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Abstract

For a finite graph Z, r(Z) := e−v+ t, where e, v, and t denote the number of
edges, vertices, and tree components of Z, respectively. Let G be a finite group,
Z be a finite G-free G-graph, and X and Y be subgraphs of Z. Using linear alge-
bra and algebraic geometry over a sufficiently large field, Joel Friedman proved that∑
g∈G

r(X ∩ gY ) 6 r(X) r(Y ). He showed that this inequality implies the strengthened

Hanna Neumann conjecture. We simplify Friedman’s proof of the foregoing inequality
by replacing the sufficiently large field with a field F on which G acts faithfully and
then replacing all the arguments involving algebraic geometry with shorter arguments
about the left ideals of the skew group ring FG.
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1 Sheaves on graphs

1.1 Notation. As Bourbaki intended, we let N denote the set of finite cardinals, {0, 1, 2, . . .}.
Throughout this section, let F be a field. We shall write dim(V ) to denote the F-dimension

of an F-module V .
Throughout this section, let (Z,VZ,EZ,EZ

ι,τ−→ VZ) be a finite (oriented) graph; here,
Z is a finite set, VZ ⊆ Z, EZ = Z −VZ, and ι and τ are functions. Each e ∈ EZ has an

associated picture of the form
ιe• e−→τe• or

ιe=τe•
e	 . We let the symbol Z also denote the graph.

We shall use the standard concepts of subgraph, connected graph, component of a graph,
tree, tree component of a graph, and graph map.

We write δ(Z) := |EZ|−|VZ| and r(Z) :=max{δ(Y ) : Y is a subgraph of Z}. Each sub-
graph Y of Z with δ(Y ) = r(Z) is called a δ-maximizer in Z. The intersection of all the
δ-maximizers in Z is denoted supercore(Z).

∗Partially supported by Spain’s Ministerio de Ciencia e Innovación through Project MTM2008-01550.
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2 Friedman’s proof of the strengthened Hanna Neumann conjecture

1.2 Lemma. The following hold for the finite graph Z.

(i) If Z is connected, then δ(Z) ∈ {−1} ∪ N and δ(Z)=−1 if and only if Z is a tree.

(ii) If C is the set of components of Z, then δ(Z) =
∑

X∈C δ(X).

(iii) r(Z) > 0.

(iv) δ(supercore(Z)) = r(Z), and supercore(Z) is the unique ⊆-smallest δ-maximizer in Z.

(v) r(Z)− δ(Z) equals the number of tree components of Z.

Proof. (i) and (ii) are straightforward, and (iii) holds since ∅ is a subgraph of Z.
(iv) If X and Y are δ-maximizers in Z, then δ(X) > δ(X ∩ Y ) and δ(Y ) > δ(X ∪ Y ).

Since δ(X)+ δ(Y ) = δ(X ∩ Y )+ δ(X ∪ Y ), we see that δ(X) = δ(X ∩ Y ). Thus, X ∩ Y is
a δ-maximizer in Z. Hence, the set of δ-maximizers in Z is closed under finite intersections.
Since Z is finite, supercore(Z) is the intersection of finitely many δ-maximizers in Z. Thus,
(iv) holds.

(v) Let forest(Z) denote the subgraph of Z formed by the tree components. Then
−δ(forest(Z)) equals the number of tree components of Z.

Now δ(Z)−δ(forest(Z)) = δ(Z− forest(Z)) 6 r(Z).
We shall prove the reverse inequality, r(Z) 6 δ(Z)−δ(forest(Z)), by induction on |EZ|.
Let Y := supercore(Z). Consider first the case where EZ = EY . Then Z−Y consists of

isolated vertices, each of which is a tree component of Z. Then

r(Z) = δ(Y ) = δ(Z)−δ(Z−Y ) 6 δ(Z)−δ(forest(Z)),

as desired. It remains to consider the case where we have some e ∈ EZ−EY . Then,

r(Z) = r(Z−{e}) since e ∈ EZ−EY

6 δ(Z−{e})−δ(forest(Z−{e})) by the implicit induction hypothesis

= δ(Z)−1−δ(forest(Z−{e})) 6 δ(Z)−δ(forest(Z))

since adding e to Z−{e} reduces the number of tree components by one or zero, depending
whether or not e is incident to forest(Z−{e}). The result now holds by induction.

1.3 Definitions. We let ZZ and Z[Z] denote the free Z-module with Z-basis the finite set Z.
Let V be a finite-dimensional F-module. We shall be interested in the finite-dimensional
F-module V⊗ZZ =

⊕
z∈Z

(V⊗Zz), where we are tensoring over Z. For each z ∈ Z, we have a

map V⊗ZZ → V , d 7→ dz, such that, for each d ∈ V⊗ZZ, d =
∑
z∈Z

(dz⊗ z).

