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Abstract
For a finite graph Z, T(Z) := e—v+t, where e, v, and ¢ denote the number of
edges, vertices, and tree components of Z, respectively. Let G be a finite group,
Z be a finite G-free G-graph, and X and Y be subgraphs of Z. Using linear alge-
bra and algebraic geometry over a sufficiently large field, Joel Friedman proved that

Y. T(XNgY) <T(X)T(Y). He showed that this inequality implies the strengthened
geG
Hanna Neumann conjecture. We simplify Friedman’s proof of the foregoing inequality

by replacing the sufficiently large field with a field F on which G acts faithfully and
then replacing all the arguments involving algebraic geometry with shorter arguments
about the left ideals of the skew group ring FG.
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1 Sheaves on graphs

1.1 Notation. As Bourbaki intended, we let N denote the set of finite cardinals, {0, 1,2,...}.
Throughout this section, let F be a field. We shall write dim (V') to denote the F-dimension
of an F-module V.
Throughout this section, let (Z,VZ,EZ,EZ %% VZ) be a finite (oriented) graph; here,
Z is a finite set, VZ C Z, EZ = Z —VZ, and ¢ and 7 are functions. Each e € EZ has an

associated picture of the form oSJe or Lee:tge. We let the symbol Z also denote the graph.

We shall use the standard concepts of subgraph, connected graph, component of a graph,
tree, tree component of a graph, and graph map.

We write §(Z) :=|EZ|—|VZ| and T(Z) :=max{dJ(Y) : Y is a subgraph of Z}. Each sub-
graph Y of Z with §(Y) = T(Z) is called a §-mazimizer in Z. The intersection of all the
d-maximizers in Z is denoted supercore(Z).

*Partially supported by Spain’s Ministerio de Ciencia e Innovacién through Project MTM2008-01550.



2 Friedman’s proof of the strengthened Hanna Neumann conjecture

1.2 Lemma. The following hold for the finite graph Z.
(i) If Z is connected, then §(Z) € {—1} UN and 6(Z)=—1 if and only if Z is a tree.
(ii) If C is the set of components of Z, then 6(Z) = Y v o0 0(X).
(iif) T(Z) >
(iv) (5(supercore(Z)) = T(Z), and supercore(Z) is the unique C-smallest §-mazimizer in Z.
)

(v) T(Z) —0(Z) equals the number of tree components of Z.

Proof. (i) and (ii) are straightforward, and (iii) holds since () is a subgraph of Z.

(iv) If X and Y are §-maximizers in Z, then §(X) > §(XNY) and §(Y) > (X UY).
Since 6(X)+ §(Y) =6(XNY)+ §(XUY), we see that §(X) =6(XNY). Thus, XNY is
a 0-maximizer in Z. Hence, the set of d-maximizers in Z is closed under finite intersections.
Since Z is finite, supercore(7) is the intersection of finitely many d-maximizers in Z. Thus,
(iv) holds.

(v) Let forest(Z) denote the subgraph of Z formed by the tree components. Then
—{§(forest(Z)) equals the number of tree components of Z.

Now §(Z)—0d(forest(Z)) = 6(Z—forest(Z)) < T(Z).

We shall prove the reverse inequality, T(Z) < §(Z)—0d(forest(Z)), by induction on |EZ|.

Let Y := supercore(Z). Consider first the case where EZ = EY. Then Z—Y consists of
isolated vertices, each of which is a tree component of Z. Then

T(Z)=46(Y)=08(Z2)=6(Z-Y) < §(Z)—6(forest(Z)),
as desired. It remains to consider the case where we have some e € EZ—EY. Then,
T(Z) =T(Z—{e}) since e € EZ—EY
d(Z—{e})—d(forest(Z—{e})) by the implicit induction hypothesis
= 6(Z)—1—6(forest(Z—{e})) < 0(Z)—d(forest(Z))

since adding e to Z—{e} reduces the number of tree components by one or zero, depending
whether or not e is incident to forest(Z—{e}). The result now holds by induction. O

1.3 Definitions. We let ZZ and Z[Z] denote the free Z-module with Z-basis the finite set Z.
Let V' be a finite-dimensional F-module. We shall be interested in the finite-dimensional
F-module VR ZZ = @ (V® Zz), where we are tensoring over Z. For each z € Z, we have a

2€Z
map VQZZ — V, d — d,, such that, for each d € VRZZ,d = > (d,® z).

