Joel Friedman's proof of the strengthened Hanna Neumann conjecture

Warren Dicks*

October 23, 2012

Abstract

For a finite graph $Z, \overline{\mathrm{r}}(Z):=e-v+t$, where e, v, and t denote the number of edges, vertices, and tree components of Z, respectively. Let G be a finite group, Z be a finite G-free G-graph, and X and Y be subgraphs of Z. Using linear algebra and algebraic geometry over a sufficiently large field, Joel Friedman proved that $\sum_{g \in G} \overline{\mathrm{r}}(X \cap g Y) \leqslant \overline{\mathrm{r}}(X) \overline{\mathrm{r}}(Y)$. He showed that this inequality implies the strengthened Hanna Neumann conjecture. We simplify Friedman's proof of the foregoing inequality by replacing the sufficiently large field with a field \mathbb{F} on which G acts faithfully and then replacing all the arguments involving algebraic geometry with shorter arguments about the left ideals of the skew group ring $\mathbb{F} G$.

2010 Mathematics Subject Classification. Primary: 20E05 05C50; Secondary: 20E08 05C05 18F20.
Key words. Intersections of free subgroups, graphs, skew group ring.

1 Sheaves on graphs

1.1 Notation. As Bourbaki intended, we let \mathbb{N} denote the set of finite cardinals, $\{0,1,2, \ldots\}$.

Throughout this section, let \mathbb{F} be a field. We shall write $\operatorname{dim}(V)$ to denote the \mathbb{F}-dimension of an \mathbb{F}-module V.

Throughout this section, let ($Z, \mathrm{~V} Z, \mathrm{E} Z, \mathrm{E} Z \xrightarrow{\iota, \tau} \mathrm{~V} Z$) be a finite (oriented) graph; here, Z is a finite set, $\mathrm{V} Z \subseteq Z, \mathrm{E} Z=Z-\mathrm{V} Z$, and ι and τ are functions. Each $e \in \mathrm{E} Z$ has an

We shall use the standard concepts of subgraph, connected graph, component of a graph, tree, tree component of a graph, and graph map.

We write $\delta(Z):=|\mathrm{E} Z|-|\mathrm{V} Z|$ and $\overline{\mathrm{r}}(Z):=\max \{\delta(Y): Y$ is a subgraph of $Z\}$. Each subgraph Y of Z with $\delta(Y)=\overline{\mathrm{r}}(Z)$ is called a δ-maximizer in Z. The intersection of all the δ-maximizers in Z is denoted supercore (Z).

[^0]1.2 Lemma. The following hold for the finite graph Z.
(i) If Z is connected, then $\delta(Z) \in\{-1\} \cup \mathbb{N}$ and $\delta(Z)=-1$ if and only if Z is a tree.
(ii) If \mathcal{C} is the set of components of Z, then $\delta(Z)=\sum_{X \in \mathfrak{e}} \delta(X)$.
(iii) $\overline{\mathrm{r}}(Z) \geqslant 0$.
(iv) $\delta($ supercore $(Z))=\overline{\mathrm{r}}(Z)$, and supercore (Z) is the unique \subseteq-smallest δ-maximizer in Z.
(v) $\overline{\mathrm{r}}(Z)-\delta(Z)$ equals the number of tree components of Z.

Proof. (i) and (ii) are straightforward, and (iii) holds since \emptyset is a subgraph of Z.
(iv) If X and Y are δ-maximizers in Z, then $\delta(X) \geqslant \delta(X \cap Y)$ and $\delta(Y) \geqslant \delta(X \cup Y)$. Since $\delta(X)+\delta(Y)=\delta(X \cap Y)+\delta(X \cup Y)$, we see that $\delta(X)=\delta(X \cap Y)$. Thus, $X \cap Y$ is a δ-maximizer in Z. Hence, the set of δ-maximizers in Z is closed under finite intersections. Since Z is finite, supercore (Z) is the intersection of finitely many δ-maximizers in Z. Thus, (iv) holds.
(v) Let forest (Z) denote the subgraph of Z formed by the tree components. Then $-\delta($ forest $(Z))$ equals the number of tree components of Z.

Now $\delta(Z)-\delta($ forest $(Z))=\delta(Z-$ forest $(Z)) \leqslant \overline{\mathrm{r}}(Z)$.
We shall prove the reverse inequality, $\overline{\mathrm{r}}(Z) \leqslant \delta(Z)-\delta($ forest $(Z))$, by induction on $|\mathrm{E} Z|$.
Let $Y:=\operatorname{supercore}(Z)$. Consider first the case where $\mathrm{E} Z=\mathrm{E} Y$. Then $Z-Y$ consists of isolated vertices, each of which is a tree component of Z. Then

$$
\overline{\mathrm{r}}(Z)=\delta(Y)=\delta(Z)-\delta(Z-Y) \leqslant \delta(Z)-\delta(\text { forest }(Z))
$$

as desired. It remains to consider the case where we have some $e \in \mathrm{E} Z-\mathrm{E} Y$. Then,

$$
\begin{aligned}
\overline{\mathrm{r}}(Z) & =\overline{\mathrm{r}}(Z-\{e\}) \text { since } e \in \mathrm{E} Z-\mathrm{E} Y \\
& \leqslant \delta(Z-\{e\})-\delta(\text { forest }(Z-\{e\})) \text { by the implicit induction hypothesis } \\
& =\delta(Z)-1-\delta(\text { forest }(Z-\{e\})) \leqslant \delta(Z)-\delta(\text { forest }(Z))
\end{aligned}
$$

since adding e to $Z-\{e\}$ reduces the number of tree components by one or zero, depending whether or not e is incident to forest $(Z-\{e\})$. The result now holds by induction.
1.3 Definitions. We let $\mathbb{Z} Z$ and $\mathbb{Z}[Z]$ denote the free \mathbb{Z}-module with \mathbb{Z}-basis the finite set Z. Let V be a finite-dimensional \mathbb{F}-module. We shall be interested in the finite-dimensional \mathbb{F}-module $V \otimes \mathbb{Z} Z=\bigoplus_{z \in Z}(V \otimes \mathbb{Z} z)$, where we are tensoring over \mathbb{Z}. For each $z \in Z$, we have a map $V \otimes \mathbb{Z} Z \rightarrow V, d \mapsto d_{z}$, such that, for each $d \in V \otimes \mathbb{Z} Z, d=\sum_{z \in Z}\left(d_{z} \otimes z\right)$.

Let D be an \mathbb{F}-submodule of $V \otimes \mathbb{Z} Z$. For each $z \in Z$, we let $D_{z}:=\left\{d_{z}: d \in D\right\}$; thus, $\bigoplus_{z \in Z}\left(D_{z} \otimes \mathbb{Z} z\right) \supseteq D$. We shall say that D is a sheaf in $V \otimes \mathbb{Z} Z$ if, firstly, $\bigoplus_{z \in Z}\left(D_{z} \otimes \mathbb{Z} z\right)=D$, and, secondly, for each $e \in \mathrm{E} X, D_{e} \subseteq D_{\iota e} \cap D_{\tau e}$. Viewed in the lattice of \mathbb{F}-submodules of $V \otimes \mathbb{Z} Z$, the set of sheaves in $V \otimes \mathbb{Z} Z$ is closed under sums and intersections.

