Joel Friedman's proof of the strengthened Hanna Neumann conjecture

Warren Dicks*

October 23, 2012

Abstract

For a finite graph Z, $\overline{\mathbf{r}}(Z) \coloneqq e - v + t$, where e, v, and t denote the number of edges, vertices, and tree components of Z, respectively. Let G be a finite group, Z be a finite G-free G-graph, and X and Y be subgraphs of Z. Using linear algebra and algebraic geometry over a sufficiently large field, Joel Friedman proved that $\sum_{g \in G} \overline{\mathbf{r}}(X \cap gY) \leq \overline{\mathbf{r}}(X)\overline{\mathbf{r}}(Y)$. He showed that this inequality implies the strengthened Hanna Neumann conjecture. We simplify Friedman's proof of the foregoing inequality by replacing the sufficiently large field with a field \mathbb{F} on which G acts faithfully and then replacing all the arguments involving algebraic geometry with shorter arguments about the left ideals of the skew group ring $\mathbb{F}G$.

2010 Mathematics Subject Classification. Primary: 20E05 05C50; Secondary: 20E08 05C05 18F20.

Key words. Intersections of free subgroups, graphs, skew group ring.

1 Sheaves on graphs

1.1 Notation. As Bourbaki intended, we let \mathbb{N} denote the set of finite cardinals, $\{0, 1, 2, \ldots\}$.

Throughout this section, let \mathbb{F} be a field. We shall write dim(V) to denote the \mathbb{F} -dimension of an \mathbb{F} -module V.

Throughout this section, let $(Z, VZ, EZ, EZ \xrightarrow{\iota, \tau} VZ)$ be a finite (oriented) graph; here, Z is a finite set, $VZ \subseteq Z$, EZ = Z - VZ, and ι and τ are functions. Each $e \in EZ$ has an associated picture of the form $\stackrel{\iota e \ e \ \tau e}{\bullet}$ or $\stackrel{\iota e = \tau e}{\bullet}$. We let the symbol Z also denote the graph.

We shall use the standard concepts of *subgraph*, *connected graph*, *component of a graph*, *tree*, *tree component of a graph*, and *graph map*.

We write $\delta(Z) := |EZ| - |VZ|$ and $\overline{r}(Z) := \max{\delta(Y) : Y}$ is a subgraph of Z. Each subgraph Y of Z with $\delta(Y) = \overline{r}(Z)$ is called a δ -maximizer in Z. The intersection of all the δ -maximizers in Z is denoted supercore(Z).

^{*}Partially supported by Spain's Ministerio de Ciencia e Innovación through Project MTM2008-01550.

1.2 Lemma. The following hold for the finite graph Z.

- (i) If Z is connected, then $\delta(Z) \in \{-1\} \cup \mathbb{N}$ and $\delta(Z) = -1$ if and only if Z is a tree.
- (ii) If \mathfrak{C} is the set of components of Z, then $\delta(Z) = \sum_{X \in \mathfrak{C}} \delta(X)$.
- (iii) $\overline{\mathbf{r}}(Z) \ge 0$.
- (iv) $\delta(\operatorname{supercore}(Z)) = \overline{\mathbf{r}}(Z)$, and $\operatorname{supercore}(Z)$ is the unique \subseteq -smallest δ -maximizer in Z.
- (v) $\overline{\mathbf{r}}(Z) \delta(Z)$ equals the number of tree components of Z.

Proof. (i) and (ii) are straightforward, and (iii) holds since \emptyset is a subgraph of Z.

(iv) If X and Y are δ -maximizers in Z, then $\delta(X) \ge \delta(X \cap Y)$ and $\delta(Y) \ge \delta(X \cup Y)$. Since $\delta(X) + \delta(Y) = \delta(X \cap Y) + \delta(X \cup Y)$, we see that $\delta(X) = \delta(X \cap Y)$. Thus, $X \cap Y$ is a δ -maximizer in Z. Hence, the set of δ -maximizers in Z is closed under finite intersections. Since Z is finite, supercore(Z) is the intersection of finitely many δ -maximizers in Z. Thus, (iv) holds.

(v) Let forest(Z) denote the subgraph of Z formed by the tree components. Then $-\delta(\text{forest}(Z))$ equals the number of tree components of Z.

Now $\delta(Z) - \delta(\operatorname{forest}(Z)) = \delta(Z - \operatorname{forest}(Z)) \leq \overline{r}(Z)$.

We shall prove the reverse inequality, $\overline{\mathbf{r}}(Z) \leq \delta(Z) - \delta(\operatorname{forest}(Z))$, by induction on $|\mathbf{E}Z|$.

Let $Y \coloneqq \text{supercore}(Z)$. Consider first the case where EZ = EY. Then Z-Y consists of isolated vertices, each of which is a tree component of Z. Then

$$\overline{\mathbf{r}}(Z) = \delta(Y) = \delta(Z) - \delta(Z - Y) \leqslant \delta(Z) - \delta(\operatorname{forest}(Z)),$$

as desired. It remains to consider the case where we have some $e \in EZ - EY$. Then,

$$\overline{\mathbf{r}}(Z) = \overline{\mathbf{r}}(Z - \{e\}) \text{ since } e \in \mathbf{E}Z - \mathbf{E}Y$$

$$\leqslant \delta(Z - \{e\}) - \delta(\operatorname{forest}(Z - \{e\})) \text{ by the implicit induction hypothesis}$$

$$= \delta(Z) - 1 - \delta(\operatorname{forest}(Z - \{e\})) \leqslant \delta(Z) - \delta(\operatorname{forest}(Z))$$

since adding e to $Z - \{e\}$ reduces the number of tree components by one or zero, depending whether or not e is incident to forest $(Z - \{e\})$. The result now holds by induction.

1.3 Definitions. We let $\mathbb{Z}Z$ and $\mathbb{Z}[Z]$ denote the free \mathbb{Z} -module with \mathbb{Z} -basis the finite set Z. Let V be a finite-dimensional \mathbb{F} -module. We shall be interested in the finite-dimensional \mathbb{F} -module $V \otimes \mathbb{Z}Z = \bigoplus_{z \in Z} (V \otimes \mathbb{Z}z)$, where we are tensoring over \mathbb{Z} . For each $z \in Z$, we have a map $V \otimes \mathbb{Z}Z \to V$, $d \mapsto d_z$, such that, for each $d \in V \otimes \mathbb{Z}Z$, $d = \sum_{z \in Z} (d_z \otimes z)$.

Let D be an \mathbb{F} -submodule of $V \otimes \mathbb{Z}Z$. For each $z \in Z$, we let $D_z := \{d_z : d \in D\}$; thus, $\bigoplus (D_z \otimes \mathbb{Z}z) \supseteq D$. We shall say that D is a *sheaf* in $V \otimes \mathbb{Z}Z$ if, firstly, $\bigoplus (D_z \otimes \mathbb{Z}z) = D$,

and, secondly, for each $e \in EX$, $D_e \subseteq D_{\iota e} \cap D_{\tau e}$. Viewed in the lattice of \mathbb{F} -submodules of $V \otimes \mathbb{Z}Z$, the set of sheaves in $V \otimes \mathbb{Z}Z$ is closed under sums and intersections.

