ e1·e2)wrtE

}
is a set of |E|+1 order-two automorphisms of F which generates AutF . �

Of course, if |E| 6 1, then |E| order-two automorphisms suffice.

8. Whitehead’s generating family for AutF

8.1. Notation. We use Notation 7.1. Whitehead(1936) expanded on Nielsen’s study of
AutF , and we change his starting point into a finite generating family for AutF . Set

E0 := {(d, f) ∈ E±1×E±1 : d ̸= f},
E1 := {(v, e) : v ⊆ {1} ∪ E±1 and e ∈ v−v−1},
E := E0 ⊔ E1 and F := ⟨E | ∅⟩.

Throughout, each (d, f) ∈ E0 will be denoted (d↔ f), and each (v, e) ∈ E1 will be de-
noted

[
v
e

]
. For each subset v of {1} ∪ E±1, we write v∗ := ({1} ∪ E±1)− v. We now let

each elemen of E act right-exponentially on F as an automorphism as follows. We let each
(d↔ f) ∈ E0 act as (d↔ f)wrtE. For each

[
v
e

]
∈ E1, we take (v0, e0) ∈

{
(v, e), (v∗, e−1)

}
such that 1 ∈ v0 and, for each f ∈ E±1, we set

f

[
v
e

]
:=

{
f−1 if f ∈ {e}±1,
e
|{f}−v0|
0 ·f ·e−|{f

−1}−v0|
0 if f ∈ E±1−{e}±1.

(8.1.1)

In this way, F becomes a right-exponential F-set, and we have a group morphism F → AutF ;
we let N denote its kernel, and view the quotient F/N as a subgroup of AutF . For elements
φ1 and φ2 of F, we write φ1 ≡ φ2 to mean that φ1 and φ2 have the same action on F , or,
equivalently, φ1·N = φ2·N. For any e, f ∈ E±1, such that {e}±1 ̸= {f}±1, we see from (8.1.1)
that

[
{e,f}
e

]
·N = (e↔ e−1, f 7→ e−1·f)wrtE. It follows from Nielsen’s Theorem 7.2 that

(8.1.2) F/N = AutF. �
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8.2. Historical notes. The action of E1 on F is presented differently by different authors.
Rapaport, clarifying Whitehead’s exposition, spoke of automorphisms in which, for some
e ∈ E±1, each f ∈ E is carried to an element of {f, f ·e, e−1·f, e−1·f ·e}. For an element e
of E±1 and a subset v of E±1, Higgins&Lyndon denoted by (v, e) the unique automorphism
which sends each f ∈ v to an element of {f ·e, e−1·f ·e} and sends each f ∈ E±1−v to an
element of {f, e−1·f}. Hoare composed (v, e) with (e↔ e−1)wrtE, and denoted the result
by (v, e); it is Hoare’s automorphisms which we use, with different notation.
One of Rapaport’s innovations was to use results about cyclic words to obtain results

about straight words, by adding a new variable to the basis. This method has been used
to this day, but a quick computation revealed that, in our case, the resulting action on E
is that given by (8.1.1) above, where the new variable has now been reduced to a marker
called 1. This is in keeping with the spirit of Whitehead’s careful analysis of basepoints. We
shall use a result of Gersten(1984a) to obtain all the advantages that Rapaport obtained by
adding a variable and passing to cyclic words. �

9. Statements of McCool’s finite presentations

9.1. Notation. We use Notation 8.1. In particular,

E0 := {(d↔ f) : d, f ∈ E±1, d ̸= f},
E1 := {

[
v
e

]
: v ⊆ {1} ∪ E±1 and e ∈ v−v−1},

E := E0 ⊔ E1 and F := ⟨E | ∅⟩.
For each n ∈ N, we write Pn(E) to denote the set of all n-tuples (v1,v2, . . . ,vn) such that

v1 ∪ v2 ∪ · · · ∪ vn = {1}∪E±1 and vi ∩ vj = ∅ for all i, j ∈ {1, 2, . . . , n} with i ̸= j; thus,
the set of those vi which are nonempty is a partition of {1}∪E±1. To simplify the exposition,

we shall abuse notation and use a phrase such as “for all (v1
e1 − v2, v3 −

e4← v4) ∈ P4(E)”
to mean “for all (v1,v2,v3,v4) ∈ P4(E), all e1 ∈ v1 ∩ v−12 , and all e4 ∈ v4 ∩ v−13 ”. For each[
v
e

]
∈ E1, we may thus write (v

e − v∗) ∈ P2(E). The elements of P2(E), P3(E), and P4(E)
give the bulk of our generators, relators, and proofs for AutF , respectively.

The image of E0 in AutF is a generating set for the finite subgroup Sym±(E
±1). Let

R0 be any finite subset of F(E0) such that R0 ⊇ {(d↔ f)2 : (d↔ f) ∈ E0} and such that
⟨E0 | R0⟩ = Sym±(E

±1) with the natural map E0 → Sym±(E
±1). Set

R1 := {
[
v
e

]2
:
[
v
e

]
∈ E1},

R2 := {
[

v∗

e−1

]
·
[
v
e

]−1
:
[
v
e

]
∈ E1},

R3 := {
[
v
e

]
·(d↔f)·

[
v(d↔f)

e(d↔f)

]
·(d↔f)−1 : (d↔f) ∈ E0,

[
v
e

]
∈ E1},

R4 := {
[
v
e

]
·(e↔ e′)·

[
v
e

]
·
[
v
e′
]−1

:
[
v
e

]
,
[
v
e′
]
∈ E1, e

′ ̸= e},

R5 := {
[
u
d

]
·(d↔d−1)·

[
w∪{d}

d

]
·
[

v
d−1

]−1
: (u

d −v, w) ∈ P3(E)},

R6 := {
[
v
e

]
·
[
u
d

]
·
[
w∪{d−1}
e−1

]
·
[
u
d

]−1
: (u

d −v e −w) ∈ P3(E)},

R7 := {
[
w
f

]
·
[
u
d

]
·
[
w
f

]
·
[
u
d

]−1
: (u

d −v−f← w) ∈ P3(E)},

R :=
7∪
i=0

Ri.
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McCool(1974) proved that ⟨E | R⟩ = AutF with the natural map E→ AutF ; we shall
give a proof over the course of these notes. �
9.2.Notation. We use Notation 9.1. LetW denote the set of all finite sets of words in F , and
consider an arbitrary S ∈W. Set W6S := {W ∈W : E -length(W ) 6 E -length(S)}; thus,
W6S is a finite set which contains S. As F is a right-exponential F-set, it follows that W
is also a right-exponential F-set in a natural way, and, as in Notation 5.1, we may form
the graph WxE and its finite full subgraph W6SxE. Let Γ(S) denote that component of
W6SxE which contains S. Set Γ := Γ(S) and v0 := S ∈ VΓ. Then Γ is a finite, connected,
basepointed graph which may be constructed algorithmically in theory - if rarely in practice.
Let Γ0 be any maximal subtree of Γ, and set E ′Γ := EΓ−EΓ0. With Definitions 6.1, we

then have subsets
−−→
VΓ and

→−−←
E ′Γ of F. McCool(1975a) gave a description which we shall

express as the finite presentation Aut(F, S) =
⟨→−−←
E ′Γ |

−→
VΓR ∩ ⟨

→−−←
E ′Γ ⟩

⟩
with the natural map

→−−←
E ′Γ → AutF . In Section 16 below, we prove this with Γ replaced with a subgraph that
is slightly more complicated to explain. By Definitions 6.1, Schreier rewriting converts

the E±1-sequence of each element of
−→
VΓR ∩ ⟨

→−−←
E ′Γ ⟩ into its

→−−←
E ′Γ

±1

-sequence, and this is an
important aspect of the presentation.

For each Γ-vertex v and each element ρ of R, the element
→
v ·ρ ·←v of

−→
VΓR lies in ⟨

→−−←
E ′Γ ⟩ if and

only if the closed (WxE)-path based at v with Schreier-label ρ is a Γ-path. Algorithmically,
we initiate at v and determine whether or not reading ρ as a Schreier-label gives a path that
keeps the E -length below E -length(S); if not, we reach a point where the next E±1-label
takes the E -length too high. When ρ ∈ R0, the E -length is kept constant. Each element of
R−R0 has E-length 2 or 4.
In the case where S = ∅, we have Γ = {S}xE, Γ0 = {S},

−→
VΓ = {1}, and

→−−←
E ′Γ = {1}·E·{1}.

Here the presentation is Aut(F, ∅) = ⟨E | R ⟩, which is the presentation stated in Nota-
tion 9.1. �

9.3. Historical notes. The finite presentation Aut(F, S) =
⟨→−−←
E ′Γ |

−→
VΓR ∩ ⟨

→−−←
E ′Γ ⟩

⟩
evolved

through work of Nielsen(1919), Whitehead(1936), Rapaport(1958), Higgins&Lyndon(1962),
McCool(1974, 1975a), and Hoare(1979).