Let D be an F-submodule of V⊗ZZ. For each z ∈ Z, we let Dz := {dz : d ∈ D}; thus,⊕
z∈Z

(Dz⊗Zz) ⊇ D. We shall say that D is a sheaf in V⊗ZZ if, firstly,
⊕
z∈Z

(Dz⊗Zz) = D,

and, secondly, for each e ∈ EX, De ⊆ Dιe ∩Dτe. Viewed in the lattice of F-submodules of
V⊗ZZ, the set of sheaves in V⊗ZZ is closed under sums and intersections.
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Let D be a sheaf in V⊗ZZ. We define δ(D) := (
∑

e∈EZ

dim(De))− (
∑

v∈VZ

dim(Dv)). By

a subsheaf C of D, we mean a sheaf in V⊗FZ that is contained in D; in this event, we
write C 4 D. We define r(D) := max{δ(C) : C 4 D}. Clearly, r(D) > 0, since {0} 4 D. If
C 4 D and δ(C) = r(D), then C is called a δ-maximizer in D. The intersection of all the
δ-maximizers in D is denoted supercore(D).

1.4 Lemma. Let V be a finite-dimensional F-module and D 4 V⊗ZZ.
(i) δ(supercore(D)) = r(D), and supercore(D) is the unique ⊆-smallest δ-maximizer in D.

(ii) If D′ 4 D, then supercore(D′) 4 supercore(D).

Proof. (i) If B and C are δ-maximizers in D, then δ(B) > δ(B ∩ C) and δ(C) > δ(B+C).
By Grassmann’s formula, δ(B)+ δ(C) = δ(B ∩ C)+ δ(B+C). Hence, δ(B) = δ(B ∩C).
Thus, B ∩ C is a δ-maximizer in D. Hence, the set of δ-maximizers in D is closed under
finite intersections. Since V⊗ZZ is finite-dimensional, the descending chain condition holds
for F-submodules; hence, supercore(D) is the intersection of finitely many δ-maximizers inD.
It follows that (i) holds.

(ii) Let C ′ := supercore(D′) and C := supercore(D). Then δ(C ′) > δ(C ′ ∩ C) by (i)
for D′, and δ(C) > δ(C ′+C) by (i) for D. Since δ(C ′)+ δ(C) = δ(C ′ ∩ C)+ δ(C ′+C), we
see that δ(C ′) = δ(C ′ ∩C). Thus, C ′ ∩ C is a δ-maximizer in D′. Since C ′ is the ⊆-smallest
δ-maximizer in D′ by (i) for D′, C ′ ⊆ C ′ ∩ C. Thus C ′ ⊆ C, as desired.

1.5 Lemma. Let V be a finite-dimensional F-module, V ′ an F-submodule of V , and Z ′ a
subgraph of Z. Then V ′⊗ZZ ′ 4 V⊗ZZ.

Proof. Set C := V ′⊗ZZ ′. For each z ∈ Z, Cz = V ′ if z ∈ Z ′, while Cz = {0} if z ∈ Z−Z ′.
Thus, Cz⊗Zz ⊆ C. Consider any e ∈ EZ. If e ∈ Z ′, then Ce = Cιe = Cτe = V ′, while if
e ∈ Z−Z ′, then Ce = {0} ⊆ Cιe ∩ Cτe. Thus, C 4 V⊗ZZ.

1.6 Lemma. Let V be a finite-dimensional F-module, and V ′ an F-submodule of V . Make
the identification (V/V ′)⊗ZZ = (V⊗ZZ)/(V ′⊗ZZ).

Let D 4 V⊗ZZ. Set D′ := D∩ (V ′⊗ZZ) and D′′ := (D+(V ′⊗ZZ))/(V ′⊗ZZ). Then
D′ 4 V ′⊗ZZ, D′′ 4 (V/V ′)⊗ZZ, and r(D) 6 r(D′) + r(D′′).

Proof. It is straightforward to show that D′ 4 V ′⊗ZZ and D′′ 4 (V/V ′)⊗ZZ. Set
C := supercore(D), C ′ := C∩ (V ′⊗ZZ), and C ′′ := (C+(V ′⊗ZZ))/(V ′⊗ZZ) ≃ C/C ′. It is
straightforward to show that C ′ 4 D′, C ′′ 4 D′′, and δ(C) = δ(C ′)+ δ(C ′′). Then we have
r(D) = δ(C) = δ(C ′)+ δ(C ′′) 6 r(D′) + r(D′′).

We now consider the sheaves that will most interest us.

1.7 Lemma. Let V be a finite-dimensional F-module, G be an F-basis of V , (Zg : g∈G) be a
family of subgraphs of Z, and D :=

⊕
g∈G

(Fg⊗ZZg). Then D 4 V⊗ZZ and r(D) =
∑
g∈G

r(Zg).

In particular, r(V⊗ZZ) = dim(V )× r(Z).
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Proof. By Lemma 1.5, Fg⊗FZg 4 V⊗FZ, for each g ∈ G. Since sums of sheaves are
sheaves, it follows that D 4 V⊗FZ. For each g ∈ G, let Xg := supercore(Zg). Then

r(D) = r(
⊕
g∈G

(Fg ⊗ ZZg)) > δ(
⊕
g∈G

(Fg ⊗ ZXg)) =
∑
g∈G

δ(Xg) =
∑
g∈G

r(Zg).