Let *D* be a sheaf in $V \otimes \mathbb{Z}Z$. We define $\delta(D) \coloneqq (\sum_{e \in \mathbf{E}Z} \dim(D_e)) - (\sum_{v \in VZ} \dim(D_v))$. By a subsheaf *C* of *D*, we mean a sheaf in $V \otimes \mathbb{F}Z$ that is contained in *D*; in this event, we write $C \preccurlyeq D$. We define $\overline{\mathsf{T}}(D) \coloneqq \max\{\delta(C) : C \preccurlyeq D\}$. Clearly, $\overline{\mathsf{T}}(D) \ge 0$, since $\{0\} \preccurlyeq D$. If $C \preccurlyeq D$ and $\delta(C) = \overline{\mathsf{T}}(D)$, then *C* is called a δ -maximizer in *D*. The intersection of all the δ -maximizers in *D* is denoted supercore(*D*).

1.4 Lemma. Let V be a finite-dimensional \mathbb{F} -module and $D \preccurlyeq V \otimes \mathbb{Z}Z$.

- (i) $\delta(\operatorname{supercore}(D)) = \overline{\mathbf{r}}(D)$, and $\operatorname{supercore}(D)$ is the unique \subseteq -smallest δ -maximizer in D.
- (ii) If $D' \preccurlyeq D$, then supercore $(D') \preccurlyeq$ supercore(D).

Proof. (i) If B and C are δ -maximizers in D, then $\delta(B) \ge \delta(B \cap C)$ and $\delta(C) \ge \delta(B+C)$. By Grassmann's formula, $\delta(B) + \delta(C) = \delta(B \cap C) + \delta(B+C)$. Hence, $\delta(B) = \delta(B \cap C)$. Thus, $B \cap C$ is a δ -maximizer in D. Hence, the set of δ -maximizers in D is closed under finite intersections. Since $V \otimes \mathbb{Z}Z$ is finite-dimensional, the descending chain condition holds for \mathbb{F} -submodules; hence, supercore(D) is the intersection of finitely many δ -maximizers in D. It follows that (i) holds.

(ii) Let $C' \coloneqq \operatorname{supercore}(D')$ and $C \coloneqq \operatorname{supercore}(D)$. Then $\delta(C') \ge \delta(C' \cap C)$ by (i) for D', and $\delta(C) \ge \delta(C'+C)$ by (i) for D. Since $\delta(C') + \delta(C) = \delta(C' \cap C) + \delta(C'+C)$, we see that $\delta(C') = \delta(C' \cap C)$. Thus, $C' \cap C$ is a δ -maximizer in D'. Since C' is the \subseteq -smallest δ -maximizer in D' by (i) for D', $C' \subseteq C' \cap C$. Thus $C' \subseteq C$, as desired.

1.5 Lemma. Let V be a finite-dimensional \mathbb{F} -module, V' an \mathbb{F} -submodule of V, and Z' a subgraph of Z. Then $V' \otimes \mathbb{Z}Z' \preccurlyeq V \otimes \mathbb{Z}Z$.

Proof. Set $C := V' \otimes \mathbb{Z}Z'$. For each $z \in Z$, $C_z = V'$ if $z \in Z'$, while $C_z = \{0\}$ if $z \in Z - Z'$. Thus, $C_z \otimes \mathbb{Z}z \subseteq C$. Consider any $e \in \mathbb{E}Z$. If $e \in Z'$, then $C_e = C_{\iota e} = C_{\tau e} = V'$, while if $e \in Z - Z'$, then $C_e = \{0\} \subseteq C_{\iota e} \cap C_{\tau e}$. Thus, $C \preccurlyeq V \otimes \mathbb{Z}Z$.

1.6 Lemma. Let V be a finite-dimensional \mathbb{F} -module, and V' an \mathbb{F} -submodule of V. Make the identification $(V/V') \otimes \mathbb{Z}Z = (V \otimes \mathbb{Z}Z)/(V' \otimes \mathbb{Z}Z)$.

Let $D \preccurlyeq V \otimes \mathbb{Z}Z$. Set $D' \coloneqq D \cap (V' \otimes \mathbb{Z}Z)$ and $D'' \coloneqq (D + (V' \otimes \mathbb{Z}Z))/(V' \otimes \mathbb{Z}Z)$. Then $D' \preccurlyeq V' \otimes \mathbb{Z}Z$, $D'' \preccurlyeq (V/V') \otimes \mathbb{Z}Z$, and $\overline{r}(D) \leqslant \overline{r}(D') + \overline{r}(D'')$.

Proof. It is straightforward to show that $D' \preccurlyeq V' \otimes \mathbb{Z}Z$ and $D'' \preccurlyeq (V/V') \otimes \mathbb{Z}Z$. Set $C \coloneqq \operatorname{supercore}(D), C' \coloneqq C \cap (V' \otimes \mathbb{Z}Z), \text{ and } C'' \coloneqq (C + (V' \otimes \mathbb{Z}Z))/(V' \otimes \mathbb{Z}Z) \simeq C/C'$. It is straightforward to show that $C' \preccurlyeq D', C'' \preccurlyeq D'', \text{ and } \delta(C) = \delta(C') + \delta(C'')$. Then we have $\overline{r}(D) = \delta(C) = \delta(C') + \delta(C'') \leqslant \overline{r}(D') + \overline{r}(D'')$.

We now consider the sheaves that will most interest us.

1.7 Lemma. Let V be a finite-dimensional \mathbb{F} -module, G be an \mathbb{F} -basis of V, $(Z_g : g \in G)$ be a family of subgraphs of Z, and $D := \bigoplus_{g \in G} (\mathbb{F}g \otimes \mathbb{Z}Z_g)$. Then $D \preccurlyeq V \otimes \mathbb{Z}Z$ and $\overline{r}(D) = \sum_{g \in G} \overline{r}(Z_g)$. In particular, $\overline{r}(V \otimes \mathbb{Z}Z) = \dim(V) \times \overline{r}(Z)$.

Proof. By Lemma 1.5, $\mathbb{F}g \otimes \mathbb{F}Z_g \preccurlyeq V \otimes \mathbb{F}Z$, for each $g \in G$. Since sums of sheaves are sheaves, it follows that $D \preccurlyeq V \otimes \mathbb{F}Z$. For each $g \in G$, let $X_g := \operatorname{supercore}(Z_g)$. Then

$$\overline{\mathbf{r}}(D) = \overline{\mathbf{r}}(\bigoplus_{g \in G} (\mathbb{F}g \otimes \mathbb{Z}Z_g)) \ge \delta(\bigoplus_{g \in G} (\mathbb{F}g \otimes \mathbb{Z}X_g)) = \sum_{g \in G} \delta(X_g) = \sum_{g \in G} \overline{\mathbf{r}}(Z_g)$$

To prove the inequality in the other direction, we argue by induction on $\dim(V)$.

