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NOWHERE SCATTERED C*-ALGEBRAS

HANNES THIEL AND EDUARD VILALTA

Abstract. We say that a C∗-algebra is nowhere scattered if none of its quo-
tients contains a minimal projection. We characterize this property in various
ways, by topological properties of the spectrum, by divisibility properties in
the Cuntz semigroup, by the existence of Haar unitaries for states, and by the
absence of nonzero ideal-quotients that are elementary, scattered or type I.

Under the additional assumption of real rank zero or stable rank one, we
show that nowhere scatteredness implies even stronger divisibility properties

of the Cuntz semigroup.

1. Introduction

A topological space is said to be scattered if each of its nonempty closed subsets
contains an isolated point. Analogously, a C∗-algebra is scattered if each of its
nonzero quotients contains a minimal projection; see Section 2. In this paper, we
consider C∗-algebras that are very far from scattered:

Definition A. A C∗-algebra is nowhere scattered if none of its quotients contains
a minimal projection.

Similarly, we say that a topological space is nowhere scattered if none of its
closed subsets contains an isolated point; see Definition 5.1. Thus, one-element sets
cannot be closed, and nowhere scattered spaces are far from being T1, let alone
Hausdorff. In Section 5, we study this topological notion and the relation to its
noncommutative counterpart. We prove that a separable C∗-algebra is nowhere
scattered if and only if its spectrum is; see Theorem 5.3.

Besides this topological description, we also show that nowhere scatteredness ad-
mits various further characterizations: in terms of the structure of ideal-quotients
(Section 3), by the existence of Haar unitaries and maximal abelian subalgebras
with diffuse spectrum (Section 6), and by divisibility properties of the Cuntz semi-
group (Section 8). We present a number of these characterizations in Theorem B
below.

For C∗-algebras of real rank zero, nowhere scatteredness can be described in
terms of divisibility properties of the Murray-von Neumann semigroup of projec-
tions; see Theorem 9.1. However, in contrast with the Cuntz semigroup, this in-
variant does not contain enough information to characterize nowhere scatteredness
in the general setting; see Remark 9.2. In Theorem 9.11, we also provide additional
characterizations of nowhere scatteredness for C∗-algebras of stable rank one.
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2 HANNES THIEL AND EDUARD VILALTA

Theorem B (3.1, 6.2, 8.9). Let A be a C∗-algebra. Then the following are equiv-
alent:

(1) A is nowhere scattered;
(2) every quotient of A is antiliminal;
(3) A has no nonzero elementary/scattered/type I ideal-quotients;
(4) no hereditary sub-C∗-algebra ofA admits a one-dimensional (a finite-dimen-

sional) irreducible representation;
(5) every positive functional (pure state) on A is nowhere scattered;
(6) for every pure state ϕ on A and every ideal I ⊆ A, there exists a Haar

unitary in Ĩ for ϕ (there exists a masa C0(X) ⊆ I such that ϕ induces a
diffuse measure on X with total mass ‖ϕ|I‖);

(7) for every positive functional ϕ on A and every hereditary sub-C∗-algebra

B ⊆ A, there exists a Haar unitary in B̃ for ϕ (there exists a masa C0(X) ⊆
B such that ϕ induces a diffuse measure on X with total mass ‖ϕ|B‖);

(8) every element in Cu(A) is weakly (2, ω)-divisible;
(9) every element in Cu(A) is weakly (k, ω)-divisible for every k ≥ 2.

In Section 4, we study permanence properties of such C∗-algebras.

Proposition C (4.1, 4.6). Nowhere scatteredness passes to hereditary sub-C∗-
algebras (in particular, ideals), to quotients, and to inductive limits.

Further, nowhere scatteredness satisfies the Löwenheim-Skolem condition: For
every nowhere scattered C∗-algebra, the collection of separable, nowhere scattered
sub-C∗-algebras is σ-complete and cofinal among all separable sub-C∗-algebras; see
Proposition 4.11.

The concept of nowhere scattered C∗-algebras has implicitly appeared in the
literature before, but not under this name (or any name for that matter). For
example, our characterizations in terms of divisibility properties of Cu(A) can also
be derived from results in [RR13]; see Remark 8.10. Nowhere scattered, real rank
zero C∗-algebras have been considered in [PRr04, ER06].

The term ‘nowhere scattered’ was first used in [Thi20a] to name positive func-
tionals on C∗-algebras that give no weight to scattered ideal-quotients. It is the
purpose of this paper to initiate a systematic study of nowhere scatteredness by
collecting, systematizing and complementing existing results.