To prove the inequality in the other direction, we argue by induction on dim(V ).
If dim(V ) = 0, the inequality is clear. Suppose now that dim(V ) = 1, and let g ∈ G. Let

C := supercore(D). Then C =
⊕
z∈Zg

(Cz⊗ z), and, for each z ∈ Zg, Cz is an F-submodule of V .

Thus, dim(Cz) 6 1. Let X := {z ∈ Zg : dim(Cz) = 1}. Then C =
⊕
z∈X

(V⊗Zz) = V⊗ZX.

Since C 4 V⊗ZZ, it follows that X is a subgraph of Zg. Now r(D) = δ(C) = δ(X) 6 r(Zg).
Thus, we may assume that dim(V ) > 2 and that the inequality holds for all smaller di-

mensions. Since |G| > 2, we may partition G into two proper subsets G′ and G′′, and set
V ′ :=

⊕
g∈G′

Fg, V ′′ :=
⊕

g∈G′′
Fg, D′ := D∩ (V ′ ⊗ZZ), and D′′ := (D+(V ′ ⊗ZZ))/(V ′ ⊗ZZ).

By Lemma 1.6, r(D) 6 r(D′) + r(D′′). Since D =
⊕
g∈G

(Fg⊗ZZg), D
′ =

⊕
g∈G′

(Fg⊗ZZg) and

D′′ =
⊕

g∈G′′
(Fg⊗ZZg), the desired inequality follows by induction.

The final assertion is the case where Zg = Z for each g ∈ G.

We now impose on Friedman’s approach the hypothesis of a faithful group action on F.

1.8 Definition. Let G be a finite multiplicative group given with a faithful left action on F.
Let End(F) denote the ring of all additive-group endomorphisms r : F → F, λ 7→ r[λ]. Here,
F is a left End(F)-module. We view G as a subgroup of the group of units of End(F). We view
F as a subring of End(F) acting on F by left multiplication. Let FG :=

∑
g∈G

Fg ⊆ End(F). If

g ∈ G and λ, µ ∈ F, then (gµ)[λ] = g[µ[λ]] = g[µλ] = (g[µ])(g[λ]) = (g[µ])[g[λ]] = (g[µ]g)[λ];
thus, gµ = g[µ]g in End(F). It follows that FG is closed under multiplication in End(F),
and, hence, FG is a subring of End(F). We call FG the skew group ring of G over F. As
is well known, Dedekind showed (publ. 1894) that dim(FG) = |G|, and Artin gave the fol-
lowing proof (publ. 1938). We shall show that, for each n ∈ N, each repetition-free sequence
(gi)

n
i=1 ∈ Gn is left F-independent; the case n = |G| then gives the desired result. If n = 0,

the assertion holds. By induction, it remains to consider the case where n > 1 and (gi)
n−1
i=1 is

left F-independent, and to show that, for each (λi)
n
i=1 ∈ Fn, if

∑n
i=1λigi= 0, then (λi)

n
i=1= 0

in Fn. Let µ ∈ F. Notice that
n−1∑
i=1

(λi(gi−gn)[µ])gi =
n∑

i=1

(λi(gi−gn)[µ])gi =
n∑

i=1

λigi[µ]gi−
n∑

i=1

λign[µ]gi

=
n∑

i=1

λigiµ−
n∑

i=1

gn[µ]λigi = 0µ− gn[µ]0 = 0.

Since (gi)
n−1
i=1 is left F-independent, (λi(gi−gn)[µ]))

n−1
i=1 = 0 in Fn−1. Since µ is arbitrary,

(λi(gi−gn))
n−1
i=1 = 0 in FGn−1. Since each coordinate of (gi−gn)

n−1
i=1 is nonzero, (λi)

n−1
i=1 = 0

in Fn−1. Finally, λn = 0, since gn ̸= 0.
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1.9 Setting. Let F be a field, Z be a finite graph, Y be a subgraph of Z, and G be a
finite group. Suppose that G acts freely on Z and acts faithfully on F. Let FG be the skew
group ring. In FG⊗ZZ, let D(Y ) :=

⊕
g∈G

(Fg⊗ gZY ), and, for each left ideal I of FG, let

D(Y )|I := D(Y )∩ (I⊗ZZ). Here, D(Y ) 4 FG⊗ZZ by Lemma 1.7, I⊗ZZ 4 FG⊗ZZ by
Lemma 1.5, and, hence, D(Y )|I 4 FG⊗ZZ.

1.10 Lemma. In Setting 1.9, for each left ideal I of FG, r(D(Y )|I) ∈ |G|N.

Proof. Set D := D(Y )|I and C := supercore(D). Let G act on FG⊗ZZ with the diago-
nal action. Let h ∈ G. Then h permutes the sheaves in FG⊗ZZ, and stabilizes D(Y ),
I⊗ZZ, and their intersection, D. Thus, hC ⊆ D and δ(hC) = δ(C). Hence, hC is a
δ-maximizer in D. Since C is the ⊆-smallest δ-maximizer in D, we have C ⊆ hC. Now,
dim(hC) = dim(C) < ∞, and, hence, hC = C. Thus,⊕

z∈Z
(Cz⊗ z) = C = hC =

⊕
z∈Z

(h(Cz)⊗hz) =
⊕
z∈Z

(h(Ch−1z)⊗ z).