If $\dim(V) = 0$, the inequality is clear. Suppose now that $\dim(V) = 1$, and let $g \in G$. Let $C \coloneqq \operatorname{supercore}(D)$. Then $C = \bigoplus_{z \in Z_g} (C_z \otimes z)$, and, for each $z \in Z_g$, C_z is an \mathbb{F} -submodule of V. Thus, $\dim(C_z) \leq 1$. Let $X \coloneqq \{z \in Z_g : \dim(C_z) = 1\}$. Then $C = \bigoplus_{z \in X} (V \otimes \mathbb{Z}z) = V \otimes \mathbb{Z}X$. Since $C \preccurlyeq V \otimes \mathbb{Z}Z$, it follows that X is a subgraph of Z_g . Now $\overline{r}(D) = \delta(C) = \delta(X) \leqslant \overline{r}(Z_g)$. Thus, we may assume that $\dim(V) \ge 2$ and that the inequality holds for all smaller dimensions. Since $|G| \ge 2$, we may partition G into two proper subsets G' and G'', and set

With the formula of the formula of

$$D'' = \bigoplus_{g \in G''} (\mathbb{F}_g \otimes \mathbb{Z}_{Z_g})$$
, the desired inequality follows by induction
The first sector is the area where $Z_{g} = Z_{g}$ for each $g \in C_{g}$

The final assertion is the case where $Z_g = Z$ for each $g \in G$.

We now impose on Friedman's approach the hypothesis of a faithful group action on \mathbb{F} .

1.8 Definition. Let G be a finite multiplicative group given with a faithful left action on \mathbb{F} . Let $\operatorname{End}(\mathbb{F})$ denote the ring of all additive-group endomorphisms $r \colon \mathbb{F} \to \mathbb{F}, \ \lambda \mapsto r[\lambda]$. Here, \mathbb{F} is a left $\operatorname{End}(\mathbb{F})$ -module. We view G as a subgroup of the group of units of $\operatorname{End}(\mathbb{F})$. We view \mathbb{F} as a subring of $\operatorname{End}(\mathbb{F})$ acting on \mathbb{F} by left multiplication. Let $\mathbb{F}G := \sum_{g \in G} \mathbb{F}g \subseteq \operatorname{End}(\mathbb{F})$. If

 $g \in G$ and $\lambda, \mu \in \mathbb{F}$, then $(g\mu)[\lambda] = g[\mu[\lambda]] = g[\mu\lambda] = (g[\mu])(g[\lambda]) = (g[\mu])[g[\lambda]] = (g[\mu]g)[\lambda]$; thus, $g\mu = g[\mu]g$ in End(\mathbb{F}). It follows that $\mathbb{F}G$ is closed under multiplication in End(\mathbb{F}), and, hence, $\mathbb{F}G$ is a subring of End(\mathbb{F}). We call $\mathbb{F}G$ the *skew group ring of* G *over* \mathbb{F} . As is well known, Dedekind showed (publ. 1894) that $\dim(\mathbb{F}G) = |G|$, and Artin gave the following proof (publ. 1938). We shall show that, for each $n \in \mathbb{N}$, each repetition-free sequence $(g_i)_{i=1}^n \in G^n$ is left \mathbb{F} -independent; the case n = |G| then gives the desired result. If n = 0, the assertion holds. By induction, it remains to consider the case where $n \ge 1$ and $(g_i)_{i=1}^{n-1}$ is left \mathbb{F} -independent, and to show that, for each $(\lambda_i)_{i=1}^n \in \mathbb{F}^n$, if $\sum_{i=1}^n \lambda_i g_i = 0$, then $(\lambda_i)_{i=1}^n = 0$ in \mathbb{F}^n . Let $\mu \in \mathbb{F}$. Notice that

$$\sum_{i=1}^{n-1} (\lambda_i (g_i - g_n)[\mu]) g_i = \sum_{i=1}^n (\lambda_i (g_i - g_n)[\mu]) g_i = \sum_{i=1}^n \lambda_i g_i[\mu] g_i - \sum_{i=1}^n \lambda_i g_n[\mu] g_i$$
$$= \sum_{i=1}^n \lambda_i g_i \mu - \sum_{i=1}^n g_n[\mu] \lambda_i g_i = 0\mu - g_n[\mu] 0 = 0.$$

Since $(g_i)_{i=1}^{n-1}$ is left \mathbb{F} -independent, $(\lambda_i(g_i-g_n)[\mu]))_{i=1}^{n-1}=0$ in \mathbb{F}^{n-1} . Since μ is arbitrary, $(\lambda_i(g_i-g_n))_{i=1}^{n-1}=0$ in $\mathbb{F}G^{n-1}$. Since each coordinate of $(g_i-g_n)_{i=1}^{n-1}$ is nonzero, $(\lambda_i)_{i=1}^{n-1}=0$ in \mathbb{F}^{n-1} . Finally, $\lambda_n=0$, since $g_n\neq 0$.

Warren Dicks

1.9 Setting. Let \mathbb{F} be a field, Z be a finite graph, Y be a subgraph of Z, and G be a finite group. Suppose that G acts freely on Z and acts faithfully on \mathbb{F} . Let $\mathbb{F}G$ be the skew group ring. In $\mathbb{F}G \otimes \mathbb{Z}Z$, let $D(Y) \coloneqq \bigoplus_{g \in G} (\mathbb{F}g \otimes g\mathbb{Z}Y)$, and, for each left ideal I of $\mathbb{F}G$, let $D(Y)|_I \coloneqq D(Y) \cap (I \otimes \mathbb{Z}Z)$. Here, $D(Y) \preccurlyeq \mathbb{F}G \otimes \mathbb{Z}Z$ by Lemma 1.7, $I \otimes \mathbb{Z}Z \preccurlyeq \mathbb{F}G \otimes \mathbb{Z}Z$ by Lemma 1.5, and, hence, $D(Y)|_I \preccurlyeq \mathbb{F}G \otimes \mathbb{Z}Z$.

