
BROWN REPRESENTABILITY FOLLOWS FROM ROSICKÝ

Abstract. We prove that the dual of a well generated triangulated category satisfies

Brown representability, as long as there is a combinatorial model. This settles the

major open problem in [13]. We also prove that Brown representability holds for non-

dualized well generated categories, but that only amounts to the fourth known proof

of the fact.

The proof depends crucially on a new result of Rosický [14].
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0. Introduction

We begin by reminding the reader of Brown representability.

Definition 0.1. Let T be a triangulated category. The opposite category Top is said to
satisfy Brown representability if

(i) T is a [TR5∗] triangulated category; that is we may form, in T, any small product.
(ii) If H : T −→ Ab is a homological functor, and if H respects products, then H is

representable.
A Brown representability theorem will mean a theorem asserting that some class of
triangulated categories satisfies Brown representability.

Remark 0.2. The experts might object that I am ignoring variants; see, for example,
Adams [1], or Bondal and Van den Bergh [2]. While these are very interesting and
powerful, the results in this article deal only with the original, classical version of Brown
representability. Explaining the variants would be a digression.

Remark 0.3. The “op” in Top is there for historical reasons; Brown’s original paper [3]
dealt with functors H : Top −→ Ab, where T was the homotopy category of spectra.
Thus the first example, of a Brown representability theorem, applied to the singleton; it
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2 BROWN REPRESENTABILITY FOLLOWS FROM ROSICKÝ

was about the class containing only one triangulated category, the homotopy category of
spectra. Over the years there have been other Brown representability theorems, which
we will review next. In passing let us mention that Brown representability theorems are
quite possibly the most useful structure triangulated categories can have. The list of
applications, over many years, is tremendous; we will not even attempt a survey.

Let us continue the historical overview a little. In the decades following Brown [3] the
theorem was confined to topology; it was widely used there, but not in other parts of
mathematics. The articles [9, 10] changed this. They defined a class of triangulated cate-
gories, the compactly generated triangulated categories, for which Brown representability
holds. One way to say this is that the definition of a compactly generated triangulated
category is precisely tailored so that Brown’s old proof goes through. The remarkable
observation in [9, 10] was that the derived category of quasicoherent sheaves on a scheme
is compactly generated, and that Brown representability is very applicable there. Then
there followed a string of other applications, to other compactly generated categories, by
many authors; but we promised not to discuss applications.

And now we come to the first puzzle. We begin with the easy observation:

Remark 0.4. Suppose T is a [TR5∗] triangulated category. Let S ⊂ T be a colocalizing
subcategory; this means that S is closed in T under the formation of products. It is easy
to show that the Verdier quotient T/S is also a [TR5∗] triangulated category, and that
the natural projection π : T −→ T/S respects products.

Now suppose that Top satisfies Brown representability. If H : T/S −→ Ab is a product-
preserving homological functor, then so is the composite Hπ : T −→ Ab. Brown repre-
sentability for Top gives us that Hπ is represented by an object t ∈ T, and it is an easy
exercise to show that π(t) represents H in the category T/S. We conclude that Brown
representability for Top implies Brown representability for

(
T/S

)op.
The puzzling part was the following. Compactly generated triangulated categories

were known to satisfy Brown representability, by Brown’s proof. By the above remark, so
do all their quotients by localizing subcategories (a localizing subcategory is a colocalizing
subcategory of Top). But there are many quotients of compactly generated triangulated
categories which are not compactly generated. The class of categories satisfying Brown
representability was clearly larger than the class of compactly generated ones. It was
interesting to try to understand it.

We might be tempted to ask whether every [TR5∗] triangulated category satisfies
Brown representability. The answer is No, a counterexample will appear in a joint article
with Casacuberta.

So here was the quandry: we had Brown’s proof that compactly generated triangulated
categories satisfy Brown representability, and we had the trick of Remark 0.4, which
constructed many other examples. We should perhaps note that these contain natural,
interesting cases. For example the derived category of sheaves of abelian groups on a
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manifold is not compactly generated, but is easy to express as a quotient of a compactly
generated category by a localizing subcategory. Hence Brown representability holds.