Let D be a sheaf in $V \otimes \mathbb{Z} Z$. We define $\delta(D):=\left(\sum_{e \in \mathbb{E} Z} \operatorname{dim}\left(D_{e}\right)\right)-\left(\sum_{v \in \mathrm{~V} Z} \operatorname{dim}\left(D_{v}\right)\right)$. By a subsheaf C of D, we mean a sheaf in $V \otimes \mathbb{F} Z$ that is contained in D; in this event, we write $C \preccurlyeq D$. We define $\overline{\mathrm{r}}(D):=\max \{\delta(C): C \preccurlyeq D\}$. Clearly, $\overline{\mathrm{r}}(D) \geqslant 0$, since $\{0\} \preccurlyeq D$. If $C \preccurlyeq D$ and $\delta(C)=\overline{\mathrm{r}}(D)$, then C is called a δ-maximizer in D. The intersection of all the δ-maximizers in D is denoted supercore (D).
1.4 Lemma. Let V be a finite-dimensional \mathbb{F}-module and $D \preccurlyeq V \otimes \mathbb{Z} Z$.
(i) $\delta($ supercore $(D))=\overline{\mathrm{r}}(D)$, and supercore (D) is the unique \subseteq-smallest δ-maximizer in D.
(ii) If $D^{\prime} \preccurlyeq D$, then supercore $\left(D^{\prime}\right) \preccurlyeq \operatorname{supercore}(D)$.

Proof. (i) If B and C are δ-maximizers in D, then $\delta(B) \geqslant \delta(B \cap C)$ and $\delta(C) \geqslant \delta(B+C)$. By Grassmann's formula, $\delta(B)+\delta(C)=\delta(B \cap C)+\delta(B+C)$. Hence, $\delta(B)=\delta(B \cap C)$. Thus, $B \cap C$ is a δ-maximizer in D. Hence, the set of δ-maximizers in D is closed under finite intersections. Since $V \otimes \mathbb{Z} Z$ is finite-dimensional, the descending chain condition holds for \mathbb{F}-submodules; hence, supercore (D) is the intersection of finitely many δ-maximizers in D. It follows that (i) holds.
(ii) Let $C^{\prime}:=\operatorname{supercore}\left(D^{\prime}\right)$ and $C:=\operatorname{supercore}(D)$. Then $\delta\left(C^{\prime}\right) \geqslant \delta\left(C^{\prime} \cap C\right)$ by (i) for D^{\prime}, and $\delta(C) \geqslant \delta\left(C^{\prime}+C\right)$ by (i) for D. Since $\delta\left(C^{\prime}\right)+\delta(C)=\delta\left(C^{\prime} \cap C\right)+\delta\left(C^{\prime}+C\right)$, we see that $\delta\left(C^{\prime}\right)=\delta\left(C^{\prime} \cap C\right)$. Thus, $C^{\prime} \cap C$ is a δ-maximizer in D^{\prime}. Since C^{\prime} is the \subseteq-smallest δ-maximizer in D^{\prime} by (i) for $D^{\prime}, C^{\prime} \subseteq C^{\prime} \cap C$. Thus $C^{\prime} \subseteq C$, as desired.
1.5 Lemma. Let V be a finite-dimensional \mathbb{F}-module, V^{\prime} an \mathbb{F}-submodule of V, and Z^{\prime} a subgraph of Z. Then $V^{\prime} \otimes \mathbb{Z} Z^{\prime} \preccurlyeq V \otimes \mathbb{Z} Z$.
Proof. Set $C:=V^{\prime} \otimes \mathbb{Z} Z^{\prime}$. For each $z \in Z, C_{z}=V^{\prime}$ if $z \in Z^{\prime}$, while $C_{z}=\{0\}$ if $z \in Z-Z^{\prime}$. Thus, $C_{z} \otimes \mathbb{Z} z \subseteq C$. Consider any $e \in \mathrm{E} Z$. If $e \in Z^{\prime}$, then $C_{e}=C_{\iota e}=C_{\tau e}=V^{\prime}$, while if $e \in Z-Z^{\prime}$, then $C_{e}=\{0\} \subseteq C_{\iota e} \cap C_{\tau e}$. Thus, $C \preccurlyeq V \otimes \mathbb{Z} Z$.
1.6 Lemma. Let V be a finite-dimensional \mathbb{F}-module, and V^{\prime} an \mathbb{F}-submodule of V. Make the identification $\left(V / V^{\prime}\right) \otimes \mathbb{Z} Z=(V \otimes \mathbb{Z} Z) /\left(V^{\prime} \otimes \mathbb{Z} Z\right)$.

Let $D \preccurlyeq V \otimes \mathbb{Z} Z$. Set $D^{\prime}:=D \cap\left(V^{\prime} \otimes \mathbb{Z} Z\right)$ and $D^{\prime \prime}:=\left(D+\left(V^{\prime} \otimes \mathbb{Z} Z\right)\right) /\left(V^{\prime} \otimes \mathbb{Z} Z\right)$. Then $D^{\prime} \preccurlyeq V^{\prime} \otimes \mathbb{Z} Z, D^{\prime \prime} \preccurlyeq\left(V / V^{\prime}\right) \otimes \mathbb{Z} Z$, and $\overline{\mathrm{r}}(D) \leqslant \overline{\mathrm{r}}\left(D^{\prime}\right)+\overline{\mathrm{r}}\left(D^{\prime \prime}\right)$.
Proof. It is straightforward to show that $D^{\prime} \preccurlyeq V^{\prime} \otimes \mathbb{Z} Z$ and $D^{\prime \prime} \preccurlyeq\left(V / V^{\prime}\right) \otimes \mathbb{Z} Z$. Set $C:=\operatorname{supercore}(D), C^{\prime}:=C \cap\left(V^{\prime} \otimes \mathbb{Z} Z\right)$, and $C^{\prime \prime}:=\left(C+\left(V^{\prime} \otimes \mathbb{Z} Z\right)\right) /\left(V^{\prime} \otimes \mathbb{Z} Z\right) \simeq C / C^{\prime}$. It is straightforward to show that $C^{\prime} \preccurlyeq D^{\prime}, C^{\prime \prime} \preccurlyeq D^{\prime \prime}$, and $\delta(C)=\delta\left(C^{\prime}\right)+\delta\left(C^{\prime \prime}\right)$. Then we have $\overline{\mathrm{r}}(D)=\delta(C)=\delta\left(C^{\prime}\right)+\delta\left(C^{\prime \prime}\right) \leqslant \overline{\mathrm{r}}\left(D^{\prime}\right)+\overline{\mathrm{r}}\left(D^{\prime \prime}\right)$.

We now consider the sheaves that will most interest us.
1.7 Lemma. Let V be a finite-dimensional \mathbb{F}-module, G be an \mathbb{F}-basis of $V,\left(Z_{g}: g \in G\right)$ be a family of subgraphs of Z, and $D:=\bigoplus_{g \in G}\left(\mathbb{F} g \otimes \mathbb{Z} Z_{g}\right)$. Then $D \preccurlyeq V \otimes \mathbb{Z} Z$ and $\overline{\mathrm{r}}(D)=\sum_{g \in G} \overline{\mathrm{r}}\left(Z_{g}\right)$. In particular, $\overline{\mathrm{r}}(V \otimes \mathbb{Z} Z)=\operatorname{dim}(V) \times \overline{\mathrm{r}}(Z)$.

Proof. By Lemma 1.5, $\mathbb{F} g \otimes \mathbb{F} Z_{g} \preccurlyeq V \otimes \mathbb{F} Z$, for each $g \in G$. Since sums of sheaves are sheaves, it follows that $D \preccurlyeq V \otimes \mathbb{F} Z$. For each $g \in G$, let $X_{g}:=\operatorname{supercore}\left(Z_{g}\right)$. Then

$$
\overline{\mathrm{r}}(D)=\overline{\mathrm{r}}\left(\bigoplus_{g \in G}\left(\mathbb{F} g \otimes \mathbb{Z} Z_{g}\right)\right) \geqslant \delta\left(\bigoplus_{g \in G}\left(\mathbb{F} g \otimes \mathbb{Z} X_{g}\right)\right)=\sum_{g \in G} \delta\left(X_{g}\right)=\sum_{g \in G} \overline{\mathrm{r}}\left(Z_{g}\right) .
$$

To prove the inequality in the other direction, we argue by induction on $\operatorname{dim}(V)$.
If $\operatorname{dim}(V)=0$, the inequality is clear. Suppose now that $\operatorname{dim}(V)=1$, and let $g \in G$. Let $C:=\operatorname{supercore}(D)$. Then $C=\underset{z \in Z_{g}}{\bigoplus}\left(C_{z} \otimes z\right)$, and, for each $z \in Z_{g}, C_{z}$ is an \mathbb{F}-submodule of V. Thus, $\operatorname{dim}\left(C_{z}\right) \leqslant 1$. Let $X:=\left\{z \in Z_{g}: \operatorname{dim}\left(C_{z}\right)=1\right\}$. Then $C=\bigoplus_{z \in X}(V \otimes \mathbb{Z} z)=V \otimes \mathbb{Z} X$. Since $C \preccurlyeq V \otimes \mathbb{Z} Z$, it follows that X is a subgraph of Z_{g}. Now $\overline{\mathrm{r}}(D)=\delta(C)=\delta(X) \leqslant \overline{\mathrm{r}}\left(Z_{g}\right)$.

