COVERING DIMENSION OF CUNTZ SEMIGROUPS

HANNES THIEL AND EDUARD VILALTA

ABSTRACT. We introduce a notion of covering dimension for Cuntz semigroups
of C*-algebras. This dimension is always bounded by the nuclear dimension of
the C*-algebra, and for subhomogeneous C*-algebras both dimensions agree.

Cuntz semigroups of Z-stable C*-algebras have dimension at most one.
Further, the Cuntz semigroup of a simple, Z-stable C*-algebra is zero-dimen-
sional if and only if the C*-algebra has real rank zero or is stably projectionless.

1. INTRODUCTION

The Cuntz semigroup of a C*-algebra is a powerful invariant in the structure
and classification theory of C*-algebras. We define a notion of covering dimension
for Cuntz semigroups, thus introducing a second-level invariant for C*-algebras;
see Definition 3.1. More generally, we define covering dimension for abstract Cuntz
semigroups, usually called Cu-semigroups, as introduced in [CEIO8] and extensively
studied in [APT18, APT19, APT20, APRT18, APRT19].

Our definition really captures a notion of covering dimension: for every compact,
metrizable space X, the Cu-semigroup Lsc(X, N) of lower-semicontinuous functions
X -+ N=1{0,1,2,...,00} has dimension agreeing with the covering dimension of X;
see Example 3.4. More interestingly, we show that a similar result holds for Cuntz
semigroups of commutative C*-algebras:

Proposition A (4.3). Let X be a compact, Hausdorff space. Then
dim(Cu(C(X))) = dim(X).

We prove the expected permanence properties: The covering dimension does not
increase when passing to ideals or quotients of a Cu-semigroup (Proposition 3.5); the
covering dimension of a direct sum of Cu-semigroups is the maximum of the covering
dimensions of the summands (Proposition 3.5); and if S = lim, Sy is an inductive
limit of Cu-semigroups, then dim(li_r)nA Sy) < liminfy dim(Sy) (Proposition 3.9).

In Section 4, we study the connection between the dimension of the Cuntz semi-
group of a C*-algebra and the nuclear dimension [WZ10] of the C*-algebra.

Theorem B (4.1, 4.10). Every C*-algebra A satisfies dim(Cu(A)) < dimpyue(A).
If A is subhomogeneous, then dim(Cu(A)) = dimpyc(A).

We note that dim(Cu(A)) can be strictly smaller than dimy,.(A4). For example,
the irrational rotation algebra Ay satisfies dim(Cu(Ay)) = 0 while dimpyc(Ag) = 1;
see Example 4.11.
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The dimension of the Cuntz semigroup of a C*-algebra A can also be computed
in many situations of interest beyond the subhomogeneous case:
(1) If A has real rank zero, then dim(Cu(A)) = 0; see Proposition 5.4.
(2) If A is unital and of stable rank one, then dim(Cu(A)) = 0 if and only if A
has real rank zero; see Corollary 5.8.
(3) If A is W-stable!, then dim(Cu(A)) = 0. If A is Z-stable?, then we have
dim(Cu(A)) < 1; see Proposition 3.22.
(4) If A is purely infinite (not necessarily simple), then dim(Cu(A)) = 0; see
Proposition 3.21.
Our results allow us to compute the dimension of the Cuntz semigroup of many
simple C*-algebras. In particular, by Corollary 5.9, if A is a separable, simple,
Z-stable C*-algebra, then

dim(Cu(A)) = 0, ifA ha's real rank zero or if A is stably projectionless
1, otherwise.
This should be compared to the computation of the nuclear dimension of a
separable, simple C*-algebra A as accomplished in [CET*19, CE19]:

0, if A is an AF-algebra
dimp,ue(A4) = ¢ 1, if A is nuclear, Z-stable, but not an AF-algebra

oo, of A is nuclear and not Z-stable, or non-nuclear

It will be interesting to tackle the following problem:

Problem C. Compute the dimension of the Cuntz semigroups of simple C*-alge-
bras. In particular, what dimensions can occur (beyond zero and one)?

In the last two sections, we thoroughly investigate the class of countably based,
simple, weakly cancellative Cu-semigroups S satisfying (O5) and (O6) (which in-
cludes the Cuntz semigroups of separable, simple C*-algebras of stable rank one).
We show that S is zero-dimensional if and only if S is algebraic (that is, the compact
elements are sup-dense) or soft (that is, S contains no nonzero compact elements);
see Lemma 7.1.

To describe the structure of S in the second case, we introduce the class of ele-
ments with thin boundary (see Definition 6.3), which turn out to play a similar role
to that of the compact elements in the algebraic case. We show that an element z
has thin boundary if and only if it is complementable in the sense that for every y
satisfying = < y there exists z such that x 4+ z = y; see Theorem 6.12. Further, the
elements with thin boundary form a cancellative monoid; see Theorem 6.13.

Theorem D (7.8). Let S be a countably based, simple, soft, weakly cancellative
Cu-semigroup satisfying (05) and (O6). Then S is zero-dimensional if and only if
the elements with thin boundary are sup-dense.

We finish Section 7 by briefly studying the relation between zero-dimensionality,
almost divisibility and the Riesz interpolation property; see Proposition 7.13.

2. PRELIMINARIES

Let a,b be two positive elements in a C*-algebra A. Recall that a is said to be
Cuntz subequivalent to b, in symbols a 3 b, if there exists a sequence (1), in A
such that a = lim, 7,br}. One writes a ~ b if ¢ X b and b 3 a, and denotes the
class of a € A by [a].

1A is W-stable if A= A® W, for the Jacelon-Razac algebra W
24 is Z-stable if A¥ A® Z, for the Jiang-Su algebra Z
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The Cuntz semigroup of A, denoted by Cu(A), is defined as the quotient of
(A ® K)4+ by the equivalence relation ~. Endowed with the addition induced by
[a]+[b] = [(&9)] and the order induced by =, the Cuntz semigroup Cu(A) becomes
a positively ordered monoid.

2.1. Given a pair of elements z,y in a partially ordered set, we say that x is way-
below y, in symbols x < y, if for any increasing sequence (y,), for which the
supremum exists and is greater than y one can find n such that = < y,,.

It was shown in [CEIO8] that the Cuntz semigroup of any C*-algebra satisfies
the following properties:

(O1) Every increasing sequence has a supremum.

(O2) Every element can be written as the supremum of an <-increasing sequence.

(03) Given '’ < z and ¥y < y, we have 2’ +y' < = +y.

(0O4) Given increasing sequences (), and (Y, )n, we have sup,, ,, + sup,, yn =

Supn,(xn + y'n)'

In a more abstract setting, any positively ordered monoid satisfying (O1)-(04)
is called a Cu-semigroup.

A map between two Cu-semigroups is called a generalized Cu-morphism if it is
a positively ordered monoid homomorphism that preserves suprema of increasing
sequences. We say that a generalized Cu-morphism is a Cu-morphism if it also
preserves the way-below relation. Every *-homomorphism A — B between C*-al-
gebras induces a Cu-morphism Cu(A) — Cu(B); see [CEI08, Theorem 1].

We denote by Cu the category whose objects are Cu-semigroups and whose
morphisms are Cu-morphisms.

The reader is referred to [CEIO8] and [APT18] for a further detailed exposition.

2.2. In addition to (01)-(04), it was proved in [APT18, Proposition 4.6] and
[Rob13] that the Cuntz semigroup of a C*-algebra always satisfies the following
additional properties:

(05) Givenz+y < 2,2’ < z and iy’ < y, there exists ¢ such that 2’'4+¢ < z < x+c¢
and 3 < c.
(06) Given 2/ <« & < y+z there exist v < z,y and w < x, z such that 2’ < v4w.

Axiom (O5) is often used with y = 0. In this case, it states that, given 2/ < z <
z, there exists ¢ such that 2’ +c< z <z +ec.

Recall that a Cu-semigroup is said to be weakly cancellative if x < y whenever
T+ z € y + z for some element z. Stable rank one C*-algebras have weakly
cancellative Cuntz semigroups by [RW10, Theorem 4.3].

2.3. A subset D C S in a Cu-semigroup S is said to be sup-dense if whenever
',z € S satisfy ' < z, there exists y € D with 2/ < y < z. Equivalently, every
element in S is the supremum of an increasing sequence of elements in D.

We say that a Cu-semigroup is countably based if it contains a countable sup-
dense subset. Cuntz semigroups of separable C*-algebras are countably based (see,
for example, [APS11]).

3. DIMENSION OF CUNTZ SEMIGROUPS

In this section we introduce a notion of covering dimension for Cu-semigroups
and study some of its main permanence properties while providing a variety of
examples; see Proposition 3.5, Proposition 3.9 and Proposition 3.15.

In Proposition 3.17 we investigate the relation between the dimension of a simple
Cu-semigroup and its soft part, while in Proposition 3.20 we study how the dimen-
sion behaves in the presence of certain R-multiplications. This result is then applied
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to the Cuntz semigroups of purely infinite, WW-stable and Z-stable C*-algebras; see
Proposition 3.21 and Proposition 3.22.

Definition 3.1. Let S be a Cu-semigroup. Given n € N, we write dim(S) < n if,
whenever 2’ < © < y1+...+y, in S, then there exist z;, € S for j =1,...,r and
k =0,...,n such that:

(i) zjx < y; for each j and k;

(i) o' <32, 4 2k
(i) D27 zjk < a for each k =0,...,n.

We set dim(.S) = oo if there exists no n € N with dim(S) < n. Otherwise, we let

dim(.S) be the smallest n € N such that dim(S) < n. We call dim(S) the (covering)
dimension of S.

Remark 3.2. Recall that the (covering) dimension dim(X) of a topological space
X is defined as the smallest n € N such that every finite open cover of X admits
a finite open refinement V such that at most n 4+ 1 distinct elements in V have
nonempty intersection; see for example [Pea75, Definition 3.1.1, p.111].

By [KWO04, Proposition 1.5], a normal space X satisfies dim(X) < n if and only
if every finite open cover of X admits a finite open refinement V that is (n + 1)-
colorable, that is, there is a decomposition V = Vy Ll ... UV, such that the sets in
V; are pairwise disjoint for j = 0,...,n. (The sets in V; have color j, and sets of
the same color are disjoint.)

Definition 3.1 is modeled after the above characterization of covering dimension
in terms of colorable refinements. We interpret the expression ‘x < y1 +...+y; as
saying that x is ‘covered’ by {y1,...,yr}. Then, condition (i) from Definition 3.1
means that {z; 1} is a ‘refinement’ of {yi,...,y,}; condition (ii) means that {z; s}
is a cover of &’ (which is an approximation of z); and condition (iii) means that
{zj} is (n + 1)-colorable.

In Definition 3.1, some of the <-relations may be changed for <.

Lemma 3.3. Let S be a Cu-semigroup and n € N. Then we have dim(S) < n
if and only if, whenever ' € © < y1 + ...+ y, in S, there exist z;, € S for
j=1...,7mand k=0,...,n such that:

(1) zjr <y; for each j and k;

(2) & <3055 zjks

(3) 35—12jk S for each k= 0,...,n.

