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Abstract. Let 〈A,B, C 〉 := 〈A, B,C, D | A2 = B2 = C2 = ABCD = 1 〉. Let R and L denote the
automorphisms of 〈A,B, C 〉 determined by R(A,B, C) = (A,BCB, B), L(A,B, C) = (B,BAB,C).
Let (a1, b1, a2, b2, . . . , ap, bp) be a non-empty, even-length, positive-integer sequence, let F denote
Ra1Lb1Ra2Lb2 · · ·RapLbp , and let 〈A,B, C, F 〉 denote the semidirect product 〈F | 〉n 〈A,B, C 〉.
In an influential unfinished work, Jørgensen constructed a discrete faithful representation
ρF : 〈A,B,C, F 〉 → PSL2(C). The group 〈A,B, C, F 〉 then acts conformally on the Riemann
sphere Ĉ via ρF . Using results of Thurston, Minsky, McMullen, Bowditch, and others, Cannon-
Dicks showed that Ĉ has a CW-structure formed from three closed two-cells, denoted [A], [B]
and [C], that are Jordan disks satisfying the ping-pong conditions A[A]=[B] ∪ [C], B[B]=[C] ∪ [A],
and C[C]=[A] ∪ [B]. Further, Cannon-Dicks expressed the resulting theta-shaped one-skeleton
as the union of two arcs, denoted ∂−A and ∂+B, and expressed each of these lightning curves as
limit sets of finitely generated subsemigroups of 〈A,B,C, F 〉. The foregoing results had previ-
ously been obtained by Alperin-Dicks-Porti for F = RL by elementary methods. Independently,
Mumford, Scorza, Series, Wright, and others studied more general lightning curves that arise as
limits of sequences of finite chains of round disks in Ĉ. Later, Cannon-Dicks showed that the set of
〈D, F 〉-translates of ∂−A ∪ ∂+B gives a tessellation CW(F ) of C with tiles that are Jordan disks.

In this article, we find that classic Adler-Weiss automata codify ∂−A and ∂+B in terms of ends
of trees. The ∂+B-automaton distinguishes a tree of words in a certain finite alphabet S that is a
subset of 〈A,B,C, F 〉. The ∂−A-automaton distinguishes a tree of words in the finite alphabet S−1.
The automata allow depth-first searches which give drawings of ∂−A and ∂+B that, while requiring
less computer time and memory, are more detailed than those that have hitherto been obtained.

We show that the limit set of the semigroup generated by S is ∂+B and the limit set of the
semigroup generated by S−1 is ∂−A. We use this to show that the Hausdorff dimensions of ∂−A and
∂+B are equal. We raise the problem of whether or not the common Hausdorff dimension can be
calculated by applying a famous technique of McMullen to the ∂−A-automaton.

We note that the improved drawings of ∂−A and ∂+B give improved drawings of the planar
tessellation CW(F ). We review Riley’s sufficient condition for the columns of CW(F ) to be vertical.
We review Helling’s description of Jørgensen’s ρRLn and Hodgson-Meyerhoff-Weeks’ ρRL∞ , and we
draw CW(RL100) together with something we call CW(RL∞).
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2 Automata for lightning curves

1 Background and outline

Let ϕ be an orientation-preserving, pseudo-Anosov self-homeomorphism of the once-punc-
tured torus T∗ := (R2−Z2)/Z2. The mapping torus T∗

ϕ := (T∗ × R)/((x, t) ∼ (ϕ(x), t + 1))
is a bundle over the circle R/Z with fiber T∗ and monodromy ϕ. By Thurston’s uniformiza-
tion theorem for surface bundles, T∗

ϕ admits a complete, finite-volume, hyperbolic structure;
see, for example, [39], [32]. Since T∗

ϕ has a single torus cusp, T∗
ϕ admits a canonical de-

composition into ideal tetrahedra; see, for example, [19], [41]. The universal cover of T∗
ϕ

can then be identified with hyperbolic three-space, H3, and the fundamental group π1(T
∗
ϕ)

can be identified with a Kleinian subgroup of PSL2(C). The canonical decomposition of
T∗

ϕ then lifts to a π1(T
∗
ϕ)-invariant tessellation of H3 by ideal tetrahedra. The hyperbolic

structure and the canonical decomposition of T∗
ϕ and the tessellation of H3 were constructed

by Jørgensen in his famous unfinished work [24]; rigorous treatments of part of his results
were given in [5], [6], [20], [21], [25], and [33].

The punctured torus T∗ (= (R2−Z2)/Z2) admits the hyper-elliptic involution ι induced
by the multiplication-by-(−1) involution of R2. The quotient orbifold O∗ := T∗/〈 ι 〉 is a
once-punctured sphere with three index-two cone points. Since the mapping class of ι lies
in the center of the mapping-class group of T∗, ι extends to a fiber-preserving, isometric
involution ιϕ of T∗

ϕ. The quotient orbifold O∗
ϕ := T∗

ϕ/〈 ιϕ 〉 is a bundle over R/Z with
fiber O∗, and O∗

ϕ inherits a complete, finite-volume, hyperbolic structure. The fundamental
orbifold group π1(O

∗
ϕ) can be identified with a Kleinian subgroup of PSL2(C) that respects

the tessellation of H3 and contains π1(T
∗
ϕ) as an index-two subgroup.

By specifying a complete, finite-area, hyperbolic structure on O∗, we may view the uni-
versal orbifold cover of O∗ as the hyperbolic plane, H2, and we may view the fundamental
orbifold group π1(O

∗) as a Kleinian subgroup of PSL2(R) given with an embedding in π1(O
∗
ϕ).

The fibration of O∗
ϕ over R/Z with fibre O∗ lifts to the universal orbifold covers giving a

fibration of H3 over R with (very twisted) fiber H2. The boundary of H2 can be identified
with the real projective line R̂ := R ∪ {∞}, and the boundary of H3 can be identified with
the Riemann sphere Ĉ := C∪ {∞}. It was conjectured by Cannon-Thurston [16], and proved
by McMullen [29], using results of Minsky [30] and others, that the π1(O

∗)-map H2 → H3

can be extended continuously to the boundaries. The resulting map on the boundaries is a
continuous, surjective π1(O

∗)-map CT: R̂ ³ Ĉ called the Cannon-Thurston map (or path)
for O∗

ϕ and T∗
ϕ. The case of these results where T∗

ϕ is the complement of the figure-eight
knot had been obtained by Alperin-Dicks-Porti [7] by elementary methods.

Information is easily transferred between the orbifolds O∗
ϕ and T∗

ϕ. In this article, we
find that our results are easier to express in terms of O∗

ϕ and that many of our proofs are
easier to express in terms of T∗

ϕ.
The orbifold group π1(O

∗) is isomorphic to the group

〈A,B,C 〉 := 〈A,B,C,D | A2 = B2 = C2 = ABCD = 1 〉,
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and the orbifold group π1(O
∗
ϕ) is isomorphic to a semi-direct product

〈A,B, C, F 〉 := 〈F | 〉n 〈A,B,C 〉

with F acting as an automorphism of 〈A,B,C 〉 of the form Ra1Lb1Ra2Lb2 · · ·RapLbp , where
(a1, b1, a2, b2, . . . , ap, bp) is a non-empty, even-length, positive-integer sequence, and R and
L denote the automorphisms of 〈A,B, C 〉 determined by R(A,B, C) = (A,BCB, B) and
L(A,B,C) = (B,BAB, C). Any non-empty, even-length, positive-integer sequence can be
realized in this way. The index-two subgroup π1(T

∗
ϕ) of π1(O

∗
ϕ) is mapped under the iso-

morphism to either 〈F | 〉n 〈CB, AB | 〉 or its sister, 〈DF | 〉n 〈CB,AB | 〉.
We then have homomorphisms ρ0 : 〈A,B, C 〉 → PSL2(R), ρF : 〈A,B, C, F 〉 → PSL2(C),

and a continuous surjective 〈A,B, C 〉-map CT: R̂ρ0 ³ ĈρF
, where R̂ρ0 denotes R̂ endowed

with the conformal 〈A, B, C 〉-action determined by ρ0, and ĈρF
denotes Ĉ endowed with

the conformal 〈A,B, C, F 〉-action determined by ρF . Without loss of generality for our
purposes, we may normalize ρ0 and ρF , and, in particular, we assume throughout that

(1.1) ρ0(A) = ±( 0 −1
1 0 ), ρ0(B) = ±( 1 −1

2 −1 ), ρ0(C) = ±( 1 −2
1 −1 ), ρ0(D) = ±( 1 3

0 1 ),

ρF (D) = ±( 1 1
0 1 ), and ρF (F ) = ±( 1 s

0 1 ) for some s ∈ C with Im(s) > 0. Then the intervals
[A]R̂ := [−∞, 0], [B]R̂ := [0, 1], and [C]R̂ := [1,∞] are easily seen to satisfy the ping-pong
conditions

(1.2) ρ0(A)([A]R̂) = [B]R̂ ∪ [C]R̂, ρ0(B)([B]R̂) = [C]R̂ ∪ [A]R̂, ρ0(C)([C]R̂) = [A]R̂ ∪ [B]R̂.

Hence the images [A]Ĉ := CT([A]R̂), [B]Ĉ := CT([B]R̂) and [C]Ĉ := CT([C]R̂) cover Ĉ and
satisfy the ping-pong conditions

(1.3) ρF (A)([A]Ĉ) = [B]Ĉ ∪ [C]Ĉ, ρF (B)([B]Ĉ) = [C]Ĉ ∪ [A]Ĉ, ρF (C)([C]Ĉ) = [A]Ĉ ∪ [B]Ĉ.

The present article is the fourth in a numbered series on the map CT: R̂ρ0 ³ ĈρF
,

and before stating our objectives it might be helpful to review the three numbered articles
preceding this one.

In the first article, Cannon and Dicks [14] used a result of Bowditch [13] to show that the
ping-pong subsets [A]Ĉ, [B]Ĉ and [C]Ĉ are closed Jordan disks that meet each other only on
the boundaries. For each W ∈ {A,B,C}, the image in [W ]Ĉ of the initial, resp. terminal,
point of the interval [W ]R̂ is called the initial, resp. terminal, point of the Jordan disk [W ]Ĉ.
The boundary ∂W of [W ]Ĉ, oriented to keep the disk [W ]Ĉ on the left, is partitioned into
two arcs: ∂−W travels from the initial point of [W ]Ĉ to the terminal point of [W ]Ĉ; and, ∂+W
travels from the terminal point of [W ]Ĉ to the initial point of [W ]Ĉ. It was shown in [14]
that ∂−A∩∂+B = {CT(0), CT(1), CT(∞)} and that ∂−A∪∂+B is a theta-shaped graph that
marks out the break-up of Ĉ into [A]Ĉ, [B]Ĉ and [C]Ĉ. See Figure 1.1(1), (2) for the case
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F = RL3. It was also shown in [14] that each of the arcs ∂−W , ∂+W is the limit set of a
certain finitely generated subsemigroup of ρF (〈A, B, C, F 〉), and, moreover, the arc endowed
with the semigroup action was seen to be isomorphic to a real line segment endowed with the
action of a semigroup of affine transformations. These results had been obtained by Alperin,
Dicks and Porti [7] for F = RL by elementary methods.

Independently, Mumford, Scorza, Series, Wright, and others discovered and studied more
general lightning curves from the completely different viewpoint of limits of sequences of finite
chains of round disks in Ĉ; see, for example, [31, Chapter 10] and [36].

In the second article in the sequence, Cannon and Dicks [15] defined the Cannon-Thurs-
ton planar tessellation CW(F ) of C whose one-skeleton is formed by deleting ∞ from the
union of all the ρF (〈D, F 〉)-translates of ∂−A ∪ ∂+B. They colored the tessellation with al-
ternating gray L-columns and white R-columns; see Figure 1.1(3) for the case F = RL3.
The path CT: R̂ρ0 ³ ĈρF

fills in the columns of CW(F ) from left to right, proceed-
ing down white R-columns and up gray L-columns. A mnemonic is that ‘white’, ‘right’
and ‘down’ are longer than ‘gray’, ‘left’ and ‘up’, respectively; also ‘white’ and ‘right’
rhyme and have five letters. We think of the pen tracing out the path CT as switching
ink-color between gray and white each time the pen passes through ∞ in Ĉ. In [15], it
was shown how to read from CW(F ) the same bi-infinite word Π

Z
(Ra1Lb1Ra2Lb2 · · ·RapLbp)

that is classically read from an ending-lamination pair as described in [30]. Also in [15], the
column-permuting-symmetry group of CW(F ) was calculated, and then the referee of [18]
showed that the column-permuting-symmetry group equals the whole symmetry group;
see [18, Remark 8.16].

In the third article, Dicks and Sakuma [18] studied the connection between two planar
ρF (〈D, F 〉)-tessellations of C, namely the Cannon-Thurston tessellation CW(F ) and the
Jørgensen triangulation ∆(F ), defined in Notation 2.3 below, that codifies the set of those
ideal tetrahedra in the Jørgensen tessellation of H3 which have ∞ as an ideal vertex. Dicks
and Sakuma showed that CW(F ) and ∆(F ) have the same vertex set and that the combi-
natorics of each tessellation can be reconstructed from the other; see Figure 1.1(3) for the
case F = RL3.

In this, the fourth article, we find that classic Adler-Weiss automata can be used to codify
∂−A and ∂+B, and we show that the Hausdorff dimensions of ∂−A and ∂+B are equal. In
detail, the article has the following structure.

In Section 2, we fix our main notational conventions.
In Section 3, we give detailed descriptions of automata for ∂−A and ∂+B. We define

a finite subset S of 〈A, B, C, F 〉 called the set of ∂+-syllables, and we call S−1 the set of
∂−-syllables. The ∂+B-automaton distinguishes a tree of words in the finite alphabet S, and
codifies ∂+B in terms of ends of the tree. The ∂−A-automaton distinguishes a tree of words
in the finite alphabet S−1, and codifies ∂−A in terms of ends of the tree. We show how
the automata allow depth-first searches which give drawings of ∂−A and ∂+B that, while
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CT(∞)

[C]Ĉ=CT([1,∞])

[B]Ĉ=CT([0,1])

CT(1)

CT(0)

(1) ∂+B

[A]Ĉ=CT([−∞,0])

CT(∞)

CT(1)

CT(0)

(2) Anticonformal ∂−A

(3) white R-columns and gray L-columns and Jørgensen’s triangles

Figure 1.1: Theta-shaped graph ∂−A ∪ ∂+B for F = RL3 and CW(RL3) ∪∆(RL3)
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requiring less computer time and memory, are more detailed than those that have hitherto
been obtained; compare Figure 1.1(1) with [14, Figure 5] and [31, Figure 10.14]. We can
then use these to improve the drawings of CW(F ).

In Section 4, we prepare for the proofs concerning the automata by reviewing the
construction of the Cannon-Thurston model. We recall Nielsen’s homomorphism ρ0 from
Aut〈A,B,C 〉 to the group of all self-homeomorphisms of Ĉ which carry R̂ to itself, and
we then consider our previous usage of ρ0 to be superseded. We let Ĉρ0 denote Ĉ en-

dowed with the Nielsen action of Aut〈A,B,C 〉. Restricting, we let R̂ρ0 denote R̂ en-

dowed with the Nielsen action of Aut〈A,B, C 〉. Recall that ĈρF
denotes Ĉ endowed with

the Jørgensen action of 〈A, B, C, F 〉. Minsky, McMullen and Bowditch proved that, as
conjectured by Cannon-Thurston, there exists a continuous, surjective, foliation-collapsing,
〈A, B, C, F 〉-map CT: Ĉρ0 → ĈρF

such that the restriction CT: R̂ρ0 → ĈρF
is the quotient

〈A, B, C, F 〉-map which identifies all elements of R̂ fixed by ρ0(F ); it is also the quotient
〈A, B, C 〉-map which identifies all elements of R̂ fixed by ρ0(F ). The map CT: Ĉρ0 → ĈρF

provides a model of Jørgensen’s geometry in which each point of ĈρF
is blown up to a point

or a line or a ‘spider’ in Ĉρ0 . We then obtain a manageable model of both ∂−A and ∂+B.
In Section 5, we verify all the details that were presented in Section 3 concerning

the automata. The lower half-plane Ĉ− is the universal cover of a once-punctured torus
ρ0(〈BC,BA 〉)\Ĉ− on which ρ0(F ) acts as a pseudo-Anosov self-homeomorphism. The
once-punctured torus has two Adler-Weiss CW-structures, called Markov partitions, and
the closed two-cells are called rows in one and columns in the other; moreover ρ0(F ) carries
each column to a row. We lift the two Adler-Weiss CW-structures to a certain fundamental
ρ0(〈BC,BA 〉)-domain in Ĉ−, and find that ρ0(F ) carries each lifted column to a (unique)
ρ0(〈BC,BA 〉)-translate of a (unique) lifted row. Thus each lifted column is a (unique)
ρ0(F

−1〈BC, BA 〉)-translate of a (unique) lifted row; see Figure 1.2.

1
2

3
4

5
6

7

7
5

3

1

6

4

2

Figure 1.2: The numbering indicates how F transforms columns to rows for F = RL3.

In this way, each column determines an element of F−1〈BC,BA 〉; these elements, one
for each column, are the ∂−-syllables. The classic Adler-Weiss automaton that is used in [1] to
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codify the dynamics of the action of F−1 on the unpunctured torus gives the ∂−A-automaton.
The ∂−-syllables generate a subsemigroup of 〈A,B,C, F 〉 whose limit set in ĈρF

is ∂−A; this
can also be deduced from results in [14]. The inverses of the ∂−-syllables are the ∂+-syllables,
and they generate a subsemigroup of 〈A, B, C, F 〉 whose limit set in ĈρF

is ∂+B; this can
also be deduced from results in [14]. The Adler-Weiss automaton that codifies the action of
F on the unpunctured torus gives the ∂+B-automaton.

Let us emphasize that classic automata that codify a pseudo-Anosov action on the torus
now also codify lightning curves associated to a punctured sphere with three index-two cone
points.

In Section 6, we use the fact that ∂−A and ∂+B are limit sets of mutually inverse semi-
groups to show that the Hausdorff dimensions of ∂−A and ∂+B are equal. We raise the
problem of whether or not these Hausdorff dimensions can be calculated by applying a
celebrated technique of McMullen to the ∂−A-automaton. We present the results of some
computer experiments and note that these experimental results agree nicely with results
proved by Dicks-Porti [17] in the case F = RL.

At this stage we will have completed our main objectives in the article and we conclude
with some divulgatory expositions.

In Section 7, we record a proof of the folklore implication, traditionally attributed to Riley,
that if the hyperbolic once-punctured-torus bundle ρF (〈CB, AB,F 〉)\H3 admits an orienta-
tion-reversing isometry then the actions of ρF (D) and ρF (F ) on the plane C are mutually
orthogonal. It is not known whether or not the converse holds. By work of McCullough [26],
Riley’s implication can be translated to the assertion that the columns of CW(F ) are com-
pletely vertical if some odd-length-cyclic shift carries the sequence (a1, b1, a2, b2, . . . , ap, bp)
to itself or some even-length-cyclic shift carries the sequence to its reverse.

In Section 8, we review, with some simplifications, the computation by Helling [22] of the
quadruple ρ

RLn (A,B,C,RLn) and the matrix-level description of the limit homomorphism
ρRL∞ of Hodgson-Meyerhoff-Weeks [23]. We invent a definition for CW(RL∞) and we draw
CW(RL∞) and CW(RL100) together.

2 Notation

In this section we introduce the main notation that will be used throughout.

2.1 Notation. For two subsets A, B of a set X, the complement of A ∩ B in A will be
denoted by A−B (and not by A \B since, when we have a multiplicative group π acting on
a set Y on the left, we let π\Y denote the set of π-orbits in Y).

We will find it useful to have notation for intervals in Z that is different from the notation
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for intervals in R. Let i, j ∈ Z. We define the sequence

[[i↑j]] :=

{
(i, i + 1, . . . , j − 1, j) ∈ Zj−i+1 if i 6 j,

() ∈ Z0 if i > j.

The subset of Z underlying [[i↑j]] is denoted [i↑j] := {i, i + 1, . . . , j − 1, j}.
Also, [[i↑∞[[ := (i, i + 1, i + 2, . . .) and [i↑∞[ := {i, i + 1, i + 2, . . .} .
We define [[j↓i]] to be the reverse of the sequence [[i↑j]], that is, (j, j − 1, . . . , i + 1, i).
Suppose we have a set X and a map [i↑j] → X, ` 7→ v`. We define the corresponding

sequence in X as

v[[i↑j]] :=

{
(vi, vi+1, · · · , vj−1, vj) ∈ Xi−j+1 if i 6 j,

() if i > j.

By abuse of notation, we shall also express this sequence as (v` | ` ∈ [[i↑j]]), although
“` ∈ [[i↑j]]” on its own will not be assigned a meaning. The set of terms of v[[i↑j]] is de-
noted v[i↑j]. Also, v[[i↑∞[[ := (vi, vi+1, vi+2, . . .) and v[i↑∞[ := {vi, vi+1, vi+2, . . .}. We define
v[[j↓i]] to be the reverse of the sequence v[[i↑j]].

Suppose we have a multiplicative group π and a map [i↑j] → π, ` 7→ v`. We write

Π
`∈[[i↑j]]

v` := Πv[[i↑j]] :=

{
vivi+1 · · · vj−1vj ∈ π if i 6 j,

1 ∈ π if i > j.

Π
`∈[[j↓i]]

v` := Πv[[j↓i]] :=

{
vjvj−1 · · · vi+1vi ∈ π if j > i,

1 ∈ π if j < i.