Now, for each z ∈ Z, Ch−1z = h−1Cz, and, hence, dim(Ch−1z) = dim(Cz). Since G acts freely
on Z, it follows that δ(C) is a multiple of |G|, that is, r(D) ∈ |G|N.

1.11 Lemma. In Setting 1.9, there exists a left ideal I of FG such that r(D(Y )|I) = 0 and
r (Y ) > dim(FG/I).

Proof. Let I denote the set of left ideals I of FG with r(D(Y )|I) 6 |G|(dim(I)−|G|+r(Y )).
By Lemma 1.7, r(

⊕
g∈G

(Fg⊗ gZY )) =
∑
g∈G

r(gY ), that is, r(D(Y )) = |G| r(Y ). It follows

that FG ∈ I. Hence, I ̸= ∅.
Let I be a ⊆-minimal element of I. Thus, 0 6 r(D(Y )|I) 6 |G|(dim(I)−|G|+r(Y )). In

particular, r (Y ) > |G|− dim(I) = dim(FG/I). Set D := D(Y )|I . If r(D) = 0, then we have
the desired conclusion. Thus, it suffices to suppose that r(D) ̸= 0 and obtain a contra-
diction. Set C := supercore(D) ̸= {0}. Then there exists some z ∈ Z and some nonzero
s ∈ Cz ⊆ Dz ⊆ I ⊆ FG ⊆ End(F). There exists λ ∈ F such that s[λ] ̸= 0. Consider the left
FG-linear map ρλ : I → F, r 7→ r[λ]. Since s[λ] ̸= 0, ρλ is surjective.

Let I ′ := Ker(ρλ). Then I ′ is a left ideal of FG, I ′ ⊆ I, dim(I ′) = dim(I)−1, and s ̸∈ I ′.
Set D′ := D(Y )|I′ and C ′ := supercore(D′). Since s ̸∈ I ′ ⊇ D′

z ⊇ C ′
z, we see that C ′

z ̸= Cz.
Also, D′ 4 D, and, by Lemma 1.4(i), C ′ 4 C. Since C ′ ̸= C and C is the ⊆-smallest
δ-maximizer inD, δ(C ′) < r(D). Hence, r(D′) < r(D). By Lemma 1.10, r(D′) 6 r(D)−|G|.
Hence,

r(D′) 6 r(D)−|G| 6 |G|(dim(I)−|G|+r(Y )−1) = |G|(dim(I ′)−|G|+r(Y )).

It follows that I ′ ∈ I. This contradicts the ⊆-minimality of I, as desired.

1.12 Friedman’s theorem. Let G be a finite group and Z be a finite G-free G-graph. If
X and Y are subgraphs of Z, then

∑
g∈G

r(X ∩ gY ) 6 r(X) r(Y ).
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Proof. Wemay choose F to be a field with a faithfulG-action, for example, Q(tg : g ∈ G) with
h[tg] = thg for all h, g ∈ G. We may now assume that we are in Setting 1.9. By (Lemma) 1.11,
there exists a left ideal I of FG such that r(D(Y )|I) = 0 and dim(FG/I) 6 r (Y ); hence,

(1) r(D(Y )|I)+ r
(
(FG/I)⊗ZX

)
=0+ r

(
(FG/I)⊗ZX

)
1.7
= dim(FG/I) r(X)6 r(Y ) r(X).

By 1.5, we now have three sheaves in FG⊗ZZ,
D(Y ) =

⊕
g∈G

(Fg⊗ gZY ), FG⊗ZX, I⊗ZZ.

We then have their pairwise intersections,

D := D(Y )∩ (FG⊗ZX), D(Y )|I = D(Y )∩ (I⊗ZZ), I⊗ZX = (FG⊗ZX)∩ (I⊗ZZ),
and the intersection of all three, D′ := D(Y )∩ (FG⊗ZX)∩ (I⊗ZZ).

Notice that D =
⊕
g∈G

(Fg⊗Z[gY ∩X]), D′ = D∩ (I⊗ZX), and D′ 4 D(Y )|I . By 1.6,

D′′ :=
(
D+(I⊗ZX)

)
/(I⊗ZX) 4 (FG/I)⊗ZX. Now∑

g∈G
r(gY ∩X)

1.7
= r(D)

1.6

6 r(D′)+ r(D′′) 6 r(D(Y )|I)+ r
(
(FG/I)⊗ZX

) (1)

6 r(Y ) r(X).

2 Free groups and graphs

We now quickly review the standard results that Friedman applies in deducing the strength-
ened Hanna Neumann conjecture. Most of the following can be found in [2, Section I.8], for
example.