1.10 Lemma. In Setting 1.9, for each left ideal I of $\mathbb{F}G$, $\overline{r}(D(Y)|_I) \in |G|\mathbb{N}$.

Proof. Set $D := D(Y)|_I$ and $C := \operatorname{supercore}(D)$. Let G act on $\mathbb{F}G \otimes \mathbb{Z}Z$ with the diagonal action. Let $h \in G$. Then h permutes the sheaves in $\mathbb{F}G \otimes \mathbb{Z}Z$, and stabilizes D(Y), $I \otimes \mathbb{Z}Z$, and their intersection, D. Thus, $hC \subseteq D$ and $\delta(hC) = \delta(C)$. Hence, hC is a δ -maximizer in D. Since C is the \subseteq -smallest δ -maximizer in D, we have $C \subseteq hC$. Now, $\dim(hC) = \dim(C) < \infty$, and, hence, hC = C. Thus,

$$\bigoplus_{z \in Z} (C_z \otimes z) = C = hC = \bigoplus_{z \in Z} (h(C_z) \otimes hz) = \bigoplus_{z \in Z} (h(C_{h^{-1}z}) \otimes z).$$

Now, for each $z \in Z$, $C_{h^{-1}z} = h^{-1}C_z$, and, hence, $\dim(C_{h^{-1}z}) = \dim(C_z)$. Since G acts freely on Z, it follows that $\delta(C)$ is a multiple of |G|, that is, $\overline{r}(D) \in |G|\mathbb{N}$.

1.11 Lemma. In Setting 1.9, there exists a left ideal I of $\mathbb{F}G$ such that $\overline{r}(D(Y)|_I) = 0$ and $\overline{r}(Y) \ge \dim(\mathbb{F}G/I)$.

Proof. Let \mathfrak{I} denote the set of left ideals I of $\mathbb{F}G$ with $\overline{r}(\mathbb{D}(Y)|_I) \leq |G|(\dim(I) - |G| + \overline{r}(Y))$. By Lemma 1.7, $\overline{r}(\bigoplus_{g \in G} (\mathbb{F}g \otimes g\mathbb{Z}Y)) = \sum_{g \in G} \overline{r}(gY)$, that is, $\overline{r}(\mathbb{D}(Y)) = |G|\overline{r}(Y)$. It follows that $\mathbb{F}G \in \mathfrak{I}$. Hence, $\mathfrak{I} \neq \emptyset$.

Let I be a \subseteq -minimal element of \mathfrak{I} . Thus, $0 \leq \overline{r}(\mathbb{D}(Y)|_I) \leq |G|(\dim(I) - |G| + \overline{r}(Y))$. In particular, $\overline{r}(Y) \geq |G| - \dim(I) = \dim(\mathbb{F}G/I)$. Set $D \coloneqq \mathbb{D}(Y)|_I$. If $\overline{r}(D) = 0$, then we have the desired conclusion. Thus, it suffices to suppose that $\overline{r}(D) \neq 0$ and obtain a contradiction. Set $C \coloneqq$ supercore $(D) \neq \{0\}$. Then there exists some $z \in Z$ and some nonzero $s \in C_z \subseteq D_z \subseteq I \subseteq \mathbb{F}G \subseteq \operatorname{End}(\mathbb{F})$. There exists $\lambda \in \mathbb{F}$ such that $s[\lambda] \neq 0$. Consider the left $\mathbb{F}G$ -linear map $\rho_{\lambda} \colon I \to \mathbb{F}, r \mapsto r[\lambda]$. Since $s[\lambda] \neq 0, \rho_{\lambda}$ is surjective.

Let $I' := \operatorname{Ker}(\rho_{\lambda})$. Then I' is a left ideal of $\mathbb{F}G$, $I' \subseteq I$, $\dim(I') = \dim(I)-1$, and $s \notin I'$. Set $D' := \operatorname{D}(Y)|_{I'}$ and $C' := \operatorname{supercore}(D')$. Since $s \notin I' \supseteq D'_z \supseteq C'_z$, we see that $C'_z \neq C_z$. Also, $D' \preccurlyeq D$, and, by Lemma 1.4(i), $C' \preccurlyeq C$. Since $C' \neq C$ and C is the \subseteq -smallest δ -maximizer in D, $\delta(C') < \overline{\operatorname{r}}(D)$. Hence, $\overline{\operatorname{r}}(D') < \overline{\operatorname{r}}(D)$. By Lemma 1.10, $\overline{\operatorname{r}}(D') \leqslant \overline{\operatorname{r}}(D) - |G|$. Hence,

$$\overline{\mathbf{r}}(D') \leqslant \overline{\mathbf{r}}(D) - |G| \leqslant |G|(\dim(I) - |G| + \overline{\mathbf{r}}(Y) - 1) = |G|(\dim(I') - |G| + \overline{\mathbf{r}}(Y)).$$

It follows that $I' \in \mathcal{I}$. This contradicts the \subseteq -minimality of I, as desired.

1.12 Friedman's theorem. Let G be a finite group and Z be a finite G-free G-graph. If X and Y are subgraphs of Z, then $\sum_{g \in G} \overline{r}(X \cap gY) \leq \overline{r}(X)\overline{r}(Y)$.

Proof. We may choose \mathbb{F} to be a field with a faithful *G*-action, for example, $\mathbb{Q}(t_g : g \in G)$ with $h[t_g] = t_{hg}$ for all $h, g \in G$. We may now assume that we are in Setting 1.9. By (Lemma) 1.11, there exists a left ideal I of $\mathbb{F}G$ such that $\overline{r}(\mathbb{D}(Y)|_I) = 0$ and $\dim(\mathbb{F}G/I) \leq \overline{r}(Y)$; hence,

(1)
$$\overline{\mathbf{r}}(\mathbf{D}(Y)|_I) + \overline{\mathbf{r}}\left((\mathbb{F}G/I) \otimes \mathbb{Z}X\right) = 0 + \overline{\mathbf{r}}\left((\mathbb{F}G/I) \otimes \mathbb{Z}X\right) \stackrel{1.7}{=} \dim(\mathbb{F}G/I)\overline{\mathbf{r}}(X) \leqslant \overline{\mathbf{r}}(Y)\overline{\mathbf{r}}(X).$$

By 1.5, we now have three sheaves in $\mathbb{F}G \otimes \mathbb{Z}Z$,

$$D(Y) = \bigoplus_{g \in G} (\mathbb{F}_g \otimes g\mathbb{Z}Y), \qquad \mathbb{F}_G \otimes \mathbb{Z}X, \qquad I \otimes \mathbb{Z}Z$$

We then have their pairwise intersections,

 $D \coloneqq D(Y) \cap (\mathbb{F}G \otimes \mathbb{Z}X), \quad D(Y)|_{I} = D(Y) \cap (I \otimes \mathbb{Z}Z), \quad I \otimes \mathbb{Z}X = (\mathbb{F}G \otimes \mathbb{Z}X) \cap (I \otimes \mathbb{Z}Z),$ and the intersection of all three, $D' \coloneqq D(Y) \cap (\mathbb{F}G \otimes \mathbb{Z}X) \cap (I \otimes \mathbb{Z}Z).$

Notice that
$$D = \bigoplus_{g \in G} (\mathbb{F}g \otimes \mathbb{Z}[gY \cap X]), D' = D \cap (I \otimes \mathbb{Z}X), \text{ and } D' \preccurlyeq D(Y)|_I.$$
 By 1.6,
 $D'' \coloneqq (D + (I \otimes \mathbb{Z}X))/(I \otimes \mathbb{Z}X) \preccurlyeq (\mathbb{F}G/I) \otimes \mathbb{Z}X.$ Now
 $\sum_{g \in G} \overline{r}(gY \cap X) \stackrel{1.7}{=} \overline{r}(D) \stackrel{1.6}{\leqslant} \overline{r}(D') + \overline{r}(D'') \leqslant \overline{r}(D(Y)|_I) + \overline{r}((\mathbb{F}G/I) \otimes \mathbb{Z}X) \stackrel{(1)}{\leqslant} \overline{r}(Y)\overline{r}(X).$

2 Free groups and graphs

We now quickly review the standard results that Friedman applies in deducing the strengthened Hanna Neumann conjecture. Most of the following can be found in [2, Section I.8], for example.