Proof. The forward implication is clear. To show the converse, let 2/ < = <
y1+...+y, in S. Choose ¢, s,y1,...,y. €S such that

< <s<r<Ly ... +y., <y, ..., and y. <K Y.
Applying the assumption, we obtain elements z;; for j = 1,...,r and k =
0,...,n satisfying properties (1)-(3) for s’ < s < yj + ...+ y,.. Then the same

elements satisfy (i)-(iii) in Definition 3.1 for 2’ < * < y1 + ... + y, thus verifying
dim(S) < n. a

Example 3.4. Let X be a compact, metrizable space. We use Lsc(X, N) to denote
the set of functions f: X — N that are lower-semicontinuous, that is, for each n € N
the set f~1({n,n +1,...,00}) C X is open. We equip Lsc(X,N) with pointwise
addition and order. Then Lsc(X,N) is Cu-semigroup. We have

dim(Lsc(X, N)) = dim(X).

We will omit the elaborate verification of the inequality ‘<’ since it follows from
the computation of dim(C(X)); see Corollary 4.4.
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Let us prove the inequality >’. Set n := dim(Lsc(X,N)), which we may assume
to be finite. To verify that dim(X) < n, let & = {U,...,U,} be a finite open cover
of X. We need to find a (n + 1)-colourable, finite, open refinement of U.

We use xy to denote the characteristic function of a subset U C X. Then

Xx < xx <xv, +---+xu,-

Applying that dim(Lsc(X,N)) < n, we obtain elements z;; € Lsc(X,N) for

j=1,....,7rand k =0,...,n such that
(i) zjx < xu, for every j, k;
(i) xx < 22 24k3

(iii) D7, 2k < xx for every k.

For each j and k, condition (i) implies that z; = xv;, for some open subset
V& C U;. Condition (ii) implies that X is covered by the sets Vj ;. Thus, the family
V := {V, 1} is a finite, open refinement of #. For each k, condition (iii) implies
that the sets Vi j,...,V, are pairwise disjoint. Thus, V is (n + 1)-colourable, as
desired.

Recall that an ideal I of a Cu-semigroup S is a downward-hereditary submonoid
closed under suprema of increasing sequences; see [APT18, Section 5].

Given z,y € S, we write x < y if there exists z € I such that x < y+ 2. We set
x~yyifx <ryandy <;xz. The quotient S/ ~; endowed with the induced sum
and order <; is denoted by S/I.

As shown in [APT18, Lemma 5.1.2], S/I is a Cu-semigroup and the quotient
map S — S/I is a Cu-morphism.

Proposition 3.5. Let S be a Cu-semigroup, and let I C S be an ideal. Then:
dim(f) < dim(S), and dim(S/I) < dim(S).

Proof. Set n := dim(S), which we may assume to be finite, since otherwise there
is nothing to prove. It is straightforward to show that dim(I) < n using that I
is downward-hereditary. Given z € S, we use [z] to denote its equivalence class
in S/I.

To verify dim(S/I) < n, let [u] < [z] < [y1] + ... + [y-] in S/I. Then there
exists yr4+1 € I such that z < y; + ... + ¥y + yr41 in S. Using that the quotient
map S — S/I preserves suprema of increasing sequences, we can choose z”/, 2’ € S
such that

¥ <2 <z, and [u] <[2"].
Applying the definition of dim(S) < n to z” < 2’ K y1 +...+yr +Yr+1, We obtain
elements z;, € Sfor j=1,...,7+1and kK =0,...,n such that z; ; < y; for every
Js k, such that 2" <37, 2, and such that 3, z;x < 2’ for every k.

Since y,41 € I, we have z,41 5 € I and thus [z,41,%] =0in S/I for k=0,...,n.
Using also that the quotient map S — S/I is <-preserving, we see that the elements
[zjk] for j=1,...,r and k =0,...,n have the desired properties. O

Problem 3.6. Let S be a Cu-semigroup, and let I C S be an ideal. Can we
bound dim(S) in terms of dim(/) and dim(S/I)? In particular, do we always have
dim(S) < dim(I) + dim(S/I) + 17

Given Cu-semigroups S and T, we use S @ T to denote the Cartesian product
S x T equipped with elementwise addition and order. It is straightforward to verify
that S @ T is a Cu-semigroup and that S @ T is both the product and coproduct
of S and T in the category Cu; see also [APT19, Proposition 3.10]. We omit the
straightforward proof of the next result.
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Proposition 3.7. Let S and T be Cu-semigroups. Then
dim(S @ T') = max{dim(S), dim(7")}.

3.8 (Inductive limits). By [APT18, Corollary 3.1.11], the category Cu has inductive
limits. (The sequential case was previously shown in [CEIO8, Theorem 2].)

To recall the construction, let ((Sx)aea,(@u,r)r<uin A) be a directed system
in Cu, that is, A is a directed set, each Sy is a Cu-semigroup, and for A < p in A
we have a connecting Cu-morphism ¢, x: Sy — S, such that ¢y » = idg, for each
A€Aand ¢, 00,0 =@ forall A < p <wvin A

It is shown in [APT19, Theorem 2.9] that Cu is a full, reflective subcategory of a
more algebraic category W defined in [APT19, Definition 2.5]. The inductive limit
in Cu can therefore be constructed by applying the reflection functor W — Cu to
the inductive limit in W.

Consider the equivalence relation ~ on the disjoint union | |, Sx given by ) ~
(for zy € Sy and z, € S),) if there exists v > X, p such that ¢, x(z)) = @ u(z,).
The set of equivalence classes is the set-theoretic inductive limit, which we denote
by Saig. We write [x,] for the equivalence class of z) € Sy.

We define an addition + and a binary relation < on S, as follows: Given
xzx € Sy and x, € Sy, set

(2l + [24] = [ova(22) + Qv ()]
for any v > A, p. Further, set [zy] < [z,] if there exists v > A,y such that
Vua(®r) € @y p(zy) in Sy, This gives Sy the structure of a W-semigroup, which
together with the natural maps Sx — Saig, ©x — [%4], is the inductive limit in W.
The reflection of Sy in Cu is a Cu-semigroup S together with a (universal) W-
morphism «a: Sy — S. Using [APT18, Theorem 3.1.8], S and « are characterized
by the following conditions:
(R1) ais an embedding in the sense that [z)] < [z,] if (and only if) a([z,]) <
a([z,]), for any zx € S\ and x, € Su;
(R2) « has dense image in the sense that for all 2/, z € S satisfying ' < = there
exists z) € Sy such that 2’ < a([z,]) < z.
It follows that a Cu-semigroup S together with Cu-morphisms ¢y: Sy — S for
A € A is the inductive limit in Cu of the system ((Sx)xea; (@p.a)a<p in a) if and
only if the following conditions are satisfied:
(LO) we have ¢, 0@, x =@ for all A < pin A;
(L1) ifzy € Sy and z,, € S, satisfy px(z1) < ¢u(z,), then there exists v > X, p1
such that ¢, (z2) < @uu(Ty);
(L2) for all o',z € S satisfying 2’ < x there exists zy € Sy such that 2/ <
or(zy) < .

Proposition 3.9. Let S = hﬂAeA Sy be an inductive limit of Cu-semigroups. Then
dim(S) < liminfy dim(S}).

Proof. Let ¢y: Sy — S be the Cu-morphisms into the inductive limit. We use
that S and the ¢, ’s satisfy (L0)-(L2) from Paragraph 3.8. Set n := liminf dim(S)),
which we may assume to be finite. To verify dim(S) < n,let 2’ < * < y1+...+Y»r
in S. Choose y,...,y. € S such that

Ty oy, Y <y, o, and Y Ly

Using (L2), we obtain a) € Sy such that 2’ < py(an) < x. Analogously, we
obtain by, € Sy, such that y;, < ¢z, (by,) < yp fork=1,...,r.
Using that ¢, is a Cu-morphism, we obtain a) € Sy such that

' < pa(d)) < palan) <z, and d) < ay.
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Choose i € A such that g > A\, A\q1,..., A\, and set
a =puaay), a=opur(ar), bi:=eux0r), ..., and by =, (br,).
Hence,
pu(a) = pu(ppa(an) = ealan) <z <)+ .+ Y, < pulbr + ...+ by).

Applying (L1), we obtain v > u such that ¢, ,(a) < @y, . (b1 + ...+ b;).
Using that liminfy dim(Sy) < n, we may also assume that dim(S,) < n. Apply-
ing dim(S,) <n to

‘Pu,u(a,) < 901/,#(@/) < @V,u(bl) +...+ ‘Pu,u(bT)v

we obtain elements z;, € S, for j =1,...,7and k =0, --- ,n satisfying properties
(1)-(iil) from Definition 3.1. It is now easy to check that the elements ¢, (z;%) € S
have the desired properties to verify dim(S) < n. a

Proposition 3.10. Given a C*-algebra A and a (closed, two-sided) ideal I C A,
we have

dim(Cu(l)) < dim(Cu(4)), and dim(Cu(A/I)) < dim(Cu(A4)).
Given C*-algebras A and B, we have
dim(Cu(A & B)) = max{dim(Cu(A4)), dim(Cu(B))}.
Given an inductive limit of C*-algebras A = @A A, we have

dim(Cu(A4)) < limkinf dim(Cu(Ay)).

Proof. The first statement follows from Proposition 3.5 using that Cu(7) is natu-
rally isomorphic to an ideal of Cu(A), and that Cu(A/I) is naturally isomorphic to
Cu(A)/ Cu(I); see [APT18, Section 5.1]. The second statement follows from Propo-
sition 3.7 using that Cu(A & B) is isomorphic to Cu(A4) @ Cu(B). Finally, the third
statements follows from Proposition 3.9 and the fact that the Cuntz semigroup of
an inductive limit of C*-algebras is naturally isomorphic to the inductive limit of
the C*-algebras; see [APT18, Corollary 3.2.9]. O

Example 3.11. Recall that Cu(C) is naturally isomorphic to N := {0,1,2,...,00}.
We say that a Cu-semigroup S is simplicial if S = N =N ® ..., ®N for some
k> 1. If Ais a finite-dimensional C*-algebra, then Cu(A) is simplicial.

It is easy to verify that dim(N) = 0. By Proposition 3.7, we get dim(Nk) =0
for every k > 1. Thus, if S is an inductive limit of simplicial Cu-semigroups, then
dim(S) = 0 by Proposition 3.9. Further, it follows from Proposition 3.10 that
dim(Cu(A)) = 0 for every AF-algebra A. In Proposition 5.4, we will generalize this
to C*-algebras of real rank zero (which include all AF-algebras).

By applying the Cu-semigroup version of the Effros-Handelman-Shen theorem,
[APT18, Corollary 5.5.13], it also follows that every countably-based, weakly can-
cellative, unperforated, algebraic Cu-semigroup satisfying (O5) and (O6) is zero-
dimensional. In Corollary 5.3, we will generalize this to weakly cancellative, alge-
braic Cu-semigroups satisfying (O5) and (O6).