By a π-space we shall mean a topological space specified with a π-action with the property
that each element of π acts as a self-homeomorphism of the space.

Throughout, we fix the following.

2.2 Notation. For any division ring K, we let K̂ := K∪ {∞} := (K2 − {(0, 0)})/(K− {0}),
the projective line over K. Each one-dimensional subspace (x, y)K of K2 corresponds to
its inverse-slope x

y
∈ K̂. We let PGL2(K) := GL2(K)/(center(K) − {0}), the projective

linear group over K. We let PGL2(K) have the left Möbius action induced on K̂ by matrix
multiplication, where the elements of K2 are thought of as 2× 1 matrices that are expressed
as row vectors to save space.

Let H := {x + yi + zj + tk | x, y, z, t ∈ R}, the quaternion division ring. For each
w = x + yi + zj + tk ∈ H, we let w := x−yi−zj−tk; then ww = x2 + y2 + z2 + t2 ∈ [0,∞[ ,
and we define |w| := √

ww ∈ [0,∞[ .
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We view R̂ ⊆ Ĉ ⊆ Ĥ and PSL2(R) 6 PSL2(C) 6 PGL2(H). Here R̂ is a circle, Ĉ is the
Riemann two-sphere, and Ĥ is a four-sphere.

An element of PSL2(C) is said to be parabolic if it has a unique fixed point in Ĉ.
Let Ĉ+ := {z ∈ C | Im(z) > 0} and Ĉ− := {z ∈ C | Im(z) < 0}.
Except in some figures, we understand that hyperbolic three-space is

H3 := {x + yi + zj ∈ H | z > 0}
with the metric given by

(2.1) dist(x1 + y1i + z1j, x2 + y2i + z2j) = arccosh(
(x1−x2)2+(y1−y2)2+z2

1+z2
2

2z1z2
);

see, for example, [34, Theorem 4.6.1]. The boundary of H3 in Ĥ is Ĉ. For w = x + yi + zj
and any complex numbers a, b, c, d, we have

(aw + b)(w c + d) = a |w|2 c + awd + bw c + bd ∈ C+ azjd− bzjc = C+ (ad− bc)zj;

this can be used to show that the action of PGL2(H) on Ĥ induces an action of PSL2(C)
on H3. Moreover, PSL2(C) is then the orientation-preserving-isometry group of H3; see, for
example, [34, Corollary 4.6.2 and Exercise 4.3.5].

Except in some figures, we understand that the hyperbolic plane is

H2 := {x + zj ∈ H | z > 0}.
The boundary of H2 in Ĥ is R̂, and PSL2(R) acts on H2 giving the orientation-pre-
serving-isometry group.

Throughout, we fix the following.

2.3 Notation. Let 〈A,B, C 〉 := 〈A,B, C, D | A2 = B2 = C2 = ABCD = 1 〉.
Let Aut〈A,B,C 〉 denote the group of automorphisms of 〈A,B,C 〉 acting on the left as

exponents; thus, for G ∈ Aut〈A, B, C 〉, we write G : 〈A,B, C 〉 → 〈A,B, C 〉, W 7→ GW .
We shall use the triple (GA, GB, GC) to denote G. We view 〈A,B,C 〉 as a subgroup of
Aut〈A,B,C 〉 with UW := UWU−1 for all U,W in 〈A,B,C 〉.

In Aut〈A,B,C 〉, let R := (A,BCB, B) and L := (B, BAB, C); these are ‘braid auto-
morphisms’ sometimes denoted σ−1

2 and σ1, respectively.
Fix p ∈ [1↑∞[ and fix sequences a

[[1↑p]]
and b

[[1↑p]]
in [1↑∞[ .

Let F := Π
i∈[[1↑p]]

(RaiLbi) ∈ Aut〈A,B,C 〉, and ( f1 1 f1 2

f2 1 f2 2
) := Π

i∈[[1↑p]]
(( 1 ai

0 1 )( 1 0
bi 1 )) ∈ SL2(Z).

Here the subgroup 〈A, B, C, F 〉 of Aut〈A,B,C 〉 can be expressed as a semidirect prod-
uct, 〈F | 〉n 〈A,B,C 〉, and the subgroup 〈D,F 〉 is free abelian of rank two.

Let |F | :=
∑

i∈[1↑p]

(ai + bi), the length of F as a word in the alphabet {R, L}. Let fZ

denote the unique Z-indexed sequence in the alphabet {R, L} which has the properties that
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Πf[[1↑|F |]] = Π
i∈[[1↑p]]

(RaiLbi) = F and, for each n ∈ Z, fn+|F | = fn, that is, |F | is a period of fZ.

Let FZ denote the unique Z-indexed sequence in Aut〈A,B, C 〉 which has the properties that
F0 = 1 and, for each n ∈ Z, Fn = Fn−1fn. In summary, we are interested in the unique
Z-indexed sequence FZ in Aut〈A,B,C 〉 which has the properties that, for each n ∈ Z,
F−1

n−1Fn ∈ {R, L} and Fn|F | = F n.
We now recall Gueritaud’s description of Jørgensen’s representation as in [20] and [18,

Section 8]. There exists a unique representation ρF : 〈A,B, C, F 〉 → PSL2(C) which has the
properties that, firstly, there exists (x, y, z, s) ∈ C4 (unique up to changing the sign of two
of the terms of (x, y, z)) such that x2 + y2 + z2 = xyz and y 6= 0 and Im(s) > 0, and

ρF (A) = ±( −z/y (x−yz)/y2

x z/y

)
, ρF (B) = ±(

0 −1/y
y 0

)
, ρF (C) = ±(

x/y (z−xy)/y2

z −x/y

)
, ρF (F ) = ±(

1 s
0 1

)
,

and (hence) ρF (D) = ±(
1 1
0 1

)
, and, secondly, the function

Z2 → Ĉ, (m,n) 7→ pm,n := ρF (DmFnB)(∞),

is injective and has as its image a subset of C which forms the vertex set of a ρF (〈D, F 〉)-in-
variant triangulation ∆(F ) of C made up of polygonal regions as indicated in Figure 2.1.
Thus each polygon is a (2a + 4)-gon indexed by a quadruple (m, a, b, c) ∈ Z4 where a and
b are positive and Fa+b+c+1 = Fc−1LRaLbR, that is, (a, b, c) indexes a ‘syllable’ RaLb in
ΠfZ = Π

Z
F . See Figure 1.1(3) for ∆(RL3), and see Section 8 below for Helling’s description

of ρRLn , n ∈ [1↑∞[ .
We write ĈρF

to denote Ĉ made into an 〈A,B, C, F 〉-space via ρF .

We would like to draw attention to a rule of thumb that has been useful in our calculations.

2.4 An Open Problem. Let us use the lifts of ρF to SL2(C). Here we write

〈 Â, B̂, Ĉ 〉 := 〈 Â, B̂, Ĉ,−1 | Â2 = B̂2 = Ĉ2 = −1, (−1)2 = 1 〉,
R̂(Â, B̂, Ĉ) := (Â,−B̂ĈB̂, B̂), L̂(Â, B̂, Ĉ) := (B̂,−B̂ÂB̂, Ĉ), F̂ := Π

i∈[[1↑p]]
(R̂aiL̂bi). Let

(Â′, B̂′, Ĉ ′) be the normal-form expression of F̂(Â, B̂, Ĉ).
Let (x, y, z, s) ∈ C4 with y 6= 0, and write

ρ̂(Â) =
( −z/y (x−yz)/y2

x z/y

)
, ρ̂(B̂) =

(
0 −1/y
y 0

)
, ρ̂(Ĉ) =

(
x/y (z−xy)/y2

z −x/y

)
, ρ̂(F̂ ) =

(
1 s
0 1

)
,

and interpret ρ̂(Â′, B̂′, Ĉ ′) in the natural way. It is an open problem to decide if, among the
finite set of solutions of the algebraic system

x2 + y2 + z2 = xyz, ρ̂(F̂ )ρ̂(A) = ρ̂(Â′), ρ̂(F̂ )ρ̂(B) = ρ̂(B̂′),

the solutions (x, y, z, s) which maximize Re(y) necessarily give discrete representations of
〈 F̂ | 〉n 〈 Â, B̂, Ĉ 〉 in SL2(C). Then taking Im(s) > 0 would give (lifts of) ρF .
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pm,c+a+bpm−1,c+a+b

pm,c+a+b−1

pm,c+a+b−2

pm,c+a+b−3...
pm,c+a+2

pm,c+a+1

pm,c+a

pm,c+a−1

pm,c+a−2

pm,c+a−3...
pm,c+2

pm,c+1

pm,c

pm−1,c+a−1

pm−1,c+a−2

pm−1,c+a−3...
pm−1,c+2

pm−1,c+1

pm−1,c

pm,c−1

Figure 2.1: Schematic of Jørgensen’s triangles for Fc+a+b+1 = Fc−1LRaLbR
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3 Summary of the automata

In this section, we present the main results; they will be proved in the two subsequent
sections. We describe tree structures for ∂−A, for ∂+B, and for the one-skeleton of CW(F ).
We show how the tree structures are suitable for programming. We discuss the example
F = RL3.

3.1 Definitions. We use some terminology that is not standard. A path is a continuous
map whose domain is a connected subspace of R̂. A curve is a topological space which is
the image of a path, sometimes understood to be provided with the information about the
linear-or-cyclic order in which the points are visited by the path. By an arc we mean an
oriented topological space that is homeomorphic to the interval [0, 1]. We say that a subspace
of Ĉ is a Jordan curve if it is homeomorphic to R̂, not necessarily given an orientation.

For a given arc a, by a fracturing of a we mean any finite sequence b[[1↑n]] of subarcs of
a such that a =

⋃
i∈[1↑n]

bi and, for each i ∈ [2↑n], the intersection of bi−1 and bi consists of

a single point which is the terminal point of bi−1 and the initial point of bi. By abuse of
notation, we will then say that the expression a =

⋃
i∈[1↑n]

bi is a fracturing of a.

For x ∈ R, [x] denotes the greatest integer in the interval ]−∞, x].

3.2 Profile of ∂−A. We use Notation 2.3.
Let a1 := ∂−A, a2 := reverse(∂−C), X1 := BC, X2 := BA, f1 := f1 1 + f2 1, f2 := f1 2 + f2 2,

and µ+ :=
f1 1−f2 2+

√
(f1 1+f2 2)2−4

2f2 1
. For each ` ∈ [1↑f1], let s` := [ `+1

1+µ+
] − [ `

1+µ+
] + 1. In

Notation 5.1 and Lemma 5.3, we shall see that s` ∈ {1, 2}. Let U
`
:= F−1ΠXs[[1↑(`−1)]]

.
We call U

[[1↑f1]]
the ∂−-syllable sequence. The subsemigroup of 〈A,B, C, F 〉 generated by

U[1↑f1] is called the ∂−-semigroup. In Theorem 5.4, we shall see that the limit set in ĈρF
of

the ∂−-semigroup is a1, and that, for each i ∈ {1, 2}, (ρF (U
`
)as`

| ` ∈ [[1↑fi]]), called the
sequence of columns of ai, is a fracturing of ai. Informally, we have fracturings

(3.1) a1 =
⋃

`∈[1↑f1]

U
`
as`

and a2 =
⋃

`∈[1↑f2]

U
`
as`

.

Starting from the symbol a1, recursive substitution using (3.1) generates an ordered set of
infinite words in U[1↑f1]. Also (3.1) gives an automaton that accepts precisely this set of
infinite words. We shall discuss this in Definitions 3.6.

In Notation 5.1 and Lemma 5.3, we shall see that f2 < f1 and FX1 = ΠXs[[1↑f1]]
and

FX2 = ΠXs[[1↑f2]]
. This gives an alternative method of calculating f1 and s[[1↑f1]] and f2.

3.3 Profile of ∂+B. We use Notation 2.3.
Let a−1 := reverse(∂+B), a−2 := reverse(∂+BC), G := AF−1A, X−1 := CA, X−2 := BA,

f−1 := f1 1 + f2 1, f−2 := f1 1, and µ− :=
f1 1−f2 2−

√
(f1 1+f2 2)2−4

2f2 1
. Let tf−1

:= −1, and, for each



Warren Dicks and David J. Wright 13

` ∈ [1↑(f−1 − 1)], let t` := [(`)(−µ−)]− [(`− 1)(−µ−)]− 2. In Notation 5.1 and Lemma 5.5,
we shall see that t` ∈ {−2,−1}. For each ` ∈ [1↑f−1], let V

`
:= G−1ΠXt[[1↑(`−1)]]

.
We call V

[[1↑f−1]]
the ∂+-syllable sequence. The subsemigroup of 〈A,B,C, F 〉 generated by

V
[1↑f−1]

is called the ∂+-semigroup. In Theorem 5.6, we shall see that the limit set in ĈρF
of

the ∂+-semigroup is a−1, and that, for each i ∈ {−1,−2}, (ρF (V
`
)as`

| ` ∈ [[1↑fi]]), called the
sequence of rows of ai, is a fracturing of ai. Informally, we have fracturings

a−1 =
⋃

`∈[1↑f−1]

V
`
as`

and a−2 =
⋃

`∈[1↑f−2]

V
`
as`

.

Again, these fracturings give an automaton and, starting from the symbol a−1, recursive
substitution generates an ordered set of infinite words in V[1↑f−1]. We shall discuss this in
Definitions 3.6.

In Notation 5.1 and Lemma 5.5, we shall see that f−2 < f−1 and GX−1 = ΠXt[[1↑f−1]]
and

GX−2 = ΠXt[[1↑f−2]]
; this gives an alternative way of calculating f−1, t[[1↑f−1]] and f−2.

3.4 Profile of the syllables. We use the notation of Profiles 3.2 and 3.3.
Clearly f−1 = f1. In Notation 5.1, we shall see that f2f−2 ≡ 1(mod f1).
In Proposition 5.7, we shall see that, for each ` ∈ [1↑f1], V` = U−1

(1−`)f2 (mod f1) and, hence,

U` = V −1
1−(`f−2) (mod f1).

In particular, V[1↑f1] = (U[1↑f1])
−1. In [14, Section 6.1], it was seen that the limit set in

ĈρF
of the semigroup generated by (U[1↑f1])

−1 is ∂+B. In [14, Section 6.4], it was seen that

the limit set in ĈρF
of the semigroup generated by (V[1↑f1])

−1 is ∂−A.
In Proposition 5.7, we shall see that U1 = V −1

f2 1+1, Uf2 = V −1
f1

and Uf1 = V −1
1 are

the parabolic ∂−-syllables, where we say an element of 〈A,B, C, F 〉 is parabolic if it has
a unique fixed point in ĈρF

. In Corollary 6.8, we shall see that the parabolic elements of the
∂−-semigroup are the positive powers of the three parabolic ∂−-syllables.

3.5 Example. Let F = RL3 = ((BCBA)2BCB, (BCBA)3BCB, B) ∈ Aut〈A,B,C 〉.
(i). We calculate

F(BC, BA) = ((BCBA)3BC,BCBA).

Here, f1 = 7, f2 = 2, s[[1↑7]] = (1, 2, 1, 2, 1, 2, 1). Now a1 (= ∂−A) and a2 (= reverse(∂−C)) have
fracturings

a1 = U1a1 ∪ U2a2 ∪ U3a1 ∪ U4a2 ∪ U5a1 ∪ U6a2 ∪ U7a1,

a2 = U1a1 ∪ U2a2,

where the action is via ρF . We give explicit expressions for the elements of U[1↑7] in the
following table which can be reconstructed from the sequence (1, 2, 1, 2, 1, 2, 1).
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U1a1 = F−1a1 = F−1a1 ⊆ a2 ⊆ a1

U2a2 = F−1X1a2 = F−1BCa2 ⊆ a2 ⊆ a1

U3a1 = F−1X1X2a1 = F−1BCBAa1 ⊆ a1

U4a2 = F−1X1X2X1a2 = F−1BCBABCa2 ⊆ a1

U5a1 = F−1X1X2X1X2a1 = F−1(BCBA)2a1 ⊆ a1

U6a2 = F−1X1X2X1X2X1a2 = F−1(BCBA)2BCa2 ⊆ a1

U7a1 = F−1X1X2X1X2X1X2a1 = F−1(BCBA)3a1 ⊆ a1

(ii). We calculate F−1 = ((AB)3A,C, C(AB)2AC) ∈ Aut〈A, B, C 〉 and, hence,

F−1

(AC, AB) = ((AB)3AC(AB)2AC, (AB)3AC),

and, hence, for G = AF−1A,

G(CA,BA) = ((BA)3CA(BA)2CA, (BA)3CA).

Here, f−1 = 7, f−2 = 4, t[[1↑7]] = (−2,−2,−2,−1,−2,−2,−1). Now a−1 (= reverse(∂+B))
and a−2 (= reverse(∂+BC)) have fracturings

a−1 = V1a−2 ∪ V2a−2 ∪ V3a−2 ∪ V4a−1 ∪ V5a−2 ∪ V6a−2 ∪ V7a−1,

a−2 = V1a−2 ∪ V2a−2 ∪ V3a−2 ∪ V4a−1,

where the action is via ρF . We give explicit expressions for the elements of V[1↑7] in the
following table which can be reconstructed from the sequence (−2,−2,−2,−1,−2,−2,−1).

V1a−2 = G−1a−2 = AFAa−2 ⊆ a−2 ⊆ a−1

V2a−2 = G−1X−2a−2 = AFABAa−2 ⊆ a−2 ⊆ a−1

V3a−2 = G−1X−2X−2a−2 = AFA(BA)2a−1 ⊆ a−2 ⊆ a−1

V4a−1 = G−1X−2X−2X−2a−1 = AFA(BA)3a−2 ⊆ a−2 ⊆ a−1

V5a−2 = G−1X−2X−2X−2X−1a−2 = AFA(BA)3BCa−2 ⊆ a−1

V6a−2 = G−1X−2X−2X−2X−1X−2a−2 = AFA(BA)3BCBAa−2 ⊆ a−1

V7a−1 = G−1X−2X−2X−2X−1X−2X−2a−1 = AFA(BA)3BC(BA)2a−1 ⊆ a−1
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(iii). We have

V1 = AFA = (ABCB)3F = U−1
7

V2 = AFABA = (ABCB)2F = U−1
5

V3 = AFA(BA)2 = ABCBF = U−1
3

V4 = AFA(BA)3 = F = U−1
1

V5 = AFA(BA)3CA = CB(ABCB)2F = U−1
6

V6 = AFA(BA)3CABA = CBABCBF = U−1
4

V7 = AFA(BA)3CA(BA)2 = CBF = U−1
2 .

If we interpret the index set as Z/7Z, then f2f−2 = (2)(4) = 1 and for each ` ∈ Z/7Z,
V` = U−1

(1−`)2, U` = V −1
1−(4`).

3.6 Definitions. Let z[[1↑∞[[ be a sequence in [1↑f1].
Then (ρF (ΠUz[[1↑`]]

)a1 | ` ∈ [[0↑∞[[ ) is a strictly decreasing sequence of subarcs of a1. It
was seen in [14] that there exists a homeomorphism from a1 to a closed interval in R such
that on the closed interval each ∂−-syllable acts affinely with 1

λ
as the scaling factor. Since

1
λ
∈ ]0, 1[ , it follows that

⋂
`∈[0↑∞[

(ρF (ΠUz[[1↑`]]
)a1) consists of a single element of a1. We then

have a map to a1 from the set of infinite sequences in [1↑f1].
Let us say that the sequence z[[1↑∞[[ is a1-acceptable if, for each ` ∈ [1↑∞[ such that

sz`
= 2, we have z`+1 ∈ [1↑f2]. In this event, by (3.1), (ρF (ΠUz[[1↑`]]

)asz`
| ` ∈ [[1↑∞[[ ) is

decreasing, and, hence,
⋂

`∈[1↑∞[

(ρF (ΠUz[[1↑`]]
)asz`

) is non-empty and, hence, it must equal the

one-point superset
⋂

`∈[0↑∞[

(ρF (ΠUz[[1↑`]]
)a1). Since (3.1) gives fracturings, the map to a1 from

the set of a1-acceptable infinite sequences in [1↑f1] is surjective, and one-to-one on the
non-break-points, and two-to-one on the break-points. The lexicographic order on the set
of a1-acceptable infinite sequences in [1↑f1] agrees with the arc order on a1. This type of
codification of points of an arc by sequences has as an ancestor the codification by decimal
expansion of the points in the interval [0, 1].

In a natural way, the set of a1-acceptable infinite sequences in [1↑f1] is the set of ends
of a tree generated by a finite-state automaton constructed from (3.1). From state 1 we can
go to state 1 after reading any one of f1 1 different syllables, and we can go to state 2 after
reading any one of f2 1 different syllables. From state 2 we can go to state 1 after reading any
one of f1 2 different syllables, and we can go to state 2 after reading any one of f2 2 different
syllables; see [1].