2.1 Definitions. For a free group F, we define $\overline{r}(F) := \max\{\operatorname{rank}(F)-1, 0\} \in \mathbb{N} \cup \{\infty\}$. Thus, if F is cyclic, then $\overline{r}(F) = 0$, and otherwise $\overline{r}(F) > 0$. Similarly, if F is finitely generated, then $\overline{r}(F) < \infty$, and otherwise $\overline{r}(F) = \infty$.

2.2 Definitions. Let X and Y be graphs, and let $\alpha: X \to Y$ be a graph map. For $x \in VX$, we write $link(x, X) \coloneqq \{(e, \nu) \in EX \times \{\iota, \tau\} : \nu(e) = x\}$, and we see that α induces a map $link(x, X) \to link(\alpha(x), Y)$. If the latter map is bijective for each $x \in VX$, we say that α is *locally bijective*. We define *locally injective* similarly.

2.3 Definitions. Let X be a connected graph and x be a vertex of X that is to serve as a basepoint of X.

Let πX denote the set of all reduced paths in X. Let t denote the element of πX that is the empty path at x. The set πX has a partial binary operation of concatenation-where-defined followed by reduction. For any vertices v, w of X, we let $\pi X[v, w]$ denote the set of elements of πX with initial vertex v and terminal vertex w; we let $\pi X[v, -]$ denote the set of elements of πX with initial vertex v. If X is a tree, then $\pi X[v, w]$ consists of a single element, denoted X[v, w]; here, $\pi X[v, -]$ is in bijective correspondence with VX.

Warren Dicks

The set $F := \pi X[x, x]$ inherits a binary operation from πX that makes F into a group, called the *fundamental group of* X *at* x. Let us choose a maximal subtree X_0 of X. It is not difficult to show that the set $\{X_0[x, \iota e] \cdot e \cdot X_0[\tau e, x] : e \in X - X_0\}$ freely generates F. Thus, X is a tree if and only if F is trivial. Also, F is a free group, $\operatorname{rank}(F) = |X - X_0|$, and $|EX_0| = |VX| - 1$. If $|VX| < \infty$, then $\operatorname{rank}(F) - 1 = |EX| - |VX|$.

If $|X| < \infty$, we have $\overline{\mathbf{r}}(X)$ as in Notation 1.1, and we shall show that $\overline{\mathbf{r}}(F) = \overline{\mathbf{r}}(X)$. Consider first the case where X is a tree. We have seen that $\overline{\mathbf{r}}(F) = 0$, and, by Lemma 1.2(v), $\overline{\mathbf{r}}(X) = \delta(X) + 1 = 0$. Suppose now that X is not a tree. We have seen that F is nontrivial and $\overline{\mathbf{r}}(F) = |\mathbf{E}X| - |\mathbf{V}X| = \delta(X)$, and, by Lemma 1.2(v), $\overline{\mathbf{r}}(X) = \delta(X)$, as claimed.

The universal cover of X at x is the graph whose vertex set is $\pi X[x, -]$ with distinguished element t, the empty path at x, and whose edges are given by saying that each element of $(\pi X[x, -]) - \{t\}$ is T-adjacent to the element of $\pi X[x, -]$ obtained by deleting the last edge and the last vertex. Let T denote the universal cover of X at x.

The partial binary operation in πX gives a left action of F on T. It can be seen that F acts freely on T.

There is a natural graph map $\alpha: T \to X$ that on vertices is given by assigning to each element of $\pi X[x,-]$ its terminal vertex. Then $\alpha(t) = x$, and α is locally bijective. There is then an induced graph map $F \setminus T \to X$, $Ft \mapsto \alpha(t)$, and it is an isomorphism.

2.4 Definitions. Let *B* be a set. Let *X* be the connected graph with one vertex and with edge set *B*. On applying Definitions 2.3, we obtain a free group *F* acting freely on a tree *T*. Here, *F* is the free group on *B*, VT = F, and $ET = F \times B$, with $\iota(f, b) = f$ and $\tau(f, b) = fb$. We call *T* the *Cayley tree of F* with respect to *B*.

2.5 Definitions. Let F be a group, T an F-free F-tree, and t_0 a vertex of T that will serve as a basepoint.

Then $X \coloneqq F \setminus T$ is a connected graph with basepoint $x_0 \coloneqq Ft_0$.

There is a natural graph map $T \to X$, $t \mapsto Ft$, and it is locally injective, since F acts freely. To see that it is locally bijective, consider any $Ft \in VX$ and $(Fe, \nu) \in link(X, Ft)$. Then there exists a unique $f \in F$ such that $f \cdot \nu e = t$, and then $(f \cdot e, \nu) \in link(T, t)$.

In summary, Definitions 2.3 associate to a basepointed connected graph, a (free) group acting freely on a tree which has a basepoint; and, in the reverse direction, Definitions 2.5 associate a basepointed connected graph to a group acting freely on a tree with a basepoint. It can be shown that these two operations are mutually inverse modulo natural identifications. This is an important special case of Bass-Serre theory that was known to Reidemeister and Schreier. We shall need the structure part of the result.

2.6 Theorem. Let F be a group, T an F-free F-tree, and t_0 a vertex of T. Then $F \simeq \pi(F \setminus T)[Ft_0, Ft_0]$, which is a free group. If $|F \setminus T| < \infty$, then $\overline{\mathbf{r}}(F) = \overline{\mathbf{r}}(F \setminus T)$.

Proof. Let $X := F \setminus T$ and $x_0 := Ft_0$. We have seen that the natural map $\alpha \colon T \to X, t \mapsto Ft$, is locally bijective. It follows that α maps πT to πX . For each $f \in F$, $T[t_0, f \cdot t_0]$ is then carried to an element of $\pi X[x_0, x_0]$. Conversely, each element of $\pi X[x_0, x_0]$ lifts to a unique element of $\pi T[t_0, -]$, and then the terminal vertex of this lifted path can be expressed as $f \cdot t_0$ for a unique $f \in F$. We then have mutually inverse maps between F and $\pi X[x_0, x_0]$.

The remaining results follow from Definitions 2.3.