Example 3.12. Recall that a Cu-semigroup is said to be elementary if it is iso-
morphic to {0}, or if it is simple and contains a minimal nonzero element; see
[APT18, Paragraph 5.1.16]. Typical examples of elementary Cu-semigroups are N
and B = {0,1,2,...,k, 00} for k € N, where the sum of two elements in Fj, is
defined as oo if their usual sum would exceed k; see [APT18, Paragraph 5.1.16].
By [APT18, Proposition 5.1.19], these are the only elementary Cu-semigroups that
satisfy (O5) and (O6).
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It is easy to see that every elementary Cu-semigroup satisfying (O5) and (06) is
zero-dimensional. In Example 3.13 below, we show that this is no longer the case
without (05). To see that (O6) is also necessary, consider S := NU {1'}, with 1’ a
compact element not comparable with 1 and such that 1’+1' =2 and 1+k=1"+k
for every k € N\ {0}. We claim that dim(S) = co.

Assume, for the sake of contradiction, that dim(S) < n for some n € N. Then,
since 1’ « 1’ « 2 = 1+ 1, there exist elements zy 5,224 € S for k = 0,...,n
satisfying conditions (i)-(iii) from Definition 3.1. By condition (i), we have z;; < 1
and therefore z;;, = 0 or z;, = 1 for every j, k. By condition (ii), we have 1’ <
>k %k, and so there exist j° € {1,2} and &’ € {0,...,n} such that zj p» = 1.
However, by condition (iii), we have zj/ ;» < 1’, which is a contradiction because
the elements 1 and 1’ are not comparable.

Example 3.13. Let &k, € N, and let E} and E; be the elementary Cu-semigroups
as in Example 3.12. Then the abstract bivariant Cu-semigroup [Ey, E;], as defined
in [APT20], has dimension one whenever [ > k and dimension zero otherwise.

Indeed, by [APT20, Proposition 5.18], we know that [Ex, Ei] = {0,r,...,l,00}
with » = [(I+1)/(k + 1)]. Thus, if | < k, then [Ej, Ei] = E;, which is zero-
dimensional by Example 3.12. Note that [Ej, F;] is an elementary Cu-semigroup
satisfying (O6). Further, [E}, E;] satisfies (O5) if and only if [ < k.

Let us now assume that [ > k, that is » > 1. Then, even though r+1 < r+1 <
r + r, one cannot find 21,29 < r such that » +1 = z; + zo. This shows that

To verify dim([Ex, Ei]) < 1, let ¢ < @ € y1 + ...+ ¥ in [Eg, Ej]. We may
assume that y; is nonzero for every j. If there exists ¢ € {1,...,r} with z < y,,
then z; 0 := 2 and z; := 0 for j # i or kK =1 have the desired properties.

So we may assume that y; < x for every j. Let k be the least integer such that
z <y1+...+yg. Define z; o := y; for every j < k and z; := 0 for j > k. Further,
define 21 := yy and z;; := 0 for j # k. By choice of k, we have Zj zj0 <L x. We
also have Zj zj1 =y, < z. Finally, z < Zj zj0 + Zj zj.1, as desired.

Definition 3.14. Let S and T be Cu-semigroups. We say that S is a retract of T
if there exist a Cu-morphism ¢: S — T and a generalized Cu-morphism o: T — S
such that o o1 =idg.

Many properties of Cu-semigroups pass to retracts. In Lemma 7.12 we show
this for the Riesz interpolation property and for almost divisibility. The next result
shows that the dimension does not increase when passing to a retract.

Proposition 3.15. Let S and T be Cu-semigroups and assume that S is a retract
of T. Then dim(S) < dim(T).

Proof. Let v: S — T be a Cu-morphism, and let 0: T' — S be a generalized Cu-
morphism such that o ot = idg. Set n := dim(7'), which we may assume to be
finite. To verify the assumptions of Lemma 3.3, let ' < z < y1 + ...+ ¥y, in S.
Then
') < u(x) < ulyr) + ...+ e(yr)

in T'. Using that dim(7") < n, we obtain elements z; j in T satisfying conditions (i)-
(iii) of Definition 3.1. Applying o, we see that the elements o(z;, 1) satisfy conditions
(1)-(3) in Lemma 3.3, from which the result follows. O

Given a simple Cu-semigroup S, let us now show that its sub-Cu-semigroup of
soft elements Sgof, as defined in Paragraph 6.1, is a retract of S. As we will see in
Proposition 3.17 below, such elements play an important role in the study of the
dimension of S.
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Proposition 3.16. Let S be a countably based, simple, weakly cancellative Cu-
semigroup satisfying (05) and (06). Then Ssoft is a retract of S.

Proof. By [APT18, Proposition 5.3.18], Sso is a Cu-semigroup. By [Thi20b,
Proposition 2.9], for each x € S there exists a (unique) maximal soft element
dominated by x and the map o: S — Ssos given by

o(z) == max{gc' € Seopt 1 T < ;z:}, forz € S,

is a generalized Cu-morphism. Further, the inclusion ¢: Sgopy — S is a Cu-morphism
and the composition o o ¢ is the identity on Sgog, as desired. O

Proposition 3.17. Let S be a countably based, simple, weakly cancellative Cu-
semigroup satisfying (05) and (06). Then

dim(Ssoft) < dim(S) < dim(Ssorr) + 1.

Proof. The first inequality follows from Propositions 3.15 and 3.16. To show the
second inequality, set n := dim(Ssof:), which we may assume to be finite. If S is
elementary, then dim(S) = 0 as noted in Example 3.12. Thus, we may assume that
S is nonelementary. By [APT18, Proposition 5.3.16], every nonzero element of S
is either soft or compact. To verify dim(S) <n+1,let 2/ < z < y; + ... + ¥y, in
S. We may assume that z and y; are nonzero. If z is soft, then we let s’,s € S
be any pair of soft elements satisfying 2’ < s’ < s < x. If z is compact, then we
apply Lemma 6.4 to obtain a nonzero element w € S satisfying w < x,y;. Then
x < o(x) + w, which allows us to choose soft elements s’ < s such that s < o(z)
and x < s/ +w. In both cases, we have

s <s<o(@) <aly)+...+ay)
in Ssoe. Using that dim(Ssor) < m, we obtain (soft) elements z;, € S for j =
1,...,7and k=0,...,n such that
(i) zjx < o(y;) (and thus, z;; < y,) for each j and k;
(i) &' <3255 2k
(i) D27 2k < s < o(z) (and thus, Y77, zjx < z) for each k=0, ..., n.
If z is soft, then 2’ < s’ < Z]k %jk, which shows that the elements z;; have

the desired properties. If z is compact, then set 2,41 := w and z;,41 := 0 for
Jj=2,...,r. Then z;,41 < y; for each j. Further,

n T r n+l r
r<r<s +w< E E zZik | + E Zjn+l = Z E Zj k-
k=0 j=1 j=1 k=0 j=1

Lastly, Z;=1 Zjnt+1 = W <K x, which shows that the elements z;; have the desired
properties. g

Remark 3.18. Proposition 3.17 applies in particular to the Cuntz semigroups of
separable, simple C*-algebras of stable rank one (see [Rob13, Proposition 5.1.1]).
More generally, Engbers showed in [Engl4] that for every separable, simple, stably
finite C*-algebra A, every compact element in Cu(A) has a predecessor. The proof
of Proposition 3.17 can be generalized to this situation and we obtain

dim(Cu(A)sofr) < dim(Cu(4)) < dim(Cu(A)sofs) + 1.

Example 3.19. Let Z = Cu(Z), the Cuntz semigroup of the Jiang-Su algebra Z.
Then, dim(Z) = 1. Indeed, since Z is a simple, weakly cancellative Cu-semi-
group satisfying (O5) that is neither algebraic nor soft, it follows from Lemma 7.1
that dim(Z) > 0. On the other hand, we have Zsp = [0,00], and it is easy to
verify that dim([0, c0]) = 0. Therefore, we have dim(Z) < dim([0,00]) + 1 =1 by
Proposition 3.17.
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A similar argument shows that dim(Z’) = 1, where Z’ is the Cu-semigroup
considered in [APT18, Question 9(8)], that is, Z’ := Z U {1”} with 1" a compact
element not comparable with 1 and such that 1”7 +1” =2 and 1 + 2 = 1" + z for
every xz € Z \ {0}.

The notion of R-multiplication on a Cu-semigroup for a Cu-semiring R was
introduced in [APT18, Definition 7.1.3]. Given a solid Cu-semiring R (such as
{0,000}, [0,00] or Z), any two R-multiplications on a Cu-semigroup are equal, and
therefore having an R-multiplication is a property; see [APT18, Remark 7.1.9].

It was shown in [APT18, Theorem 7.2.2] that a Cu-semigroup has {0,00}-
multiplication if and only if every element in the semigroup is idempotent. By
[APT18, Theorem 7.3.8], a Cu-semigroup has Z-multiplication if and only if it is
almost unperforated and almost divisible. By [APT18, Theorem 7.5.4], a Cu-sem-
igroup has [0, oo]-multiplication if and only if it has Z-multiplication and every
element in S is soft.

Proposition 3.20. Let S be a Cu-semigroup satisfying (05) and (O6). Then:
(1) If S has {0, co}-multiplication, then dim(S) = 0.
(2) If S has [0, oo]-multiplication, then dim(S) = 0.
(8) If S has Z-multiplication, then dim(S) < 1.

Proof. (1) Given elements 2’ < z < y1 + ...+ y, in a Cu-semigroup with {0, c0}-
multiplication, apply (O6) to obtain elements z; < x,y; such that

<4+ 2
Using that every element in S is idempotent, one also has
2714+ <zxz+...+trx=rr=n"2

This shows that the elements z; satisfy the conditions in Lemma 3.3, as required.

(2) Note that S is isomorphic to its realification Sg by Theorem 7.5.4 and Propo-
sition 7.5.9 in [APT18]. We can now use the decomposition property of Sg proven
in [Rob13, Theorem 4.1.1] to deduce that S is zero-dimensional.

(3) Assume that S has Z-multiplication. By [APT18, Proposition 7.3.13], an
element z € S is soft if and only if # = 1’z (where 1’ denotes the soft one in Z).
Further, the Cu-semigroup Sso; := 1S of soft elements in S is isomorphic to the
realification of S; see [APT18, Corollary 7.5.10]. Since the realification of S has
[0, co]-multiplication, we get dim(Ssost) = 0 by (2).

To verify dim(S) < 1, let 2/ < z < y1 + ...+ vy in S. Using that S has
Z-multiplication, one gets

gx’<< g:r<< %yl—&—...—l—%yr.
Note that all elements in the previous expression belong to Ssoft. Since dim(Ssoft) =

0, we obtain (soft) elements z1,..., 2, € S such that z; < %yj for each j, and such
that

gx’<<zl+...—|—zr<< gm.
Define zj0 := 2z; and 21 := z; for j = 1,...,r. We trivially have z;, < y; for
each j and k. Further,

o<W L2t m) =Y 2k
ik

and

Y e < i<
J
for each k = 0, 1, as desired. a
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Let A be a C*-algebra. Then, we know from [APT18, Proposition 7.2.8] that A
is purely infinite if and only if Cu(A) has {0, oo }-multiplication.

Proposition 3.21. Let A be a purely infinite C*-algebra. Then dim(A) = 0.