One may replace W with any right-exponential F-set W ′ of a certain type. All one needs is
that each element W of W ′ has an underlying set U(W ) ∈W such that the map W ′ →W,
W 7→ U(W ), is finite-to-one, and satisfies U(Wφ) =

(
U(W )

)
φ for each φ ∈ F. We define

E -length(W ) := E -length
(
U(W )

)
, and all of our arguments apply to W ′. To obtain a finite

presentation for Aut(F,W ),W ∈W ′, one may alternatively view Aut(F,W ) as a finite-index
subgroup of Aut(F,U(W )) and compute its Reidemeister-Schreier presentation.
Let us define an E-valley to mean a (W ′xE)-path which is the concatenation of three

subpaths along which the E-length is decreasing on the first, constant on the second, and
increasing on the third; any of the three subpaths may have length zero.
Whitehead(1936) took each element of W ′ to be a finite sequence of straight words in F

or a finite sequence of cyclic words in F , and his Theorem 3 shows that if two given elements
of W ′ are joined by some (W ′xE)-path, then they are joined by some E-valley. He gave a
difficult topological proof. His result easily gives his algorithm which, with input a length-two
W ′-sequence (W1,W2), decides whether or not the finite graph Γ(W1) ∪ Γ(W2) is connected,
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decides whether or not there exists some φ ∈ AutF such that W φ
1 = W2, and constructs

such a φ if one exists. The graph denoted Γ(S) in Historical notes 1.2 above is the full
subgraph of WxE with vertex-set {S φ : φ ∈ AutF, E -length(S φ) 6 E -length(S)}; in light
of Whitehead’s Theorem 3, this graph equals the graph denoted Γ(S) in Notation 9.2 above.

Rapaport(1958) took each element of W ′ to be a cyclic word in F or a finite sequence
of straight words in F , and showed that if two possibly equal elements of W ′ are joined by
some (W ′xE)-path with Schreier-label φ ∈ F, then they are joined by some E-valley with
Schreier-label φ′ ∈ φ ·N. She gave a very difficult algebraic proof, using expressions involving
53 types of syllables. Rapaport’s result easily implies that Aut(F,W ) is finitely generable
for each W ∈W ′, a property that was first mentioned in the literature by McCool(1975a),
who remarks that Lyndon had independently discovered it.

Higgins&Lyndon(1962) took each element of W ′ to be a finite set (possibly meaning
sequence) of cyclic words in F , implicitly proved that R ⊆ N, and explicitly gave a relatively
simple algebraic proof that if two given elements of W ′ are joined by some (W ′xE)-path,
then they are joined by some E-valley.

McCool(1974) took each element of W ′ to be a cyclic word in F or a finite sequence of
straight words in F , refined the argument of Higgins&Lyndon, and proved that if two possibly
equal elements of W ′ are joined by some (W ′xE)-path with Schreier-label φ ∈ F, then they
are joined by some E-valley with Schreier-label φ′ ∈ φ ·⟨ FR⟩. From this, he deduced the finite
presentation AutF = ⟨E|R⟩. Then McCool(1975b) deduced the finite presentation of AutF
that had been obtained by Nielsen(1924). Gersten(1984b) simplified McCool’s presentation
of AutF .
McCool(1975a) took each element of W ′ to be a finite sequence of cyclic words in F or a

finite set of cyclic words in F , proved that, for W ∈W ′, Aut(F,W ) is finitely presentable,
and described a finite presentation in terms of a finite two-dimensional CW-complex.

Hoare(1979) generalized McCool’s results to the case of finite sequences of finite sets of
words in F , and simplified the proofs. �

10. Gersten’s graph-theoretic description of the action of E1 on F

10.1. Notation. Let E, F , E, and F be as in Notation 9.1, and let S be a finite set of words

in F . Consider any
[
v
e

]
∈ E1. Let t be a new variable. Set Ẽ := E ⊔ {t}, F̃ := ⟨Ẽ | ∅⟩, and

Γv :=
{
v ∪ {t},v∗ ∪ {t−1}

}
. For each f ∈ {1} ∪ Ẽ±1, let [f ] denote the element of Γv which

contains f .

We view the two-element partition Γv of {1} ∪ Ẽ±1 as endowed with the structure of

a two-vertex, basepointed, connected graph with edge-set (Ẽ−{e−1}) ∪ {e} and a distin-
guished maximal subtree, as follows. The two vertices are the elements of Γv, the basepoint

is [1], each Γv-edge f ∈ (Ẽ−{e−1}) ∪ {e} has initial vertex [f ] and terminal vertex [f−1], and

the distinguished maximal tree has edge-set {t}. We sketch Γv as v ∪ {t} t,e −v∗ ∪ {t−1};
the labels on the squiggly arrow indicate how two of the edges are to be attached. We

set πΓv := π(Γv, [1]) 6 F̃ . Let deflate : F̃ → F , g 7→ g deflate, denote the epimorphism which
sends t to 1 and sends each element of E to itself. As {t} is the edge-set of a maximal subtree

of Γv, the epimorphism deflate : F̃ → F restricts to an isomorphism πΓv
∼→ F . The inverse

F
∼→ πΓv extends to a monomorphism inflate : F → F̃ , g 7→ g inflate. We shall now verify the

graph-theoretic description given by Gersten(1984a) for the action of
[
v
e

]
:

17



(10.1.1)
[
v
e

]
·N = inflate ◦(e↔ t)wrtẼ◦ deflate .

Proof of (10.1.1). It is clear that the automorphism (e↔ t)wrtẼ of F̃ induces an automor-

phism on the subgroup πΓv of F̃ ; hence, inflate ◦(e↔ t)wrtẼ◦ deflate ∈ AutF .
For each f ∈ E±1, we have a Γv-path

[1]
tη −[f ] f −[f−1] tν −[1]

for unique η, ν ∈ {−1, 0, 1}; we then have f inflate = tη·f ·tν . Now

f inflate ◦(e↔t)wrtẼ◦deflate = (tη·f ·tν)(e↔t)wrtẼ◦deflate = eη·f (e↔t)wrtẼ◦deflate·eν .

In the case where f = e, we have e inflate ◦(e↔t)wrtẼ◦deflate = eη+ν .
We wish to show that (10.1.1) agrees with (8.1.1).
Consider first the case where 1 ∈ v. Then v0 = v, e0 = e, [1] = v ∪ {t}, and either

f ∈ v, giving η = 0, or f ∈ v∗, giving η = 1; in each case, η = |{f}−v0|. Similarly,

ν = −|{f−1}−v0|. In particular, e inflate ◦(e↔t)wrtẼ◦deflate = e0+(−1).
Consider next the case where 1 ∈ v∗. Then v0 = v∗, e0 = e−1, [1] = v∗ ∪ {t−1}, and ei-

ther f ∈ v giving η = −1, or f ∈ v∗ giving η = 0; in each case, η = −|{f}−v0|. Similarly,

ν = |{f−1}−v0|. In particular, e inflate ◦(e↔t)wrtẼ◦deflate = e−1+0. �
Notice that

(10.1.2)
[
v
e

]2 ≡ 1,

since deflate ◦ inflate sends each element of πΓv to itself, and (e↔ t)2wrtẼ = 1. Thus each
element of E acts as an order-two automorphism of F . Notice also that

(10.1.3)
[

v∗

e−1

]
≡

[
v
e

]
by (8.1.1); graph-theoretically, when we construct

[
v∗

e−1

]
, we may take the name of the new

symbol to be t−1, and thereby arrange that Γv∗ = Γv.

(10.1.4) For all e′ ∈ v−v−1, if e′ ̸= e, then
[
v
e

][ v
e′

]
≡ (e↔ e′),

since (e↔ t)(e
′↔t)wrtẼ = (e↔ e′)wrtẼ.

For each φ ∈ F, we define

(10.1.5) ∆S,E(φ) := E -length(S φ)−E -length(S).

For each straight word w in F , winflate is the Γv-label of a reduced closed Γv-path at [1]. For

each cyclic word w in F , the image winflate in F̃ is a subset of a unique cyclic word in F̃ ,

and, by convention, we redefine winflate to mean this cyclic word in F̃ ; it is important for our
purposes that winflate then contains the Γv-label of a cyclically reduced closed Γv-path. It is
straightforward to see the following.

∆S,E(
[
v
e

]
)
(10.1.5)
= −E -length(S) + E -length(S

[
v
e

]
)

= −E -length(S) + E -length
(
S inflate ◦(e↔t)wrtẼ◦ deflate)

= −E -length(S) + Ẽ -length
(
S inflate ◦(e↔t)wrtẼ

)
−#(t ∈ S inflate ◦(e↔t)wrtẼ; Ẽ)

= −E -length(S) + Ẽ -length
(
S inflate

)
−#(e ∈ S inflate; Ẽ)

= #(t ∈ S inflate; Ẽ)−#(e ∈ S;E).
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We define the important value δS,E(v) := #(t ∈ S inflate; Ẽ), and obtain Whitehead’s formula

(10.1.6) ∆S,E(
[
v
e

]
) = δS,E(v)−#(e ∈ S;E).

For each f ∈ E±1−{e}±1, it is clear from (8.1.1) that #(f ∈ S
[
v
e

]
;E) 6 #(f ∈ S;E). Of

course, this inequality remains valid if S is replaced with S

[
v
e

]
, and since

[
v
e

]2 (10.1.2)
≡ 1, we

see that equality holds.