2.7 Reidemeister's theorem. A group is free if and only if it acts freely on some tree.

Proof. We saw in Definitions 2.4 that if a group is free, then it acts freely on some tree. Conversely, by Theorem 2.6, if a group acts freely on a tree, then the group is free. \Box

2.8 The Nielsen-Schreier theorem. Subgroups of free groups are free.

Proof. This is clear from Theorem 2.7.

2.9 The Schreier index theorem. If F is a free group and H is a finite-index subgroup of F, then

(2)
$$\overline{\mathbf{r}}(H) = (F:H) \times \overline{\mathbf{r}}(F).$$

Proof. Let T be the Cayley tree of F with respect to a free generating set B of F. Since $\nabla T = F$, we see that $|H \setminus \nabla T| = (F:H) < \infty$. By Theorem 2.6, $H \simeq \pi(H \setminus T)[H1, H1]$; hence, by Definitions 2.3, $\operatorname{rank}(H) - 1 = |H \setminus ET| - (F:H)$. Since $ET = F \times B$, we see that $|H \setminus ET| = (F:H) \times \operatorname{rank}(F)$. Thus,

(3)
$$\operatorname{rank}(H) - 1 = (F:H) \times (\operatorname{rank}(F) - 1).$$

If both sides of (3) are negative, then $\operatorname{rank}(H) = \operatorname{rank}(F) = 0$, and then both sides of (2) are zero. Thus, we may assume that both sides of (3) are non-negative, and here (3) coincides with (2).

The following is due in steps to M. Hall, M. Tretkoff, L. Babai, and W. Imrich; see [4].

2.10 The geometric Marshall Hall theorem. Let F be a group, H be a subgroup of F, T be an F-free F-tree, and T_H be an H-subtree of T. If $F \setminus T$ and $H \setminus T_H$ are finite, then there exists a finite-index subgroup L of F containing H such that the induced map $H \setminus T_H \to L \setminus T$ is injective.

Proof. Notice that $H \setminus T_H \to H \setminus T$ is injective and that $H \setminus T \to F \setminus T$ is locally bijective. Hence, $H \setminus T_H \to F \setminus T$ is locally injective.

To simplify the notation for the next part of the argument, let us write $Z_H := H \setminus T_H$ and $Z_F := F \setminus T$. These are finite graphs by hypothesis, and we have a locally injective graph map $\alpha \colon Z_H \to Z_F$. Let $n := \max\{|\alpha^{-1}\{v\}| : v \in VZ_F\}$. We shall now add 'missing' vertices and

edges to the fibres of α to obtain a finite graph X having Z_H as a subgraph, together with a locally bijective, n to 1, graph map $X \to Z_F$ extending α , i.e. the composite $Z_H \hookrightarrow X \to Z_F$ is α .

We first construct a graph map $\beta: Z'_H \to Z_F$ extending α by taking Z'_H to be the graph obtained from Z_H by adding, for each $v \in VZ_F$, $n - |\alpha^{-1}\{v\}|$ isolated vertices, which β then maps to v. Clearly, β is locally injective, extends α , and, for all $v \in VZ_F$, $|\beta^{-1}\{v\}| = n$.

Consider any $e \in EZ_F$. Since β is locally injective, the map $\iota: \beta^{-1}\{e\} \to VZ_H$ is injective, and similarly for τ . Thus, $|\iota(\beta^{-1}\{e\})| = |\beta^{-1}\{e\}| = |\tau(\beta^{-1}\{e\})|$. Hence, we may choose a bijective map $\sigma: \beta^{-1}\{\iota e\} - \iota(\beta^{-1}\{e\}) \to \beta^{-1}\{\tau e\} - \tau(\beta^{-1}\{e\})$. For each $v \in \beta^{-1}\{\iota e\} - \iota(\beta^{-1}\{e\})$, we add to Z'_H an edge e_v with $\iota e_v = v$ and $\tau e_v = \sigma(v)$, and we map e_v to e. After having done this for each $e \in EZ_F$, we obtain a graph X containing Z_H and a locally bijective graph map $X \to Z_F$ extending α .

Since Z_H is connected, it lies in a component of X, and we may replace X with this component and still have a locally bijective graph map $\gamma \colon X \to Z_F$ extending α . Returning to the original notation, we have a finite connected graph X containing $H \setminus T_H$ as a subgraph, and a locally bijective graph map $\gamma \colon X \to F \setminus T$ extending $H \setminus T_H \to F \setminus T$.

Choose a vertex v in $H \setminus T_H$. Then v is a vertex of X. By Theorem 2.6, we may make the identifications $H = \pi(H \setminus T_H)[v, v]$ and $F = \pi(F \setminus T)[\gamma(v), \gamma(v)]$. Let $L \coloneqq \pi X[v, v]$. Since $H \setminus T_H \subseteq X$, $H \leq L$. Since $X \to F \setminus T$ is locally bijective, we may identify $\pi X[v, -]$ with $\pi(F \setminus T)[\gamma(v), -]$, and we may identify the latter set with VT. Thus, we may identify the universal cover of X with T, and we may identify L with a subgroup of F. The latter identification respects the copies of H in L and F; thus $H \leq L \leq F$. The locally bijective graph map $T \to X$ induces a graph map $L \setminus T \to X$ which is bijective. Hence, $(F : L) < \infty$.

3 The strengthened Hanna Neumann conjecture

For any group F, if $H \leq F$ and $f \in F$, then we write ${}^{f}H \coloneqq fHf^{-1}$ and $H^{f} \coloneqq f^{-1}Hf$. We shall show that if F is a free group and H and K are finitely generated subgroups of F, then $\sum_{HfK\in H\setminus F/K} \overline{r}(H\cap {}^{f}K) \leq \overline{r}(H)\overline{r}(K)$. Notice that $H \cap {}^{f}K$ does not change if f is multiplied

on the right by an element of K. Also $(H \cap {}^{f}K)^{f} = H^{f} \cap K$ and this subgroup does not change if f is multiplied on the left by an element of H. It follows that the conjugacy class of $H \cap {}^{f}K$ does not change if f is multiplied on the left by an element of H and on the right by an element of K. In particular, $\overline{r}(H \cap {}^{f}K)$ is independent of which representative is chosen for the double coset HfK.

3.1 Setting. Let F be a finitely generated, non-cyclic free group, let H and K be finitely generated, non-cyclic subgroups of F, and let

$$\operatorname{SHN}(F, H, K) \coloneqq \sum_{HfK \in H \setminus F/K} \frac{\overline{\mathsf{r}}(H \cap {}^{f}K)}{\overline{\mathsf{r}}(H)\overline{\mathsf{r}}(K)} \in [0, \infty].$$

Let T denote the Cayley tree of F with respect to some free generating set of F. For each subgroup L of F, view L as a subset of VT = F, and let T_L denote the \subseteq -smallest subtree of T containing L. Notice that T_L is an L-subtree of T. If there exists some finite generating set $\{f_1, \ldots, f_n\}$ for L, then the \subseteq -smallest subtree S of T_L containing $\{1, f_1, \ldots, f_n\}$ is finite and it can be shown that $LS = T_L$. It follows that $L \setminus T_L$ is finite.