It was natural to look for a new proof, which would cover a larger class of triangulated
categories, preferably a class closed under the formation of Verdier quotients by localizing
subcategories. Up to now people have come up with three such proofs: two totally inde-
pendent ones by Franke [5] and myself [13], as well as a later improvement by Krause [8].
It might be worth noting that [13] defines a class of triangulated categories called the
well generated triangulated categories. This class contains all the compactly generated
triangulated categories, and is conjecturally closed under localizing and colocalizing quo-
tients. To put it another way, there are theorems that say that certain quotients must
be well generated1, and we know no example of a quotient which does not satisfy the
hypotheses of these theorems. What is proved in both [13] and [8] is that well generated
triangulated categories satisfy Brown representability. The reader is also referred to [7],
for a different take on the foundations of well generated triangulated categories.

We might think that the story ends there. However the definition of well generated tri-
angulated categories is not self-dual, and it was not clear whether Brown representability
holds for Top, when T is well generated. The article [12] was the first to prove a result
in this direction: it showed that the dual of the homotopy category of spectra satisfies
Brown representability. This was generalized in [13] to the dual of any compactly gener-
ated category. Krause [8] gave a second proof. The trick of Remark 0.4 still applies, and
teaches us that the dual of the quotient, of a compactly generated category by a colo-
calizing subcategory, satisfies Brown representability. It was natural to wonder whether
all duals of well generated triangulated categories satisfy Brown representability, but we
were all stumped. This was the major problem left open in [13], and none of us had the
foggiest clue how to proceed.

And then came Rosický’s remarkable article [14]. In the remainder of the introduction
we will explain Rosický’s result, and show how to use it to make major progress. The
way the remainder of the introduction is structured is as follows. After setting up some
notation we will state a very general Brown representability theorem, Theorem 0.9. A
priori it will not be clear that there are any categories which satisfy the hypotheses of
Theorem 0.9. The relevance of Rosický’s work, as we will explain at the end of the
introduction, is that well generated triangulated categories and their duals satisfy these
hypotheses, provided they come from combinatorial models.

There is the problem that, as the result now stands, it appeals to models. A purist
might object; in fact the author has a reputation of being such a purist. In passing we
note that it is quite difficult to construct triangulated categories without models. The
natural ones, the ones that might actually come up in practice, all have models.

It is now time to come to results. We begin with a definition.

1There is a technical condition on the kernel being generated by a set of objects, or else on the

orthogonal of the kernel having a set of generators.
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Definition 0.5. Let T be a triangulated category satisfying [TR5∗], and let S ⊂ T be a
set of objects. We define, for every integer n > 0, a full subcategory ProdT

n(S) ⊂ T as
follows:

(i) The category ProdT(S) = ProdT
1 (S) is the full subcategory of T whose objects are

all the products of objects in S.
(ii) Suppose ProdT

n(S) has been defined. The category ProdT
n+1(S) ⊂ T is the full sub-

category containing all objects y ∈ T, for which there exists a triangle

x −−−−→ y −−−−→ z −−−−→ Σx

with x ∈ ProdT
1 (S) and z ∈ ProdT

n(S).

Remark 0.6. If the category T is clear from the context, we will drop it out of the
notation; thus Prodn(S) means the same as ProdT

n(S), where T is understood. The
dual construction yields a category ProdTop

n (S), which we will feel free to denote by
CoprodT

n(S), or more simply Coprodn(S) as long as T is understood.

Remark 0.7. We make the following easy observations, for future reference:
(i) Because any product of distinguished triangles is distinguished, all the categories

Prodn(S) are closed under products. We only need to complete with respect to
products once, in producing Prod1(S) out of S.

(ii) A little exercise with the octahedral axiom shows that, if we know that x ∈
Prodm(S), that z ∈ Prodn(S) and that there is a distinguished triangle

x −−−−→ y −−−−→ z −−−−→ Σx ,

then y ∈ Prodm+n(S).
(iii) Suppose S is closed under suspension; that is S contains isomorphs of all the objects

in ΣS ∪ Σ−1S. Then the same is true for all the Prodn(S).

Remark 0.8. It is possible to generalize the definition of Prodi(S), allowing i to be an
arbitrary ordinal. This is done by transfinite induction; see [4] for more detail.

Now we come to the first theorem we will prove:

Theorem 0.9. Let T be a [TR5∗] triangulated category. Suppose there exists a set of
objects S ⊂ T, as well as an integer n > 0, so that T = Prodn(S). Then Top satisfies
Brown representability.

Remark 0.10. The theorem easily generalizes to the transfinite case of Remark 0.8:
if T = Prodi(S), for some ordinal i, then Top satisfies Brown representablity. A minor
modification of the proof works. We do not need the more general version, hence we
leave it as an exercise to the reader.

