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THE PRECISE REPRESENTATIVE FOR THE GRADIENT OF THE
RIESZ POTENTIAL OF A FINITE MEASURE

JULIÀ CUFÍ, AUGUSTO C. PONCE, AND JOAN VERDERA

ABSTRACT. Given a finite nonnegative Borel measure m in Rd, we iden-
tify the Lebesgue set L(Vs) ⊂ Rd of the vector-valued function

Vs(x) =

ˆ

Rd

x− y

|x− y|s+1
dm(y),

for any order 0 < s < d. We prove that a ∈ L(Vs) if and only if the
integral above has a principal value at a and

lim
r→0

m(Br(a))

rs
= 0.

In that case, the precise representative of Vs at a coincides with the prin-
cipal value of the integral.

1. INTRODUCTION

Given 0 < s < d and a finite nonnegative Borel measure m in Rd, we
consider in Rd the vector-valued function

Vs(x) :=

ˆ

Rd

x− y
|x− y|s+1

dm(y) (1.1)

that is well-defined for every point x in the set

domVs :=

{
x ∈ Rd :

ˆ

Rd

dm(y)

|x− y|s <∞
}
.

The domain domVs is rather large as its complement Rd \ domVs is negli-
gible with respect to the Lebesgue measure. Indeed, as a consequence of
Fubini’s theorem one has

ˆ

Rd

(
ˆ

Rd

dm(y)

|x− y|s
)

e−|x|
2

dx <∞.

A finer analysis shows that the Hausdorff dimension of Rd \ domVs is ac-
tually not greater that s ; see Theorem 1 in Chapter 4 of [1].

Up to multiplicative constants, Vs is the gradient of the Riesz potential
of order s − 1 and, in particular, Vd−1 is the gradient of the Newtonian
potential

ˆ

Rd

dm(y)

|x− y|d−2 for x ∈ Rd
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generated by a distribution of mass described by m. Hence, for every func-
tion u ∈ L1

loc(Rd) such that

−∆u = m in the sense of distributions in Rd, (1.2)

by Weyl’s lemma on weakly harmonic functions it follows that

∇u = cVd−1 + Φ almost everywhere in Rd,

where Φ : Rd → Rd is the gradient of a harmonic function and c ∈ R is
a nonzero constant that depends on d. As a result, a reasonable pointwise
definition of ∇u for any solution of (1.2) can be obtained from a good un-
derstanding of Vd−1.

More generally, we are interested in the existence of the precise represen-
tative of Vs at a given point a ∈ Rd. We recall that the precise representative
in this case is a vector α ∈ Rd that satisfies

lim
r→0

 

Br(a)
|Vs − α| = 0, (1.3)

where the symbol
ffl

stands for the average integral with respect to the d-
dimensional Lebesgue measure and Br(a) for the ball of radius r centered
at a. When such an α exists, we say that a is a Lebesgue point of Vs and we
denote

V̂s(a) := α.

It follows from the fundamental property (1.3) that

V̂s(a) = lim
r→0

 

Br(a)
Vs.

As a consequence of the classical Lebesgue Differentiation Theorem, V̂s(a)

exists for almost every a ∈ Rd with respect to the Lebesgue measure and

V̂s = Vs almost everywhere in Rd.

When the function one is dealing with has better properties, like being
in some Sobolev space, the exceptional set E (that is, the complement of
the set L of Lebesgue points) is typically smaller than merely having zero
Lebesgue measure; see e.g. Section 4.8 in [4] and Chapter 8 in [8]. It is then
natural to expect that the same property holds for the exceptional set E(Vs)

of the potential Vs.
This note stems from the recent work [2] by the first and third authors

concerning capacitary differentiability of the Newtonian potential; see also
[13]. In analogy with [2], we show that existence of a principal value for the
integral, combined with a density property of m at a, allows one to decide
whether a is a Lebesgue point of Vs.