Terminology and notation. An ideal in a C∗-algebra means a closed, two-sided
ideal. Given a C∗-algebra A, we use A+ to denote the positive elements in A. Given
a Hilbert space H, we let B(H) denote the C∗-algebra of bounded, linear operators
on H, and K(H) is the ideal of compact operators.

2. Scattered C*-algebras

Following [Jen77, Definition 2.1], a C∗-algebra is said to be scattered if each
of its states is atomic, that is, a countable weighted sum of pure states. This
definition is inspired by a result of Pe lczyński and Semadeni, [PS59], which states
that a compact, Hausdorff space X is scattered if and only if every regular Borel
probability measure onX is atomic. Scatteredness admits various characterizations,
both for topological spaces and for C∗-algebras – and several of these descriptions
are remarkably similar in the two settings; see Paragraph 2.1.

Note that a locally compact, Hausdorff space X is scattered if and only if its one-
point compactification is, and this is in turn equivalent to C0(X) being a scattered
C∗-algebra. Thus, it follows from [Kus12] that a C∗-algebra A is scattered if and
only if for each commutative sub-C∗-algebra C0(X) ⊆ A the space X is scattered.
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2.1. Let A be a C∗-algebra (X be a locally compact, Hausdorff space). Then, the
following are equivalent:

(1) A is scattered, that is, every state on A is atomic;
(every regular Borel probability measure on X is atomic, [PS59])

(2) A∗∗ is an atomic von Neumann algebra, that is, A∗∗ is isomorphic to a
product of type I factors, [Jen77, Theorem 2.2];

(3) A∗ has the Radon-Nikodỳm property, [Chu81];
(4) B∗ is separable for every separable sub-C∗-algebra B ⊆ A;
(5) A admits a composition series (Iλ)λ such that each successive quotient

Iλ+1/Iλ is elementary, [Jen78, Theorem 2];

(6) A is type I and Â is scattered, [Jen78, Corollary 3];
(7) A is type I and the center of A is scattered, [Kus10, Theorem 2.2];
(8) every sub-C∗-algebra of A has real rank zero, [Kus12, Theorem 2.3];

(every continuous image of X is zero-dimensional, [PS59]);
(9) every nonzero sub-C∗-algebra of A contains a minimal projection;

(10) the spectrum of every self-adjoint element in A is countable, [Hur78];
(every continuous function X → R has countable range, [Sem71, Corol-
lary 8.5.6])

(11) every quotient of A contains a minimal projection, [GK18, Theorem 1.4];
(every closed subset of X contains an isolated point, by definition)

(12) there exists no sub-C∗-algebra C0((0, 1]) ⊆ A;
(there is no continuous, surjective map X → [0, 1], [PS59])

3. Nowhere scattered C*-algebras

In this section we prove basic characterizations of nowhere scatteredness; see
Theorem 3.1. We observe that (weakly) purely infinite C∗-algebras are nowhere
scattered, and we show that a von Neumann algebra is nowhere scattered if and
only if its type I summand is zero; see Example 3.3 and Proposition 3.4 respectively.

Recall that a minimal projection in a C∗-algebra A is a nonzero projection p
such that pAp = Cp. A C∗-algebra is elementary if it is isomorphic to the algebra
of compact operators on some Hilbert space.

An ideal-quotient of a C∗-algebra A is a (closed, two-sided) ideal of a quotient
of A. A relatively open subset of a closed subset of a topological space is said to be
locally closed. Using the correspondence between ideals (quotients) of A and open
(closed) subsets of its primitive ideal space Prim(A), it follows that ideal-quotients
of A correspond to locally closed subsets of Prim(A).

An element a ∈ A+ is abelian if the heredtiary sub-C∗-algebra aAa is commuta-
tive. A C∗-algebra is antiliminal if it contains no nonzero abelian positive elements;
see [Bla06, Definition IV.1.1.6]. An irreducible representation π : A→ B(H) is said
to be GCR if π(A) ∩ K(H) 6= {0}.
Theorem 3.1. Let A be a C∗-algebra. Then the following are equivalent:

(1) A is nowhere scattered (no quotient contains a minimal projection);
(2) every quotient of A is antiliminal;
(3) A has no nonzero ideal-quotients of type I;
(4) A has no nonzero scattered ideal-quotients;
(5) A has no nonzero elementary ideal-quotients;
(6) A has no nonzero irreducible GCR representation;
(7) no hereditary sub-C∗-algebra of A admits a finite-dimensional irreducible

representation;
(8) no hereditary sub-C∗-algebra of A admits a one-dimensional irreducible rep-

resentation.
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Proof. Let us first prove that (1) implies (2). Assume that there exists an ideal
I ⊆ A such that A/I is not antiliminal. Set B := A/I and choose a nonzero,
abelian element b ∈ B+. This allows us to obtain an ideal J ⊆ bBb such that
bBb/J ∼= C. Let K ⊆ B be the ideal generated by J . Since bBb ⊆ B is hereditary,
we have K ∩ bBb = J . It follows that the image of bBb under the quotient map
B → B/K is isomorphic to bBb/J , and so B/K contains a minimal projection,
which contradicts (1), as required.

