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Abstract

In the context of Schubert calculus, we present an approach to the
cohomology rings !!("#$ ) of all ag manifold "#$ that is free of the
types of the group " and the parabolic subgroup $ .

1 Introduction to Enumerative Geometry

Let " be a compact connected Lie group and let % : R ! " be a group
homomorphism. The centralizer $! of the one parameter subgroup %(R)
of " is called a parabolic subgroup of ". The corresponding homogeneous
space "#$! is canonically a projective variety, called a ag manifold of ".

In his fundamental treaty [17] A.Weil attributed the classical Schubert
calculus to the "determination of cohomology ring !!("#$ ) of ag mani-
folds "#$ ". The aim of the present lectures is to present a unied approach
to the cohomology rings !!("#$ ) of all ag manifolds "#$ .

In order to show how the geometry and topology properties of certain ag
varieties are involved in the original work [16] of Schubert in 1873—1879, we
start with a review on some problems of the classical enumerative geometry.

1.1 Enumerative problem of a polynomial system

A basic enumerative problem of algebra is:

Problem 1.1 (Apollonius, 200. BC). Given a system of polynomials
over the eld C of complexes

!
"#

"$

&1('1( · · · ( '") = 0
...

&"('1( · · · ( '") = 0
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nd the number of solutions to the system.

In the context of intersection theory Problem 1 has the next appearance:

Problem 1.2. Given a set )# " * , + = 1( · · · ( , of subvarieties in a
(smooth) variety * that satises the dimension constraint

P
dim)# = (, # 1) dim* ,

nd the number |$)#| of intersection points

$)# = {' % * | ' % )# for all + = 1( · · · ( ,}.

In cohomology theory Problem 1.2 takes the following form

Problem 1.3. Given a set {%# % !!(*) | + = 1( · · · ( ,} of cohomology
classes of an oriented closed manifold* that satises the degree constraintP
deg%# = dim* , compute the Kronnecker pairing

h%1 & · · · & %$( [* ]i =?

The analogue of Problem 1.3 in De Rham theory is

Problem 1.4. Given a set {%# % !!(*) | + = 1( · · · ( ,} of di!erential
forms on of an oriented smooth manifold* satisfying the degree constraintP
deg%# = dim* , compute the integration along *
Z

%

%1 ' · · · ' %$ =?.

We may regard the above problems as mutually equivalent ones. This
brings us the next question:

Among the four problems stated above, which one is more easier
to solve?

1.2 Examples from enumerative geometry

Let C$" be the -—dimensional complex projective space. A conic is a curve
on C$ 2 dened by a quratic polynomial C$ 2 ! C. A quadric is a surface
on C$ 3 dened by a quratic polynomial C$ 3 ! C. A twisted cubic space
curve is the image of an algebraic map C$ 1 ! C$ 3 of degree 3.

The following problems, together, with their solutions, can be found in
Schubert’s book [16, 1879].

The 8-quadric problem: Given 8 quadrics in space (C$ 3) in general
position, how many conics tangent to all of them?
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Solution: 4,407,296

The 9-quadric problem: Given 9 quadrics in space how many quadrics
tangent to all of them?

Solution: 666,841,088

The 12-quadric problem: Given 12 quadrics in space how many twisted
cubic space curves tangent to all of them?

Solution: 5,819,539,783,680.

The above cited works of Schubert are controversial at his time [12, 1976].
In particular, Hilbert asked in his problem 15 for a rigorous foundation of
this calculation, and for an actual verication of those geometric numbers
that constitute solutions to such problems of enumerative geometry.

1.3 Rigorous treatment

Detailed discussion of content in this section can be found in [9]

What is the variety of all conics on C$ 2?

The 3× 3 matrix space has a ready made decomposition:

*(3(C) = ./0(3)( .,12(3)

or in a more useful form

C3)C3 = ./0(C3)( .,12(C3).

Each non—zero vector 3 = (4#&)3×3 % ./0(C3) gives rise to a conic 5' on
C$ 2 dened by

&' : C$ 2 ! C, &'['1( '2( '3] =
X

1"#(&"3

4#&'#'&

that satises 5' = 5)' for all 6 % C\{0}. Therefore, the space C$ 5 =
P(./0(C3)) is the parameter space of all conics on C$ 2, called the variety
of conics on C$ 2.

It should be aware that the map

7 : C3 ! ./0(C3) by 7(3) = 3) 3

induces an embedding C$ 2 ! C$ 5 whose image is the degenerate locus of
all double lines. So the blow—up of C$ 5 along the center C$ 2 is called the
variety of complete conics on C$ 2.
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Leidheuser introduces the  intersection multiplicity  into the debate.
This brings in Ecc. Francesco Severi, Rome.
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464 HILBBRT: MATHEMATICAL PROBLEMS. [July, 

rational functions of x which can be expressed in the form 

G{Sv-,Xm) 
p" 

where 6? is a rational integral function of the arguments 
Xv • • •, Xm and ph is any power of the prime number p. Earlier 
investigations of mine * show immediately that all such ex-
pressions for a fixed exponent h form a finite domain of in-
tegrality. But the question here is whether the same is true 
for all exponents h, i. e., whether a finite number of such 
expressions can be chosen by means of which for every ex-
ponent h every other expression of that form is integrally 
and rationally expressible. 

From the boundary region between algebra and geometry, 
I will mention two problems. The one concerns enumera-
tive geometry and the other the topology of algebraic curves 
and surfaces. 

15. BIGOROUS FOUNDATION OF SCHUBERT'S ENUMERATIVE 
CALCULUS. 

The problem consists in this : To establish rigorously and with 
an exact determination of the limits of their validity those geomet-
rical numbers which Schubert f especially has determined on the 
basis of the so-called principle of special position, or conservation 
of number, by means of the enumerative calculus developed by 
him. 

Although the algebra of to-day guarantees, in principle, 
the possibility of carrying out the processes of elimination, 
yet for the proof of the theorems of enumerative geometry 
decidedly more is requisite, namely, the actual carrying out 
of the process of elimination in the case of equations of 
special form in such a way that the degree of the final equa-
tions and the multiplicity of their solutions may be foreseen. 

16. PROBLEM OF THE TOPOLOGY OF ALGEBRAIC CURVES 
AND SURFACES. 

The maximum number of closed and separate branches 
which a plane algebraic curve of the nth. order can have has 
been determined by Harnack.J There arises the further 

*Math. Annalen, vol. 36 (1890), p. 485. 
f Kalkül der abzâhlenden Geometrie, Leipzig, 1879. 
X Math, Annalen, vol. 10. 

                                  附件5-1
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What is the variety of conics on C$ 3?

Let 8 be the Hopf complex line bundle over C$ 3

8 = {(9( :) % C$ 3 ×C4 | : % 9}

and let % be the orthogonal complement of the subbundle 8 " C$ 3 × C4.
One has the decomposition of vector bundles

%) % = ./0(%)( .,12(%).

The projective bundle P(./0(%)) associated to the subbundle ./0(%) is a
C$ 5—bundle on C$ 3, called the variety of conics on C$ 3.

The bundle map 7 : %! ./0(%) by : ! :) : over the identity of C$ 3
satises 7(6:) = 627(:) for 6 % C, hence induces a smooth embedding of
the associated projective bundles

+ : P(%)! P(./0(%))

whose image is the degenerate locus of all double lines.

Denition 1.5: The blow-up * of P(./0(%)) along the subvariety P(%)
is called the variety of complete conics on P3.

With these preparation let us show

Theorem 1.6. Given 8 quadrics in space in general position, there are
4,407,296 conics tangent to all of them.

Proof. A quadric . on the space C$ 3 denes a hyperplane on * :

; (.) = {' %* | ' is tangent to .}

with the property that

if . and .0 are two quadrics then ; (.) and ; (.0) are homotopic
in * .

Given 8 quadrics .#, 1 * + * 8, in general position we need to nd the
number of interesection points

|(; (.1) $ · · · $ ; (.8))| =?

or equivalently, let %# % !2(*) be the Poincare dual of the cycle class
[; (.1)] % !14(*)

h%1 & · · · & %8( [* ]i =
%
%81( [* ]

®
=?
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From the theory of Chern characteristic classes the cohomologies of
P(%) " P(./0(%)) can be easily calculated as follows

!!(P(%)) = Z['( <]#
%
'4( <3 + <2'+ <'2 + '3

®
;

!!(./0(%)) = Z['( /]#
%
'4( /6 + 4'/5 + 10'2/4 + 20'3/3

®
.

By a general formula computing the cohomology of the blow—up e) of variety
) along a subvariety = one obtains that

!!(*) = Z[*(+]
h*4;+6+4*+5+10*2+4+20*3+3i (

Z[*(,]
h*4(,3+,2*+,*2+*3i{>( >

2}

with the relation:

i) 4/3 +8'/2 +8'2/ = (30<2 +20<'+6'2)> # (3'+9<)>2 + >3.

ii) /> = 2<>.

Moreover, with respect to this presentation one can show that

%1 = 8'+ 6/ # 2>.

Consequently,

%
(8'+ 6/ # 2>)8( [* ]

®
= 4( 407( 296.¤

What is the space of all quadrics on C$ 3?
Consider the decomposition

C4)C4 = ./0(C4)( .,12(C4).