Before stating our result, we recall that the principal value of Vs at a is

p.v. Vs(a) := lim
ε→0

ˆ

Rd\Bε(a)

a− y
|a− y|s+1

dm(y)



THE PRECISE REPRESENTATIVE FOR THE GRADIENT OF THE RIESZ POTENTIAL 3

whenever this limit exists. We relate the question of existence of a principal
value for Vs with that of a precise representative in the following

Theorem 1.1. A point a ∈ Rd is a Lebesgue point of Vs if and only if the principal
value of Vs exists at a and

lim
r→0

m(Br(a))

rs
= 0. (1.4)

One then has

V̂s(a) = p.v. Vs(a).

We prove Theorem 1.1 in Sections 2 and 3. That every a ∈ domVs is a
Lebesgue point of Vs and V̂s(a) = Vs(a) can be seen independently from
Theorem 1.1 by observing that, for every y ∈ Rd and r > 0,

 

Br(a)

dx

|x− y|s ≤
Cd,s
|a− y|s

and then
 

Br(a)

∣∣∣∣
x− y
|x− y|s+1

− a− y
|a− y|s+1

∣∣∣∣ dx ≤
Cd,s + 1

|a− y|s for y 6= a.

An application of Fubini’s Theorem and the Dominated Convergence The-
orem now gives
 

Br(a)
|Vs − Vs(a)| ≤

ˆ

Rd

(
 

Br(a)

∣∣∣∣
x− y
|x− y|s+1

− a− y
|a− y|s+1

∣∣∣∣ dx
)

dm(y)→ 0 as r → 0.

As domVs is contained in the set of Lebesgue points of Vs, we get

dimH (E(Vs)) ≤ dimH (Rd \ domVs) ≤ s. (1.5)

To obtain a more precise quantification of the size of E(Vs), we observe
that, by Theorem 1.1, failure of having Lebesgue points may occur by either
that the principal value of Vs does not exist at a or

lim sup
r→0

m(Br(a))

rs
> 0.

The latter condition holds on a set of points a with at most σ-finite Haus-
dorff measureHs.

The question of existence of principal values is more subtle and has been
investigated by Mattila and the third author [6]. The answer involves a
capacity κs that is defined on every compact subset E ⊂ Rd as

κs(E) = supµ(Rd),

where the supremum is computed over all finite nonnegative Borel mea-
sures µ supported in E such that

(a) µ(A) = 0 for every Borel set A ⊂ Rd with σ-finiteHs measure,
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(b) the maximal Riesz transform R∗s is a bounded operator from L2(µ) into
itself with

‖R∗s(fµ)‖L2(µ) ≤ ‖f‖L2(µ) for every f ∈ (L1 ∩ L2)(µ),

where

R∗s(fµ)(x) := sup
ε>0

∣∣∣∣
ˆ

Rd\Bε(x)

x− y
|x− y|s+1

f(y) dµ(y)

∣∣∣∣ for every x ∈ Rd.

As a consequence of [6] and using a straightforward adaptation of the
argument in [2], we show that

Theorem 1.2. For every compact subset E ⊂ E(Vs), one has κs(E) = 0.

Other properties of κs for any 0 < s < d are presented in Section 4,
where we also prove Theorem 1.2 and explain why the latter implies (1.5).
A variant of κs was introduced by Prat in [9], where the author obtains
analogous estimates for the Hausdorff dimension of sets of zero capacity
via comparison between capacity and Hausdorff content.

A deep result by Ruiz de Villa and Tolsa [11] ensures that κd−1 is equiv-
alent to the C1-harmonic capacity. Using this interpretation, the fact that
κd−1(E) = 0 means that every C1 function in Rd that is harmonic in Rd \E
must be harmonic in the entire space Rd. In dimension d = 2, it follows
from work by Tolsa [12] that the C1-harmonic capacity is equivalent to the
classical continuous analytic capacity. We then deduce from Theorem 1.2
for s = 1 that

Corollary 1.3. For every finite complex Borel measure ν in C, the exceptional set
for Lebesgue points of the Cauchy integral of ν defined by

ˆ

C

dν(w)

z − w for almost every z ∈ C

has zero continuous analytic capacity.