Let W denote the Jacelon-Racak algebra. Given a C*-algebra A, it follows from
[APT18, Proposition 7.6.3] that Cu(A ® W) has [0, oo]-multiplication, and that
Cu(A ® Z) has Z-multiplication.

Proposition 3.22. Let A be a C*-algebra. Then
dim(Cu(A®@W)) =0, and dim(Cu(4A® 2)) <1.

In particular, Cuntz semigroups of W-stable C*-algebras are zero-dimensional, and
Cuntz semigroups of Z-stable C*-algebras have dimension at most one.

Example 3.23. Let X be a compact, metrizable space containing at least two
points, and let S := Lsc(X,N),, U {0} be the sub-Cu-semigroup of Lsc(X,N)
consisting of strictly positive functions and 0. Then dim(S) = oo.

Indeed, assume for the sake of contradiction that dim(S) < n for some n € N,
and take r > n. Since X contains at least two points, we can choose open subsets
U',U C X such that

0W£U', U CU and U #X.

Let xyr and xp denote the corresponding characteristic functions. Consider the
elements ¢’ := 1+ (n+ 1)xy and  := 1+ (n+ 1)xy in S. Then, we have
y<r<<r+1=1+..,41+1inS.

Using that dim(S) < n, we obtain elements z;, € S for j = 1,...,7 + 1 and
k = 0,...,n satisfying (i)-(iii) from Definition 3.1. By condition (i), we have
zj, < 1 and therefore z;, = 0 or z;, = 1 for each j, k.

Given k € {0,...,n}, we have Ej zjx < x by condition (iii), and thus all but
possibly one of the elements z; g, ..., 2,; are zero. Thus, Zj zjr < 1. Using this
at the last step, and using condition (ii) at the first step, we get

n T
< sz,k = Z (Zz]k) <n+1,
Gk k=0 j=1

a contradiction.

4. COMMUTATIVE AND SUBHOMOGENEOUS C*-ALGEBRAS

In this section, we first prove that the dimension of the Cuntz semigroup of a
C*-algebra A is bounded by the nuclear dimension of A; see Theorem 4.1. For every
compact, Hausdorff space X, we show that the dimension of the Cuntz semigroup of
C(X) agrees with the dimension of X; see Proposition 4.3. More generally, on the
class of subhomogeneous C*-algebras, the dimension of the Cuntz semigroup agrees
with the topological dimension, which in turn is equal to the nuclear dimension;
see Theorem 4.10.

Theorem 4.1. Let A be a C*-algebra. Then dim(Cu(A4)) < dimpyuc(A).

Proof. Set n := dimuyc(A), which we may assume to be finite. By [Robl1, Propo-
sition 2.2], there exists an ultrafilter & on an index set A, and finite-dimensional
C*-algebras F) , for A € A and k = 0,...,n, and completely positive, contractive
(cpc.) order-zero maps ¢y : A — ], Fxx and @p: [T, Fix — Ay such that

L= wr ot
k=0

where ¢: A — Ay denotes the natural inclusion map.
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To verify dim(Cu(A)) < n, let ', z,y1,. ..,y € Cu(A) satisfy
Ly F... Yy

A cpe. order-zero map a: C' — D induces a generalized Cu-morphism a: Cu(C) —
Cu(D); see, for example, [APT18, Paragraph 3.2.5].
For each k € {0,...,n}, set x := Yp(x) € Cu([[,, Frx)- We have

@) <o) =Y eu(r) =D Grlar)-
k=0 k=0

Using that ¢ preserves suprema of increasing sequences, we can choose an
element z}, € Cu([[,, F) ) such that =}, < x) and

fa) < > Gula}).
k=0

Given k € {0,...,n}, we have

r

rh Lz = Pr(a) < ﬁk(z vi) = > Uk(y)-

Jj=1

Since [];, Fx has real rank zero, we obtain 21, ..., 2.k € Cu(] [, Fx ) such that
zjw < p(y;) for j=1,...,r and

,
x}c < E Zjk < Tk
Jj=1

We now consider the elements @y (z;%) € Cu(Ay). For each j and k, we have

Gr(zik) < @u(r(y) < Y ow (Wwr () = 1yy)-

k=0
Further, we have
i) <Y en(xh) <Y ad ziw) =D Grlzin)-
k=0 k=0  j=1 k=0 j=1

For each k € {0,...,n}, we also have
T T B
D Pr(zin) = 2D 2ik) < Prlzn) = @r(Pr(x)) < 1(x).
j=1 j=1

Since the classes of elements in |Jyen(Auy ® My)4 are sup-dense in Cu(Ay),
there exist N € N and positive elements ¢;;, € Ay ® My such that [¢; ] < @r(zjk)
and o(2") < 37, i lejkl-

We have Ay =[], A/cu, where

cy = {(CE)\),\ S HA : )}gll/l HCL>\|| = O}.
A

We let 7: [, A — Ay denote the quotient map.

We have Ay @ My = (A ® Mp)y. We also use 7 to denote its amplification to
matrix algebras. Choose positive elements ¢\ € A® My such that 7((cjxx)x) =
¢;j k- Then, for a sufficiently large A, the elements [c;; 2] € Cu(A) satisfy the
properties of Lemma 3.3 for 2/ < © < y1 + - - - + ¥, as desired. a

Lemma 4.2. Let X be a compact, Hausdorff space. Then
dim(X) < dim(Cu(C(X))).
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Proof. Set n := dim(Cu(C(X))), which we may assume to be finite. To verify that
dim(X) < n, let Y = {Uy,...,U;} be a finite open cover of X. We need to find a
(n + 1)-colourable, finite, open refinement of U; see Remark 3.2.

Since X is a normal space, we can find an open cover V = {Vi,...,V,.} of X
such that 7] C Uj for each j; see for example [Pea75, Proposition 1.3.9, p.20]. For
each j, by Urysohn’s lemma we obtain a continuous function f;: X — [0,1] that
takes the value 1 on V; and that vanishes on X \ Uj;.

We have 1 < f; + ...+ f, and therefore

in Cu(C(X)). Using that dim(Cu(C(X))) < n, we obtain elements z; ;, € Cu(C(X))
for j=1,...,rand k =0,...,n satisfying (i)-(iii) in Definition 3.1.

For each j and k, choose g;, € (C(X) ® K)4 such that z;, = [g;]. Viewing

gj,k as a positive, continuous function g;,: X — K, we set

W]"k = {iL' e X: gjyk(x) ;é 0}
Then W is an open set. Condition (i) implies that g; = lim,, hy f;h} for some
sequence (hy), in C(X) ® K. Thus, g;,(x) = 0 whenever f;(z) = 0, which shows
that W;, C U;. Condition (ii) implies that X is covered by the sets Wj ;. Thus,
the family W := {W} ;} is a finite, open refinement of .

Let k£ € {0,...,n}. Given z € X, it follows from condition (iii) that the
rank of g1 x(x) ® ... ® grp(x) is at most one. This implies that at most one of
91,6(x), ..., grk(x) is nonzero. Thus, the sets Wy g, ..., W, are pairwise disjoint.

Hence, W is (n + 1)-colourable, as desired. O

Proposition 4.3. Let X be a compact, Hausdorff space. Then
dim(Cu(C(X))) = dim(X).

Proof. The inequality ‘>’ is shown in Lemma 4.2. By [WZ10, Proposition 2.4],
we have dim(X) = dimy,.(C(X)) if X is second-countable. By Theorem 4.8, this
also holds for arbitrary compact, Hausdorff spaces. Thus, the inequality ‘<’ follows
from Theorem 4.1. O

Corollary 4.4. Let X be a compact, metrizable space. Then
dim(Lsc(X,N)) = dim(X)

Proof. Tt is enough to see that Lsc(X,N) is a retract of Cu(C(X)), since the in-
equality >’ has already been proven in Example 3.4 and the inequality "<’ will
follow from Lemma 3.15 and Proposition 4.3.

Thus, set S = Lsc(X,N) and T = Cu(C(X)). Define ¢: Lsc(X,N) — Cu(C(X))
as the unique Cu-morphism mapping the characteristic function xy to the class of
a positive function in C(X) with support U for every open subset U C X.

Also, let o: T — S be the generalized Cu-morphism mapping the class of an
element a € C(X) ® K to its rank function o(a): X — N, o(a)(z) = rank(a(z)).

It is easy to check that o ot =idg, as desired.

Recall that the local dimension locdim(X) of a topological space X is defined
as the smallest n € N such that every point in X has a closed neighborhood of
covering dimension at most n; see [Pea75, Definition 5.1.1, p.188]. If X is a locally
compact, Hausdorff space, then

locdim(X) = sup { dim(K) : K C X compact }.
If X is o-compact, locally compact and Hausdorff, then locdim(X) = dim(X), but

in general locdim(X') can be strictly smaller than dim(X). If X is locally compact,
Hausdorff but not compact, then it follows from [Pea75, Proposition 3.5.6] that



14 HANNES THIEL AND EDUARD VILALTA

locdim(X) agrees with the the dimension of aX, the one-point compactification of
X.

Theorem 4.5. Let X be a locally compact, Hausdorff space. Then
dim(Cu(Cp(X))) = locdim(X).

Proof. Let K C X be a compact subset. Then C(K) is a quotient of Co(X). Using
Proposition 4.3 at the first step and Proposition 3.10 at the second step, we get

dim(K) = dim(Cu(C(K))) < dim(Cu(Cy(X))).

It follows that locdim(X) < dim(Cu(Cy(X))).

Conversely, we use that Cy(X) is an ideal in C(aX). Applying Proposition 3.10
at the first step, and using Proposition 4.3 and dim(aX) = locdim(X) at the second
step, we get

dim(Cu(Cp(X))) < dim(Cu(C(aX))) = locdim(X).
This show the converse inequality and finishes the proof. O

4.6. Let d € N with d > 1. Recall that a C*-algebra A is said to be d-(sub)homo-
geneous if every irreducible representation of A has dimension (at most) d. Fur-
ther, A is (sub)homogeneous if it is d-(sub)homogeneous for some d. If A is d-
subhomogeneous, then so is every sub-C*-algebra of A.

Let us briefly recall the main structure theorems for (sub)homogeneous C*-al-
gebras. For details, we refer to [Bla06, Sections IV.1.4, IV.1.7]. Given a locally
trivial My(C)-bundle over a locally compact, Hausdorff space X, the algebra of
sections vanishing at infinity is a d-homogeneous C*-algebra with primitive ideal
space homeomorphic to X. Moreover, every homogeneous C*-algebra arises this
way.

Let A be a d-subhomogeneous C*-algebra. For each k > 2, let I>, C A be the
set of elements a € A such that 7m(a) = 0 for every irreducible representation 7 of
A of dimension at most k — 1. Set I, = A. Then

{0} =I5q11 CI>qC...CI>oCIs1 =4

is an increasing chain of (closed, two-sided) ideals of A. For each k£ > 1, the
canonical k-homogeneous ideal-quotient (that is, an ideal of a quotient) of A is

Ak = IZ/C/IZ]C-H'

{0} for k > d+1.
1, we have a short exact sequence

Note that Ay =
For each k >

0— Ak+1 — A/IZkJrl — A/IZk — 0.