One advantage of the tree structure is that it permits depth-first searches that are useful
for precise drawing. Let us review this well-known method, following [31, pp. 141–150]. We
use a suitable Möbius transformation to move a1 into Ĉ− {∞} and then use the R2-metric
on C. We choose an ε ∈ ]0, 1[ . For (M, i) ∈ PSL2(C) × {1, 2}, we define the weight of
(M, i), denoted weight(M, i), to be the distance between the two end-points of Mai, and we
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define the sequence of descendants of (M, i) to be ((Mρ(U`), s`) | ` ∈ [[1↑fi]]). We now con-
struct certain finite sequences ((Mm, im) | m ∈ [[1↑n]]) in PSL2(C)× {1, 2}, n ∈ [1↑∞[ . The
starting sequence is ((±I2, 1)). Suppose that we have recursively constructed some sequence
((Mm, im) | m ∈ [[1↑n]]). If weight(Mm, im) < ε for all m ∈ [1↑n], then the recursion termi-
nates. Otherwise, we let m be the smallest element of [1↑n] such that weight(Mm, im) > ε,
and we redefine our sequence by replacing the pair (Mm, im) with the terms of its sequence
of descendants. Now we have a new sequence of pairs and we repeat the process. This
procedure terminates with a well-defined sequence ((Mm, im) | m ∈ [[1↑n]]) and all of its
terms then have weight less than ε. By (3.1), (Mmaim | m ∈ [[1↑n]]) is a fracturing of a1.
Approximating each Mmaim with the straight line segment joining its end-points gives a
piecewise linear approximation of a1 which is quite reasonable if ε is small enough. This
procedure is more efficient than the techniques previously available for drawing these arcs;
compare Figure 1.1(1) with [14, Figure 5] and [31, Figure 10.14].

For the case F = RL, [7, Lemma 8.1] gave a more efficient, simpler automaton that
involved orientation-reversing maps; see [7, Fig. 13].

3.7 Definitions. Let us now construct CW(F ) using the proof of [15, Lemma 7.10(ii)].
Recall that the one-skeleton of CW(F ) is constructed by deleting ∞ from the union of a
certain Z-indexed sequence ∂Z of ρF (F )-invariant Jordan curves in Ĉ which contain ∞.

Here
⋃

`∈[1↑f1]

ρF (U
`
)as`

= a1 = ∂−A is a subarc of the Jordan curve ∂0 in Ĉ, and a1 = ∂−A

joins ∞ to ρF (A)(∞). Observe that ρF (U1)as1 = ρF (F−1)a1 is the subarc of a1 joining
ρF (F−1)(∞) = ∞ to ρF (F−1A)(∞). Let a′1 :=

⋃
`∈[2↑f1]

ρF (U
`
)as`

. Then a′1 is the sub-

arc of a1 joining ρF (F−1A)(∞) to ρF (A)(∞). Hence, a′1 is a fundamental ρF (〈F 〉)-do-
main in ∂0 − {∞}, and, therefore, a′1 is a fundamental ρF (〈D,F 〉)-domain in the even
part of the one-skeleton of CW(F ). Hence, ρF (F )a′1 =

⋃
`∈[2↑f1]

ρF (FU
`
)as`

is a subarc of

ρF (F )∂0 = ∂0 joining ρF (FF−1A)(∞) = ρF (A)(∞) to ρF (FA)(∞), and it too is a funda-
mental ρF (〈D, F 〉)-domain in the even part of the one-skeleton of CW(F ).

Recall that
⋃

`∈[1↑f1]

ρF (V
`
)at`

= a−1 = reverse(∂+B) is a subarc of the union of the Jordan

curves ∂−1 and reverse(∂1) in Ĉ, and a−1 = reverse(∂+B) joins ρF (A)(∞) to ρF (C)(∞). Now
ρF (V

f2 1+1
)atf2 1+1

= ρF (F )a−1 is the subarc of a−1 joining ρF (FA)(∞) to ρF (FC)(∞). Let

a′−1 =
⋃

`∈[1↑f2 1]

V
`
at`

. Then a′−1 is the subarc of a−1 joining ρF (A)(∞) to ρF (FA)(∞). Hence

a′−1 is a fundamental ρF (〈F 〉)-domain in ∂−1 − {∞}, and, therefore, a′−1 is a fundamental
ρF (〈D, F 〉)-domain in the odd part of the one-skeleton of CW(F ).

Together, reverse(a′−1) ∪ ρF (F )a′1 is a pinched Jordan curve that is a fundamental
ρF (〈D, F 〉)-domain in the one-skeleton of CW(F ). The finite chain of Jordan disks which
has reverse(a′−1) ∪ ρF (F )a′1 as oriented boundary is a fundamental ρF (〈D, F 〉)-domain in
the gray L-region of CW(F ).
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By using the automata for (a−1, a−2) and (a1, a2), it is straightforward to create an
automaton to generate an ordered list of points on the pinched Jordan curve

reverse(
⋃

`∈[1↑f2 1]

ρF (V
`
)at`

) ∪ ⋃
`∈[2↑f1]

ρF (FU
`
)as`

= reverse(a′−1) ∪ ρF (F )a′1.

Since this space already lies in Ĉ− {∞}, we can use the R2-metric and depth-first searches
to generate a piecewise-linear approximation.

4 The Cannon-Thurston model

In the foregoing sections we have reviewed Jørgensen’s geometry and stated our results in
programmable detail. For the convenience of the reader, we devote this section to a review of
information that we shall be using about the Cannon-Thurston model of Jørgensen’s geom-
etry; in the next section we shall prove our results within the context of the model. We now
build the model in stages, starting with work of Nielsen. We define the Aut〈A,B, C 〉-action
on the set of ends of 〈A,B,C 〉, and then choose an 〈A,B,C 〉-action on Ĉ which leaves in-
variant R̂ and successively gives Aut〈A,B,C 〉-actions on R̂, Q̂, Z2, R2, and, finally, Ĉ. We
let Ĉρ0 denote Ĉ endowed with Nielsen’s Aut〈A,B, C 〉-action. Work of Cannon, Thurston,

Minsky, McMullen, Bowditch and others gives an 〈A, B, C, F 〉-map CT: Ĉρ0 → ĈρF
which

provides a model of Jørgensen’s geometry in which each point of ĈρF
is blown up to a point

or a line or a ‘spider’ in Ĉρ0 . This gives a manageable model of both ∂−A and ∂+B.

4.1 Review. An end of 〈A,B,C 〉 is a sequence E[[1↑∞[[ in the alphabet {A,B,C} which
has the property that, for each i ∈ [1↑∞[ , Ei+1 6= Ei. We then think of E[[1↑∞[[ as a
right-infinite reduced product ΠE[[1↑∞[[, and, for each n ∈ [0↑∞[ , we say that ΠE[[1↑∞[[ begins
with ΠE[[1↑n]] ∈ 〈A,B, C 〉. The set of ends of 〈A,B,C 〉 is denoted E〈A,B, C 〉. For each
W ∈ 〈A,B, C 〉, we let (WJ) denote the set of elements of E〈A,B,C 〉 that begin with W ;
for example, (CBA)∞ ∈ (CBACJ). Then E〈A, B, C 〉 is a topological space in which the
(WJ) form a basis of the open sets, and 〈A,B,C 〉 ∪ E〈A,B, C 〉 is a compactification of
the discrete space 〈A,B,C 〉.

In a natural way, 〈A,B, C 〉 ∪ E〈A,B,C 〉 is an Aut〈A,B, C 〉-space, with left-exponent
action. For G ∈ Aut〈A,B, C 〉 and E ∈ E〈A,B,C 〉, it will sometimes be useful to have the
notation GE := GE. Notice that in E〈A,B,C 〉, (AJ) and (BJ) and (CJ) satisfy ping-pong
conditions analogous to (1.2) and (1.3); we consider the E〈A,B,C 〉-ping-pong triple to be
the primordial example from which all other examples arise.

We next recall the affine Aut〈A,B, C 〉-action on Z2 obtained by distinguishing the pair
(CB,AB).

It is a classic result of Nielsen that every automorphism of 〈A,B, C 〉 maps D to
a conjugate of D or D−1. It then follows that 〈A,B, C 〉D∞ ∪ 〈A,B, C 〉D−∞ is an
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Aut〈A,B,C 〉-subset of E〈A,B, C 〉. We shall be using the quotient space obtained from
E〈A,B, C 〉 by identifying W (D−∞) and W (D∞) to form a single point denoted W (D±∞),
for each W ∈ 〈A,B, C 〉. This quotient space is a quotient Aut〈A,B, C 〉-space and
〈A, B, C 〉D±∞ is an Aut〈A,B, C 〉-subset.

Let 〈|D2 |〉 denote the smallest normal subgroup of 〈A,B, C 〉 containing D2; notice that
D2 = (CBA)2 = (CB)(AB)(CB)−1(AB)−1 and that 〈|D2 |〉\〈A,B, C 〉D±∞ is a quotient
Aut〈A,B,C 〉-set. We have presentations

〈A,B,C 〉 = 〈CB, AB, D | D(CB) = (CB)(AB)(CB)−1, D(AB) = CB(AB)−1,

(CB)(AB)(CB)−1(AB)−1 = D2 〉,
〈|D2 |〉\〈A,B,C 〉 = 〈CB, AB, D | D(CB) = (CB)−1, D(AB) = (AB)−1,

(CB)(AB)(CB)−1(AB)−1 = D2 = 1 〉
= 〈D | D2 〉n 〈CB, AB | (CB)(AB) = (AB)(CB) 〉.

We then have a bijective map Z2 → 〈|D2 |〉\〈A,B, C 〉/〈D 〉, (x, y) 7→ 〈|D2 |〉(CB)x(AB)y〈D 〉.
We have another bijection 〈A,B,C 〉/〈D 〉 ' 〈A,B,C 〉D±∞. Hence we have a bijective map
Z2 → 〈|D2 |〉\〈A,B, C 〉D±∞, and the latter is an Aut〈A,B, C 〉-set. In particular, we have
endowed Z2 with the structure of an Aut〈A,B,C 〉-set. Here, for each G ∈ Aut〈A,B,C 〉,
there exist a, b, c, d, e, f ∈ Z such that |ad− bc| = 1 and, for all (x, y) ∈ Z2,

G(〈|D2 |〉(CB)x(AB)yD±∞) = 〈|D2 |〉(CB)ax+by+e(AB)cx+dy+fD±∞.

In summary, the Aut〈A,B, C 〉-set 〈|D2 |〉\〈A,B, C 〉D±∞, when identified with Z2 by using
the pair (CB,AB), gives an explicit representation of Aut〈A, B, C 〉 in the group of affine
automorphisms of Z2, with kernel 〈|D2 |〉.
4.2 Review. In Aut〈A,B, C 〉, let F0 := L−1R = C(C, A,B), and notice that

〈A,B, C, F0 〉 = 〈CF0 | (CF0)
3 〉n 〈A,B, C 〉.

We have a classic representation ρ0 : 〈A, B, C, F0 〉 ∼−→ PSL2(Z) 6 PSL2(C) with

ρ0(A) = ±( 0 −1
1 0 ), ρ0(B) = ±( 1 −1

2 −1 ), ρ0(C) = ±( 1 −2
1 −1 ), ρ0(D) = ±( 1 3

0 1 ), ρ0(F0) = ±( 1 1
0 1 );

see (1.1). The representation ρ0 is similar to the representations described in Notation 2.3
and corresponds to taking (x, y, z, s) = (3, 6, 3, 1

3
) and then conjugating by ±( 6 1

0 2 ).

The Möbius action of PSL2(Z) on Ĉ leaves invariant Q̂, R̂, Ĉ+ and Ĉ−. The PSL2(Z)-orbit
of iR̂ divides Ĉ+ ∪ Ĉ− ∪ Q̂ into a collection of triangles called the Farey tessellation of Ĉ;
here, Q̂ forms the set of vertices and R̂ − Q̂ is omitted. Let ∆+ denote the Farey triangle
in Ĉ+ ∪ Q̂ with vertices 0, 1 and ∞. Then ∆+ is a fundamental ρ0(〈A,B,C 〉)-domain
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in Ĉ+ ∪ Q̂. Let ∆− denote the complex conjugate of ∆+. Then ∆− is a fundamental
ρ0(〈A, B, C 〉)-domain in Ĉ− ∪ Q̂.

For W ∈ {A,B, C}, we label with the letter W each point of Ĉρ0 fixed by an
〈A,B, C 〉-conjugate of W , and we think of the label as being associated with the edge
of the Farey tessellation on which the point lies. Thus the edge of ∆+ with vertices ∞ and 0
has label A, the edge of ∆+ with vertices 0 and 1 has label B, and the edge of ∆+ with
vertices 1 and ∞ has label C, and the same holds for the 〈A,B,C 〉-translates of these lines.
See Figure 4.1(1).

For each W ∈ 〈A,B, C 〉, starting at ∆+ and crossing the edges indicated by reading the
letters of W leads to ρ0(W )∆+.

The quotient O := 〈A,B, C 〉\(Ĉ+ ∪ Q̂) is a (2, 2, 2,∞)-orbifold, a sphere with three
C2-points (index-two cone points labelled with C2, the cyclic group of order two) and one
C∞-point. The image in O of the Farey triangulation of Ĉ+∪Q̂ endows O with three labelled
tethers [40, Section 5] joining the C∞-point to each of the three C2-points.

4.3 Review. We now restrict the foregoing 〈A,B, C 〉-action to R̂. We want to extend this
to an Aut〈A,B,C 〉-action.

For each W ∈ E〈A,B,C 〉, starting at ∆+ and crossing the edges indicated by reading
the letters of W gives an infinite sequence of triangles in Ĉ+ ∪ Q̂. It is well known and not
difficult to prove that each such sequence converges in the chord metric to a point of R̂,
inducing a map ρ̂0 : E〈A,B, C 〉 → R̂. Moreover, each point of R̂− Q̂ is reached by a unique
such sequence, and each point of Q̂ is reached by exactly two such sequences. Further, R̂
can be viewed as the quotient space obtained from E〈A,B,C 〉 by identifying W (D−∞) and
W (D∞) to form a single point denoted W (D±∞), for each W ∈ 〈A,B,C 〉. It then follows
that R̂ is an Aut〈A,B,C 〉-quotient of E〈A,B, C 〉. See Figure 4.1(2).

We note that ρ̂0 : E〈A,B, C 〉 ³ R̂ carries (AJ) onto [A]R̂ := [−∞, 0], (BJ) onto
[B]R̂ := [0, 1], and (CJ) onto [C]R̂ := [1,∞], and, hence, the ping-pong conditions (1.2) are
quotients of the primordial ping-pong conditions.

We shall be considering certain arcs in Ĉ+∪Q̂ that start in ∆+, travel in Ĉ+, and end in Q̂
after crossing only finitely many edges, without backtracking, arriving in some ρ0(W )∆+ and
then heading towards ρ̂0(W (ABC)±∞) through the channel between the A- and C-labelled
edges of ρ0(W )∆+, if W ends in B or W = 1, or heading towards ρ̂0(W (BCA)±∞) through
the channel between the B- and A-labelled edges of ρ0(W )∆+, if W ends in C or W = 1, or
heading towards ρ̂0(W (CAB)±∞) through the channel between the C- and B-labelled edges
of ρ0(W )∆+, if W ends in A or W = 1.

4.4 Review. Endow R2 with the orbifold structure in which each element of Z2 is given the
structure of a C∞-point. Give R2 the triangulated CW-structure that is induced from the
set of all straight lines of inverse-slope 0, −1 or ∞ that pass through a point of Z2. Recall
that Review 4.1 gives an affine action of Aut〈A,B, C 〉 on Z2. As Aut〈A,B,C 〉-sets,

Q̂ρ0 = ρ0(〈A,B,C 〉)∞ ' 〈A,B,C 〉D±∞,
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(2) ρ̂0 : E〈A,B, C 〉 ³ R̂

Figure 4.1: Steps to an Aut〈A,B, C 〉-action on Ĉ

and also
〈|D2 |〉\Q̂ρ0=〈|D2 |〉\ρ0(〈A,B, C 〉)∞ ' 〈|D2 |〉\〈A,B, C 〉D±∞ ' Z2

where 〈|D2 |〉(CB)x(AB)yD±∞ ↔ (x, y). Since the group of affine automorphisms of Z2 acts
on R2, we get an affine action of Aut〈A,B,C 〉 on R2. We let ρ̄0 denote the homomorphism
from Aut〈A,B,C 〉 to the group of affine transformations of R2.

In summary, Aut〈A,B,C 〉 acts on R̂ and then Q̂ and, after a choice of basis, then Z2 and
then R2 and then on the set of inverse-slopes of the straight lines in R2, that is, R̂ again. We
then understand that ρ̄0(Aut〈A,B, C 〉) acts on Z2, R2 and R̂. Explicitly, for all (x, y) ∈ R2,
ρ̄0(A)(x, y) = (−1 − x,−y), ρ̄0(B)(x, y) = (−1 − x,−1 − y), ρ̄0(C)(x, y) = (−x,−1 − y),
ρ̄0(D)(x, y) = (−x,−y), ρ̄0(R)(x, y) = (x + y, y), and ρ̄0(L)(x, y) = (x, x + y). Hence, for all
x ∈ R̂, ρ̄0(A)(x) = ρ̄0(B)(x) = ρ̄0(C)(x) = ρ̄0(D)(x) = x, ρ̄0(R)(x) = x + 1, ρ̄0(L)(x) = x

x+1
.

In the background here is Nielsen’s isomorphism Aut〈A,B, C 〉/〈A,B,C 〉 ' PGL2(Z).
Let ∆ := hull{(0, 0), (−1, 0), (0,−1)}, the triangle in R2 with C∞-vertices (0, 0), (−1, 0)

and (0,−1). Then ∆ is a fundamental ρ̄0(〈A,B, C 〉)-domain in R2.
For W ∈ {A,B, C}, we label with the letter W each point of R2

ρ̄0
fixed by an

〈A, B, C 〉-conjugate of W , and we think of the label as being associated with the line seg-
ment on which the point lies. Thus hull{(0, 0), (−1, 0)} has label A, hull{(−1, 0), (0,−1)} has
label B, hull{(0,−1), (0, 0)} has label C, and the same holds for the 〈A,B, C 〉-translates.
See Figure 4.2. As in Ĉ+ ∪ Q̂, from reduced sequences of adjacent triangles in R2

ρ̄0
starting

with ∆, we can read elements of 〈A,B, C 〉 ∪ E〈A,B,C 〉.
Recall that O denotes ρ0(〈A,B, C 〉)\(Ĉ+ ∪ Q̂), which is a sphere with three C2-points

and a C∞-point joined to each C2-point by a labelled tether. The latter description also
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Figure 4.2: Labelled edges

applies to the quotient orbifold ρ̄0(〈A,B,C 〉)\R2, and, hence, we may assume that we have
a specified homeomorphism ρ0(〈A,B, C 〉)\(Ĉ+ ∪ Q̂) ∼−→ ρ̄0(〈A,B, C 〉)\R2 of orbifolds with
labelled tethers. Now, R2

ρ̄0
is an orbifold cover of O, and (Ĉ+ ∪ Q̂)ρ0 is the universal orbifold

cover of O. It follows that (Ĉ+ ∪ Q̂)ρ0 is the universal orbifold cover of R2
ρ̄0

, and we have a

specified 〈A,B,C 〉-homeomorphism 〈|D2 |〉\(Ĉ+ ∪ Q̂)ρ0

∼−→ R2
ρ̄0

that carries the image of ∆+

to ∆ and respects the labelled triangulations. The orbifold covering (Ĉ+ ∪ Q̂)ρ0 → R2
ρ̄0

will
be used frequently. By precomposing with complex conjugation, we get an orbifold covering
(Ĉ− ∪ Q̂)ρ0 → R2

ρ̄0
which will be equally useful.

We will now see that the Aut〈A,B,C 〉-actions on R2
ρ̄0

and R̂ρ0 give an Aut〈A,B,C 〉-ac-

tion on Ĉ.

4.5 Review. Consider any G ∈ Aut〈A,B,C 〉.
Since ρ̄0(G) maps the unique fixed point of ρ̄0(A) in R2 to the unique fixed point of

ρ̄0(
GA) in R2, the action of ρ̄0(G) on R2 has a unique continuous lifting to an action G̃ on

Ĉ+ ∪ Q̂ that maps the unique fixed point of ρ0(A) in Ĉ+ ∪ Q̂ to the unique fixed point of
ρ0(

GA) in Ĉ+ ∪ Q̂.
Let us say that G is a well behaved element of Aut〈A,B, C 〉 if G̃ maps the unique fixed

point of ρ0(B) in Ĉ+ ∪ Q̂ to the unique fixed point of ρ0(
GB) in Ĉ+ ∪ Q̂, and maps the

unique fixed point of ρ0(C) in Ĉ+ ∪ Q̂ to the unique fixed point of ρ0(
GC) in Ĉ+ ∪ Q̂.

If G is well behaved then, for each W ∈ 〈A,B, C 〉, G̃(ρ0(W )∆) = ρ0(
GW )(G̃∆), and, in

particular, G̃(ρ0(W )∞) = ρ0(
GW )(G̃∞). It follows that G̃ and ρ0(G) have the same action

on Q̂.
It is not difficult to show that, in Aut〈A, B, C 〉, all of the elements of 〈A,B,C 〉, as well

as R = (A,BCB,B), L = (B, BAB,C) and M = (C, B, A) are well behaved. Also, the
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composition of two well-behaved elements is well behaved. It is a classic result of Nielsen
that {A,R,M} is a generating set of Aut〈A,B,C 〉. Hence, every element of Aut〈A,B,C 〉
is well behaved.

We now have an action of Aut〈A,B, C 〉 on Ĉ+ ∪ R̂ which extends all of the following:
the 〈A,B,C 〉-action on Ĉρ0 ; the Aut〈A,B,C 〉-action on R̂ρ0 ; and, the Aut〈A,B, C 〉-action

on 〈|D2 |〉\(Ĉ+ ∪ Q̂)ρ0 = R2
ρ̄0

.

Using complex conjugation, we get an action of Aut〈A,B, C 〉 on all of Ĉ. We let ρ0

denote the associated homomorphism from Aut〈A,B, C 〉 to the group of all self-homeomor-
phisms of Ĉ, and this notation henceforth supersedes the previous usage of ρ0. We denote
by Ĉρ0 the Riemann sphere endowed with the foregoing Aut〈A,B,C 〉-action, and similarly
for the Aut〈A,B, C 〉-invariant subsets.