So far we have seen one theorem, with very simple hypotheses which are difficult to
check. To go further we need to assume that category T has a Rosický functor. We
define our terms next. Let us begin with pre-Rosický functors.
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Definition 0.11. Let T be a triangulated category satisfying both [TR5] and [TR5∗];
products and coproducts exist in T. Let A be an abelian category satisfying both [AB3]
and [AB3∗]; products and coproducts exist in A too. A pre-Rosický functor H : T −→ A

is a homological functor satisfying the following properties:
(i) The functor H is full; that is, the natural map

T(x, y) −−−−→ A
(
H(x),H(y)

)
is surjective.

(ii) H reflects isomorphisms; that is, if H(f) : H(x) −→ H(y) is an isomorphism then
so is f : x −→ y .

(iii) H preserves both products and coproducts.

This defines a pre-Rosický functor. Now for Rosický functors:

Definition 0.12. A pre-Rosický functor H : T −→ A is called a Rosický functor if there
is a set of objects P ⊂ T, closed under suspension, satisfying the following properties:

(i) The objects H(p), p ∈ P are projective in the abelian category A, and generate it.
(ii) For every object y ∈ T, and for every p ∈ P, the natural map

T(p, y) −−−−→ A
(
H(p),H(y)

)
is an isomorphism.

(iii) There exists a regular cardinal α, so that each object p ∈ P is α–small. That is, any
map from p, to any coproduct in T, factors through the inclusion of a coproduct of
fewer than α terms.

Remark 0.13. The reason we split the definition in two is that Definition 0.11 is self-
dual, while Definition 0.12 is not. If H : T −→ A is a pre-Rosický functor, then so is
Hop : Top −→ Aop. When we prove some fact about categories T possessing pre-Rosický
functors, the duals Top automatically satisfy the same property. This is not true of
Rosický functors.

Rosický striking theorem asserts:

Theorem 0.14. (Rosický [14]). Let M be a combinatorial stable model category in the
sense of [6], and let T = Ho(M) be its homotopy category. Then

(i) The category T is well generated, in the sense of [13].
(ii) There is a Rosický functor H : T −→ A.

Remark 0.15. The functor which Rosický considers is the H : T −→ Ex
(
{Tα}op,Ab

)
of [13]. His remarkable discovery is that there exist arbitrarily large α for which Defini-
tion 0.11(i) holds. The other properties were known. The fact that T has coproducts is
by definition of well generated categories. Products exist by [13, Proposition 8.4.6]. In
[13, §6.1] we learn that A = Ex

(
{Tα}op,Ab

)
has products and coproducts. From [13,
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Lemma 6.2.4] we know that H respects products, and from [13, Lemma 6.2.5] that it
respects coproducts. The fact that H reflects isomorphisms is standard, as long as α is
large enough so that Tα generates T.

For the set of objects P ⊂ T we choose one representative in each isomorphism class
of objects in Tα. Then every object in p ∈ P is clearly α–small, and the fact that

T(p, y) −−−−→ A
(
H(p),H(y)

)
is an isomorphism comes from Yoneda’s lemma. Finally, the fact that the objects
H(p), p ∈ P are projective and generate may be found in [13, Lemmas 6.4.1 and 6.4.2].

Remark 0.16. Rosický’s theorem goes on to identify the essential image of the functor
H. This is irrelevant for us here.

Our next result says:

Theorem 0.17. Let T be a triangulated category possessing a Rosický functor H. Then
there exist two sets of objects S, S′ ⊂ T so that

T = Coprod4(S) , T = Prod16(S′) .

Remark 0.18. Theorem 0.14 tells us that, if T is well generated category with a com-
binatorial model, then T has a Rosický functor. From Theorem 0.17 we learn that

Coprod4(S) = T = Prod16(S′) ,

and finally Theorem 0.9 tells us that Brown representability must hold both for T and
for Top. For T this gives the fourth proof of the fact, but for Top it is very new.

Remark 0.19. The sets S and S′ in Theorem 0.17 are quite explicit: S is the set
P of Definition 0.12, while S′ is a set of representatives of all isomorphism classes of
coproducts of ≤ α objects in P. The integers 4 and 16 in Theorem 0.17 are not optimal.
One can show that, for the S, S′ above,

T = Coprod2(S) , T = Prod8(S′) .

The interested reader can find a hint of how to go about this in [11].
The 2 is best possible. I have made no attempt to see if the 8 is.

1. A Freyd-style representability theorem

In this section we will prove a very general representability theorem for functors on
triangulated categories. The next sections will be progressively less general, but more
useful. We begin with a definition.

