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Abstract

Let (Gℓ | ℓ ∈ L) be a family of groups and let F be a free group. Let G denote
F ∗ ∗

ℓ∈L
Gℓ, the free product of F and all the Gℓ. Let F denote the set of all finitely

generated (free) subgroups H of G which have the property that, for each g ∈ G and
each ℓ ∈ L, H ∩Gg

ℓ = {1}. For each free group H, the reduced rank of H is defined as
r̄(H) := max{rank(H)− 1, 0} ∈ [0,∞]. Set

θ := max{
∣∣ |D|
|D|−2

∣∣ : D is a finite subgroup of G with |D| ̸= 2} ∈ [1, 3],

σ := inf{ s ∈ [0,∞] : for all H,K ∈ F,
∑

HgK∈H\G/K
r̄(Hg ∩K) 6 s θ r̄(H) r̄(K) } ∈ [0,∞].

We are interested in precise bounds for σ. If every element of F is cyclic then σ = 0.
We henceforth assume that some element of F has rank two.

In the case where G = F and, hence, θ = 1, Hanna Neumann and Walter Neumann
proved that σ ∈ [1, 2] and it is a famous conjecture that σ = 1, called the Strengthened
Hanna Neumann Conjecture.

For the general case, we proved that σ ∈ [1, 2] and if G has 2-torsion then σ = 2.
We conjectured that if G is 2-torsion-free then σ = 1. In this article, we prove the
following implications which show that under certain circumstances σ < 2.

If G is 2-torsion-free and has 3-torsion, then σ 6 8
7 .

If G is 2-torsion-free and 3-torsion-free and has 5-torsion, then σ 6 9
5 .

If p is an odd prime number andG = Cp∗Cp, then σ 6 2− (4+2
√
3)p

(2p−3+
√
3)2

. In particular,

if G = C3∗C3 then σ = 1, and if G = C5∗C5 then σ 6 1.52.
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2 Free subgroups in free products of groups with no 2-torsion

1 Conventions and notation

We now summarize our main general conventions and notation.

1.1 Conventions. Throughout this article, let G be a group.
All our G-sets will be left G-sets.
For two subsets A, B of a set, the complement of A ∩ B in A will be denoted by A− B

(and not by A \B since we let G\Y denote the set of G-orbits of a G-set Y ).
To indicate disjoint unions, we shall use the symbols ∨,

∨
in place of ∪,

∪
.

We shall use the totally ordered set {−∞} ∨ R ∨ {∞}.
We will find it useful to have notation for intervals in Z∨{∞} analogous to the notation

for intervals in R ∨ {∞}. Let i, j ∈ Z. We write

[i↑j] :=

{
{i, i+ 1, . . . , j − 1, j} ⊆ Z if i 6 j,

∅ if i > j.

Also, [i↑∞[ := {i, i+ 1, i+ 2, . . .} and [i↑∞] := [i↑∞[ ∨ {∞}.
For each set S, let |S| denote the element of [0↑∞] which is the cardinal of S if S is a

finite set, and is ∞ if S is an infinite set.
For each n ∈ [1↑∞], let Cn denote a multiplicative cyclic group of order n.
If a, b are elements of G, and S is a subset of G, we shall denote the inverse of a by a,

and we shall write ba := aba and Sa := {ca | c ∈ S}.
We define the rank of G as rank(G) := min{ |S| : S is a generating set of G } ∈ [0↑∞]. If

G is a free group, we define the reduced rank of G as r̄(G) := max{rank(G)− 1, 0} ∈ [0↑∞];

thus, r̄(G) = b
(2)
1 (G), the first L2-Betti number of G; see Example 7.19 of [6].

We define α3(G) := inf{ |D| : D is a finite subgroup of G with |D| > 3 } ∈ [3↑∞]; it is
understood that the infimum of the empty set is ∞.

We define θ(G) := α3(G)
α3(G)−2

∈ [1, 3]; it is understood that ∞
∞−2

:= 1.

Let us fix the hypotheses and notation that will be used throughout the article.

1.2 Notation. Let L be a set, let (Gℓ | ℓ ∈ L) be a family of groups, let F be a free group,
and suppose that G = F ∗ ∗

ℓ∈L
Gℓ, the free product of F and the members of (Gℓ | ℓ ∈ L).

Let (te | e ∈ E0) be a free-generating family of F , where E0 is an index set of the correct
size.

We now fix a graph of groups and a Bass-Serre tree, using Chapter I of [1] as our reference.
Let Z := V Z ∨ EZ be the graph defined as follows.
The vertex set has the form V Z := {zℓ | ℓ ∈ L}∨ {z0} = {zℓ | ℓ ∈ L∨{0}}, and the edge

set has the form EZ := {eℓ | ℓ ∈ L} ∨ E0, and the initial-vertex function ιZ : EZ → V Z
maps each element of EZ to z0, and the terminal-vertex function τZ : EZ → V Z maps each
element of E0 to z0 and, for each ℓ ∈ L, maps eℓ to zℓ.

The graph Z has a unique maximal subtree, obtained from Z by deleting E0.
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Let (G, Z) be the graph of groups determined by the map of classes G : Z → Groups,
z 7→ G(z), defined as follows: G(z0) = {1}, and, for each ℓ ∈ L, G(zℓ) = Gℓ, and, for each
e ∈ EZ, G(e) = {1}. Then G is the fundamental group of the graph of groups (G, Z) with
respect to the unique maximal subtree of Z. For each e ∈ EZ − E0, we define te := 1.

Let T := T (G, Z) :=
∨
z∈Z

Gz, the Bass-Serre tree of (G, Z). Thus, for each z ∈ Z, the
G-stabilizer of z is G(z),

V T :=
∨

z∈V Z
Gz, ET :=

∨
e∈EZ

Ge,

and, for each e ∈ EZ and g ∈ G, the edge ge ∈ ET joins ι(ge) := gιZe to τ(ge) := gteτZe.

Notice that G acts freely on ET .

We identify G\T = Z.

Let F denote the set of all finitely generated subgroups of G which act freely on T and
are then free by Reidemeister’s Theorem, Theorem I.8.3 of [1]. Alternatively, a finitely
generated subgroup H of G belongs to F if and only if, for each g ∈ G and each ℓ ∈ L,
H ∩ Gg

ℓ = {1}, and then one can see that H is free by the Kurosh Subgroup Theorem,
Theorem I.7.8 of [1], see Theorem I.7.7 of [1].

We define

σ(F) := inf{s ∈ [0,∞] : for all H,K ∈ F,
∑

HgK∈H\G/K
r̄(Hg ∩K) 6 s· θ(G)· r̄(H)· r̄(K) } ∈ [0,∞];

notice that this differs from the notation in [2] by a factor of θ(G). We are interested in
precise bounds for σ(F). If every element of F is cyclic, then σ(F) = 0. We henceforth
assume that some element of F has rank two.

Let H and K be arbitrary elements of F and let S ⊆ G be a set of representatives
of H\G/K. Notice that the value of

∑
g∈S

r̄(Hg ∩K) does not depend on the choice of S and

is denoted
∑

HgK∈H\G/K
r̄(Hg ∩K). We emphasize that

∑
HgK∈H\G/K

r̄(Hg ∩K) 6 σ(F)· θ(G)· r̄(H)· r̄(K).

The core of H\T , denoted core(H\T ), is the (finite) possibly empty subgraph of the
quotient graph H\T consisting of all those vertices and edges which lie in cyclically reduced
closed paths in H\T .