z€Z

Let D be an F-submodule of V® ZZ. For each z € Z, we let D, == {d, : d € D}, thus,
P (D.®Zz) O D. We shall say that D is a sheaf in VR ZZ if, firstly, € (D,®Zz) = D,

ze€Z z€Z
and, secondly, for each e € EX, D, C D,.,N D,.. Viewed in the lattice of F-submodules of

V® 77, the set of sheaves in V® ZZ is closed under sums and intersections.
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Let D be a sheaf in V®ZZ. We define 6(D) == ( Y dim(D.)) — ( > dim(D,)). By
ecEZ veEVZ
a subsheaf C' of D, we mean a sheaf in V®FZ that is contained in D; in this event, we

write C' < D. We define T(D) = max{d(C) : C' g D}. Clearly, T(D) > 0, since {0} < D. If
C =< D and §(C) =T(D), then C is called a d-mazimizer in D. The intersection of all the
d-maximizers in D is denoted supercore(D).

1.4 Lemma. Let V be a finite-dimensional F-module and D X VR ZZ.
(i) d(supercore(D)) = T(D), and supercore(D) is the unique C-smallest §-mazimizer in D.
(ii) If D' < D, then supercore(D’) < supercore(D).

Proof. (i) If B and C are d-maximizers in D, then §(B) > 6(BN C) and §(C) = §(B+C).
By Grassmann’s formula, §(B)+ §(C) =§(BN C)+ §(B+C). Hence, §(B) =0(BNC).
Thus, BN C is a §-maximizer in D. Hence, the set of §-maximizers in D is closed under
finite intersections. Since V® ZZ is finite-dimensional, the descending chain condition holds
for F-submodules; hence, supercore(D) is the intersection of finitely many J-maximizers in D.
It follows that (i) holds.

(ii) Let C" := supercore(D’) and C' := supercore(D). Then 6(C") = §(C'N C) by (i)
for D', and 6(C) = o(C"+C') by (i) for D. Since §(C")+ o(C) = §(C"'N C)+ §(C'+ C), we
see that §(C") = §(C"'NC). Thus, C'N C' is a -maximizer in D’. Since C” is the C-smallest
d-maximizer in D" by (i) for D', C" C C'N C. Thus ¢’ C C, as desired. ]

1.5 Lemma. Let V be a finite-dimensional F-module, V' an F-submodule of V', and Z' a
subgraph of Z. Then V'QZZ' K VR ZLZ.

Proof. Set C :==V'®ZZ'. For each z€ Z, C, =V'if z € Z', while C, = {0} if z € Z-Z'.
Thus, C,®7Zz C C. Consider any e € EZ. If e € Z’, then C, = C,. = C,, = V', while if
ee€ Z—7' then C, ={0} CC,.N Cre. Thus, C x VRZZ. O

1.6 Lemma. Let V' be a finite-dimensional F-module, and V' an F-submodule of V. Make
the identification (V/V'\QZZ = (VR ZZ)/(V'QLZ).

Let DX V®ZZ. Set D''=DN (V'RZZ) and D" = (D+(V'®RZZ))/(V'QZLZ). Then
D' xV'®ZZ, D" 5 (V/V®QZZ, and T(D) < T(D') + T(D").

Proof. 1t is straightforward to show that D' V'®ZZ and D" < (V/V)®ZZ. Set
C' = supercore(D), C" = CN(V'®QZZ), and C" = (C+(V'®ZZ))/(V'®ZZ) ~ C/C’". 1t is
straightforward to show that C' < D', C” < D", and 6(C) = §(C") + §(C"). Then we have
T(D) =(C) =06(C")+ 6(C") < T(D') +T(D"). O

We now consider the sheaves that will most interest us.

1.7 Lemma. Let V be a finite-dimensional F-module, G be an F-basis of V', (Z, : g€G) be a
family of subgraphs of Z, and D .= @ (FgR ZZ,). Then D X VR ZZ and T(D) = > T(Z,).

geqG geG

In particular, T(V®ZZ) = dim(V) x T(Z).
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Proof. By Lemma 1.5, Fg®FZ, x V®FZ, for each g € G. Since sums of sheaves are
sheaves, it follows that D < V®FZ. For each g € G, let X, := supercore(Z,). Then
(D) =T(D (Fg ® ZZ,)) = 6(D (Fg @ ZX,)) = 3. 6(Xy) = X T(Z,).
9€G geG geG geq
To prove the inequality in the other direction, we argue by induction on dim (V).