Each non—zero vector 3 = (4#&)4×4 % ./0(C4) gives rise to a quadric .' on
C$ 3 dened by

&' : C$ 3 ! C, &'['1( '2( '3( '4] =
X

1"#(&"4

4#&'#'&

that satises .' = .)' for all 6 % C\{0}. Therefore, the space

C$ 9 = $ (./0(C4))

is the parameter space of all quadric on C$ 3.
Consider the map 7 : C4×C4 ! ./0(C4) " C4)C4 dened by 7(3( :) =

3 ) :. Since 7(63( :) = 7(3( 6:) = 67(3( :) it induces a smooth embedding
on the quotients

? : CP3 ×CP3 ! CP9.
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Geometrically,

?(91( 92) = @1 & @2 (the degenerate quadrics of two planes)

with @# the hyperplane perpendicular to 9#. Let * be the variety obtained
from P9 by rst blow up along " " P3 × P3, then along P3 × P3 " P9.

Denition 1.7. Let * be the variety obtained from P9 by rst blow up
along the diagonal " " P3 × P3, then along P3 × P3 " P9. The space * is
called the variety of complete quadrics on P3.¤

The integral cohomology ring of the variety * has the presentation

!!(*) = Z[3]#
%
310
®
( Z[/]#

%
/4
®
{:( :2( · · · ( :5}

( Z[-1(-2(.]
h2-1-2#-31;-22#-21-2;.3+3.2-1+.(2-21+4-2)+2-31i

{2(22}

that is subject to the relations

i) :6 + 16:5/ + 110:4/2 + 420:3/3 + 836 = 0;

ii) 3: = 2/:;

iii) 32 = A2, :2 = #2(B1 + A)2;

iv) 1033 + 2232: + 163:2 + 4:3 = (30B21 + 18B1A+ 3A
2 # 4B2)2

+(9B1 + 3A)2
2 + 23.

Let us show

Theorem 1.8. Given 9 quadrics in space in general position, there are
666,841,088 quadrics tangent to all of them.

Proof. A quadric . on the space C$ 3 denes a hyperplane on * :

; (.) = {' %* | ' is tangent to .}

with the property that

if . and .0 are two quadrics then ; (.) and ; (.0) are homotopic
in * .

Given 9 quadrics .#, 1 * + * 9, in general position we need to nd the
number

|(; (.1) $ · · · $ ; (.9))| =?
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or equivalently, let %# % !2(*) be the Poincare dual of the cycle class
[; (.#)] % !16(*)

h%1 & · · · & %9( [* ]i =
%
%91( [* ]

®
=?.

Moreover, with respect to this presentation one can show that

%1 = 123+ 6: # 22.

Consequently,
%
(123+ 6: # 22)9( [* ]

®
= 666( 841( 088C¤

Summarizing calculation above we may conclude that, in order to solve
an enumerative problem we need

i) to describe the parameter space * of the geometric gures
concerned in term of ag manifolds;

ii) compute the cohomology ring of the parameter space* ;

iii) solve the problem by computation in the ring !!(*).

1.4 Appendix: Topology of blow—ups

Let = " * be a submanifold whose normal bundle 8/ has a complex
structure, and let D : E = P(8/) ! = be the complex projective bundle
associated with 8/ . The tautological line bundle on E is denoted by 60,
viewed as an 1—dimensional complex subbundle of the pull—back D!8/ .

Fix a metric on * and consider the associated spherical bundles

.(60) = {(9( :) % E × D!8/ | : % 9( k:k
2 = 1};

.(8/) = {('( :) % = × 8/ | : % 8/ | '( k:k
2 = 1}.

The map F : .(8/) ! .(60) dened by ('( :) ! (h:i ( :) is clearly a
di!eomorphism, where h:i is the complex line spanned by the non—zero
normal vector :. The adjoint manifold

f* = (* \
$

G(8/)) &1 G(60)

obtained by gluing G(60) to (* \
$

G(8/)) along the boundary .(60) using
the di!eomorphism F is called the blow—up of * along the submanifold =
with exceptional divisor E [15].

The next result tells how the cohomology of f* can be formulated from
that of= and* together with the total Chern class5(8/) = 1+B1+· · ·+B2
of the normal bundle 8/ .

Theorem 1.9 [9]. The integral cohomology of the blow—up * has the
additive decomposition
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!!(f*) = !!(*)(!!(=){H0( · · · ( H$#10 }( 2, = dimR 8/

that is subject to the relations:

i) H/ =
P

1"3"$
(#1)3#1B$#3 · H30,

ii) for any / % !3(*), / · H0 = +!(/) · H0,

where H/ ( H0 % !!(f*) are the Poincare duals of the fundamental classes
[=] % !!(*), [E] % !!(f*), respectively, and where + : = ! * is the
inclusion.

2 Topology of Bott manifolds

The cohomology of Bott manifolds will provide us with a simple module in
which Schubert calculus can be simplied.

In this section we work in the category of pointed spaces and continuous
maps preserving the base point.

2.1 Bott manifolds

We single out the class spaces which we will concern in this section.

Denition 2.1. A smooth manifold * is called a Bott manifold of rank -
if there is a tower of smooth maps

*
4!!1! *"#1

4"!2! · · · 42!*2
41!*1

in which

i) *1 is di!eomorphic to .2 with an orientation;

ii) each I# is a projection of an oriented smooth .2—bundle over
*# with a xed section J#, 1 * + * -# 1.¤

Let = + K be the one point union of two pointed spaces = and K . For
a given Bott manifold * set .21 = *1, and let .2# be the ber of I##1
over the base point. The natural inclusion L# : .2# ! * given by the ber
inclusion .2# !*# followed by the composition J"#1 , · · · , J#+1 , J# yields
an embedding

L : .21 + · · · + .2$ !* with L | .2# = L#.

Put /# = L#![.2# ] % !2(*).

Lemma 2.2. The 2—dimensional homology classes /1( · · · ( /" % !2(*)
form an additive basis for !2(*).
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Consequently, let '# % !2(*) = !M0(!2(*);Z) be the class dual
to /# via the Kronecker paring. Then the cohomology !2(*) has basis
{'1( · · · ( '"}.¤

Generally, for each subsequence N = {+1( · · · ( +3} " {1( · · · ( -} with
length O we set '5 =

Y

#%5

'# % !23(*). Then we have

Theorem 2.3. The cohomology ring !!(*) has additive basis {'5 | N -
{1( · · · ( -}}. In particular,

P(*) = 2", Q3(*) = 5
3
".

Proof. For the direct product of - copies of 2—dimensional spheres

) = .2 × · · · × .2 (-—copies)

one has the ready made cell decomposition:

) =
[

5&{1(··· ("}

.(N), dim.(N) = 2 |N|,

with

.(N) = {('1( '2( · · · ( '") % .2 × · · · × .2 | '# = . for + #% N}.

Similarly, a Bott manifold * of rank - has the cell decomposition

(2.1) * =
[

5&{1(··· ("}

.(N), dim.(N) = 2 |N|

with each .(N) dened inductively on the value of |N| as follows:

1) .(1) =*1 = .
2;

2) if + R 1, .(+) " *# is the ber sphere of I##1 over the base
point.

Assume that .(@
0
) " *##!1 with @

0 = [+1( · · · ( +3#1] has been dened and
consider the case @ = [+1( · · · ( +3#1( S]. Then

3) .(@) "*& is the total space of the restricted bundle of I&#1 :
*& !*&#1 to the subspace .(@

0
) "*&#1.

The natural bundle map over the inclusion .(@
0
) " *##!1 ! *&#1 gives

rise to the desired embedding .(@) -*& -* .
The proof of the theorem is done by noticing that the cohomology class
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'5 % !2|5|(*) = !M0(!2|5|(*)(Z)

is the Kronnecker dual of the fundamental classes [.(N)] in the sense that

'5([.(T)]) = U5(6 .¤

We remark that in the decomposition (2.1) of a Bott manifold * each
cell .(N) is again a Bott manifold but with rank |N|.

2.2 The cohomology ring of a Bott manifold

In a Bott manifold each section J# :*# !*#+1 is a co—dimension 2 embed-
ding. Its normal bundle, denoted by 8#, is an oriented 2—dimensional real
bundle over *#. Hence its Euler class

1#+1 = 1(8#) % !2(*#)

is well dened. Since the group !2(*#) is generated by {'1( · · · ( '#} by
Lemma 2.2 there is a set of integers 41(#+1( · · · ( 4#(#+1 so that one has the
unique presentation

1#+1 = 41(#+1'1 + · · ·+ 4#(#+1'#.

Denition 2.4. The - × - integral strictly upper triangular matrix V =
(4#(&)"×" (i.e. 4#(& = 0 for all + / S) is called the structure matrix of the
Bott manifold * .¤

Theorem 2.5. Let * be a Bott manifold of rank - with structure matrix
V = (4#(&)"×". Then, with respect to the basis {'1( · · · ( '"} of !2(*), one
has the presentation

!!(*) = Z['1( · · · ( '"]#
%
'23 # 13'3; 1 * O * -

®
,

where 13 = 41(3+1'1 + · · ·+ 43(3+1'3.

Proof. In general, for an oriented .2—bundle I : * ! = over a manifold
= with a section J : = ! * , let 8 be the (oriented) normal bundle of
the embedding J with Euler class 1 = 1(8) % !2(=). Then there exists a
unique class ' % !2(*) satisfying

i) +!(') % !2(.2) is the orientation class;

ii) J!(') = 0 % !2(=).

Moreover

!!(*) = !!(=)[']#
%
'2 # 1'

®
.¤
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2.3 Construction of Bott manifolds

The proof of the next result tells the way by which all Bott manifolds can
be constructed.

Theorem 2.6. Any strictly upper triangular matrix V = (4#(&)"×" with
integer entries can be realized as the structure matrix of a Bott manifold.