Thus, we may assume that $\operatorname{dim}(V) \geqslant 2$ and that the inequality holds for all smaller dimensions. Since $|G| \geqslant 2$, we may partition G into two proper subsets G^{\prime} and $G^{\prime \prime}$, and set $V^{\prime}:=\bigoplus_{g \in G^{\prime}} \mathbb{F} g, V^{\prime \prime}:=\bigoplus_{g \in G^{\prime \prime}} \mathbb{F} g, D^{\prime}:=D \cap\left(V^{\prime} \otimes \mathbb{Z} Z\right)$, and $D^{\prime \prime}:=\left(D+\left(V^{\prime} \otimes \mathbb{Z} Z\right)\right) /\left(V^{\prime} \otimes \mathbb{Z} Z\right)$. By Lemma 1.6, $\overline{\mathrm{r}}(D) \leqslant \overline{\mathrm{r}}\left(D^{\prime}\right)+\overline{\mathrm{r}}\left(D^{\prime \prime}\right)$. Since $D=\underset{g \in G}{\bigoplus}\left(\mathbb{F} g \otimes \mathbb{Z} Z_{g}\right), D^{\prime}=\bigoplus_{g \in G^{\prime}}\left(\mathbb{F} g \otimes \mathbb{Z} Z_{g}\right)$ and $D^{\prime \prime}=\bigoplus_{g \in G^{\prime \prime}}\left(\mathbb{F} g \otimes \mathbb{Z} Z_{g}\right)$, the desired inequality follows by induction.

The final assertion is the case where $Z_{g}=Z$ for each $g \in G$.
We now impose on Friedman's approach the hypothesis of a faithful group action on \mathbb{F}.
1.8 Definition. Let G be a finite multiplicative group given with a faithful left action on \mathbb{F}. Let $\operatorname{End}(\mathbb{F})$ denote the ring of all additive-group endomorphisms $r: \mathbb{F} \rightarrow \mathbb{F}, \lambda \mapsto r[\lambda]$. Here, \mathbb{F} is a left $\operatorname{End}(\mathbb{F})$-module. We view G as a subgroup of the group of units of $\operatorname{End}(\mathbb{F})$. We view \mathbb{F} as a subring of $\operatorname{End}(\mathbb{F})$ acting on \mathbb{F} by left multiplication. Let $\mathbb{F} G:=\sum_{g \in G} \mathbb{F} g \subseteq \operatorname{End}(\mathbb{F})$. If $g \in G$ and $\lambda, \mu \in \mathbb{F}$, then $(g \mu)[\lambda]=g[\mu[\lambda]]=g[\mu \lambda]=(g[\mu])(g[\lambda])=(g[\mu])[g[\lambda]]=(g[\mu] g)[\lambda] ;$ thus, $g \mu=g[\mu] g$ in $\operatorname{End}(\mathbb{F})$. It follows that $\mathbb{F} G$ is closed under multiplication in $\operatorname{End}(\mathbb{F})$, and, hence, $\mathbb{F} G$ is a subring of $\operatorname{End}(\mathbb{F})$. We call $\mathbb{F} G$ the skew group ring of G over \mathbb{F}. As is well known, Dedekind showed (publ. 1894) that $\operatorname{dim}(\mathbb{F} G)=|G|$, and Artin gave the following proof (publ. 1938). We shall show that, for each $n \in \mathbb{N}$, each repetition-free sequence $\left(g_{i}\right)_{i=1}^{n} \in G^{n}$ is left \mathbb{F}-independent; the case $n=|G|$ then gives the desired result. If $n=0$, the assertion holds. By induction, it remains to consider the case where $n \geqslant 1$ and $\left(g_{i}\right)_{i=1}^{n-1}$ is left \mathbb{F}-independent, and to show that, for each $\left(\lambda_{i}\right)_{i=1}^{n} \in \mathbb{F}^{n}$, if $\sum_{i=1}^{n} \lambda_{i} g_{i}=0$, then $\left(\lambda_{i}\right)_{i=1}^{n}=0$ in \mathbb{F}^{n}. Let $\mu \in \mathbb{F}$. Notice that

$$
\begin{aligned}
\sum_{i=1}^{n-1}\left(\lambda_{i}\left(g_{i}-g_{n}\right)[\mu]\right) g_{i} & =\sum_{i=1}^{n}\left(\lambda_{i}\left(g_{i}-g_{n}\right)[\mu]\right) g_{i}=\sum_{i=1}^{n} \lambda_{i} g_{i}[\mu] g_{i}-\sum_{i=1}^{n} \lambda_{i} g_{n}[\mu] g_{i} \\
& =\sum_{i=1}^{n} \lambda_{i} g_{i} \mu-\sum_{i=1}^{n} g_{n}[\mu] \lambda_{i} g_{i}=0 \mu-g_{n}[\mu] 0=0 .
\end{aligned}
$$

Since $\left(g_{i}\right)_{i=1}^{n-1}$ is left \mathbb{F}-independent, $\left.\left(\lambda_{i}\left(g_{i}-g_{n}\right)[\mu]\right)\right)_{i=1}^{n-1}=0$ in \mathbb{F}^{n-1}. Since μ is arbitrary, $\left(\lambda_{i}\left(g_{i}-g_{n}\right)\right)_{i=1}^{n-1}=0$ in $\mathbb{F} G^{n-1}$. Since each coordinate of $\left(g_{i}-g_{n}\right)_{i=1}^{n-1}$ is nonzero, $\left(\lambda_{i}\right)_{i=1}^{n-1}=0$ in \mathbb{F}^{n-1}. Finally, $\lambda_{n}=0$, since $g_{n} \neq 0$.
1.9 Setting. Let \mathbb{F} be a field, Z be a finite graph, Y be a subgraph of Z, and G be a finite group. Suppose that G acts freely on Z and acts faithfully on \mathbb{F}. Let $\mathbb{F} G$ be the skew group ring. In $\mathbb{F} G \otimes \mathbb{Z} Z$, let $\mathrm{D}(Y):=\bigoplus_{g \in G}(\mathbb{F} g \otimes g \mathbb{Z} Y)$, and, for each left ideal I of $\mathbb{F} G$, let $\left.\mathrm{D}(Y)\right|_{I}:=\mathrm{D}(Y) \cap(I \otimes \mathbb{Z} Z)$. Here, $\mathrm{D}(Y) \preccurlyeq \mathbb{F} G \otimes \mathbb{Z} Z$ by Lemma $1.7, I \otimes \mathbb{Z} Z \preccurlyeq \mathbb{F} G \otimes \mathbb{Z} Z$ by Lemma 1.5, and, hence, $\left.\mathrm{D}(Y)\right|_{I} \preccurlyeq \mathbb{F} G \otimes \mathbb{Z} Z$.
1.10 Lemma. In Setting 1.9, for each left ideal I of $\mathbb{F} G, \overline{\mathrm{r}}\left(\left.\mathrm{D}(Y)\right|_{I}\right) \in|G| \mathbb{N}$.