In particular, A/I>3 is an extension of A/l = Ay by As. Then A/I>4 is an
extension of A/I>3 by As, and so on. Finally, A is an extension of A/I>q_1 by Aq4.
Thus, every subhomogeneous C*-algebra is obtained as a finite successive extension
of homogeneous C*-algebras.

In [BP09], Brown and Pedersen introduced the topological dimension for certain
C*-algebras, including all type I C*-algebras. We only recall the definition for
subhomogeneous C*-algebras. First, if A is homogeneous, then its primitive ideal
space Prim(A) is locally compact and Hausdorff, and then the topological dimension
of A is defined as topdim(A) := locdim(Prim(A)).

If A is subhomogeneous, then the topological dimension of A is defined as
the maximum of the topological dimensions of the canonical homogeneous ideal-
quotients:

topdim(A) :=  nax topdim(Ag) =  nax locdim(Prim(Ag)).

=1,..., yeeny



COVERING DIMENSION OF CUNTZ SEMIGROUPS 15

Given a C*-algebra A, we use Subge,(A) to denote the collection of separable
sub-C*-algebras of A. A family S C Subge,(A) is said to be o-complete if for every
countable, directed subfamily 7 C S we have [J{B : B € T} € S. Further, a family
S C Subgep(A) is said to be cofinal if for every By € Subgep(A) there exists B € S
with By C B.

Proposition 4.7. Let n € N. Then for every subhomogeneous C*-algebra A satis-
fying topdim(A) < n, the set

{B € Subgep(A) : topdim(B) < n}
is o-complete and cofinal.

Proof. We will use the following facts. The first is a consequences of [Thi20a,
Proposition 3.5], the second follows from [BP09, Proposition 2.2].
Fact 1: Given a homogeneous C*-algebra B with locdim(B) < n, the collection

{C € Subge,(B) : topdim(C) < n}

is o-complete and cofinal.
Fact 2: If B is subhomogeneous and I C B is an ideal, then

topdim(B) = max{topdim(I), topdim(B/I)}.

We prove the result for d-subhomogeneous C*-algebras by induction over d.
First, note that a C*-algebra is 1-subhomogeneous if and only if it is 1-homogeneous
(if and only if it is commutative). In this case, the result follows directly from Fact 1.

Next, let d > 1 and assume that the result holds for every d-subhomogeneous
C*-algebra. Let A be (d 4+ 1)-subhomogeneous. We need to show that the set
S := {B € Subg(A) : topdim(B) < n} is o-complete and cofinal.

To verify that S is o-complete, let 7 C S be a countable, directed family. Set
C :={B:B €T} Then C is a separable C*-algebra that is approximated by
the sub-C*-algebras B C C for B € T that each satisfy topdim(B) < n. By [Thil3,
Proposition 8], we have topdim(C) < n. Thus, C € S, as desired.

Next, we verify that S is cofinal. Set I := I>441 C A, the ideal of all elements
in A that vanish under all irreducible representations of dimension at most d. Then
I is (d 4+ 1)-homogeneous and A/I is d-subhomogeneous. By Fact 2, we have
topdim(/) < n and topdim(A/I) < n. By Fact 1 and by the assumption of the
induction, the collections

T = {C € Subgep (1) : topdim(C) < n},
Tz := {D € Subgep(A/I) : topdim(D) < n},
are o-complete and cofinal. By [Thi20a, Lemma 3.2], it follows that the families
Sy := {B € Subgep(A) : topdim(BNI) < n},
8y := {B € Subge,(A) : topdim(B/(BNI)) < n},
are o-complete and cofinal. Then & N Ss is o-complete and cofinal as well. Given
B € § NS,, it follows from Fact 2 that
topdim(B) = max{topdim(B N I), topdim(B/(BNI))} < n.
Thus, S1 NSy C S. Since §; N Ss is cofinal, so is S. O

We deduce a result that is probably known to the experts, but which does not
appear in the literature so far. The equality of the topological dimension and the
decomposition rank dr(A) of a separable subhomogeneous C*-algebra A was shown
in [Win04].
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Theorem 4.8. Let A be a subhomogeneous C*-algebra. Then
dimy,.(A) = dr(A) = topdim(A).

Proof. As noted in [WZ10, Remarks 2.2(ii)], the inequality dimuu.(B) < dr(B)
holds for every C*-algebra B. To verify dr(A) < topdim(A), set n := topdim(A).
We may assume that n is finite. By Proposition 4.7, the family

8 1= {B € Suby(A) : topdim(B) < n}

is cofinal. Each B € § is a separable, subhomogeneous C*-algebra, whence we can
apply [Win04, Theorem 1.6] to deduce that dr(B) = topdim(B) < n. Thus, A
is approximated by the collection S consisting of C*-algebras with decomposition
rank at most n. It is straightforward to verify that this implies dr(A) < n.

To verify topdim(A4) < dimpyc(A), set m := dimyyc(A), which we may assume
to be finite. It follows from [WZ10, Proposition 2.6] that the family

T = {B € Subgp(A) : dimyue(B) < m}

is cofinal. Let B € 7. Then B is a separable, subhomogeneous C*-algebra. For
each k > 1, let By be the canonical k-homogeneous ideal-quotient of B; see Para-
graph 4.6. Using [WZ10, Corollary 2.10] at the first step, and using that the nuclear
dimension does not increase when passing to ideals ([WZ10, Proposition 2.5]) or
quotients ([WZ10, Proposition 2.3(iv)]) at the second step, we get

topdim(Bg) = dimypye(Bg) < dimpy.(B) < m.

Using that B is obtained as a successive extension of B; by Bs, and then by
Bs, and so on, it follows from [BP09, Proposition 2.2] (see Fact 2 in the proof of
Proposition 4.7) that topdim(B) < m. Thus, A is approximated by the collec-
tion 7 consisting of C*-algebras with topological dimension at most m. By [Thil3,
Proposition 8], we get topdim(A) < m, as desired. a

Lemma 4.9. Let A be a homogeneous C*-algebra. Then
dimpyc(4) < dim(Cu(4)).

Proof. Let d > 1 such that A is d-homogeneous. Set X := Prim(A), which is locally
compact and Hausdorff. Then topdim(A) = locdim(X), and we need to show that
locdim(X) < dim(Cu(A)).

Let x € X. Since A is the algebra of sections vanishing at infinity of a locally
trivial My(C)-bundle over X, there exists a compact neighborhood Y of x over
which the bundle is trivial. Let I C A be the ideal of all sections in A that vanish
on X\ Y. Then A/I is the algebra of sections of the trivial My(C)-bundle over Y,
and so A/I = C(Y) ® My. Using Lemma 4.2 at the first step, using that C(Y)
and C(Y) ® My have isomorphic Cuntz semigroup at the second step, and using
Proposition 3.10 at the last step, we get

dim(Y) < dim(Cu(C(Y))) = dim(Cu(C(Y) ® My)) < dim(Cu(A)).
Thus, every point in X has a closed neighborhood of dimension at most dim(Cu(4)),
whence locdim(X) < dim(Cu(A4)), as desired. d
Theorem 4.10. Let A be a subhomogeneous C*-algebra. Then
dim(Cu(A)) = dimyyc(A) = dr(A) = topdim(A).
Proof. The second and third equalities are shown in Theorem 4.8. By Theorem 4.1,

the inequality dim(Cu(4)) < dimyuc(A) holds in general. It remains to verify that
topdim(A4) < dim(Cu(4)).
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For each k > 1, let Ay be the canonical k-homogeneous ideal-quotient of A as in
Paragraph 4.6. Using Lemma 4.9 at the first step, and using Proposition 3.10 at
the second step, we get

topdim(Ay) < dim(Cu(Ag)) < dim(Cu(4)).
Consequently,
topdim(A4) = max topdim(Ag) < dim(Cu(A)),

as desired. O

Example 4.11. There are many examples showing that Theorem 4.10 does not
hold for all C*-algebras. In Proposition 5.4, we will show that every C*-algebra
A of real rank zero satisfies dim(Cu(A4)) = 0. On the other hand, a separable C*-
algebra A satisfies dimyu.(A) = 0 if and only if A is an AF-algebra; see [WZ10,
Remarks 2.2(iii)]. Thus, every separable C*-algebra A of real rank zero that is not
an AF-algebra is an example where dim(Cu(A)) is strictly smaller than dimp,c(A4).
More extremely, every non-nuclear C*-algebra A of real rank zero, such as B(¢%(N)),
satisfies dim(Cu(A4)) = 0 while dimy,.(A) = co. Another example is the irrational
rotation algebra Ay, which satisfies dim(Cu(Ap)) = 0 while dimy,.(4¢) = 1.

5. ALGEBRAIC, ZERO-DIMENSIONAL CUNTZ SEMIGROUPS

In this section we begin our systematic study of zero-dimensional Cu-semigroups.
After giving a useful characterization of zero-dimensionality (Lemma 5.1), we pro-
vide a sufficient criterion: A Cu-semigroup is zero-dimensional whenever it contains
a sup-dense subsemigroup that satisfies the Riesz decomposition property with re-
spect to the pre-order induced by the way-below relation; see Proposition 5.2. We
deduce that the Cuntz semigroup of every C*-algebra of real rank zero is zero-
dimensional; see Proposition 5.4. Conversely, we show that every unital C*-algebra
of stable rank one and with zero-dimensional Cuntz semigroup has real rank zero;
Corollary 5.8.

We also show that every weakly cancellative, zero-dimensional Cu-semigroup sat-
isfying (O5) contains a largest algebraic ideal, which contains all compact elements;
see Corollary 5.6. In Section 7, we study certain zero-dimensional Cu-semigroups
that contain no compact elements.

Lemma 5.1. Let S be a Cu-semigroup. Then dim(S) = 0 if and only if, whenever
K x Ky +y2 in S, there exist z1,20 € S such that

20 LY, 2Ly, and ' K2+ 2 L @

Proof. The forward implication is clear, so we are left to prove the converse. Given
r>land 2’ <z <<y +...+9 in S, we need to find z1,..., 2. € S such that
0L Y, s 2Ly, and ¥ L2+ F2 L.
We prove this by induction on r. The case r = 1 is clear and the case r = 2 holds
by assumption.
Thus, let » > 2 and assume that the result holds for r — 1. Given 2/ < = <
Y1 + ...+ yr, apply the assumption to
<<yt A1)+ yr
to obtain u1,us € S such that
W LY+ ..+ yY—1, U <Lyp and T <K up+us <.
Choose u) such that u] < w; and &' < u} + uz. Applying the induction
hypothesis to
U L up <yt Yo,
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we obtain z1,...,2,._1 € S such that
21 LYy, ey o1 L Ypoy, and w) Kz 4 o+ 2 L Uy
Set z, := ug. Then z1,..., 2. have the desired properties. O

Recall that a semigroup S with a pre-order < is said to satisfy the Riesz decom-
position property if whenever z,y, z € S satisfy © < y + 2, then there exist e, f € S
such that z =e+ f, e <y and f < z.

Proposition 5.2. Let S be a Cu-semigroup, and let D C S be a sup-dense sub-
semigroup such that D satisfies the Riesz decomposition property for the pre-order
induced by <. Then dim(S) = 0.