We are now in a position to translate Theorem 1.12 into the desired form.

3.2 Theorem. In Setting 3.1, if there exists a normal, finite-index subgroup N of F such that $N \supseteq H \cup K$ and each of the maps $H \setminus T_H \to N \setminus T$ and $K \setminus T_K \to N \setminus T$ is injective, then $SHN(F, H, K) \leq 1$.

Proof. Let $Z := N \setminus T$, $X := H \setminus T_H$, and $Y := K \setminus T_K$. By hypothesis, we may view X and Y as subgraphs of Z. Let G := F/N. Notice that F acts on Z by $f \cdot Nt = Nft$, and G then acts freely on Z.

Step 1: $\sum_{HnK \in H \setminus N/K} \overline{r}(H \cap {}^{n}K) \leq \overline{r}(X \cap Y)$. Let S be a subset of N such that the map $S \to H \setminus N/K$, $s \mapsto HsN$, is bijective. If $s_1, s_2 \in S$, $t_1, t_2 \in T$, then we have the following chain of equivalences.

 $s_{1} = s_{2} \text{ and } (H \cap {}^{s_{1}}K)t_{1} = (H \cap {}^{s_{2}}K)t_{2}$ $\Leftrightarrow s_{1} = s_{2} \text{ and } \exists (h,k) \in H \times K \text{ such that } ht_{1} = t_{2} \text{ and } h = {}^{s_{1}}k, \text{ i.e., } hs_{1} = s_{1}k$ $\Leftrightarrow \exists (h,k) \in H \times K \text{ such that } ht_{1} = t_{2} \text{ and } hs_{1} = s_{2}k, \text{ i.e, } ks_{1}^{-1}t_{1} = s_{2}^{-1}ht_{1} = s_{2}^{-1}t_{2}$ $\Leftrightarrow Ht_{1} = Ht_{2} \text{ and } Ks_{1}^{-1}t_{1} = Ks_{2}^{-1}t_{2}.$

Thus, we have a well-defined, injective graph map

$$\bigvee_{s \in S} (H \cap {}^{s}K) \setminus (T_{H} \cap sT_{K}) \to (H \setminus T_{H}) \times_{N \setminus T} (K \setminus T_{K}),$$

$$(H \cap {}^{s}K)t \qquad \mapsto \qquad (Ht, Ks^{-1}t) \quad \text{for } s \in S, \ t \in T_{H} \cap sT_{K}.$$

Now, $(H \setminus T_H) \times_{N \setminus T} (K \setminus T_K) = X \times_Z Y = X \cap Y$. In particular, this codomain is finite. Hence, the domain is finite. The operator $\overline{\mathbf{r}}(-)$ on finite graphs, from Notation 1.1, behaves well with respect to inclusions and disjoint unions. Thus,

(4)
$$\overline{\mathbf{r}}(X \cap Y) \ge \overline{\mathbf{r}}\Big(\bigvee_{s \in S} (H \cap {}^{s}K) \setminus (T_{H} \cap sT_{K})\Big) = \sum_{s \in S} \overline{\mathbf{r}}\big((H^{s} \cap K) \setminus (T_{H} \cap sT_{K})\big).$$

For $s \in S$, we shall now prove that

(5)
$$\overline{\mathbf{r}}((H \cap {}^{s}K) \setminus (T_{H} \cap sT_{K})) = \overline{\mathbf{r}}(H \cap {}^{s}K).$$

Notice that $H \cap {}^{s}K$ acts freely on both T_{H} and sT_{K} . If $T_{H} \cap sT_{K} = \emptyset$, then $H \cap {}^{s}K$ stabilizes the unique path from T_{H} to sT_{K} , and, hence, stabilizes an edge of T, and, hence, is trivial;

here, both sides of (5) are 0. If $T_H \cap sT_K \neq \emptyset$, then $T_H \cap sT_K$ is a tree on which $H \cap {}^sK$ acts freely, and then (5) holds by Theorem 2.6. This proves (5).

By (4) and (5),
$$\sum_{s \in S} \overline{r}(H \cap {}^{s}K) \leq \overline{r}(X \cap Y)$$
. This completes Step 1

Step 2. Consider any $f \in F$, and let $g := fN \in G$. For each $y \in Y$, there exists some $t \in T_K$ such that y = Nt, and then we have gy = (Nf)(Nt) = Nft. It is not difficult to see that we have a graph isomorphism $K \setminus T \to {}^{f}K \setminus T$, $Kt \mapsto ({}^{f}K)ft$. It follows that, in $N \setminus T$, the image of ${}^{f}K \setminus fT_{K}$ is $\{Nft : t \in T_{H}\}$, that is, gY. On replacing Y, T_{K} , and K in Step 1 with gY, fT_K , and ${}^{f}K$, respectively, we find that $\sum \overline{\mathbf{r}}(H \cap {}^{n}({}^{f}K)) \leqslant \overline{\mathbf{r}}(X \cap gY)$. It is not $Hn fK \in H \setminus N/fK$ difficult to see that there is a bijection $H \setminus N/{}^{f}K \to H \setminus Nf/K$, $Hn {}^{f}K \mapsto HnfK$. It follows

 $\sum \overline{\mathbf{r}}(H \cap {}^{(nf)}K) \leqslant \overline{\mathbf{r}}(X \cap gY).$ that $HnfK \in \overline{H} \setminus Nf/K$

Step 3. On summing the inequalities obtained in Step 2, one for each $q = Nf \in G$, we find that $\sum_{HfK \in H \setminus F/K} \overline{\mathbf{r}}(H \cap {}^{f}K) \leq \sum_{g \in G} \overline{\mathbf{r}}(X \cap gY)$. By Theorem 1.12, $\sum_{g \in G} \overline{\mathbf{r}}(X \cap gY) \leq \overline{\mathbf{r}}(X)\overline{\mathbf{r}}(Y)$. Here, $X = H \setminus T_H$ and $Y = K \setminus T_K$, and, by Theorem 2.6, $\overline{r}(X) = \overline{r}(H)$ and $\overline{r}(Y) = \overline{r}(K)$. We now see that $SHN(F, H, K) \leq 1$.

The next result shows that SHN(F, H, K) is an invariant of the commensurability class of K in F; by symmetry, the same holds for H.