(10.1.7) For all f ∈ E±1−{e}±1, #(f ∈ S
[
v
e

]
;E) = #(f ∈ S;E). �

11. The six rules

The following is a slight variation on results of Higgins&Lyndon(1962).

11.1. Theorem. With the notation of Section 10 and the abbreviations ∆S := ∆S,E and
δS := δS,E, the following hold.

For all (v1,v2,v3,v4) ∈ P4(E),

(11.1.P1) δS(v1)+ δS(v2) 6 δS(v1∪v3)+ δS(v1∪v4) > δS(v3)+ δS(v4).

For all (v1
e1 −v2, v3, v4) ∈ P4(E),

(11.1.P2)
[
v3∪v1
e1

]
·
[
v1
e1

]
·
[
v1∪v4
e1

]
≡

[ v2

e−1
1

] (10.1.2)
≡

[
v3∪v1∪v4

e1

]
.

For all (v1
e1 −v2, v3

e3 −v4) ∈ P4(E), the following hold.[
v1
e1

][v3
e3

]
≡

[
v1
e1

]
.(11.1.P3)

If v4 = {e−13 }, then
[
v1∪v3
e1

][v3
e3

]
≡

[
v1∪v4
e1

]
.(11.1.P4)

∆S(
[
v1
e1

]
·
[
v3
e3

]
) = ∆S(

[
v1
e1

]
) + ∆S(

[
v3
e3

]
).(11.1.P5)

∆S

([
v1∪v3
e1

]
·
[
v3
e3

])
= ∆S

([
v1∪v3
e1

]
) + ∆S(

[
v3
e3

]
).(11.1.P6)

This section is devoted to introducing notation used in the proof, and proving the six
statements in order.

Fix (v1,v2,v3,v4) ∈ P4(E). Let t1, t2, t3 be new symbols. Set F̂ := ⟨E ∪ {t1, t2, t3} | ∅⟩,
t12 := t1·t2, t23 := t2·t3, t123 := t1·t2·t3, and

Γ := Γ(v1,v2,v3,v4) :=
{
v1 ∪ {t1}, v2 ∪ {t−11 , t2}, v3 ∪ {t−12 , t3}, v4 ∪ {t−13 }

}
.

As in Notation 10.1, we give this four-element partition of {1} ∪
(
E ∪ {t1, t2, t3}

)±1
the

structure of a four-vertex, connected, basepointed graph with edge-set E ∪ {t1, t2, t3}, and
distinguished maximal subtree with edge-set {t1, t2, t3}. Again we have πΓ 6 F̂ . One may
depict Γ as

v1 ∪ {t1}
t1 − v2 ∪ {t−11 , t2}

t2 − v3 ∪ {t−12 , t3}
t3 − v4 ∪ {t−13 };

the partition determines how the edges lying in E are attached. We shall sometimes write a
meaningless expression such as

(11.1.7) v1
t1 − v2

t2 − v3
t3 − v4,

and call it a blueprint for Γ, since it contains enough information to reconstruct Γ.

Let Deflate : F̂ → F , g 7→ gDeflate, denote the group morphism which sends each element
of {t1, t2, t3} to 1 and each element of E to itself. As {t1, t2, t3} is the edge-set of a maximal
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subtree of Γ, the epimorphism Deflate : F̂ → F restricts to an isomorphism πΓ
∼→ F . The

inverse F
∼→ πΓ extends to a monomorphism Inflate : F → F̂ , g 7→ g Inflate.

Proof of (11.1.P1). Each element of S Inflate may be represented by an alternating prod-
uct of elements of {t1, t2, t3, t12, t23, t123}±1 and elements of F−{1}, where the alternat-
ing product is interpreted cyclically when representing cyclic words. For each subset J
of {1, 2, 3, 12, 23, 123}, we write tJ := {tj : j ∈ J}, we go through the elements of S Inflate

adding up the number of occurrences of elements of t ±1J , and we denote the resulting sum
by #(tJ ∈ S Inflate), which we then abbreviate to #tJ .

Consider any subset I of {1, 2, 3, 4}, set v :=
∪
i∈I

vi, and let I ′ denote the set of those

j ∈ {1, 2, 3, 12, 23, 123} such that tj joins v to v∗ in the blueprint (11.1.7). It is not difficult
to see that δS(v) = #tI′ . We record the following.

(11.1.8) δS(v1) = #t{1,12,123}. δS(v2) = #t{1,2,23}. δS(v3) = #t{2,3,12}. δS(v4) = #t{3,23,123}.

δS(v1 ∪v3) = #t{1,2,3,123}. δS(v1 ∪v4) = #t{1,3,12,23}.(11.1.9)

Hence, δS(v1) + δS(v2) = #t{1,2,3,12,23,123} +#t{1} −#t{3},

δS(v3) + δS(v4) = #t{1,2,3,12,23,123} −#t{1} +#t{3},

δS(v1 ∪v3) + δS(v1 ∪v4) = #t{1,2,3,12,23,123} +#t{1} +#t{3}.

Thus, (11.1.P1) holds. �
For the remainder of this section, we assume that we have e1 ∈ v1 ∩ v−12 . Let Γ2 de-

note the four-vertex, connected, basepointed graph which has as edge-set the F̂ -basis
(E−{e−11 }) ∪ {e1, t1, t2, t3} and has

v1
e1,t1 − v2

t2 − v3
t3 − v4

as a blueprint. Since the elements of the new basis correspond to Γ-paths, we see that
πΓ2 = πΓ. Set t0 := e−11 ·t1 and[̂

v1
e1

]
: = (e1 ↔ t1)wrt(E ∪ {t1, t2, t3})
= (e1 ↔ t1)wrt(E ∪ {t1, t2, t23})(11.1.10)

= (t0 7→ t−10 )wrt(E ∪ {t0, t3, t23}).

Then
[̂
v1
e1

]
comes from a graph automorphism of Γ2, and hence induces an automorphism

on the subgroup πΓ2 of F̂ . Since πΓ2 = πΓ, we have Inflate ◦
[̂
v1
e1

]
◦Deflate ∈ AutF . It may

be seen that Inflate ◦
[̂
v1
e1

]
◦Deflate =

[
v1
e1

]
·N, by deflating {t2, t3} and setting t := t1.

In the sequel, we shall tacitly understand that Inflate ◦
[̂
?
?

]
◦Deflate =

[
?
?

]
·N is true and

easily verified.

We consider the blueprint v2 −
e1,t1←− v1

t12 − v3
t3 − v4, and set[̂ v2

e−1
1

]
: = (e1 ↔ t1)wrt

(
E ∪ {t1, t3, t12}

)
(11.1.11)

= (t0 7→ t−10 , t2 7→ t0·t2, t23 7→ t0·t23)wrt(E ∪ {t0, t2, t23}).
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We consider the blueprint v3 −t12←− v1
e1,t1 − v2

t23 − v4, and set

̂[ v1∪v3
e1

]
: = (e1 ↔ t1)wrt

(
E ∪ {t1, t12, t23}

)
(11.1.12)

= (t0 7→ t−10 , t2 7→ t0·t2)wrt(E ∪ {t0, t2, t23}).

We consider the blueprint v4 −t123←− v1
e1,t1 − v2

t2 − v3, and set

̂[ v1∪v4
e1

]
: = (e1 ↔ t1)wrt

(
E ∪ {t1, t2, t123}

)
(11.1.13)

= (t0 7→ t−10 , t23 7→ t0·t23)wrt(E ∪ {t0, t2, t23}),

Proof of (11.1.P2). By (11.1.12), (11.1.10), and (11.1.13),

̂[ v1∪v3
e1

]
◦
[̂
v1
e1

]
◦ ̂[ v1∪v4

e1

]
= (t0 7→ t−10 , t2 7→ t0·t2)◦(t0 7→ t−10 )◦(t0 7→ t−10 , t23 7→ t0·t23)wrt

(
E ∪ {t0, t2, t23}

)
= (t0 7→ t−10 , t2 7→ t0·t2, t23 7→ t0·t23)wrt

(
E ∪ {t0, t2, t23}

) (11.1.11)
=

[̂ v2

e−1
1

]
.

Hence (11.1.P2) holds. �

We now assume that e3 ∈ v3 ∩ v−14 . We consider the blueprint v1
t1 − v2

t23 − v4 −
e3, t3←− v3,

and set [̂
v3
e3

]
: = (e3 ↔ t3)wrt

(
E ∪ {t1, t3, t23}

)
(11.1.14)

= (e3 7→ t−12 ·t23, t2 7→ t23·e−13 )wrt
(
E ∪ {t0, t2, t23}

)
.

Proof of (11.1.P3). In Aut F̂ , the elements
[̂
v1
e1

] (11.1.10)
= (e1 ↔ t1)wrt(E ∪ {t1, t3, t23}) and[̂

v3
e3

] (11.1.14)
= (e3 ↔ t3)wrt(E ∪ {t1, t3, t23}) commute. Thus, (11.1.P3) holds. �

Proof of (11.1.P4). By (11.1.12) and (11.1.14), we have

̂[ v1∪v3
e1

] ̂[v3
e3

]
= (t0 7→ t−10 , t2 7→ t0·t2)(e3 7→t

−1
2 ·t23, t2 7→t23·e

−1
3 )wrt

(
(E−{e3}±1)∪{e3, t0, t2, t23}

)
= (t0 7→ t−10 , t23·e−13 7→ t0·t23·e−13 )wrt

(
(E−{e3}±1)∪{t−12 ·t23, t0, t23·e−13 , t23}

)
= (t0 7→ t−10 , e3 7→ e3·t−123 ·t−10 ·t23)wrt

(
E ∪ {t0, t2, t23}

)
.