Proof. Set $D:=\left.\mathrm{D}(Y)\right|_{I}$ and $C:=\operatorname{supercore}(D)$. Let G act on $\mathbb{F} G \otimes \mathbb{Z} Z$ with the diagonal action. Let $h \in G$. Then h permutes the sheaves in $\mathbb{F} G \otimes \mathbb{Z} Z$, and stabilizes $\mathrm{D}(Y)$, $I \otimes \mathbb{Z} Z$, and their intersection, D. Thus, $h C \subseteq D$ and $\delta(h C)=\delta(C)$. Hence, $h C$ is a δ-maximizer in D. Since C is the \subseteq-smallest δ-maximizer in D, we have $C \subseteq h C$. Now, $\operatorname{dim}(h C)=\operatorname{dim}(C)<\infty$, and, hence, $h C=C$. Thus,

$$
\bigoplus_{z \in Z}\left(C_{z} \otimes z\right)=C=h C=\bigoplus_{z \in Z}\left(h\left(C_{z}\right) \otimes h z\right)=\bigoplus_{z \in Z}\left(h\left(C_{h^{-1} z}\right) \otimes z\right) .
$$

Now, for each $z \in Z, C_{h^{-1} z}=h^{-1} C_{z}$, and, hence, $\operatorname{dim}\left(C_{h^{-1} z}\right)=\operatorname{dim}\left(C_{z}\right)$. Since G acts freely on Z, it follows that $\delta(C)$ is a multiple of $|G|$, that is, $\overline{\mathrm{r}}(D) \in|G| \mathbb{N}$.
1.11 Lemma. In Setting 1.9, there exists a left ideal I of $\mathbb{F} G$ such that $\overline{\mathrm{r}}\left(\left.\mathrm{D}(Y)\right|_{I}\right)=0$ and $\overline{\mathrm{r}}(Y) \geqslant \operatorname{dim}(\mathbb{F} G / I)$.

Proof. Let \mathcal{J} denote the set of left ideals I of $\mathbb{F} G$ with $\overline{\mathrm{r}}\left(\left.\mathrm{D}(Y)\right|_{I}\right) \leqslant|G|(\operatorname{dim}(I)-|G|+\overline{\mathrm{r}}(Y))$.
By Lemma 1.7, $\overline{\mathrm{r}}(\underset{g \in G}{ }(\mathbb{F} g \otimes g \mathbb{Z} Y))=\sum_{g \in G} \overline{\mathrm{r}}(g Y)$, that is, $\overline{\mathrm{r}}(\mathrm{D}(Y))=|G| \overline{\mathrm{r}}(Y)$. It follows that $\mathbb{F} G \in \mathcal{J}$. Hence, $\mathcal{J} \neq \emptyset$.

Let I be a \subseteq-minimal element of \mathcal{J}. Thus, $0 \leqslant \overline{\mathrm{r}}\left(\left.\mathrm{D}(Y)\right|_{I}\right) \leqslant|G|(\operatorname{dim}(I)-|G|+\overline{\mathrm{r}}(Y))$. In particular, $\overline{\mathrm{r}}(Y) \geqslant|G|-\operatorname{dim}(I)=\operatorname{dim}(\mathbb{F} G / I)$. Set $D:=\left.\mathrm{D}(Y)\right|_{I}$. If $\overline{\mathrm{r}}(D)=0$, then we have the desired conclusion. Thus, it suffices to suppose that $\overline{\mathrm{r}}(D) \neq 0$ and obtain a contradiction. Set $C:=\operatorname{supercore}(D) \neq\{0\}$. Then there exists some $z \in Z$ and some nonzero $s \in C_{z} \subseteq D_{z} \subseteq I \subseteq \mathbb{F} G \subseteq \operatorname{End}(\mathbb{F})$. There exists $\lambda \in \mathbb{F}$ such that $s[\lambda] \neq 0$. Consider the left $\mathbb{F} G$-linear map $\rho_{\lambda}: I \rightarrow \mathbb{F}, r \mapsto r[\lambda]$. Since $s[\lambda] \neq 0, \rho_{\lambda}$ is surjective.

Let $I^{\prime}:=\operatorname{Ker}\left(\rho_{\lambda}\right)$. Then I^{\prime} is a left ideal of $\mathbb{F} G, I^{\prime} \subseteq I, \operatorname{dim}\left(I^{\prime}\right)=\operatorname{dim}(I)-1$, and $s \notin I^{\prime}$. Set $D^{\prime}:=\left.\mathrm{D}(Y)\right|_{I^{\prime}}$ and $C^{\prime}:=\operatorname{supercore}\left(D^{\prime}\right)$. Since $s \notin I^{\prime} \supseteq D_{z}^{\prime} \supseteq C_{z}^{\prime}$, we see that $C_{z}^{\prime} \neq C_{z}$. Also, $D^{\prime} \preccurlyeq D$, and, by Lemma $1.4(\mathrm{i}), C^{\prime} \preccurlyeq C$. Since $C^{\prime} \neq C$ and C is the \subseteq-smallest δ-maximizer in $D, \delta\left(C^{\prime}\right)<\overline{\mathrm{r}}(D)$. Hence, $\overline{\mathrm{r}}\left(D^{\prime}\right)<\overline{\mathrm{r}}(D)$. By Lemma 1.10, $\overline{\mathrm{r}}\left(D^{\prime}\right) \leqslant \overline{\mathrm{r}}(D)-|G|$. Hence,

$$
\overline{\mathrm{r}}\left(D^{\prime}\right) \leqslant \overline{\mathrm{r}}(D)-|G| \leqslant|G|(\operatorname{dim}(I)-|G|+\overline{\mathrm{r}}(Y)-1)=|G|\left(\operatorname{dim}\left(I^{\prime}\right)-|G|+\overline{\mathrm{r}}(Y)\right) .
$$

It follows that $I^{\prime} \in \mathcal{J}$. This contradicts the \subseteq-minimality of I, as desired.
1.12 Friedman's theorem. Let G be a finite group and Z be a finite G-free G-graph. If X and Y are subgraphs of Z, then $\sum_{g \in G} \overline{\mathrm{r}}(X \cap g Y) \leqslant \overline{\mathrm{r}}(X) \overline{\mathrm{r}}(Y)$.

Proof. We may choose \mathbb{F} to be a field with a faithful G-action, for example, $\mathbb{Q}\left(t_{g}: g \in G\right)$ with $h\left[t_{g}\right]=t_{h g}$ for all $h, g \in G$. We may now assume that we are in Setting 1.9. By (Lemma) 1.11, there exists a left ideal I of $\mathbb{F} G$ such that $\overline{\mathrm{r}}\left(\left.\mathrm{D}(Y)\right|_{I}\right)=0$ and $\operatorname{dim}(\mathbb{F} G / I) \leqslant \overline{\mathrm{r}}(Y)$; hence,
) $\overline{\mathrm{r}}\left(\left.\mathrm{D}(Y)\right|_{I}\right)+\overline{\mathrm{r}}((\mathbb{F} G / I) \otimes \mathbb{Z} X)=0+\overline{\mathrm{r}}((\mathbb{F} G / I) \otimes \mathbb{Z} X) \stackrel{1.7}{=} \operatorname{dim}(\mathbb{F} G / I) \overline{\mathrm{r}}(X) \leqslant \overline{\mathrm{r}}(Y) \overline{\mathrm{r}}(X)$.
By 1.5, we now have three sheaves in $\mathbb{F} G \otimes \mathbb{Z} Z$,

$$
\mathrm{D}(Y)=\bigoplus_{g \in G}(\mathbb{F} g \otimes g \mathbb{Z} Y), \quad \mathbb{F} G \otimes \mathbb{Z} X, \quad I \otimes \mathbb{Z} Z
$$

We then have their pairwise intersections,

$$
D:=\mathrm{D}(Y) \cap(\mathbb{F} G \otimes \mathbb{Z} X),\left.\quad \mathrm{D}(Y)\right|_{I}=\mathrm{D}(Y) \cap(I \otimes \mathbb{Z} Z), \quad I \otimes \mathbb{Z} X=(\mathbb{F} G \otimes \mathbb{Z} X) \cap(I \otimes \mathbb{Z} Z)
$$ and the intersection of all three, $D^{\prime}:=\mathrm{D}(Y) \cap(\mathbb{F} G \otimes \mathbb{Z} X) \cap(I \otimes \mathbb{Z} Z)$.

