
05.06.2012 reworking of the 17.05.2011 e-mail from me (Warren Dicks) to Igor Mineyev which gave a one-page
simplification of the latter’s proof of the SHNC, Walter Neumann’s strengthened form of the Hanna Neumann
conjecture. Mineyev’s proof (made available online 07.05.2011, published as Submultiplicativity and the Hanna
Neumann conjecture, Ann. of Math.175 (2012), 393–414) was independent of Joel Friedman’s proof (made avail-
able online 01.05.2011 at http://arxiv.org/abs/1105.0129). Mineyev’s proof deals with ℓ2-numbers and yields
a general result, while my simplification uses Bass-Serre theory and applies only to the proof of the SHNC.
(Mineyev’s Groups, graphs, and the Hanna Neumann conjecture, J.Topol.Anal.4 (2012), 1–12, does little more
than combine part of Mineyev’s proof and most of my simplification to give an intermediate-length proof of the
SHNC that uses neither Hilbert modules nor graphs of groups.) The evolution of the reworked simplification
given here benefitted from observations made, in chronological order, by Igor Mineyev, Martin Lustig, Yago
Antoĺın, Llúıs Bacardit, Gilbert Levitt, Oleg Bogopolski, Ilya Kapovich, Armando Martino, George Bergman,
Zoran Šunić and Joel Friedman.

An ordered group. • We first turn to Satz I in Wilhelm Magnus’ Beziehungen zwischen Gruppen und Idealen
in einem speziellen Ring, Math.Ann.111 (1935), 259–280, and transcribe the two-variable case of the argument.

Let Z⟨ẋ, ẏ⟩ denote the free associative ring on two variables ẋ, ẏ. Let a denote the two-sided ideal generated
by ẋ, ẏ. Set Z⟨⟨ẋ, ẏ⟩⟩ := lim

←
(Z⟨ẋ, ẏ⟩/an : n > 1). Let {ẋ, ẏ}∗ denote the free multiplicative monoid on ẋ, ẏ.

An element a of Z⟨⟨ẋ, ẏ⟩⟩ is just a function {ẋ, ẏ}∗ → Z, ω 7→ a[ω], expressed as a formal infinite sum
∑

ω∈{ẋ, ẏ}∗
ω·a[ω]

to facilitate ring operations. The power-series rings Z[[ẋ]] and Z[[ẏ]] are subrings of Z⟨⟨ẋ, ẏ⟩⟩, as is Z⟨ẋ, ẏ⟩. Let
PU(Z⟨⟨ẋ, ẏ⟩⟩) denote the group of units with constant term 1. Set

x := 1+ ẋ ∈ PU(Z[[ẋ]]), y := 1+ ẏ ∈ PU(Z[[ẏ]]), and F := ⟨x, y⟩ 6 PU(Z⟨⟨ẋ, ẏ⟩⟩).
If a = xm1yn1 · · ·xmjynj , then a[(ẋẏ)j ] = m1n1 · · ·mjnj , as can be seen by expressing a as(
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2
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) (
1+n1ẏ+
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)
ẏ2+ · · ·

)
· · ·

(
1+mj ẋ+

(
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)
ẋ2+ · · ·

) (
1+nj ẏ+

(
nj

2

)
ẏ2+ · · ·

)
.

Thus, xm1yn1 · · ·xmjynj ̸= 1 whenever j > 1 and m1n1 · · ·mjnj ̸= 0. It follows that F = ⟨x, y | ⟩.
• We next turn to the fourth sentence of George M.Bergman’s Ordering coproducts of groups and semigroups,
J.Algebra133 (1990), 313–339, and transcribe a lexicographic case of the argument.

Endow {ẋ, ẏ}∗ with the length-lexicographic ordering≺ with ẋ ≺ ẏ. Then {ẋ, ẏ}∗ is an ordered monoid that
is well-ordered. For each a ∈ Z⟨⟨ẋ, ẏ⟩⟩−{0}, let ωa denote the ≺ -smallest element of {ω ∈ {ẋ, ẏ}∗ : a[ω] ̸= 0}.
Set P := {a ∈ Z⟨⟨ẋ, ẏ⟩⟩−{0} : a[ωa] > 0}. Then Z⟨⟨ẋ, ẏ⟩⟩ = −P ∨ {0} ∨ P , where ∨ denotes disjoint union.
Also, P is closed under addition and multiplication. Thus, Z⟨⟨ẋ, ẏ⟩⟩ is an ordered ring with positive cone P ,
and we again let ≺ denote the ordering. Since PU(Z⟨⟨ẋ, ẏ⟩⟩) is then the group of positive units, it is an ordered
group, as is the subgroup F ; here, (f1 ≺ f2) ⇔ (f2−f1 ∈ P ) ⇔ (1 ≺ f−11 f2).
• Remarks. A similar construction gives a Bergman-Magnus ordered free group of any desired rank. References
cited on the third page of Bernhard H.Neumann’s On ordered division rings, Trans. Amer.Math. Soc. 66 (1949),
202–252, show that orderings of free groups were found by G.Birkhoff (1946, unpubl.), A.Tarski (1946, unpubl.),
H. Shimbireva (publ. 1947), K. Iwasawa (publ. 1948), and B.H.Neumann (publ. earlier in 1949).