If dim(V') = 0, the inequality is clear. Suppose now that dim(V) =1, and let g € G. Let
C = supercore(D) Then C = @ (C,® 2), and, for each z € Z,, C, is an F-submodule of V.

z2€Z4
Thus, dim(C,) < 1. Let X ={z € Z,:dim(C,) =1}. Then C = P (VR Zz) =VRZX.
zeX
Since C' x V® ZZ, it follows that X is a subgraph of Z,. Now T(D) = §(C) = 6(X) < T(Z,).
Thus, we may assume that dim(V') > 2 and that the inequality holds for all smaller di-
mensions. Since |G| > 2, we may partition G into two proper subsets G’ and G”, and set

V=@ Fg, V"= @ Fg, D) =DnN(V'®ZZ), and D" = (D+(V'®RZZ))/(V'QLZ).

gec gea”
By Lemma 1.6, T(D) < T(D') + T(D"). Since D = @ (Fg® 22,), D' = @ (Fg®ZZ,) and
geG geqG’
D" = @ (Fg® ZZ,), the desired inequality follows by induction.
geG!
The final assertion is the case where Z, = Z for each g € G. m

We now impose on Friedman’s approach the hypothesis of a faithful group action on F.

1.8 Definition. Let G be a finite multiplicative group given with a faithful left action on F.
Let End(F) denote the ring of all additive-group endomorphisms r: F — F, A +— r[\]. Here,
F is a left End(FF)-module. We view G as a subgroup of the group of units of End(F). We view

F as a subring of End(F) acting on F by left multiplication. Let FG = )" Fg C End(F). If
geG

g € Gand A\, p € F, then (gu)[A] = g[u[A]] = gluA] = (g[ul)(9[N]) = (g[u))]g[N] = (g[rlg)[\;
thus, gu = g[ulg in End(F). It follows that FG is closed under multiplication in End(F),

and, hence, FG is a subring of End(F). We call FG the skew group ring of G over F. As
is well known, Dedekind showed (publ. 1894) that dim(FG) = |G|, and Artin gave the fol-
lowing proof (publ. 1938). We shall show that, for each n € N, each repetition-free sequence
(i), € G™ is left F-independent; the case n = |G| then gives the desired result. If n =0,
the assertion holds. By induction, it remains to consider the case where n > 1 and (g;)7—}' is
left F-independent, and to show that, for each (\;)7, € F", if >~  X;g;= 0, then (\;)7_;=0
in ™. Let u € F. Notice that

5 a2 = 5 Oulac-g)lig: = 3= Nl — 32 Al

i=1 i=1
= Zkzgzu Zgn[ JAigi = O = gn[p]0 =
Since (g;)1— 1s left F- mdependent (Ni(gi— gn)[,u}))l =0 in F*"~'. Since p is arbitrary,

(Ai(gi—gn))?=! = 0 in FG™'. Since each coordinate of (g;—g,)?—} is nonzero, (A\;)'=} =0
in F7—1, Fmally, A = 0, since g, # 0.
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1.9 Setting. Let F be a field, Z be a finite graph, Y be a subgraph of Z, and G be a
finite group. Suppose that G acts freely on Z and acts faithfully on F. Let FG be the skew
group ring. In FGRZZ, let D(Y) = @@ (Fg® gZY'), and, for each left ideal I of FG, let

geG
DY) =DY)N(I®ZZ). Here, D(Y) x FGRZZ by Lemma 1.7, I ZZ x FG® ZZ by
Lemma 1.5, and, hence, D(Y)|; x FGR ZZ.

1.10 Lemma. In Setting 1.9, for each left ideal I of FG, T(D(Y)|;) € |G|N.

Proof. Set D :=D(Y)|; and C := supercore(D). Let G act on FG® ZZ with the diago-
nal action. Let h € G. Then h permutes the sheaves in FG® ZZ, and stabilizes D(Y'),
I®7ZZ, and their intersection, D. Thus, hC' C D and §(hC) = 6(C). Hence, hC' is a
d-maximizer in D. Since C' is the C-smallest -maximizer in D, we have C' C hC'. Now,
dim(hC) = dim(C') < oo, and, hence, hC' = C. Thus,

D(C.0z2)=C=hC=@N(C)Dhz) = @ (h(Ch-1.)® 2).

z2€Z z2€Z z2€Z
Now, for each z € Z, Cj,-1, = h™'C,, and, hence, dim(Cj-1,) = dim(C,). Since G acts freely
on Z, it follows that §(C') is a multiple of |G|, that is, T(D) € |G|N. O

1.11 Lemma. In Setting 1.9, there exists a left ideal I of FG such that T(D(Y)|;) = 0 and
T(Y) > dim(FG/I).

Proof. Let J denote the set of left ideals I of FG with T(D(Y)|;) < |G|(dim(])—|G|+T(Y)).