Let X := core(H\T ), Y := core(K\T ), W :=
∨
g∈S

core((Hg ∩K)\T ).

For each x ∈ VX, degX(x) denotes the valence of x in X, the number of points in the
link of x.

There are natural graph maps X → Z, Y → Z, W → Z.

For each ℓ ∈ L∨{0}, we let V/ℓX denote the set of those vertices of X which are over zℓ,
that is, map to zℓ under the map V X → V Z. For each i ∈ [0↑∞[ , we define

ViX := {x ∈ V X | degX(x) = i} and V>iX := {x ∈ V X | degX(x) > i}.
Similarly, V/ℓ,iX := ViX ∩ V/ℓX, V/ℓ,>iX := V>iX ∩ V/ℓX.
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We define r̄X :=
∑

i∈[3↑∞[

(1
2
(i− 2) |ViX|). Notice that

2 |EX| =
∑

i∈[2↑∞[

(i |ViX|) =
∑

i∈[2↑∞[

((i− 2) |ViX|) +
∑

i∈[2↑∞[

(2 |ViX|) = 2 r̄X + 2 |V X| ,

and, hence, r̄X = |EX| − |V X| = r̄(π1(X)) = r̄(H).
Similar notation applies for Y andW , and we have r̄Y = r̄(K), and r̄W =

∑
HgK∈H\G/K

r̄(Hg ∩K).

Since H and K are arbitrary elements of F, if we show that r̄W 6 s r̄X r̄Y for some
s ∈ [0,∞], then we have σ(F) 6 s

θ(G)
.

The following was seen in Section 6 of [2] which expanded an argument introduced by
Sykiotis in the proof of Theorem 2.13(1) in [11], which in turn expanded an argument
introduced by Stallings.

We denote the pullback of the graph maps X → Z and Y → Z by X ×Z Y ⊆ X × Y .
The graph X ×Z Y may have more than one component and may have vertices of valence
less than 2. There exists a natural graph map ψ : W → X ×Z Y . The map ψ is injective
on edges and also on vertices over the vertex z0. Let ℓ ∈ L. To each x ∈ V/ℓX there is
associated a certain subset Ax of Gℓ such that degX(x) = |Ax|. To each y ∈ V/ℓY there is
associated a certain subset By of Gℓ such that degY (y) = |By|; the inversion map gives a
bijection between By and the set denoted B in Section 6 of [2]. To each w ∈ VℓY , there is
associated a pair (x, y) = ψ(w), a certain element cw ∈ Gℓ, and a certain subset

Cw ⊆ rep(cw, Ax ×By) := {(a, b) ∈ Ax ×By | ab = cw}
such that degW (w) = |Cw|. Moreover, for each (x, y) ∈ V/ℓX ×{zℓ}V/ℓY , the elements of
(Cw | w ∈ ψ−1({(x, y)}) ) are pairwise disjoint in Ax ×By ⊆ Gℓ ×Gℓ.

In particular, W is finite.

2 Summary

Let Notation 1.2 hold.
In the case where G = F and, hence, θ(G) = 1, Walter Neumann [9], generalizing results

of Hanna Neumann [7], [8], proved that σ(F) ∈ [1, 2]; it is conjectured that σ(F) = 1 and
this is called the Strengthened Hanna Neumann Conjecture.

In [2], which evolved from [4], [5], we proved that, for the general case, σ(F) ∈ [1, 2] and
if G has 2-torsion then σ(F) = 2. We conjectured that if G is 2-torsion-free then σ(F) = 1
(thus generalizing the Strengthened Hanna Neumann Conjecture); in this article, we obtain
some partial results on this conjecture which show that it is possible to have σ(F) < 2.

In outline, the article has the following structure.
In Section 3, we give a useful inequality which arises from the study of paths in the

Bass-Serre tree and was suggested by an argument of Tardos.
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In Section 4, we give some inequalities that arise from the study of representable products.
In Section 5, we show, in Theorem 5.3, that if G is 2-torsion-free, then∑

HgK∈H\G/K
r̄(Hg ∩K) 6 24

7
r̄(H) r̄(K);

hence, if, moreover, G has 3-torsion then σ(F) 6 8
7
. We show also that if G is 2- and

3-torsion-free, then ∑
HgK∈H\G/K

r̄(Hg ∩K) 6 3 r̄(H) r̄(K);

hence, if, moreover, G has 5-torsion then σ(F) 6 9
5
.

In Section 6, which does not use Section 5, we show, in Theorem 6.3, that if p is an odd
prime number and G = Cp∗Cp, then σ(F) 6 2− (4+2

√
3)p

(2p−3+
√
3)2

. Here, θ(G) = p
p−2

and F is the

set of finitely generated free subgroups of G.
If G = C3∗C3, then σ(F) = 1, σ(F) θ(G) = 3, and r̄(H ∩K) 6 3 r̄(H) r̄(K); recall Exam-

ple 2.8 of [2] in which r̄(H ∩K) = 3 r̄(H) r̄(K) = 3.
If G = C5∗C5, then σ(F) < 1.52, σ(F) θ(G) < 2.52, and r̄(H ∩K) 6 2.52 r̄(H) r̄(K);

recall Example 2.8 of [2] in which r̄(H ∩K) = 5
3
r̄(H) r̄(K) = 15.

In the Appendix, we give a proof of an inequality used in Section 6.

3 Paths in trees

In this section we examine paths in the Bass-Serre tree and deduce a useful inequality, by
expanding an argument introduced by Tardos in the proof of Lemma 3 of [12].

3.1 Notation. Let Notation 1.2 hold.
Let EX denote a copy of EX given with a bijection EX → EX, e 7→ e, and let the

inverse EX → EX also be denoted e 7→ e. For each e ∈ EX, define ι(e) := τ(e) and
τ(e) := ι(e). Define E±1X := EX ∨ EX. Let E+X := {e ∈ E±1X | degX(ιe) > 3}. Notice
that |E+X| =

∑
i∈[3↑∞[

i |ViX|.

A non-trivial reduced path in X is a finite sequence p = (e1, e2, . . . , eN−1, eN) in E±1X
such that N ∈ [1↑∞[ and, for each i ∈ [2↑N ], τei−1 = ιei and ei−1 ̸= ei. In this event, we
call e1 the initial edge of p, ιe1 the initial vertex of p, eN the terminal edge of p and τeN
the terminal vertex of p. We define the inverse of p as p := (eN , eN−1, . . . , e2 , e1 ). We call
N the length of p.

Let P(X) denote the set of non-trivial reduced paths in X.
The foregoing notation applies to any graph.
Since G acts on T , there is a natural G-action on P(T ).
Let p ∈ P(T ).
We shall study Gp ⊆ P(T ).
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Recall that X is the core of H\T . We define P(H\T,p) := H\Gp ⊆ P(H\T ), and
P(X,p) := (H\Gp) ∩ P(X) ⊆ P(X). Thus P(X,p) denotes the set of paths in X whose
lifts to T lie in Gp. Since H acts freely on T , every path in X has exactly one lift to T
for each lift of the initial vertex. Since G need not act freely on T , it is possible for two
different elements of Gp to have the same initial vertex. Since G acts freely on ET , two
different elements of Gp cannot have the same initial edge, and the same holds for H\Gp
in H\T . Let E+P(X,p) denote the set of those elements of E+X which occur as initial
edges of elements of P(X,p).