The preceding corollary is sharp in the sense that there exists a compact
set K of zero continuous analytic capacity that is exactly the exceptional
set of the Cauchy integral of some finite measure. For instance, take as
K the corner quarters planar Cantor set, which has positive and finite one
dimensional Hausdorff measure m. Then, the Cauchy integral f of m is
continuous in the complement of K and each point of K is an exceptional
point of f because (1.4) is not satisfied. It would be interesting to know
whether each compact set with zero continuous analytic capacity can be
expressed as the exceptional set of the Cauchy integral of some finite Borel
measure.
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2. PROOF OF THE REVERSE IMPLICATION OF THEOREM 1.1

We first need a couple of estimates related to Vs.

Lemma 2.1. For every a ∈ Rd and every r > 0,
 

Br(a)

(
ˆ

B2r(a)

dm(y)

|z − y|s
)

dz ≤ C m(B2r(a))

rs
,

for some constant C > 0 depending on d.

Proof. By Fubini’s theorem,
 

Br(a)

(
ˆ

B2r(a)

dm(y)

|z − y|s
)

dz =

ˆ

B2r(a)

(
 

Br(a)

dz

|z − y|s
)

dm(y).

For every y ∈ Rd,
 

Br(a)

dz

|z − y|s ≤
 

Br(a)

dz

|z − a|s =
C

rs
,

which gives the conclusion. �

Lemma 2.2. For every a ∈ Rd and every r > 0,
 

Br(a)

(
ˆ

Rd\B2r(a)

∣∣∣∣
z − y
|z − y|s+1

− a− y
|a− y|s+1

∣∣∣∣ dm(y)

)
dz ≤ C ′r

ˆ ∞

2r

m(Bt(a))

ts+2
dt,

for some constant C ′ > 0 depending on d.

Proof. To simplify the notation, we may assume that a = 0. For y ∈ Rd \
B2r(0) and z ∈ Br(0), by the Mean Value Theorem there exists 0 ≤ θ ≤ 1

such that ∣∣∣∣
z − y
|z − y|s+1

+
y

|y|s+1

∣∣∣∣ ≤
C1|z|

|θz − y|s+1
≤ C2r

|y|s+1
.

We thus have
 

Br(0)

(
ˆ

Rd\B2r(0)

∣∣∣∣
z − y
|z − y|s+1

+
y

|y|s+1

∣∣∣∣ dm(y)

)
dz

≤ C2r

 

Br(0)

(
ˆ

Rd\B2r(0)

dm(y)

|y|s+1

)
dz = C2r

ˆ

Rd\B2r(0)

dm(y)

|y|s+1
.

Using Cavalieri’s principle, see e.g. Corollary 2.2.34 in [14], one gets
ˆ

Rd\B2r(0)

dm(y)

|y|s+1
= (s+ 1)

ˆ ∞

2r

m(Bt(0))

ts+2
dt

and the lemma follows. �

To handle the limit as r → 0 of the right-hand side in the estimate in
Lemma 2.2, we need an elementary fact from Real Analysis:

Lemma 2.3. Let h : [0,∞)→ R be a bounded continuous function. If h(0) = 0,
then, for every β > 0,

lim
r→0

rβ
ˆ ∞

r

h(t)

t1+β
dt = 0.
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Proof. Given ε > 0, take δ > 0 such that |h(t)| ≤ ε for every 0 < t ≤ δ. For
0 < r < δ, we then have

∣∣∣∣
ˆ ∞

r

h(t)

t1+β
dt

∣∣∣∣ ≤
∣∣∣∣
ˆ δ

r

∣∣∣∣+

∣∣∣∣
ˆ ∞

δ

∣∣∣∣ ≤
ε

β

( 1

rβ
+
‖h‖L∞
δβ

)
.

Therefore,

lim sup
r→0

rβ
∣∣∣∣
ˆ ∞

r

h(t)

t1+β
dt

∣∣∣∣ ≤
ε

β
.