By Lemma 1.7, T(P (Fg® gZY)) = > T(gY), that is, T(D(Y)) = |G|T(Y). It follows

9€G geG
that FG € J. Hence, J # 0.

Let I be a C-minimal element of J. Thus, 0 < T(D(Y)|;) < |G|(dim(I)—|G|+T(Y)). In
particular, T(Y) > |G|—dim([) = dim(FG/I). Set D := D(Y)|;. If T(D) = 0, then we have
the desired conclusion. Thus, it suffices to suppose that T(D) # 0 and obtain a contra-
diction. Set C':= supercore(D) # {0}. Then there exists some z € Z and some nonzero
se€C,CD,CICFGCEnd(F). There exists A € F such that s[A] # 0. Consider the left
FG-linear map py: I — F, r — r[\]. Since s[\] # 0, p, is surjective.

Let I" :== Ker(py). Then I" is a left ideal of FG, I' C I, dim(/") = dim(/)—1, and s ¢ I".
Set D' :==D(Y)|p and C' = supercore(D’). Since s ¢ I' O D!, O C”, we see that C. # C..
Also, D' 5 D, and, by Lemma 1.4(i), ¢’ < C. Since " # C and C is the C-smallest
d-maximizer in D, 6(C") < T(D). Hence, T(D') < T(D). By Lemma 1.10, T(D’") < T(D)—|G].
Hence,

(D) < T(D)—|G| < |G|(dim (1) |G+ T(Y)—1) = |G|(dim(I")=|G[+T(Y)).
It follows that I’ € J. This contradicts the C-minimality of I, as desired. O]

1.12 Friedman’s theorem. Let G be a finite group and Z be a finite G-free G-graph. If
X and Y are subgraphs of Z, then Y  T(X N gY) < T(X)T(Y).

geG
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Proof. We may choose F to be a field with a faithful G-action, for example, Q(t, : g € G) with
hlty] = tyy for all h, g € G. We may now assume that we are in Setting 1.9. By (Lemma) 1.11,
there exists a left ideal I of FG such that T(D(Y)|;) = 0 and dim(FG/I) < T(Y); hence,

(1) T(D(Y) mw((m /D@ ZX) - 0+T((IFG /D@ Zx) Y 4im(FG/I)T(X) < T(Y)T(X).
By 1.5, we now have three sheaves in FG® Z 7,
DY) = @ (Fgo gZY), FGRZX, ISZLZ.

geG
We then have their pairwise intersections,

D =DY)n (FG®ZX), DY)|;=DY)n (IRZZ), I9ZX = (FGRZX)N (IQZZ),

and the intersection of all three, D' =D(Y)N (FGRZX)N (IQZZ).
Notice that D = @ (Fg® Z|gYNX]), D' = DN (I® ZX), and D’ < D(Y)|;. By L6,
geG

D’ = (D+(I® ZX)) J(I®ZX) < (FG/T)®ZX. Now

—

S HgYnX) E¥(D) € ®(D)+H(D") < T(D(Y)]1)+T((IFG/I)® zx) < T(Y)T(X). O

geG

2 Free groups and graphs

We now quickly review the standard results that Friedman applies in deducing the strength-
ened Hanna Neumann conjecture. Most of the following can be found in [2, Section 1.8], for
example.

2.1 Definitions. For a free group F, we define T(F') := max{rank(F)—1,0} € NU{oo}.
Thus, if F' is cyclic, then T(F) = 0, and otherwise T(F) > 0. Similarly, if F' is finitely
generated, then T(F') < oo, and otherwise T(F') = occ.

2.2 Definitions. Let X and Y be graphs, and let ao: X — Y be a graph map. For x € VX,
we write link(z, X) == {(e,v) € EX x {¢,7} : v(e) = z}, and we see that « induces a map
link(z, X') — link(a(z),Y). If the latter map is bijective for each z € VX, we say that « is
locally bijective. We define locally injective similarly.