Notice that $D=\bigoplus_{g \in G}(\mathbb{F} g \otimes \mathbb{Z}[g Y \cap X]), \quad D^{\prime}=D \cap(I \otimes \mathbb{Z} X)$, and $\left.D^{\prime} \preccurlyeq \mathrm{D}(Y)\right|_{I}$. By 1.6,

$$
\begin{aligned}
D^{\prime \prime} & :=(D+(I \otimes \mathbb{Z} X)) /(I \otimes \mathbb{Z} X) \preccurlyeq(\mathbb{F} G / I) \otimes \mathbb{Z} X . \text { Now } \\
& \sum_{g \in G} \overline{\mathrm{r}}(g Y \cap X) \stackrel{1.7}{=} \overline{\mathrm{r}}(D) \stackrel{1.6}{\leqslant} \overline{\mathrm{r}}\left(D^{\prime}\right)+\overline{\mathrm{r}}\left(D^{\prime \prime}\right) \leqslant \overline{\mathrm{r}}\left(\left.\mathrm{D}(Y)\right|_{I}\right)+\overline{\mathrm{r}}((\mathbb{F} G / I) \otimes \mathbb{Z} X) \stackrel{(1)}{\leqslant} \overline{\mathrm{r}}(Y) \overline{\mathrm{r}}(X) .
\end{aligned}
$$

2 Free groups and graphs

We now quickly review the standard results that Friedman applies in deducing the strengthened Hanna Neumann conjecture. Most of the following can be found in [2, Section I.8], for example.
2.1 Definitions. For a free group F, we define $\overline{\mathrm{r}}(F):=\max \{\operatorname{rank}(F)-1,0\} \in \mathbb{N} \cup\{\infty\}$. Thus, if F is cyclic, then $\overline{\mathrm{r}}(F)=0$, and otherwise $\overline{\mathrm{r}}(F)>0$. Similarly, if F is finitely generated, then $\overline{\mathrm{r}}(F)<\infty$, and otherwise $\overline{\mathrm{r}}(F)=\infty$.
2.2 Definitions. Let X and Y be graphs, and let $\alpha: X \rightarrow Y$ be a graph map. For $x \in \mathrm{~V} X$, we write $\operatorname{link}(x, X):=\{(e, \nu) \in \mathrm{E} X \times\{\iota, \tau\}: \nu(e)=x\}$, and we see that α induces a map $\operatorname{link}(x, X) \rightarrow \operatorname{link}(\alpha(x), Y)$. If the latter map is bijective for each $x \in \mathrm{~V} X$, we say that α is locally bijective. We define locally injective similarly.
2.3 Definitions. Let X be a connected graph and x be a vertex of X that is to serve as a basepoint of X.

Let πX denote the set of all reduced paths in X. Let t denote the element of πX that is the empty path at x. The set πX has a partial binary operation of concatenation-where-defined followed by reduction. For any vertices v, w of X, we let $\pi X[v, w]$ denote the set of elements of πX with initial vertex v and terminal vertex w; we let $\pi X[v,-]$ denote the set of elements of πX with initial vertex v. If X is a tree, then $\pi X[v, w]$ consists of a single element, denoted $X[v, w]$; here, $\pi X[v,-]$ is in bijective correspondence with $\mathrm{V} X$.

The set $F:=\pi X[x, x]$ inherits a binary operation from πX that makes F into a group, called the fundamental group of X at x. Let us choose a maximal subtree X_{0} of X. It is not difficult to show that the set $\left\{X_{0}[x, \iota e] \cdot e \cdot X_{0}[\tau e, x]: e \in X-X_{0}\right\}$ freely generates F. Thus, X is a tree if and only if F is trivial. Also, F is a free $\operatorname{group}, \operatorname{rank}(F)=\left|X-X_{0}\right|$, and $\left|\mathrm{E} X_{0}\right|=|\mathrm{V} X|-1$. If $|\mathrm{V} X|<\infty$, then $\operatorname{rank}(F)-1=|\mathrm{E} X|-|\mathrm{V} X|$.

If $|X|<\infty$, we have $\overline{\mathrm{r}}(X)$ as in Notation 1.1, and we shall show that $\overline{\mathrm{r}}(F)=\overline{\mathrm{r}}(X)$. Consider first the case where X is a tree. We have seen that $\overline{\mathrm{r}}(F)=0$, and, by Lemma 1.2(v), $\overline{\mathrm{r}}(X)=\delta(X)+1=0$. Suppose now that X is not a tree. We have seen that F is nontrivial and $\overline{\mathrm{r}}(F)=|\mathrm{E} X|-|\mathrm{V} X|=\delta(X)$, and, by Lemma $1.2(\mathrm{v}), \overline{\mathrm{r}}(X)=\delta(X)$, as claimed.

The universal cover of X at x is the graph whose vertex set is $\pi X[x,-]$ with distinguished element t, the empty path at x, and whose edges are given by saying that each element of $(\pi X[x,-])-\{t\}$ is T-adjacent to the element of $\pi X[x,-]$ obtained by deleting the last edge and the last vertex. Let T denote the universal cover of X at x.

The partial binary operation in πX gives a left action of F on T. It can be seen that F acts freely on T.

There is a natural graph map $\alpha: T \rightarrow X$ that on vertices is given by assigning to each element of $\pi X[x,-]$ its terminal vertex. Then $\alpha(t)=x$, and α is locally bijective. There is then an induced graph map $F \backslash T \rightarrow X, F t \mapsto \alpha(t)$, and it is an isomorphism.
2.4 Definitions. Let B be a set. Let X be the connected graph with one vertex and with edge set B. On applying Definitions 2.3, we obtain a free group F acting freely on a tree T. Here, F is the free group on $B, \mathrm{~V} T=F$, and $\mathrm{E} T=F \times B$, with $\iota(f, b)=f$ and $\tau(f, b)=f b$. We call T the Cayley tree of F with respect to B.
2.5 Definitions. Let F be a group, T an F-free F-tree, and t_{0} a vertex of T that will serve as a basepoint.

Then $X:=F \backslash T$ is a connected graph with basepoint $x_{0}:=F t_{0}$.
There is a natural graph map $T \rightarrow X, t \mapsto F t$, and it is locally injective, since F acts freely. To see that it is locally bijective, consider any $F t \in \mathrm{~V} X$ and $(F e, \nu) \in \operatorname{link}(X, F t)$. Then there exists a unique $f \in F$ such that $f \cdot \nu e=t$, and then $(f \cdot e, \nu) \in \operatorname{link}(T, t)$.

In summary, Definitions 2.3 associate to a basepointed connected graph, a (free) group acting freely on a tree which has a basepoint; and, in the reverse direction, Definitions 2.5 associate a basepointed connected graph to a group acting freely on a tree with a basepoint. It can be shown that these two operations are mutually inverse modulo natural identifications. This is an important special case of Bass-Serre theory that was known to Reidemeister and Schreier. We shall need the structure part of the result.
2.6 Theorem. Let F be a group, T an F-free F-tree, and t_{0} a vertex of T. Then $F \simeq \pi(F \backslash T)\left[F t_{0}, F t_{0}\right]$, which is a free group. If $|F \backslash T|<\infty$, then $\overline{\mathrm{r}}(F)=\overline{\mathrm{r}}(F \backslash T)$.