Definition 1.1. Let T be a [TR5∗] triangulated category. A functor H : T −→ Ab is
called pre-representable if

(i) H is homological; it takes triangles to exact sequences.
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(ii) H respects products. That is, the natural map

H

(∏
λ∈Λ

tλ

)
−−−−→

∏
λ∈Λ

H(tλ)

is an isomorphism.

Remark 1.2. It is immediate that any representable functor is pre-representable. In the
terminology of Definition 1.1, Brown representability can be reformulated: Top satisfies
Brown representability if any pre-representable functor H : T −→ Ab is representable.

Next we prove:

Theorem 1.3. Let T be a [TR5∗] triangulated category. Suppose that every pre-representable
functor H has a solution-object. That is, for every pre-representable H there exists a
representable functor T(t,−) and a surjective map

T(t,−) −−−−→ H(−) .

Then Top satisfies Brown representability.

Proof. Let H be pre-representable; we need to show it representable. By hypothesis we
may choose a representable functor T(s,−) and a surjective homomorphism T(s,−) −→
H(−). Complete this to a short exact sequence of functors

0 −−−−→ H ′(−) −−−−→ T(s,−) −−−−→ H(−) −−−−→ 0 .

Now H(−) is pre-representable by assumption, and T(s,−) by Remark 1.2. It easily
follows that H ′ is also pre-representable. By the hypothesis of the theorem, applied to
H ′, we may choose a representable functor T(t,−) and a surjection T(t,−) −→ H ′(−).
We therefore have an exact sequence of functors

T(t,−) −−−−→ T(s,−) −−−−→ H(−) −−−−→ 0 .

Yoneda’s lemma says that the map T(t,−) −→ T(s,−) is induced by a morphism g :
s −→ t in T. Complete this to a triangle

r −−−−→ s
g−−−−→ t −−−−→ Σr .

Yoneda tells us that the natural transformation T(s,−) −→ H(−) corresponds to an
element x ∈ H(s), and the vanishing of the composite

T(t,−) −−−−→ T(s,−) −−−−→ H(−)

guarantees that the image of x ∈ H(s) under the homomorphism H(g) : H(s) −→ H(t)
vanishes. The exactness of the sequence

H(r) −−−−→ H(s)
H(g)−−−−→ H(t)
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says that x must be in the image of H(r) −→ H(s); using Yoneda again this says that
the surjection ϕ : T(s,−) −→ H(−) must factor as

T(s,−) −−−−→ T(r,−)
ψ−−−−→ H(−) .

Now consider the diagram with exact rows

T(t,−) −−−−→ T(s,−)
ϕ−−−−→ H(−) −−−−→ 0

1

y y1

T(t,−) −−−−→ T(s,−) −−−−→ T(r,−) ;

it permits us to factor T(s,−) −→ T(r,−) as

T(s,−)
ϕ−−−−→ H(−) θ−−−−→ T(r,−) .

We conclude that ψθϕ = ϕ; since ϕ is surjective it follows that ψθ = 1.
This makes θψ : T(r,−) −→ T(r,−) an idempotent, whose image is H(−). But the

idempotent θψ must be induced by an idempotent e : r −→ r in T. The category T is a
[TR5∗] triangulated category; applying [13, Proposition 1.6.8] to the dual category Top,
we conclude that the idempotent e must split in T. Hence we obtain an object h ∈ T

with H(−) ∼= T(h,−). �

2. If it doesn’t take many products

This section is about proving Theorem 0.9. Perhaps we should remind the reader.

Theorem 0.9. Let T be a [TR5∗] triangulated category. Suppose there exists a set of
objects S ⊂ T, as well as an integer n > 0, so that T = Prodn(S). Then Top satisfies
Brown representability.

The entire section will be devoted to the proof, and so we will adopt throughout the
notation of Theorem 0.9; the category T will be fixed in the entire section, as will the
set of objects S ⊂ T.

Discussion 2.1. We will prove that Theorem 0.9 is a consequence of Theorem 1.3. For
every pre-representable functor H we will produce a surjection T(t,−) −→ H(−). Fix a
pre-representable functor H, and let us remind ourselves what it means to find such a
surjection.

A natural transformation ϕ : T(t,−) −→ H(−) corresponds, under Yoneda, to an
element x ∈ H(t). To say that ϕ is surjective is to assert that, for every t′ ∈ T, the map

T(t, t′) −−−−→ H(t′)

is an epimorphism. In other words: ϕ will be an epimorphism as long as, for any
x′ ∈ H(t′), we can produce a morphism f : t −→ t′ so that H(f) : H(t) −→ H(t′) takes
x ∈ H(t) to x′ ∈ H(t′).