2.3 Definitions. Let X be a connected graph and = be a vertex of X that is to serve as a
basepoint of X.

Let 71X denote the set of all reduced paths in X. Let ¢ denote the element of 7X that is the
empty path at . The set 7.X has a partial binary operation of concatenation-where-defined
followed by reduction. For any vertices v, w of X, we let 7.X [v, w] denote the set of elements
of 7X with initial vertex v and terminal vertex w; we let 7X[v,—] denote the set of elements
of 7X with initial vertex v. If X is a tree, then 7 X [v, w] consists of a single element, denoted
X[v,w]; here, 7 X[v,—] is in bijective correspondence with V.X.
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The set F':= n X[z, z] inherits a binary operation from 7X that makes I into a group,
called the fundamental group of X at x. Let us choose a maximal subtree Xy of X. It
is not difficult to show that the set {Xo[z, te]-e-Xo[re,x] : e € X=X} freely generates F'.
Thus, X is a tree if and only if F is trivial. Also, Fis a free group, rank(F') = | X —X|, and
[EXo| = |VX|-1. If [VX| < o0, then rank(F)—1 = |[EX|—-|VX].

If |X| < oo, we have T(X) as in Notation 1.1, and we shall show that T(F) = T(X).
Consider first the case where X is a tree. We have seen that T(F') = 0, and, by Lemma 1.2(v),
T(X) = 0(X)+1 = 0. Suppose now that X is not a tree. We have seen that F' is nontrivial
and T(F) = [EX|—|VX]| = §(X), and, by Lemma 1.2(v), T(X) = 6(X), as claimed.

The universal cover of X at x is the graph whose vertex set is 7 X [z, — | with distinguished
element t, the empty path at x, and whose edges are given by saying that each element of
(mX|x,—])—{t} is T-adjacent to the element of wX|[x,~] obtained by deleting the last edge
and the last vertex. Let T denote the universal cover of X at x.

The partial binary operation in 7.X gives a left action of F' on T'. It can be seen that F'
acts freely on T

There is a natural graph map a: T — X that on vertices is given by assigning to each
element of wX|[x,~] its terminal vertex. Then «a(t) = z, and « is locally bijective. There is
then an induced graph map F\T — X, Ft — «a(t), and it is an isomorphism.

2.4 Definitions. Let B be a set. Let X be the connected graph with one vertex and with
edge set B. On applying Definitions 2.3, we obtain a free group F' acting freely on a tree 7.
Here, F'is the free group on B, VI' = F', and ET = F' x B, with «(f,b) = f and 7(f,b) = fb.
We call T' the Cayley tree of F' with respect to B.

2.5 Definitions. Let F' be a group, T an F-free F-tree, and ty a vertex of T" that will serve
as a basepoint.

Then X = F\T is a connected graph with basepoint zq := F't,.

There is a natural graph map 7' — X, t — F't, and it is locally injective, since F' acts
freely. To see that it is locally bijective, consider any F't € VX and (Fe,v) € link(X, F't).
Then there exists a unique f € F' such that f-ve = t, and then (f-e,v) € link(7',1).

In summary, Definitions 2.3 associate to a basepointed connected graph, a (free) group
acting freely on a tree which has a basepoint; and, in the reverse direction, Definitions 2.5
associate a basepointed connected graph to a group acting freely on a tree with a basepoint. It
can be shown that these two operations are mutually inverse modulo natural identifications.
This is an important special case of Bass-Serre theory that was known to Reidemeister and
Schreier. We shall need the structure part of the result.

2.6 Theorem. Let F' be a group, T an F-free F-tree, and ty a vertex of T'. Then
F ~ 7w (F\T)[Fto, Fty], which is a free group. If |F\T| < oo, then T(F) = T(F\T).
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Proof. Let X := F\T and xy := Ft;. We have seen that the natural map a: 7' — X, t — Ft,
is locally bijective. It follows that a maps 77T to 7X. For each f € F, T[ty, f-to] is then
carried to an element of mX [z, zo]. Conversely, each element of 7.X [z, x¢] lifts to a unique

element of 7T[ty,—], and then the terminal vertex of this lifted path can be expressed as f-tg
for a unique f € F. We then have mutually inverse maps between F' and 7 X [zq, z].
The remaining results follow from Definitions 2.3. O]

2.7 Reidemeister’s theorem. A group is free if and only if it acts freely on some tree.

Proof. We saw in Definitions 2.4 that if a group is free, then it acts freely on some tree.
Conversely, by Theorem 2.6, if a group acts freely on a tree, then the group is free. m

2.8 The Nielsen-Schreier theorem. Subgroups of free groups are free.
Proof. This is clear from Theorem 2.7. [

2.9 The Schreier index theorem. If F' is a free group and H is a finite-index subgroup
of F', then

2) T(H) = (F:H) x T(F).