Proof. Let 8 ( W! C$' be the 3—dimensional real vector bundle over
C$' with 8 the Hopf complex line bundle over C$' and with W = C$'×R
the 1—dimensional trivial bundle. Consider the associated spherical bration
of 8 ( W

87 : .2 " .(8 ( W)! C$'.

It has a canonical section J : C$' ! .(8(W) given by J(9) = (0( 1). Recall
that for any topological space = one has

!2(=) = [=(C$'].

For a given V = (4#(&)"×" (4#(& = 0 for + / S), we set *1 = .
2 and let

&1 : *1 ! C$' be the classifying map of the class 41(2'1 % !2(*1) =
[*1(C$']. The pull—back of 87 via &1 gives a .2—bundle over *1:

&!18
7 :*2 !*1

with a section J1 :*1 !*2 given by J. That is *2 is a Bott manifold of
rank 2 with structure matrix V2 = (4#(&)2×2.

Similarly, letting &2 : *2 ! C$' be the classifying map for the class
#41(3'1 # 42(3'2 % !2(*2) = [*2(C$'], we get the .2—bundle over *2

&!28
7 : *3 !*2

whose total space*3 is a Bott manifold with structure matrixV3 = (4#(&)3×3.
Repeating this procedure until all columns of V have been used, one obtains
a Bott manifold * =*" whose structure matrix is V.¤

Recently, the next problem appears to be popular in toric topology,
which has been solved for Bott manifolds up to rank 4, see [6]

Rigidity problem of Bott manifolds (conjecture): Given two Bott man-
ifolds * and ) with isomorphic cohomology rings, does * 0= ) ?

For instance let* and ) be two Bott manifold of rank 2 with structure
matrix

µ
0 4
0 0

¶
and

µ
0 X
0 0

¶
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respectively, then it can be shown that

!!(*) 0= !!())1 4 2 Xmod21* 0= ) .

More precisely

* =

(
.2 × .2 if 4 2 0mod 2
C$ 2#C$ 2 if 4 2 1mod 2.

2.4 Integration along Bott manifolds

Let Z['1( · · · ( '"] =
M

3(0

Z['1( · · · ( '"](3) be the ring of integral polynomials

in '1( · · · ( '$, graded by | '# |= 1.

Denition 2.7. Given an - × - strictly upper triangular integer matrix
V = (4#(&)"×" the triangular operator associated to V is the composed ho-
momorphism

Y8 : Z['1( · · · ( '"](")
9!! Z['1( · · · ( '"#1]("#1)

9!!1! · · ·! Z['1( · · · ( '3](3)

9#! Z['1( · · · ( '3#1](3#1)
9#!1! · · ·!Z['1](1)

91! Z

dened recurrently by the following rule:

Y1(B'1) = B;

Y3(B'
71
1 · · ·'

7#!1
3#1 '

7#
3 ) =

½
0 if 73 = 0;
B'711 · · ·'

7#!1
3#1 (41(3'1 + · · ·+ 43#1(3'3#1)

7##1 if 73 R 0,

where B % Z.

Example 2.8. Denition 2.7 gives an e!ective algorithm to evaluate Y8.

For - = 2 and V =
µ
0 4
0 0

¶
, the homomorphism Y8 : Z['1( '2](2) ! Z

is given by

Y8('
2
1) = 0,

Y8('1'2) = Y1('1) = 1 and

Y8('
2
2) = Y1(4'1) = 4.

For - = 3 and V =

&

'
0 4 X
0 0 B
0 0 0

(

), set V1 =
µ
0 4
0 0

¶
. The homomor-

phism Y8 : Z['1( '2( '3](3) ! Z is given by

12



Y8('
31
1 '

32
2 '

33
3 ) = {

0, if O3 = 0 and
Y81('

31
1 '

32
2 (X'1 + B'2)

33#1)( if O3 / 1,

where O1 + O2 + O3 = 3, and where Y81 is calculated before.¤

The cohomology of a Bott manifold * is a simple ring

!!(*) = Z['1( · · · ( '"]#
%
'23 + 13'3( 1 * + * -

®
,

in the following sense:

i) it is generated by elements with homogeneous degree 2;

ii) subject to relations with homogeneous degree 4.

Moreover, in our latter course to reduce Schubert calculus in the cohomol-
ogy of a general ag manifold "#$ to computation in this simple ring the
following problem appears to be crucial.

Write Z['1( · · · ( '"](3) " Z['1( · · · ( '"] for the subset of all homogeneous
polynomials of degree O and let

I% : Z['1( · · · ( '"](3) ! !23(*)

be the obvious quotient ring map. Consider the additive correspondence

R
% : Z['1( · · · ( '"](") ! !2"(*) = Z

dened by
R
% Z = hI%(Z)( [* ]i, where [* ] % !2(*) = Z is the orientation

class. As indicated by the notation, the operator
R
% can be interpreted as

“integration along *” in De Rham theory, see also Problem 1.3 in Section
1.

Theorem 2.9. Let * be a Bott manifold with structure matrix V =
(4#&)"×". ThenR

% = Y8 : Z['1( · · · ( '"](2") ! Z.

Proof. Consider the bration .2 "*$
4"!1! *$#1 in the denition of Bott

manifold. Clearly *$#1 is a Bott manifold of rank , # 1, whose structure
matrix V0 can be obtained from V by deleting the last - # , columns and
rows. The natural inclusion

Z['1( · · · ( '$#1]! Z['1( · · · ( '$]

by '# 7#! '#( + * , # 1, preserves both the grade and ideal, hence yields,
when passing to the quotients, the induced map
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I!$#1 : !
!(*$#1) = Z['1( · · · ( '$#1]#O%"!1 ! !!(*$) =

Z['1( · · · ( '$]#O%"
.

Concerning this ring map we have

i) Integration by part:
Z

%"

I!$#1(4) & '$ =
Z

%"!1

4.

Next, in the ring !!(*$) we have

ii) '3$ = (41($'1 + · · ·+ 4$#1($'$#1)
3#1'$

because of the relation '2$ = (41($'1 + · · ·+ 4$#1($'$#1)'$.
Repeatedly applying the relations i) and ii) reduces the computation ofZ

%

to
Z

:2

, which is given as Y1 in Denition 2.7.¤

3 Geometry of Lie groups

We introdce the Stiefel diagram for semi—simple Lie groups ", and recall
the story of E. Cartan to classify Lie groups by their Cartan matrixes. We
bring also a passage from the geometry of the Cartan subalgebra @(Y ) to
certain topological properties of the ag manifold "#Y .

3.1 Lie groups and examples

Denition 3.1. A Lie group is a smooth manifold " which is furnished
with a group structure

i) a product [: "×"! "

ii) an inverse 8: "! "

iii) a group unit: 1 % "

in which the group operations [ and 8 are smooth as maps between smooth
manifolds.

Immediately from the denition, one has following familiar examples of
Lie groups.

Example 3.2. The -—dimensional Euclidean space R" is is a non—compact
Lie group (R"(+( 0) with dimension -.¤

The -—dimensional torus Y" = .1×· · ·×.1 is a compact Lie group with
dimension -, where .1 is the circle group
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.1 = {1#; % C | \ % R}

with product given by multiplying complex numbers.¤
Let *(-;F) be the - × - matrix space {V = (4#&)"×" | 4#& % F} with

entries in

F =

!
#

$

R (the eld of reals)
C (the eld of complexes)
H (the algebra of quaternions).

As an Euclidean space we have

dimR*(-;F) =

!
#

$

-2 if F = R
(2-)2 if F = C
(4-)2 if F = H.

Consider the subspace of *(-;F)

](-;F) = {V %*(-;F) | VV< = N"}.

The usual matrix operations

](-;F)×](-;F)! ](-;F) (V(^)! V ·^

](-;F)! ](-;F), V! V
<

furnishes ](-;F) with the structure of a Lie group with group unit the
identity matrix N", called "the classical Lie groups." Precisely we have

](-;F) =

!
#

$

](-) the orthogonal group of order - if F = R(
_(-) the unitary group of order - if F = C
.I(-) the symplectic group of order - if F = H.¤

If "1("2 are two Lie groups, their product gives the third one

" = "1 ×"2

in which "# is called a factor of ".

Denition 3.3. A Lie group " is called

i) compact if it has no factor R";
ii) semi—simple if it has no factor Y";

iii) simple if " is compact, semi—simple and " = "1×"2 implies
that one of "1, "2 is a trivial group.¤
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3.2 Stiefel diagram of a semi—simple Lie group

Let " be a simple Lie group. Up to conjugate " contains a unique maximal
connected abelian subgroup Y , called a maximal torus of ". The dimension
of Y is called the rank of the Lie group ".

Fix a maximal torus Y in ", consider the commutative diagram induced
by the exponential map of "

@(Y ) ! @(")
exp 3 exp 3

Y ! "

where

@(") :=the tangent space to " at the group unit 1 (the Lie
algebra of ")

@(Y ) :=the tangent space to Y at the group unit 1 (the Cartan
subalgebra of Y ).

For a non—zero vector 3 % @(Y ) the map exp carries the straight line
9' = {A3 | A % R} on the space @(Y ) to a 1—parameter subgroup (or a
geodesic) on "

{exp(A3) % " | A % R}.

Let 5' be the centralizer of this subgroup of ". Clearly one has Y - 5'.

Denition 3.4. A point 3 % @(Y ) is called singular (resp. regular) if

dimY ` dim5' (resp. dimY = dim5').