We define therefore a category C. The objects are pairs (t, x), with t an object of T

and x an element in the abelian group H(t). A morphism in C, from the object (t, x)
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to the object (t′, x′), is a morphism f : t −→ t′, with H(f) : H(t) −→ H(t′) taking
x ∈ H(t) to x′ ∈ H(t′). By the previous paragraph an object (t, x) corresponds to a
natural transformation ϕ : T(t,−) −→ H(−), and ϕ will be surjective if and only if (x, t)
is weakly initial in the category C. Recall that an object in a category is weakly initial
if it admits a morphism to every other object. The proof of Theorem 0.9 will therefore
be by studying the category C.

For this study it is helpful to define, for each integer k ≥ 1, a full subcategory Ck ⊂ C.
Its objects are the pairs (t, x) with t ∈ Prodk(S).

Next we make some easy observations:

Remark 2.2. The category C has products. If {(ti, xi), i ∈ I} is a set of objects in C,
then we can form in T the product t =

∏
i∈I ti, and in the abelian group

H(t) =
∏
i∈I

H(ti)

we can look at the element x =
∏
i∈I xi. Then (t, x) is the product, in the category C, of

the objects (ti, xi). Note also that
(i) If (t, x) is an object of C, and if t is isomorphic to a product t ∼=

∏
i∈I ti, then it is

automatic that (t, x) is isomorphic to a product

(t, x) ∼=
∏
i∈I

(ti, xi) .

(ii) Any product of objects in Ck lies in Ck.

Discussion 2.1 tells us that to prove Theorem 0.9 it suffices to produce a weakly initial
object in C. The hypothesis of Theorem 0.9 is that T = Prodn(S), or equivalently that
C = Cn. Theorem 0.9 therefore follows from the case k = n of the following lemma:

Lemma 2.3. Let H : T −→ Ab be a pre-representable functor. Let k > 0 be an integer.
There exists a weakly initial object (tk, xk) in the category Ck.

Proof. Step 1. The proof is by induction on k; we begin with the case k = 1. Every
object of Prod1(S) is isomorphic to a product of objects in S, and Remark 2.2(i) guar-
antees that every object in C1 is isomorphic to a product of objects (si, xi) with si ∈ S.
There is a set of objects of the form ci = (si, xi), and the product of them all is clearly
weakly initial.
Step 2. Now we come to the inductive step. Suppose we know the assertion for k; we
want to deduce it for (k + 1). Choose and fix weakly initial objects (t`, x`) ∈ C` for all
` ≤ k. Let Ψ be the set of all morphisms Σ−1tk −→ s, over all s ∈ S. For every subset
Φ ⊂ Ψ we obtain a morphism

Σ−1tk −−−−→
∏

{Σ−1tk−→s}∈Φ

s .
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Choose a mapping cone; that is, complete to a triangle

Σ−1tk −−−−→
∏

{tk−→s}∈Φ

s −−−−→ yΦ −−−−→ tk .

For each Φ we obtain an object yΦ ∈ Prodk+1(S). Now form

(tk+1, xk+1) = (t1, x1)×
∏

Φ⊂Ψ, x∈H(yΦ)

(yΦ, x) .

We assert that (tk+1, xk+1) is a weakly initial object in Ck+1.
Step 3. It remains to prove the assertion. By Remark 2.2(ii) we know that (tk+1, xk+1)
is an object of Ck+1; we must prove it weakly initial. Suppose therefore that we are given
an object (t′, x′) ∈ Ck+1; we need to produce a morphism (tk+1, xk+1) −→ (t′, x′).

We are given that t′ lies in Prodk+1(S); Definition 0.5 tells us that there exists a
distinguished triangle

a
f−−−−→ t′

g−−−−→ b
h−−−−→ Σa ,

with a ∈ Prod1(S) and b ∈ Prodk(S). The object (t′, x′) ∈ Ck+1 provides us with an
x′ ∈ H(t′), and the map H(g) : H(t′) −→ H(b) takes x′ to an element x ∈ H(b). We
have constructed an object (b, x) ∈ C. The fact that b ∈ Prodk(S) means that (b, x)
belongs to the subcategory Ck ⊂ C, which has a weakly initial object (tk, xk). There is a
morphism (tk, xk) −→ (b, x); we have morphisms in T

tkyj
t′ −−−−→

g
b ,

and the induced maps of abelian groups take x′ ∈ H(t′) and xk ∈ H(tk) to the same
image x ∈ H(b). Form in T a homotopy cartesian square