Let e and e′ be elements of E+X. We say that e is linked to e′ in X if there exists a
non-trivial reduced path in X through vertices of valence 2 which has initial edge e and has
terminal edge e′ ; some authors call such a path a super-edge. This path is clearly unique
and we say that the path links e to e′. The inverse of this path links e′ to e. Since X is a
core graph, each element of E+X is linked to a unique element of E+X.

The foregoing notation also applies with Y and W in place of X.

3.2 Proposition. Let Notation 3.1 hold and suppose that G is 2-torsion-free. Let p ∈ P(T ).
Then the following hold.

(i) In P(H\T ), any two distinct elements of H\Gp have distinct initial edges.

(ii) |E+P(X,p)|+ |E+P(X,p)| 6 |E+X|.
(iii) 2 |E+W | 6 |E+X| |E+Y |.

Proof. Let e ∈ E±1T denote the initial edge of p.
(i). Consider any g1, g2 ∈ G such that Hg1e = Hg2e in H\T . Since G acts freely on

E±1T , we see that Hg1 = Hg2 and, hence, Hg1p = Hg2p.
(ii). By induction on the length of p, we may assume that the inequality holds for all

paths that are strictly shorter than p.
If E+P(X,p) ∩ E+P(X,p) = ∅, then,

|E+P(X,p)|+ |E+P(X,p)| = |E+P(X,p) ∪ E+P(X,p)| 6 |E+X| .
Thus, we may also assume that E+P(X,p) ∩ E+P(X,p) ̸= ∅.

In particular, there exists a unique g ∈ G such that p and gp have the same initial
edge, e. Let q ∈ P(T ) denote the longest common initial segment of p and gp.

It is clear that E+P(X,p) ⊆ E+P(X,q) and E+P(X,p) ⊆ E+P(X,q). Hence,
|E+P(X,p) ∪ E+P(X,p)| 6 |E+P(X,q)|.

Also, we have factorizations p = q·x and gp = q·y, where the dot indicates concatenation
of possibly empty sequences. Thus q · x = p = g y · g q.

Consider first the case where x and y are strictly shorter than q. Then there exists a
factorization p = g y · z · x with z ∈ P(T ), and, here, g y · z = q and z · x = g q = g z · g2 y.
Hence, z = g z and, taking inverses, we see that z = g z, and hence z = g z = g2 z. Since G
acts freely on ET , g2 = 1. Since G is 2-torsion-free, g = 1. Thus z = z. It follows that z
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has even length, and that the middle pair of terms are mutually inverse, which contradicts
the fact that z is reduced. Hence, x and y must be at least as long as q.

Thus, q is strictly shorter than p and there exists a factorization of the form p = q·r·g q,
which gives gp = q · gr · gq. It is possible that r is an empty sequence. Since q is the
longest common initial segment of p and gp, we see that r · g q and gr · gq have the same
initial vertex and different initial edges. For all g1 ∈ G, there are factorizations Hg1p =
Hg1q ·Hg1r ·Hg1g q and Hg1g p = Hg1q ·Hg1g r ·Hg1g q. Hence, in H\T , Hg1p and Hg1g p
have the initial segment Hg1q in common while Hg1r ·Hg1g q and Hg1g r ·Hg1g q have the
same initial vertex, but, since H acts freely on T , they have different initial edges. Thus the
two paths separate immediately after Hg1q forming a vertex of H\T of valence at least 3.

The path q induces a natural embedding of E+P(X,p) ∩ E+P(X,p) in E+P(X,q) as
follows. Suppose that we have g1 ∈ G such that Hg1e ∈ E+P(X,p)∩E+P(X,p). We define
the image of Hg1e in E+P(X,q) to be the initial edge of Hg1q, or, equivalently, the inverse
of the terminal edge of Hg1q; this is an element of E+P(X,q), since, in X, the two paths
Hg1p and Hg1g p have the initial segment Hg1q in common and then separate forming a
vertex of X of valence at least 3 from which Hg1q returns. This gives the desired embedding.
It follows that |E+P(X,p) ∩ E+P(X,p)| 6 |E+P(X,q)|. Now,

|E+P(X,p)|+ |E+P(X,p)| = |E+P(X,p) ∪ E+P(X,p)|+ |E+P(X,p) ∩ E+P(X,p)|
6 |E+P(X,q)|+ |E+P(X,q)| 6 |E+X| ,

by the induction hypothesis. This proves (ii).
(iii). We extend ψ to include an injective map ψ : EW → EX×EZEY ⊆ EX×EY .
Let us suppose that Hp links e to e′ in X. Then Hp links e′ to e.
Consider any f ∈ E+Y . Suppose that (e, f) ∈ ψ(E+W ). Let ψ−1(e, f) denote the unique

element of E+W mapped to (e, f) by ψ. Then ψ−1(e, f) is linked to an element of E+W
by some path which necessarily lies in P(W,p). It follows that f is the initial edge of some
element of P(Y,p), that is, f ∈ E+P(Y,p).

Thus, {f ∈ E+Y : (e, f) ∈ ψ(E+W )} ⊆ E+P(Y,p).
Similarly, {f ∈ E+Y : (e′, f) ∈ ψ(E+W )} ⊆ E+P(Y,p).
Using the analogue of (ii) for Y , we deduce that

|{f ∈ E+Y : (e, f) ∈ ψ(E+W )}|+ |{f ∈ E+Y : (e′, f) ∈ ψ(E+W )}| 6 |E+Y | .
Since e ∈ E+X is arbitrary, we may sum over all e ∈ E+X and find that

2 |{(e, f) ∈ E+X × E+Y : (e, f) ∈ ψ(E+W )}| 6 |E+X| |E+Y | ,
and (iii) follows.

We record the following restatement of (iii) in the vocabulary of Notation 1.2.

3.3 Corollary. Let Notation 1.2 hold.
If G is 2-torsion-free then

∑
k∈[3↑∞[

(2k |VkW |) 6
∑

i,j∈[3↑∞[

(ij |ViX| |VjY |).
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4 Representable products

In this section we record some inequalities which arise from the study of representable prod-
ucts and which will be applied in the subsequent sections.

We shall frequently use the following observation.

4.1 Lemma. If A and B are finite subsets of G, then∑
c∈G

min( |A| , |rep(c, A×B)|) =
∑
c∈G

|rep(c, A×B)| = |A×B| = |A| |B| .

We shall frequently use the following, also.

4.2 Lemma. Let Notation 1.2 hold, and let r ∈ [0↑∞[ and λ ∈ [1,∞[ and µ ∈ [0,∞].
Suppose that, for all ℓ ∈ L, and all x ∈ V/ℓ,>rX, and all y ∈ Vℓ,>rY ,∑

c∈Gℓ

min(r, |rep(c, Ax ×By)|) > min(µ, |Ax| |By| − λ( |Ax| − r)( |By| − r)).

Then
∑

k∈[(r+1)↑∞[

((k − r) |VkW |) 6
∑

i,j∈[(r+1)↑∞[

(max(ij − µ, λ(i− r)(j − r)) |ViX| |VjY |).

Proof. We first decompose the left-hand sum into an L part and a {0} part.∑
k∈[(r+1)↑∞[

((k − r) |VkW | )

=
∑

k∈[0↑∞[

(max(k − r, 0) |VkW | )

=
∑

w∈VW
max(degW (w)− r, 0)

=
∑

ℓ∈L∨{0}

∑
x∈V/ℓX

∑
y∈V/ℓY

∑
w∈ψ−1({(x,y)})

max(degW (w)− r, 0)

=
∑

ℓ∈L∨{0}

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

∑
w∈ψ−1({(x,y)})

max(degW (w)− r, 0).