Proof. To verify the condition in Lemma 5.1, let 2’ < z < y1 + 92 in S. Using
that D is sup-dense, we find Z, 917> € D such that

YL e < +Y, <y, and P2 < yo.

Then & < 1 + g2. Using that D satisfies the Riesz decomposition property, we
obtain x1,x2 € D such that

T=x1+12, 1<Ky, and 2z K Po.

Then x1 and x5 have the desired properties to verify the condition of Lemma 5.1. [

Recall that a Cu-semigroup is said to be algebraic if its compact elements are
sup-dense; see [APT18, Section 5.5].

Corollary 5.3. Let S be a weakly cancellative, algebraic Cu-semigroup satisfying
(05) and (06). Then dim(S) = 0.

Proof. Set D := {x € S : © < x}, the semigroup of compact elements. By
assumption, D is sup-dense. By [APT18, Corollary 5.5.10], D satisfies the Riesz
decomposition property. Hence, dim(S) = 0 by Proposition 5.2. g

Proposition 5.4. Let A be a C*-algebra of real rank zero. Then dim(Cu(A4)) = 0.

Proof. Let C C Cu(A) be the set of Cuntz equivalence classes of projections in
A® K. Then C is a submonoid consisting of compact elements, and using that A
has real rank zero it follows that C' C Cu(A) is sup-dense.

To verify that C' satisfies the Riesz decomposition property, let z,y, z € C satisfy
x < y + z. Choose projections p,q,r € A ® K such that * = [p], y = [g] and
z = [r]. Then p is Cuntz subequivalent to ¢ @ r. Since among projections Cuntz
subequivalence agrees with Murray-von Neumann subequivalence, we obtain that
p is Murray-von Neumann subequivalent to g @ r.

By [BP91, Corollary 3.3], A®K has real rank zero. Hence, it follows from [Zha90,
Theorem 1.1] that the Murray-von Neumann semigroup of projections satisfies the
Riesz decomposition property. Thus, there exist projections ¢’ < ¢ and 7’ < r such
that p is Murray-von Neumann equivalent to ¢’ & r’. Using at the first step that
Murray-von Neumann equivalence is stronger than Cuntz equivalence, we get

e=[pl =1+, [<ld=y and []<r]=2
Now it follows from Proposition 5.2 that dim(Cu(A)) = 0. O

Lemma 5.5. Let S be a weakly cancellative Cu-semigroup satisfying (05) and
dim(S) = 0. Let c € S be compact. Then the ideal generated by c is algebraic.
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Proof. Let I be the ideal generated by c¢. Note that € S belongs to I if and only
if x < ooc. To verify that I is algebraic, let 2/, z € I satisfy 2’ < . We need to
find a compact element z such that 2’/ < z < z.

Choose z” € S such that 2’ < 2" < z. Then z” < x < ooc, which allows us to
choose n € N such that 2/ < ne. Applying (05) to 2’ < 2" < nc, we obtain y € S
such that

' +y<nc<a’ +y.

Using that dim(S) = 0 for nc < nc < =" + y, we obtain z1, 2z € S such that

ne=z +2z, 2z <K<2”, and z <y.

By weak cancellation, z; and 2o are compact. We now have

ry<<ne=z2+2 <21 +y.

Using weak cancellation, we get 2’ < 2z7. Thus, 27 has the desired properties. O

Corollary 5.6. Let S be a weakly cancellative Cu-semigroup satisfying (05) and
dim(S) = 0. Then S contains a largest algebraic ideal, which agrees with the ideal
generated by all compact elements of S.

Proposition 5.7. Let S be a weakly cancellative Cu-semigroup satisfying (05).
Then the following are equivalent:

(1) We have dim(S) = 0, and the compact elements of S are full (that is, there
is mo proper ideal of S containing all compact elements);
(2) S is algebraic and satisfies (O6).

Proof. Assuming (1), it follows from Lemma 5.5 that S is algebraic. Further, it is
clear that dim(S) = 0 implies that S satisfies (06). Conversely, assuming (2), it
follows from Corollary 5.3 that dim(S) = 0, and since S is algebraic it is clear that
compact elements of S are full. a

Corollary 5.8. Let A be a unital C*-algebra of stable rank one. Then we have
dim(Cu(A)) = 0 if and only if A has real rank zero.

Proof. If A has real rank zero, then dim(Cu(A)) = 0 by Proposition 5.4. (This
implication does not require stable rank one.) Conversely, assume that A has
stable rank one and dim(Cu(A4)) = 0. Since A is unital, the compact elements in
Cu(A) are full. Thus, by Proposition 5.7, Cu(A) is algebraic. Now it follow from
[CEIO8, Corollary 5] that A has real rank zero. O

Corollary 5.9. Let A be a separable, simple, Z-stable C*-algebra. Then we have
dim(Cu(A)) < 1. Moreover, dim(Cu(A)) = 0 if and only if A has real rank zero or
if A is stably projectionless.

Proof. Tt follows from [Rgr02, Theorem 4.1.10] that A is either purely infinite or
stably finite. Thus, we can distinguish three cases: A is either purely infinite or
stably projectionless, or stably finite and not stably projectionless.

The first statement follows from Proposition 3.22. To show the forward impli-
cation of the second statement, assume that dim(Cu(A)) = 0. We need to show
that A has real rank zero or is stable projectionless. First, if A is purely infi-
nite, then A has real rank zero; see [Bla06, Proposition V.3.2.12]. Second, if A is
stably projectionless, then there is nothing to show. Third, we consider the case
that A is stably finite and not stably projectionless. Let p € A ® K be a nonzero
projection. Then p(A ® K)p is a separable, unital, simple, stably finite, Z-stable
C*-algebra and therefore has stable rank one by [Rgr04, Theorem 6.7]. Since A and
p(A ® K)p are stably isomorphic, they have isomorphic Cuntz semigroups. Thus,
dim(Cu(p(A ® K)p)) = 0, and we deduce from Corollary 5.8 that p(A ® K)p has
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real rank zero. By [BP91, Corollary 2.8 and 3.3], a C*-algebra has real rank zero
if and only if its stabiliation does. Thus, A has real rank zero.

To show the backward implication of the second statement, assume that A has
real rank zero or is stably projectionless. We need to show that dim(Cu(A)) = 0.
If A has real rank zero, this follow from Proposition 5.4. Let us consider the case
that A is stably projectionless. Then Cu(A) contains no nonzero compact elements
by [BC09]. Thus, Cu(A) is soft and has Z-multiplication, which by [APT18, The-
orem 7.5.4] implies that Cu(A) has [0, co]-multiplication. Hence, dim(Cu(A4)) =0
by Proposition 3.20. ]

6. THIN BOUNDARY AND COMPLEMENTABLE ELEMENTS

In this section, we study soft elements in simple Cu-semigroups that behave very
similar to compact elements: the elements with thin boundary (Definition 6.3), and
the complementable elements (Definition 6.9). If S is a simple, stably finite, soft
Cu-semigroup satisfying (O5) and (O6) (for example, the Cuntz semigroup of a
simple, stably projectionless C*-algebra; see Proposition 6.2), then every element
with thin boundary is complementable; see Corollary 6.11. The converse holds if
S is also weakly cancellative (for example, the Cuntz semigroup of a simple, stably
projectionless C*-algebra of stable rank one); see Theorem 6.12.

In Section 7, we will show that zero-dimensionality of certain simple Cu-semi-
groups is characterized by sup-denseness of the elements with thin boundary.

6.1. We say that a simple Cu-semigroup S is stably finite if for all z,z € S, we
have that « + z < z implies x = 0. Using that S is simple, one can show that this
definition is equivalent to the one given in [APT18, Paragraph 5.2.2]. We note that
every simple, weakly cancellative Cu-semigroup is stably finite.

Let S be a simple, stably finite Cu-semigroup satisfying (O5). Recall that an
element x € S is compact if x < x. We say that x € S is soft if x = 0 or if
x # 0 and for every 2’ € S satisfying @’ < z there exists a nonzero t € S such that
'+t < z. (Using [APT18, Proposition 5.3.8], one sees that this is equivalent to
the original definition.) We say that S is soft if every element in S is soft.

We let S, and Ssof denote the set of compact and soft elements in .S, respec-
tively. We also set S5, := S \ {0}. It is easy to see that Se, Seore and S, are
submonoids of S. Further, SJ; is absorbing in the sense that z +y belongs to Sy
whenever z or y does; see [APT18, Theorem 5.3.11].

By [APT18, Proposition 5.3.16], every element in S is either compact, or nonzero

and soft. Hence, S can be decomposed as S = 5%, U S..

Proposition 6.2. Let A be a simple, stably projectionless C*-algebra. Then Cu(A)
is a simple, stably finite, soft Cu-semigroup satisfying (05) and (OG6).

Proof. The Cuntz semigroup Cu(A) is simple and satisfies (O5) and (O6) since it
is the Cuntz semigroup of a simple C*-algebra (see, for example, [APT18, Corol-
lary 5.1.12]). As A is stably projectionless, Cu(A) has no nonzero compact elements
by [BC09].

It is easy to check that a simple Cu-semigroup is stably finite if and only if
oo is not compact or if S is zero. Therefore, the Cuntz semigroup of a stably
projectionless C*-algebra is always stably finite.

By [APT18, Proposition 5.3.16] we have Cu(A)* = Cu(A)J, as desired. O

Definition 6.3. Let S be a simple Cu-semigroup. We say that an element x € S
has thin boundary if © < x + t for every nonzero t € S. We let Sy, denote the set
of elements in S with thin boundary.
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Note that every compact element has thin boundary, but the converse is not
true: In [0, oo] every element has thin boundary, but only 0 is compact.
We will repeatedly use the following result.

Lemma 6.4. Let S be a simple, nonelementary Cu-semigroup satisfying (05) and
(06). Let ug,u; € S be nonzero. Then there exists a nonzero w € S such that
2w <K ug, Uq -

Proof. This follows by combining [APT18, Lemma 5.1.18] and [Rob13, Proposi-
tion 5.2.1]. For the convenience of the reader, we include the simple argument.

First, choose nonzero elements ug,u € S such that uj < uy < ug. Since S is
simple and u; # 0, we have uj < ug < 0o = oouy, which allows us to choose n > 1
such that uf < nu;.

Applying (06) to uj < uf, < uj + ..., + u1, we obtain z1,...,z, € S such that

ug K 21+ ...+ 2zn, and 21,..., 2, < ug, Ul

Since ug is nonzero, there is j € {1,...,n} such that v := z; is nonzero. Then
v <L Ug, U1-

Since S is nonelementary, v is not a minimal nonzero element. Thus, we can
choose a nonzero v' € S with v/ < v and v' # v. Choose a nonzero v” € S with
v < v'. Applying (05) to v"/ < v’ < v, we obtain ¢ € S such that

vV +e<v<v +e

Since v’ # v, we have ¢ # 0. Applying the first part of the argument to the nonzero
elements v” and ¢, we obtain w € S such that 0 # w < v”,c. Then w has the
desired properties. a

Lemma 6.5. Let S be a simple Cu-semigroup satisfying (05) and (O6). Then Sy,

is a submonoid.

Proof. This is clear if S is elementary, since then every element in S way-below
another is compact and therefore Sy, = S; see [APT18, Proposition 5.1.19].