t′′
α−−−−→ tk

β

y yj
t′ −−−−→

g
b ;

see [13, Definition 1.4.1]. The fact that H is homological permits us to find an element
x′′ ∈ H(t′′) which maps, underH(β) andH(α) respectively, to x′ ∈ H(t′) and xk ∈ H(tk).
We have produced a morphism (t′′, x′′) −→ (t′, x′) in C. Next we have to study the object
t′′, to determine which subcategory C` ⊂ C might contain the object (t′′, x′′).
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We appeal to [13, Lemma 1.4.4]; it permits us to extend the homotopy cartesian square
above to a morphism of triangles

a −−−−→ t′′ −−−−→ tk −−−−→ Σa

1

y β

y yj y1

a −−−−→
f

t′ −−−−→
g

b −−−−→ Σa .

In the top triangle we have that a ∈ Prod1(S) and tk ∈ Prodk(S); we immediately
conclude that t′′ ∈ Prodk+1(S), meaning that the object (t′′, x′′) lies in Ck+1. But if we
look at the triangle a little more carefully we note that t′′ is the cone on a morphism
Σ−1tk −→ a, with a ∈ Prod1(S). That is, t′′ is the mapping cone on a morphism

Σ−1tk −−−−→
∏
i∈I

si .

For each i ∈ I we have a map Σ−1tk −→ si for some si ∈ S. The maps that occur, as i
ranges over I, give us a subset Φ of the set Ψ of all maps Σ−1tk −→ s. This means that
the map Σ−1tk −→

∏
i∈I si factors as

Σ−1tk −−−−→
∏
s∈Φ

s
∆−−−−→

∏
i∈I

si ,

where ∆ is some diagonal inclusion. Diagonal inclusions are split monomorphisms; up
to isomorphism the composite must identify with

Σ−1tk

0@ 0
µ

1A
−−−−−→

( ∏
i∈I−J

si

)
⊕

(∏
s∈Φ

s

)
.

The mapping cone t′′ is isomorphic to â ⊕ yΦ, with â ∈ Prod1(S) and yΦ as in Step 2.
By Remark 2.2(i) the object (t′′, x′′) decomposes as

(t′′, x′′) ∼= (â, x̂)× (yΦ, x) ,

and (tk+1, xk+1) = (t1, x1)×
∏

(yΦ, x) clearly maps to it. �

3. How many steps it takes to generate

It is now time to prove Theorem 0.17. We remind the reader:

Theorem 0.17. Let T be a triangulated category possessing a Rosický functor H. Then
there exist two sets of objects S, S′ ⊂ T so that

T = Coprod4(S) , T = Prod16(S′) .

We begin with a little lemma.
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Lemma 3.1. Let H : T −→ A be a pre-Rosický functor, with the notation as in Def-
inition 0.11. Suppose S is some set of objects in T, closed under suspension. Assume
further that there is a pair of maps in T, with a vanishing composite

X −−−−→ Y −−−−→ Z ,

so that:
(i) Y and Z both belong to Prod1(S).
(ii) In the abelian category A, the sequence

0 −−−−→ H(X) −−−−→ H(Y ) −−−−→ H(Z)

is exact.
Then X must belong to Prod4(S).

Proof. Since S is closed under suspension so is Prod1(S) (see Remark 0.7(iii)), and Σ−1Z

must be in Prod1(S). Complete the morphism Y −→ Z to a distinguished triangle

Σ−1Z −−−−→ X −−−−→ Y −−−−→ Z ;

from this triangle we learn that X ∈ Prod2(S). Now we have, in T, a vanishing composite
X −→ Y −→ Z, and hence the map X −→ Y must factor as X α−→ X −→ Y . Choose
such an α : X −→ X.

On the other hand we have a diagram with exact rows

H(X) −−−−→ H(Y ) −−−−→ H(Z)

1

y y1

0 −−−−→ H(X) −−−−→ H(Y ) −−−−→ H(Z) ,

which tells us that there is a unique factorization of the map H(X) −→ H(Y ) through
H(X) −→ H(X) −→ H(Y ). By Definition 0.11(i) the map H(X) −→ H(X) has a lifting
to T; choose a map β : X −→ X inducing it.

Now consider the composite X α−→ X
β−→ X. It is easy to show that H(X) −→

H(X) −→ H(X) is the identity, and from Definition 0.11(ii) we learn that the composite
X −→ X −→ X must be an isomorphism in T. Hence X splits as X ∼= X ⊕X ′.