For the L part, we have∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

∑
w∈ψ−1({(x,y)})

max(degW (w)− r, 0)

=
∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

∑
w∈ψ−1({(x,y)})

max( |Cw| − r, 0)

=
∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

∑
c∈Gℓ

∑
{w∈ψ−1({(x,y)})|cw=c}

max( |Cw| − r, 0)

6
∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

∑
c∈Gℓ

max( |rep(c, Ax ×By)| − r, 0) as the Cw are pairwise disjoint

=
∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

∑
c∈Gℓ

(|rep(c, Ax ×By)| −min(r, |rep(c, Ax ×By)| ))
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=
∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

( |Ax| |By| −
∑
c∈Gℓ

min(r, |rep(c, Ax ×By)| )) by Lemma 4.1

6
∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

max( |Ax| |By| − µ, λ( |Ax| − r)( |By| − r)) by hypothesis

=
∑
ℓ∈L

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

max(degX(x) degY (y)− µ, λ(degX(x)− r)(degY (y)− r)).

For the {0} part, we have∑
x∈V/0,>rX

∑
y∈V/0,>rY

∑
w∈ψ−1({(x,y)})

max(degW (w)− r, 0) 6
∑

x∈V/0,>rX

∑
y∈V/0,>rY

(degX(x)− r),

since, over z0, ψ
−1({(x, y)}) has at most one element, and if there is an element, it is of

degree at most degX(x). Since λ > 1, it follows that we have∑
k∈[(r+1)↑∞[

((k − r) |VkW |)

6
∑

ℓ∈L∨{0}

∑
x∈V/ℓ,>rX

∑
y∈V/ℓ,>rY

max(degX(x) degY (y)− µ, λ(degX(x)− r)(degY (y)− r))

6
∑

x∈V>rX

∑
y∈V>rY

max(degX(x) degY (y)− µ, λ(degX(x)− r)(degY (y)− r))

=
∑

i,j∈[(r+1)↑∞[

(max(ij − µ, λ(i− r)(j − r)) |ViX| |VjY |).

We recall the following.

4.3 Theorem ([2]). Let Notation 1.2 hold. Then the following hold.

(i) If A and B are finite subsets of G such that |A| > 2 and |B| > 2, then∑
c∈G

min(2, |rep(c, A×B)| ) > min(2α3(G), |A| |B| − ( |A| − 2)( |B| − 2)).

(ii)
∑

k∈[3↑∞[

((k − 2) |VkW |) 6
∑

i,j∈[3↑∞[

(max(ij − 2α3(G), (i− 2)(j − 2)) |ViX| |VjY |).

(iii)
∑

k∈[3↑∞[

((k − 2) |VkW |) 6
∑

i,j∈[3↑∞[

((ij − 6) |ViX| |VjY |).

(iv) If α3(G) > 4, that is, G is 3-torsion-free, then∑
k∈[3↑∞[

((k − 2) |VkW |) 6
∑

i,j∈[3↑∞[

((ij − 8) |ViX| |VjY |).

Proof. (i) is Theorem 5.10 of [2].
(ii), which is implicit in Section 6 of [2], follows by applying Lemma 4.2 with (r, λ, µ) =

(2, 1, 2q) together with (i).
(iii) and (iv) follow from (ii) since we are considering expressions where i+ j > 6.



10 Free subgroups in free products of groups with no 2-torsion

In the remaining sections, we shall be looking at various analogous assertions for∑
k∈[3↑∞[

((k − 3) |VkW |) obtained by studying
∑
c∈G

min(3, |rep(c, A×B)| ), although work of

Grynkiewicz [3] on abelian groups has shown that there can be no simple sharp bound.

5 3-torsion or 5-torsion in G

In this section, we show that if G is 2-torsion-free and α3(G) = 3 then σ(F) 6 8
7
, and if G is

2-torsion-free and α3(G) = 5 then σ(F) 6 9
5
.

5.1 Lemma. Let A and B be finite subsets of G such that |A| > 3 and |B| > 3. Then
exactly one of the following holds.

(5.1.a)
∑
c∈G

min(3, |rep(c, A×B)|) > |A| |B| − 5
2
(|A| − 3)(|B| − 3).

(5.1.b) There exists some subgroup H of G of order four such that A is a left coset of H and
B is a right coset of H.

Proof. If |B| = 3 then, by Lemma 4.1, equality holds in (5.1.a).
Consider the case where |B| > 5. Let A′ be a three-element subset of A. Then∑

c∈G
(2min(3, |rep(c, A×B)| )) >

∑
c∈G

(2min(3, |rep(c, A′ ×B)|)) = 2 |A′| |B| by Lemma 4.1

= 6 |B| > 6 |B| − 3( |A| − 3)( |B| − 5) = −3 |A| |B|+ 15 |A|+ 15 |B| − 45,

and (5.1.a) holds.
Thus we may assume that |B| = 4, and, by symmetry, we may also assume that |A| = 4.

We may further assume that (5.1.a) fails, that is,∑
c∈G

min(3, |rep(c, A×B)| ) < |A| |B| − 5
2
(|A| − 3)(|B| − 3) = 27

2
.

By Lemma 4.1,
∑
c∈G

(min(4, |rep(c, A×B)|)) = 16. Hence, there are at least three elements

of G which appear four times in the A×B multiplication table, once in every row, and once
in every column. Choose a0 ∈ A and b0 ∈ B such that a0b0 appears in every row and every
column. By replacing A with a0A and B with Bb0, we may assume that 1 occurs in every row
and every column, and that 1 ∈ A∩B. A familiar argument then shows that A = B and that
A is a subgroup of G of order four, as follows. Let 1, a, b denote three distinct elements of G
which appear in every row and every column. Let c ∈ A−{1, a, b} and let d ∈ B−{1, a, b}.
If b = a, it follows that cd = 1, and that ad = ca = a, and that ca = ad = a, and that a4 = 1.
If ab ̸= 1, then ab ̸∈ {1, a, b}, and then either (a2, ad, ca) = (1, b, b) or (a2, ad, ca) = (b, 1, 1).
If (a2, ad, ca) = (1, b, b), it follows that b2 = 1, and that bab = a. If (a2, ad, ca) = (b, 1, 1),
it follows that a4 = 1. In all events, A = B and A is a subgroup of order four, and (5.1.b)
holds. Here,

∑
c∈G

min(3, |rep(c, A×B)|) = 12 < 27
2
and (5.1.a) fails.
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5.2 Corollary. Let Notation 1.2 hold. Suppose that G has no subgroup of order 4.

Then
∑

k∈[4↑∞[

((k − 3) |VkW |) 6
∑

i,j∈[4↑∞[

(5
2
(i− 3)(j − 3) |ViX| |VjY |).

Proof. This follows by applying Lemma 4.2 with (r, λ, µ) = (3, 5
2
,∞) together with

Lemma 5.1.

5.3 Theorem. Let Notation 1.2 hold. Suppose that G is 2-torsion-free. Then the following
hold.

(i)
∑

HgK∈H\G/K
r̄(Hg ∩K) 6 24

7
r̄(H) r̄(K).

(ii) If α3(G) = 3, that is, G has 3-torsion, then σ(F) 6 8
7
.

(iii) If α3(G) > 5, that is, G is 3-torsion-free, then
∑

HgK∈H\G/K
r̄(Hg ∩K) 6 3 r̄(H) r̄(K).