We now assume that S is nonelementary. Let x,y € Sy,. To verify that = + y
has thin boundary, let ¢t € S be nonzero. By Lemma 6.4, there is a nonzero element
s such that 2s < t¢. This implies

rty<Ler+sty+s<zxz+y+ti,

as required. O
Lemma 6.6. Let S be a simple, weakly cancellative Cu-semigroup satisfying (O5).

Let x,y,z € S satisfy x + z <y + z. Assume that x,y are soft, and that z has thin
boundary. Then x < y.

Proof. If x = 0 the result is trivial, so we may assume otherwise.
Let o' € S satisfy 2’ < z. Choose z/ € S such that 2/ < 2" < z. Since z is
nonzero and soft, there exists a nonzero ¢t € S with '/ + ¢ < z. Hence,

Ptz +(z+t) <z tz<y+z

Using weak cancellation, we get 2’ < y.
Since this holds for every 2’ way-below z, we get x < y. O

Lemma 6.7. Let S be a simple, weakly cancellative Cu-semigroup. Let xz,y € S
such that x +y has thin boundary. Then x and y have thin boundary.

Proof. To show that « has thin boundary, let ¢ € S be nonzero. Then
r+y<(zt+y) +t=(z+1)+y,

which, by weak cancellation, implies that * < x + ¢, as desired. Analogously, one
shows that y has thin boundary. |
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Lemma 6.8. Let S be a simple, stably finite Cu-semigroup satisfying (05). Let
x € S have thin boundary, and let s,t € S satisfy s < t. Assume that t is nonzero
and soft. Then x + s < x +1t.

Proof. Choose t' € S such that s < ¢ < t. Since t is nonzero and soft, there exists
a nonzero ¢ € S such that ¢/ + ¢ < t. Then

z+s<(z+co)+t <z+t,
as desired. O

Definition 6.9. Let S be a simple, soft Cu-semigroup. We say that x € S is
complementable if for every y € S satisfying x < y there exists z € S such that
r+z=1y.

The next result implies that elements with thin boundary are complementable;
see Corollary 6.11.

Proposition 6.10. Let S be a simple, stably finite Cu-semigroup satisfying (05)
and (06). Let x,y € S satisfy x < y. Assume that x has thin boundary and that
y is soft. Then there exists z € S such that x + z = y.

Proof. Applying [APT18, Proposition 5.1.19], the result is clear if S is elementary.
Thus, we may assume that S is nonelementary. The result is also clear if x = 0, so
we may assume that x # 0.

Step 1: We construct an increasing sequence (yn)n with supremum y and x <
Yo, and a sequence (sp)n of nonzero elements such that

Yn + Sn < Yn+1

for every n € N.

First, let (g, )n be any <-increasing sequence in S with supremum y. Set yo := x.
Since S is simple and stably finite, it follows from [APT18, Proposition 5.3.18] that
there exists a soft element 3’ such that yg < 3y’ < y. Since vy’ is nonzero and soft,
one can find a non-zero element sqg such that yg + sg < v/'.

Using that yo + sp and y; are way-below y, choose y; such that

Yo+ s0o <y, Y1 <y, and y K y.

Then y; < vy, and we can apply the previous argument once again to obtain
s1 # 0 such that y; +s1 < y. Using that y; +s1 and g are way-below y, we obtain
yo such that

Yo+so <y, Y1 <y, and y <y.
Continuing this way, we obtain the desired sequences (y, ), and (s, )n-

Step 2: We construct a sequence (ry,), of nonzero elements such that

(61) 27‘n~1»1 < TnySn+1, and Yn + Tn + Tn+1 < Yn+1

for every n € N.

Applying Lemma 6.4 for sp, we obtain a nonzero ro € S such that 2ry < sg.
Then, applying Lemma 6.4 for ry and s;, we obtain a nonzero r; € S such that
2ry < 19, s1. Continuing this way, we obtain a sequence (r,), such that 2r, ;1 <
Tn, Sn+1 for every n € N,

For each n € N, we have

yn+rn+rn+1 Syn"_zrn Syn+5n <<yn+17

which shows that (r,,), has the desired properties.
Step 3: We construct an <-increasing sequence (wy), and a sequence (vn)n,
such that

T+ Tnt1 F+on Syn ST+ 1+ Uy, Wy, K Ty + Upy Unt1, and Yn—1 ST+ wy
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for every n > 1.
To start, using Lemma 6.8 at the first step, we have
z+ry <Lz +r1 <yo+so < yi.
Applying (O5), we obtain v; € S such that
r+rot+v <yr <ax+r;+our.
Using that yo < y1, we can choose w; € S such that
Yo <z 4wy, and wy K7y 4 vg.
Next, let n > 1, and assume that we have chosen v,, and w,,. Using for the first
inequality that @ + rp41 + v, < y,, and (6.1), we have
T+ Tpg1 +7rn+Up < Yn+1, T+ Tpro KT+ Tpiq, and Wy K Ty + Uy
Applying (O5), we obtain v, 41 € S such that
x + Tn42 + Un+1 < Yn+1 <r+ Tn+1 + Un+1, and Wy, K Un+1-
Using that v, < yp4+1 and w, < vpt1 < rpg1 + Ung1, we obtain wy,4q1 € S such
that
Yn ST+ Wpy1, and wy, K Wpp1 K pp1 + Untl-
Now, the sequence (wy,), is increasing, which allows us to set z := sup,, w,. For
every n > 1, we have
T+ Wy ST+ Unt1 S Ynt2 S Y
and therefore z 4+ z < y. Further, for every n > 1, we have
Yn ST+ wWpy1 ST+ 2
and therefore y < x + z. This implies x + z = y. a

Corollary 6.11. Let S be a simple, soft, stably finite Cu-semigroup satisfying (05)
and (06). Then every element in S with thin boundary is complementable.

If we additionally assume that S is weakly cancellative, then the converse of
Corollary 6.11 also holds:

Theorem 6.12. Let S be a simple, soft, weakly cancellative Cu-semigroup satisfy-
ing (05) and (06), and let x € S satisfy * < co. Then x has thin boundary if and
only if x is complementable.

Proof. The forwards implication follows from Corollary 6.11. To show the back-
wards implication, assume that x is complementable. To verify that x has thin
boundary, let ¢t € S be nonzero. Choose a nonzero element ¢ € S with ¢ < t.
Then x < oo = oot’, which allows us to choose n > 1 such that x < nt’. Choose
t1,...,t, € .S such that

Vst €. . Kty < L.

Set y :=t; + ...+ t,. Then z < nt’ < y. Since x is complementable, we obtain
z € S such that z + z = y.

Note that

Y=ti4...+tn <tot...+t<y+t,
and therefore
r+z=y<Lyt+t=r+z+t.

By weak cancellation, we obtain z < x + ¢, as desired. ([l
Theorem 6.13. Let S be a simple, soft, weakly cancellative Cu-semigroup satisfy-

ing (O5) and (06). Then Sy, is a cancellative monoid. Further, x,y € Sy, satisfy
z Ky if and only if there exists z € S} with v + z = y.
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Proof. By Lemma 6.5 and 6.6, Sy, is a cancellative monoid. Let x,y € Sy,. If
x < y, then by Theorem 6.12 there exists z € S such that x + 2 = y. Since y is not
compact, we have z # 0. Further, by Lemma 6.7, we have z € Si,. Conversely, if
z € S is nonzero such that x 4+ z =y, then * < z + z = y by definition. d

7. SIMPLE, ZERO-DIMENSIONAL CUNTZ SEMIGROUPS

In this section, we study countably based, simple, weakly cancellative Cu-semi-
groups S that satisfy (O5) and (O6) (for example the Cuntz semigroups of separable,
simple C*-algebras of stable rank one). First, we prove a dichotomy: If S is zero-
dimensional, then S is either algebraic or soft; see Lemma 7.1. Conversely, if S is
algebraic, then S is automatically zero-dimensional by Corollary 5.3. On the other
hand, if S is soft, then S is zero-dimensional if and only if the elements with thin
boundary are sup-dense; see Theorem 7.8. We deduce that S is zero dimensional if
and only if S is the retract of a simple, algebraic Cu-semigroup; see Theorem 7.10.

This should be compared with Corollary 5.9, where we showed that a separable,
simple, Z-stable C*-algebra has zero-dimensional Cuntz semigroup if and only if A
has real rank zero or A is stably projectionless.

Lemma 7.1. Let S be a simple, weakly cancellative Cu-semigroup satisfying (05).
Assume that dim(S) =0 and S # {0}. Then, S is either algebraic or soft.

Proof. Assume that S is not soft. Then there exists a nonzero compact element in
S, which by Lemma 5.5 implies that S is algebraic. g

Lemma 7.2. Let S be a simple, weakly cancellative Cu-semigroup satisfying (O5)
and (06). Assume that Sy, is sup-dense. Let x,y,z € S satisfy © < y + z, and
assume that x has thin boundary and z is soft. Then there exist v,w € Sy, such
that

r=v+w, vy, and w<KLz.

Proof. If S is elementary, then it follows from [APT18, Proposition 5.1.19] that
S = {0}. Thus, we may assume that S is nonelementary. We may also assume
that z is nonzero, since otherwise v = x and w = 0 trivially satisfy the required
conditions.

Choose 2’ € S such that

r<Ly+2, and 2 <z

Using that z is nonzero and soft, we obtain a nonzero ¢t € S such that 2’ +t < z.
Since z has thin boundary, we have z < z + ¢, which allows us to choose ' € S
such that

¥ <<+t
Since Sy, is sup-dense, we may assume that 2’ has thin boundary.
Applying (O6) to 2’ < x < y + 2/, we obtain e, f € S such that
<e+f, e<xy and f<x 2.

Since Sip, is sup-dense, we may assume that e has thin boundary.
By Corollary 6.11, e is complementable. Thus, we obtain ¢ € S such that
e+ c=x. Then
etc=ax < +t<e+ f+t.

By weak cancellation, we get ¢ < f + ¢ and therefore
cL fHt<d+t< 2

By Lemma 6.7, e and ¢ have thin boundary. Hence, v := e and w := ¢ have the
desired properties. ]
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Proposition 7.3. Let S be a simple, soft, weakly cancellative Cu-semigroup sat-
isfying (05) and (06). Assume that Sy is sup-dense. Then Sy, is a simple,
cancellative refinement monoid and dim(S) = 0.

Proof. By Theorem 6.13, Sy, is a cancellative monoid such that x,y € Sy, satisfy
z < y if and only if there exists z € S} with 242z = y. This implies that ,y € Sy,
satisfy « <.z y if and only if v = y or < y.

It follows from Lemma 7.2 that S;p, satisfies the Riesz decomposition property
for the pre-order induced by <. Hence, dim(S) = 0 by Proposition 5.2.