2.1 Definitions. For a free group F , we define r(F ) := max{rank(F )−1, 0} ∈ N∪{∞}.
Thus, if F is cyclic, then r(F ) = 0, and otherwise r(F ) > 0. Similarly, if F is finitely
generated, then r(F ) < ∞, and otherwise r(F ) = ∞.

2.2 Definitions. Let X and Y be graphs, and let α : X → Y be a graph map. For x ∈ VX,
we write link(x,X) := {(e, ν) ∈ EX × {ι, τ} : ν(e) = x}, and we see that α induces a map
link(x,X) → link(α(x), Y ). If the latter map is bijective for each x ∈ VX, we say that α is
locally bijective. We define locally injective similarly.

2.3 Definitions. Let X be a connected graph and x be a vertex of X that is to serve as a
basepoint of X.

Let πX denote the set of all reduced paths inX. Let t denote the element of πX that is the
empty path at x. The set πX has a partial binary operation of concatenation-where-defined
followed by reduction. For any vertices v, w of X, we let πX[v, w] denote the set of elements
of πX with initial vertex v and terminal vertex w; we let πX[v, – ] denote the set of elements
of πX with initial vertex v. If X is a tree, then πX[v, w] consists of a single element, denoted
X[v, w]; here, πX[v, – ] is in bijective correspondence with VX.
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The set F := πX[x, x] inherits a binary operation from πX that makes F into a group,
called the fundamental group of X at x. Let us choose a maximal subtree X0 of X. It
is not difficult to show that the set {X0[x, ιe]·e·X0[τe, x] : e ∈ X−X0} freely generates F .
Thus, X is a tree if and only if F is trivial. Also, F is a free group, rank(F ) = |X−X0|, and
|EX0| = |VX|−1. If |VX| < ∞, then rank(F )−1 = |EX|−|VX|.

If |X| < ∞, we have r(X) as in Notation 1.1, and we shall show that r(F ) = r(X).
Consider first the case whereX is a tree. We have seen that r(F ) = 0, and, by Lemma 1.2(v),
r(X) = δ(X)+1 = 0. Suppose now that X is not a tree. We have seen that F is nontrivial
and r(F ) = |EX|−|VX| = δ(X), and, by Lemma 1.2(v), r(X) = δ(X), as claimed.

The universal cover of Xat x is the graph whose vertex set is πX[x, – ] with distinguished
element t, the empty path at x, and whose edges are given by saying that each element of
(πX[x, – ])−{t} is T -adjacent to the element of πX[x, – ] obtained by deleting the last edge
and the last vertex. Let T denote the universal cover of X at x.

The partial binary operation in πX gives a left action of F on T . It can be seen that F
acts freely on T .

There is a natural graph map α : T → X that on vertices is given by assigning to each
element of πX[x, – ] its terminal vertex. Then α(t) = x, and α is locally bijective. There is
then an induced graph map F\T → X, Ft 7→ α(t), and it is an isomorphism.

2.4 Definitions. Let B be a set. Let X be the connected graph with one vertex and with
edge set B. On applying Definitions 2.3, we obtain a free group F acting freely on a tree T .
Here, F is the free group on B, VT = F , and ET = F ×B, with ι(f, b) = f and τ(f, b) = fb.
We call T the Cayley tree of F with respect to B.

2.5 Definitions. Let F be a group, T an F -free F -tree, and t0 a vertex of T that will serve
as a basepoint.

Then X := F\T is a connected graph with basepoint x0 := Ft0.
There is a natural graph map T → X, t 7→ Ft, and it is locally injective, since F acts

freely. To see that it is locally bijective, consider any Ft ∈ VX and (Fe, ν) ∈ link(X,Ft).
Then there exists a unique f ∈ F such that f ·νe = t, and then (f ·e, ν) ∈ link(T, t).

In summary, Definitions 2.3 associate to a basepointed connected graph, a (free) group
acting freely on a tree which has a basepoint; and, in the reverse direction, Definitions 2.5
associate a basepointed connected graph to a group acting freely on a tree with a basepoint. It
can be shown that these two operations are mutually inverse modulo natural identifications.
This is an important special case of Bass-Serre theory that was known to Reidemeister and
Schreier. We shall need the structure part of the result.

2.6 Theorem. Let F be a group, T an F -free F -tree, and t0 a vertex of T . Then
F ≃ π(F\T )[Ft0, F t0], which is a free group. If |F\T | < ∞, then r(F ) = r(F\T ).
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Proof. Let X := F\T and x0 := Ft0. We have seen that the natural map α : T → X, t 7→ Ft,
is locally bijective. It follows that α maps πT to πX. For each f ∈ F , T [t0, f ·t0] is then
carried to an element of πX[x0, x0]. Conversely, each element of πX[x0, x0] lifts to a unique
element of πT [t0, – ], and then the terminal vertex of this lifted path can be expressed as f ·t0
for a unique f ∈ F . We then have mutually inverse maps between F and πX[x0, x0].

The remaining results follow from Definitions 2.3.

2.7 Reidemeister’s theorem. A group is free if and only if it acts freely on some tree.

Proof. We saw in Definitions 2.4 that if a group is free, then it acts freely on some tree.
Conversely, by Theorem 2.6, if a group acts freely on a tree, then the group is free.