To show that (2) implies (3), let I ⊆ J ⊆ A be ideals such that J/I is nonzero
and of type I. Then J/I contains a nonzero, abelian element, whence A/I is not
antiliminal. The implications ‘(3)⇒(4)⇒(5)’ follow using that every elementary
C∗-algebra is scattered, and that every scattered C∗-algebra is type I.

Now assume that there exists a nonzero irreducible GCR representation π : A→
B(H). Then K(H) ⊆ π(A) by [Bla06, Corollary IV.1.2.5]. Let I be the kernel of π,
and set J := π−1(K(H)). Then I ⊆ J ⊆ A are ideals such that J/I ∼= K(H). This
proves that (5) implies (6).

To see that (6) implies (7), let B ⊆ A be a hereditary sub-C∗-algebra, and
let π0 : B → B(H0) be a nonzero, finite-dimensional irreducible representation.
Extend π0 to an irreducible representation π : A→ B(H) on some Hilbert space H
containing H0, such that H0 is invariant under π(B) and such that π(b)ξ = π0(b)ξ
for all b ∈ B and ξ ∈ H0; see [Bla06, Proposition II.6.4.11]. Since B is hereditary,
π|B is irreducible ([Bla06, Proposition II.6.1.9]) and we get π(b)ξ = 0 for all ξ ∈ H⊥0 .
Thus, π(B) ⊆ K(H), and it follows that π is GCR.

The implication ‘(7)⇒(8)’ is clear. Finally, to see that (8) implies (1), let I ⊆ A
be an ideal and let p ∈ A/I be a minimal projection. Let π : A → A/I be the
quotient map. Set B := π−1(Cp). Then B is a hereditary sub-C∗-algebra of A that
admits a nonzero, one-dimensional representation. �
Example 3.2. A simple C∗-algebra is nowhere scattered if and only if it is not
elementary. In particular, a unital simple C∗-algebra is nowhere scattered if and
only it is infinite-dimensional.

Example 3.3. A C∗-algebra A is purely infinite (in the sense of Kirchberg-Rørdam,
[KR00, Definition 4.1]) if and only if every element x of its Cuntz semigroup Cu(A),
as defined in Paragraph 7.1, satisfies 2x = x; see [KR00, Theorem 4.16] and [APT18,
Proposition 7.2.8].

More generally, A is said to be weakly purely infinite if there exists n ∈ N such
that every x ∈ Cu(A) satisfies 2nx = nx; see [KR02, Definition 4.3]. Every purely
infinite C∗-algebra is weakly purely infinite, and it is an open problem if the converse
holds.

A C∗-algebra A is traceless if no algebraic ideal of A admits a nonzero quasitrace;
see [KR02, Definition 4.2]. Equivalently, every lower-semicontinuous 2-quasitrace
A+ → [0,∞] (in the sense of [ERS11]) takes only values in {0,∞}. Using the
correspondence between quasitraces on A and functionals on Cu(A), this is also
equivalent to the property that every x ∈ Cu(A) satisfies 2x̂ = x̂. Consequently,
every weakly purely infinite C∗-algebra is traceless; see [KR02, Theorem 4.8].

Since every elementary C∗-algebra admits a nontrivial quasitrace, it follows that
a traceless C∗-algebra cannot have nonzero elementary ideal-quotients. Using The-
orem 3.1, we deduce that every traceless C∗-algebra is nowhere scattered. In par-
ticular, every (weakly) purely infinite C∗-algebra is nowhere scattered.

Proposition 3.4. A von Neumann algebra is nowhere scattered if and only if its
type I summand is zero.

Proof. Let M be a von Neumann algebra. To show the forward implication, assume
that M is nowhere scattered. If p ∈ M is a nonzero abelian projection, then
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the hereditary sub-C∗-algebra pMp is commutative and therefore admits a one-
dimensional irreducible representation. Thus, it follows from Theorem 3.1 that M
contains no nonzero abelian projections, and thus its type I summand is zero.