Proof. Let T be the Cayley tree of F' with respect to a free generating set B of F'. Since
VT = F, we see that |H\VT| = (F:H) < co. By Theorem 2.6, H ~ w(H\T)[H1, H1];
hence, by Definitions 2.3, rank(H)—1 = |H\ET|—(F:H). Since ET = F x B, we see that
|H\ET| = (F:H) x rank(F'). Thus,

(3) rank(H)—1 = (F:H) x (rank(F)—1).

If both sides of (3) are negative, then rank(H ) = rank(F') = 0, and then both sides of (2) are
zero. Thus, we may assume that both sides of (3) are non-negative, and here (3) coincides
with (2). O

The following is due in steps to M. Hall, M. Tretkoff, L. Babai, and W. Imrich; see [4].

2.10 The geometric Marshall Hall theorem. Let F' be a group, H be a subgroup of F,
T be an F-free F-tree, and Ty be an H-subtree of T. If F\T and H\Ty are finite, then there
exists a finite-index subgroup L of F' containing H such that the induced map H\Ty — L\T
1S injective.
Proof. Notice that H\Ty — H\T is injective and that H\T — F\T is locally bijective.
Hence, H\Ty — F\T is locally injective.

To simplify the notation for the next part of the argument, let us write Zy := H\Ty and
Zp = F\T. These are finite graphs by hypothesis, and we have a locally injective graph map
a: Zy — Zp. Let n = max{|a"{v}| : v € VZp}. We shall now add ‘missing’ vertices and
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edges to the fibres of a to obtain a finite graph X having Zy as a subgraph, together with a
locally bijective, n to 1, graph map X — Zpg extending «, i.e. the composite Zy — X — Zp
is a.

We first construct a graph map 8: Z};, — Zr extending « by taking Z; to be the graph
obtained from Zy by adding, for each v € VZp, n — |a~'{v}] isolated vertices, which S then
maps to v. Clearly, 3 is locally injective, extends «, and, for all v € VZp, |37 v} = n.

Consider any e € EZp. Since 3 is locally injective, the map ¢: S~'{e} — VZy
is injective, and similarly for 7. Thus, [«(87'{e})|=|8""{e}| = |7(87 {e})|. Hence,
we may choose a bijective map o: 87 H{iel—u(B7He}) — B~ H{re}—7(B7 {e}). For each
v € 7 H{ie}—u(BHe}), we add to Z}; an edge e, with te, = v and Te, = o(v), and we map
e, to e. After having done this for each e € EZp, we obtain a graph X containing Zy and
a locally bijective graph map X — Zp extending a.

Since Zy is connected, it lies in a component of X, and we may replace X with this
component and still have a locally bijective graph map v: X — Zp extending a. Returning
to the original notation, we have a finite connected graph X containing H\Ty as a subgraph,
and a locally bijective graph map v: X — F\T extending H\Ty — F\T.

Choose a vertex v in H\Ty. Then v is a vertex of X. By Theorem 2.6, we may make the
identifications H = m(H\Ty)[v,v] and F = w(F\T)[y(v),v(v)]. Let L :=nX][v,v]. Since
H\Ty C X, H< L. Since X — F\T is locally bijective, we may identify 7X[v,~] with
7(F\T)[y(v),~], and we may identify the latter set with VI'. Thus, we may identify the
universal cover of X with 7', and we may identify L with a subgroup of F. The latter
identification respects the copies of H in L and F’; thus H < L < F. The locally bijective
graph map 7' — X induces a graph map L\T — X which is bijective. Hence, (F': L) < 0.

O

3 The strengthened Hanna Neumann conjecture

For any group F, if H < F and f € F, then we write /H == fHf~! and H/ = f~'Hf. We
shall show that if F' is a free group and H and K are finitely generated subgroups of F,
then > T(HN'K)<T(H)T(K). Notice that HN /K does not change if f is multiplied
HfKeH\F/K

on the right by an element of K. Also (HN /K)’ = H/ N K and this subgroup does not
change if f is multiplied on the left by an element of H. It follows that the conjugacy class
of HN /K does not change if f is multiplied on the left by an element of H and on the
right by an element of K. In particular, T(H N /K) is independent of which representative
is chosen for the double coset H fK.