2.8 The Nielsen-Schreier theorem. Subgroups of free groups are free.

Proof. This is clear from Theorem 2.7.

2.9 The Schreier index theorem. If F is a free group and H is a finite-index subgroup
of F , then

(2) r(H) = (F :H)× r(F ).

Proof. Let T be the Cayley tree of F with respect to a free generating set B of F . Since
VT = F , we see that |H\VT | = (F :H) < ∞. By Theorem 2.6, H ≃ π(H\T )[H1, H1];
hence, by Definitions 2.3, rank(H)−1 = |H\ET |−(F :H). Since ET = F ×B, we see that
|H\ET | = (F :H)× rank(F ). Thus,

(3) rank(H)−1 = (F :H)× (rank(F )−1).

If both sides of (3) are negative, then rank(H) = rank(F ) = 0, and then both sides of (2) are
zero. Thus, we may assume that both sides of (3) are non-negative, and here (3) coincides
with (2).

The following is due in steps to M. Hall, M. Tretkoff, L. Babai, and W. Imrich; see [4].

2.10 The geometric Marshall Hall theorem. Let F be a group, H be a subgroup of F ,
T be an F -free F -tree, and TH be an H-subtree of T . If F\T and H\TH are finite, then there
exists a finite-index subgroup L of F containing H such that the induced map H\TH → L\T
is injective.

Proof. Notice that H\TH → H\T is injective and that H\T → F\T is locally bijective.
Hence, H\TH → F\T is locally injective.

To simplify the notation for the next part of the argument, let us write ZH := H\TH and
ZF := F\T . These are finite graphs by hypothesis, and we have a locally injective graph map
α : ZH → ZF . Let n := max{|α−1{v}| : v ∈ VZF}. We shall now add ‘missing’ vertices and
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edges to the fibres of α to obtain a finite graph X having ZH as a subgraph, together with a
locally bijective, n to 1, graph map X → ZF extending α, i.e. the composite ZH ↪→ X → ZF

is α.
We first construct a graph map β : Z ′

H → ZF extending α by taking Z ′
H to be the graph

obtained from ZH by adding, for each v ∈ VZF , n− |α−1{v}| isolated vertices, which β then
maps to v. Clearly, β is locally injective, extends α, and, for all v ∈ VZF , |β−1{v}| = n.

Consider any e ∈ EZF . Since β is locally injective, the map ι : β−1{e} → VZH

is injective, and similarly for τ . Thus, |ι(β−1{e})| = |β−1{e}| = |τ(β−1{e})|. Hence,
we may choose a bijective map σ : β−1{ιe}−ι(β−1{e}) → β−1{τe}−τ(β−1{e}). For each
v ∈ β−1{ιe}−ι(β−1{e}), we add to Z ′

H an edge ev with ιev = v and τev = σ(v), and we map
ev to e. After having done this for each e ∈ EZF , we obtain a graph X containing ZH and
a locally bijective graph map X → ZF extending α.

Since ZH is connected, it lies in a component of X, and we may replace X with this
component and still have a locally bijective graph map γ : X → ZF extending α. Returning
to the original notation, we have a finite connected graph X containing H\TH as a subgraph,
and a locally bijective graph map γ : X → F\T extending H\TH → F\T .

Choose a vertex v in H\TH . Then v is a vertex of X. By Theorem 2.6, we may make the
identifications H = π(H\TH)[v, v] and F = π(F\T )[γ(v), γ(v)]. Let L := πX[v, v]. Since
H\TH ⊆ X, H 6 L. Since X → F\T is locally bijective, we may identify πX[v, – ] with
π(F\T )[γ(v), – ], and we may identify the latter set with VT . Thus, we may identify the
universal cover of X with T , and we may identify L with a subgroup of F . The latter
identification respects the copies of H in L and F ; thus H 6 L 6 F . The locally bijective
graph map T → X induces a graph map L\T → X which is bijective. Hence, (F : L) < ∞.

3 The strengthened Hanna Neumann conjecture

For any group F , if H 6 F and f ∈ F , then we write fH := fHf−1 and Hf := f−1Hf . We
shall show that if F is a free group and H and K are finitely generated subgroups of F ,
then

∑
HfK∈H\F/K

r(H ∩ fK) 6 r(H) r(K). Notice that H ∩ fK does not change if f is multiplied

on the right by an element of K. Also (H ∩ fK)f = Hf ∩ K and this subgroup does not
change if f is multiplied on the left by an element of H. It follows that the conjugacy class
of H ∩ fK does not change if f is multiplied on the left by an element of H and on the
right by an element of K. In particular, r(H ∩ fK) is independent of which representative
is chosen for the double coset HfK.

3.1 Setting. Let F be a finitely generated, non-cyclic free group, let H and K be finitely
generated, non-cyclic subgroups of F , and let
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SHN(F,H,K) :=
∑

HfK∈H\F/K

r(H ∩ fK)
r(H) r(K)

∈ [0,∞].