By restriction, Ĉρ0 is an 〈A, B, C, F 〉-space. To construct the Cannon-Thurston model

we first partition Ĉ+ and Ĉ− using ρ0(F )-invariant foliations and here we will begin with
the quotient R2

ρ̄0
.

4.6 Review. Recall that p ∈ [1↑∞[ and that a
[[1↑p]]

and b
[[1↑p]]

are sequences in [1↑∞[ ,

and F := Π
i∈[[1↑p]]

(RaiLbi) ∈ Aut〈A,B, C 〉, and ( f1 1 f1 2

f2 1 f2 2
) := Π

i∈[[1↑p]]
(( 1 ai

0 1 )( 1 0
bi 1 )) ∈ SL2(Z). Then

ρ̄0(F )(x, y) = (f1 1x + f1 2y, f2 1x + f2 2y) for all (x, y) ∈ R2. In R, let

λ :=
f1 1+f2 2+

√
(f1 1+f2 2)2−4

2
, µ+ :=

f1 1−f2 2+
√

(f1 1+f2 2)2−4

2f2 1
, µ− :=

f1 1−f2 2−
√

(f1 1+f2 2)2−4

2f2 1
.

Then λ ∈ ]1,∞[ , and λ, 1
λ

are the eigenvalues for the action of ρ̄0(F ) on R2; also, the

eigenlines have inverse-slopes µ+ and µ− .
Notice that ρ̄0(L)([0,∞]) = [0, 1] ⊆ [0,∞] and ρ̄0(R)([0,∞]) = [1,∞] ⊆ [0,∞].

(In [0,∞], it is usual to think of [0, 1] as being on the left and [1,∞] as being on the
right. On the exterior of Ĉ, after entering ∆+ through the (∞, 0)-edge, it is usual
to think of the (0, 1)-edge as being on the right and the (1,∞)-edge as being on the
left. The relation between L and R and left and right depends on the context.) Now
µ+ , resp. µ− , is the attractive fixed point of the action of ρ̄0(F ), resp. ρ̄0(F

−1),
on R̂. We see that µ+ = ρ̄0(F )(µ+) ∈ ρ̄0(F )([0,∞]) ⊆ ρ̄0(R)([0,∞]) = [1,∞] and, similarly,
µ−= ρ̄0(F

−1)(µ−) ∈ ρ̄0(F
−1)([−∞, 0]) ⊆ ρ̄0(L

−1)([−∞, 0]) = [−1, 0]. Hence, µ+ ∈ ]1,∞[ and
µ−∈ ]−1, 0[ .

The straight lines in R2 of inverse-slope µ+ will be called plus-lines, and the straight lines
of inverse-slope µ−will be called minus-lines. These lines give two foliations of R2. We will
use terms such as width and row and from right to left for the plus-line directions, and terms
such as height and column and from top to bottom for the minus-line directions. Deleting Z2

from R2 converts some of the plus-lines into two half-lines called half-plus-lines. We define
half-minus-lines similarly. A half-plus-eigenline is a half-plus-line incident to the origin, and
similarly for the other concepts.
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The foliation of R2−Z2 by minus-lines and half-minus-lines can be lifted, via the chosen
covering Ĉ−ρ0

→ (R2 − Z2)ρ̄0 , to a foliation of Ĉ− called the minus foliation. In detail,

each point of Ĉ− has passing through it a unique minus-foliation curve which is mapped
homeomorphically to a minus-line or a half-minus-line by the covering Ĉ−ρ0

→ (R2 − Z2)ρ̄0 ;

the minus-foliation curve has two limit points in R̂.
Similarly, the foliation of R2 − Z2 by plus-lines and half-plus-lines lifts to a foliation of

the other hemisphere Ĉ+, and we call this the plus foliation.
Now all of Ĉ − R̂ has been partitioned into foliation curves, and the closure of each

foliation curve joins together two elements of R̂; thus the foliation curves on Ĉ− R̂ embody
a relation on R̂, and we shall be interested in the resulting equivalence relation on R̂. The
closures of two different foliation curves on Ĉ− R̂ are either disjoint or meet in a point of Q̂,
and each point of Q̂ is the head of a spider with one C∞-orbit of legs in each hemisphere.
The closures of the foliation curves on Ĉ− R̂ result in a partition of Ĉ and each element of
the partition of Ĉ is one of the following: a spider joining together countably many elements
of R̂; the closure of a foliation curve joining two points of R̂; a point of R̂.

Collapsing the closure of every foliation curve gives a quotient 〈A,B, C, F 〉-space of Ĉρ0

and of R̂ρ0 ; we let S2
F denote this quotient space. Cannon-Thurston [16], [14, Appendix],

showed that S2
F is a topological sphere. McMullen [29], using a model developed by Min-

sky [30], constructed a continuous, surjective 〈A,B, C, F 〉-map S2
F → ĈρF

, and Bowditch [13]
showed that the latter map is a homeomorphism, thus proving that the Cannon-Thurston
model represented the Jørgensen geometry. The case where F = RL had been obtained by
Alperin-Dicks-Porti [7].

The consequence of these results that interests us is that there exists a (unique) continuous
(surjective) 〈A,B, C, F 〉-map CT: Ĉρ0 → ĈρF

which is the quotient map that collapses the

closures in Ĉ of the foliation lines in Ĉ − R̂. In particular, the map CT: Ĉρ0 → ĈρF
is

constant along each foliation line in Ĉ− R̂.
The following results, proved by Cannon-Dicks [14], provide all the information we shall

require concerning ∂+B and ∂−A:

• the A-labelled edge of ∆− joining ∞ to 0 is mapped homeomorphically to ∂−A under
CT: Ĉρ0 → ĈρF

;
• the C-labelled edge of ∆− joining 1 to ∞ is mapped homeomorphically to the subarc

∂−C of reverse(∂−A) under CT: Ĉρ0 → ĈρF
;

• the B-labelled edge of ∆+ joining 0 to 1 is mapped homeomorphically to reverse(∂+B)
under CT: Ĉρ0 → ĈρF

;
• the C-labelled edge of ∆+ joining 1 to ∞ is mapped homeomorphically to the subarc

reverse(∂+C) of ∂+B under CT: Ĉρ0 → ĈρF
.

• Since the map CT: Ĉρ0 → ĈρF
is constant along foliation lines, it follows that

CT(∆+) = ∂+B and CT(∆−) = ∂−A.



24 Automata for lightning curves

5 Markov partitions

In this section, we give proofs of the results described in Section 3, using slightly different
notation that will be seen by the end of this section to agree with all the notation used in
Section 3. We study the continuous action of ρ0(F ) on Ĉ by using lifts of famous Markov
partitions described in 1967 by Adler-Weiss.

5.1 Notation. Recall that we have p ∈ [1↑∞[ and sequences a
[[1↑p]]

, b
[[[1↑p]]]

in [1↑∞[, and

that, in Aut〈A,B, C 〉, R := (A,BCB, B), L := (B, BAB,C), F := Π
i∈[[1↑p]]

(RaiLbi). Let

G := AF−1A, X1 := BC, X2 := BA, X−1 := CA, X−2 := BA. It is straightforward to
calculate that, for any a, b in [1↑∞[ ,

RaLb

(X1, X2) = ((Xa
1 X2)

bX1, X
a
1X2),(5.1)

AL−bR−aA(X−1, X−2) = (X−2(X
b−1
−2 X−1)

a+1, X−2(X
b−1
−2 X−1)

a).(5.2)

By (5.1), F acts on the semigroup freely generated by X1 and X2, and FX2 is an initial
segment of FX1, and FX1 begins and ends in X1, and FX2 begins in X1 and ends in X2. By
abelianizing, we see that the matrix of F with respect to (X1, X2) is

( f1 1 f1 2

f2 1 f2 2
) := Π

i∈[[1↑p]]
(( 1 ai

0 1 )( 1 0
bi 1 )).

Let f1 := f1 1 + f2 1, f2 := f1 2 + f2 2, and let s[[1↑f1]] denote the sequence in {1, 2} such that
FX1 = ΠXs[[1↑f1]]

. Then FX2 = ΠXs[[1↑f2]]
, s1 = 1, sf2 = 2, and sf1 = 1. For each ` ∈ [1↑f1],

we define the `th ∂−-syllable to be

U` := F−1ΠXs[[1↑(`−1)]]
∈ 〈A,B,C, F 〉.

We call U[[1↑f1]] the ∂−-syllable sequence, and we call the subsemigroup of 〈A,B,C, F 〉 gen-
erated by U[1↑f1] the ∂−-semigroup.

By (5.2), G acts on the semigroup freely generated by X−1 and X−2, and GX−2 is an initial
segment of GX−1, and GX−1 and GX−2 both begin in X−2 and end in X−1. By abelianizing,
we see that the matrix of F−1 and G with respect to (X−1, X−2) is

(
−1 0

1 1

)(
f2,2 −f1 2

−f2 1 f1 1

)(
−1 0

1 1

)
=

(
f1 2+f2 2 f1 2

f1 1−f1 2+f2 1−f2 2 f1 1−f1 2

)
.

Let f−1 := f1 1 + f2 1 = f1, f−2 := f1 1, and let t[[1↑f−1]] denote the sequence in {−1,−2} such
that GX−1 = ΠXt[[1↑f−1]]

. Then GX−2 = ΠXt[[1↑f−2]]
, t1 = −2, tf−2 = −1, and tf−1 = −1. For

each ` ∈ [1↑f−1], we define the `th ∂+-syllable to be

V` := G−1ΠXt[[1↑(`−1)]]
∈ 〈A,B, C, F 〉.
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We call V[[1↑f−1]] the ∂+-syllable sequence, and we call the subsemigroup of 〈A,B, C, F 〉 gen-
erated by V[1↑f−1] the ∂+-semigroup.

Notice that

f−2f2 − f1 2f1 = f1 1(f1 2 + f2 2)− f1 2(f1 1 + f2 1) = f1 1f2 2 − f1 2f2 1 = 1.

For each ` ∈ [1↑f1], let F (`) denote the unique element of [1↑f1] with the property that
1− `f−2 ≡ F (`)(mod f1). For example, F (1) = f2 1 + 1, F (f2) = f1, F (f1) = 1. Let F−1(`)
denote the unique element of [1↑f1] such that (1− `)f2 ≡ F−1(`)(mod f1). Then F and F−1

have mutually inverse actions on [1↑f1].
We now describe how to tessellate R2 with an L-shaped region as illustrated in Fig-

ure 5.1(4). Deleting from R2 the (three) minus-lines which pass through (−1, 0), (0, 0) and
(0,−1), and the (three) plus-lines which pass through (−1, 0), (−1,−1), and (0,−1), leaves
a region of R2 with sixteen components, four of which are interiors of closed parallelograms.
Let P[[1↑4]] denote the sequence of these four closed parallelograms in clockwise order with
P1 being the parallelogram containing (−1, 0). We let L :=

⋃
P[1↑3]; see Figure 5.1(1) for

the case F = RL3. It is not difficult to see that L is a fundamental Z2-domain in R2;
see Figure 5.1(4) for the case F = RL3. We let L̃ :=

⋃
P[1↑4], the smallest parallelogram

containing L.
We let L1 :=

⋃
P[1↑2], colored gray, and L2 := P3, colored white; see Figure 5.1(3).

Hence, we get an L[1↑2]-tessellation of R2; see Figure 5.1(4).

We now want to choose a copy of most of R2 in Ĉ+ ∪ Q̂.
Let l− denote the half-minus-line incident to (−1, 0) in the lower-half-plane, oriented

from top to bottom. We define a region M− in R2 as follows. We start by removing from
R2 the second-quadrant portion of the minus-line incident to (−1, 0). We also remove all
the half-plus-lines which do not meet the minus-line incident to (−1, 0). We do not remove
any element of Z2. This completes the description of M−. For each element of Z2, we have
removed exactly one of the four incident half-lines, no two of which meet. Then M− and
M− − Z2 are contractible, and, hence, we have a well-defined lift M− → Ĉ+ ∪ Q̂, () 7→ ()+,
such that (0, 0)+ = ∞; notice that (0, 0) is a fixed point of ρ̄0(〈D,F 〉) and ∞ is a fixed point
of ρ0(〈D, F 〉). Notice that L̃+, L+, L+

1 and L+
2 are all defined. Here, L+ is a fundamental

ρ0(〈CA,BA 〉)-domain in Ĉ+∪Q̂, and we get an L+
[1↑2]-tessellation of Ĉ+∪Q̂. Notice that M−

is ρ̄0(AFA)-invariant, since ρ̄0(AFA) leaves invariant both of the half-minus-lines incident
to (−1, 0) and leaves invariant the set of half-plus-lines which do not meet the minus-line
incident to (−1, 0). The action of ρ̄0(AFA) on M− exactly models the action of ρ0(AFA)
on M+

−.
We let L−2 := P1, colored white, and L−1 :=

⋃
P[2↑3], colored gray; see Figure 5.2(2).

Hence, we get an L[(−2)↑(−1)]-tessellation of R2; see Figure 5.2(4).

We now want to choose a copy of most of R2 in Ĉ− ∪ Q̂.
Let l+ denote the half-plus-line incident to (0, 0) in the lower-half-plane, oriented from

right to left. We define a region M+ in R2 as follows. We start by removing from
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R2 the first-quadrant portion of the plus-line incident to (0, 0). We also remove all the
half-minus-lines which do not meet the plus-line incident to (0, 0). We do not remove any

(1) L (2) FL (3) L1, L2

(4) Z2L1 ∪ Z2L2 (5) FL on (4) (6) ColsFL from(5)

(7) Z2ColsFL from(6) (8) Rows L from (7) (9) ColsL fromF−1(6)

Figure 5.1: F , columns to rows: broad = gray = BC = X1, thin = white = BA = X2
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(1) Rows of L (2) Columns of L−2 and L−1

(3) G = AF−1A applied to (1) (4) Z2-translates of (2) or (3)

Figure 5.2: F−1, rows to columns: squat = white = BA = X−2, tall = gray = CA = X−1
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1
2

3
4

5
6

7

7
5

3

1

6

4

2

(1) The numbering indicates how F transforms
columns to rows.

(2) Reading columns from right to left gives
F(BC)=(BCBA)3BC, F(BA)=BCBA.
Reading rows from top to bottom gives
F−1

(AC)=(AB)3AC(AB)2AC, F−1
(AB)=(AB)3AC.

Figure 5.3: The Markov partitions for F and F−1 in the case F = RL3

element of Z2. This completes the description of M+. For each element of Z2, we have
removed exactly one of the four incident half-lines, no two of which meet. Then M+ and
M+ − Z2 are contractible, and, hence, we have a well-defined lift M+ → Ĉ− ∪ Q̂, () 7→ ()−,
such that (0, 0)− = ∞; again, (0, 0) is a fixed point of ρ̄0(〈D,F 〉) and ∞ is a fixed point
of ρ0(〈D,F 〉). Notice that L̃−, L−, L−−1 and L−−2 are all defined. Notice that L− is a

fundamental ρ0(〈BC,BA 〉)-domain in Ĉ− ∪ Q̂, and we get an L−[(−2)↑(−1)]-tessellation of

Ĉ− ∪ Q̂. The action of ρ̄0(F ) on M+ exactly models the action of ρ0(F ) on M−
+.

For each ` ∈ [1↑f1], the `th column of L is defined as col`(L) := L ∩ ρ̄0(U`)L and the `th
row of L is defined as row`(L) := L ∩ ρ̄0(V`)L; see Figures 5.1, 5.3. For W ∈ 〈A,B, C, F 〉,
we define col`(ρ0(W )L+) := ρ0(W )((col`(L))+) and row`(ρ0(W )L+) := ρ0(W )((row`(L))+)
and similarly for ρ0(W )L−.

We read L− from right to left following its plus-foliation, and, collapsing along the
minus-foliation, we define

a1 := CT(L−1 ) = CT(L−) = CT (∆−) = ∂−A,

a2 := CT(L−2 ) = reverse(∂−C);

see Review 4.6.
We read L+ from top to bottom following its minus-foliation, and, collapsing along the

plus-foliation, we define

a−1 := CT(L+
−1) = CT(L+) = CT(∆+) = reverse(∂+B),

a−2 := CT(L+
−2) = ρF (B) reverse(∂+C) = reverse(∂+BC);

see Review 4.6.
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5.2 Remarks. The sequence col[[1↑f1]](L) is called the Markov partition for F ; see Figure 5.3.
It was described explicitly by Adler-Weiss [2, Section 5], [3, Figure 14], [1, Figure 6], in 1967,
in connection with their analysis of the entropy of a hyperbolic automorphism of R2/Z2;
see also [9], [10] for earlier, related studies. The sequence row[[1↑f1]](L) is called the Markov
partition for F−1. The Markov partition was subsequently lifted to the punctured case in
the manner we shall recall in this section; see, for example, [11, Section 3.4].

The novelty of this section lies in the made-to-measure application to lightning curves at
the covering level.

We shall see the following well-known facts. The union of the columns of L− is all
of L−, the intersections of consecutive columns lie in minus-foliation curves, and distinct
non-consecutive columns are disjoint. Each column of L− is mapped by ρ0(F ) into a translate
ρ0(W )L− for a unique W ∈ 〈BC, BA 〉 and the various resulting ρ0(F

−1W ) together give
a bijective map from the disjoint union of the rows of L− to the disjoint union of the
columns of L−. This bijective map then induces the action of ρ0(F

−1) on the once-punctured
torus ρ0(〈BC, BA 〉)\Ĉ− which carries rows to columns contracting in the plus-direction and
expanding in the minus-direction.

We now describe the tessellation of ρ0(F )L− that is induced by the L−[1↑2]-tessellation of

Ĉ− ∪ Q̂; see Figure 5.1(5) and (6).

5.3 Lemma. Let Notation 5.1 hold.

(i) Let CW(ρ0(F )L−) denote ρ0(F )L− endowed with the CW-structure that is induced by
the L−[1↑2]-tessellation of Ĉ− ∪ Q̂. Here, the two-cells of CW(ρ0(F )L−) are the terms

of the sequence (ρ0(F )L− ∩ ρ0(FU`)L
− | ` ∈ [[1↑f1]]), consecutive terms overlap on a

minus-foliation one-cell of CW(ρ0(F )L−), and non-consecutive distinct terms are dis-
joint. Each minus-foliation one-cell of CW(ρ0(F )L−) lies in the boundary of an L−-tile.
Each plus-foliation one-cell of CW(ρ0(F )L−) lies in the boundary of ρ0(F )L−.

(ii) Let ` ∈ [1↑f1] and define i` := −2 for ` ∈ [1↑f2], and i` := −1 for ` ∈ [(f2 + 1)↑f1].
Then ρ0(F )L− ∩ ρ0(FU`)L

− = ρ0(F )L−i` ∩ ρ0(FU`)L
−
s`

= (ρ̄0(F )Li` ∩ ρ̄0(FU`)Ls`
)− and

ρ̄0(F )Li` ∩ ρ̄0(FU`)Ls`
is a parallelogram. The left and right borders of

ρ0(F )L−i` ∩ ρ0(FU`)L
−
s`

lie in the left and right borders of ρ0(FU`)L
−
s`
, respectively.

The top and bottom borders of ρ0(F )L−i` ∩ ρ0(FU`)L
−
s`

lie in the top and bottom bor-
ders of ρ0(F )L−i` , respectively. The bottom border of ρ0(F )L−i` ∩ ρ0(FU`)L

−
s`

lies in
the bottom border of ρ0(FU`)L

−
s`

if and only if ` ∈ [(f2 − 1)↑f2]. The top bor-
der of ρ0(F )L−i ∩ ρ0(FU`)L

−
s`

lies in the top border of ρ0(FU`)L
−
s`

if and only if

` ∈ [(f1 − 1)↑f1]. Also, s` = [ `+1
1+µ+

]− [ `
1+µ+

] + 1.

Proof. For the current purpose of studying the L−[1↑2]-tessellation of ρ0(F )L−, we shall treat

M+ and M−
+ as essentially interchangeable. We understand that the following discussion

takes place in Ĉ− ∪ Q̂ but with the notation of R2.
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The half-plus-line l+ starts from within ∆, and the first labelled line segment it crosses
has the label B. Let s′[[1↑∞[[ denote the sequence in {1, 2} with the property that the element

of E〈A,B, C 〉 read by l+ is ΠXs′
[[1↑∞[[

.

Let ` ∈ [1↑∞[ . Define W` := ΠXs′
[[1↑(`−1)]]

.

We will now show that s′` = [ `+1
1+µ+

] − [ `
1+µ+

] + 1. Consider the line in R2 with equation

x + y = −`, which is a concatenation of B-labelled line segments. Consider also the line
with equation x = µ+y, which is the plus-eigenline. Let (x`, y` ) denote the point where these
two lines intersect, that is, the point where l+ reads B for the `th time. Then (x`, y` ) =
(−`− −`

1+µ+
, −`

1+µ+
). As l+ passes through (x`, y`) it reads B, and then either l+ reads C and

reaches (x` +1, y` +1) and we have [y`+1] = [y`], or l+ reads A and reaches (x` +1, y` +1) and we
have [y`+1] = [y`] − 1; see Figures 4.2 and 5.1(3). Thus, either [y`] − [y`+1] = 0 and s′` = 1,
or [y`] − [y`+1] = 1 and s′` = 2. It follows that s′` = [y`] − [y`+1] + 1 = −[ `

1+µ+
] + [ `+1

1+µ+
] + 1,

as desired.
We shall now prove that the sequence of L−[1↑2]-tiles cut through by l−+ from right to left

is (ρ0(W`)L
−
s′`
| ` ∈ [[1↑∞[[ ).