Proof. Let $X:=F \backslash T$ and $x_{0}:=F t_{0}$. We have seen that the natural map $\alpha: T \rightarrow X, t \mapsto F t$, is locally bijective. It follows that α maps πT to πX. For each $f \in F, T\left[t_{0}, f \cdot t_{0}\right]$ is then carried to an element of $\pi X\left[x_{0}, x_{0}\right]$. Conversely, each element of $\pi X\left[x_{0}, x_{0}\right]$ lifts to a unique element of $\pi T\left[t_{0},-\right]$, and then the terminal vertex of this lifted path can be expressed as $f \cdot t_{0}$ for a unique $f \in F$. We then have mutually inverse maps between F and $\pi X\left[x_{0}, x_{0}\right]$.

The remaining results follow from Definitions 2.3.
2.7 Reidemeister's theorem. A group is free if and only if it acts freely on some tree.

Proof. We saw in Definitions 2.4 that if a group is free, then it acts freely on some tree. Conversely, by Theorem 2.6, if a group acts freely on a tree, then the group is free.
2.8 The Nielsen-Schreier theorem. Subgroups of free groups are free.

Proof. This is clear from Theorem 2.7.
2.9 The Schreier index theorem. If F is a free group and H is a finite-index subgroup of F, then

$$
\begin{equation*}
\overline{\mathrm{r}}(H)=(F: H) \times \overline{\mathrm{r}}(F) \tag{2}
\end{equation*}
$$

Proof. Let T be the Cayley tree of F with respect to a free generating set B of F. Since $\mathrm{V} T=F$, we see that $|H \backslash \mathrm{~V} T|=(F: H)<\infty$. By Theorem 2.6, $H \simeq \pi(H \backslash T)[H 1, H 1]$; hence, by Definitions 2.3, $\operatorname{rank}(H)-1=|H \backslash \mathrm{E} T|-(F: H)$. Since $\mathrm{E} T=F \times B$, we see that $|H \backslash \mathrm{E} T|=(F: H) \times \operatorname{rank}(F)$. Thus,

$$
\begin{equation*}
\operatorname{rank}(H)-1=(F: H) \times(\operatorname{rank}(F)-1) \tag{3}
\end{equation*}
$$

If both sides of (3) are negative, then $\operatorname{rank}(H)=\operatorname{rank}(F)=0$, and then both sides of (2) are zero. Thus, we may assume that both sides of (3) are non-negative, and here (3) coincides with (2).

The following is due in steps to M. Hall, M. Tretkoff, L. Babai, and W. Imrich; see [4].
2.10 The geometric Marshall Hall theorem. Let F be a group, H be a subgroup of F, T be an F-free F-tree, and T_{H} be an H-subtree of T. If $F \backslash T$ and $H \backslash T_{H}$ are finite, then there exists a finite-index subgroup L of F containing H such that the induced map $H \backslash T_{H} \rightarrow L \backslash T$ is injective.

Proof. Notice that $H \backslash T_{H} \rightarrow H \backslash T$ is injective and that $H \backslash T \rightarrow F \backslash T$ is locally bijective. Hence, $H \backslash T_{H} \rightarrow F \backslash T$ is locally injective.

To simplify the notation for the next part of the argument, let us write $Z_{H}:=H \backslash T_{H}$ and $Z_{F}:=F \backslash T$. These are finite graphs by hypothesis, and we have a locally injective graph map $\alpha: Z_{H} \rightarrow Z_{F}$. Let $n:=\max \left\{\left|\alpha^{-1}\{v\}\right|: v \in \mathrm{~V} Z_{F}\right\}$. We shall now add 'missing' vertices and
edges to the fibres of α to obtain a finite graph X having Z_{H} as a subgraph, together with a locally bijective, n to 1 , graph map $X \rightarrow Z_{F}$ extending α, i.e. the composite $Z_{H} \hookrightarrow X \rightarrow Z_{F}$ is α.

We first construct a graph map $\beta: Z_{H}^{\prime} \rightarrow Z_{F}$ extending α by taking Z_{H}^{\prime} to be the graph obtained from Z_{H} by adding, for each $v \in \mathrm{~V} Z_{F}, n-\left|\alpha^{-1}\{v\}\right|$ isolated vertices, which β then maps to v. Clearly, β is locally injective, extends α, and, for all $v \in \mathrm{~V} Z_{F},\left|\beta^{-1}\{v\}\right|=n$.

Consider any $e \in \mathrm{E} Z_{F}$. Since β is locally injective, the map $\iota: \beta^{-1}\{e\} \rightarrow \mathrm{V} Z_{H}$ is injective, and similarly for τ. Thus, $\left|\iota\left(\beta^{-1}\{e\}\right)\right|=\left|\beta^{-1}\{e\}\right|=\left|\tau\left(\beta^{-1}\{e\}\right)\right|$. Hence, we may choose a bijective map $\sigma: \beta^{-1}\{\iota e\}-\iota\left(\beta^{-1}\{e\}\right) \rightarrow \beta^{-1}\{\tau e\}-\tau\left(\beta^{-1}\{e\}\right)$. For each $v \in \beta^{-1}\{\iota e\}-\iota\left(\beta^{-1}\{e\}\right)$, we add to Z_{H}^{\prime} an edge e_{v} with $\iota e_{v}=v$ and $\tau e_{v}=\sigma(v)$, and we map e_{v} to e. After having done this for each $e \in \mathrm{E} Z_{F}$, we obtain a graph X containing Z_{H} and a locally bijective graph map $X \rightarrow Z_{F}$ extending α.

Since Z_{H} is connected, it lies in a component of X, and we may replace X with this component and still have a locally bijective graph map $\gamma: X \rightarrow Z_{F}$ extending α. Returning to the original notation, we have a finite connected graph X containing $H \backslash T_{H}$ as a subgraph, and a locally bijective graph map $\gamma: X \rightarrow F \backslash T$ extending $H \backslash T_{H} \rightarrow F \backslash T$.

Choose a vertex v in $H \backslash T_{H}$. Then v is a vertex of X. By Theorem 2.6, we may make the identifications $H=\pi\left(H \backslash T_{H}\right)[v, v]$ and $F=\pi(F \backslash T)[\gamma(v), \gamma(v)]$. Let $L:=\pi X[v, v]$. Since $H \backslash T_{H} \subseteq X, H \leqslant L$. Since $X \rightarrow F \backslash T$ is locally bijective, we may identify $\pi X[v,-]$ with $\pi(F \backslash T)[\gamma(v),-]$, and we may identify the latter set with VT. Thus, we may identify the universal cover of X with T, and we may identify L with a subgroup of F. The latter identification respects the copies of H in L and F; thus $H \leqslant L \leqslant F$. The locally bijective graph map $T \rightarrow X$ induces a graph map $L \backslash T \rightarrow X$ which is bijective. Hence, $(F: L)<\infty$.

3 The strengthened Hanna Neumann conjecture

For any group F, if $H \leqslant F$ and $f \in F$, then we write ${ }^{f} H:=f H f^{-1}$ and $H^{f}:=f^{-1} H f$. We shall show that if F is a free group and H and K are finitely generated subgroups of F, then $\quad \sum \overline{\mathrm{r}}\left(H \cap{ }^{f} K\right) \leqslant \overline{\mathrm{r}}(H) \overline{\mathrm{r}}(K)$. Notice that $H \cap{ }^{f} K$ does not change if f is multiplied $H f K \in H \backslash F / K$
on the right by an element of K. Also $\left(H \cap{ }^{f} K\right)^{f}=H^{f} \cap K$ and this subgroup does not change if f is multiplied on the left by an element of H. It follows that the conjugacy class of $H \cap{ }^{f} K$ does not change if f is multiplied on the left by an element of H and on the right by an element of K. In particular, $\overline{\mathrm{r}}\left(H \cap{ }^{f} K\right)$ is independent of which representative is chosen for the double coset $H f K$.
3.1 Setting. Let F be a finitely generated, non-cyclic free group, let H and K be finitely generated, non-cyclic subgroups of F, and let

$$
\operatorname{SHN}(F, H, K):=\sum_{H f K \in H \backslash F / K} \frac{\frac{\mathrm{~T}}{}\left(H \cap^{f} K\right)}{\overline{\mathrm{T}}(H) \overline{\mathrm{r}}(K)} \in[0, \infty] .
$$

Let T denote the Cayley tree of F with respect to some free generating set of F. For each subgroup L of F, view L as a subset of $\mathrm{V} T=F$, and let T_{L} denote the \subseteq-smallest subtree of T containing L. Notice that T_{L} is an L-subtree of T. If there exists some finite generating set $\left\{f_{1}, \ldots, f_{n}\right\}$ for L, then the \subseteq-smallest subtree S of T_{L} containing $\left\{1, f_{1}, \ldots, f_{n}\right\}$ is finite and it can be shown that $L S=T_{L}$. It follows that $L \backslash T_{L}$ is finite.