(iv) If α3(G) = 5, that is, G is 3-torsion-free and has 5-torsion, then σ(F) 6 9
5
.

Proof. (i). We have

14 r̄W =
∑

k∈[3↑∞[

(7(k − 2) |VkW |)

=
∑

k∈[3↑∞[

(2k |VkW |) +
∑

k∈[3↑∞[

((k − 2) |VkW |) +
∑

k∈[4↑∞[

(4(k − 3) |VkW |)

6
∑

i,j∈[3↑∞[

(ij |ViX| |VjY |) +
∑

i,j∈[3↑∞[

((ij − 6) |ViX| |VjY |)

+
∑

i,j∈[4↑∞[

(10(i− 3)(j − 3) |ViX| |VjY |)

by Corollary 3.3, Theorem 4.3(iii), and Corollary 5.2

=
∑

i,j∈[3↑∞[

(6(2ij − 5i− 5j + 14) |ViX| |VjY |)

=
∑

i,j∈[3↑∞[

(6(2(i− 2)(j − 2)− (i+ j − 6)) |ViX| |VjY |)

6
∑

i,j∈[3↑∞[

(12(i− 2)(j − 2) |ViX| |VjY |) = 12· 2 r̄X·2 r̄Y = 48 r̄X r̄Y = 14 ·24
7
· r̄X r̄Y.

(ii). If α3(G) = 3, then θ(G) = 3, and, by (i), σ(F) 6 24
7 θ(G)

= 8
7
.

(iii). As before, we have

20 r̄W =
∑

k∈[3↑∞[

(10(k − 2) |VkW |)

=
∑

k∈[3↑∞[

(2k |VkW |) +
∑

k∈[3↑∞[

(4(k − 2) |VkW |) +
∑

k∈[4↑∞[

(4(k − 3) |VkW |)
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6
∑

i,j∈[3↑∞[

(ij |ViX| |VjY |) +
∑

i,j∈[3↑∞[

(4(ij − 8) |ViX| |VjY |)

+
∑

i,j∈[4↑∞[

(10(i− 3)(j − 3) |ViX| |VjY |)

by Corollary 3.3, Theorem 4.3(iv), and Corollary 5.2.

=
∑

i,j∈[3↑∞[

((15ij − 30i− 30j + 58) |ViX| |VjY |)

=
∑

i,j∈[3↑∞[

((15(i− 2)(j − 2)− 2) |ViX| |VjY |)

6
∑

i,j∈[3↑∞[

(15(i− 2)(j − 2) |ViX| |VjY |) = 15· 2 r̄X·2 r̄Y = 60 r̄X r̄Y = 20·3· r̄X r̄Y.

(iv). If α3(G) = 5, then θ(G) = 5
3
, and, by (iii), σ(F) 6 3

θ(G)
= 9

5
.

5.4 Remarks. Let Notation 1.2 hold. Combining Theorem 6.5 of [2] with the above, we
see the following.

If α3(G) = 3 then r̄W 6 6.00 r̄X r̄Y , and if G is 2-torsion-free then r̄W 6 3.43 r̄X r̄Y .
If α3(G) = 4 then r̄W 6 4.00 r̄X r̄Y , and G has 2-torsion.
If α3(G) = 5 then r̄W 6 3.34 r̄X r̄Y , and if G is 2-torsion-free then r̄W 6 3.00 r̄X r̄Y .

If α3(G) > 5 then r̄W 6 2.80 r̄X r̄Y .

6 Cp∗Cp
In this section, we show that if p is an odd prime number and G = Cp∗Cp, then

σ(F) 6 2− (4+2
√
3)p

(2p−3+
√
3)2
.

For convenience, we recall a classic result.

6.1 Pollard’s Theorem [10]. Let p be a prime number, suppose that G has order p, let A
and B be subsets of G, and let r ∈ [0↑min( |A| , |B| )]. Then

(6.1.1)
∑
c∈G

min(r, |rep(c, A×B)| ) > r·min(p, |A|+ |B| − r).

Proof (Pollard [10]). By induction on |A|, we may assume that the analogue of (6.1.1) holds
for smaller A.

If |A| 6 1, then (6.1.1) is easily verified. Thus we may assume that |A| > 2.
By replacing A with a0A for any a0 ∈ A, we may assume that 1 ∈ A. If AB = B, then

⟨A⟩B ⊆ B, but ⟨A⟩ = G since |A| > 2, and, hence, either B = ∅ or B = G, and again (6.1.1)
is easily verified. Thus we may assume that AB ̸= B. Here, there exists some a1 ∈ A such
that a1B ̸= B. There then exists some b1 ∈ B such that a1b1 ̸∈ B. By replacing B with Bb1
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we may assume that a1 ∈ A − B and 1 ∈ A ∩ B. Thus the induction hypothesis applies to
(A ∩B,A ∪B) and to (A−B,B − A).

Let Ti, i ∈ [1↑5], denote the multiplication tables that arise as follows.

A ∩B B − A A ∩B B − A A−B

A ∩B T1 T2 A ∩B T1 T2 T5

A−B T3 T4 A−B T4

We see that T5 is the transpose of T3 and, hence, for each c ∈ G,

(6.1.2) |rep(c, A×B)| = |rep(c, (A ∩B)×(A ∪B))|+ |rep(c, (A−B)×(B − A))| .

If r < |A ∩B|, then, by (6.1.2), replacing (A,B) with (A ∩ B,A ∪ B) does not increase
the left-hand side of the inequality in (6.1.1) and does not change the right-hand side of the
inequality in (6.1.1), and the desired conclusion follows by the induction hypothesis applied
to (A ∩B,A ∪B). Thus we may assume that r > |A ∩B|.

By Lemma 4.1,

(6.1.3)
∑
c∈G

min( |A ∩B| , |rep(c, (A ∩B)× (A ∪B)| ) = |A ∩B| · |A ∪B| .

Since |A−B| + |B − A| − (r − |A ∩B|) = |A ∪B| − r 6 p, the induction hypothesis
applied to (A−B,B − A) gives

(6.1.4)
∑
c∈G

min(r − |A ∩B| , |rep(c, (A−B)× (B − A)| ) > (r − |A ∩B|)( |A ∪B| − r).

It follows from (6.1.2) that, for each c ∈ G, both r = ( |A ∩B|) + (r − |A ∩B|) and
|rep(c, A×B)| are at least as big as

min( |A ∩B| , |rep(c, (A ∩B)× (A ∪B)| ) + min(r − |A ∩B| , |rep(c, (A−B)× (B − A)| ).
Summing (6.1.3) and (6.1.4), we find that∑

c∈G
min(r, |rep(c, A×B)| ) > |A ∩B| · |A ∪B|+ (r − |A ∩B|)·( |A ∪B| − r)

= r( |A ∩B|+ |A ∪B| − r) = r( |A|+ |B| − r).

This completes the proof.

6.2 Corollary. Let Notation 1.2 hold. Let p be a prime number and suppose that every
element of (Gℓ | ℓ ∈ L) has order p. Let r ∈ [0↑∞[ . Then∑

k∈[(r+1)↑∞[

((k − r) |VkW |) 6
∑

i,j∈[(r+1)↑∞[

(max(ij − rp, (i− r)(j − r)) |ViX| |VjY |).
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Proof. This follows by applying Lemma 4.2 with the same r and (λ, µ) = (1, rp), together
with Pollard’s Theorem 6.1.