Since this inequality holds for every ε > 0, the limit equals zero. �

Proof of Theorem 1.1. “⇐=”. We assume that the principal value p.v. Vs(a)

exists and the limit (1.4) holds. For almost every z ∈ Rd,
∣∣∣∣Vs(z)−

ˆ

Rd\B2r(a)

a− y
|a− y|s+1

dm(y)

∣∣∣∣

≤
∣∣∣∣
ˆ

Rd\B2r(a)

z − y
|z − y|s+1

dm(y)−
ˆ

Rd\B2r(a)

a− y
|a− y|s+1

dm(y)

∣∣∣∣

+

∣∣∣∣
ˆ

B2r(a)

z − y
|z − y|s+1

dm(y)

∣∣∣∣.

Hence,
 

Br(a)

∣∣∣∣Vs(z)−
ˆ

Rd\B2r(a)

a− y
|a− y|s+1

dm(y)

∣∣∣∣ dz

≤
 

Br(a)

(
ˆ

Rd\B2r(a)

∣∣∣∣
z − y
|z − y|s+1

dm(y)− a− y
|a− y|s+1

∣∣∣∣dm(y)

)
dz

+

 

Br(a)

(
ˆ

B2r(a)

dm(y)

|z − y|s
)

dz.

We then have by Lemmas 2.1 and 2.2,
 

Br(a)

∣∣∣∣Vs(z)−
ˆ

Rd\B2r(a)

a− y
|a− y|s+1

dm(y)

∣∣∣∣ dz

≤ C1

(
r

ˆ ∞

2r

m(Bt(a))

ts+2
dt+

m(B2r(a))

rs

)
. (2.1)

Denoting by α the principal value of Vs at a, we get
 

Br(a)
|Vs(z)− α|dz

≤ C1

(
r

ˆ ∞

2r

m(Bt(a))

ts+2
dt+

m(B2r(a))

rs

)
+

∣∣∣∣
ˆ

Rd\B2r(a)

a− y
|a− y|s+1

dm(y)−α
∣∣∣∣.

As r → 0, the last term converges to zero by definition of principal value.
The quantity in parentheses also converges to zero from the assumption
on the measure m, as we can apply Lemma 2.3 with β = 1 and h(t) =

m(Bt(a))/ts for t > 0. �
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3. PROOF OF THE DIRECT IMPLICATION OF THEOREM 1.1

We begin with the following estimate:

Proposition 3.1. Let 0 < s ≤ d− 1. For every α ∈ Rd and every r > 0,

m(Br(a))

rs
≤ C

 

B2r(a)
|Vs − α|,

for some constant C > 0 depending on d.

Proof. We may assume that a = 0. We take the inner product of Vs(x) with
x/|x| and integrate over the ballB2r(0) for any r > 0. By integrability of the
function (x, y) 7→ 1/|x− y|s with respect to the product measureHd⊗m in
B2r(0)× Rd we can interchange the order of integration:

ˆ

B2r(0)
Vs(x) · x|x| dx =

ˆ

Rd

(
ˆ

B2r(0)

x− y
|x− y|s+1

· x|x| dx
)

dm(y). (3.1)

By the integration formula in polar coordinates,
ˆ

B2r(0)

x− y
|x− y|s+1

· x|x| dx =

ˆ 2r

0

(
ˆ

∂Bρ(0)

x− y
|x− y|s+1

· x|x| dσ(x)

)
dρ, (3.2)

where σ denotes the surface measure on the sphere ∂Bρ(0).
We claim that

ˆ

∂Bρ(0)

x− y
|x− y|s+1

· x|x| dσ(x) ≥ ε ρd−s−1χBρ(0)(y), (3.3)

for some ε > 0 independent of ρ and y. To this end, note that
x− y
|x− y|s+1

= ∇g(x) where g(x) := − 1

(s− 1)

1

|x− y|s−1 .