Let T denote the Cayley tree of F with respect to some free generating set of F . For each
subgroup L of F , view L as a subset of VT = F , and let TL denote the ⊆-smallest subtree
of T containing L. Notice that TL is an L-subtree of T . If there exists some finite generating
set {f1, . . . , fn} for L, then the ⊆-smallest subtree S of TL containing {1, f1, . . . , fn} is finite
and it can be shown that LS = TL. It follows that L\TL is finite.

We are now in a position to translate Theorem 1.12 into the desired form.

3.2 Theorem. In Setting 3.1, if there exists a normal, finite-index subgroup N of F such
that N ⊇ H ∪ K and each of the maps H\TH → N\T and K\TK → N\T is injective, then
SHN(F,H,K) 6 1.

Proof. Let Z := N\T , X := H\TH , and Y := K\TK . By hypothesis, we may view X and Y
as subgraphs of Z. Let G := F/N . Notice that F acts on Z by f ·Nt = Nft, and G then
acts freely on Z.

Step 1:
∑

HnK∈H\N/K

r(H ∩ nK) 6 r(X ∩ Y ). Let S be a subset of N such that the map

S → H\N/K, s 7→ HsN , is bijective. If s1, s2 ∈ S, t1, t2 ∈ T , then we have the following
chain of equivalences.

s1 = s2 and (H ∩ s1K)t1 = (H ∩ s2K)t2
⇔ s1 = s2 and ∃(h, k) ∈ H ×K such that ht1 = t2 and h = s1k, i.e., hs1 = s1k
⇔ ∃(h, k) ∈ H ×K such that ht1 = t2 and hs1 = s2k, i.e, ks−1

1 t1 = s−1
2 ht1 = s−1

2 t2
⇔ Ht1 = Ht2 and Ks−1

1 t1 = Ks−1
2 t2.

Thus, we have a well-defined, injective graph map∨
s∈S

(H ∩ sK)\(TH ∩ sTK) → (H\TH)×N\T (K\TK),

(H ∩ sK)t 7→ (Ht,Ks−1 t) for s ∈ S, t ∈ TH ∩ sTK .

Now, (H\TH) ×N\T (K\TK) = X ×Z Y = X ∩ Y . In particular, this codomain is finite.
Hence, the domain is finite. The operator r(−) on finite graphs, from Notation 1.1, behaves
well with respect to inclusions and disjoint unions. Thus,

(4) r(X ∩ Y ) > r
( ∨

s∈S
(H ∩ sK)\(TH ∩ sTK)

)
=

∑
s∈S

r
(
(Hs ∩ K)\(TH ∩ sTK)

)
.

For s ∈ S, we shall now prove that

(5) r((H ∩ sK)\(TH ∩ sTK)) = r(H ∩ sK).

Notice that H ∩ sK acts freely on both TH and sTK . If TH ∩ sTK = ∅, then H ∩ sK stabilizes
the unique path from TH to sTK , and, hence, stabilizes an edge of T , and, hence, is trivial;
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here, both sides of (5) are 0. If TH ∩ sTK ̸= ∅, then TH ∩ sTK is a tree on which H ∩ sK
acts freely, and then (5) holds by Theorem 2.6. This proves (5).

By (4) and (5),
∑
s∈S

r(H ∩ sK) 6 r(X ∩ Y ). This completes Step 1.

Step 2. Consider any f ∈ F , and let g := fN ∈ G. For each y ∈ Y, there exists some t ∈ TK

such that y = Nt, and then we have gy = (Nf)(Nt) = Nft. It is not difficult to see that
we have a graph isomorphism K\T → fK\T, Kt 7→ (fK)ft. It follows that, in N\T , the
image of fK\fTK is {Nft : t ∈ TH}, that is, gY . On replacing Y , TK , and K in Step 1 with
gY , fTK , and

fK, respectively, we find that
∑

Hn fK∈H\N/fK

r(H ∩ n(fK)) 6 r(X ∩ gY ). It is not

difficult to see that there is a bijection H\N/fK → H\Nf/K, Hn fK 7→ HnfK. It follows
that

∑
HnfK∈H\Nf/K

r(H ∩ (nf)K) 6 r(X ∩ gY ).

Step 3. On summing the inequalities obtained in Step 2, one for each g = Nf ∈ G, we
find that

∑
HfK∈H\F/K

r(H ∩ fK) 6
∑
g∈G

r(X ∩ gY ). By Theorem 1.12,
∑
g∈G

r(X ∩ gY ) 6 r(X) r(Y ).

Here, X = H\TH and Y = K\TK , and, by Theorem 2.6, r(X) = r(H) and r(Y ) = r(K).
We now see that SHN(F,H,K) 6 1.

The next result shows that SHN(F,H,K) is an invariant of the commensurability class
of K in F ; by symmetry, the same holds for H.

3.3 Lemma. In Setting 3.1, suppose that L is a normal, finite-index subgroup of K. Then
SHN(F,H,L) = SHN(F,H,K).

Proof. Consider any f ∈ F . It suffices to show that∑
HfkL∈H\HfK/L

r(H ∩ fkL)
r(L)

= r(H ∩ fK)
r(K)

.