Now use [13, Proposition 1.6.8], or, more accurately, use the dual of the proof. The
direct summand X of X can be described as the homotopy limit of some sequence

· · · e−−−−→ X
e−−−−→ X

e−−−−→ X
e−−−−→ X ;

what is relevant for us it that there exists a distinguished triangle

Σ−1
∞∏
i=1

X −−−−→ X −−−−→
∞∏
i=1

X
1−shift−−−−→

∞∏
i=1

X .

Since X lies in Prod2(S) so do
∏∞
i=1X and Σ−1

∏∞
i=1X; see Remark 0.7(i) and (iii).

From Remark 0.7(ii) we now conclude that X ∈ Prod4(S). �



BROWN REPRESENTABILITY FOLLOWS FROM ROSICKÝ 13

Now we are ready to prove the first half of Theorem 0.17.

Lemma 3.2. Let T be a triangulated category possessing a Rosický functor H. Then
T = Coprod4(P), with P the set of objects of Definition 0.12.

Proof. Step 1. Let X be any object in T, and suppose we are given a map in A∐
j∈J

H(pj) −−−−→ H(X) .

with pj ∈ P. We assert first that there is a unique lifting to a morphism
∐
j∈J pj −→ X.

Each of the maps H(pj) −→ H(X) must lift, by Definition 0.12(ii), to a morphism
in T. We produce therefore a map

∐
j∈J pj −→ X in the category T. Applying H to

this map, and using the fact that H commutes with coproducts (Definition 0.11(iii)), we
conclude that H takes∐

j∈J
pj −−−−→ X to

∐
j∈J

H(pj) −−−−→ H(X) .

The uniqueness is because the lifting of each map H(pj) −→ H(X), to a morphism
pj −→ X, is unique; see Definition 0.12(ii).
Step 2. Now we proceed to the proof of the lemma. Let Z be an object of T; we wish to
show that it belongs to Coprod4(P). By Lemma 3.1, applied to Top, it suffices to produce
a vanishing composite X −→ Y −→ Z in T, so that

(i) X and Y belong to Coprod1(P), and
(ii) the sequence

H(X) −−−−→ H(Y ) −−−−→ H(Z) −−−−→ 0

is exact in A.
By Definition 0.12(i) the objects in P are projective generators and therefore, in the
abelian category A, we have an exact sequence∐

i∈I
H(pi) −−−−→

∐
j∈J

H(pj) −−−−→ H(Z) −−−−→ 0 ,

where pi, pj are objects in P. Step 1 permits us first to lift the map
∐
j∈J H(pj) −→ H(Z)

to a morphism
∐
j∈J pj −→ Z, and then to lift

∐
i∈I

H(pi) −−−−→ H

∐
j∈J

pj


to a morphism

∐
i∈I pi −→

∐
j∈J pj . The vanishing of the composite∐
i∈I

pi −−−−→
∐
j∈J

pj −−−−→ Z
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is because it is the unique lifting of the vanishing∐
i∈I

H(pi) −−−−→ H(Z) .

�

Now it is time to conclude by proving the second half of Theorem 0.17. We will present
it as a lemma:

Lemma 3.3. Let T be a triangulated category possessing a Rosický functor H. Let S′

be a set of objects, containing one representative in each isomorphism class of objects∏
i∈I

pi ,

where each pi is in P and the cardinality of I is ≤ α. Here, α is the α of Defini-
tion 0.12(iii); each object p ∈ P is α–small.

Then T = Coprod16(S′).

Proof. Lemma 3.2 tells us that T = Coprod4(P), and by Remark 0.7(ii) it suffices to show
that Coprod1(P) ⊂ Prod4(S′). This is what we will prove. Suppose therefore that X is in
Coprod1(P). We want to show that it belongs to Prod4(S′), and we will do it by applying
Lemma 3.1. If suffices therefore to produce a vanishing composite X −→ Y −→ Z in T,
with Y and Z in Prod1(S′), and so that the sequence

0 −−−−→ H(X) −−−−→ H(Y ) −−−−→ H(Z)

is exact in A. This is what we are about to do.
Since X belongs to Coprod1(P) we may express it as

X ∼=
∐
λ∈Λ

pλ .

The vanishing composite we wish to consider is

X
β−−−−→

∏
I⊂Λ

#I≤α

(∐
λ∈I

pλ

)
γ−−−−→

∏
I, J⊂Λ

#I,#J≤α

( ∐
λ∈I∩J

pλ

)
.