To show the converse implication, assume that the type I summand of M is zero.
To reach a contradiction, assume that B ⊆M is a hereditary sub-C∗-algebra that
admits a finite-dimensional, irreducible representation π; see Theorem 3.1. Choose
a projection p ∈ B such that π(p) 6= 0. Since M has no type I summand, for each
n ≥ 1 we can find 2n pairwise orthogonal and equivalent projections whose sum is
equal to p; see [Tak02, Proposition V.1.35]. This contradicts that π(p) has nonzero,
finite rank. �

4. Permanence properties

In this section, we show that nowhere scatteredness enjoys many permanence
properties. In particular, it passes to hereditary sub-C∗-algebras (hence, ideals),
quotients, and inductive limits.

Proposition 4.1. Let A be a nowhere scattered C∗-algebra. Then every quotient
and every hereditary sub-C∗-algebra of A is nowhere scattered.

Proof. This follows from Theorem 3.1, since condition (2) passes to quotients, and
condition (7) passes to hereditary sub-C∗-algebras. �
Proposition 4.2. Let A be a C∗-algebra, and let I ⊆ A be an ideal. Then A is
nowhere scattered if (and only if) I and A/I are nowhere scattered.

Proof. Assume that I and A/I are nowhere scattered. To verify condition (4)
of Theorem 3.1, let J ⊆ K ⊆ A be ideals such that K/J is scattered. Then
I ∩ J ⊆ I ∩K ⊆ I are ideals such that (I ∩ J)/(I ∩K) is isomorphic to an ideal of
K/J and therefore scattered. Since I is nowhere scattered, we get I ∩ J = I ∩K.

Similarly, J/I ∩ J ⊆ K/I ∩K ⊆ A/I are ideals such that (J/I ∩ J)/(K/I ∩K)
is isomorphic to a quotient of J/K and therefore scattered. Since A/I is nowhere
scattered, we get J/I ∩ J = K/I ∩K. It follows that J = K. �

A C∗-algebra is scattered if and only if each of its sub-C∗-algebras has real rank
zero; see Paragraph 2.1. It follows that every sub-C∗-algebra of a scattered C∗-
algebra is again scattered. The analog for nowhere scatteredness does not hold:
Take, for example, C ⊆ A in any unital, nowhere scattered C∗-algebra A.

Conversely, given a full sub-C∗-algebra B ⊆ A, it is natural to ask if A is nowhere
scattered whenever B is. Without extra assumptions, this fails: Consider for ex-
ample a type II factor M ⊆ B(H). By Proposition 3.4, M is nowhere scattered,
but B(H) contains an elementary ideal and therefore is not nowhere scattered. The
‘right’ additional condition is for B to separate the ideals of A, that is, two ideals
I, J ⊆ A satisfy I = J whenever I ∩B = J ∩B.

Proposition 4.3. Let A be C∗-algebra, and let B ⊆ A be a nowhere scattered
sub-C∗-algebra that separates the ideals of A. Then A is nowhere scattered.

Proof. Let I ⊆ J ⊆ A be ideals with J/I scattered. In order to prove condition (4)
in Theorem 3.1, we show that this ideal-quotient is zero.

Note that (J ∩ B)/(I ∩ B) is scattered since it is isomorphic to a subalgebra of
J/I. Since B is nowhere scattered, it follows that J ∩B = I ∩B, and thus J = I,
as desired. �
Example 4.4. Consider an action of an exact, discrete group G on a nowhere

scattered C∗-algebra A. Assume that the induced action G y Â is essentially
free. Then, by [Sie10, Theorem 1.20], A separates the ideals of the reduced crossed
product Aored G. Hence, Aored G is nowhere scattered by Proposition 4.3.
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Given a C∗-algebra A, recall that a family (Aλ)λ∈Λ of sub-C∗-algebras Aλ ⊆ A
is said to approximate A if for every finite subset {a1, . . . , an} ⊆ A and ε > 0 there
exists λ ∈ Λ and b1, . . . , bn ∈ Aλ such that ‖ak − bk‖ < ε for k = 1, . . . , n.

Proposition 4.5. Let A be C∗-algebra, and let (Aλ)λ∈Λ be a family of nowhere
scattered sub-C∗-algebras of A that approximates A. Then A is nowhere scattered.

Proof. As above, let us prove condition (4) of Theorem 3.1. Take I ⊆ J ⊆ A ideals
such that J/I is scattered. For each λ, the ideal-quotient (Aλ ∩ J)/(Aλ ∩ I) of Aλ
is isomorphic to a subalgebra of J/I and therefore scattered. Since Aλ is nowhere
scattered, we get Aλ ∩ J = Aλ ∩ I. Using that (Aλ)λ∈Λ approximates A, it follows
that J = I. �

Proposition 4.6. An inductive limit of nowhere scattered C∗-algebras is nowhere
scattered.