For each k ∈ K, kL = L. Thus, it suffices to show that

|H\HfK/L| × r(Hf ∩L)
r(L)

= r(Hf ∩K)
r(K)

.

Since (f−1)HfkL = HfkL, we have a bijective map H\HfK/L ∼−→ (Hf )\(Hf )K/L,
HfkL 7→ HfkL. To simplify notation, let us write H in place of Hf . Then it suffices
to show that |H\HK/L| × r(H ∩L)

r(L)
= r(H ∩K)

r(K)
.

By Theorem 2.9, r(H ∩L) = r(H ∩K)× (H ∩K : H ∩L) and r(L) = r(K)(K:L); it
then suffices to show that |H\HK/L| × (H ∩K : H ∩L) = (K:L).

The right K-set H\HK is generated by the element H1, which has right K-stabilizer
H ∩ K. Hence, H\HK ≃ (H ∩ K)\K as right K-sets. Thus, H\HK/L ≃ (H ∩ K)\K/L
as sets. Hence, |H\HK/L| = |(H ∩ K)\K/L| = |(H ∩ K)L\K| = (K : (H ∩ K)L).

As left H ∩ K-sets, ((H ∩K)L)/L ≃ (H ∩ K)/(H ∩ K ∩ L) = (H ∩K)/(H ∩L). Thus,
(H ∩K : H ∩L) = ((H ∩K)L : L).
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On multiplying the results of the previous two paragraphs, we find that

|H\HK/L| × (H ∩K : H ∩L) = (K : (H ∩K)L)× ((H ∩K)L : L) = (K : L),

as desired.

We can now prove the strengthened Hanna Neumann conjecture.

3.4 Theorem. Let F be a free group, and H, K be finitely generated subgroups of F . Then∑
HfK∈H\F/K

r(H ∩ fK) 6 r(H) r(K).

Proof. The desired inequality holds if H or K is cyclic; thus, we may assume that H and K
are non-cyclic, and, in particular, F is non-cyclic. Choose a free generating set for F and a
free product decomposition F = A∗B such that A is finitely generated and contains generat-
ing sets of H and K. The F -graph with vertex set F/A∨F/B and edge set F , with an edge
f joining fA to fB, is a tree, called the Bass-Serre tree for the free product decomposition.
Consider any f ∈ F−A. Then A ̸= fA and H ∩ fK stabilizes the vertices A and fA, and,
hence, stabilizes the path from A to fA. This path contains an edge, and the edges have
trivial stabilizers. Thus H ∩ fK = {1}. Hence,

∑
HfK∈H\F/K

r(H ∩ fK) =
∑

HaK∈H\A/K

r(H ∩ aK).

Thus, we may replace F with A and assume that F is finitely generated. Now, we may
assume that we are in Setting 3.1.

By Theorem 2.10, there exists a finite-index subgroup H0 of F containing H such that
the map H\TH → H0\T is injective. Similarly, there exists a finite-index subgroup K0 of F
containing K such that the map K\TK → K0\T is injective. We have left F -actions on
F/H0 and on F/K0, and hence an F -action on the finite set F/H0 ∨F/K0. Let N denote
the kernel of this action. Then N is a normal, finite-index subgroup of F . The F -stabilizer
of the element 1H0 is H0, and, hence, N 6 H0. Similarly, N 6 K0.

We shall now apply Theorem 3.2 to SHN(F,H ∩N,K ∩N). Notice that H ∩N has finite
index in H, and, hence, by Theorem 2.9, H ∩N is finitely generated. We claim that the
map (H ∩N)\TH∩N → N\T is injective. Consider t1, t2 ∈ TH∩N such that Nt1 = Nt2. Since
N 6 H0, H0t1 = H0t2. Since TH∩N ⊆ TH and the map H\TH → H0\T is injective, we see
that Ht1 = Ht2. Since H0 acts freely on T , there is a unique f ∈ H0 such that ft1 = t2.
We have now seen that f ∈ N and f ∈ H. Thus, (H ∩N)t1 = (H ∩N)t2, as desired.
Similarly, K ∩N is finitely generated and the map (K ∩N)\TK∩N → N\T is injective. By
Theorem 3.2, SHN(F,H ∩N,K ∩N) 6 1.

By Lemma 3.3, SHN(F,H,K ∩N) = SHN(F,H ∩N,K ∩N) 6 1. By the analogue of
Lemma 3.3, SHN(F,H,K) = SHN(F,H ∩N,K) 6 1, as desired.

Historical note. On May 1, 2011, Joel Friedman posted on the arXiv a proof of the strengthened Hanna

Neumann conjecture (SHNC) quite similar to the version presented here; see [3]. Six days later, Igor Mineyev

posted on his web page an independent proof of the SHNC; see [5]. (Both [3] and [5] contain other results.)

Ten days after that, I emailed Mineyev a one-page proof of the SHNC and encouraged him to add it as an

appendix to [5] so that group-theorists would have a proof they could be comfortable with; see [1].
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