3.1 Setting. Let F' be a finitely generated, non-cyclic free group, let H and K be finitely
generated, non-cyclic subgroups of F', and let
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SHN(F,H,K):= > 200 0,00
HfKeH\F/K

Let T" denote the Cayley tree of ' with respect to some free generating set of F'. For each
subgroup L of F', view L as a subset of VI' = F', and let T}, denote the C-smallest subtree
of T' containing L. Notice that T, is an L-subtree of T'. If there exists some finite generating
set {f1,..., fa} for L, then the C-smallest subtree S of T}, containing {1, f1,..., f,} is finite
and it can be shown that LS = Tp. It follows that L\T}, is finite.

We are now in a position to translate Theorem 1.12 into the desired form.

3.2 Theorem. In Setting 3.1, if there exists a normal, finite-index subgroup N of F' such
that N O HU K and each of the maps H\Ty — N\T and K\Tx — N\T is injective, then
SHN(F, H,K) < 1.

Proof. Let Z .= N\T, X = H\Ty, and Y := K\Tk. By hypothesis, we may view X and Y
as subgraphs of Z. Let G := F/N. Notice that F' acts on Z by f-Nt = N ft, and G then
acts freely on Z.

Step 1: > T(HN"K)<T(XNY). Let S be a subset of N such that the map
HnKeH\N/K
S — H\N/K, s+— HsN, is bijective. If s1, s5 € S, t1, ty € T, then we have the following
chain of equivalences.
s1=s9 and (HN 'K)t; = (HN 2K)t,

& 51 =389 and 3(h, k) € H x K such that ht; =ty and h ="k, i.e., hsy = s1k
& 3(h, k) € H x K such that ht; =ty and hs, = sk, i.e, ksy 't = s; hty = 55 'ts
< Hty = Hty and KSl_ltl = KSQ_ItQ.

Thus, we have a well-defined, injective graph map

V(HN KNIy N sTg) = (H\Ty) xnr (K\Tk),

seS

(HN °K)t —  (Ht,Ks't) forseS, teTynsTk.

Now, (H\Tx) xymr (K\Tg) = X xzY = XN Y. In particular, this codomain is finite.
Hence, the domain is finite. The operator T(—) on finite graphs, from Notation 1.1, behaves
well with respect to inclusions and disjoint unions. Thus,

4  TXNY)> _r< \V (H N KN\ (Ti N STK)) = Y F((H* N K)\(Ty N sTx)).

ses ses
For s € S, we shall now prove that
(5) T(HN*K)O\(Tg N sTk)) = T(HN °K).

Notice that H N *K acts freely on both Ty and sTk. If Ty N sTx = 0, then H N *K stabilizes
the unique path from Ty to sTk, and, hence, stabilizes an edge of T', and, hence, is trivial;
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here, both sides of (5) are 0. If Ty N sTx # (), then Ty N sTk is a tree on which H N K
acts freely, and then (5) holds by Theorem 2.6. This proves (5).
By (4) and (5), > T(H N *K) < T(XNY). This completes Step 1.
ses
Step 2. Consider any f € F',and let g := fN € G. For each y € Y, there exists some t € Tk
such that y = Nt, and then we have gy = (N f)(Nt) = Nft. It is not difficult to see that
we have a graph isomorphism K\T — 'K\T, Kt — (/K)ft. It follows that, in N\T, the
image of K\ fTx is {N ft:t € Ty}, that is, gY. On replacing Y, Tk, and K in Step 1 with
gY, fTyk, and 'K, respectively, we find that >  T(HN"(/K)) < T(XN gY). It is not
Hn fKeH\N/IK
difficult to see that there is a bijection H\N//K — H\Nf/K, Hn'K + HnfK. It follows
that S T(HNMIK) < T(X N gY).
HnfKeH\Nf/K

Step 3. On summing the inequalities obtained in Step 2, one for each ¢ = Nf € G, we
find that > T(HN'K) < Y T(X N gY). By Theorem 1.12, >° T(X N gY) < T(X)T(Y).

HfKeH\F/K geG geG
Here, X = H\Ty and Y = K\Tk, and, by Theorem 2.6, T(X) = T(H) and T(Y) = T(X).
We now see that SHN(F, H, K') < 1. O

The next result shows that SHN(F, H, K) is an invariant of the commensurability class
of K in F'; by symmetry, the same holds for H.