Since Sip, is a cancellative monoid, to show that it is a refinement monoid it
suffices to show that it satisfies the Riesz decomposition property for the algebraic
partial order <,j,. Let x,y, 2 € Sy, satisfy x <n, y+2. We need to find ¢/, 2’ € Sy,
such that = y' +2/, v’ <a, y and 2’ <4, 2. We either have z = y+z or z < y+2.
In the first case, 3’ := y and 2’ := 2 have the desired properties. In the second
case, we apply Lemma 7.2 to obtain 3/, 2’ € Sy, such that x = ¢ + 2/, ¥ < y and
2! < z. Then y' <u¢ y and 2’ <4, 2z, which shows that ' and 2’ have the desired
properties. Using that S is simple, it easily follows that Sy is a simple monoid. [

Example 7.4. Let Z be the Cuntz semigroup of the Jiang-Su algebra Z. Then

every element of Z has thin boundary, yet Z is neither algebraic nor soft, and

therefore Z is not zero-dimensional. (We have dim(Z) = 1 by Example 3.19.)
This show that Proposition 7.3 does not hold without assuming that S is soft.

Next, we prove the converse of Proposition 7.3: Zero-dimensionality implies that
Sip is sup-dense. We start with a crucial technical result.

Lemma 7.5. Let S be a weakly cancellative Cu-semigroup satisfying (05), and let
2 2" x et €S satisfy

<z’ and 2" +t<zr<e<KLe+t.
Assume that dim(S) = 0. Then there exists y such that
r<y<z, and y<y+t
Proof. Applying (05) to 2’ < 2" < e, we obtain ¢ € S such that
r+e<e<a’+ec.

Then
e<e+t<a"+c+i.
Using that dim(S) = 0, we obtain u,v € S such that

vz, v<ce+t, and e<ut+v<e+t
Then
J;’+c§e<<u+v§u+c+t,
Using weak cancellation, we get ' < u + t. Further, we have
ut+tv<Le+t<ut+v+t

and therefore u < u + t by weak cancellation.
Choose t' € S such that

V<t, 2 <u+t, and u<u+t.
Set y := u +t'. Then
¥ <u+t =y, and y=u+t' <z’ +t< .
Using that v < v+t and ¢’ < ¢, we get
y=u+t <u+t' +t=y+t,
which shows that y has the desired properties. |
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Lemma 7.6. Let S be a countably based, simple, soft, weakly cancellative Cu-sem-
igroup satisfying (0O5) and (06).
Assume that for every x',z,t € S satisfying ' < x and t # 0 there existsy € S
such that
ry<r, y<Ly+t
Then for every x',x € S satisfying ¥’ < x there exists y € S with thin boundary
such that ¥’ < y < .

Proof. Using that S is countably based, we can choose a sequence (¢, ),en of nonzero
elements such that for every nonzero ¢t € S there exists n with ¢, < t.

To prove the statement, let ',z € S satisfy 2/ < z. By assumption, we can
choose yg € S with 2/ < yo < x and yo < yo + to. Choose y(, such that

<Ly L yo L, Yo L Yo+ to-

Next, applying the assumption for y{, yo, t1, we obtain y; such that y) < y1 < yo
and y; < y; + t1. Then choose yj such that

Yo <Y <<yt <yo, 1 <Yyt
Inductively, choose y!, and y,, such that
Ly L LYy, Ly L LYo L Xy Yo L Y+ e

Set y := sup, y,,. Then 2/ <« y) < y < yo < x. To show that y has thin
boundary, let ¢ € S be nonzero. By choice of ()., there exists n such that ¢,, <.
Then

Y<yn <yp+tta Sy+t, Syt
as desired. d
Proposition 7.7. Let S be a countably based, simple, soft, weakly cancellative
Cu-semigroup satisfying (05) and (06). Assume that dim(S) = 0. Then Sy, is
sup-dense, that is, the elements with thin boundary form a basis.

Proof. We verify the assumption of Lemma 7.6, which then proves the statement.
Let 2/, x,t € S satisfy 2’ < x and ¢ # 0. We need to find y € S such that

Y y<Le, y<Ly+t.

If ' = 0, then set y := 0. Thus, we may assume from now on that z’ is nonzero.
Choose z”,u € S such that

< <u<ke.

Since u is nonzero and soft, we obtain a nonzero element s € S such that " +s < u.
By Lemma 6.4, there exists a nonzero r € S with r < s, t.

Choose a nonzero v’ € S such that ' < r. Then u < oo = oor’, which allows
us to choose n > 1 such that u < nr’. Choose ry,...,r, € S such that

P Ly L .. Ly L

Set e ;=71 + ...+ r,. As in the proof of Theorem 6.12, we obtain ¢ < e + r, and
consequently e < e + t. Further, we have

<2, ' +r<i’+s<u<n <e<ge+t.
Applying Lemma 7.5, we obtain y € S such that
¥ <y<u, and y<y+t,
Now y has the desired properties. a

Theorem 7.8. Let S be a countably based, simple, soft, weakly cancellative Cu-
semigroup satisfying (05) and (O6). Then the following are equivalent:
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(1) dim(S) =0;

(2) the elements with thin boundary are sup-dense;

(3) there exists a countably based, simple, algebraic, weakly cancellative Cu-
semigroup T satisfying (05) and (O6) such that S = Ty

Proof. By Proposition 7.7, (1) implies (2). Conversely, (2) implies (1) by Proposi-
tion 7.3. To show that (3) implies (1), let 7" be as in (3) such that S = T,,g. Using
Proposition 3.17 at the second step, and using Corollary 5.3 at the last step, we get

dim(S) = dim(Tyost) < dim(T") = 0.

Finally, assuming (2) let us verify (3). By Proposition 7.3, Sy, is a simple,
cancellative refinement monoid. Using that S is countably based and that Sy, is
sup-dense, we can choose a countable subset My C Sy, that is sup-dense.

By successively adding elements to My we can construct a countable refinement
submonoid M C Si, such that the algebraic order on M agrees with the restriction
of the algebraic order on Sy, to M, that is, (M, <ag) — (Sib, <alg) is an order-
embedding. Set T := Cu(M, <,i), the sequential round ideal completion of M
with respect to the algebraic partial order; see [APT18, Section 5.5]. Then T is a
countably based, algebraic Cu-semigroup. Using that M is a cancellative monoid
that is algebraically ordered and that satisfies the Riesz decomposition property, it
follows from [APT18, Proposition 5.5.8] that 1" is weakly cancelaltive and satisfies
(O5) and (06). Using that M is a simple monoid, it follows that 7" is simple.

Recall that a subset I C M is an interval if I is downward hereditary and upward
directed. Since M is countable, we can identify T" with the set of intervals in M,
ordered by inclusion. The compact elements in T are precisely the intervals {y €
M :y <. x} for z € M. Thus, the nonzero soft elements in 7" are precisely the
intervals that do not contain a largest element. Using that every upward directed
set in a countably based Cu-semigroup has a supremum, we can define a: Tyors — S
by

a(I) :=supl,
for every (soft) interval I C M. It is now straightforward to verify that « is an
isomorphism. O

Remark 7.9. There is no canonical choice for the algebraic Cu-semigroup 7" in
Theorem 7.8(3). Take for example S = [0,00]. For every supernatural number ¢
satisfying ¢ = ¢* # 1, we consider the UHF-algebra M, of infinite type, and
set Ry = Cu(M,); see [APT18, Section 7.4]. Then R, is a countably based,
simple, algebraic, weakly cancellative Cu-semigroup satisfying (O5) and (O6), and
(Rg)sots = [0, o0].

Given a countably based, simple, soft, weakly cancellative Cu-semigroup S sat-
isfying (O5) and (O6), we can consider T := Cu(Sso, <alg), which is a simple,
algebraic, weakly cancellative Cu-semigroup satisfying (O5) and (O6) such that
S = Tiot. However, T is not countably based since every basis of T' contains all
compact elements of T" and so has at least the cardinality of Siy,.

Recall the notion of a retract from Definition 3.14.

Theorem 7.10. Let S be a countably based, simple, weakly cancellative Cu-sem-
igroup satisfying (05) and (0O6). Then S is zero-dimensional if and only if S is
a retract of a countably based, simple, algebraic, weakly cancellative Cu-semigroup
satisfying (05) and (O6).

Proof. By Lemma 7.1, S is either algebraic or soft. In the first case, we consider S
as a retract of itself. In the second case, the result follows from Theorem 7.8 and
Proposition 3.16. ]
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Question 7.11. Is every zero-dimensional, weakly cancellative Cu-semigroup sat-
isfying (O5) a retract of a weakly cancellative, algebraic Cu-semigroup satisfying

(05) and (06)?

Recall that a partially ordered set M has the Riesz interpolation property if for
all o, x1,y0,y1 € M satisfying z; < y; for all j,k € {0,1}, there exists z € M
such that z; < z < y,, for all j,k € {0,1}. By [APRT18, Theorem 3.5], Cuntz
semigroups of stable rank one C*-algebras have the Riesz interpolation property.

Recall that a Cu-semigroup S is said to be almost divisible if for all n € N and
z',x € S satisfying 2/ < x there exists y € S such that ny < z and 2’ < (n+ 1)y;
see [APT18, Definition 7.3.4].

Lemma 7.12. Let S be a retract of a Cu-semigroup T. Then, if T is almost
divisible, so is S. Further, if T has the Riesz interpolation property, then so does S.

Proof. Let v: S — T be a Cu-morphism, and let o: T' — S be a generalized Cu-
morphism with o ot = idg.

First, assume that T has the Riesz interpolation property. Let xg,z1,y0,y1 € S
satisfy z; <y, for all j,k € {0,1}. Then ¢(z;) < ¢(yx) in T for all j,k € {0,1}. By
assumption, there is z € T such that ¢(z;) < z < ¢(yx) and thus z; < o(z) < y;, for
all 4,k € {0,1}. Thus, o(z) has the desired properties.

Next, assume that T is almost divisible. Let n € N and let 2/, € S satisfy
2’ < z. Then «(2’) < «(z) in T. By assumption, there exists y € T such that
ny < (z) and ¢(z') < (n+ 1)y. Then no(y) <z and z’ < (n+ 1)o(y). O

Proposition 7.13. Let S be a zero-dimensional, countably based, simple, weakly
cancellative, nonelementary Cu-semigroup satisfying (05). Then S satisfies the
Riesz interpolation property and is almost divisible.

Proof. By Theorem 7.10, there exists a countably based, simple, algebraic, weakly
cancellative Cu-semigroup 7T satisfying (O5) and (O6) such that S is a retract of T'.
Then T, is a simple, cancellative refinement monoid, and therefore T, has the Riesz
interpolation property. Hence, T has the Riesz interpolation property by [APT18,
Proposition 5.5.8(3)].

Since S is nonelementary, it follows from [APGPSM10, Theorem 6.7] that T is
weakly divisible, that is, for every € T, there exist y, z € T, such that x = 2y+3z.
This implies that T is almost divisible.

Now the result follows from Lemma 7.12. O

Question 7.14. Let S be a countably based, simple, weakly cancellative Cu-sem-
igroup satisfying (O5) and (O6). Assume that S is almost divisible and has the
Riesz interpolation property. Is S zero-dimensional?

Question 7.15. Let S be a zero-dimensional, weakly cancellative Cu-semigroup
satisfying (O5). Does S have the Riesz interpolation property? Assuming also that
S has no elementary quotients, is S almost divisible?

Note that a positive answer to Question 7.11 entails a positive answer to Ques-
tion 7.15.
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