Perhaps we should explain the notation. We have a set Λ. Given a subset I ⊂ Λ there
is a restriction map, the projection to the direct summand∐

λ∈Λ

pλ −−−−→
∐
λ∈I

pλ .
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The map β is the product of all these restrictions, over all subsets I of cardinality ≤ α.
If I and J are two subsets of Λ, we have a commutative square∐

λ∈Λ

pλ −−−−→
∐
λ∈I

pλy yf∐
λ∈J

pλ −−−−→
g

∐
λ∈I∩J

pλ ,

and γ is the map whose components are f − g. The commutativity of the square guar-
antees that γβ = 0. It remains to prove that, after applying the functor H, we obtain
an exact sequence.

We are given a sequence

0 −−−−→ H(X) −−−−→ H(Y ) −−−−→ H(Z)

and want to check its exactness. Since H(p), p ∈ P are projective and generate, it
suffices to check that each A

(
H(p),−

)
takes the above to an exact sequence. By Defini-

tion 0.12(ii),
T(p,−) ∼= A

(
H(p),H(−)

)
;

it therefore suffices to check that the sequence

0 −−−−→ T(p,X)
β−−−−→ T(p, Y )

γ−−−−→ T(p, Z)

is exact, for every p ∈ P. We will now do this.
Definition 0.12(iii) tells us that p is α–small. Any map p −→ X, where X =

∐
λ∈Λ pλ,

must factor as
p −−−−→

∐
λ∈I

pλ −−−−→
∐
λ∈Λ

pλ ,

with I ⊂ Λ a subset of cardinality < α. If the map p −→ X is non-zero, then certainly
the composite

p −−−−→
∐
λ∈I

pλ −−−−→
∐
λ∈Λ

pλ −−−−→
∐
λ∈I

pλ

cannot vanish; we conclude that β is injective. It remains only to show that the kernel
of γ equals the image of β.

Suppose therefore that we are given a morphism p −→ Y in the kernel of γ. That is
for every subset I ⊂ Λ, of cardinality ≤ α, we have a map

p
fI−−−−→

∐
λ∈I

pλ ,

and these maps are compatible on intersections. We need to show that they assemble to
a single map p −→ X.
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It clearly suffices to show that there is a set I ⊂ Λ, of cardinality < α, so that fJ = 0
whenever I ∩ J = ∅. If such an I exists we would define f : p −→ X as the composite

p
fI−−−−→

∐
λ∈I

pλ −−−−→
∐
λ∈Λ

pλ ,

and it is easy to check that this f would work. Next we prove the existence of the set I.
For the rest of the proof we will assume there is no such I, and produce a contradiction.

What we will prove next, by transfinite induction, is that it is possible to choose α
many disjoint subsets Ii ⊂ Λ, each with #Ii < α and with fIi 6= 0. Then we will deduce
our contradiction. To start the induction note that I = ∅ cannot work; we can therefore
choose a subset I1 ⊂ Λ, with #I1 < α, so that fI1 6= 0. Now we proceed to choose such
sets, disjoint from each other, for every ordinal i < α.

Suppose we have chosen the sets Ii for all ordinals i < j, with j an ordinal < α. The
set I = ∪i<jIi is a union of < α sets, each of cardinality < α. Since α is regular, the
cardinality of I must be < α. Our assumption is that there exists a set Ij , of cardinality
< α and disjoint from I, so that fIj 6= 0. Choose one. This completes the induction.

Now consider the set J = ∪i<αIi. The cardinality of J is ≤ α, and hence we can look
at fJ : p −→

∐
λ∈I pλ. Because p is α–small this map factors through the coproduct

over a subset K ⊂ J of cardinality < α. Choose and fix such a K. Now the data of
the maps {fJ ; fIi , i < α} comes from an element in the kernel of γ; the maps must
be compatible. For every ordinal i < α we have Ii ⊂ J , and hence the composite

p
fJ−→

∐
λ∈J pλ

π−→
∐
λ∈Ii pλ must agree with fIi . Therefore fIi can be written as a

composite
p −−−−→

∐
λ∈K

pλ −−−−→
∐
λ∈J

pλ
π−−−−→

∐
λ∈Ii

pλ .

Since all the fIi are non-zero, each set Ii must contain an element of K. Choose one for
each i. The Ii were constructed disjoint, there are α of them, and we have produced α

distinct elements in the set K of cardinality < α. Hence our contradiction. �
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14. Jǐŕı Rosický, Generalized Brown representability in homotopy categories, Theory Appl. Categ. 14

(2005), no. 19, 451–479 (electronic).