By (11.1.13), ̂[ v1∪v4
e1

]
= (t0 7→ t−10 , t23 7→ t0·t23)wrt(E ∪ {t0, t2, t23}). Since it is now clear

that ̂[ v1∪v3
e1

]̂[v3
e3

]
̸= ̂[ v1∪v4

e1

]
, to prove (11.1.P4) we must use the hypothesis that the Γ-vertex

v4 ∪ {t−13 } equals {e−13 , t−13 }, and hence has valence equal to two and is not the basepoint. It

follows that πΓ lies in that subgroup π̂Γ of F̂ which has basis (E−{e3}±1) ∪ {t1, t2, e3·t−13 }.

Both ̂[ v1∪v3
e1

]̂[v3
e3

]
and ̂[ v1∪v4

e1

]
restrict to the same automorphism of π̂Γ, namely the

one given by (t0 7→ t−10 , e3·t−123 7→ e3·t−123 ·t−10 )wrt
(
(E−{e3}±1) ∪ {t0, t2, e3·t−123 }

)
. It follows

that (11.1.P4) holds. �
By deflating {t1, t23} and setting t := t3, we may see that

(11.1.15) δS(v3) = #(t3 ∈ S Inflate;E ∪ {t1, t3, t23}) = #(t2 ∈ S Inflate;E ∪ {t0, t2, t23});
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alternatively, one may check that

#(t2 ∈ S Inflate;E ∪ {t0, t2, t23}) = #(t{2,3,12} ∈ S Inflate)
(11.1.8)
= δS(v3).

Proof of (11.1.P5). By (10.1.7), #(e3 ∈ S
[
v1
e1

]
) = #(e3 ∈ S). Also,

δ
S

[
v1
e1

](v3)
(11.1.15)
= #(t2 ∈ S

[
v1
e1

]
◦ Inflate;E ∪ {t0, t2, t23})

(11.1.10)
= #(t2 ∈ S Inflate ◦(t0 7→t−1

0 )wrt(E∪{t0,t2,t23});E ∪ {t0, t2, t23})
= #(t2 ∈ S Inflate;E ∪ {t0, t2, t23})

(11.1.15)
= δS(v3).

It now follows from (10.1.6) that ∆
S

[
v1
e1

]([ v3
e3

]
) = ∆S(

[
v3
e3

]
), and a simple calculation then

shows that (11.1.P5) holds. �

Proof of (11.1.P6). By (10.1.7), #(e3 ∈ S
[
v1∪v3
e1

]
) = #(e3 ∈ S). Also,

δ
S

[
v1∪v3
e1

](v3)
(11.1.15)
= #(t2 ∈ S

[
v1∪v3
e1

]
◦ Inflate;E ∪ {t0, t2, t23})

(11.1.12)
= #(t2 ∈ S Inflate ◦(t0 7→t−1

0 , t2 7→t0·t2)wrt(E∪{t0, t2, t23});E ∪ {t0, t2, t23})
6 #(t2 ∈ S Inflate;E ∪ {t0, t2, t23})

(11.1.15)
= δS(v3).

It now follows from (10.1.6) that ∆
S

[
v1∪v3
e1

]([ v3
e3

]
) 6 ∆S(

[
v3
e3

]
); moreover, equality must hold

since
[
v1∪v3
e1

]2 (10.1.2)
≡ 1. A simple calculation then shows that (11.1.P6) holds. �

12. The consequences of five of the six rules

The formulæ verified in this section are based on formulæ given in Higgins&Lyndon(1962)
for the case of single cyclic words. They were then modified in McCool(1974) and extended
to accommodate the cases of sequences of cyclic words and sequences of straight words, and
then modified in Hoare(1979) and extended to accommodate the case of sequences of sets of
words. The formulæ are about to be modified again.

12.1. Theorem (Higgins&Lyndon). With the notation of Section 11, the following hold.

(12.1.R0) The subgroup of AutF generated by the image of E0 is Sym±(E
±1).

(12.1.R1) For all
[
v
e

]
∈ E1,

[
v
e

]2 ≡ 1.

(12.1.R2) For all
[
v
e

]
∈ E1,

[
v∗

e−1

]
≡

[
v
e

]
.

(12.1.R3) For all (d↔f) ∈ E0 and
[
v
e

]
∈ E1,

[
v
e

](d↔f) ≡ [
v(d↔f)

e(d↔f)

]
.

(12.1.R4) For all
[
v
e

]
,
[
v
e′
]
∈ E1 with e ̸= e′,

[
v
e

][ v
e′

]
≡ (e↔e′).

(12.1.R5) For all (u
d −v, w) ∈ P3(E),

[
u
d

]
·(d↔d−1)·

[
w∪{d}

d

]
≡
[

v
d−1

]
.

(12.1.R6) For all (u
d −v e −w) ∈ P3(E),

[
v
e

][u
d

]
≡

[
w∪{d−1}
e−1

]
.
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(12.1.R7) For all (u
d −v−f← w) ∈ P3(E),

[
w
f

][u
d

]
≡

[
w
f

]
.

(12.1.R8) For all (u
d −v e −w) ∈ P3(E), ∆S

([
v
e

]
·
[
u
d

])
= ∆S

([
v
e

])
+∆S

([
u
d

])
.

(12.1.R9) For all (u
d −v−f← w) ∈ P3(E), ∆S

([
w
f

]
·
[
u
d

])
= ∆S

([
w
f

])
+∆S

([
u
d

])
.

Proof. (12.1.R0) is well-known, (12.1.R1), (12.1.R2), and (12.1.R4) hold by (10.1.2), (10.1.3),
and (10.1.4) respectively, and (12.1.R3) is clear.

(12.1.R5). It follows from (8.1.1) that

(12.1.10) for all e ∈ E±1,
[
{e}
e

]
≡ (e↔ e−1).

Set e1 := d, v1 := {d}, v2 := v, v3 := u−{d}, and v4 := w. We see that (v1
e1 −v2, v3, v4)

is ({d} d −v, u−{d}, w). Then[
u
d

]
·(d↔ d−1)·

[
w∪{d}

d

](12.1.10)
≡

[
u
d

]
·
[ {d}

d

]
·
[
w∪{d}

d

]
=
[
v1∪v3
e1

]
·
[
v1
e1

]
·
[
v1∪v4
e1

](11.1.P2)
≡

[ v2

e−1
1

]
=
[

v
d−1

]
.

Hence, (12.1.R5) holds.

(12.1.R6)–(12.1.R9). Set v1 :=w, v2 := v−{d−1}, v3 := u, v4 := {d−1}, e1 := f = e−1,

and e3 := d. Then (v1
e1 −v2, v3

e3 −v4) is (w −
f=e−1

 − v−{d−1}, u d − {d−1}). Now
(12.1.11)

[
v
e

]
=

[ v2∪v4

e−1
1

] (10.1.3)
≡

[
v1∪v3
e1

]
,

and we have all of the following.[
v
e

][u
d

]
(12.1.11)
≡

[
v1∪v3
e1

][v3
e3

]
(11.1.P5)
≡

[
v1∪v4
e1

]
=

[
w∪{d−1}
e−1

]
.[

w
f

][u
d

]
=

[
v1
e1

][v3
e3

]
(11.1.P4)
≡

[
v1
e1

]
=

[
w
f

]
.

∆S

([
v
e

]
·
[
u
d

])(12.1.11)
= ∆S

([
v1∪v3
e1

]
·
[
v3
e3

])(11.1.P6)
= ∆S

([
v1∪v3
e1

]
)+∆S(

[
v3
e3

]
)
(12.1.11)
= ∆S

([
v
e

]
)+∆S(

[
u
d

]
).

∆S(
[
w
f

]
·
[
u
d

]
) = ∆S(

[
v1
e1

]
·
[
v3
e3

]
)
(11.1.P5)

= ∆S(
[
v1
e1

]
) + ∆S(

[
v3
e3

]
) = ∆S(

[
w
f

]
) + ∆S(

[
u
d

]
).

Thus, (12.1.R6)–(12.1.R9) hold. �
12.2. Corollary. With Notation 9.1, R ⊆ N. �

13. Rapaport’s decreasable peaks

The following are concepts introduced by Rapaport(1958) to bypass the topological part of
the work of Whitehead(1936). They remain some of the main tools for obtaining information
about AutF . The term ‘peak’ was introduced by Collins&Zieschang(1984), and is now
generally accepted. Their phrase ‘peak reduction’ is also generally accepted, but as peaks
are paths and the phrase ‘path reduction’ is generally accepted for a different concept, we
prefer to speak of ‘decreasable peaks’.