3.3 Lemma. In Setting 3.1, suppose that L is a normal, finite-index subgroup of K. Then
SHN(F, H, L) = SHN(F, H, K).

Proof. Consider any f € F. It suffices to show that

T(HNFL) _ F(HN'K)
Z T(L) - T(K)

HfkLEH\HfK/L
For each k € K, *L = L. Thus, it suffices to show that

THINL) _ T(H!NK)
[H\H [I/L] x 00 — JU0K),

Since (fY))HfkL = H'kL, we have a bijective map H\HfK/L = (H")\(H')K/L,
HfkL — H'EKL. To simplify notation, let us write H in place of H/. Then it suffices
to show that |[H\HK/L| x Tqr{(;)L) = T(f(%m.

By Theorem 2.9, T(HNL)=THNK)x (HNK :HNL) and T(L) = T(K)(K:L); it
then suffices to show that |[H\HK/L| x (HNK : HNL) = (K:L).

The right K-set H\HK is generated by the element H1, which has right K-stabilizer
HN K. Hence, H\HK ~ (HN K)\K as right K-sets. Thus, H\HK/L ~ (HN K)\K/L
as sets. Hence, |[H\HK/L| = |(HN K)\K/L|=|(HN K)L\K|= (K : (HN K)L).

As left HN K-sets, (HNK)L)/L ~ (HN K)/(HN KN L) = (HNK)/(HNL). Thus,
(HNK:HNL)=((HNK)L: L).
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On multiplying the results of the previous two paragraphs, we find that
|H\HK/L|x (HNK : HNL)=(K:(HNK)L)x (HNK)L:L)= (K : L),
as desired. ]

We can now prove the strengthened Hanna Neumann conjecture.

3.4 Theorem. Let F be a free group, and H, K be finitely generated subgroups of F'. Then

SN T(HNK) < T(H)T(K).

HfKeH\F/K

Proof. The desired inequality holds if H or K is cyclic; thus, we may assume that H and K
are non-cyclic, and, in particular, F' is non-cyclic. Choose a free generating set for F' and a
free product decomposition F' = AxB such that A is finitely generated and contains generat-
ing sets of H and K. The F-graph with vertex set F//AV F'/B and edge set F, with an edge
f joining fA to fB, is a tree, called the Bass-Serre tree for the free product decomposition.
Consider any f € F—A. Then A # fA and HN 7K stabilizes the vertices A and fA, and,
hence, stabilizes the path from A to fA. This path contains an edge, and the edges have
trivial stabilizers. Thus HN /K = {1}. Hence, > T(HNIK) = > T(HN°K).

HfKeH\F/K HaKeH\A/K

Thus, we may replace F' with A and assume that F' is finitely generated. Now, we may
assume that we are in Setting 3.1.

By Theorem 2.10, there exists a finite-index subgroup Hy of F' containing H such that
the map H\Ty — Ho\T is injective. Similarly, there exists a finite-index subgroup Ky of F
containing K such that the map K\Tx — Ko\T is injective. We have left F-actions on
F/Hy and on F/K,, and hence an F-action on the finite set F'/HyV F/K,. Let N denote
the kernel of this action. Then N is a normal, finite-index subgroup of F'. The F-stabilizer
of the element 1H, is Hy, and, hence, N < Hy,. Similarly, N < K.

We shall now apply Theorem 3.2 to SHN(F, H N N, K N N). Notice that H N N has finite
index in H, and, hence, by Theorem 2.9, H NN is finitely generated. We claim that the
map (H N N)\Tynn — N\T is injective. Consider ¢y, ty € Tyny such that Nt; = Nty. Since
N < Hy, Hot; = Hots. Since Tyny C Ty and the map H\Ty — Ho\T is injective, we see
that Ht; = Hty. Since Hj acts freely on T, there is a unique f € Hj such that ft; = t.
We have now seen that f € N and f € H. Thus, (HNN)t; = (HNN)ty, as desired.
Similarly, K NN is finitely generated and the map (K N N)\Tknn — N\T is injective. By
Theorem 3.2, SHN(F, HNN,KNN) < 1.

By Lemma 3.3, SHN(F,H, KN N)=SHN(F,HNN,KNN) < 1. By the analogue of
Lemma 3.3, SHN(F, H, K) = SHN(F, HN N, K) < 1, as desired. H

Historical note. On May 1, 2011, Joel Friedman posted on the arXiv a proof of the strengthened Hanna
Neumann conjecture (SHNC) quite similar to the version presented here; see [3]. Six days later, Igor Mineyev
posted on his web page an independent proof of the SHNC; see [5]. (Both [3] and [5] contain other results.)
Ten days after that, I emailed Mineyev a one-page proof of the SHNC and encouraged him to add it as an
appendix to [5] so that group-theorists would have a proof they could be comfortable with; see [1].
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