Now, either ` = 1 and l+ originates in ρ̄0(W`)∆, or ` > 2 and l+ enters ρ̄0(W`)∆. Then,
in either event, l+ exits ρ̄0(W`)∆ reading a B-labelled line segment. And then, either s′` = 1
and l+ reads a C-labelled line segment and enters ρ̄0(W`BC)∆ = ρ̄0(W`X1)∆ = ρ̄0(W`+1)∆,
or s′` = 2 and l+ reads an A-labelled line segment and enters ρ̄0(WBA)∆ = ρ̄0(W`X2)∆ =
ρ̄0(W`+1)∆. From Figures 4.2 and 5.1(3), we see that, in both cases, the initial point of
l+ ∩ ρ̄0(W`)∆ lies in ρ̄0(W`)Ls′` , and l+ cuts through ρ̄0(W`)Ls′` from right to left, even
for ` = 1. It follows that ρ̄0(W`)Ls′` is the `th L[1↑2]-tile cut by l+, as desired. Since

X1(x, y) = (x − 1, y) and X2(x, y) = (x, y − 1), we see that if ρ̄0(W`Xs′`)(0, 0) = (−p,−q)
then p + q = `. Notice that the left border of ρ̄0(W`)Ls′` contains ρ̄0(W`Xs′`)(0, 0) as one of
its end-points.

We shall now prove that ρ̄0(F )L̃ cuts through (ρ̄0(W`)Ls′` | ` ∈ [[1↑f1]]) in the same way
that l+ does.

Notice that L̃ ∩ Z2, which is {(0, 0), (−1, 0), (0,−1)}, lies in the boundary of L̃. Hence
the boundary of ρ̄0(F )L̃ contains ρ̄0(F )(L̃ ∩ Z2) = ρ̄0(F )(L̃) ∩ ρ̄0(F )(Z2) = ρ̄0(F )(L̃) ∩ Z2.
In particular, the interior of ρ̄0(F )L̃ does not meet Z2.

Since l+ cuts through L̃ from right to left, we see that ρ̄0(F )l+ = l+ cuts through ρ̄0(F )L̃
from right to left. Since the interior of ρ̄0(F )L̃ does not meet Z2, we see that any labelled
line segment that cuts through l+ ∩ ρ̄0(F )L̃ from top to bottom must cut through ρ̄0(F )L̃
from top to bottom.

Notice that the top left corner of L̃ is (−1, 0); see Figure 5.1(1). Hence the top
left corner of ρ̄0(F )L̃ is ρ̄0(F )(−1, 0) = (−f1 1,−f2 1). The A-labelled line segment join-
ing ρ̄0(F )(−1, 0) = (−f1 1,−f2 1) to (−f1 1 + 1,−f2 1) cuts through an L1-tile incident to
ρ̄0(F )(−1, 0) from left to right, and cuts through ρ̄0(F )L̃ from top to bottom, and cuts
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through l+. Hence l+ cuts through this L1-tile from right to left, and this tile must be
the (f1 1 + f2 1)(= f1)th tile cut by l+, that is, the tile ρ̄0(Wf1)Ls′f1

. In particular, s′f1
= 1

and the top left corner of ρ̄0(F )L1 is ρ̄0(Wf1)(−1, 0). It follows that the top boundary of
ρ̄0(F )L̃ ∩ ρ̄0(Wf1)Lsf1

lies in both the top boundary of ρ̄0(F )L̃ and the top boundary of

ρ̄0(Wf1)Lsf1
. Also the left boundary of ρ̄0(F )L̃ ∩ ρ̄0(Wf1)Lsf1

lies in both the left boundary

of ρ̄0(F )L̃ and the left boundary of ρ̄0(Wf1)Lsf1
. It can be seen that the bottom boundary of

ρ̄0(F )L̃∩ ρ̄0(Wf1)Lsf1
lies in the bottom boundary of ρ̄0(F )L̃ and does not touch the bottom

boundary of ρ̄0(Wf1)Lsf1
. It can also be seen that the right boundary of ρ̄0(F )L̃∩ρ̄0(Wf1)Lsf1

lies in the right boundary of ρ̄0(Wf1)Lsf1
. See Figure 5.1(5).

Now consider ` ∈ [1↑(f1 − 1)]. We shall show that the left and right borders of
ρ̄0(F )L̃ ∩ ρ̄0(W`)Ls`

lie in the left and right borders of ρ̄0(W`)Ls`
, respectively, and that

the top and bottom borders of ρ̄0(F )L̃ ∩ ρ̄0(W`)Ls`
lie in the top and bottom borders of

ρ̄0(F )L̃, respectively. We shall also show that if the top border of ρ̄0(F )L̃ ∩ ρ̄0(W`)Ls`
lies

in the top border of ρ̄0(F )L̃ then ` = f1 − 1 and sf1−1 = 2. We consider two cases.

Case 1. s` = 1.
Here, l+ cuts through ρ̄0(W`)Ls′` = ρ̄0(W`)L1 from right to left and subsequently crosses

the incident C-labelled line segment joining ρ̄0(W`)(−1, 0) to ρ̄0(W`)(−1,−1); see Fig-
ure 5.1(3). Hence this C-labelled line segment cuts through ρ̄0(F )L̃ from top to bottom. It
follows that the left and right borders of ρ̄0(F )L̃∩ ρ̄0(W`)Ls`

lie in the left and right borders
of ρ̄0(W`)Ls`

, respectively, and that the top and bottom borders of ρ̄0(F )L̃ ∩ ρ̄0(W`)Ls`
lie

in the top and bottom borders of ρ̄0(F )L̃, respectively; see Figure 5.1(3).
If the top border of ρ̄0(W`)L1 meets (the top border of) ρ̄0(F )L̃, then ρ̄0(W`)(−1, 0) lies

in ρ̄0(F )L̃ and this implies that ` = f1, a contradiction; hence the top border of ρ̄0(F )L̃ does
not meet ρ̄0(W`)L1.

Case 2. s` = 2.
Here, l+ cuts through ρ̄0(W`)Ls`

= ρ̄0(W`)L2 from right to left and subsequently crosses
the incident A-labelled line segment joining ρ̄0(W`)(−1,−1) to ρ̄0(W`)(0,−1); see Fig-
ure 5.1(3). Hence this A-labelled line segment cuts through ρ̄0(F )L̃ from top to bottom.
It follows that the left and right borders of ρ̄0(F )L̃∩ ρ̄0(W`)Ls`

lie in the left and right bor-
ders of ρ̄0(W`)Ls`

, respectively, and that the top and bottom borders of ρ̄0(F )L̃∩ ρ̄0(W`)Ls`

lie in the top and bottom borders of ρ̄0(F )L̃, respectively; see Figure 5.1(3).
If the top border of ρ̄0(W`)L2 meets (the top border of) ρ̄0(F )L̃, then ρ̄0(W`)(−1,−1)

lies in ρ̄0(F )L̃, and this implies that ` = f1 − 1.

Thus the desired result holds in both cases.
Notice that (0,−1) is the bottom left corner of L2; see Figure 5.1(3). It follows that the

bottom left corner of ρ̄0(F )L2 coincides with the bottom left corner of an L2-tile incident
to ρ̄0(F )(0,−1) = (−f1 2,−f2 2), and it must be the (f1 2 + f2 2)(= f2)th tile cut by ρ̄0(F )L̃
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and l+, that is, the tile ρ̄0(Wf2)Ls′f2
. In particular, s′f2

= 2 and the bottom left corner of

ρ̄0(F )L2 is ρ̄0(Wf2)(0,−1), that is, ρ̄0(F )(0,−1) = (−f1 2,−f2 2) = ρ̄0(Wf2)(0,−1).
It is now clear that, for all ` ∈ [1↑f1], ρ̄0(F )L ∩ ρ̄0(W`)L = ρ̄0(F )Li` ∩ ρ̄0(W`)Ls`

, and
the borders are as claimed.

It remains to show that s[[1↑f1]] = s′[[1↑f1]], that is, FX1 = Wf1 . Recall that X1 = BC and

X2 = BA. The A-labelled line segment in Ĉ− ∪ Q̂ joining (0, 0)− = ∞ = ρ̂0((CBA)±∞) to
(−1, 0)− = 0 = ρ̂0((ACB)±∞) = ρ̂0((BC)(CBA)±∞) lies in L−1 and is carried by ρ0(F ) to an
arc from (0, 0)− = ρ̂0((CBA)±∞) to (−f11,−f21)

− = ρ̂0(
F(BC)(CBA)±∞). This arc reads

the word Wf1−2B and then, inside ρ0(Wf1−2B)∆−, the arc reaches the vertex between the
C-labelled edge and the A-labelled edge, that is, it then reads (CBA)±∞; see Figure 5.1(6).
Hence, F(BC)(CBA)±∞ = Wf1−2B(CBA)±∞. Also, Wf1 = Wf1−2BABC; see Figure 5.1(6),
again. Hence,

F(BC)(CBA)±∞ = Wf1−2B(CBA)±∞ = Wf1−2BABC(CBA)±∞ = Wf1(CBA)±∞.

Thus, ΠXs′
[[1↑f1]]

((CBA)±∞) = ΠXs[[1↑f1]]
((CBA)±∞). Since s′f1

= 1 = sf1 , it follows that

ΠXs′
[[1↑f1]]

= ΠXs[[1↑f1]]
, and, hence, s′[[1↑f1]] = s[[1↑f1]], as desired.

The following gives all the claims in Profile 3.2.

5.4 Theorem. Let Notation 5.1 hold. For each i ∈ {1, 2}, (ρF (U
`
)as`

| ` ∈ [[1↑fi]]) is
a fracturing of ai, the elements of a1 are codified as the ends of the a1-accepting tree of
∂−-syllables, and the limit set of the ∂−-semigroup acting on ĈρF

is a1.

Proof. Notice that CT(ρ0(F )L−) = ρF (F ) CT(L−) = ρF (F )a1 is an arc.
Lemma 5.3(i) implies that (CT(ρ0(F )L− ∩ ρ0(FU`)L

−
s`

) | ` ∈ [[1↑f1]]) is a fracturing of
CT(ρ0(F )L−) = ρF (F )a1. Since CT is constant on the closures of minus-foliation curves
in Ĉ−, Lemma 5.3(ii) implies that, for each ` ∈ [1↑f1],

CT(ρ0(F )L− ∩ ρ0(FU`)L
−
s`

) = CT(ρ0(FU`)L
−
s`

) = ρF (FU`) CT(L−s`
) = ρF (FU`)as`

.

Hence (ρF (FU`)as`
| ` ∈ [[1↑f1]]) is a fracturing of ρF (F )a1. On applying ρF (F−1), we see

that (ρF (U`)as`
| ` ∈ [[1↑f1]]) is a fracturing of a1.

Hence, (ρF (FU`)as`
| ` ∈ [[1↑f2]]) is a fracturing of

⋃
`∈[1↑f2]

CT(ρ0(F )L− ∩ ρ0(FU`)L
−
s`

).

Lemma 5.3(ii) implies that

⋃

`∈[1↑f2]

CT(ρ0(F )L− ∩ ρ0(FU`)L
−
s`

)=
⋃

`∈[1↑f2]

CT(ρ0(F )L−−1 ∩ ρ0(FU`)L
−
s`

) ⊆ CT(ρ0(F )L−−1),

⋃

`∈[(f2+1)↑f1]

CT(ρ0(F )L− ∩ ρ0(FU`)L
−
s`

)=
⋃

`∈[1↑f2]

CT(ρ0(F )L−−2 ∩ ρ0(FU`)L
−
s`

) ⊆ CT(ρ0(F )L−−2).
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Since the subarcs CT(ρ0(F )L−−1) and CT(ρ0(F )L−−2) overlap in a single point, it follows that
(ρF (FU`)as`

| ` ∈ [[1↑f2]]) is a fracturing of CT(ρ0(F )L−−1) = CT(ρ0(F )L−2 ) = ρF (F )a2. Thus
(ρF (U`)as`

| ` ∈ [[1↑f2]]) is a fracturing of a2.
As in Definitions 3.6, we can use a tree to codify the elements of a1 as infinite words in

the ∂−-syllables.
To show that the limit set of the ∂−-semigroup is a1, it remains to show that, for each

` ∈ [1↑f1], ρF (U`)a1 ⊆ a1, or, equivalently, ρF (FU`)a1 ⊆ ρF (F )a1. If s` = 1, then

ρF (FU`)a1 = ρF (FU`)as`
⊆ ρF (F )a1.

Notice that a2 ∪ ρF (X2)a1 ⊇ a1 since CT(L−2 ∪ ρF (X2)L
−) ⊇ CT(L−); see Figure 5.1(5). If

s` = 2, then ` ∈ [1↑(f1 − 1)], and

ρF (FU`)a1 ⊆ ρF (FU`)a2 ∪ ρF (FU`X2)a1 = ρF (FU`)as`
∪ ρF (FU`+1)a1,

and, by a reverse induction hypothesis, this lies in ρF (F )a1.

We now turn to a−1 and apply a very similar argument.

5.5 Lemma. Let Notation 5.1 hold.

(i) Let CW(ρ0(G)L+) denote ρ0(G)L+ endowed with the CW-structure that is induced
by the L+

[(−2)↑(−1)]-tessellation of Ĉ+ ∪ Q̂. Here, the two-cells of CW(ρ0(G)L+) are

the terms of the sequence (ρ0(G)L+ ∩ ρ0(GV`)L
+|` ∈ [[1↑f−1]]), consecutive terms

overlap on a plus-foliation one-cell, and non-consecutive distinct terms are disjoint.
Each plus-foliation one-cell of CW(ρ0(G)L+) lies in the boundary of an L+-tile. Each
minus-foliation one-cell of CW(ρ0(G)L+) lies in the boundary of ρ0(G)L+.

(ii) Let ` ∈ [1↑f−1] and define j` := 1 for ` ∈ [1↑f−2], and j` := 2 for ` ∈ [(f−2 + 1)↑f−1].
Then ρ0(G)L+ ∩ ρ0(GV`)L

+ = ρ0(G)L+
j`
∩ ρ0(GV`)L

+
t`

= (ρ̄0(G)Lj`
∩ ρ̄0(GV`)Lt`

)+ and
ρ̄0(G)Lj`

∩ ρ̄0(GV`)Lt`
is a parallelogram. The top and bottom borders of

ρ0(G)L+
j`
∩ ρ0(GV`)L

+
t`

lie in the top and bottom borders of ρ0(GV`)L
+
t`
, respectively.

The left and right borders of ρ0(G)L+
j`
∩ ρ0(GV`)L

+
t`

lie in the left and right borders of
ρ0(G)L+

j`
, respectively. If ` ∈ [1↑(f−1 − 1)], then t` = [`(−µ−)] − [(` − 1)(−µ−)] − 2;

also, tf−1 = −1.

Proof. For the current purpose of studying the L+
[(−2)↑(−1)]-tessellation of ρ0(G)L+, we shall

treat M− and M+
− as essentially interchangeable. We understand that the following discus-

sion takes place in Ĉ+ ∪ Q̂ but with the notation of R2.
The half-minus-line l− starts from within ∆ and exits ∆ through the infinitesimal be-

ginning of a B-labelled line segment. Let t′′[[1↑∞]] denote the sequence in {−2,−1} with the
property that the element of E〈A,B, C 〉 read by l− is ΠXt′′

[[1↑∞[[
. Thus t′′1 = −2.
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We will now show that,

(5.3) for each ` ∈ [1↑∞[ , t′′` = [`(−µ−)]− [(`− 1)(−µ−)]− 2.

Let ` ∈ [0↑∞[ . Consider the line in R2 with equation y = −`, which is a concatenation of
A-labelled line segments. Consider also the line with equation x = µ−y − 1, which is the
minus-line through (−1, 0). Let (x`, y` ) denote the point where these two lines intersect.
Then (x`, y` ) = (−`µ− − 1,−`). Thus l− begins at (x0, y0), and, if ` > 1, then (x`, y` )
is the point where l− reads A for the `th time. After leaving (x`, y` ), either l− reads B
and l− reaches (x` +1, y` +1) and reads A and we have [x`+1] = [x`], or l− reads C and l−
reaches (x` +1, y` +1) and reads A and we have [x`+1] = [x`] + 1; see Figures 4.2 and 5.2(2).
Thus, either [x`+1] − [x`] = 0 and t′′`+1 = −2, or [x`+1] − [x`] = 1 and t′′`+1 = −1; hence,
t′′`+1 = [x`+1]− [x`]− 2. Now (5.3) follows.

Let ` ∈ [1↑∞[ and redefine W` := ΠXt′′
[[1↑(`−1)]]

.

We shall now prove that the sequence of L[(−2)↑(−1)]-tiles cut through by l− from top to
bottom is (ρ̄0(W`)Lt′′` |` ∈ [[1↑∞[[ ).

Now, either ` = 1 and l− originates in ρ̄0(W`)∆, or ` > 2 and l− enters ρ̄0(W`)∆ reading
an A-labelled line segment. In either event, if t′′` = −2, then l− exits ρ̄0(W`)∆ reading
a B-labelled line segment, and if t′′` = −1, then l− exits ρ̄0(W`)∆ reading a C-labelled
line segment. From Figures 4.2 and 5.2(2), we see that, in all cases, the initial point of
l−∩ρ̄0(W`)∆ lies in ρ̄0(W`)Lt′′` , and l− cuts through ρ̄0(W`)Lt′′` from top to bottom. It follows
that ρ̄0(W`)Lt′′` is the `th L[(−2)↑(−1)]-tile cut through by l−, as desired. Since ρ̄0(X−1)(x, y) =

(x+1, y−1) and ρ̄0(X−2)(x, y) = (x, y−1), we see that both ρ̄0(W`)(−1, 0) and ρ̄0(W`)(0, 0)
have 1− ` as the second coordinate.

Define t′[[1↑f1]] to be the concatenation of t′′[[1↑(f1−1)]] and (−1).

We shall now prove that ρ̄0(G)L̃ cuts through (ρ̄0(W`)Lt′` | ` ∈ [[1↑f1]]).

Notice that L̃ ∩ Z2, which is {(0, 0), (−1, 0), (0,−1)}, lies in the boundary of L̃. Hence
the boundary of ρ̄0(G)L̃ contains ρ̄0(G)(L̃ ∩ Z2) = ρ̄0(G)(L̃) ∩ ρ̄0(G)(Z2) = ρ̄0(G)(L̃) ∩ Z2.
In particular, the interior of ρ̄0(G)L̃ does not meet Z2.

Since l− contains the left border of L̃, we see that ρ̄0(G)l− = l− contains the left border
of ρ̄0(G)L̃. Since the interior of ρ̄0(G)L̃ does not meet Z2, we see that any labelled line
segment whose interior cuts through l−∩ ρ̄0(G)L̃ from right to left must cut through ρ̄0(G)L̃
from right to left.

Notice that the bottom border of L̃ contains (0,−1); see Figure 5.2(2). Hence, the
bottom border of ρ̄0(G)L̃ contains ρ̄0(G)(0,−1) = (f2 − 1,−f1) which is an end-point of
the B-labelled line segment joining (f2,−f1 + 1) to (f2 − 1,−f1). The other end-point of
the B-labelled line segment does not lie in ρ̄0(G)L̃, and, hence, the B-labelled line seg-
ment must exit the left border of ρ̄0(G)L̃. Hence, the left border of ρ̄0(G)L̃ cuts through
an L−2-tile incident to (f2,−f1 + 1), and this must then be the f1st L̃[(−2)↑(−1)]-tile cut
by l−, that is, ρ̄0(Wf1)Lt′′f1

, In particular, t′′f1
= −2. Now ρ̄0(G)(0,−1) is the lower
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left corner of ρ̄0(Wf1)L−1 = ρ̄0(Wf1)Lt′f1
, and is also the lower left corner of ρ̄0(G)L̃.

Hence ρ̄0(G)L̃ ∩ ρ̄0(Wf1)L = ρ̄0(G)L−1 ∩ ρ̄0(Wf1)Lt′f1
, and the bottom border of ρ̄0(Wf1)Lt′f1

contains the bottom border of ρ̄0(G)L−1. Moreover, the top and bottom borders of
ρ̄0(G)L−1 ∩ ρ̄0(Wf1)Lt′f1

lie in the top and bottom borders of ρ̄0(Wf1)Lt′f1
, respectively, and

the right and left borders of ρ̄0(G)L−1 ∩ ρ̄0(Wf1)Lt′f1
lie in the right and left borders of

ρ̄0(G)L−1, respectively; see Figure 5.2(3).
Now consider ` ∈ [1↑(f1 − 1)]. We shall show that the left and right borders of

ρ̄0(G)L̃ ∩ ρ̄0(W`)Lt′′` lie in the left and right borders of ρ̄0(G)L̃, respectively, and that the top

and bottom borders of ρ̄0(G)L̃∩ ρ̄0(W`)Lt′′` lie in the top and bottom borders of ρ̄0(W`)Lt′′` ,
respectively. We consider two cases.

Case 1. t′′` = −1.
Here, l− cuts through ρ̄0(W`)Lt′′` = ρ̄0(W`)L−1 from top to bottom and crosses the

embedded C-labelled line segment joining ρ̄0(W`)(0, 0) to ρ̄0(W`)(0,−1); see Figure 5.2(2).
Hence this C-labelled line segment cuts through ρ̄0(G)L̃ from right to left. It follows that
the right and left borders of ρ̄0(G)L̃ ∩ ρ̄0(W`)Lt′′` lie in the right and left borders of ρ̄0(G)L̃,

respectively, and that the top and bottom borders of ρ̄0(G)L̃ ∩ ρ̄0(W`)Lt′′` lie in the top and
bottom borders of ρ̄0(W`)Lt′′` , respectively; see Figure 5.2(2).