3.3 Lemma. In Setting 3.1, suppose that L is a normal, finite-index subgroup of K. Then $\operatorname{SHN}(F, H, L) = \operatorname{SHN}(F, H, K).$

Proof. Consider any $f \in F$. It suffices to show that

$$\sum_{HfkL\in H\setminus HfK/L} \frac{\overline{r}(H\cap {}^{fk}L)}{\overline{r}(L)} = \frac{\overline{r}(H\cap {}^{f}K)}{\overline{r}(K)}.$$

For each $k \in K$, ${}^{k}L = L$. Thus, it suffices to show that

$$|H \setminus HfK/L| \times \frac{\overline{\mathbf{r}}(H^f \cap L)}{\overline{\mathbf{r}}(L)} = \frac{\overline{\mathbf{r}}(H^f \cap K)}{\overline{\mathbf{r}}(K)}.$$

Since $(f^{-1})HfkL = H^fkL$, we have a bijective map $H \setminus HfK/L \xrightarrow{\sim} (H^f) \setminus (H^f)K/L$, $HfkL \mapsto H^fkL$. To simplify notation, let us write H in place of H^f . Then it suffices to show that $|H \setminus HK/L| \times \frac{\overline{r}(H \cap L)}{\overline{r}(L)} = \frac{\overline{r}(H \cap K)}{\overline{r}(K)}$. By Theorem 2.9, $\overline{r}(H \cap L) = \overline{r}(H \cap K) \times (H \cap K : H \cap L)$ and $\overline{r}(L) = \overline{r}(K)(K:L)$; it

then suffices to show that $|H \setminus HK/L| \times (H \cap K : H \cap L) = (K:L)$.

The right K-set $H \setminus HK$ is generated by the element H1, which has right K-stabilizer $H \cap K$. Hence, $H \setminus HK \simeq (H \cap K) \setminus K$ as right K-sets. Thus, $H \setminus HK/L \simeq (H \cap K) \setminus K/L$ as sets. Hence, $|H \setminus HK/L| = |(H \cap K) \setminus K/L| = |(H \cap K)L \setminus K| = (K : (H \cap K)L).$

As left $H \cap K$ -sets, $((H \cap K)L)/L \simeq (H \cap K)/(H \cap K \cap L) = (H \cap K)/(H \cap L)$. Thus, $(H \cap K : H \cap L) = ((H \cap K)L : L).$

On multiplying the results of the previous two paragraphs, we find that

 $|H \backslash HK/L| \times (H \cap K : H \cap L) = (K : (H \cap K)L) \times ((H \cap K)L : L) = (K : L),$ as desired.

We can now prove the strengthened Hanna Neumann conjecture.

3.4 Theorem. Let F be a free group, and H, K be finitely generated subgroups of F. Then $\sum_{K \in \mathcal{K}} \overline{r}(H \cap {}^{f}K) \leq \overline{r}(H)\overline{r}(K)$.

 $HfK \in H \setminus F/K$

Proof. The desired inequality holds if H or K is cyclic; thus, we may assume that H and K are non-cyclic, and, in particular, F is non-cyclic. Choose a free generating set for F and a free product decomposition F = A*B such that A is finitely generated and contains generating sets of H and K. The F-graph with vertex set $F/A \vee F/B$ and edge set F, with an edge f joining fA to fB, is a tree, called the Bass-Serre tree for the free product decomposition. Consider any $f \in F-A$. Then $A \neq fA$ and $H \cap {}^{f}K$ stabilizes the vertices A and fA, and, hence, stabilizes the path from A to fA. This path contains an edge, and the edges have trivial stabilizers. Thus $H \cap {}^{f}K = \{1\}$. Hence, $\sum_{HfK \in H \setminus F/K} \overline{r}(H \cap {}^{f}K) = \sum_{HaK \in H \setminus A/K} \overline{r}(H \cap {}^{a}K)$. Thus, we may applace F with A and accument that F is finitely generated. Now, we may

Thus, we may replace F with A and assume that F is finitely generated. Now, we may assume that we are in Setting 3.1.

By Theorem 2.10, there exists a finite-index subgroup H_0 of F containing H such that the map $H \setminus T_H \to H_0 \setminus T$ is injective. Similarly, there exists a finite-index subgroup K_0 of Fcontaining K such that the map $K \setminus T_K \to K_0 \setminus T$ is injective. We have left F-actions on F/H_0 and on F/K_0 , and hence an F-action on the finite set $F/H_0 \vee F/K_0$. Let N denote the kernel of this action. Then N is a normal, finite-index subgroup of F. The F-stabilizer of the element $1H_0$ is H_0 , and, hence, $N \leq H_0$. Similarly, $N \leq K_0$.

We shall now apply Theorem 3.2 to $\text{SHN}(F, H \cap N, K \cap N)$. Notice that $H \cap N$ has finite index in H, and, hence, by Theorem 2.9, $H \cap N$ is finitely generated. We claim that the map $(H \cap N) \setminus T_{H \cap N} \to N \setminus T$ is injective. Consider $t_1, t_2 \in T_{H \cap N}$ such that $Nt_1 = Nt_2$. Since $N \leq H_0, H_0t_1 = H_0t_2$. Since $T_{H \cap N} \subseteq T_H$ and the map $H \setminus T_H \to H_0 \setminus T$ is injective, we see that $Ht_1 = Ht_2$. Since H_0 acts freely on T, there is a unique $f \in H_0$ such that $ft_1 = t_2$. We have now seen that $f \in N$ and $f \in H$. Thus, $(H \cap N)t_1 = (H \cap N)t_2$, as desired. Similarly, $K \cap N$ is finitely generated and the map $(K \cap N) \setminus T_{K \cap N} \to N \setminus T$ is injective. By Theorem 3.2, $\text{SHN}(F, H \cap N, K \cap N) \leq 1$.

By Lemma 3.3, $SHN(F, H, K \cap N) = SHN(F, H \cap N, K \cap N) \leq 1$. By the analogue of Lemma 3.3, $SHN(F, H, K) = SHN(F, H \cap N, K) \leq 1$, as desired.

Historical note. On May 1, 2011, Joel Friedman posted on the arXiv a proof of the strengthened Hanna Neumann conjecture (SHNC) quite similar to the version presented here; see [3]. Six days later, Igor Mineyev posted on his web page an independent proof of the SHNC; see [5]. (Both [3] and [5] contain other results.) Ten days after that, I emailed Mineyev a one-page proof of the SHNC and encouraged him to add it as an appendix to [5] so that group-theorists would have a proof they could be comfortable with; see [1].

Warren Dicks

References

- [1] Warren Dicks, Simplified Mineyev, preprint, 2 pages. http://mat.uab.cat/~dicks/SimplifiedMineyev.pdf
- Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Camb. Stud. Adv. Math. 17, CUP, 1989. xvi+283 pp. Errata at: http://mat.uab.cat/~dicks/DDerr.html
- [3] Joel Friedman, Sheaves on graphs and a proof of the Hanna Neumann conjecture, preprint, 59 pages. http://arxiv.org/abs/1105.0129v1
- [4] Wilfried Imrich, On finitely generated subgroups of free groups, Arch. Math. 28 (1977), 21–24.
- [5] Igor Mineyev, Submultiplicativity and the Hanna Neumann conjecture, Ann. Math. 175 (2012), 393–414.

Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

E-mail address: dicks@mat.uab.cat

Home page: http://mat.uab.cat/~dicks/