We are now in a position to translate Theorem 1.12 into the desired form.
3.2 Theorem. In Setting 3.1, if there exists a normal, finite-index subgroup N of F such that $N \supseteq H \cup K$ and each of the maps $H \backslash T_{H} \rightarrow N \backslash T$ and $K \backslash T_{K} \rightarrow N \backslash T$ is injective, then $\operatorname{SHN}(F, H, K) \leqslant 1$.

Proof. Let $Z:=N \backslash T, X:=H \backslash T_{H}$, and $Y:=K \backslash T_{K}$. By hypothesis, we may view X and Y as subgraphs of Z. Let $G:=F / N$. Notice that F acts on Z by $f \cdot N t=N f t$, and G then acts freely on Z.
Step 1: $\sum_{H n K \in H \backslash N / K} \overline{\mathrm{r}}\left(H \cap{ }^{n} K\right) \leqslant \overline{\mathrm{r}}(X \cap Y)$. Let S be a subset of N such that the map $S \rightarrow H \backslash N / K, s \mapsto H s N$, is bijective. If $s_{1}, s_{2} \in S, t_{1}, t_{2} \in T$, then we have the following chain of equivalences.

$$
\begin{aligned}
s_{1} & =s_{2} \text { and }\left(H \cap{ }^{s_{1}} K\right) t_{1}=\left(H \cap{ }^{s_{2}} K\right) t_{2} \\
& \Leftrightarrow s_{1}=s_{2} \text { and } \exists(h, k) \in H \times K \text { such that } h t_{1}=t_{2} \text { and } h={ }^{s_{1}} k, \text { i.e., } h s_{1}=s_{1} k \\
& \Leftrightarrow \exists(h, k) \in H \times K \text { such that } h t_{1}=t_{2} \text { and } h s_{1}=s_{2} k, \text { i.e, } k s_{1}^{-1} t_{1}=s_{2}^{-1} h t_{1}=s_{2}^{-1} t_{2} \\
& \Leftrightarrow H t_{1}=H t_{2} \text { and } K s_{1}^{-1} t_{1}=K s_{2}^{-1} t_{2} .
\end{aligned}
$$

Thus, we have a well-defined, injective graph map

$$
\begin{aligned}
& \bigvee_{s \in S}\left(H \cap{ }^{s} K\right) \backslash\left(T_{H} \cap s T_{K}\right) \rightarrow\left(H \backslash T_{H}\right) \times_{N \backslash T}\left(K \backslash T_{K}\right), \\
& \left(H \cap{ }^{s} K\right) t \quad \mapsto \quad\left(H t, K s^{-1} t\right) \quad \text { for } s \in S, t \in T_{H} \cap s T_{K} .
\end{aligned}
$$

Now, $\left(H \backslash T_{H}\right) \times_{N \backslash T}\left(K \backslash T_{K}\right)=X \times_{Z} Y=X \cap Y$. In particular, this codomain is finite. Hence, the domain is finite. The operator $\overline{\mathrm{r}}(-)$ on finite graphs, from Notation 1.1, behaves well with respect to inclusions and disjoint unions. Thus,

$$
\begin{equation*}
\overline{\mathrm{r}}(X \cap Y) \geqslant \overline{\mathrm{r}}\left(\bigvee_{s \in S}\left(H \cap{ }^{s} K\right) \backslash\left(T_{H} \cap s T_{K}\right)\right)=\sum_{s \in S} \overline{\mathrm{r}}\left(\left(H^{s} \cap K\right) \backslash\left(T_{H} \cap s T_{K}\right)\right) \tag{4}
\end{equation*}
$$

For $s \in S$, we shall now prove that

$$
\begin{equation*}
\overline{\mathrm{r}}\left(\left(H \cap{ }^{s} K\right) \backslash\left(T_{H} \cap s T_{K}\right)\right)=\overline{\mathrm{r}}\left(H \cap{ }^{s} K\right) . \tag{5}
\end{equation*}
$$

Notice that $H \cap{ }^{s} K$ acts freely on both T_{H} and $s T_{K}$. If $T_{H} \cap s T_{K}=\emptyset$, then $H \cap{ }^{s} K$ stabilizes the unique path from T_{H} to $s T_{K}$, and, hence, stabilizes an edge of T, and, hence, is trivial;
here, both sides of (5) are 0 . If $T_{H} \cap s T_{K} \neq \emptyset$, then $T_{H} \cap s T_{K}$ is a tree on which $H \cap{ }^{s} K$ acts freely, and then (5) holds by Theorem 2.6. This proves (5).

By (4) and (5), $\sum_{s \in S} \overline{\mathrm{r}}\left(H \cap{ }^{s} K\right) \leqslant \overline{\mathrm{r}}(X \cap Y)$. This completes Step 1.
Step 2. Consider any $f \in F$, and let $g:=f N \in G$. For each $y \in Y$, there exists some $t \in T_{K}$ such that $y=N t$, and then we have $g y=(N f)(N t)=N f t$. It is not difficult to see that we have a graph isomorphism $K \backslash T \rightarrow{ }^{f} K \backslash T, K t \mapsto\left({ }^{f} K\right) f t$. It follows that, in $N \backslash T$, the image of ${ }^{f} K \backslash f T_{K}$ is $\left\{N f t: t \in T_{H}\right\}$, that is, $g Y$. On replacing Y, T_{K}, and K in Step 1 with
 difficult to see that there is a bijection $H \backslash N /{ }^{f} K \rightarrow H \backslash N f / K, H n^{f} K \mapsto H n f K$. It follows that $\sum_{H n f K \in H \backslash N f / K} \overline{\mathrm{r}}\left(H \cap{ }^{(n f)} K\right) \leqslant \overline{\mathrm{r}}(X \cap g Y)$.
Step 3. On summing the inequalities obtained in Step 2, one for each $g=N f \in G$, we find that $\sum_{H f K \in H \backslash F / K} \overline{\mathrm{r}}\left(H \cap{ }^{f} K\right) \leqslant \sum_{g \in G} \overline{\mathrm{r}}(X \cap g Y)$. By Theorem 1.12, $\sum_{g \in G} \overline{\mathrm{r}}(X \cap g Y) \leqslant \overline{\mathrm{r}}(X) \overline{\mathrm{r}}(Y)$. Here, $X=H \backslash T_{H}$ and $Y=K \backslash T_{K}$, and, by Theorem 2.6, $\overline{\mathrm{r}}(X)=\overline{\mathrm{r}}(H)$ and $\overline{\mathrm{r}}(Y)=\overline{\mathrm{r}}(K)$. We now see that $\operatorname{SHN}(F, H, K) \leqslant 1$.

The next result shows that $\operatorname{SHN}(F, H, K)$ is an invariant of the commensurability class of K in F; by symmetry, the same holds for H.
3.3 Lemma. In Setting 3.1, suppose that L is a normal, finite-index subgroup of K. Then $\operatorname{SHN}(F, H, L)=\operatorname{SHN}(F, H, K)$.