13.1. Definitions. Let E, F , E, and F be as in Section 8.
By Theorem 5.2, FxE is a left-multiplicative F-tree. For all φ, φ′ ∈ F, we let [[φ, φ′]] denote

the unique reduced (FxE)-path from φ to φ′, and we let V[[φ, φ′]] denote the set of vertices
occurring in this path. Then (φ1, φ2) 7→ [[φ1, φ2]] gives a bijective map from F × F to the
set of all reduced (FxE)-paths. There is a natural left-multiplicative F-action on the set
of all (FxE)-paths, and hence on the set of all reduced (FxE)-paths. We let F × F act left
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multiplicatively on the set of all reduced (FxE)-paths by the foregoing bijection, that is,
(φ1, φ2)·[[φ, φ′]] := [[φ1·φ, φ2·φ′]], for all φ1, φ2, φ, φ

′ ∈ F. The diagonal F-action agrees with
the previously defined F-action.

Let T be a subtree of FxE. Thus, for all φ1, φ2 ∈ VT, [[φ1, φ2]] is a T-path.
Let S be a finite set of words in F . For each φ ∈ F, set ~S,E(φ) := E -length(S φ). Where

E is clear from the context, we shall sometimes write ~S rather than ~S,E. Where E and S are
clear from the context, we shall shall sometimes write ~ rather than ~S,E. For all φ ∈ F and
µ ∈ FS, it is clear that ~(µ·φ) = ~(φ), which we express by saying that the map ~ : F → N
is a left-multiplicative FS-map; here, we understand that FS acts left-multiplicatively on F

naturally and left-multiplicatively on N trivially.
By a (T, ~)-peak, we mean any reduced, length-two T-path φ0 →−φ1 →−φ2 such that

~(φ0) < ~(φ1) > ~(φ2) or ~(φ0) 6 ~(φ1) > ~(φ2). A T-path is said to be an ~-peak if it is a
(T, ~)-peak. A reduced T-path is said to be ~-peakfree if no length-two subpath is an ~-peak.
Notice that, for any reduced, length-two T-path φ0 →−φ1 →−φ2 which is not an ~-peak,

if ~(φ0) < ~(φ1), then ~(φ1) < ~(φ2), and if ~(φ0) = ~(φ1), then ~(φ1) 6 ~(φ2). Hence, if a
reduced T-path φ0 →−φ1 →−· · · →−φℓ−1 →−φℓ is ~-peakfree, then, in the sequence

(13.1.1) ~(φ0)−~(φ1), ~(φ1)−~(φ2), · · · , ~(φℓ−1)−~(φℓ),
for each negative term which has a successor, that successor is also negative, while for each
zero term which has a successor, that successor is negative or zero. The sequence (13.1.1)
then consists of a positive subsequence, followed by a zero subsequence, followed by a nega-
tive subsequence, where any of these three subsequences may be empty. Consequently, any
~-peakfree reduced T-path p has a concatenation factorization p = pdec} p const} p inc such
that p dec is ~-decreasing, p const is ~-constant, and p inc is ~-increasing; any of these three sub-
paths may have length zero, and all three subpaths are uniquely determined by p and ~. We
then call this concatenation factorization the ~-valley factorization of p. Whitehead(1936)
studied ~-valley factorizations, and Rapaport(1958) studied ~-peaks.

Let t be a new symbol, and give the polynomial ring Z[t] the structure of an ordered addi-
tive group in which the order is denoted ≺ and the ≺-positive elements are those polynomials
with positive leading term. Let N[t] denote the ordered additive submonoid of Z[t] consisting
of those polynomials whose coefficients lie in N. Then N[t] is well-ordered under ≺.
For φ, φ′ ∈ F, we write

~̃([[φ, φ′]]) :=
∑

φ′′∈V[[φ,φ′]]

t~(φ
′′) ∈ N[t].

Any (µ, µ′) ∈ F × F is said to ~̃-decrease [[φ, φ′ ]] if ~̃ ( [[µ·φ, µ′·φ′ ]]) ≺ ~̃([[φ, φ′]]).
Let M be any subgroup of F(S,T) := {φ ∈ F : S φ = S, φ·T = T}. Thus, T is a left-multi-

plicative M-subtree of FxE, and ~ is a left-multiplicative M-map.
Consider any φ, φ′ ∈ VT.

We say that [[φ, φ′]] is (M, ~̃)-decreasable if it is ~̃-decreased by some element of M×M.

Since ~ is an M-map, we see that if [[φ, φ′]] is ~̃-decreased by (µ1, µ2) ∈M×M, then [[φ, φ′]]

is ~̃-decreased by (µ·µ0, µ·µ1) for each µ ∈M; in particular, it is ~̃-decreased by (1, µ−10 ·µ1),

and by (µ−11 ·µ0, 1). If ~̃([[µ1·φ, µ2·φ′]]) = ~̃([[φ, φ′]]), then (µ1, µ2) is said to ~̃-respect [[φ, φ′]],

and we say that [[µ1·φ, µ2·φ′]] is (M, ~̃)-equivalent to ([[φ, φ′]]).
When φ ̸= φ′, we let ]]φ, φ′]] and [[φ, φ′[[ denote the T-paths obtained from [[φ, φ′]] by

omitting the first edge and vertex, and the last edge and vertex, respectively. If φ = φ′,
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we let ]]φ, φ′]] and [[φ, φ′[[ denote the empty set. If the length of [[φ, φ′]] is at least two, we
let ]]φ, φ′[[ denote the T-subpath of [[φ, φ′]] obtained by omitting the first and last edges and
vertices; if the length of [[φ, φ′]] is at most one, we let ]]φ, φ′[[ denote the empty set. We

define ~̃(∅) = 0. If [[φ, φ′]] is ~̃-decreased by (µ1, µ2), then [[φ, φ′]] has length at least two, and

h̃( ]]µ1·φ, µ2·φ′[[ ) ≺ h̃( ]]φ, φ′[[ ). �

13.2. Lemma (Rapaport). If each (T, ~)-peak is (M, ~̃)-decreasable, then, for all φ, φ′ ∈ VT,
there exists some µ ∈M such that [[φ, µ·φ′]] is ~-peakfree, and, hence, has an ~-valley fac-
torization.

Proof. Since N[t] is well-ordered, there exists some µ ∈M which ≺ -minimizes ~̃([[φ, µ·φ′]]).
It suffices to show that [[φ, µ·φ′]] is ~-peakfree. Suppose it is not. Then [[φ, µ·φ′]] has some
length-two subpath φ0 →−φ1 →−φ2 which is an ~-peak. By our hypothesis, there exists

some µ0 ∈M such that ~̃([[φ0, µ0·φ2]]) ≺ ~̃([[φ0, φ2]]). Now

~̃([[φ, µ0·µ·φ′]]) 4 ~̃([[φ, φ0[[ ) + ~̃([[φ0, µ0·φ2]]) + ~̃( ]]µ0·φ2, µ0·µ·φ′]])

= ~̃([[φ, φ0[[ ) + ~̃([[φ0, µ0·φ2]]) + ~̃( ]]φ2, µ·φ′]])

≺ ~̃([[φ, φ0[ ) + ~̃([[φ0, φ2]]) + ~̃( ]]φ2, µ0·φ′]]) = ~̃([[φ, µ·φ′]]).

This contradicts the ≺-minimality of ~̃([[φ, µ·φ′]]), as desired. �

14. All of McCool’s peaks are decreasable

In this section we prove a fundamental result about AutF . It was developed by Mc-
Cool(1975) using formulæ of Higgins&Lyndon(1962) which simplified algebraic formulæ of
Rapaport(1952) which substituted a topological argument of Whitehead(1936). In spite of
all the simplifications, the argument remains difficult.

14.1. Hypotheses. Let E, F , E, F, N, and R be as in Section 9. By Corollary 12.2, R ⊆ N.
For each i ∈ {0, 1}, let Wi be a finite set of words in F , and, for each φ ∈ F, set

~i(φ) := E -length(W φ
i ). Clearly, ~i : F → N is a left-multiplicative N-map.

Set F|~0=min := {φ ∈ F : ~0(φ) = min(~0(F))}.
Let T be any component of the forest (F|~0=min)xE.
Set M := ⟨(VTR)T⟩ where (VTR)T := {φρ | φ ∈ VT, ρ ∈ R, (φρ)·T = T}. Clearly, T is a

left-multiplicative M-tree, and M 6 N. �

14.2. Theorem. With Hypotheses 14.1, each (T, ~1)-peak is (M, ~̃1)-decreasable.

Proof. Let p be an arbitrary (T, ~1)-peak. Then p has the form φ0 →−φ1 →−φ2. By setting
φ := φ1, ψ := φ−11 ·φ0, and ψ′ := φ−11 ·φ2, we may express p in the form φ ·ψ →−φ→−φ ·ψ′
with φ ∈ F, and ψ1, ψ2 ∈ E±1. Since p is reduced, ψ ̸= ψ′. Recall (10.1.5), and, for each
i ∈ {0, 1}, set ∆i := ∆W φ

i ,E : F → N.

Status of the peak: p = φ ·[[ψ, ψ′]], φ ∈ F, ψ, ψ′ ∈ E±1, ψ ̸= ψ′. Also, ∆0(ψ) = 0 = ∆0(ψ
′),

∆1(ψ) 6 0 > ∆1(ψ
′), and ∆1(ψ) + ∆1(ψ

′) < 0.