When s < d− 1, it follows from the Divergence Theorem in Bρ(0) that
ˆ

∂Bρ(0)

x− y
|x− y|s+1

· x|x| dσ(x) =

ˆ

Bρ(0)
∆g = (d− s− 1)

ˆ

Bρ(0)

dx

|x− y|s+1
,

which implies (3.3). When s = d− 1, the function g is harmonic in Rd \ {y}.
An application of the Divergence Theorem on Bρ(0) \ Bη(y) with η → 0

yields
ˆ

∂Bρ(0)

x− y
|x− y|s+1

· x|x| dσ(x) =

{
Hd−1(∂B1(0)) if y ∈ Bρ(0),

0 if y 6∈ Bρ(0),

which also gives (3.3) and completes the proof of the claim.
Combining (3.2) and (3.3), we get

ˆ

B2r(0)

x− y
|x− y|s+1

· x|x| dx ≥ c r
d−sχBr(0)(y),

which by (3.1) then gives
ˆ

B2r(0)
Vs(x) · x|x| dx ≥ c r

d−sm(Br(0)).
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Since x/|x| has zero average we can subtract any constant vector α in the
integrand in the left-hand side without changing the value of the integral.
The conclusion readily follows since x/|x| is a unit vector. �

When s > d− 1, one has

ˆ

∂Bρ(0)

x− y
|x− y|s+1

· x|x| dσ(x) =





(s+ 1− d)

ˆ

Rd\Bρ(0)

dx

|x− y|s+1
if y 6∈ Bρ(0),

(d− s− 1)

ˆ

Bρ(0)

dx

|x− y|s+1
if y ∈ Bρ(0).

In particular, these values have opposite signs, in contrast with the pre-
vious proof. We prove in that case the following counterpart of Proposi-
tion 3.1 that is enough for our purposes:

Proposition 3.2. Let d− 1 < s < d. For every α ∈ Rd and every r > 0,

m(Br(a))

rs
≤ C ′

(
 

Br(a)
|Vs − α|+ rd−s

ˆ

Rd\Br(a)

|Vs(x)− α|
|x− a|2d−s dx

)
,

for some constant C ′ > 0 depending on s and d.

As the vector-field (x−a)/|x−a| does not seem to be a convenient choice
to test Vs in this range of s, we rely on a different one that is provided by
our next

Lemma 3.3. Let d− 1 < s < d. For every ϕ ∈ C∞c (Rd), there exists a summable
smooth vector-field Ψ : Rd → Rd such that

´

Rd Ψ = 0,

ϕ(x) =

ˆ

Rd

x− y
|x− y|s+1

·Ψ(y) dy for every x ∈ Rd,

and
|Ψ(x)| ≤ C ′′

(1 + |x|)2d−s for every x ∈ Rd,

for some constant C ′′ > 0 depending on s, d and ϕ.

In terms of the Fourier transform, the vector-field Ψ satisfies

ϕ̂ =
ẑ

|z|s+1
· Ψ̂ = c

ξ

|ξ|d−s+1
· Ψ̂

for a constant c ∈ C \ {0}. This identity is satisfied for example with

Ψ̂ =
1

c
|ξ|d−s−1ξ ϕ̂, (3.4)

which indicates a convenient choice of Ψ.

Proof of Lemma 3.3. Take Ψ : Rd → Rd defined for x ∈ Rd by

Ψ(x) = c′
ˆ

Rd

∇ϕ(y)

|x− y|2d−s−1 dy,

with c′ ∈ R. Since s > d − 1, the integral above is well-defined and one
shows that Ψ satisfies identity (3.4) for a suitable choice of c′. That Ψ sat-
isfies the desired relation with ϕ can also be checked without the Fourier
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transform, by an explicit computation of the convolution between the ho-
mogeneous functions z/|z|` and 1/|z|j ; see Lemma 15.10 and Exercise 15.4
in [8] for dimensions d ≥ 2 and d = 1, respectively.

We observe that Ψ is bounded and summable. Moreover, smoothness of
Ψ follows from a standard change of variable,

Ψ(x) = c′
ˆ

Rd

∇ϕ(x− z)
|z|2d−s−1 dz. (3.5)

Since
´

Rd ∇ϕ = 0, we also get by integration on both sides of (3.5) and
Fubini’s theorem that

ˆ

Rd
Ψ = 0.

We now take R > 0 such that suppϕ ⊂ BR(0). To conclude the proof, it
suffices to show that

|Ψ(x)| ≤ C1

|x|2d−s for every |x| ≥ 2R. (3.6)

To this end, we use again that
´

Rd ∇ϕ = 0 to write

Ψ(x) = c′
ˆ

Rd
∇ϕ(y)

(
1

|x− y|2d−s−1 −
1

|x|2d−s−1
)

dy.