Let p be an odd prime number and suppose that G = Cp∗Cp; here, θ(G) = p
p−2

and F

is the set of finitely generated free subgroups of G. The following result restricts σ(F). For
example:

for C3∗C3, σ(F) = 1, σ(F) θ(G) = 3, 2 θ(G) = 6;

for C5∗C5, σ(F) 6 1.52, σ(F) θ(G) 6 2.52, 2 θ(G) = 3.3;

for C7∗C7, σ(F) 6 1.68, σ(F) θ(G) 6 2.35, 2 θ(G) = 2.8;

for C11∗C11, σ(F) 6 1.81, σ(F) θ(G) 6 2.22, 2 θ(G) = 2.4 .

If G = C3∗C3, then r̄(H ∩ K) 6 3 r̄(H) r̄(K); Example 2.8 of [2] has r̄(H ∩ K) =
3 r̄(H) r̄(K) = 3.

If G = C5∗C5, then r̄(H ∩K) 6 2.52 r̄(H) r̄(K); Example 2.8 of [2] has r̄(H ∩ K) =
1.6 r̄(H) r̄(K) = 15.

6.3 Theorem. Let Notation 1.2 hold, let p be an odd prime number and suppose that L is
nonempty and that each element of (Gℓ | ℓ ∈ L) has order p. Then the following hold.

(i) σ(F) 6 2− (4+2
√
3)p

(2p−3+
√
3)2

< 2.

(ii) If p = 3 then σ(F) = 1.

Proof. (i). It suffices to prove the result in the case where L is finite and F is finitely
generated. Then G embeds in Cp∗Cp, and we may assume that Cp∗Cp, that |L| = 2 and
that F = {1}. Thus, Z has three vertices, and the vertex z0 has valence two. Hence, in W ,
X, and Y , each vertex has valence at most p.

Now

2 r̄W =
∑

k∈[3↑p]
((k − 2) |VkW |) 6

∑
i,j∈[3↑p]

(max(ij − 2p, (i− 2)(j − 2)) |ViX| |VjY |),

by Corollary 6.2 with r = 2 or Theorem 4.3(ii), where α3(G) = p.
Putting bound2 :=

∑
i,j∈[3↑p]

(max(6ij − 12p, 6ij − 12i− 12j + 24) |ViX| |VjY |), we see that
12 r̄W 6 bound2.

Also,

12 r̄W =
∑

k∈[3↑p]
(6(k − 2) |VkW |) =

∑
k∈[3↑p]

(2k |VkW |) +
∑

k∈[4↑p]
(4(k − 3) |VkW |)

6
∑

i,j∈[3↑p]
(ij |ViX| |VjY |) +

∑
i,j∈[3↑p]

(4max(ij − 3p, (i− 3)(j − 3)) |ViX| |VjY |),

by Corollaries 3.3 and 6.2 with r = 3.
Putting bound3 :=

∑
i,j∈[3↑p]

(max(5ij − 12p, 5ij − 12i− 12j + 36) |ViX| |VjY |), we see that
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12 r̄W 6 bound3.
Hence, 12 r̄W 6 min(bound2, bound3). Let κ := 2p(4p−6+3

√
3)

(2p−3+
√
3)2

. By Theorem III.1 of the

Appendix, min(bound2, bound3) 6 3κ(2 r̄X)(2 r̄Y ). It then follows that 12 r̄W 6 12κ r̄X r̄Y ,
and, hence, σ(F) 6 κ

θ(G)
. Since θ(G) = p

p−2
, it can be shown that

σ(F) 6 κ
θ(G)

= 2(p−2)(4p−6+3
√
3)

(2p−3+
√
3)2

= 2− (4+2
√
3)p

(2p−3+
√
3)2

< 2.

This proves (i).
(ii). If p = 3, then (i) shows that σ(F) 6 1, and Proposition 2.10 of [2] shows that

σ(F) > 1.

Appendix. A technical inequality

In this Appendix we prove an inequality that is used in the proof of Theorem 6.3.

I Statement of the inequality

I.1 Notation. Let p be an odd prime.
Let κ := 2p(4p−6+3

√
3)

(2p−3+
√
3)2

.

Let [0,∞[ [3↑p] denote the set of all functions of the form x : [3↑p] → [0,∞[, i 7→ x(i).

For any x,y ∈ [0,∞[ [3↑p], we define

s(x) :=
∑

i∈[3↑p]
(i− 2)x(i),

bound2(x,y) :=
∑

i,j∈[3↑p]
(max(6ij − 12p, 6ij − 12i− 12j + 24)x(i)y(j)),

bound3(x,y) :=
∑

i,j∈[3↑p]
(max(5ij − 12p, 5ij − 12i− 12j + 36)x(i)y(j)).

I.2 Lemma. With Notation I.1, 2p
p−1

6 κ.

Proof. It is straightforward to check that 2p
p−1

6 2p
p−1

+ 2(2−
√
3)p(p−3)

(p−1)(2p−3+
√
3)2

= 2p(4p−6+3
√
3)

(2p−3+
√
3)2

= κ.

The purpose of this Appendix is to show that, for all x,y ∈ [0,∞[ [3↑p],

min(bound2(x,y), bound3(x,y)) 6 3κ s(x) s(y).

If s(x) = 0 or s(y) = 0, then the inequality is easily seen to be true. For most of the
argument, we shall think of x and s(y) as fixed.
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II Keeping x and s(y) fixed

II.1 Notation. Let Notation I.1 hold.
We fix s ∈ ]0,∞[ and x ∈ [0,∞[ [3↑p].

Let ∆ := {y ∈ [0,∞[ [3↑p] : s(y) = s}.
Let bound2(−) : ∆ → [0,∞[ , y 7→ bound2(x,y), and similarly for bound3(−).
For each j ∈ [3↑p ], we define

yj : [3↑p] → [0,∞[ , m 7→ δj,m
s
j−2

.

Then {yj | j ∈ [3↑p ] } is the set of vertices of the simplex ∆.

II.2 Remarks. Let Notation II.1 hold.
Let j ∈ [3↑p ].
We find that

bound2(yj) =
s
j−2

∑
i∈[3↑p]

max(6ij − 12p, 6ij − 12i− 12j + 24)x(i),(II.2.1)

bound3(yj) =
s
j−2

∑
i∈[3↑p]

max(5ij − 12p, 5ij − 12i− 12j + 36)x(i).(II.2.2)

We then have two expressions for j−2
s

bound2(yj):

(II.2.3) j−2
s

bound2(yj) =
∑

i∈[3↑(p−(j−1))]

(6ij−12i−12j+24)x(i)+
∑

i∈[(p−(j−2))↑p]
(6ij−12p)x(i)

and

(II.2.4) j−2
s

bound2(yj) =
∑

i∈[3↑(p−(j−2))]

(6ij−12i−12j+24)x(i)+
∑

i∈[(p−(j−3))↑p]
(6ij−12p)x(i).

Putting j = p− 1 in (II.2.3), we see that

(II.2.5) p−3
s

bound2(yp−1) =
∑

i∈[3↑p]
(6ip− 6i− 12p)x(i).

Putting j = 3 in (II.2.4), we see that

(II.2.6) 1
s
bound2(y3) =

∑
i∈[3↑(p−1)]

(6i− 12)x(i) + 6px(p) =
∑

i∈[3↑p]
(6i− 12 + δi,p12)x(i).