Notation. For any free group G, r(G) := max{rank(G)−1, 0}. We use the symbol ∞ to denote ℵ0.
Throughout, (F,≺) will denote the ordered group defined above. We view the diagonal subgroup ∆ 6 F×F

as an alter ego of F . We extend ≺ from ∆ to F×F using the lexicographic ordering with ≺ in each coordinate.
For g ∈ ∆ and d, e ∈ F×F , if d ≺ e, then gd ≺ ge. If a subset E of F×F has a ≺-largest element e, we write
max(E) := e; the usage of min(E) is analogous. We form the left F -graph with vertex F -set F , edge ∆-set
F×F , and incidence functions given by ι(f1, f2) := f1 and τ(f1, f2) := f2. The Cayley tree of F with respect
to {x, y}, denoted T(F, {x, y}), is the F -subgraph with vertex set F and edge set {(f, fz) : f ∈ F, z ∈ {x, y}}.

Remark. It can be shown that T(F, {x, y}) is a tree; Magnus’ argument shows that T(F, {x, y}) is acyclic.
If v, w are vertices of T(F, {x, y}), [v, w] denotes the ⊂-smallest subtree of T(F, {x, y}) containing {v, w}.
Suppose that T is a subgraph of T(F, {x, y}). A line is a tree in which each vertex has valence two, and

a subline of T is a subgraph of T which is a line. An edge e of T is said to be a bridge of T if e is the
≺-largest edge of some subline of T . We let VT , ET , and BT denote the sets of vertices, edges, and bridges
of T , respectively; if T is a tree, we let IT denote the set of components of the forest T−BT , called islands of T .

Remark. Clearly, if T ′ is a subgraph of T , then BT ′ ⊆ BT .
Suppose that G 6 F . We write GT := {g ∈ G : gT = T} 6 G; then T is a GT -subgraph of T(F, {x, y}).

We let T(G) denote the intersection of all the G-subtrees of T(F, {x, y}).
Remarks. Clearly, BT(G) is a G-subset of ET(G). Clearly, if H 6 G, then T(H) ⊆ T(G) and, hence,

BT(H) ⊆ BT(G). Clearly, if G = {1}, then T(G) = ∅. It can be shown that if rank(G) = 1, then T(G) is a line.
Hence, if G ̸= {1}, then T(G) is the ⊂-smallest G-subtree of T(F, {x, y}). It can be shown that if rank(G) < ∞,
then |G\ET(G)| < ∞.
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The island theorem. If {1} ≠ G 6 F and C ∈ IT(G), then the chain of implications (a)⇒(b)⇒(c) holds for
the following conditions: (a) rank(G) < ∞; (b) GC ̸= {1}; (c) rank(GC) = 1.

Proof. • (a)⇒(b). By (a), |G\ET(G)| < ∞. Let δC denote the set of all bridges of T(G) incident to VC.
Case 1: |δC| = 0. In this event, C is a component of T(G), C = T(G), GC = G ̸= {1}, and (b) holds.
Case 2: 0 < |δC| < ∞. In this event, min(δC) exists. As min(δC) is a bridge of T(G), there exists some

subline L of T(G) with max(EL) = min(δC). Clearly, |EL∩δC| = 1. Hence, one of the two (infinite) components
of L−δC is L∩ C. Then |EC| = ∞ > |G\ET(G)|. Thus, there exist d, e ∈ EC such that d ̸= e and Gd = Ge.
Here, there exists g ∈ G such that gd = e, and then e ∈ gEC∩EC. Hence, the islands gC and C of T(G) must
be equal. Thus, g ∈ GC . Moreover, g ̸= 1, since gd = e ̸= d. Hence, g ∈ GC−{1} and (b) holds.

Case 3: |δC| = ∞. For each e ∈ δC, there is a unique incidence function νe ∈ {ι, τ} such that νee ∈ VC.
Since |δC| = ∞ > |{ι, τ}×(G\ET(G))|, there exist d, e ∈ δC such that d ̸= e, νd = νe, and Gd = Ge. Here,
there exists g ∈ G such that gd = e. Thus, gVC ∋ g(νdd) = νd(gd) = νee ∈ VC. As in Case 2, (b) holds.

• (b)⇒(c). Choose a pair (v, h) ∈ VC × (GC−{1}) for which [v, hv] is ⊂-minimal. Then v ∈ VT(⟨h⟩). By
replacing h with h−1 if necessary, we further arrange that max(E[v, h−1v]) ≻ max(E[v, hv]). We shall show that
GC = ⟨h⟩ by showing that each g ∈ G lies in ⟨h⟩∪(G−GC). Choose a pair (u,w) ∈ VT(⟨h⟩) × gVT(⟨h⟩) for
which [u,w] is ⊂-minimal. There exist unique i, j ∈ Z such that h−iu, h−j(g−1w) ∈ V[v, hv]−{hv}.