For y ∈ BR(0) and x ∈ Rd \ B2R(0), an application of the Mean Value
Theorem gives 0 ≤ θ ≤ 1 with

∣∣∣∣
1

|x− y|2d−s−1 −
1

|x|2d−s−1
∣∣∣∣ ≤

C2|y|
|x− θy|2d−s ≤

C3

|x|2d−s ,

where C3 > 0 depends on s, d and R. Hence, when |x| ≥ 2R we get

|Ψ(x)| ≤
ˆ

BR(0)
|∇ϕ(y)|

∣∣∣∣
1

|x− y|2d−s−1 −
1

|x|2d−s−1
∣∣∣∣dy ≤

(
ˆ

Rd
|∇ϕ|

)
C3

|x|2d−s ,

which implies (3.6). The estimate of |Ψ(x)| in Rd then follows from the
boundedness of Ψ. �

Proof of Proposition 3.2. We may assume that a = 0. Fix a nonnegative func-
tion ϕ ∈ C∞c (Rd) such that ϕ ≥ 1 in B1(0) and let Ψ : Rd → Rd be the
vector-field given by Lemma 3.3. For r > 0, one has by scaling that

ϕ
(x
r

)
=

ˆ

Rd

x− y
|x− y|s+1

·Ψr(y) dy for every x ∈ Rd,

where Ψr(x) := 1
rd−sΨ(xr ). Since ϕ ≥ 1 on B1(0) and m is a nonnegative

measure, we have

m(Br(0)) ≤
ˆ

Rd
ϕ
(x
r

)
dm(x) =

ˆ

Rd

(
ˆ

Rd

x− y
|x− y|s+1

·Ψr(y) dy

)
dm(x).

Then, by Fubini’s theorem,

m(Br(0)) ≤ −
ˆ

Rd
Vs ·Ψr .
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Since
´

Rd Ψr = 0, for every α ∈ Rd we get

m(Br(0)) ≤ −
ˆ

Rd
(Vs − α) ·Ψr ≤

ˆ

Rd
|Vs − α||Ψr|. (3.7)

The pointwise estimate satisfied by Ψ gives

|Ψr(x)| = 1

rd−s

∣∣∣Ψ
(x
r

)∣∣∣ ≤ C1

( 1

rd−s
χBr(0)(x) +

rd

|x|2d−sχRd\Br(0)(x)
)
. (3.8)

The conclusion follows by inserting (3.8) in (3.7). �

To handle the additional term that appears in Proposition 3.2, compared
to Proposition 3.1, we need the following

Lemma 3.4. If f ∈ L1(Rd) is such that

lim
r→0

 

Br(a)
f = 0,

then, for every β > 0,

lim
r→0

rβ
ˆ

Rd\Br(a)

f(x)

|x− a|d+β dx = 0.

Proof. We first prove that, for every r > 0,
ˆ

Rd\Br(a)

f(x)

|x− a|d+β dx = C1

ˆ ∞

r

1

ρ1+β

(
 

Bρ(a)
f

)
dρ− C2

rβ

 

Br(a)
f, (3.9)

for some constants C1, C2 > 0. By the integration formula in polar coordi-
nates,

ˆ

Rd\Br(a)

f(x)

|x− a|d+β dx =

ˆ ∞

r

(
ˆ

∂Bρ(a)

f(x)

|x− a|d+β dσ(x)

)
dρ

=

ˆ ∞

r

1

ρd+β

(
d

dρ

ˆ

Bρ(a)
f

)
dρ.