Case 2. t′′` = −2.
Here, l− cuts through ρ̄0(W`)Lt′′` = ρ̄0(W`)L−2 from top to bottom and crosses the

incident B-labelled line segment joining ρ̄0(W`)(−1,−1) to ρ̄0(W`)(0,−1); see Figure 5.2(2).
Hence this B-labelled line segment cuts through ρ̄0(G)L̃ from right to left. It follows that
the top and bottom borders of ρ̄0(G)L̃ ∩ ρ̄0(W`)Lt′′` lie in the top and bottom borders of

ρ̄0(W`)Lt′′` , respectively, and that the right and left borders of ρ̄0(G)L̃∩ ρ̄0(W`)Lt′′` lie in the

right and left borders of ρ̄0(G)L̃, respectively; see Figure 5.2(2).

Thus the desired result holds in both cases.
Notice that the lower left corner of ρ̄0(BC)L−1 is (−1,−1) and the right border of

ρ̄0(BC)L−1 is contained in l−. Hence, the lower left corner of ρ̄0(GBC)L−1 is
ρ̄0(G)(−1,−1) = (f1 2 − 1,−f1 1) and the right border of ρ̄0(GBC)L−1 is contained in
ρ̄0(G)l− = l−. Hence, the C-labelled line segment joining (f1 2−1,−f1 1+1) to (f1 2−1,−f1 1)
crosses ρ̄0(GBC)L−1. It follows that the L−1-tile containing the C-labelled line segment is
the f1 1 = f−2th L[(−2)↑(−1)]-tile cut by l−, that is, ρ̄0(Wf−2)Lt′′f−2

. The minus-line through

(−1,−1) contains the bottom borders of ρ̄0(BC)L−1 and L1. Hence, the minus-line through
ρ̄0(G)(−1,−1) contains the bottom borders of ρ̄0(GBC)L−1 and ρ̄0(G)L1. Hence ρ̄0(G)L1

lies in
⋃

[1↑f−2]

ρ̄0(W`)Lt′` and ρ̄0(G)L2 lies in
⋃

[(f−2+1)↑f−1]

ρ̄0(W`)Lt′` .

It is now clear that, for all ` ∈ [1↑f−1], ρ̄0(G)L ∩ ρ̄0(W`)L = ρ̄0(G)Lj`
∩ ρ̄0(W`)Lt′` , and

the borders are as claimed.
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It remains to show that t[[1↑f1]] = t′[[1↑f1]], that is, GX−1 = Wf1−1X−1. Recall that

X−1 = CA and X−2 = BA. The B-labelled line segment in Ĉ+ ∪ Q̂ that joins

(−1, 0)+ = 0 = ρ̂0((ACB)±∞) to (0,−1)+ = 1 = ρ̂0((BAC)±∞) = ρ̂0(CA(ACB)±∞)

lies in L̃+ and is carried by ρ0(G) to an arc from

(−1, 0)+ = ρ̂0((ACB)±∞) to (f2 − 1,−f1)
+ = ρ̂0(

G(CA)(ACB)±∞).

The arc reads Wf1−1 and then in ρ0(Wf1−1)∆
+ it enters the vertex between the edges labelled

B and C, and, hence, then reads (BAC)±∞; see Figure 5.2(3). Thus

G(CA)((ACB)±∞) = Wf1−1((BAC)±∞) = Wf1−1CA((ACB)±∞).

Since GX−1 has length f1 and ends in X−1, we see that GX−1 = Wf1−1X−1 , as desired.

The following gives all the claims in Profile 3.2.

5.6 Theorem. Let Notation 5.1 hold. For each j ∈ {−2,−1}, (ρF (V
`
)at`

| ` ∈ [[1↑fj]]) is
a fracturing of aj, the elements of a−1 are codified as the ends of the a−1-accepting tree of

∂+-syllables, and the limit set of the ∂+-semigroup acting on ĈρF
is a−1.

Proof. Notice that CT(ρ0(G)L+) = ρF (G) CT(L+) = ρF (G)a−1 is an arc.
Lemma 5.5(i) implies that (CT(ρ0(G)L+ ∩ ρ0(GV`)L

+
t`

) | ` ∈ [[1↑f−1]]) is a fracturing
of CT(ρ0(G)L+) = ρF (G)a−1. Since CT is constant on the closures of plus-foliation curves
in Ĉ+ ∪ R̂, Lemma 5.5(ii) implies that, for each ` ∈ [1↑f−1],

CT(ρ0(G)L+ ∩ ρ0(GV`)L
+
t`

) = CT(ρ0(GV`)L
+
t`

) = ρF (GV`) CT(L+
t`

) = ρF (GV`)at`
.

Hence, (ρF (GV`)at`
| ` ∈ [[1↑f−1]]) is a fracturing of ρF (G)a−1. On applying ρF (G−1), we see

that (ρF (V`)at`
| ` ∈ [[1↑f−1]]) is a fracturing of a−1.

Hence, (ρF (GV`)at`
| ` ∈ [[1↑f−2]]) is a fracturing of

⋃
`∈[1↑f−2]

CT(ρ0(G)L+ ∩ ρ0(GV`)L
+
t`

).

Lemma 5.5(ii) implies that

⋃

`∈[1↑f−2]

CT(ρ0(G)L+ ∩ ρ0(GV`)L
+
t`

) =
⋃

`∈[1↑f−2]

CT(ρ0(G)L+
1 ∩ ρ0(GV`)L

+
t`

)

⊆ CT(ρ0(G)L+
1 ),⋃

`∈[(f−2+1)↑f−1]

CT(ρ0(G)L+ ∩ ρ0(GV`)L
+
t`

) =
⋃

`∈[1↑f−2]

CT(ρ0(G)L+
2 ∩ ρ0(GV`)L

+
t`

)

⊆ CT(ρ0(G)L+
2 ).
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Since the subarcs CT(ρ0(G)L+
1 ) and CT(ρ0(G)L+

2 ) overlap in a single point, it follows that
(ρF (GV`)at`

| ` ∈ [[1↑f−2]]) is a fracturing of CT(ρ0(G)L+
1 ) which equals CT(ρ0(G)L+

−2) which
equals ρF (G)a−2. Thus (ρF (V`)at`

| ` ∈ [[1↑f−2]]) is a fracturing of a−2.
As in Definitions 3.6, we can use a tree to codify the elements of a−1 as infinite words in

the ∂+-syllables. To show that the limit set of the ∂+-semigroup in ĈρF
is a−1, it remains to

show that, for each ` ∈ [1↑f−1], ρF (V`)a−1 ⊆ a−1, or, equivalently, ρF (GV`)a−1 ⊆ ρF (G)a−1.
If t` = −1, then

ρF (GV`)a−1 = ρF (GV`)at`
⊆ ρF (G)a−1.

Notice that a−2∪ρF (X−2)a−1 ⊇ a−1 since CT(L+
−2∪ρ0(X−2)L

+) ⊇ CT(L+); see Figure 5.2(4).
If t` = −2, then ` ∈ [(f−1 − 1)↓1], and

ρF (GV`)a−1 ⊆ ρF (GV`)a−2 ∪ ρF (GV`X−2)a−1 = ρF (GV`)at`
∪ ρF (GV`+1)a−1,

and, by a reverse induction hypothesis, this lies in ρF (G)a−1.

We now verify most of Profile 3.4.

5.7 Proposition. Let Notation 5.1 hold. The following hold.

(i). U[1↑f1] = {W ∈ 〈A,B,C 〉F−1 | the interior of ρ0(W )L− meets the interior of L−}.
(ii). V[1↑f1] = {W ∈ 〈A, B, C 〉F | the interior of ρ0(W )L+ meets the interior of L+}.
(iii). (U[1↑f1])

−1 = V[1↑f1], and the inversion involution on 〈A,B,C, F 〉 carries the ∂−-semi-
group bijectively to the ∂+-semigroup.

(iv). For each ` ∈ [1↑f1], U−1
` = VF (`) and ρ0(U

−1
` )(col`(L

−)) = rowF (`)(L
−).

Proof. (i)–(iii) are clear from the preceding results of this section and the fact that complex
conjugation carries L+ to L−.

(iv). It can be seen that L−−1 =
⋃

`∈[1↑f2]

col`(L
−) and L−−2 =

⋃
`∈[(f2+1)↑f1]

col`(L
−); see

Figure 5.2(2). The top border of L− = L−−1 ∪ L−−2 is equal to the bottom border of
ρ0(X

−1
−2 )L−−2 ∪ ρ0(X

−1
−1 )L−−1. Hence, the top border of

⋃
`∈[1↑f1]

col`(L
−) is equal to the bot-

tom border of
⋃

`∈[(f2+1)↑f1]

col`(ρ0(X
−1
−2 )L−) ∪ ⋃

`∈[1↑f2]

col`(ρ0(X
−1
−1 )L−), and we can see that

there is a cyclic shift by f2. It follows from Lemma 5.3(ii) that the top borders of the
first f1 − 2 columns of L− equal the bottom borders of the columns of ρ0(X

−1
−2 )L−−2 and

ρ0(X
−1
−1 )L−−1. For each ` ∈ [1↑(f1−f2−1)], the top border of col`(L

−) is equal to the bottom
border of col`+f2(X

−1
−2L

−), and, for each ` ∈ [(f1 − f2)↑(f1 − 2)], the top border of col`(L
−)

is equal to the bottom border of col`+f2−f1(ρ0(X
−1
−1 )L−), and the top border of colf1−1(L

−)
is equal to a right segment of the bottom border of colf2−1(ρ0(X

−1
2 X1)L

−).
Let ` ∈ [1↑f1]. Then ρ0(U

−1
` ) carries col`(L

−) = L− ∩ ρ0(U`)L
− bijectively to

ρ0(U
−1
` )L− ∩ L− ⊆ L−, and this must be one of the rows of L−. In particular, ρ0(U

−1
f1

),
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which is ρ0(AFA), carries the f1st column to a row containing 0, and this is the first row.
The bottom border of the f1st column of L is the top border of the (f1 − f2)th column of
ρ0(X−2)L

−. Hence, ρ0(U
−1
f2

) carries the (f1 − f2)th column of L− to the second row. At
each step, we increase the number of the row by one and decrease the number of the column
by f2 mod f1. Hence, if `′ = F−1(`) ≡ −f2(` − 1)(mod f1), then ρ0(U

−1
`′ ) carries the `′th

column of L− to the `th row of L−; see Figure 5.1(9) and (8). This proves (iv).

6 Hausdorff dimension

In this section, we consider techniques that were developed by Dicks-Porti [17] for the case
F = RL and adapt them to the case F = Π

i∈[[1↑p]]
(RaiLbi). We use results of Bishop-Jones and

Beardon-Maskit to prove that the critical exponent of the ∂−-semigroup equals the Hausdorff
dimension of ∂−A. Similarly, the critical exponent of the ∂+-semigroup equals the Hausdorff
dimension of ∂+B. These four numbers are then equal.

6.1 Definitions. (i). The Möbius action of
( −1 j

j −1

) ∈ GL2(H) on Ĥ induces a map

H3 ∪ Ĉ→ R3, x + yi + zj 7→ (2x, 2y, x2+y2+z2−1)

x2+y2+z2+2z+1
, ∞ 7→ (0, 0, 1),

which identifies H3 ∪ Ĉ with the closed ball in R3 of radius one centered at the origin. The
Euclidean metric on R3 pulls back to the chord metric on Ĉ, where the distance between
elements w and v of Ĉ is

chord(w, v) := 2|w−v|√
(1+|w|2)(1+|v|2)

,

with the natural interpretations if one of the points is ∞; see, for example, [34, Theo-
rem 4.2.1].

The stabilizer of j for the action of PSL2(C) on Ĥ is PSU2(C) ' SO3(R), and the action
of PSU2(C) on Ĉ gives the orientation-preserving isometry group; see, for example, [34,
Exercises 5.2.11–12].

By (2.1), for any x ∈ ]0, 1], dist(j, xj) = arccosh(1+x2

2x
) = arccosh( 2

chord(−x,x)
), and, more-

over, among all the points on the geodesic curve in H3 which has limiting end-points x
and −x, the point closest to j is xj.

It then follows that, for any distinct w, v in Ĉ, if σ denotes the geodesic curve in H3

which has limiting end-points w and v, then dist(j, σ) = arccosh( 2
chord(w,v)

).

(ii). Let A be a subset of R3 endowed with the induced metric, for example, A could be
a subset of the sphere with center the origin and radius one, viewed as a subset of Ĉ with
the chord metric.

Let RA denote the set consisting of those sequences r = r[[1↑∞[[ in [0,∞[ for which there
exists some sequence z[[1↑∞[[ in R3 such that, for each a ∈ A, there exists some n ∈ [1↑∞[
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such that distR3(zn, a) 6 rn. The Hausdorff dimension of A is defined as

Hdim(A) := inf{ t ∈ [0,∞[ : (inf
∑

RAt) = 0} ∈ [0,∞],

where inf
∑

RAt := inf
r∈RA

(
∑

rt
[[1↑∞[[) ∈ [0,∞].

(iii). Let X be any infinite discrete subset of H3. By enumerating the elements of X, we
can think of X as an infinite sequence.

Let j ∈ H3.
The critical exponent of X is defined as

critical(X) := critical(X, j) := inf{t ∈ [0,∞[ : (
∑
x∈X

e− dist(x,j)·t) < ∞} ∈ [0,∞];

this definition is independent of the choice of j.
Let z ∈ Ĉ and let σ(j, z) denote the geodesic curve in H3 which starts at j and

has limiting end-point z. We say that z is a conical limit point for X if the sequence
(dist(x, σ(j, z)) | x ∈ X) in [0,∞[ does not diverge to ∞; this definition is independent of
the choice of j. The set of conical limit points for X is denoted conical(X). Every conical
limit point for X is a limit point for X, that is, an accumulation point of X. The limit points
for X that are not conical limit points for X are called non-conical limit points for X.

(iv). Let S be an infinite discrete subset of PSL2(C).
Let k ∈ H3. Let S(k) denote the orbit {s(k) | s ∈ S}, an infinite discrete subset of H3.
We define the critical exponent of S to be the critical exponent of the orbit S(k) and

write critical(S) := critical(S(k)); this definition is independent of the choice of k. If j ∈ H3,
then critical(S(k), j) = critical(S−1(j), k), and, hence, critical(S) = critical(S−1).

We define the set of conical limit points of S to be the set of conical limit points of the
orbit S(k), and write conical(S) := conical(S(k)); this definition is independent of the choice
of k.

(v). A discrete subgroup π of PSL2(C) is said to be geometrically finite if there exists
a fundamental π-domain in H3 whose closure in H3 ∪ Ĉ is a polyhedron with finitely many
faces.

Recall the following result from [8].

6.2 The Beardon-Maskit Theorem. If π is a geometrically finite, discrete subgroup of
PSL2(C), then the set of non-conical limit points of π equals the set of points of Ĉ fixed by
parabolic elements of π.

We cannot apply the Beardon-Maskit Theorem directly to semigroups. The following
remarks and two lemmas will be useful for our semigroups.
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6.3 Remarks. Let Notation 5.1 hold. Then the following hold:
U1 = V −1

f2 1+1 = F−1 and ρF (U1) is parabolic with fixed point CT(∞) = ∞ =
CT(ρ̂0((CBA)±∞));

Uf2 = V −1
f1

= F−1(FX2)X
−1
2 = BAF−1AB = CF−1C and ρF (Uf2) is parabolic with fixed

point CT(1) = ρF (C)(∞) = CT(ρ̂0((BAC)±∞)); and,
Uf1 = V −1

1 = F−1(FX1)X
−1
1 = BCF−1CB = AF−1A and ρF (Uf1) is parabolic with fixed

point CT(0) = ρF (A)(∞) = CT(ρ̂0((ACB)±∞)).

6.4 Lemma. Let Notation 5.1 hold. Suppose that ` ∈ [1↑f1] and that x and y are elements
of {∞, ρF (A)(∞), ρF (C)(∞)}.

If ρF (V`)(x) = y, then either (x, y, `) = (C(∞),∞, f2 1), or y = x and ρF (V`) is parabolic.
If ρF (U`)(x) = y, then either (x, y, `) = (∞, C(∞), f2 + 1), or y = x and ρF (U`) is

parabolic.

Proof. By Proposition 5.7 and Theorem 5.6, the following hold:
• ρF (A)(∞) is the initial point of the first row ρF (V1)a−2 and the terminal point of the

last column ρF (Uf1)a1;
• ∞ is an interior point of the (f2 1 + 1)th row ρF (Vf2 1+1)a−1 and the initial point of

the first column ρF (U1)a1; and,
• ρF (C)(∞) is the terminal point of the last row ρF (Vf1)a−1 and the terminal point of

the f2th column ρF (Uf2)a2.
If x = ρF (A)(∞) and y = ρF (V`)(x), then y is the initial point of the `th row ρF (V`)at`

,
and we see that ` = 1, and y = x.

If x = ∞ and y = ρF (V`)(x), then y is an interior point of a−1, and we see that y =
x. Then, ρF (UF−1(`))(y) = ρF (V −1

` )(y) = x is the initial point of the F−1(`)th column
ρF (UF−1(`))asF−1(`)

and F−1(`) = 1. Hence ` = F (1) = f2 1 + 1.

If x = ρF (C)(∞) and y = ρF (V`)(x), then y is the terminal point of ρF (V`)a−1. If ` 6= f1,
then we must have y = ∞. Here, ρF (UF−1(`))(y) = ρF (V −1

` )(y) = x is the initial point of the
F−1(`)th column ρF (UF−1(`))asF−1(`)

. Hence F−1(`) = f2 + 1 and ` = F (f2 + 1) = f2 1.
The result is now clear.

6.5 Lemma. Let Notation 5.1 hold. Let z[[1↑∞[[ be a sequence in [1↑f1] that does not converge
to an element of {1, f2, f1} in the discrete topology of [1↑f1]. Let z1 denote the element of
a1 such that

⋂
`∈[0↑∞[

(ρF (ΠUz[[1↑`]]
)a1) = {z1}. Then z1 is a conical limit point of the infinite,

discrete subset {ρF (ΠUz[[1↑`]]
) | ` ∈ [0↑∞[ } of PSL2(C).

Proof. In [14, Theorem 5.6(ii)], it was shown that

(6.1) ∂−A ∩ ∂+B = {CT(0), CT(1), CT(∞)} = {∞, ρF (A)(∞), ρF (C)(∞)}.
Let us choose some element z−1 of a−1−{∞, ρF (A)(∞), ρF (C)(∞)}. By (6.1), z−1 6∈ a1.

By Theorem 5.4, z−1 is not a limit point of the ∂−-semigroup.
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Let S denote the set of accumulation points of the sequence

(ρF ((ΠUz[[1↑`]]
)−1)(z−1) | ` ∈ [[1↑∞]] ).

Notice that S is nonempty.
We show first that there exists some z−2 ∈ S − a1.
By Proposition 5.7, {(ΠUz[[1↑`]]

)−1 | ` ∈ [1↑∞[ } lies in the ∂+-semigroup, and, by Theo-

rem 5.6, the ∂+-semigroup acts on a−1 in ĈρF
. Hence, {ρF ((ΠUz[[1↑`]]

)−1)(z−1) | ` ∈ [1↑∞[ }
lies in a−1. Since a−1 is closed, S ⊆ a−1.

By (6.1), S − a1 = S − {∞, ρF (A)(∞), ρF (C)(∞)}.
Fact 1. If ∞ ∈ S, then there exists some z−2 ∈ S − {∞, ρF (A)(∞), ρF (C)(∞)}.
Proof of Fact 1. Here, there exists an infinite subsequence N1 of [[1↑∞[[ with the property
that the sequence (ρF ((ΠUz[[1↑`]]

)−1)(z−1) | ` ∈ N1) converges to ∞ in a−1.

Now ρF (U−1
1 ) acts on a−1, and ρF (U−1

1 ) is parabolic with fixed point ∞. It follows that,
for each n ∈ [0↑∞[ , (ρF (((ΠUz[[1↑`]]

)Un
1 )−1)(z−1) | ` ∈ N1) converges to ρF (U−n

1 )(∞) = ∞,
and does so more and more rapidly, in the a−1 arc order, as n increases.

For each ` ∈ [1↑∞[ , let `′ denote the least element of [(` + 1)↑∞[ such that z`′ 6= 1; this
is well-defined since z[1↑∞[ does not converge to 1.

It then follows that (ρF ((ΠUz[[1↑(`′−1)]]
)−1)(z−1) | ` ∈ N1) also converges to ∞.

There exists some m ∈ [2↑f1] such that N2 := {` ∈ N1 | `′ = m} is infinite.
Then (ρF ((ΠUz[[1↑`′]])

−1)(z−1) | ` ∈ N2) converges to z−2 := ρF (U−1
m )(∞) ∈ S.

By Lemma 6.4, z−2 ∈ S − {∞, ρF (A)(∞), ρF (C)(∞)}, and Fact 1 is now proved.

By the same type of argument, we prove the following.

Fact 2. If ρF (A)(∞) ∈ S, then there exists some z−2 ∈ S − {∞, ρF (A)(∞), ρF (C)(∞)}.

Fact 3. If ρF (C)(∞) ∈ S, then there exists some z−2 ∈ S − {∞, ρF (A)(∞), ρF (C)(∞)}.
Proof of Fact 3. If we apply the same type of argument again, we find there exists some
z−3 ∈ S − {ρF (A)(∞), ρF (C)(∞)}. Together with Fact 1, this implies Fact 3.