The following will be applied frequently. Since ∆0 and ∆1 are clearly left-multiplicative
N-maps, they are also left-multiplicative M-maps. Notice that min(∆0(F)) = 0. For
ψ1 ∈ E±1, if ∆0(ψ1) = 0, then φ ·ψ1 ∈ VT, and, for ψ1, ψ2 ∈ E±1, if ∆0(ψ1·ψ2) = ∆0(ψ1) = 0,

25



then φ ·ψ1·ψ2 ∈ VT. Notice that F~0=minxE is an N-forest. Since R ⊆ N, we see that
each φρ ∈ VTR permutes the components of (F~0=min)xE; hence, (φρ)·T = T if and only if
(φρ)·T ∩ T ̸= ∅.

The following ‘concatenation result’ will be applied twice.

14.3. Lemma. If there exists some ψ′′ ∈ E±1−{ψ, ψ′} such that ∆0(ψ
′′) = 0, ∆1(ψ

′′) < 0,

and the resulting (T, ~1)-peaks φ ·[[ψ, ψ′′ ]] and φ ·[[ψ′′, ψ′ ]] are (M, ~̃1)-decreasable, then the

(T, ~1)-peak φ ·[[ψ, ψ′ ]] is (M, ~̃1)-decreasable.

Proof. There exist elements µ1, µ2 ∈M such that [[φ ·ψ, φ ·ψ′′ ]] and [[φ ·ψ′′, φ ·ψ′ ]] are ~̃1-de-
creased by (µ1, 1) and (1, µ2), respectively. Hence,

t~1(µ1·φ ·ψ) = t~1(φ ·ψ),

~̃1
(
]]µ1·φ ·ψ, φ ·ψ′′[[

)
≺ ~̃1( ]]φ ·ψ, φ ·ψ′′[[ ) = t~1(φ),

t~1(φ·ψ
′′) ≺ t~1(φ),

~̃1
(
]]φ ·ψ′′, µ2·φ ·ψ′[[

)
≺ ~̃1( ]]φ ·ψ′′, φ ·ψ′[[ ) = t~1(φ),

t~1(µ2·φ ·ψ
′) = t~1(φ ·ψ

′).

Let Σleft and Σright denote the sum of the left-hand and right-hand terms respectively.

Now ~̃( [[µ1·φ ·ψ, µ2·φ ·ψ′]]) 4 Σleft. Also, Σleft ≺ Σright−2·t~1(φ), since {f ∈ N[t] : f ≺ t~1(φ)}
is closed under summation. Finally, Σright−2·t~1(φ) = ~̃( [[φ ·ψ, φ ·ψ′]]). Hence, φ ·[[ψ, ψ′ ]] is
~̃1-decreased by (µ1, µ2) ∈M×M. �

In outline, our procedure is the following.

Step 1. Clearly, ~̃1(φ ·[[ψ−1, ψ′, ]]) 4 ~̃1(φ ·[[ψ, ψ′ ]]), with equality unless ψ−1 = ψ′. If
ψ ∈ E−1, we use the fact that ψ−2 ∈ R0 ∪ R1 to show that φ ·[[ψ−1, ψ′ ]] lies in the same
M×M-orbit as φ ·[[ψ, ψ′ ]], and we are free to replace ψ with ψ−1. Similarly for ψ′. Now
ψ, ψ′ ∈ E. We are free to interchange ψ and ψ′, if desired.

Step 2. We settle the case where ψ or ψ′ lies in E0 by using R3. Now ψ =
[
u
d

]
, ψ′ =

[
v
e

]
.

As in Step 1, we are free to take ψ′ =
[

v∗

e−1

]
, if desired, by using

[
v∗

e−1

]
·
[
v
e

]−1 ∈ R2. Similarly,

we are free to take ψ =
[

u∗

d−1

]
, if desired. We set u�v := {u∩v,u∩v∗,u∗∩v,u∗∩v∗}.

Step 3. We settle the case where ∅ ∈ u�v as follows. We may assume that u∩v = ∅
and set w := u∗ ∩v∗; thus, (u,v,w) ∈ P3(E). There are five possible configurations:

(u −d=e
−1

 − v, w); (u −d̸=e
−1

 − v, w); (u
d −v e −w); (v

e −u d −w); and (u
d −w− e← v).

We settle these using elements of R5, R4, R6, R6, and R7, respectively. Now ∅ ̸∈ u�v.
Step 4. We prove there exists some

[
x
f

]
∈ E1 such that ∆0(

[
x
f

]
) = 0, ∆1(

[
x
f

]
) < 0, and

x ∈ u�v. We apply Step 3 to φ ·[[
[
u
d

]
,
[
x
f

]
]] and φ ·[[

[
x
f

]
,
[
v
e

]
]], and then apply Lemma 14.3

to complete the proof.

We now start Step 1, which is a reduction to the case where {ψ, ψ′} ⊆ E. If ψ′ ∈ E−1, we
set ρ := ψ′−2 ∈ R0 ∪ R1 and form the (FxE)-path

φ ·ψ →−φ→−φ ·ψ′−1 = φ ·ρ·ψ′ = (φρ)·(φ ·ψ′).
Since φρ ∈ N, we have ∆i(ψ

′−1) = ∆i(ρ·ψ′) = ∆i(ψ
′), for i = 0, 1. In particular, φ ·ψ′−1 ∈ VT

and φρ ∈M. It may be the case that ψ′−1 = ψ; in any event, we see that (1, φρ) is an element of

M×M which ~̃1-decreases or ~̃1-respects p, and in the latter case gives an (M, ~̃)-equivalent
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(T, ~1)-peak which may be used in place of p. It therefore suffices to consider the case where
ψ′ ∈ E. Similarly, we may assume that ψ ∈ E.

Status of the peak: ψ, ψ′ ∈ E. We are free to interchange ψ and ψ′, if desired.

We now start Step 2, which is a reduction to the case where {ψ, ψ′} ⊆ E1.

14.4. Lemma. If {ψ, ψ′} ∩ E0 ̸= ∅, then p is (M, ~̃1)-decreasable.

Proof. It is not difficult to see that ∆1(E0) = {0}; hence, {ψ, ψ′} ∩ E1 ̸= ∅. By interchanging
ψ and ψ′ if necessary, we may assume that ψ ∈ E1 and ψ′ ∈ E0, say ψ =

[
v
e

]
, ψ′ = (d↔ f).

We set ρ :=
[
v
e

]
·(d↔f)·

[
v(d↔f)

e(d↔f)

]
·(d↔f)−1 ∈ R3, and form the (FxE)-path

φ ·
[
v
e

]
→−φ ·

[
v
e

]
·(d↔ f)→−φ ·

[
v
e

]
·(d↔ f) ·

[
v(d↔f)

e(d↔f)

]
= φ ·ρ·(d↔ f) = (φρ) ·(φ ·(d↔ f)).

Now ∆0 = 0 along this path since

∆0

([
v
e

]
·(d↔ f)

)
= ∆0

([
v
e

])
= 0 and ∆0(ρ·(d↔ f)) = ∆0((d↔ f)) = 0.

In particular, φρ ∈M. Since ∆1

([
v
e

]
) + ∆1((d↔ f)) < 0, we also have

∆1

([
v
e

]
·(d↔ f)

)
= ∆1

([
v
e

])
< 0, ∆1(ρ·(d↔ f)) = ∆1((d↔ f)) = 0,

and

~̃1
(
φ ·
[
v
e

]
→−φ ·

[
v
e

]
·(d↔ f)→−(φρ) ·

(
φ ·(d↔ f)

))
≺ ~̃1

(
φ ·
[
v
e

]
−← φ→−φ ·(d↔ f)

)
.

Thus, (1, φρ) lies in M×M and ~̃1-decreases p. �

Status of the peak: ψ =
[
u
d

]
and ψ′ =

[
v
e

]
. As in Step 1, we are free to take ψ′ =

[
v∗

e−1

]
, if

desired, by using ρ :=
[

v∗

e−1

]
·
[
v
e

]−1 ∈ R2. Similarly, we are free to take ψ =
[

u∗

d−1

]
, if desired.

Step 3 is the following, which is a reduction to the case ∅ ̸∈ u�v.

14.5. Lemma. If ∅ ∈ u�v, then p is (M, ~̃1)-decreasable.

Proof. Here, by taking ψ =
[

u∗

d−1

]
, if necessary, and taking ψ′ =

[
v∗

e−1

]
, if necessary, we may

assume that u ∩ v = ∅. Set w := u∗ ∩ v∗. Now (u,v,w) ∈ P3(E), d ∈ u, d−1 ∈ v∪w,
e ∈ v, and e−1 ∈ u∪w. We consider five cases.

Case 1: d−1 ∈ v, e−1 ∈ u, and d = e−1; thus, (u −d=e
−1

 − v, w) ∈ P3(E).
By interchanging

[
u
d

]
and

[
v
e

]
, if necessary, we may assume that ∆1

([
u
d

])
< 0. We set

ρ :=
[
u
d

]
·(d↔d−1)·

[
w∪{d}

d

]
·
[

v
d−1

]−1 ∈ R5, and form the (FxE)-path

φ ·
[
u
d

]
→−φ ·

[
u
d

]
·(d↔ d−1)→−φ ·

[
u
d

]
·(d↔ d−1)·

[
w∪{d}
d

]
= φ ·ρ ·

[
v
d−1

]
= φρ ·φ ·

[
v
e

]
.