Let S(") " @(Y ) be the set of all singular points. The pair (@(Y )(S(")) is
called the Stiefel diagram of ".¤

Theorem 3.5 (Geometry of Stiefel diagram). Let " be a semi—simple Lie
group with rank -, and set 0 = 1

2(dim"# -). Then

i) there are precisely 0 hyperplanes @1( · · · ( @2 in @(Y ) through
the origin 0 % @(Y ) so that S(") = @1 & · · · & @2;

ii) let 9$ be the line normal to @$ and through the origin 0,
then the exponential map exp : @(Y ) ! " carries 9$ to a circle
subgroup of ";

iii) let a# " " be the centralizer of the subset exp(@#) " ", then
Y " a# and a##Y = .2, 1 * + * 0.¤
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Instead of giving a proof of this general result I would like to point out
that, if " is one of the classical groups ._(-)( .](-) or .I(-), the theorem
can be directly veried using linear algebra.

Example 3.6. For " = _(-) we have

Y = {b+4F{1#;1 ( · · · ( 1#;!} % _(-) | \3 % R};
@(_(-)) = {^ %*(-;5) | ^< = #^};

@(Y ) = {b+4F{+\1( · · · ( +\"} | \3 % R}

and

exp(^) = N +^ + 1
2!^

2 + · · ·+ 1
"!^

" + · · · .

Moreover, if we set

@7(. = {b+4F{+\1( · · · ( +\"} % @(Y ) | \7 = \. % R}, 7 ` A.

Then Theorem 3.5 is veried by

i) S(_(-)) =
[

1"7=.""

@7(.;

ii) the normal line 97(. to the hyperplane @7(. is

97(. = {A%7(. | %7(. = b+4F{0( · · · ( 0( +( 0( · · · ( 0(#+( 0( · · · ( 0}};

iii) the centralizer of exp(@7(.) " _(-) is isomorphic to Y"#1 ×
.3.¤

3.3 The Cartan matrix and Weyl group of a Lie group

Based on the geometry of the Stiefel diagram we introduce basic notation
about Lie groups theory.

Denition. 3.7. Let J# % V3A(@(Y ) be the reection in the hyperplane
@# % S("). The subgroup c (") " V3A(@(Y )) generated by J#, 1 * + * 0,
is called Weyl group of ".

By denition each element 2 %c (") admits a factorization

(3.1) 2 = J#1 , · · · , J## , 1 * +1( · · · ( +3 * 0.

The length 9(2) of an element 2 % c (") is the least number of factors in
all decompositions of 2 in form (3.1). It gives rise to a function

9 :c (")! Z
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called the length function onc ("). The decomposition (3.1) is said reduced
if O = 9(2).¤

Denition 3.8. Let 9$ " @(Y ) be the line normal to the singular plane
@$ and ±%$ % 9$ be the non—zero vectors with minimal length so that
exp(±%$) = 1, 1 * , * 0. The subset

#> = {±%$ % @(Y ) | 1 * , * 0}

of @(Y ) is called the root system of ".
For a pair 4#( %& % #> of roots the number 2(4#( %&)#(%& ( %&) is called

the Cartan number of " relative to 4#( %& (only 0(±1(±2(±3 can occur.)¤

The planes in S(") divide @(Y ) into nitely many convex regions, each
one is called a Weyl chamber of ".

Fix a regular point '0 % @(Y ), and let F('0) be the closure of the Weyl
chamber containing '0. Assume that @('0) = {@1( · · · ( @"} is the subset
of S(") consisting of the walls of F('0), where - = dimY because of " is
semi—simple.

Denition 3.9. Let %# % #> be the root normal to the wall @# % @('0)
and pointing toward '0. Then the subset .('0) = {%1( · · · ( %"} of the root
system #> is called the system of simple roots of " relative to '0.

The Cartan matrix of " (relative to '0) is the -× - matrix dened by

V = (X#&)"×", X#& = 2(4#( %&)#(%& ( %&).

The reection J# % V3A(@(Y ) in the hyperplane @# % @('0) is called a
simple reection.¤

Just from the geometric fact that c (") acts transitively on the set of
all Weyl chambers one can get

Corollary 3.10. A system of simple roots of " is a basis of the vector
space @(Y ).

The Weyl group c (") is generated by a set of simple reections.¤

Moreover, the next result due to E. Cartan tells that the local types of
simple Lie groups are classied by their Cartan matrix:

Theorem 3.11 (Cartan). The isomorphism types of all 1—connected sim-
ple Lie groups are in on to on correspondence with their Cartan matrixes
listed below

the classical types: V"( ^"( 5"(G";

the exceptional types "2( d4( E6( E7( E8.
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Moreover, any compact connected Lie group " has the canonical pre-
sentation

" 0= ("1 × · · · ×"$ × Y 3)#a

in which

i) each ". is one of the 1—connected simple Lie groups enumer-
ated above;

ii) the denominator a is a nite subgroup of the center of the
numerator group.¤

As a supplyment to Theorem 3.11 we list the types and centers of all
1—connected simple Lie groups in the table below

! "#($) "%($) "%&$(2$+ 1) "%&$(2$) !2 '4 (6 (7 (8
!$ )!!1 *! +! ,! !2 '4 (6 (7 (8

Z(!) Z! Z2 Z2
Z4, $ = 2- + 1
Z2!Z2, $ = 2-

{.} {.} Z3 Z2 {.}

Table 1. The types and centers of 1—connected simple Lie groups

3.4 Bott—Samelson !—cycles on "#$

For a singular plane @# % S(") let a# " " be the centralizer of the subset
exp(@#) " ". By property iii) of Theorem 3.7 we have Y " a# with a##Y =
.2. This indicates that we have a family of embeddings of 2—dimensional
sphere

a##Y = .
2 ! "#Y , 1 * + * 0.

Generalizing these maps gives rise to so called Bott—Samelson a—cycles on
the ag manifold "#Y .

Give a sequence (+1( · · · ( +3) of integers with 1 * +1( · · · ( +3 * 0 consider
the map

a(+1( · · · ( +3) = a#1 × · · · ×a## ! "

dened by (F1( · · · ( F3)! F1 · · · F3. The product group (Y )3#1 of O#1 copies
of the maximal torus Y acts on the group a(+1( · · · ( +3) from left by the rule

(F1( · · · ( F3)(A1( · · · ( A3#1) = (F1A1( A#11 F2A2( · · · ( A
#1
3#1F3).

The map above induces the quotient maps
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a#1 ×9 · · · ×9 a## ! "
I 3 D 3

a#1 ×9 · · · ×9 a###Y ! "#Y

Denote the map on the bottom as

F#1(··· (## : $(+1( · · · ( +3) = a#1 ×9 · · · ×9 a###Y ! "#Y .

It will be called the Bott—Samelson a—cycle on "#Y associated to the se-
quence (+1( · · · ( +3).

Theorem 3.15. The quotient space $(+1( · · · ( +3) is a Bott manifold of rank
O whose structure matrix is V = (47(.)3×3, where

47(. =

½
0 if 7 / A;
#2(4#% ( %#&)#(%#& ( %#&) if 7 ` A

.

Proof. For a point (F1( · · · ( F3) % a#1 × · · · ×a## write [F1( · · · ( F3] for the
equivalent class in the quotient space $(+1( · · · ( +3). Then the map

$(+1( · · · ( +3)! $(+1( · · · ( +3#1) by [F1( · · · ( F3]! [F1( · · · ( F3#1]

is a smooth bration with ber a###Y a 2—dimensional sphere. It has a
canonical section

$(+1( · · · ( +3#1)! $(+1( · · · ( +3) by [F1( · · · ( F3#1]! [F1( · · · ( F3#1( 1]

with 1 % a## " " the group unit. These show that $(+1( · · · ( +3) is a Bott
manifold with rank O.

To compute the structure matrix V of $(+1( · · · ( +3) consider the Cartan
decomposition of the Lie algebra

@(") = @(Y )
M

!%!+(>)

8!,

where 8! is the root space (an oriented 2—dimensional real vector space)
associated to the positive root % % #+("). It gives rise to the decomposition
of the tangent bundle of "#Y

Y ("#Y ) =
M

!%!+(>)

8!,

here 8! is an oriented 2—dimensional real vector bundle of "#Y corresponds
to the 2—plane 8! in the Cartan decomposition of the algebra @("). Then
we have

h1!( [a##Y ]i = #2(%(%#)#(%#( %#) (the Cartan number),

where 1! % !2("#Y ) is the Euler class of the bundle 8!, and where [a##Y ] %
!2("#Y ) is the fundamental class of the embedding a##Y = .2 ! "#Y .¤
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3.5 Relationship between %($ ) and &2("#$ )

Let " be a semisimple Lie group with a system .('0) = {%1( ( · · · ( %"} of
simple roots relative to a regular point '0 % @(Y ).

Denition 3.16. The subset of the Cartan subalgebra @(Y )

!> = {H# % @(Y ) | 2(H#( %&)#(%& ( %&) = U#(& ( %& % .('0)}

is called the set of fundamental dominant weights of " relative to '0, where
U#(& is the Kronecker symbol.¤

Lemma 3.17. Let " be a semisimple Lie group with Cartan matrix V, and
let !> = {H1( · · · ( H"} be the set of fundamental dominant weights relative
to the regular point '0. Then

i) for each 1 * + * - the half line {AH# % @(Y ) | A % R+} is the edge of
the Weyl chamber F('0) opposite to the wall @#;

ii) the system of simple roots {%1( · · · ( %"} can be expressed in term of
the fundamental dominant weights H1( · · · ( H" as

(3.2)

&

***'

%1
%2
...
%"

(

+++) = V

&

***'

H1
H2
...
H"

(

+++).