In summary, we have proved that there exists some z−2 ∈ S − a1.
Let σ denote the geodesic curve in H3 with limiting end-points z−1 and z1.
Let ε = chord(z−2, a1); see Definitions 6.1(i). Since z−2 6∈ a1, ε > 0.
Let N3 := {` ∈ [0↑∞[ : chord(z−2, ρF ((ΠUz[[1↑`]]

)−1)(z−1)) < ε
2
}. Since z−2 ∈ S, N3 is

infinite.
Let ` ∈ N3. By the choice of ε, chord(ρF ((ΠUz[[1↑`]]

)−1)(z−1), a1) > ε
2
. We no

longer need z−2, and we argue as in [8]. We know that z1 ∈ ρF (ΠUz[[1↑`]]
)a1. Hence,

ρF ((ΠUz[[1↑`]]
)−1)(z1) ∈ a1. In particular,

chord( ρF ((ΠUz[[1↑`]]
)−1)(z−1), ρF ((ΠUz[[1↑`]]

)−1)(z1) ) > ε
2
.
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The geodesic curve in H3 which has as its limiting end-points ρF ((ΠUz[[1↑`]]
)−1)(z−1) and

ρF ((ΠUz[[1↑`]]
)−1)(z1) is ρF ((ΠUz[[1↑`]]

)−1)(σ). By Definitions 6.1(i),

arccosh(4
ε
) > dist(j, ρF ((ΠUz[[1↑`]]

)−1)(σ)) = dist(ρF (ΠUz[[1↑`]]
)(j), σ).

Since N3 is infinite, the foregoing implies that z−1 or z1 is a conical limit point of
(ρF (ΠUz[[1↑`]]

)(j) | ` ∈ [[0↑∞[[ ). Since z−1 is not a limit point of the ∂−-semigroup, the re-
sult follows.

6.6 Theorem. Let Notation 5.1 hold. The set of conical limit points of the ∂−-semigroup
equals a1 − ρF (〈A, B, C 〉)(∞).

Proof. Jørgensen showed that ρF (〈A,B, C, F 〉) is geometrically finite. By the Beardon-
Maskit Theorem 6.2, or simply [8, Proposition 3], every fixed point of a parabolic element of
ρF (〈A,B, C, F 〉) is a non-conical limit point of ρF (〈A,B, C, F 〉), and, in particular, is not a
conical limit point of the ∂−-semigroup. Thus, every conical limit point of the ∂−-semigroup
lies in a1 − ρF (〈A,B, C 〉)(∞).

It remains to show that if z ∈ a1−ρF (〈A,B, C 〉)(∞), then z is a conical limit point of the
∂−-semigroup. Let z[[1↑∞[[ be a sequence in [1↑f1] such that

⋂
`∈[1↑∞[

(ρF (ΠUz[[1↑(`−1)]]
)a1) = {z}.

Since z 6∈ ρF (〈A,B, C 〉)(∞), z[[1↑∞[[ does not converge to 1 or f2 or f1. By Lemma 6.5, z is
a conical limit point of the ∂−-semigroup.

A similar argument shows the following.

6.7 Theorem. Let Notation 5.1 hold. The set of conical limit points of the ∂+-semigroup
equals a−1 − ρF (〈A,B,C 〉)(∞).

Using Lemma 6.5 again, we can deduce the following.

6.8 Corollary. Let Notation 5.1 hold, let N ∈ [1↑∞[ and let z[[1↑N ]] be a sequence in [1↑f1].
If ρF (ΠUz[[1↑N ]]

) is parabolic, then z[[1↑N ]] is a constant sequence in {1, f2, f1}.
If ρF (ΠVz[[1↑N ]]

) is parabolic, then z[[1↑N ]] is a constant sequence in {1, f2 1 + 1, f1}.
In [12, Section 2], a succinct, self-contained proof of the following result is given, although

the result itself is not stated.

6.9 The Bishop-Jones Theorem. If S is a subsemigroup of a discrete subgroup of PSL2(C)
such that S does not have a global fixed point in Ĉ, then critical(S) = Hdim(conical(S)).

6.10 Theorem. Let Notation 5.1 hold. The following four numbers are equal:

the Hausdorff dimension of ∂−A;

the critical exponent of the ∂−-semigroup;

the critical exponent of the ∂+-semigroup;
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the Hausdorff dimension of ∂+B.

Proof. By Theorem 6.6, Hdim(∂−A) equals the Hausdorff dimension of the set of conical
limit points of the ∂−-semigroup which, by the Bishop-Jones Theorem 6.9, equals the critical
exponent of the ∂−-semigroup. By Theorem 6.7, Hdim(∂+B) equals the Hausdorff dimension
of the set of conical limit points of the ∂+-semigroup which, by Theorem 6.9, equals the
critical exponent of the ∂+-semigroup. By Proposition 5.7(iii) and Definitions 6.1(iv), the
critical exponent of the ∂−-semigroup equals the critical exponent of the ∂+-semigroup.

6.11 Remark. For F = RL, Hdim(∂−A) seems to be near 1.27910. Recall that for the
sequence b[[0↑∞[[ of [17, Calculations 5.2], Hdim(∂−A) lies between the liminf and the limsup

of the sequence (log bn+1−bn

bn−bn−1
| n ∈ [[1↑∞[[ ). Jaume Amoros and Javier Vindel very kindly

computed

b[[21↑25]]=(547206912858, 2002063012565, 7324919842341, 26799555593731, 98051175064382),

and, hence, (log bn+1−bn

bn−bn−1
|n ∈ [[22↑24]]) = (1.2971031 . . . , 1.2971027 . . . , 1.2971046 . . .).

In [28], McMullen described an eigenvalue algorithm and applied a theorem of Sulli-
van [38] to prove that this eigenvalue algorithm gives good estimates for the Hausdorff
dimension of the limit set of a Kleinian group generated by reflections in pairwise disjoint
circles; see also [31, p.156]. It would be very interesting to know if some variant of the
algorithm gives estimates for Hdim(∂−A). Let us propose the following.

6.12 Some Open Problems. We have sequences of positive integers a
[[1↑p]]

, b
[[1↑p]]

, and, on

〈X1, X2 | 〉, R(X1, X2) = (X1, X1X2),
L(X1, X2) = (X2X1, X2), and F = Π

i∈[[1↑p]]
(RaiLbi),

and 〈X1, X2, F 〉 acts on Ĉ via a normalized discrete faithful representation ρF in PSL2(C),
and, in SL2(Z), ( f1 1 f1 2

f2 1 f2 2
) := Π

i∈[[1↑p]]
(( 1 ai

0 1 )( 1 0
bi 1 )).

Also, f1 := f1 1 +f2 1, f2 := f1 2 +f2 2, µ+ :=
f1 1−f2 2+

√
(f1 1+f2 2)2−4

2f2 1
, and, for each ` ∈ [1↑f1],

s` := [ `+1
1+µ+

]− [ `
1+µ+

] + 1 ∈ [1↑2], and U
`
:= F−1ΠXs[[1↑(`−1)]]

.

In Notation 5.1 and Lemma 5.3, we saw that f2 < f1, and s[[1↑f1]] is a sequence in [1↑2],
and FX1 = ΠXs[[1↑f1]]

, and FX2 = ΠXs[[1↑f2]]
. In Theorem 5.4, we saw that we have arcs a1

and a2 in Ĉ with fracturings

(6.2) a1 =
⋃

`∈[1↑f1]

U
`
as`

and a2 =
⋃

`∈[1↑f2]

U
`
as`

;

throughout this subsection, we understand that 〈X1, X2, F 〉 acts on Ĉ via ρF .
For each subarc b of a1, let weight(b) denote the chord-metric distance between the two

end-points of b.
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Fix ε ∈ ]0, min{weight(U`a1) | ` ∈ [1↑f1] } ].
Let Zε denote the set of all a1-acceptable sequences in [1↑f1] of the form z[[1↑N ]] with

N ∈ [2↑∞[ satisfying weight(az[[1↑(N−1)]]
) > ε and weight(az[[1↑N ]]

) < ε where az[[1↑N ]]
de-

notes (ΠUz[[1↑N ]]
)aszN

, a subarc of a1. Recall that z[[1↑N ]] is a1-acceptable if, for each

` ∈ [1↑(N−1)] with sz`
= 2, z`+1 ∈ [1↑f2]. Repeated substitution in (6.2) gives a fractur-

ing a1 =
⋃

z[[1↑N ]]∈Zε

az[[1↑N ]]
where Zε has been given the lexicographic order.

Let Mε denote the real square matrix with rows and columns indexed by Zε such that

the coordinate corresponding to (y[[1↑M ]], z[[1↑N ]]) ∈ Zε × Zε

equals
weight(Uy1az[[1↑N ]]

)

weight(az[[1↑N ]]
)

if M−1 6 N and y[[2↑M ]] = z[[1↑(M−1)]],

and equals zero otherwise.

For each x ∈ [0,∞[ , let M∧x
ε denote the matrix obtained from Mε by raising each entry

to the power x.
It is an open problem to decide whether there exists a unique xε ∈ [0,∞[ such that the

spectral radius of M∧xε
ε equals 1. If the xε exist, then the next open problem is to decide

whether lim
ε→0

xε exists and equals the Hausdorff dimension of a1. If so, the open problem after

that is to describe the error term.
For F = RL and ε = 0.00018, we have found that |Zε| = 937517 and that xε exists and

equals 1.29710693 . . .; the latter value is quite close to the terms of the sequence mentioned
in Remark 6.11. We have computed the following cases.

F ε |Zε| xε

RL 0.00018 937517 1.29710693 . . .

RL2 0.00025 871775 1.29536 . . .

RL3 0.0003 870188 1.29159 . . .

R2L2 0.0003 1012285 1.30790 . . .

RL2R3L4 0.0012 884553 1.32636 . . .

Recall that McMullen [28] computed that the Hausdorff dimension of the Apollonian gasket
is about 1.305688 with an analogue of ε = 0.0005 and |Zε| = 1397616. The Apollonian
gasket and CW (RL100) appear together in Figure 8.2

6.13 Background. To motivate the above open problems, let us sketch some of the theory
behind McMullen’s algorithm and its relation with our situation.

Let Γ be a subsemigroup of a discrete subgroup of PSL2(C) and let Λ(Γ) be the limit set
of Γ. Let ~ ∈ [0,∞[ . Let µ be a measure on Ĉ. We say that µ is a Γ-invariant probability
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measure of dimension ~ if µ(Λ(Γ)) = µ(Ĉ) = 1, and, for each γ ∈ Γ and each Borel subset

E of Ĉ, µ(γ(E)) =
∫

z∈E
(γ′(z))~ dµ, where, for γ(z) = az+b

cz+d
, γ′(z) = |z|2+1

|az+b|2+|cz+d|2 , the local

dilation with respect to the chord metric. In cases where Γ is a group, the existence and
uniqueness of such a pair (µ, ~) have been studied by Bowen, Patterson, Sullivan, and others.
In the case where Γ is a geometrically finite group, Sullivan [37], [38] showed that there exists
a unique pair (µ, ~) such that µ is a Γ-invariant probability measure of dimension ~, and,
moreover, ~ then equals the Hausdorff dimension of Λ(Γ).

Consider now the case where Γ is the subsemigroup of 〈X1, X2, F 〉 generated by U[1↑f1],

acting on ĈρF
. By Theorem 5.4, Λ(Γ) = a1. Let us suppose that there exists a unique

pair (µ, ~) such that µ is a Γ-invariant probability measure of dimension ~, and let us also
suppose that ~ equals the Hausdorff dimension of a1, and let us also suppose that, for each
y[[1↑M ]] ∈ Zε, weight(ay[[2↑(M−1)]]

) > ε, and, hence,

µ(ay[[1↑M ]]
) = µ(Usy1

ay[[2↑M ]]
)(6.3)

=
∑

{z[[1↑N ]]∈Zε|z[[1↑(M−1)]]=y[[2↑M ]]}
µ(Usy1

az[[1↑N ]]
)

=
∑

{z[[1↑N ]]∈Zε|z[[1↑(M−1)]]=y[[2↑M ]]}

µ(Uy1az]]1↑N ]]
)

µ(az[[1↑N ]]
)

µ(az[[1↑N ]]
).

Let Aε denote the real square matrix with rows and columns indexed by Zε such that

the coordinate corresponding to (y[[1↑M ]], z[[1↑N ]]) ∈ Zε × Zε

equals
µ(Uy1az[[1↑N ]]

)

µ(az[[1↑N ]]
)

if M−1 6 N and y[[2↑M ]] = z[[1↑(M−1)]],

and equals zero otherwise.

Let vε denote the real column vector with coordinates indexed by Zε where the coordinate
corresponding to z[[1↑N ]] ∈ Zε equals µ(az[[1↑N ]]

). Then vε is a positive vector with coordinate
sum equal to 1 and (6.3) shows that Aεvε = vε. By Perron-Frobenius Theory, the spectral
radius of Aε equals 1 (since Aε is non-zero).

If ` ∈ [1↑f1], and U ′
` denotes the local dilation for the action of U` on ĈρF

, and b is
a sufficiently small subarc of a1, then the subinterval U ′

`(b) of [0,∞[ can be approximated

by a single value and we choose the ‘mean weight-value’ weight(U`b)
weight(b)

as an approximation.

(McMullen uses an evaluation of U ′
` at some chosen point, but in the presence of parabolics

some choices may not work well for what we have in mind.) The key fact now about

the measure µ is that (U ′
`(b))~ can be approximated by the ‘mean µ-value’ µ(U`b)

µ(b)
. Hence,

µ(U`b)
µ(b)

'
(

weight(U`b)
weight(b)

)~
since both sides are approximations for the interval (U ′

`(b))~. Thus,

for sufficiently small ε, Aε ' M∧~
ε and, hence, the spectral radius of M∧~

ε is near 1. In
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the different circumstances of a Kleinian group generated by reflections in pairwise disjoint
circles, McMullen shows that there exists a unique xε ∈ [0,∞[ for which the spectral radius
of M∧xε

ε is equal to 1, and that xε is a good approximation of ~.

7 When are the columns of CW(F ) vertical?

This section is an addendum to [15] that records the fact that the columns of CW(F ) are
vertical whenever some odd-length-cyclic shift carries our sequence (a1, b1, a2, b2, . . . , ap, bp)
to itself, or some even-length-cyclic shift carries our sequence to its reverse, or both. It is
an open problem to decide whether the converse is true. In the cases where our sequence is
(1, 1), (2, 2), (1, 1, 2, 2), or (1, 2, 3, 1, 2, 3), verticality is illustrated in [15, Section 14].

7.1 Discussion. Recall that (a1, b1, a2, b2, . . . , ap, bp) is an even-length, nonempty, positive-
integer sequence, and, in Aut〈A,B, C 〉, R := (A,BCB, B) and L := (B,BAB, C) and
F := Ra1Lb1Ra2Lb2 · · ·RapLbp , and for the action of 〈A, B, C, F 〉 on ĈρF

, D acts as z 7→ z+1
and F acts as z 7→ z + s, with Im(s) > 0.

For the following four conditions, it is known that (a) ⇔ (b) ⇒ (c) ⇔ (d):

(a) At least one of the following holds.

(i) Some odd-length-cyclic shift carries (a1, b1, a2, b2, . . . , ap, bp) to itself.

(ii) Some even-length-cyclic shift carries (a1, b1, a2, b2, . . . , ap, bp) to its reverse,
(bp, ap, . . . , b2, a2, b1, a1).

(b) The hyperbolic once-punctured-torus bundle ρF (〈CB,AB,F 〉)\H3 has an orientation-
reversing isometry.

(c) Re(s) = 0.

(d) The (colored) columns of the Cannon-Thurston tessellation CW(F ) are (completely)
vertical.

For example, (a)(i) holds for the sequences (1, 1) and (1, 2, 3, 1, 2, 3).
For example, (a)(ii) holds for the sequences (1, 1) and (1, 1, 2, 2).
For example, (c) fails for the sequence (1, 2, 3, 2), where one can show that Re(s) < −0.03;

here s satisfies s6 + s5 − s4 − s3 − 12s2 − 12s + 8 = 0.
(a) ⇔ (b) was proved by McCullough [26]; we shall use the main ideas of his argument

in a proof of (a) ⇒ (c) below.
(b) ⇒ (c) is a folklore result, traditionally attributed to Robert F. Riley. We have not

found a statement or proof of Riley’s implication in the literature; below, we record a proof
that (a) ⇒ (c).

(c)
?⇒ (b) is an open question.

(c)⇔ (d) holds since each column of CW(F ) is invariant under ρF (F ), which is translation
by s.
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Proof that (a)(i) ⇒ (c). Suppose that some odd-length-cyclic shift carries the sequence
(a1, b1, a2, b2, . . . , ap, bp) to itself. Thus there exists some odd divisor i of p such that

F = ((Ra1Lb1Ra2Lb2 · · ·Ra i−1
2 L

b i−1
2 R

a i+1
2 )(La1Rb1La2Rb2 · · ·La i−1

2 R
b i−1

2 L
a i+1

2 ))
p
i .

It is not difficult to show that for M := (C,B, A) ∈ Aut〈A, B, C 〉, we have MR = L and
ML = R and M2 = 1 and MD = D−1. Let G := Ra1Lb1Ra2Lb2 · · ·Ra i−1

2 L
b i−1

2 R
a i+1

2 M .
Then G

2p
i = F and GD = D−1. Since G normalizes 〈A, B, C, F 〉, conjugation by G de-

termines an automorphism of 〈A,B, C, F 〉; by Mostow’s Rigidity Theorem, there exists
a unique conformal-or-anti-conformal automorphism η of Ĉ such that ρF pre-composed
with the conjugation-by-G automorphism of 〈A,B, C, F 〉 equals ρF post-composed with
the conjugation-by-η automorphism of PSL2(C). We can extend ρF to 〈A, B, C, G 〉 by
ρG(G) = η. If ρG(G) is conformal, resp. anti-conformal, we can express ρG(G) as z 7→ az+b

cz+b
,

resp. z 7→ az+b
cz+d

, where ad − bc = 1. Since GD = D−1 and G2 6= 1, we see that

ρG(G)(∞) = ∞ and c = 0 and a = −d and ρG(G) is z 7→ z + b. Since G
2p
i = F , we

see that s = ρF (F )(0) = p
i
(b + b) and Re(s) = 0, that is, (c) holds.

Proof that (a)(ii) ⇒ (c). Suppose that some even-length-cyclic shift carries the sequence
(a1, b1, a2, b2, . . . , ap, bp) to its reverse. Thus there exists some i ∈ [0↑(p− 1)] such that both

(a1, b1, a2, b2, . . . , ai−1, bi−1, ai, bi) and (ai+1, bi+1, ai+2, bi+2, . . . , ap−1, bp−1, ap, bp)

are ‘palindromes’, equal to their own reverses. It is not difficult to show that for
P := (C, CBC, CBABC) ∈ Aut〈A,B,C 〉 we have PR = L−1 and PL = R−1 and P 2 = D.
Let G := Ra1Lb1Ra2Lb2 · · ·Rai−1Lbi−1RaiLbiP . Then G2 = D and GF = F−1. Since G
normalizes 〈A,B,C, F 〉, conjugation by G determines an automorphism of 〈A,B,C, F 〉;
by Mostow’s Rigidity Theorem, there exists a unique conformal-or-anti-conformal auto-
morphism η of Ĉ such that ρF pre-composed with the conjugation-by-G automorphism of
〈A,B, C, F 〉 equals ρF post-composed with the conjugation-by-η automorphism of PSL2(C).
We can extend ρF to 〈A,B, C, G, F 〉 by ρG(G) = η. If ρG(G) is conformal, resp.
anti-conformal, we can express ρG(G) as z 7→ az+b

cz+b
, resp. z 7→ az+b

cz+d
, where ad − bc = 1.

Since GF = F−1 and G2 6= 1, we see that ρG(G)(∞) = ∞ and c = 0 and as = −sd and
ρG(G) is z 7→ − s

s
z + t. Since G2 = D, we see that 1 = ρF (D)(0) = − s

s
t + t and s = −st + ts

and Re(s) = 0, that is, (c) holds.

7.2 Remarks. In [15], the column-permuting-symmetry group of CW(F ) was calculated;
the referee of [18] showed that the column-permuting-symmetry group equals the whole
symmetry group; see [18, Remark 8.16]. It then follows that the type of the planar tessellation
CW(F ) is p 1 (the orbifold quotient is a torus) or p 2 (the orbifold quotient is a sphere with
four C2-points) or p g (the orbifold quotient is a Klein bottle) or p g g (the orbifold quotient
is a projective plane with two C2-points). Moreover, CW(F ) is of type p g g if and only if
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both (a)(i) and (a)(ii) hold. Also, CW(F ) is of type p g if and only if (a)(i) holds or (a)(ii)
holds, but not both.

It is well known that a planar group of type p g or p g g contains two mutually orthogonal
planar translations. The traditional proof of this fact includes an argument that shows that
if G and T are symmetries of the Euclidean plane such that G is a glide reflection, and T is
a translation, and G−1TG = T−1, then the translations G2 and T are mutually orthogonal.
Above, we have used this argument twice to verify that if CW(F ) is of type p g or p g g
then the planar translations D and F are mutually orthogonal.

8 RLn and RL∞

In this section, we simplify slightly some arguments of Helling [22] that, firstly, give an
explicit description of Jørgensen’s representation ρRLn specified in Notation 2.3, and secondly,
on letting n tend to ∞, realize the homomorphism ρRL∞ described by Hodgson-Meyerhoff-
Weeks [23]. We invent a definition of CW(RL∞) and compare the drawings of CW(RL∞)
and CW(RL100).