One then gets (3.9) by integration by parts. To conclude, it suffices to apply
Lemma 2.3 with h(t) =

ffl

Bt(a)
f for t > 0. �

Proof of Theorem 1.1. “=⇒”. Let a be a Lebesgue point of Vs. We first show
that the limit (1.4) holds. To this end, denote by α the precise representative
of Vs at a. When 0 < s ≤ d− 1, we deduce from Proposition 3.1 that

lim sup
r→0

m(Br(a))

rs
≤ C lim

r→0

 

B2r(a)
|Vs − α| = 0,

which implies (1.4). When d− 1 < s < d , we apply Proposition 3.2. In this
case, Lemma 3.4 with f = |Vs − α| and β = d − s handles the additional
term in the estimate as r → 0 and we get (1.4) as before.

We next recall that

α = lim
r→0

 

Br(a)
Vs.
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Moreover, by estimate (2.1) in the proof of Theorem 1.1, we have
∣∣∣∣
 

Br(a)
Vs −

ˆ

Rd\B2r(a)

a− y
|a− y|s+1

dm(y)

∣∣∣∣

≤ C1

(
r

ˆ ∞

2r

m(Bt(a))

ts+2
dt+

m(B2r(a))

rs

)
.

As r → 0, using (1.4) we deduce from Lemma 2.3 that the right-hand side
converges to zero and then

α = lim
r→0

 

Br(a)
Vs = lim

r→0

ˆ

Rd\B2r(a)

a− y
|a− y|s+1

dm(y).

Thus, by definition, α is the principal value of Vs at a. �

4. THE CAPACITY κs AND PROOF OF THEOREM 1.2

We begin by showing that κs is subadditive:

Proposition 4.1. For every compact subsets E1, E2 ⊂ Rd,

κs(E1 ∪ E2) ≤ κs(E1) + κs(E2).

The capacity κs is equivalent to another one that was known to be semi-
additive (that is, the estimate above is verified with a constant C ≥ 1); see
p. 3643 in [11] and Section 2 in [10].

Before proving the proposition, we start with the following observation:
If µ is a Borel measure in Rd that is admissible in the definition of κs(E) and
if F ⊂ E is a compact subset, then, for any Borel subset A ⊂ F , the Borel
measure µbA defined by

µbA(B) = µ(A ∩B)

is admissible for κs(F ). Indeed, it suffices to verify the L2 boundedness
of the maximal Riesz transform. Since R∗s is bounded in L2(µ), we can
estimate

ˆ

Rd
|R∗s(fµbA)|2 dµbA ≤

ˆ

Rd
|R∗s(fχAµ)|2 dµ

≤
ˆ

Rd
|fχA|2 dµ =

ˆ

Rd
|f |2 dµbA,

which justifies our assertion.

Proof of Proposition 4.1. Let µ be a nonnegative Borel measure supported in
E1 ∪ E2 that satisfies (a) and (b) in the definition of κs for this set. By the
computation above, the measure µbE1 is admissible for κs(E1) and µbE2\E1

is admissible for κs(E2). Thus,

µ(Rd) = µ(E1 ∪ E2) = µ(E1) + µ(E2 \ E1) ≤ κs(E1) + κs(E2)

and it suffices to take the supremum with respect to µ. �
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It follows readily from (a) in the definition of κs that κs(E) = 0 for every
compact set E withHs(E) <∞. Dimension s is critical for κs :

Proposition 4.2. If E ⊂ Rd is compact and κs(E) = 0, then dimH (E) ≤ s.

Proof. It suffices to prove that if E ⊂ Rd is a compact set withHt(E) > 0 for
some t > s, then κs(E) > 0. By Frostman’s lemma, there exists a nontrivial
finite nonnegative Borel measure µ supported by E such that

µ(Br(x)) ≤ rt for every x ∈ Rd and r > 0. (4.1)

Hence, µ ≤ C1Ht∞ , whereHt∞ is the Hausdorff content of dimension t. For
every set A ⊂ Rd with σ-finite Hs measure, we have Ht∞(A) = 0. Then,
µ(A) = 0 and the first requirement in the definition of κs(E) is satisfied.

Next, for every f ∈ (L1 ∩ L2)(µ) and every x ∈ Rd,

|R∗s(fµ)(x)| ≤
ˆ

Rd

|f(y)|
|x− y|s dµ(y).

Then, by Young’s inequality,

‖R∗s(fµ)‖L2(µ) ≤
(
ˆ

Rd

dµ(z)

|z|s
)
‖f‖L2(µ).