Proof. By Denition 3.16 each weight H# % !> is perpendicular to all the
roots %& (i.e. H# % @&) with S 6= +. This shows i). ii) comes directly from
the denition.¤

The next idea is due to Borel and Hirzebruch [3, 1958]. Consider the

bration "#Y
?
e! ^Y

@! ^" induced by the inclusion Y " " and examine
the induced map (also known as the Borel’s characteristic map)

f! : !2(^Y )! !2("#Y ).

On the otherhand let % = exp#1(1) be the unit lattice in @(Y ). Then
each root % % .('0) induces the commutative diagram

@(Y )
!"! R

exp 3 3
Y = @(Y )#%>

!"! .1 = R#Z

where %!(3) = 2(3( %)#(%(%), since %!(%) " Z. The homomorphism %! at
the bottom determines a map between classifying space
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^%! : ^Y ! ^.1 = a(2(Z)

and consequently ^%! % !2(^Y ). Let us set

% =: f!^%! % !2("#Y ).

In this way we can regard the set #> of roots of " as a set of cohomology
classes in !2("#Y ).

Theorem 3.18 [3, 1958]. Let 8! be the oriented 2—dimensional real bundle
on "#Y with Euler class % % !2("#Y ). Then

i) Y ("#Y ) =
M

!%!+(>)

8!, where #
+(") is the set of positive roots

relative to the reqular point '0 % @(Y );

ii) the set !> = {H1( · · · ( H"} of fundamental dominant weights
is a basis for the group !2("#Y );

iii) the action of a simple reection J# on !2("#Y ) is given by

J#(H$) =

½
H# if , 6= +;
H# #

P
1"&"" 4#&H& if , = +,

where V = (4#&)"×" is the Cartan matrix of ".¤

4 Schubert calculus

In this section we bring together the classical works of Bott—Samelson [4,
1955], Chevalley [5, 1958] and Hansen [13, 1973] concerning the decompo-
sition of ag manifolds into Schubert cells (varieties), introduce the funda-
mental problem of Schubert calculus, and present a solution to it.

4.1 Bott—Samelson cycles on "#$

For a compact Lie group " with a maximal torus Y consider the bration

(4.1) "#Y
?
e! ^Y

@! ^"

induced by the inclusion Y " ", where ^Y (resp. ^") is the classifying
space of Y (resp. "). The ring map

f! : !!(^Y )! !!("#Y )

induced by the ber inclusion f is known as the Borel’s characteristic map.
Earlier in 1952, Borel [2] proved that

Theorem 4.1. Over the eld R of reals the map f! is surjective and induces
an isomorphism of algebras
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!!("#Y ;R) = !!(^Y ;R)#
%
!+(^Y ;R)A

®

where
%
!+(^Y ;R)A

®
is the ideal in !!(^Y ;R) generated by Weyl invari-

ants in positive degrees.

Subsequently, Bott and Samelson [4, 1955] studied the following question:

What happens to the structure of the integral cohomology !!("#Y )
?

Consider the commutative diagram induced by the exponential map of
the group "

@(Y ) ! @(")
exp 3 3 exp
Y ! "

where the horizontal maps are the obvious inclusions. Equip @(") (hence
also @(Y )) an inner product invariant under the adjoint action of" on @(").

Inside the Euclidean space @(") where are two geometric objects which
we will be interested in:

i) the linear subspace @(Y ) " @(") which is furnished with the
Stiefel diagram S(") of ";

ii) taking a regular point % % @(Y ) the adjoint representation of
" gives rise to a map

"! @(") by F ! Vb1(%)

which identies "#Y as a submanifold of the Euclidean space
@(")

"#Y = {Vb1(%) % @(") | F % "}.

From the xed regular point % % @(Y ) given in ii) we get also

iii) the c—orbit through the point % % @(Y )

c (%) = {2(%) % @(Y ) | 2 %c},

iv) the Euclidean distance function: &B : "#Y ! R from the
point %

&!(') =k '# % k2

The following result of Bott and Samelson [4, 1955] tells how to read the
critical points of the function &B from the linear geometry of the vector space
@(Y ):

Theorem 4.2. The function &B is a Morse function on "#Y with c (%) as
the set of critical points.

The index function Ind:c (%)! Z is given by
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Ind(2(4)) = 2#{@# | @# $ [4(2(4)] 6= 4],

where [4(2(4)] is the line segment in @(Y ) joining 4 and 2(4).
Proof. The linear subspace @(Y ) " @(") meets the submanifold "#Y "
@(") perpendicularly at the c—orbit c (%) of %:

@(Y ) $"#Y =c (%).

This shows that the set of critical points of the function &B is c (%).
To compute the index of &B at a critical point 2(%) %c (%) we need to

decide the centers of curvatures along the segment [4(2(4)] normal to "#Y
at the point 2(4). They are in one to one correspondent to the intersection
point of @# and [4(2(4)], each counted with multiplicity 2.¤

Consider the partition on the Weyl group of " dened by the length
function

c =
a

0"3"2

c 3 with 9(c 3) = O.

Let us dene Q23 = |c 3|. Theorem 4.2 implies that

Corollary 4.3. The cohomology of "#Y is torsion free, vanishes in odd
degrees, and has Poincare polynomial

$.("#Y ) = 1 + Q2A
2 + · · ·+ Q22A22,

where 0 = dim>#"
2 .¤

Moreover, Bott and Samelson constructed a set of geometric cycles in
"#Y that realizes an additive basis of !!("#Y ;Z) as follows.

For a 2 % c assume that the singular planes that meet the directed
segment [4(2(4)] are in the order @1( · · · ( @3. Let a# " " be the centralizer
of the subset exp(@#) of " and put $C = a1 ×9 · · · ×9 a3#Y . Let

FC : $C ! "#Y

be the Bott—Samelson a—cycles associated to the sequence (1( · · · ( O)C

Theorem 4.4. The homology !!("#Y ;Z) is torsion free with the additive
basis

{FC![$C] % !!("#Y ;Z) | 2 %c}.

Proof. Let 1 % a#(" ") be the group unit and put 1 = [1( · · · ( 1] % $C. It
were actually shown by Bott and Samelson that
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(1) F#1C (2(4)) consists of the single point 1;

(2) the composed function &B,FC : $C ! R attains its maximum
only at 1;

(3) the tangent map of FC at 1 maps the tangent space of $C at 1
isomorphically onto the negative part of !C(B)(&B), the Hessian
form of the function &B at the point 2(4) % "#Y .

These completes the proof.¤

4.2 Basis Theorem of Chevalley

Let a be a linear algebraic group over the eld C of complex numbers, and
let ^ " a be a Borel subgroup. The homogeneous space a#^ is a projec-
tive variety on which the group a acts by left multiplication. Historically,
Schubert varieties were introduced in terms of the orbits of ^ action on
a#^.

Let Y be a maximal torus containing in^ and let)(Y ) be the normalizer
of Y in a. The Weyl group of a (relative to Y ) is c = )(Y )#Y . For a
2 %c take an -(2) % )(Y ) such that its residue class mod Y is 2.

The following result was rst discovered by Bruhat for classical Lie
groups a in 1954, and proved to be the case for all reductive algebraic
linear groups by Chevalley [5, 1958].

Theorem 4.5. One has the disjoint union decomposition
a#^ = &

C%A
^-(2) ·^

in which each orbit ^-(2) · ^ is isomorphic to an a!ne space of complex
dimension 9(2).

The Zariski closure of the open cell ^-(2) ·^ in a#^ with the canonical
reduced structure, denoted by =C, is called the Schubert variety associated
to 2.

Corollary 4.6 (Basis Theorem of Schubert calculus). Let [=C] %
!2D(C)(a#^) be the fundamental class of the Schubert variety associated to
2. Then the homology !!(a#^) has additive basis {[=C] % !!(a#^) |
2 %c}.

Consequently, let 7C % !!(a#^) be the Kronnecker dual of the class
[=C] in cohomology. Then the cohomology !!(a#^) has additive basis
{7C % !!(a#^) | 2 %c}.¤

In view of second part of Corollary 4.6, the product 7'·7E of two arbitrary
Schubert classes can be expanded in terms of the Schubert basis

7' · 7E =
P

D(C)=D(')+D(E)(C%A
4C'(E · 7C, 4C'(E % Z,
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where the coe"cients 4C'(E are called the structure constants on "#$ .

Fundamental problem1 of Schubert calculus: Given a ag manifold
"#Y determine the structure constants 4C'(E on "#Y for all 2( 3( : %c with
9(2) = 9(3) + 9(:).¤

For a compact connected Lie group " with a maximal torus Y let a be
the complexication of ", and let ^ be a Borel subgroup ina containing Y .
It is well known that the natural inclusion "! a induces an isomorphism

"#Y = a#^.

Conversely, the reductive algebraic linear groups are exactly the complexi-
cations of the compact real Lie groups [14].

Up to now the homology !!("#Y ) has two canonical additive bases: one
is given by the a—cycles constructed by Bott-Samelson in order to describe
the stable manifolds of a perfect Morse function on "#Y ; and the other
consists of Schubert varieties, and both of them are indexed by the Weyl
group of ". The following result was obtained by Hansen [?, 1973].

Theorem 4.7. Under the natural isomorphism "#Y = a#^, the K—cycle
FC : $C ! "#Y of Bott-Samelson in Theorem 4.4 is a degree 1 map onto
the Schubert variety =C.

Because of this result the map FC : $C ! "#Y is also known as the
Bott—Samelson resolution of the Schubert variety =C.