Recall that the meromorphic map Ĉ → Ĉ, w 7→ w + w−1, induces a homeomorphism
of open annuli {w ∈ C : |w| > 1} ∼→ C − [−2, 2]. Most of Helling’s calculations con-
cern C− [−2, 2] while we feel that the calculations become a little simpler when lifted to
{w ∈ C : |w| > 1}. We begin by translating an interesting result and proof of Helling’s that
showed that, for a certain w, w2 + w−2 is restricted to a small region, while the following
shows that w is restricted to a small easily described region.

8.1 Lemma (Helling [22]). For each n ∈ [1↑∞[ , there exists a unique w ∈ C with the
properties that |w| ∈ ]

1, n
√

3
[

and arg(w) ∈ ]
0, π

2n+4

[
and wn+2 + w−n−2 = w2 − w−2.

Proof. We begin with a variation of an argument often used to prove Rouché’s Theo-
rem; see [4, p.153]. Let H := {z ∈ C : |z| ∈ ]

0, n
√

3
[

, arg(z) ∈ ]
0, π

n+2

[ } and consider the

boundary, ∂H = [0, n
√

3] ∪ [0, n
√

3]e
πi

n+2 ∪ n
√

3e
πi

n+2
[0,1]. Let z ∈ ∂H. We claim that either∣∣∣ zn−zn+4

z2n+4+1

∣∣∣ < 1 or zn−zn+4

z2n+4+1
= i.

Consider first the case that z ∈ n
√

3e
πi

n+2
[0,1]. Then |z|−4 + 1 + |z|−n−4 < 1 + 1 + 1 = |z|n

and |z−4 − 1| 6 |z|−4 + 1 < |z|n − |z|−n−4 6 |zn + z−n−4| . Thus, 1 >
∣∣∣ z−4−1
zn+z−n−4

∣∣∣ =
∣∣∣ zn−zn+4

z2n+4+1

∣∣∣.
Consider now the case that z ∈ [0, n

√
3] ∪ [0, n

√
3]e

πi
n+2 . In R, (|z|n − 1)(|z|n+4 − 1)

achieves its minimum value, 0, where |z| = 1, that is, where z = 1 or z = e
πi

n+2 . Thus,

|z|n + |z|n+4 6 |z|2n+4 + 1 and equality holds only if z = 1 or z = e
πi

n+2 . Now,

|zn − zn+4| 6 |zn|+ |−zn+4| = |z|n + |z|n+4 6 |z|2n+4 + 1 = |z2n+4 + 1| ,
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and equality holds throughout only if z = e
πi

n+2 and n = 2, where we then have z2 = i. Thus,

1 >
∣∣∣ zn−zn+4

z2n+4+1

∣∣∣, and equality holds only if n = 2 and z = e
πi
4 , where we then have zn−zn+4

z2n+4+1
= i.

We have now proved the claim.
Consider the meromorphic map f : Ĉ→ Ĉ, z 7→ 1 + zn−zn+4

z2n+4+1
. If z ∈ ∂H, then we have

f(z) ∈ ]0, 2] +i[−1, 1], since the preceding argument shows that either |f(z)− 1| < 1 or
f(z)− 1 = i; hence, arg(f(z)) ∈ [−π

2
, π

2
]. It is straightforward to show that when z travels

a complete counter-clockwise circuit of ∂H, the total change in arg(z2n+4 + 1) is 2π, and,
hence, 2π is also the total change in arg(z2n+4 + 1) + arg(f(z)), that is, arg((z2n+4 + 1)f(z)),
that is, arg(z2n+4 + 1 + zn − zn+4). Now, by Cauchy’s argument principle, there exists a
unique w ∈ H such that w2n+4 + 1 + wn − wn+4 = 0; see [4, p.131 or p.152]. In summary,
there exists a unique w ∈ C with the properties that |w| ∈ ]

0, n
√

3
[

and arg(w) ∈ ]
0, π

n+2

[
and wn+2 + w−n−2 = w2 − w−2. It remains to show that w has all the desired properties.

Here, Im(w2) > 0 and Im(−w−2) > 0 and Im(wn+2 + w−n−2) = Im(w2 − w−2) > 0 and
Im(wn+2) > 0. It follows that |w| > 1.

Let θ := arg(w). We have (n + 2)θ ∈ ]0,π[ and we wish to show that (n + 2)θ ∈ ]
0, π

2

[
,

or, equivalently, cos((n + 2)θ) > 0.
If n = 1, ((w − w−1)2 + 1)− (w − w−1) = w3+w−3

w+w−1 − w2−w−2

w+w−1 = 0, and Im(w − w−1) > 0,

and we see that w − w−1 = 1
2

+
√

3
2
i, and, hence, w3 − w−3 = 1

2
+ 3

√
3

2
i. On equating real

parts, we find that (|w|3 − |w|−3) cos(3θ) = 1
2

> 0, and, hence, cos(3θ) > 0.
If n > 2, we have cos(2θ) > 0, and, on equating the real parts of wn+2+w−n−2=w2−w−2,

we find that (|w|n+2 + |w|−n−2) cos((n + 2)θ) = (|w|2 − |w|−2) cos(2θ) > 0.
For all n ∈ [1,∞[ , we then have cos((n + 2)θ) > 0, and w has all the desired properties.

8.2 Notation. Let n ∈ [1↑∞[ . We consider Notation 2.3 and take F = RLn. Recall that

R(A,B,C) = (A,BCB, B) and L(A,B, C) = (B, BAB,C).

Notice that LD = D and LC = C and LA = B = (CD)A. Hence, Ln
D = D and Ln

C = C
and Ln

A = (CD)nA and Ln
B = Ln

(CDA) = (CD)n+1A. Now, RLn
D = D and RLn

C = B and
RLn

A = (BD)nA and RLn
B = (BD)n+1A. Thus,

〈A, B, C, RLn 〉 = 〈A,B, C, D, F | A2 = B2 = C2 = ABCD = 1,
FA = (BD)nA, FB = (BD)n+1A, FC = B〉.

Let w denote the unique element of C with the properties that |w| ∈ ]
1, n
√

3
[

and
arg(w) ∈ ]

0, π
2n+4

[
and wn+2 + w−n−2 = w2 − w−2; see Lemma 8.1.

Since arg(w) ∈ ]
0, π

2n+4

[
, we have Im(wn) > 0 and, hence, Im(−w−n) > 0 and, hence,

Im(−wn + 2 + w−n) < 0. Since |w| > 1, we have, for each i ∈ [1↑∞[ , wi 6= ±w−i.
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Let x := −wn + 2 + w−n (and, thus, Im(x) < 0), y := z := w2 + w−2 6= 0, and
s := wn−w−n

−wn+2+w−n = 2
x
− 1 (and, thus, Im(s) > 0).

For the purposes of the following discussion, it will be convenient to rewrite expressions
in terms of u := −wn+2 + w2 = w−2 + w−n−2. Notice that

u2 = (−wn+2 + w2)(w−2 + w−n−2) = −wn + w−n = x− 2.

In particular, u2 + 2 = x and u(u2 + 2) 6= 0. Notice also that

(8.1) uw−2 − 1 = −wn and uw2 − 1 = w−n.

On multiplying these two equations, we see that u2 − uw2 − uw−2 + 1 = −1, and then
u + 2u−1 = w2 + w−2 = y = z. Also, s = 2

x
− 1 = − u2

u2+2
. Now

x2 + y2 + z2 = (u2 + 2)2 + (u2+2
u

)2 + (u2+2
u

)2 = (u2 + 1 + 1)(u2+2
u

)2 = xyz 6= 0.

We then have elements of SL2(C),

Ã :=
(
−z/y (x−yz)/y2

x z/y

)
=

(
−1 −2/(u2+2)

u2+2 1

)
, B̃ :=

(
0 −1/y
y 0

)
=

(
0 −u/(u2+2)

(u2+2)/u 0

)
,

C̃ :=
(

x/y (z−xy)/y2

z −x/y

)
=

(
u −(u3+u)/(u2+2)

(u2+2)/u −u

)
, D̃ := ( 1 1

0 1 ) , F̃ := ( 1 s
0 1 ) =

(
1 −u2/(u2+2)
0 1

)
,

satisfying Ã2 = B̃2 = C̃2 = ÃB̃C̃D̃ = −I2 and F̃D̃ = D̃. Straightforward calculations show

that F̃ C̃ =
(

0 −u/(u2+2)

(u2+2)/u −u

)
= B̃F̃ , and that B̃D̃ =

(
0 −u/(u2+2)

(u2+2)/u (u2+2)/u

)
, and that

(8.2) (uB̃D̃ − I2)
2 =

(
−u2+1 −u4/(u2+2)
u4+2u2 u4+u2+1

)
= ÃF̃ Ã−1F̃−1.

Now B̃D̃ =
(

0 −u/(u2+2)
(u2+2)/u (u2+2)/u

)
=

(
0 −1/(w2+w−2)

w2+w−2 w2+w−2

)
, which is then in a form that is

easily diagonalized, and, for P :=
(

−w−2 −w2

w2+w−2 w2+w−2

)
∈ GL2(C), we have

(8.3) B̃D̃P =
( −1 −1

w4+1 1+w−4

)
= P

(
w2 0
0 w−2

)
and, hence, B̃D̃ = P

(
w2 0
0 w−2

)
.

Altogether,

F̃ ÃF̃−1Ã−1(8.2)
= (uB̃D̃ − I2)

−2 (8.3)
= P

(
(uw2−1)−2 0

0 (uw−2−1)−2

)
(8.1)
= P

(
w2n 0
0 w−2n

)
(8.3)
= (B̃D̃)n.

We then have F̃D̃ = D̃ and F̃C̃ = B̃ and F̃Ã = (B̃D̃)nÃ.
We have a representation ρ′RLn : 〈A,B,C, F 〉 → PSL2(C) determined by ρ′RLn(W ):=± W̃

for all W ∈ {A,B,C, F}. We next prove that ρ′RLn is equal to the ρRLn of Notation 2.3.
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8.3 Theorem (Helling [22]). With Notation 8.2, ρ′RLn = ρRLn.

Proof. To simplify notation, we let 〈A, B, C, F 〉 act on Ĉ via ρ′RLn .
We shall use the following.

(8.4) x = (−wn + w−n) + 2 = (−wn + w−n)( w2−w−2

wn+2+w−n−2 ) + 2 = wn+2+w−n+2+wn−2+w−n−2

wn+2+w−n−2 .

By (8.3), the columns of P =
(

−w−2 −w2

w2+w−2 w2+w−2

)
are eigenvectors for B̃D̃. For each

j ∈ [(−1)↑(n + 1)], we shall also be using

qj := (BD)jA(∞) = (BD)j(−1
x

)
(8.4)
= (BD)j( wn(−w2)+w−n(−w−2)

wn(w2+w−2)+w−n(w2+w−2)
)(8.5)

(8.3)
= w−2jwn(−w2)+w2jw−n(−w−2)

w−2jwn(w2+w−2)+w2jw−n(w2+w−2)
= − wn−2j+2+w−n+2j−2

(w2+w−2)(wn−2j+w−n+2j)
.(8.6)

For i ∈ Z, j ∈ [1↑(n + 1)], we calculate

pi,j = (DiRLj−1

B)(∞) = (Di

((BD)jA))(∞) = Di(BD)jA(∞) = Di(qj) = i + qj,

pi,0 = (Di

B)(∞) = DiB(∞) = Di(0) = i,

pi,−1 = (DiL−1

B)(∞) = (Di

A)(∞) = DiA(∞) = Di(q0) = i + q0,

pi,−n−1 = (DiL−nR−1

B)(∞) = (DiL−n

C)(∞) = (Di

C)(∞) = DiCD(∞) = DiBA(∞)

= Di+1(BD)−1A(∞) = i + 1 + q−1.

See Figure 8.1. Also, see Figure 1.1(3) for the case F = RL3.
Let θ := arg(w). Then θ ∈ ]

0, π
2n+4

[
, and, for t ∈ [0, n + 2], tθ ∈ [0, π

2
[ . Since |w| > 1,

it follows that, for all t ∈ [0, n+2], arg(wt + w−t) ∈ [0, π
2
[ , and the same holds for all

t ∈ [−n−2, n+2]. Further,

[0, n+2] → R, t 7→ tan(arg(wt + w−t)) = sin(tθ)(|w|t−|w|−t)

cos(tθ)(|w|t+|w|−t)
= tan(tθ)(1− 2

|w|2t+1
)

is an increasing function, since it is the product of two positive, increasing functions. For
all t ∈ [0, n+2[ , 0 6 arg(wt + w−t) < arg(wn+2 + w−n−2) = arg(w2 − w−2) < π

2
, and, hence,

arg(w2−w−2

wt+w−t ) ∈ ]0, π
2
[ , and, hence, 0 < Im(

(
w2−w−2

wt+w−t

)2
) = Im(1 +

(
w2−w−2

wt+w−t

)2
). The same holds

for all t ∈ ]−n−2, n+2[ .
For j ∈ Z,

qj

qj+1

(8.6)
= (wn−2j+2+w−n+2j−2)(wn−2j−2+w−n+2j+2)

(wn−2j+w−n+2j)2
= w2n−4j+w−4+w4+w−2n+4j

w2n−4j+2+w−2n+4j = 1 +
(

w2−w−2

wn−2j+w−n+2j

)2
.

If j ∈ [0↑n], then n−2j ∈ [−n, n], and we see that Im(
qj

qj+1
) > 0. Taking j = −1, we see that

q−1 = 2q0. Notice q0 = − 1
x

= − s+1
2

, q−1 = 2q0 = −s− 1. Thus, 0, q0 and q−1 are collinear.
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p0,−n−1 = 1 + q−1

p0,0 = 0

p0,n+1 = qn+1

p0,−1 = q0

p0,1 = q1

p0,2 = q2

...
p0,n−2 = qn−2

p0,n−1 = qn−1

p0,n = qn

p−1,−n−1 = q−1

p−1,0 = −1

p−1,n+1 = −1 + qn+1

Figure 8.1: Schematic depiction of part of the RLn-triangulation

For each j ∈ [0↑(n+1)], −(w2+w−2)qj
(8.6)
= wn−2j+2+w−n+2j−2

wn−2j+w−n+2j ; in this expression the nu-
merator is wt + w−t for t = n−2j+2 ∈ [−n, n+2], and the denominator is wt + w−t

for t = n−2j ∈ [−n−2, n]. Hence the arguments of the numerator and denominator of
−(w2+w−2)qj lie in [0, π

2
[ , and, hence, Re(−(w2+w−2)qj) > 0. Thus, −(w2+w−2)q[0↑(n+1)]

lies in one of the half-planes marked out by iR, and, hence, q[0↑(n+1)] lies in one of the
half-planes marked out by i

w2+w−2R. Together with the fact that, for each j ∈ [0↑n],

Im(
qj

qj+1
) > 0, this shows that q[[0↑(n+1)]] forms a clockwise arrangement in one of the quad-

rants marked out by q0R ∪ qn+1R (= q−1R ∪ qn+1R). We then have a strip of n+1 triangles
(hull{0, qj, qj+1} | j ∈ [[0↑n]]) in the distinguished quadrant.

For all j ∈ Z, − qj − qn−j
(8.6)
= wn−2j+2+w−n+2j−2

(w2+w−2)(wn−2j+w−n+2j)
+ wn−2(n−j)+2+w−n+2(n−j)−2

(w2+w−2)(wn−2(n−j)+w−n+2(n−j))

= wn−2j+2+w−n+2j−2

(w2+w−2)(wn−2j+w−n+2j)
+ w−n+2j+2+wn−2j−2

(w2+w−2)(w−n+2j+wn−2j)
= 1,

and, hence, −qj − 1 = qn−j. Thus qn+1 = −q−1 − 1 = s, qn = −q0 − 1 = s−1
2

,
and −1, qn, qn+1 are collinear. We have seen that q[(−1)↑(n+1)] lies in one of the quad-
rants marked out by q−1R ∪ qn+1R; we now see that q[(−1)↑(n+1)] also lies in the image
of this quadrant under the π-rotation about −1

2
. Hence, q[(−1)↑(n+1)] lies in the in-

tersection of the quadrant and its image, and it is easy to see that this intersection
is the parallelogram hull{0, q−1 = −s− 1, qn+1 = s, q−1 + qn+1 = −1}. Also, the π-rotation
about −1

2
carries the parallelogram to itself and carries (hull{0, qj, qj+1} | j ∈ [[0↑n]]) to
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(hull{−1, qj, qj−1} | j ∈ [[n↓0]]). These two sequences of triangles fit together to form the tri-
angulation of the parallelogram, and we have all the conditions of Notation 2.3 for ρRLn .

Gueritaud [20, Section 10] gives much useful geometric information in a similar spirit
about the more general case ρRaLb .

We now recall the limit representation obtained by Hodgson-Meyerhoff-Weeks [23].

8.4 Definitions. For each n ∈ [1↑∞[ , Theorem 8.3 gives an explicit description of
Jørgensen’s representation ρRLn of

〈A,B,C,RLn 〉 = 〈A,B, C,D, Fn | A2 = B2 = C2 = ABCD = 1,
FnD =D, FnC = B, FnA = (BD)nA〉

in PSL2(C). The tessellation CW(RL3) is displayed in Figure 1.1(3). The tessellation
CW(RL100) is displayed in Figure 8.2.

We now want to replace n with ∞. We formally define

〈A,B,C, RL∞ 〉 := 〈A,B, C, D, F∞ | A2 = B2 = C2 = ABCD = 1, F∞D =D, F∞C = B〉.
For each n ∈ [1↑∞[ , 〈A,B,C,RLn 〉 is a quotient group of 〈A,B, C,RL∞ 〉, and we then
have an induced homomorphism ρRLn : 〈A,B, C, RL∞ 〉 → PSL2(C). It follows from No-
tation 8.2 that, if n is large, then w is near 1, and, hence, wn+2 + w−n−2, which equals
w2 − w−2, is near 0, and, hence, wn+2 is near ±i, but, arg(w) ∈ ]

0, π
2n+4

[
and, hence,

Im(wn+2) > 0, and, hence, wn+2 is near i. Now, x equals −wn + 2 + w−n which is near
2 − 2i, and y and z equal w2 + w−2 which is near 2. Then ρRLn(A) = ±( −1 −2/x

x 1

)
is near

±( −1 − 1
2
− i

2
2−2i 1

)
, ρRLn(B) = ±(

0 −1/y
y 0

)
is near ±(

0 − 1
2

2 0

)
, ρRLn(C) = ±

(
x/y (−x+1)/y
y −x/y

)
is near

±(
1−i − 1

2
+i

2 −1+i

)
, and ρRLn(Fn) = ±(

1 −1+ 2
x

0 1

)
is near ±(

1 − 1
2
+ i

2
0 1

)
. Letting n tend to ∞, we

recover Hodgson-Meyerhoff-Weeks’ representation ρRL∞ : 〈A,B, C, RL∞ 〉 → PSL2(C) with

ρRL∞(A)=±( −1 − 1
2
− i

2
2−2i 1

)
, ρRL∞(B)=± (

0 − 1
2

2 0

)
, ρRL∞(C)=±(

1−i − 1
2
+i

2 −1+i

)
, ρRL∞(D)=± (

1 1
0 1

)
,

ρRL∞(F∞)=± (
1 − 1

2
+ i

2
0 1

)
.

The Möbius action of PSL2(Z[i]) on H3 can be used to derive presentations of low-index
subgroups of PSL2(Z[i]); see [42, Example 1]. Conjugation by

(
2 0
0 1

) ∈ GL2(Q) carries the
image of ρRL∞ to a subgroup of PSL2(Z[i]) which is known to have index 6 and to have
exactly the presentation that we chose for 〈A,B,C,RL∞ 〉. Hence, ρRL∞ is discrete and

faithful. (We remark that it is well known that conjugation by
( 3+i

√
3

2
0

0 1

) ∈ GL2(C) carries

the image of ρRL to an index-six subgroup of PSL2(Z[−1+i
√

3
2

]).)
The foregoing is an index-two extension of part of the exposition by Helling [22] of

the limit that was discovered by Hodgson-Meyerhoff-Weeks [23, Proposition 3] through an
analysis of surgeries on the complement of the Whitehead link that give once-punctured-torus
bundles.
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Figure 8.2: CW(RL100) and two Apollonian gaskets from CW(RL∞)
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The limit set of ρRL∞(〈A,B, C,RL∞ 〉) is Ĉ while the limit set of ρRL∞(〈A,B, C 〉) is
a horizontal Apollonian gasket. We want to define a ρRL∞(〈D, F∞ 〉)-invariant subset of C
which suggests “ lim

n→∞
CW(RLn)”. Let CW(RL∞) denote the stack of horizontal Apollonian

gaskets obtained by applying ρRL∞(〈F∞ 〉) to the limit set of ρRL∞(〈A,B, C 〉) and then
deleting the point ∞. See Figure 8.2. The Cannon-Thurston path CTRL100 : R̂→ Ĉ travels
upward in gray columns and downward in white columns from left to right making an effort
to respect Sakuma’s alternating-gray-and-white-column structure on each horizontal gas-
ket [35]; the white Apollonian columns seem to be decorations of the white Cannon-Thurston
tiles.

8.5 Frivolous remark. The gray regions of CW(RL100) in Figure 8.2 suggest to us chains
of fleas preying on successively smaller fleas, therein reversing the well-known arrangement
imagined by Jonathan Swift in On Poetry: A Rhapsody (1733):

So, naturalists observe, a flea
Has smaller fleas that on him prey;
And these have smaller still to bite ’em;
And so proceed ad infinitum.

Figure 8.3: Flea and fractal
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