Proof. Consider any $f \in F$. It suffices to show that

For each $k \in K,{ }^{k} L=L$. Thus, it suffices to show that

$$
|H \backslash H f K / L| \times \frac{\overline{\mathrm{T}}\left(H^{f} \cap L\right)}{\overline{\mathrm{r}}(L)}=\frac{\overline{\mathrm{r}}\left(H^{f} \cap K\right)}{\overline{\mathrm{T}}(K)} .
$$

Since $\left(f^{-1}\right) H f k L=H^{f} k L$, we have a bijective map $H \backslash H f K / L \xrightarrow{\sim}\left(H^{f}\right) \backslash\left(H^{f}\right) K / L$, $H f k L \mapsto H^{f} k L$. To simplify notation, let us write H in place of H^{f}. Then it suffices to show that $|H \backslash H K / L| \times \frac{\overline{\mathrm{r}}(H \cap L)}{\overline{\mathrm{T}}(L)}=\frac{\overline{\mathrm{T}}(H \cap K)}{\overline{\mathrm{T}}(K)}$.

By Theorem 2.9, $\overline{\mathrm{r}}(H \cap L)=\overline{\mathrm{r}}(H \cap K) \times(H \cap K: H \cap L)$ and $\overline{\mathrm{r}}(L)=\overline{\mathrm{r}}(K)(K: L)$; it then suffices to show that $|H \backslash H K / L| \times(H \cap K: H \cap L)=(K: L)$.

The right K-set $H \backslash H K$ is generated by the element $H 1$, which has right K-stabilizer $H \cap K$. Hence, $H \backslash H K \simeq(H \cap K) \backslash K$ as right K-sets. Thus, $H \backslash H K / L \simeq(H \cap K) \backslash K / L$ as sets. Hence, $|H \backslash H K / L|=|(H \cap K) \backslash K / L|=|(H \cap K) L \backslash K|=(K:(H \cap K) L)$.

As left $H \cap K$-sets, $((H \cap K) L) / L \simeq(H \cap K) /(H \cap K \cap L)=(H \cap K) /(H \cap L)$. Thus, $(H \cap K: H \cap L)=((H \cap K) L: L)$.

On multiplying the results of the previous two paragraphs, we find that

$$
|H \backslash H K / L| \times(H \cap K: H \cap L)=(K:(H \cap K) L) \times((H \cap K) L: L)=(K: L),
$$

as desired.
We can now prove the strengthened Hanna Neumann conjecture.
3.4 Theorem. Let F be a free group, and H, K be finitely generated subgroups of F. Then $\sum_{H f K \in H \backslash F / K} \overline{\mathrm{r}}\left(H \cap{ }^{f} K\right) \leqslant \overline{\mathrm{r}}(H) \overline{\mathrm{r}}(K)$.
Proof. The desired inequality holds if H or K is cyclic; thus, we may assume that H and K are non-cyclic, and, in particular, F is non-cyclic. Choose a free generating set for F and a free product decomposition $F=A * B$ such that A is finitely generated and contains generating sets of H and K. The F-graph with vertex set $F / A \vee F / B$ and edge set F, with an edge f joining $f A$ to $f B$, is a tree, called the Bass-Serre tree for the free product decomposition. Consider any $f \in F-A$. Then $A \neq f A$ and $H \cap{ }^{f} K$ stabilizes the vertices A and $f A$, and, hence, stabilizes the path from A to $f A$. This path contains an edge, and the edges have trivial stabilizers. Thus $H \cap{ }^{f} K=\{1\}$. Hence, $\sum_{H f K \in H \backslash F / K} \overline{\mathrm{r}}\left(H \cap{ }^{f} K\right)=\sum_{H a K \in H \backslash A / K} \overline{\mathrm{r}}\left(H \cap{ }^{a} K\right)$. Thus, we may replace F with A and assume that F is finitely generated. Now, we may assume that we are in Setting 3.1.

By Theorem 2.10, there exists a finite-index subgroup H_{0} of F containing H such that the map $H \backslash T_{H} \rightarrow H_{0} \backslash T$ is injective. Similarly, there exists a finite-index subgroup K_{0} of F containing K such that the map $K \backslash T_{K} \rightarrow K_{0} \backslash T$ is injective. We have left F-actions on F / H_{0} and on F / K_{0}, and hence an F-action on the finite set $F / H_{0} \vee F / K_{0}$. Let N denote the kernel of this action. Then N is a normal, finite-index subgroup of F. The F-stabilizer of the element $1 H_{0}$ is H_{0}, and, hence, $N \leqslant H_{0}$. Similarly, $N \leqslant K_{0}$.

We shall now apply Theorem 3.2 to $\operatorname{SHN}(F, H \cap N, K \cap N)$. Notice that $H \cap N$ has finite index in H, and, hence, by Theorem 2.9, $H \cap N$ is finitely generated. We claim that the $\operatorname{map}(H \cap N) \backslash T_{H \cap N} \rightarrow N \backslash T$ is injective. Consider $t_{1}, t_{2} \in T_{H \cap N}$ such that $N t_{1}=N t_{2}$. Since $N \leqslant H_{0}, H_{0} t_{1}=H_{0} t_{2}$. Since $T_{H \cap N} \subseteq T_{H}$ and the map $H \backslash T_{H} \rightarrow H_{0} \backslash T$ is injective, we see that $H t_{1}=H t_{2}$. Since H_{0} acts freely on T, there is a unique $f \in H_{0}$ such that $f t_{1}=t_{2}$. We have now seen that $f \in N$ and $f \in H$. Thus, $(H \cap N) t_{1}=(H \cap N) t_{2}$, as desired. Similarly, $K \cap N$ is finitely generated and the map $(K \cap N) \backslash T_{K \cap N} \rightarrow N \backslash T$ is injective. By Theorem 3.2, $\mathrm{SHN}(F, H \cap N, K \cap N) \leqslant 1$.

By Lemma 3.3, $\operatorname{SHN}(F, H, K \cap N)=\operatorname{SHN}(F, H \cap N, K \cap N) \leqslant 1$. By the analogue of Lemma 3.3, $\operatorname{SHN}(F, H, K)=\operatorname{SHN}(F, H \cap N, K) \leqslant 1$, as desired.

Historical note. On May 1, 2011, Joel Friedman posted on the arXiv a proof of the strengthened Hanna Neumann conjecture (SHNC) quite similar to the version presented here; see [3]. Six days later, Igor Mineyev posted on his web page an independent proof of the SHNC; see [5]. (Both [3] and [5] contain other results.) Ten days after that, I emailed Mineyev a one-page proof of the SHNC and encouraged him to add it as an appendix to [5] so that group-theorists would have a proof they could be comfortable with; see [1].

References

[1] Warren Dicks, Simplified Mineyev, preprint, 2 pages. http://mat.uab.cat/~dicks/SimplifiedMineyev.pdf
[2] Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Camb. Stud. Adv. Math. 17, CUP, 1989. xvi +283 pp. Errata at: http://mat.uab.cat/~dicks/DDerr.html
[3] Joel Friedman, Sheaves on graphs and a proof of the Hanna Neumann conjecture, preprint, 59 pages.
http://arxiv.org/abs/1105.0129v1
[4] Wilfried Imrich, On finitely generated subgroups of free groups, Arch. Math. 28 (1977), 21-24.
[5] Igor Mineyev, Submultiplicativity and the Hanna Neumann conjecture, Ann. Math. 175 (2012), 393-414.

Departament de Matemàtiques,
Universitat Autònoma de Barcelona,
E-08193 Bellaterra (Barcelona), Spain
E-mail address: dicks@mat.uab.cat
Home page: http://mat.uab.cat/~dicks/

[^0]: *Partially supported by Spain's Ministerio de Ciencia e Innovación through Project MTM2008-01550.