4.3 Multiplicative rule of Schubert classes

Let " be a simple Lie group of rank - with a system of simple roots
{%1( · · · ( %"}, a set {J1( · · · ( J"} of simple reections. For a sequence (+1( · · · ( +$)
of , integers, 1 * +1( · · · ( +3 * -, consider the correspondinga—cycle on"#Y

F#1(··· (#" : $(+1( · · · ( +3) = a#1 ×9 · · · ×9 a###Y ! "#Y ,

and its induced the cohomology map:

F!#1(··· (## : !
27("#Y )! !27($(+1( · · · ( +3)).

Recall that
1For the historical backgroud in this problem, we quote from J. L. Coolidge [7, (1940)]

"the fundamental problem which occupies Schubert is to express the product of two of
these symbols in terms of others linearly. He succeeds in part"; and from A. Weil [17,
p.331]: "The classical Schubert calculus amounts to the determination of cohomology rings
of ag manifolds."
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i) the group!27("#Y ) has additive basis {7C | 2 %c , 9(2) = 7}
by the basis theorem of Chevalley;

ii) the group !27($(+1( · · · ( +$)) has additive basis {'5 | N -
[1( · · · ( O], |N| = 7}.

Theorem 4.8. The induced map F!#1(··· (#" : !
27("#Y )! !27($(+1( · · · ( +$))

is given by

F!#1(··· (#"(7C) =
P

5& [1(··· ($](|5|=7(F'=C
'5

where J(&1(··· (&#) = J#(1 , · · · , J#(# .
Proof. With respect to the cell decomposition of the manifolds $(+1( · · · ( +$)
and "#Y the map F#1(··· (#" has nice behavior

F#1(··· (#" : $(+1( · · · ( +$) =
[

5)(#1(··· (#")

$(N)! "#Y =
[

C%A

=C

in the sense that

F#1(··· (#"($(N)) = =F' with J(&1(··· (&#) = J&1 , · · · , J&# .

This completes the proof.¤

Granted with Theorem 4.8 we present a solution to the

Fundamental problem of Schubert calculus: Given a ag manifold
"#Y determine the structure constants 4C'(E of "#Y in the product

7' · 7E =
P

D(C)=D(')+D(E)(C%A
4C'(E · 7C, 4C'(E % Z,

where 2(3( : %c with 9(2) = 9(3) + 9(:).¤

Take a reduced decomposition for 2 %c

2 = J#1 , · · · , J#"

and let VC be the Cartan matrix of the Bott—Samelson resolution

FC = F#1(··· (#" : $C = $(+1( · · · ( +$)! =C " "#Y

of the Schubert variety =C.

Theorem 4.9 [8].

4C'(E = Y8) [(
P

G){1(··· ($}(|G|=D(')(F*='
'G)(

P
H){1(··· ($}(|H|=D(E)(F+=E

'H)],
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where JG % c (resp. JH % c ) is the subword of 2 corresponding to the
sequence @ (a).

Proof. Assume in the ring !!("#Y ) we have that

7' · 7E =
P

D(C)=D(')+D(E)(C%A
4C'(E · 7C, 4C'(E % Z.

Then

4C'(E = h7' · 7E( [=C]i = h7' · 7E( F!C [$C]i

= h(F!C7' · F!C7E)( [$C]i

=

*
(

P
|G|=D(')(F*='

'G) · (
P

|H|=D(E)(F+=E
'H)( [$C]

+
(by Theorem

4.8)

=

Z

")

(
P

|G|=D(')(F*='
'G) · (

P
|H|=D(E)(F+=E

'H)

= Y8)(
P

|G|=D(')(F*='
'G)·(

P
|H|=D(E)(F+=E

'H) (by Theorem 2.9).¤

Example 4.10. We emphasize that the above formula express the number
4C'(E as a polynomial in the Cartan numbers of ".

For instance the Cartan matrix of the second exceptional group d4 is:

&

**'

2 #1 0 0
#1 2 #2 0
0 #1 2 #1
0 0 #1 2

(

++).

Consider the following elements ofc (d4) given by reduced decompositions:

21 = J1J2J3; 22 = J2J3J4.

We have

VC1 =

&

'
0 #1 0
0 0 #2
0 0 0

(

); VC2 =

&

'
0 #2 0
0 0 #1
0 0 0

(

).

That is, one can read o! the matrix VC directly from a reduced decompo-
sition of 2 and the Cartan matrix of ".¤
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4.4 General cases

Generally if " is a compact connected Lie group and if % : R ! " be a
group homomorphism, then centralizer $! of the one parameter subgroup
%(R) of " is a parabolic subgroup of ", and the corresponding homogeneous
space "#$! is canonically a projective variety, called a ag manifold of ".

Theorem 4.12 below indicates that the basis theorem of Chevalley (i.e.
Corollary 4.6) and the multiplcative formula (i.e. Theorem 4.9) applies
equally well to determine the integral cohomology ring !!("#$!).

Assume that the group " is semi—simple with rank -. For a subset
N - {1( · · · ( -} let $5 be the centralizer of the 1—parameter subgroup

% : R! ", %(A) = exp(A
P
#%5
H#)

on ", where {H1( · · · ( H"} " @(Y ) is a set of fundamental dominant weights
of " (i.e. lying on the edges of a xed Weyl chamber of "). Note that if
N = {1( · · · ( -}, then $5 = Y .

Lemma 4.11 [1, 5.1]. The centralizer of any 1—parameter subgroup on "
is isomorphic to a subgroup $5 for some N - {1( · · · ( -}. Moreover,

i) $5 is a parabolic subgroup of " whose Dynkin diagram can
obtained from that of " by deleting the vertices Q# with + % N,
as well as the edges adjoining to it;

ii) the Weyl group c5 of $5 is the subgroup of c generated by
the set {J& | S #% N} of simple reections on @(Y );

iii) identifying the set c#c5 of left cosets of c5 "c with the
subset of c [1, 5.1]

c#c5 = {2 %c | 9(21) / 9(2), 21 % 2c},

then the ag manifold "#$5 has the cell decomposition into
Schubert varieties

"#$5 = &
C%AIA'

D(=C),

where D : "#Y ! "#$5 is the bration induced by the inclusion
of subgroups Y " $5 " ".¤

For a proper subset N " {1( · · · ( -} consider the bration in ag mani-
folds induced by the inclusion Y " $5 " " of subgroups

(4.2) $5#Y
#
e! "#Y

@! "#$5 .

We observe that, with respect to the Schubert bases on the three ag mani-
folds $5#Y , "#Y and "#$5 , the induced maps D! and +! have nice behavior.
Theorem 4.12. With respect to the inclusion c5 "c the induced map
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+! : !!("#Y )! !!($5#Y )

identies the subset {7C}C%A')A of the Schubert basis of !!("#Y ) with
the Schubert basis {7C}C%A' of !

!($5#Y ).
With respect to the inclusion c#c5 "c the induced map

D! : !!("#$5)! !!("#Y )

identies the Schubert basis {7C}C%AIA'
of !!("#$5) with the subset

{7C}C%AIA'
of the Schubert basis {7C}C%A of !!("#Y ).

Proof. This lemma comes from the next two geometric properties that
follow directly from the denition of Schubert varieties. With respect to the
cell decompositions (4.1) on the three ag varieties $5#Y , "#Y and "#$5
one has:

i) for each 2 % c5 " c the ber inclusion + : $5#Y ! "#Y carries the
Schubert variety =C on $5#Y identically onto the Schubert variety =C on
"#Y ;

ii) for each 2 %c#c5 "c the projection D : "#Y ! "#$5 restricts to
a degree 1 map from the Schubert variety =C on "#Y to the corresponding
Schubert variety on "#$5 .¤

Based on the formula in Theorem 4.4 for multipliying rule of Schubert
classes, a program entitled “Littlewood-Richardson Coe!cients” has been
compiled in [11], whose function is briefed below.

Algorithm: L-R coe!cients.

In: A Cartan matrix V = (4#&)"×" (to specify a Lie group ")
and a subset N - {1( · · · ( -} (to specify a parabolic subgroup
$ " ")

Out: The structure constants 4C'(E % Z for all 2( 3( : % c#c5

with 9(2) = 9(3) + 9(:).

5 Applications

The computational examples in this section are taken from [10].
In principle, the basis theorem of Chevalley (i.e. Corollary 4.6) and the

formula for multiplying Schubert classes (i.e. Theorem 4.9) consist of a
complete characterization of the ring !!("#$ ). However, concerning the
needs of many relevant studies such a characterization is hardly a practical
one, since the number of Schubert classes on "#$ is usually very large,
not to mention the number of the corresponding structure constants 4C'(E
involved. It is therefore natural to ask for such a compact presentation of
the ring !!("#$ ) as that demonstrated in the next example.
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Given a set {'1( · · · ( '$} of , elements let Z['1( · · · ( '$] be the ring of
polynomials in '1( · · · ( '$ over the ring Z of integers. For a set {&1( · · · ( &2}
" Z['1( · · · ( '$] of polynomials write h&1( · · · ( &2i for the ideal generated by
&1( · · · ( &2.

Example 5.1. If " = _(-) is the unitary group of rank - and if $ =
_(,) × _(- # ,), the ag manifold "#$ is the Grassmannians ""($ of ,—
planes through the origin in the -—dimensional complex vector space C".
In addition to the characterization of the ring !!(""($) by

¡"
$

¢
Schubert

classes, one has the compact presentation due to Borel [2]

(5.1) !!(""($) = Z[B1( · · · ( B$]#hB"#$+1( · · · ( B"i,

where B3 % !23(""($), 1 * O * ,, are the special Schubert classes on ""($,
and where B3 is the component of the formal inverse of 1 + B1 + · · ·+ B$ in
degree O.¤

Motivated by the result in Exmple 1.4 we introduce the following nota-
tion.