Similarly we have two expressions for j−2
s

bound3(yj):

(II.2.7) j−2
s

bound3(yj) =
∑

i∈[3↑(p−(j−2))]

(5ij−12i−12j+36)x(i)+
∑

i∈[(p−(j−3))↑p]
(5ij−12p)x(i)
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and

(II.2.8) j−2
s

bound3(yj) =
∑

i∈[3↑(p−(j−3))]

(5ij−12i−12j+36)x(i)+
∑

i∈[(p−(j−4))↑p]
(5ij−12p)x(i).

Putting j = 3 in (II.2.8), we see that

(II.2.9) 1
s
bound3(y3) =

∑
i∈[3↑p]

3ix(i).

II.3 Lemma. Let Notation I.1 hold. Then at least one of the following holds.

(II.3.a) bound3(x,y) 6 6p
p−1

s(x) s(y) 6 3κ s(x) s(y).

(II.3.b) (p− 3)x(3) >
∑

i∈[4↑p]
(pi− 4p+ i)x(i), and, hence, p > 5.

Proof. Suppose that (II.3.b) fails. We shall verify that (II.3.a) holds.
The second inequality in (II.3.a) holds by Lemma I.2.
Let Notation II.1 hold.
By linearity, it suffices to show that, for each j ∈ [3↑p ], 6p

p−1
s(x)s − bound3(yj) is

non-negative.
Using the definition of s(x) together with (II.2.9), we find that

p−1
s
( 6p
p−1

s(x)s− bound3(y3))

=
∑

i∈[3↑p]
6p(i− 2)x(i)−

∑
i∈[3↑p]

(p− 1)3ix(i) =
∑

i∈[3↑p]
3(pi− 4p+ i)x(i),

and this is non-negative since (II.3.b) fails.
Suppose that j ∈ [4↑p], and, hence, that p > 5. Using the definition of s(x) together

with (II.2.8), we find that

(j−2)(p−1)
s

( 6p
p−1

s(x)s− bound3(yj))

=
∑

i∈[3↑p]
6(j − 2)p(i− 2)x(i)

−
∑

i∈[3↑(p−(j−3))]

(p− 1)(5ij − 12i− 12j + 36)x(i)

−
∑

i∈[(p−(j−4))↑p]
(p− 1)(5ij − 12p)x(i)

=
∑

i∈[3↑(p−(j−3))]

(pij − 12p+ 5ij − 12i− 12j + 36)x(i)

+
∑

i∈[(p−(j−4))↑p]
(pij + 5ij − 12pi− 12pj + 12p2 + 12p)x(i)

=
∑

i∈[3↑(p−(j−3))]

(p(ij − 12) + ij + 4(i− 3)(j − 3))x(i)
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+
∑

i∈[(p−(j−4))↑p]
((p− 5)(i− 2)(j − 2) + 10(p+ 1− i)(p+ 1− j)

+ 2(p− 1)(p− 5))x(i).

This is non-negative and (II.3.a) holds.

II.4 Lemma. Let Notation II.1 hold.
Let j, j′ ∈ [3↑p]. If j 6 j′, then bound2(yj) 6 bound2(yj′).

Proof. It follows from (II.2.1) that 1
s
bound2(yj) = 6

∑
i∈[3↑p]

max(i − 2p−2i
j−2

, i − 2)x(i). Since

j 6 j′, we see that −2 p−i
j−2

6 −2 p−i
j′−2

, and, hence, max(i− 2p−2i
j−2

, i−2) 6 max(i−22p−2i
j′−2

, i−2).
The result follows.

II.5 Lemma. Let Notation II.1 hold.
If (II.3.b) holds, then, for all j ∈ [4↑p], bound3(yj) < bound3(y3).

Proof. Using (II.2.9) and (II.2.8), we find that

j−2
s
(bound3(y3)− bound3(yj))

=
∑

i∈[3↑p]
3i(j − 2)x(i)−

∑
i∈[3↑(p−(j−3))]

(5ij − 12i− 12j + 36)x(i)

−
∑

i∈[(p−(j−4))↑p]
(5ij − 12p)x(i)

=
∑

i∈[3↑(p−(j−3))]

(−2ij + 6i+ 12j − 36)x(i) +
∑

i∈[(p−(j−4))↑p]
(−2ij − 6i+ 12p)x(i)

= (6j − 18)x(3) +
∑

i∈[4↑(p−(j−3))]

(−2ij + 6i+ 12j − 36)x(i)

+
∑

i∈[(p−(j−4))↑p]
(−2ij − 6i+ 12p)x(i)

> 6j−18
p−3

∑
i∈[4↑p]

(pi− 4p+ i)x(i) +
∑

i∈[4↑(p−(j−3))]

(−2ij + 6i+ 12j − 36)x(i)

+
∑

i∈[(p−(j−4))↑p]
(−2ij − 6i+ 12p)x(i) since (II.3.b) holds

= 1
p−3

(
∑

i∈[4↑(p−(j−3))]

((6j − 18)(pi− 4p+ i) + (p− 3)(−2ij + 6i+ 12j − 36))x(i)

+
∑

i∈[(p−(j−4))↑p]
((6j − 18)(pi− 4p+ i) + (p− 3)(−2ij − 6i+ 12p))x(i))

= 1
p−3

(
∑

i∈[4↑(p−(j−3))]

(12ij + 4pij − 12pi− 36i− 36j − 12pj + 36p+ 108)x(i)

+
∑

i∈[(p−(j−4))↑p]
(12p2 − 24pi+ 4pij − 24pj + 36p+ 12ij)x(i))
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= 1
p−3

(
∑

i∈[4↑(p−(j−3))]

4(p+ 3)(i− 3)(j − 3)x(i)

+
∑

i∈[(p−(j−4))↑p]
(4p(i− 3)(j − 3) + 12(p− i)(p− j))x(i))

> 0.

II.6 Lemma. Let Notation II.1 hold. If (II.3.b) holds, then bound2(y3) < bound3(y3).

Proof. We have

1
s
(bound3(y3)− bound2(y3))

=
∑

i∈[3↑p]
3ix(i)−

∑
i∈[3↑p]

(6i− 12 + δi,p12)x(i) by (II.2.6) and (II.2.9)

= 3x(3) +
∑

i∈[4↑p]
3(−i+ 4− δi,p4)x(i)

>
∑

i∈[4↑p]

3
p−3

(pi− 4p+ i)x(i) +
∑

i∈[4↑p]
3(−i+ 4− δi,p4)x(i) since (II.3.b) holds

= 3
p−3

∑
i∈[4↑p]

((pi− 4p+ i) + (p− 3)(−i+ 4− δi,p4))x(i)

= 3
p−3

∑
i∈[4↑p]

(pi− 4p+ i− pi+ 4p− 4pδi,p + 3i− 12 + 12δi,p)x(i)

= 12
p−3

∑
i∈[4↑(p−1)]

(i− 3)x(i) > 0.

II.7 Lemma. Let Notation II.1 hold. For all j ∈ [4↑p], bound3(yj) 6 bound2(yj).

Proof. By (II.2.4) and (II.2.7), we see that j−2
s
(bound2(yj)− bound3(yj)) is equal to∑

i∈[3↑(p−(j−2))]

(ij − 12)x(i) +
∑

i∈[(p−(j−3))↑p]
ijx(i) which is non-negative.

II.8 Lemma. Let Notation II.1 hold.
If (II.3.b) holds, then bound2(yp−1) <

6p
p−1

s(x)s 6 3κ s(x)s.