By Cavalieri’s principle,
ˆ

Rd

dµ(z)

|z|s = s

ˆ ∞

0

µ(Br(0))

rs+1
dr.

Since µ is finite and satisfies (4.1) with exponent t > s,
ˆ ∞

0

µ(Br(0))

rs+1
dr ≤

ˆ 1

0

rt

rs+1
dr +

ˆ ∞

1

µ(Rd)
rs+1

dr <∞.

Therefore,
‖R∗s(fµ)‖L2(µ) ≤ C2‖f‖L2(µ),

which implies that µ/C2 is a nontrivial admissible measure in the definition
of κs(E). In particular, κs(E) > 0. �

The proof of Theorem 1.2 relies on Theorem 1.6 of [6] concerning the
existence of principal values for the Riesz transform. We recall that from
[6] one knows that, for every finite nonnegative Borel measure µ in Rd such
that

lim
r→0

µ(Br(x))

rs
= 0 for µ-almost every x ∈ Rd (4.2)

and
‖R∗s(fµ)‖L2(µ) ≤ C‖f‖L2(µ) for every f ∈ (L1 ∩ L2)(µ), (4.3)

the principal value of

x 7−→
ˆ

Rd

x− y
|x− y|s+1

dµ(y) (4.4)

exists µ-almost everywhere.
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We observe that in Theorem 1.6 of [6] one also assumes

µ(Br(x)) ≤ C ′rs for every x ∈ Rd and r > 0,

but such a property is a consequence of the uniform boundedness of the
Riesz transform given by (4.3) and the fact that, by (4.2), the measure µ
cannot charge points; see Proposition 1.4 in Part III of [3].

We also need a standard property from Measure Theory:

Proposition 4.3. If µ is a finite nonnegative Borel measure in Rd such that
µ(A) = 0 for every Borel set A ⊂ Rd with σ-finiteHs measure, then (4.2) holds.

Proof. Since µ does not charge sets with finite Hs measure, by Proposi-
tion 3.2 in [7] for every ε > 0 one finds a compact set K ⊂ Rd with
µ(Rd \K) ≤ ε such that, for every c > 0, there exists δ > 0 with

µbK(Br(x)) ≤ crs for every x ∈ Rd and 0 < r ≤ δ.

Thus,

lim
r→0

µbK(Br(x))

rs
= 0 for every x ∈ Rd. (4.5)

On the other hand, by the Besicovitch Differentiation Theorem,

lim
r→0

µbK(Br(x))

µ(Br(x))
= 1 for µ-almost every x ∈ K. (4.6)

Combining (4.5) and (4.6), one gets the limit in (4.2) for µ-almost every x ∈
K. Since µ(Rd \K) ≤ ε and ε > 0 is arbitrary, the conclusion follows. �

Proof of Theorem 1.2. Let µ be a finite nonnegative Borel measure that is ad-
missible for κs(E), where E is any compact subset of E(Vs). By Theo-
rem 1.1, we can write this set as E = E1 ∪ E2, where

E1 :=

{
x ∈ E : lim sup

r→0

µ(Br(x))

rs
> 0

}

and
E2 :=

{
x ∈ E : p.v. Vs(x) does not exist

}
.

On one hand, since E1 is σ-finite for Hs and µ does not charge those sets,
µ(E1) = 0. On the other hand, from Proposition 4.3 above and Theorem 1.6
of [6] we know that the principal value of Vs exists µ-almost everywhere in
Rd. Hence, µ(E2) = 0. We thus have

µ(Rd) = µ(E) ≤ µ(E1) + µ(E2) = 0,

for every measure µ that is admissible for κs(E). Therefore, κs(E) = 0. �

As a final observation, (1.5) can also be deduced as a consequence of The-
orem 1.2. Indeed, if we had dim E(Vs) > s, then for any s < t < dim E(Vs)

one could find a compact subset F ⊂ E(Vs) such that Ht(F ) > 0; see The-
orem 8.13 in [5]. Such a property would then contradict Proposition 4.2
above.
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