Denition 5.2. A Schubert presentation of the cohomology ring of a ag
manifold "#$ is an isomorphism

(5.2) !!("#$ ) = Z['1( · · · ( '$]#h&1( · · · ( &2i,

where

i) {'1( · · · ( '$} is a minimal set of Schubert classes on "#$ that
generates the ring !!("#$ ) multiplicatively;

ii) the number 0 of the generating polynomials &1( · · · ( &2 of
the ideal h&1( · · · ( &2i is minimum subject to the isomorphism
(1.3).¤

This section is devoted to study the next problem for the exceptional Lie
groups.

Problem 5.3. Given a ag manifold "#$ nd a Schubert presentation of
its cohomology ring !!("#$ ).

If " is exceptional with rank -, we assume that the set ! = {H1( C C C ( H"}
is so ordered as the root—vertices in the Dynkin diagram of " pictured in
[?, p.58]. With this convention we single out, for given " and H % !, seven
parabolic !, as well as their semi—simple part !7, in the table below:

" d4 d4 E6 E6 E7 E7 E8
H H1 H4 H2 H6 H1 H7 H8
$ 53 · .1 ^3 · .1 V6 · .1 G5 · .1 G6 · .1 E6 · .1 E7 · .1

$7 53 ^3 V6 G5 G6 E6 E7
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5.1 Cohomology of the homogeneous spaces "#'7

We calculate the rings !!("#!7) for the seven homogeneous spaces

(5.3) d4#53, d4#^3, E6#V6, E6#G5, E7#G6, E7#E6, E8#E7.

The results are stated in Theorems 5.4—5.10 below.
Given a set {b1( C C C ( b.} of elements graded by |b#| R 0, let $(1( b1( C C C ( b.)

be the graded free abelian group spanned by 1( b1( C C C ( b., and considered as
a graded ring with the trivial products 1 · b# = b#; b# · b& = 0.

For a graded commutative ring V, let Vb)$(1( b1( C C C ( b.) be the quotient
of the tensor product V ) $(1( b1( C C C ( b.) by the relations Tor(V) · b# = 0,
1 * + * A.

Let 73(# for the +.J Schubert class on "#$ in degree O. If / % !!("#$ )
we write / := I!(/) % !!("#$7).

Theorem 5.4. Let /3, /4, /6 be the Schubert classes on d4#53 · .1 with
Weyl coordinates J[3( 2( 1], J[4( 3( 2( 1], J[3( 2( 4( 3( 2( 1] respectively, and let
b23 % !23(d4#53) be with Q(b23) = 2711(1 # 711(2. Then

!!(d4#53) = Z[/3( /4( /6]# hZ3( Z6( Z8( Z12i b)$(1( b23),

where Z3 = 2/3( Z6 = 2/6 + /
2
3, Z8 = 3/

2
4, Z12 = /

2
6 # /34.

Proof.

nontrivial !$(d4#53) basis elements relations
!6 0= Z2 7̄3(1
!8 0= Z 7̄4(2
!12 0= Z4 7̄6(2 #27̄6(2 = 7̄23(1
!14 0= Z2 7̄7(1 = 7̄3(174(2
!16 0= Z3 7̄8(1 = #7̄24(2
!18 0= Z2 7̄9(2 = 7̄3(17̄6(2
!20 0= Z4 7̄10(2 = 7̄4(27̄6(2
!26 0= Z2 713(1 = 7̄3(17̄4(27̄6(2
!23 0= Z b23 = Q

#1(2 711(1 # 711(2)
!31 0= Z b31 = Q

#1(715(1) = ±7̄4(2b23

Theorem 5.5. Let /4 be the Schubert class on d4#^3 · .1 with Weyl
coordinate J[3( 2( 3( 4]; and let b23 % !23(d4#^3) be with Q(b23) = #711(1+
711(2. Then

!!(d4#^3) = Z[/4]# hZ8( Z12i b)$(1( b23),

where Z8 = 3/24, Z12 = /
3
4.

Proof.
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nontrivial !$(d4#^3) basis elements relations
!8 0= Z 7̄4(2
!16 0= Z3 7̄8(1 = 7̄24(2
!23 0= Z b23 = Q

#1(#711(1 + 711(2)
!31 0= Z b31 = Q

#1715(1 = ±7̄4(2b23

.¤

Theorem 5.6. Let /3, /4, /6 be the Schubert classes on E6#V6 · .1 with
Weyl coordinates J[5( 4( 2], J[6( 5( 4( 2], J[1( 3( 6( 5( 4( 2] respectively, and let
b23( b29 % !odd(E6#V6) be with

Q(b23) = 2711(1 # 711(2, Q(b29) = 714(1 + 714(2 + 714(4 # 714(5.

Then

!!(E6#V6) =
{Z[/3( /4( /6]# hZ6( Z8( Z9( Z12i b)$(1( b23( b29)}# h2b29 = /3b23i,

where Z6 = 2/6 + /
2
3, Z8 = 3/

2
4, Z9 = 2/3/6, Z12 = /

2
6 # /34.

Proof.

nontrivial !$ basis elements relations
!6 0= Z 7̄3(2
!8 0= Z 7̄4(3
!12 0= Z 7̄6(1 #27̄6(1 = 7̄23(2
!14 0= Z 7̄7(1 73(2 74(3
!16 0= Z3 7̄8(1 724(3
!18 0= Z2 7̄9(1 73(2 76(1
!20 0= Z 7̄10(1 #74(3 76(1
!22 0= Z3 7̄11(1 724(373(2
!26 0= Z2 7̄13(2 73(2 74(376(1
!28 0= Z3 7̄14(1 # 724(376(1
!23 0= Z b23 = Q

#1(711(1 # 711(2 # 711(3 + 711(4
#711(5 + 711(6)

!29 0= Z b29 = Q
#1(#714(1 + 714(2 + 714(4 # 714(5) 2b29 = ±7̄3(2b23

!31 0= Z b31 = Q
#1(715(1 # 2 715(2 + 715(3 # 715(4) ±7̄4(3b23

!35 0= Z b35 = Q
#1(#717(1 + 717(2 + 717(3) ±7̄6(1b23

!37 0= Z b37 = Q
#1(#718(1 + 718(2) ±7̄4(3b29

!43 0= Z b43 = Q
#1(722(1) ±7̄4(37̄6(1b23

.¤

33



Theorem 5.7. Let /4 be the Schubert class on E6#G5 ·.1 with Weyl coor-
dinate J[2( 4( 5( 6], and let b17 % !odd(E6#G5) be with Q(b17) = 78(1#78(2#
78(3. Then

!!(E6#G5) = Z[/4]# hZ12i b)$(1( b17),

where Z12 = /34.
Proof.

nontrivial !$ basis elements relations
!8 0= Z 74(1
!16 0= Z 78(1 724(1
!17 0= Z b17 = Q

#1(78(1 # 78(2 # 78(3)
!25 0= Z b25 = Q

#1(712(1 # 712(2) ±74(1b17
!33 0= Z b33 = Q

#1(716(1) ±724(1b17

.

.¤

Theorem 5.8. Let /5, /9 be the Schubert classes on E7#E6 · .1 with
Weyl coordinates J[2( 4( 5( 6( 7], J[1( 5( 4( 2( 3( 4( 5( 6( 7] respectively, and let
b37, b45 % !odd(E7#E6) be with

Q(b37) = 718(1 # 718(2 + 718(3, Q(b45) = 722(1 # 722(2.

Then

!!(E7#E6) = {Z[/5( /9]# hZ10( Z14( Z18i b)$(1( b37( b45)}# h/9b37 = /5b45i,

where Z10 = /25; Z14 = 2/5/9; Z18 = /
2
9.

Proof.

nontrivial !$ basis elements relations
!10 0= Z 75(1 75(1
!18 0= Z 79(1 79(1
!28 0= Z2 714(1 75(179(1
!37 0= Z b37 = Q

#1(718(1 # 718(2 + 718(3)
!45 0= Z b45 = Q

#1(722(1 # 722(2)
!55 0= Z b55 = Q

#1(727(1) 79(1b37 = ±75(1b45

.¤

Theorem 5.9. Let /4( /6( /9 be the Schubert classes on E7#G6 ·.1 with Weyl
coordinates J[2( 4( 3( 1], J[2( 6( 5( 4( 3( 1], J[3( 4( 2( 7( 6( 5( 4( 3( 1] respectively,
and let b35( b51 % !odd(E7#G6) be with

Q(b35) = 717(1 # 717(2 # 717(3 + 717(4 # 717(5 + 717(6 # 717(7;

Q(b51) = 725(1 # 725(2 # 725(4.
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Then

!!(E7#G6) =
{Z[/4( /6( /9]# hZ9( Z12( Z14( Z18i b)$(1( b35( b51)}#

%
3b51 = /

2
4b35

®
,

where Z9 = 2/9, Z12 = 3/
2
6 # /

3
4, Z14 = 3/

2
4/6, Z18 = /

2
9 # /

3
6.