Proof. The second inequality follows from Lemma I.2.
Using (II.2.5) together with the definition of s(x), we find that

(p−1)(p−3)
s

( 6p
p−1

s(x)s− bound2(yp−1))

=
∑

i∈[3↑p]
(6p(p− 3)(i− 2)− (p− 1)(6ip− 6i− 12p))x(i)

=
∑

i∈[3↑p]
(6p(pi− 3i− 2p+ 6)− (6ip2 − 6ip− 12p2 − 6ip+ 6i+ 12p))x(i)

=
∑

i∈[3↑p]
(6ip2 − 18pi− 12p2 + 36p− 6ip2 + 6ip+ 12p2 + 6ip− 6i− 12p)x(i)
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=
∑

i∈[3↑p]
6(−ip+ 4p− i)x(i)

which is positive since (II.3.b) holds.

II.9 Lemma. Let Notation II.1 hold. Then at least one of the following holds:

(II.9.a) For all y ∈ ∆, min(bound2(y), bound3(y)) 6 3κ s(x)s.

(II.9.b) p > 5 and their exists some point y(3,p) ∈ ∆ with the following properties:

(i) for all j ∈ [4↑(p− 1)], y(3,p)(j) = 0,

(ii) bound2(y(3,p)) = bound3(y(3,p)),

(iii) for all y ∈ ∆, min(bound2(y), bound3(y)) 6 bound2(y(3,p)) = bound3(y(3,p)).

Proof. By Lemma II.3, we may assume that (II.3.b) holds.

Consider any j ∈ [4↑p].
It follows from Lemmas II.6 and II.7 that in travelling along the oriented line segment

[y3,yj] in ∆, bound2 starts strictly below bound3 and ends above bound3. Hence bound2

and bound3 agree at a unique point y(3,j) of [y3,yj]. Notice that min(bound2, bound3) agrees
with bound2 on [y3,y(3,j)] and with bound3 on [y(3,j),yj].

It follows from Lemma II.4 that bound2 increases in travelling along [y3,yj], and hence
min(bound2, bound3) increases in travelling along [y3,y(3,j)].

It follows from Lemma II.5 that bound3 decreases in travelling along [y3,yj], and hence
min(bound2, bound3) decreases in travelling along [y(3,j),yj].

Hence, on [y3,yj], min(bound2, bound3) achieves a maximum value at y(3,j).

By linearity, there exists some j0 ∈ [4↑p] such that the maximum value achieved by
min(bound2, bound3) on all of ∆ is bound2(y(3,j0)) = bound3(y(3,j0)).

If j0 = p, then (II.9.b) holds.

Thus we may assume that j0 ∈ [4↑(p− 1)].

It follows from Lemma II.4 that bound2(yj0) 6 bound2(yp−1), and it follows from
Lemma II.8 that bound2(yp−1) 6 3κ s(x)s. Thus

bound2(y(3,j0)) 6 bound2(yj0) 6 bound2(yp−1) 6 3κ s(x)s,

and (II.9.a) holds.

III Proof of the inequality

III.1 Theorem. Let Notation I.1 hold. Then, for all x,y ∈ [0,∞[ [3↑p],

min(bound2(x,y), bound3(x,y)) 6 3κ s(x) s(y).
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Proof. We may assume that s(x) > 0 and s(y) > 0.

If (x,y) is a counter-example then, by Lemma II.9, p > 5 and we can fix x and s(y) and
alter y to arrange that, for all j ∈ [4↑(p−1)], y(j) = 0, and (x,y) is still a counter-example.
By the left-right dual of Lemma II.9, we can then fix y and s(x) and alter x to arrange
that, for all i ∈ [4↑(p − 1)], x(i) = 0 and bound2(x,y) = bound3(x,y), and (x,y) is still a
counter-example.

Thus we are left with four variables x(3), x(p), y(3), y(p) in [0,∞[ subject to
bound2(x,y) = bound3(x,y), where

bound2(x,y) = 6x(3)y(3) + 6px(3)y(p) + 6px(p)y(3) + 6p(p− 2)x(p)y(p),

bound3(x,y) = 9x(3)y(3) + 3px(3)y(p) + 3px(p)y(3) + p(5p− 12)x(p)y(p).

Taking the difference we find that

(III.1.1) p2x(p)y(p) + 3px(3)y(p) + 3px(p)y(3)− 3x(3)y(3) = 0.

Also, s(x) = x(3) + (p− 2)x(p) > 0 and s(y) = y(3) + (p− 2)y(p) > 0.

Define

X(x) := 2(2p2 − 6p+ 3)x(p)
s(x)

− 3(p− 1), Y (y) := 2(2p2 − 6p+ 3)y(p)
s(y)

− 3(p− 1).

It is not difficult to show that X(x) s(x) = p(p− 3)x(p)− 3(p− 1)x(3).

Straightforward calculations show that

(3p2 −X(x)Y (y)) s(x) s(y) = 3p2 s(x) s(y)−X(x) s(x)Y (y) s(y)

= 3p2(x(3) + (p− 2)x(p))(y(3) + (p− 2)y(p))

− (p(p− 3)x(p)− 3(p− 1)x(3))(p(p− 3)y(p)− 3(p− 1)y(3))

= (2p4 − 6p3 + 3p2)x(p)y(p) + (6p3 − 18p2 + 9p)(x(3)y(p) + x(p)y(3))

+ (−6p2 + 18p− 9)x(3)y(3).

= (2p2 − 6p+ 3)(p2x(p)y(p) + 3px(3)y(p) + 3px(p)y(3)− 3x(3)y(3))

= 0 by (III.1.1).

It follows that X(x)Y (y) = 3p2.

Since (X(x)+Y (y))2 = (X(x)−Y (y))2+4X(x)Y (y) > 4X(x)Y (y) = 12p2, we see that
|X(x) + Y (y)| > 2p

√
3.

Since (p− 2)x(p) 6 s(x), we see that x(p)
s(x)

6 1
p−2

, and X(x) 6 p(p−3)
p−2

6 3p
2
. It follows that

X(x) + Y (y) 6 3p < 2p
√
3. Hence, X(x) + Y (y) 6 −2p

√
3.
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Further straightforward calculations show that

3 s(x) s(y)(−(p− 2)X(x)Y (y) +
(
p2 − 3p

)
(X(x) + Y (y)) + 8p4 − 33p3 + 36p2 − 9p)

= 6p(p− 2)
(
2p2 − 6p+ 3

)2
x(p)y(p)

+ 6p
(
2p2 − 6p+ 3

)2
(x(3)y(p) + x(p)y(3)) + 6

(
2p2 − 6p+ 3

)2
x(3)y(3).

=
(
2p2 − 6p+ 3

)2
bound2(x,y).

Hence,

(2p2 − 6p+ 3)
2 bound2(x,y)

3 s(x) s(y)

= −(p− 2)XY +
(
p2 − 3p

)
(X + Y ) + 8p4 − 33p3 + 36p2 − 9p

6 −(p− 2)(3p2) +
(
p2 − 3p

)
(−2p

√
3) + 8p4 − 33p3 + 36p2 − 9p

= 8p4 − 2p3
√
3− 36p3 + 6p2

√
3 + 42p2 − 9p.

Thus

bound2(x,y)
3 s(x) s(y)

6 8p4−2p3
√
3−36p3+6p2

√
3+42p2−9p

(2p2−6p+3)2
=

1
2
p(4p−6+3

√
3)(2p−3−

√
3)2

1
4
(2p−3+

√
3)2(2p−3−

√
3)2

= 2p(4p−6+3
√
3)

(2p−3+
√
3)2

= κ,

expressed in factors that are linear in p. This completes the argument.
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