Case 1: u = w. Here, [h−iw, (h−jg−1hi)(h−iw)] = [h−iu, h−j(g−1w)] ⊂ [v, hv]. Also, g ∈ GC , since
C∩gC ⊇ T(⟨h⟩)∩gT(⟨h⟩) ⊇ {w}. By the ⊂-minimality of [v, hv], h−jg−1hi = 1. Now, g = hi−j ∈ ⟨h⟩.

Case 2: u ̸= w. Here, T(⟨h⟩)∩gT(⟨h⟩) = ∅ and [hi+1v, ghj+1v] = [hi+1v, u]∪ [u,w]∪ [w, ghj+1v]. Set

M := [v, hv]∪ [hv, h2v]∪ [h2v, h3v]∪ · · · and L := hi+1M ∪ghj+1M ∪ [hi+1v, ghj+1v].

Then L is a line. For each n ∈ Z, set en := max(E[hnv, hn+1v]); as it was arranged that e−1 ≻ e0, we see that
en = hn+1e−1 ≻ hn+1e0 = en+1. Hence, max(EM) = e0 and max(EL) = max({ei+1, gej+1}∪E[hi+1v, ghj+1v]).
Then max(EL) is a bridge of T(G) that must lie in L−(C∪gC), which is finite. Hence, C∪gC is not connected.

The bridge theorem. If G 6 F , then |G\BT(G)| = r(G).

Proof. Case 1: G = {1}. In this event, we can say |G\BT(G)| = |G\ET(G)| = rank(G) = r(G) = 0.
Case 2: |G\BT(G)| = ∞. In this event, we can say |G\BT(G)| = |G\ET(G)| = rank(G) = r(G) = ∞.
Case 3: G ̸= {1} and |G\BT(G)| < ∞. In particular, T(G) is a G-subtree of T(F, {x, y}). Let T(G)

denote the G-tree with edge set BT(G) and vertex set IT(G) viewed as the quotient G-tree of T(G) obtained by
collapsing each island of T(G) to a vertex. By the Bass-Serre structure theorem, the G-tree T(G) gives rise to a
graph of groups (G(−), Y ) whose fundamental group, π(G(−), Y ), can be identified with G. Here, we have the
following information: |EY | = |G\BT(G)| < ∞; |VY | 6 |EY |+1 < ∞; if v ∈ VY , then G(v) = GC for some
C ∈ IT(G); and if e ∈ EY , then G(e) = {1}. By collapsing a maximal subtree of Y to a single vertex, or by
using the presentation of π(G(−), Y ), we find that G = G0∗G1 where G0 =

v∈VY
G(v)* and G1 is a free group of

rank |EY |−|VY |+1. By the island theorem (b)⇒(c), the vertex groups are cyclic, and, hence, rank(G)<∞. By
the island theorem (a)⇒(c), the vertex groups have rank one, and r(G) = rank(G)−1 = |EY | = |G\BT(G)|.

The Friedman-Mineyev SHNC theorem. Let G be a free group, let H and K be subgroups of G, and let
S be a subset of G such that the map S → H\G/K, s 7→ HsK, is bijective. Then

∑
s∈S

r(Hs∩K) 6 r(H)·r(K).

Proof. Any free factor of G that contains H∪K also contains each s ∈ S such that Hs ∩ K ̸= {1}, by
malnormality. If H or K is uncountable, then the desired inequality holds. It follows that we may assume that
G is countable. We then identify G with ⟨xyi

: 0 6 i < rank(G)⟩ 6 F .
If s ∈ S, then BT(Hs∩K) ⊆ BT(Hs)∩BT(K) = (s−1BT(H))∩BT(K). Suppose that s1, s2 ∈ S,

e1 ∈ BT(Hs1 ∩K), and e2 ∈ BT(Hs2 ∩K); then we have the following chain of equivalences.

s1 = s2 and (Hs1 ∩K)e1 = (Hs2 ∩K)e2
⇔ s1 = s2 and ∃(h, k) ∈ H ×K such that hs1 = k and ke1 = e2
⇔ ∃(h, k) ∈ H ×K such that hs1k

−1 = s2 and ke1 = e2
⇔ ∃(h, k) ∈ H ×K such that hs1e1 = s2e2 and ke1 = e2
⇔ Hs1e1 = Hs2e2 and Ke1 = Ke2.

Thus, we have a well-defined, injective map of sets∨
s∈S

((Hs∩K)\BT(Hs∩K)) ↪→ (H\BT(H))×(K\BT(K)), (Hs∩K)e 7→ (Hse,Ke) for s ∈ S, e ∈ BT(Hs∩K).

Now,
∑
s∈S

r(Hs∩K)
bridge thm.

=

∣∣∣∣ ∨
s∈S

((Hs∩K)\BT(Hs∩K))

∣∣∣∣ 6
∣∣∣∣(H\BT(H))× (K\BT(K))

∣∣∣∣bridge thm.
= r(H)·r(K).
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