It follows as in the proof of Lemma 14.4 that (1, φρ) lies in M×M and ~̃1-decreases p.

Case 2: d−1 ∈ v, e−1 ∈ u, and d ̸= e−1; thus, (u −d ̸=e
−1

 − v, w) ∈ P3(E).
By four applications of (10.1.6), we have

∆1

([
u
e−1

]
) + ∆1

([
v
d−1

])
= ∆1

([
u
d

])
+∆1

([
v
e

])
< 0.

By interchanging
[
u
d

]
and

[
v
e

]
, if necessary, we may assume that ∆1

([
v
d−1

]
) < 0. Also,

∆0(
[

v
d−1

]
) = 0, since

0 6 ∆0

([
v
d−1

]
) 6 ∆0

([
u
e−1

]
) + ∆0

([
v
d−1

]) (10.1.6)
= ∆0

([
u
d

])
+∆0

([
v
e

])
= 0.
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By Case 1, the (T, ~1)-peak φ ·[[
[
u
d

]
,
[

v
d−1

]
]] is (M, ~̃1)-decreasable. By Lemma 14.3, it

suffices to show that the the (T, ~1)-peak φ ·[[
[

v
d−1

]
,
[
v
e

]
]] is also (M, ~̃1)-decreasable. We set

ρ :=
[

v
d−1

]
·(d−1 ↔ e)·

[
v
d−1

]
·
[
v
e

]−1 ∈ R4, and form the (FxE)-path

φ ·
[

v
d−1

]
→−φ ·

[
v
d−1

]
·(d−1 ↔ e)→−φ ·

[
v
d−1

]
·(d−1 ↔ e) ·

[
v
d−1

]
= φ ·ρ·

[
v
e

]
= φρ ·φ ·

[
v
e

]
.

It follows as in the proof of Lemma 14.4 that (1, φρ) lies in M×M and ~̃1-decreases
φ ·[[

[
v
d−1

]
,
[
v
e

]
]], as desired.

Case 3: d−1 ∈ v and e−1 ∈ w; thus, (u
d −v e −w) ∈ P3(E).

Here, we set ρ :=
[
v
e

]
·
[
u
d

]
·
[
w∪{d−1}
e−1

]
·
[
u
d

]−1 ∈ R6, and form the (FxE)-path

φ ·
[
v
e

]
→−φ ·

[
v
e

]
·
[
u
d

]
→−φ ·

[
v
e

]
·
[
u
d

]
·
[
w∪{d−1}
e−1

]
= φ ·ρ ·

[
u
d

]
= φρ ·φ ·

[
u
d

]
.

By (12.1.R5),

∆0

([
v
e

]
·
[
u
d

])
= ∆0

([
v
e

])
+∆0

([
u
d

])
= 0 and ∆1

([
v
e

]
·
[
u
d

])
= ∆1

([
v
e

])
+∆1

([
u
d

])
< 0.

Thus, ~0(φ ·
[
v
e

]
·
[
u
d

]
) = ~0(φ) and ~1(φ ·

[
v
e

]
·
[
u
d

]
) < ~1(φ). As in the proof of Lemma 14.4,

it follows that ( φρ, 1) lies in M×M and ~̃1-decreases p.

Case 4: d−1 ∈ w and e−1 ∈ u; thus, (v
e −u d −w) ∈ P3(E).

Here, we may interchange
[
u
d

]
and

[
v
e

]
, and apply Case 3.

Case 5: d−1 ∈ w and e−1 ∈ w; thus, (u
d −w− e← v) ∈ P3(E).

Here, the argument is similar to that for Case 3. We set ρ :=
[
v
e

]
·
[
u
d

]
·
[
v
e

]
·
[
u
d

]−1 ∈ R7,
and form the (FxE)-path

φ ·
[
v
e

]
→−φ ·

[
v
e

]
·
[
u
d

]
→−φ ·

[
v
e

]
·
[
u
d

]
·
[
v
e

]
= φ ·ρ ·

[
u
d

]
= φρ ·φ ·

[
u
d

]
.

By (12.1.R6), ∆0(
[
v
e

]
·
[
u
d

]
) = 0 and ∆1(

[
v
e

]
·
[
u
d

]
) < 0. As in the proof of Lemma 14.4, it

follows that ( φρ, 1) lies in M×M and ~̃1-decreases p. �

Status of the peak: ∅ ̸∈ u�v.

14.6. Lemma. There exists
[
x
f

]
∈ E1 such that x ∈ u�v, ∆1(

[
x
f

]
) < 0, and ∆0(

[
x
f

]
) = 0.

Proof. For each j ∈ {0, 1}, we set δj := δWφ
j ,E

; as (u∩ v,u∗ ∩ v∗,u∩ v∗,u∗ ∩ v) ∈ P4(E),

(11.1.P1) gives

(14.6.1) δj(u∩ v)+ δj(u
∗ ∩ v∗) 6 δj(u) + δj(v) > δj(u∩ v∗)+ δj(u

∗ ∩ v).

We consider two cases.

Case 1: For each y ∈ u�v, y∩ {d, e}±1 ̸= ∅.
Here, by replacing

[
v
e

]
with

[
v∗

e−1

]
, if necessary, we may assume that d ∈ u∩ v. Then

e ∈ u∗ ∩ v, d−1 ∈ u∗ ∩ v∗, and e−1 ∈ u∩ v∗. For each j ∈ {0, 1}, (14.6.1) and (10.1.6) give

∆j(
[
u∩v
d

]
+∆j(

[
u∗∩v∗

d−1

]
)+∆j(

[
u∩v∗

e−1

]
+∆j(

[
u∗∩v
e

]
)) 6 2·∆j(

[
u
d

]
)+2·∆j(

[
v
e

]
).

For j = 1, since ∆1(
[
u
d

]
)+∆1(

[
v
e

]
) < 0, we see that there exists some

[
x
f

]
∈ E1 such

that x ∈ u�v and ∆1(
[
x
f

]
) < 0. For j = 0, since ∆0(

[
u
d

]
) = 0 = ∆0(

[
v
e

]
), we see that

∆0(
[
x
f

]
) = 0.
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Case 2: For some y ∈ u�v, y∩ {d, e}±1 = ∅.
Here, by replacing

[
u
d

]
with

[
u∗

d−1

]
, if necessary, and replacing

[
v
e

]
with

[
v∗

e−1

]
, if neces-

sary, we may assume that u∩ v∩ {d, e} = ∅. Then d ∈ u∩ v∗ and e ∈ u∗ ∩ v. For each
j ∈ {0, 1}, (14.6.1) and (10.1.6) give

∆j(
[
u∩v∗
d

]
)+∆j(

[
u∗∩v
e

]
) 6 ∆j(

[
u
d

]
)+∆j(

[
v
e

]
).

As in Case 1, there exists some
[
x
f

]
with the desired properties. �

In Lemma 14.6, the (T, ~1)-peaks φ ·[[
[
u
d

]
,
[
w
f

]
]] and φ ·[[

[
w
f

]
,
[
v
e

]
]] are (M, ~̃1)-decreasable

by Lemma 14.5. Now Theorem 14.2 follows from Lemma 14.3. �

15. McCool’s two-layer results

15.1. Notation. Let E, F , E, F, N, and R be as in Section 9.
By Nielsen’s Theorem 7.2, F/N = Aut(F ).
By Higgins&Lyndon’s Corollary 12.2, R ⊆ N.
For each i ∈ {0, 1}, let Wi be a finite set of words in F . Then we have N 6 FWi

and
FWi

/N = Aut(F,Wi). For each φ ∈ F, set ~i(φ) := E -length(W φ
i ). Then ~i : F → N is an

FWi
-map. For each nonempty subset V of F, set V|~i=min := {φ ∈ V : ~i(φ) = min

(
~i(V)

)
}.

Let T0 be any component of the FW0-forest (F|h0=min)xE. Set M := ⟨(VT0R) T0⟩, where
(VT0R)T0 := {φρ | φ ∈ VT0, ρ ∈ R, (φρ)·T0 = T0}. Since VT0R ⊆ N, we see M 6 F(W0,T0,W1).

Let T1 be any component of the F(W0,T0,W1)-forest
(
(VT0)|h1=min

)
xE. �

15.2. Theorem. With Notation 15.1, the following hold.
(i) For all φ, φ ′ ∈ VT0, there exists some µ ∈M such that the T0-path p := [[φ, µ·φ ′]] has

an ~1-valley factorization p = p dec} p const} p inc. Moreover, if φ ′ ∈ (VT0)|~1=min, then
µ·φ ′ ∈ (VT0)|~1=min and, hence, p inc has length zero and all the vertices of p const lie
in (VT0)|~1=min. In particular, either φ ∈ (VT0)|~1=min or there exists some length-one
~1-decreasing T0-path initiating at φ.

(ii) F(W0,T0,W1) = M ·F(W0,T0,W1,T1).

Proof. (i). On applying Theorem 14.2 with T := T0, we see that each (T0, ~1)-peak is

(M, ~̃1)-decreasable. By Rapaport’s Lemma 13.2, the first sentence of (i) holds. For the
second sentence, since ~1 is an FW1-map, µ·φ′ ∈ (VT0)|~1=min. The third sentence is clear,
since (VT0)|~1=min is nonempty.