Proof.

nontrivial !$ basis elements relations
!8 0= Z 74(1
!12 0= Z 76(1
!16 0= Z 78(1 724(1
!18 0= Z2 79(2
!20 0= Z 710(1 74(176(1
!24 0= Z 712(2 712(2 = 7

2
6(1; 3712(2 = 7

3
4(1

!26 0= Z2 713(1 74(179(2
!28 0= Z3 714(1 #724(176(1
!30 0= Z2 715(1 76(179(2
!32 0= Z 716(1 74(17

2
6(1

!34 0= Z2 717(2 724(179(2
!38 0= Z2 719(2 74(176(179(2
!40 0= Z3 720(1 724(17

2
6(1

!42 0= Z2 721(3 734(179(2
!50 0= Z2 725(1 744(179(2
!35 0= Z b35 = Q

#1(717(1 # 717(2 # 717(3
+717(4 # 717(5 + 717(6 # 717(7)

!43 0= Z Q#1(721(1 # 2 721(2 + 721(3 ±74(1b35
#3 721(4 + 2 721(5 # 721(6)

!47 0= Z Q#1(2 723(1 # 723(2 + 723(3 # 723(4 ±76(1b35
+723(5)

!51 0= Z b51 = Q
#1(725(1 # 725(2 # 725(4) 3b51 = ±724(1b35

!55 0= Z Q#1(727(1 + 727(2 # 727(3) ±74(176(1b35
!59 0= Z Q#1(729(1 # 729(2) ±726(1b35(±74(1b51
!67 0= Z Q#1(733(1) 74(17

2
6(1b35=±724(1b51

.¤

Theorem 5.10. Let /6,/10( /15 be the Schubert classes on E8#E7 · .1 with
Weyl coordinates J[3( 4( 5( 6( 7( 8], J[1( 5( 4( 2( 3( 4( 5( 6( 7( 8], J[5( 4( 3( 1( 7( 6( 5( 4( 2( 3( 4(
5( 6( 7( 8] respectively, and let b59 % !odd(E8#E7) be with

Q(b59) = 729(1# 729(2# 729(3+ 729(4# 729(5+ 729(6# 729(7+ 729(8.

Then
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!!(E8#E7) = Z[/6( /10( /15]# hZ15( Z20( Z24( Z30i b)$(1( b59),

where Z15 = 2/15, Z20 = 3/
2
10, Z24 = 5/

4
6, Z30 = /

5
6 + /

3
10 + /

2
15 = 0.

Proof.

nontrivial !$ basis elements relations
!12 0= Z 7̄6(2
!20 0= Z 7̄10(1
!24 0= Z 7̄12(1 ±7̄26(2
!30 0= Z2 7̄15(4
!32 0= Z 7̄16(1 ±7̄6(27̄10(1
!36 0= Z 7̄18(2 ±7̄36(2
!40 0= Z3 7̄20(1 ±7̄210(1
!42 0= Z2 7̄21(3 ±7̄6(27̄15(4
!44 0= Z 7̄22(1 ±7̄26(27̄10(1

!48 0= Z5 7̄24(1 ±7̄46(2
!50 0= Z2 7̄25(1 ±7̄10(17̄15(4
!52 0= Z3 7̄26(1 ±7̄6(27̄210(1
!54 0= Z2 7̄27(1 ±7̄26(27̄15(4
!56 0= Z 7̄28(1 ±7̄36(27̄10(1
!62 0= Z2 7̄31(2 ±7̄6(27̄10(17̄15(4
!64 0= Z3 7̄32(1 ±7̄26(27̄

2
10(1

!66 0= Z2 7̄33(3 ±7̄36(27̄15(4
!68 0= Z5 7̄34(1 ±7̄46(27̄10(1
!74 0= Z2 7̄37(2 ±7̄26(27̄10(17̄15(4
!76 0= Z3 7̄38(1 ±7̄36(27̄

2
10(1

!86 0= Z2 7̄43(1 ±7̄36(27̄
2
10(17̄15(4

!59 0= Z b59 = Q
#1(729(1 # 729(2 # 729(3 + 729(4

#729(5 + 729(6 # 729(7 + 729(8)
!71 0= Z Q#1(2735(1 # 3735(2 # 735(3 + 735(4 ±7̄6(2b59

+735(5 # 735(6 + 735(7)
!79 0= Z Q#1(2739(1 # 739(2 # 739(3 # 739(4 ±7̄10(1b59

+739(5 # 2739(6)
!83 0= Z Q#1(2 741(1 # 741(2 + 741(3 # 741(4 + 741(5) ±7̄6(2b59
!91 0= Z Q#1(745(1 # 745(2 # 745(3 + 745(4) ±7̄6(27̄10(1b59
!95 0= Z Q#1(747(1 # 747(2 + 747(3) ±7̄36(2b59
!103 0= Z Q#1(#751(1 + 751(2) ±7̄26(27̄10(1b59

. ¤

5.2 Cohomology ring of generalized Grassmannians "#'

Theorem 1. Let /1( /3( /4( /6 be the Schubert classes on d4#53 · .1 with
Weyl coordinates J[1]( J[3( 2( 1]( J[4( 3( 2( 1]( J[3( 2( 4( 3( 2( 1] respectively. Then
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!!(d4#53 · .1) = Z[/1( /3( /4( /6]# hO3( O6( O8( O12i,

where

O3 = 2/3 # /31;

O6 = 2/6 + /
2
3 # 3/21/4;

O8 = 3/
2
4 # /

2
1/6;

O12 = /
2
6 # /34.

Theorem 2. Let /1( /4 be the Schubert classes on d4#^3 · .1 with Weyl
coordinates J[4]( J[3( 2( 3( 4] respectively, Then

!!(d4#^3 · .1) = Z[/1( /4]# hO8( O12i,

where

O8 = 3/
2
4 # /81;

O12 = 26/
3
4 # 5/

12
1 .

Theorem 3. Let /1( /3( /4( /6 be the Schubert classes on E6#V6 · .1 with
Weyl coordinates J[2]( J[5( 4( 2]( J[6( 5( 4( 2]( J[1( 3( 6( 5( 4( 2] respectively. Then

!!(E6#V6 · .1) = Z[/1( /3( /4( /6]# hO6( O8( O9( O12i,

where

O6 = 2/6 + /
2
3 # 3/

2
1/4 + 2/

3
1/3 # /

6
1;

O8 = 3/
2
4 # 6/1/3/4 + /

2
1/6 + 5/

2
1/
2
3 # 2/

5
1/3;

O9 = 2/3/6 # /31/6;

O12 = /
3
4 # /

2
6.

Theorem 4. Let /1( /4 be the Schubert classes on E6#G5 · .1 with Weyl
coordinates J[6]( J[2( 4( 5( 6] respectively. Then

!!(E6#G5 · .1) = Z[/1( /4]# hO9( O12i,

where

O9 = 2/
9
1 + 3/1/

2
4 # 6/

5
1/4;

O12 = /
3
4 # 6/41/24 + /121 .

Theorem 5. Let /1( /5( /9 be the Schubert classes on E7#E6 ·.1 with Weyl
coordinates J[7]( J[2( 4( 5( 6( 7]( J[1( 5( 4( 2( 3( 4( 5( 6( 7] respectively. Then
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!!(E7#E6 · .1) = Z[/1( /5( /9]# hO10( O14( O18i,

where

O10 = /
2
5 # 2/1/9;

O14 = 2/5/9 # 9/41/25 + 6/91/5 # /141 ;

O18 = /
2
9 + 10/

3
1/
3
5 # 9/

8
1/
2
5 + 2/

13
1 /5.

Theorem 6. Let /1( /4( /6( /9 be the Schubert classes on E7#G6 · .1 with
Weyl coordinates J[1]( J[2( 4( 3( 1]( J[2( 6( 5( 4( 3( 1]( J[3( 4( 2( 7( 6( 5( 4( 3( 1] re-
spectively. Then

!!(E7#G6 · .1) = Z[/1( /4( /6( /9]# hO9( O12( O14( O18i,

where

O9 = 2/9 + 3/1/
2
4 + 4/

3
1/6 + 2/

5
1/4 # 2/

9
1;

O12 = 3/
2
6 # /34 # 3/41/24 # 2/61/6 + 2/81/4;

O14 = 3/
2
4/6 + 3/

2
1/
2
6 + 6/

2
1/
3
4 + 6/

4
1/4/6 + 2/

5
1/9 # /

14
1 ;

O18 = 5/
2
9 + 29/

3
6 # 24/61/26 + 45/21/4/26 + 2/91/9.

Theorem 7. Let /1( /6( /10( /15 be the Schubert classes on E8#E7 · .1 with
Weyl coordinates J[8], J[3( 4( 5( 6( 7( 8], J[1( 5( 4( 2( 3( 4( 5( 6( 7( 8], J[5( 4( 3( 1(
7( 6( 5( 4( 2( 3( 4( 5( 6( 7( 8] respectively. Then

!!(E8#E7 · .1) = Z[/1( /6( /10( /15]# hO15( O20( O24( O30i,

where

O15 = 2/15 # 16/51/10 # 10/31/26 + 10/91/6 # /151 ;

O20 = 3/
2
10+10/

2
1/
3
6+18/

4
1/6/10#2/

5
1/15#8/

8
1/
2
6+4/

10
1 /10#/

14
1 /6;

O24 = 5/
4
6 + 30/

2
1/
2
6/10 + 15/

4
1/
2
10 # 2/91/15 # 5/121 /26 + /141 /10;

O30 = /
2
15#8/

3
10+/

5
6#2/

3
1/
2
6/15+3/

4
1/6/

2
10#8/

5
1/10/15+6/

9
1/6/15

#9/101 /210#/121 /36#2/141 /6/10#3/151 /15+8/201 /10+/241 /6#/301 .
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