(ii). Consider an arbitrary κ ∈ F(W0,T0,W1). Choose any φ ∈ VT1. Since ~1 is an
FW1-map, we see that κ·φ ∈ (VT0)|~1=min. We now apply the second sentence of (i) with
φ′ := κ·φ, and obtain µ ∈M such that the T0-path p := [[φ, µ·κ·φ]] has an ~1-valley factor-
ization p = pdec} p const} p inc in which pdec and p inc have length zero. Hence, p = p const

is a T1-path, and µ·κ·φ ∈ VT1. Since the element µ·κ of F(W0,T0,W1) permutes the com-
ponents of the F(W0,T0,W1)-forest (VT0)|~1=minxE, we see that µ·κ ∈ F(W0,T0,W1,T1). Hence,
κ ∈M·F(W0,T0,W1,T1), as desired. �

16. McCool’s presentations

In this section, we give an explicit formula for McCool’s presentation for Aut(F, S).
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16.1. Notation. Let E, F , E, F, N, R, W, and S be as in Notation 9.2.
By Nielsen’s Theorem 7.2, FS/N = Aut(F, S).
By Higgins&Lyndon’s Corollary 12.2, R ⊆ N.
We have a left-multiplicative FS-map ~S : F → N, φ 7→ ~S(φ) := E -length(S φ).
For each nonempty subset V of F, V|~S=min := {φ ∈ V : ~S(φ) = min

(
~S(V)

)
}.

We algorithmically construct an inclusion-maximal E -length-decreasing (WxE)-path p0
initiating at S; for example, we may choose a total order of the finite set E1, and then, at S
and each successive vertex, apply the elements of E1 in order until either a neighbour with
lesser E -length is found, or we know our path is inclusion-maximal and we stop. Let φ0

denote the Schreier-label of the path p0. The terminal vertex of p0 is Sφ0 .
Define Υ := Γ(Sφ0) as in Notation 9.2; thus,

WSφ0 := {W ∈W : E -length(W ) 6 E -length(S φ0)},
and Υ is the component of WSφ0xE which contains Sφ0 , which is then the basepoint. We

choose a maximal subtree Υ0 of Υ, and then
−−→
VΥ and

→−−←
E ′Υ are subsets of F given with

bijective maps VΥ→
−−→
VΥ and E ′Υ→

→−−←
E ′Υ.

Let Γ, resp. Γ0, denote the subgraph of WxE obtained by adding to Υ, resp.Υ0, all the
vertices and edges of the path p0. Then Γ is a finite, connected, basepointed subgraph of

WxE with basepoint v0 := S, Γ0 is a maximal subtree of Γ, and
−−→
VΓ and

→−−←
E ′Γ are subsets of

F given with bijective maps VΓ→
−−→
VΓ and E ′Γ→

→−−←
E ′Γ. �

Our sole objective is to prove the following.

16.2. Claim. Aut(F, S) =
⟨→−−←
E ′Γ |

−→
VΓR ∩ ⟨

→−−←
E ′Γ ⟩

⟩
with the map

→−−←
E ′Γ ⊆ F → AutF . �

16.3. Notation. The automorphism of F given by φ 7→ φ0φ carries FSφ0 to FS, carries N to

itself, carries
→−−←
E ′Υ to

→−−←
E ′Γ, and carries

−→
VΥR to

−→
VΓR. Thus, it suffices to prove Claim 16.2 for

Aut(F, S φ0). Hence, we may replace S with S φ0 , and thereby assume that φ0 = 1.
In Notation 15.1, if we take W0 := ∅, then we must have T0 = FxE; if we further take

W1 := S, then ~1 = ~S, and the third sentence of Theorem 15.2(i) shows that 1 ∈ F|~S=min.
Let S denote the component of the FS-forest (F|~S=min)xE which contains 1. �
16.4. Lemma. The surjective group morphism F → AutF restricts to a surjective group
morphism F(S,S) → Aut(F, S) which has kernel NS.

Proof. In Notation 15.1, if we take W0 := ∅, then we must have T0 = FxE and M = ⟨ FR ⟩;
if we further take W1 := S and T1 := S, then Theorem 15.2(ii) says that FS = ⟨ FR ⟩ ·F(S,S).

Since ⟨ FR ⟩ 6 N 6 FS, we see that FS = N ·FS,S. Hence,
Aut(F, S) = FS/N = (N ·F(S,S))/N ≃ F(S,S)/(N∩F(S,S)) = F(S,S)/NS. �

To prove Claim 16.2, it now suffices to prove that
→−−←
E ′Γ is an F(S,S)-basis and that NS

equals the normal closure of
→
VΓR ∩ F(S,S) in F(S,S); we shall prove these two assertions in

Lemma 16.5 and Corollary 16.8, respectively.

16.5. Lemma.
→−−←
E ′Γ is an F(S,S)-basis, and F(S,S)·

−→
VΓ = VS.
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Proof. Set ṼΓ := {φ ∈ F : S φ ∈ VΓ }. Since VΓ ⊆WS and 1 ∈ F|~S=min, we see that

ṼΓ ⊆ F|~S=min.

To see that VS ⊆ ṼΓ, consider any φ ∈ VS. Since the reduced S-path from 1 to φ lies in
(F|~S=min)xE, we see that ~S is constant along it. Hence, we have a (WxE)-path from S to

S φ along which E -length is constant. Hence, S φ ∈ VΓ. Thus, φ ∈ ṼΓ, as desired.

Now S ⊆ ṼΓxE ⊆ (F|~S=min)xE. Since S is the component of (F|~S=min)xE which contains 1,

we see that S is the component of ṼΓxE which contains 1.
We have a free group F, an F-basis E, a right-exponential F-set W, a connected, full

subgraph Γ of WxE, and a basepoint v0 := S of Γ. We may now apply Definitions 6.1, and

find that, as S is the component of ṼΓxE which contains 1, we have π(Γ, v0)·
−→
VΓ = VS and

F(v0,S) = π(Γ, v0), which has basis
→−−←
E ′Γ. �

16.6. Corollary (Rapaport-McCool). The group Aut(F, S) is generated by the image in

AutF of the finite subset
→−−←
E ′Γ of F . �

16.7. Lemma. NS = ⟨(VSR) S⟩.

Proof. Let E+
0 denote the set of those elements of E whose image in AutF lies in Sym±(E

±1).

It follows from (8.1.1) that E+
0 = E0 ∪

{[
{e}
e

]
,
[ {e}∗
e−1

]
: e ∈ E±1

}
.

In Notation 15.1, let us take W0 := S, T0 := S, and W1 := E±1. It is clear that
min

(
~E±1(F)

)
= 2|E|. Thus, 1 ∈ VS|~E±1=min. It is not difficult to see that ⟨E+

0 | ∅⟩xE+
0 is a

component of the forest (VS|~E±1=min)xE. Thus, we may take T1 := ⟨E+
0 | ∅⟩xE+

0 . Now The-

orem 15.2(ii) says F(S,S,E±1) = ⟨(VSR) S⟩ · ⟨E+
0 | ∅⟩. Hence, NS = ⟨(VSR) S⟩ ·

(
N ∩ ⟨E+

0 | ∅⟩
)
.

It remains to show thatN ∩ ⟨E+
0 | ∅⟩ 6 ⟨(VSR) S⟩. NowN ∩ ⟨E+

0 | ∅⟩ is the kernel of the map

⟨E+
0 | ∅⟩ → Sym±(E

±1). Set R+
0 := R ∩ ⟨E+

0 | ∅⟩. For e ∈ E±1, ({e} e −{e}∗, ∅) ∈ P3(E)

and
[
{e}
e

]
·(e↔e−1)·

[
∅∪ {e}
e

]
·
[ {e}∗
e−1

]−1 ∈ R5; thus,
[
{e}
e

]
·(e↔e−1) ∈ ⟨R+

0 ⟩. It may now be seen

that ⟨E+
0 | R+

0 ⟩ = Sym±(E
±1). Hence, N ∩ ⟨E+

0 | ∅⟩ = ⟨E+
0 |∅⟩R+

0 6 ⟨(VSR) S⟩, as desired. �

16.8. Corollary. NS equals the normal closure of
−→
VΓR ∩ F(S,S) in F(S,S).

Proof. By Lemma 16.7, NS = ⟨(VSR) S⟩; clearly, (VSR) S = (VSR) ∩N S = (VSR) ∩ FS,S. By

Lemma 16.5, F(S,S)·
−→
VΓ = VS, and the result follows. �

This completes the proof of Claim 16.2, and we have an expression for McCool’s finite
presentation for Aut(F, S).

16.9. Theorem. Aut(F, S) =
⟨→−−←
E ′Γ |

−→
VΓR ∩ ⟨

→−−←
E ′Γ ⟩

⟩
with the map

→−−←
E ′Γ ⊆ F → AutF . �

The case S = ∅ gives McCool’s finite presentation for AutF .

16.10. Corollary. AutF = ⟨E|R⟩ with the given map E→ AutF .
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E.Artin: Aus der Topologie: E.Artins Zöpfe. pp. 346–366 in F.Klein: Vorlesungen
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