Proof. Let Λ be a directed set, let (Aλ)λ∈Λ be a family of nowhere scattered C∗-
algebras, and let ϕκ,λ : Aλ → Aκ be coherent connecting morphisms for λ ≤ κ
in Λ. The inductive limit of this system is given by a C∗-algebra A together with
morphisms into the limit ϕλ : Aλ → A. For each λ, set Bλ := ϕλ(Aλ) ⊆ A. Then
Bλ is a quotient of Aλ, and therefore is nowhere scattered by Proposition 4.1. It
follows from standard properties of the inductive limit that (Bλ)λ approximates A.
Hence, A is nowhere scattered by Proposition 4.5. �

Lemma 4.7. Let A be a C∗-algebra, and let a ∈ A+. Then aAa has no one-
dimensional irreducible representations if and only if there exists a countable subset
G ⊆ A such that (axa)2 = 0 for each x ∈ G, and such that a ∈ C∗({axa : x ∈ G}).

Proof. Without loss of generality, we may assume that a is strictly positive and
thus A = aAa. To show the backward implication, assume that G has the stated
properties, and let π : A→ C be a one-dimensional representation. Given x ∈ G, we
have π(axa)2 = π((axa)2) = 0, and therefore π(axa) = 0. It follows that π(a) = 0,
and thus π = 0, as desired.

To show the forward implication, assume that A has no one-dimensional irre-
ducible representations. Set N2 := {y ∈ A : y2 = 0}. Let L denote the linear
span of the additive commutators in A. Then, A is generated by L as a (closed,
two-sided) ideal. By [Rob16, Theorem 1.3], the C∗-algebra generated by L agrees
with the (closed, two-sided) ideal generated by L. Hence, A = C∗(L). By [Rob16,
Corollary 2.3], the closure of L agrees with the closed, linear span of N2, which
implies that A = C∗(N2). This allows us to choose a countable subset F ⊆ N2

such that a ∈ C∗(F ). The statement now follows from the following claim:
Claim: Let y ∈ N2 and γ > 0. Then there exists x ∈ A such that axa ∈ N2 and

‖y − axa‖ < γ.
We may assume that ‖y‖ ≤ 1. By [Shu08, Theorem 5], the universal C∗-algebra

generated by a contractive, square-zero element is projective. This implies that
the corresponding relations are stable (see for example [Lor97, Theorem 14.1.4]),
that is, for every ε > 0 there exists δ = δ(ε) > 0 such that if z is an element
in a C∗-algebra satisfying ‖z‖ ≤ 1 and ‖z2‖ ≤ δ, then there exists a contractive,
square-zero element z′ with ‖z − z′‖ < ε.

For each n ≥ 1, let fn : R→ [0, 1] be a continuous function that takes the value 0
on (−∞, 1

n ] and that takes the value 1 on [ 2
n ,∞). Then (fn(a))n is an approximate

unit for A. Thus, limn→∞ ‖(fn(a)yfn(a))2‖ = 0. Thus, we can find m ≥ 1 such
that

‖(fm(a)yfm(a))2‖ < δ(γ2 ), and ‖y − fm(a)yfm(a)‖ < γ
2 .
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We view fm(a)yfm(a) as an element of the sub-C∗-algebra fm(a)Afm(a). Using

also that fm(a)yfm(a) is contractive, we obtain z ∈ fm(a)Afm(a) such that z2 = 0
and ‖z − fm(a)yfm(a)‖ < γ

2 . Then ‖y − z‖ < γ.
It remains to show that z = axa for some x ∈ A. Note that f2m(a) acts

as a unit on fm(a)Afm(a). Using functional calculus, choose b ∈ A such that
f2m(a) = ab = ba. We obtain

z = f2m(a)zf2m(a) = abzba,

and thus x := bzb has the claimed properties. �

Proposition 4.8. Let A be a C∗-algebra. Then the following are equivalent:

(1) A is nowhere scattered;
(2) for every a ∈ A+ there exists b ∈ A+ with ‖a − b‖ < 1

2 and such that

(b− 1
2 )+A(b− 1

2 )+ has no one-dimensional irreducible representations;

(3) for every a ∈ A+ there exist b ∈ A+ with ‖a − b‖ < 1
2 and a countable

subset G ⊆ A such that ((b− 1
2 )+x(b− 1

2 )+)2 = 0 for each x ∈ G and such

that (b− 1
2 )+ ∈ C∗({(b− 1

2 )+x(b− 1
2 )+ : x ∈ G}).

Proof. If A is nowhere scattered, then by Theorem 3.1 every hereditary sub-C∗-
algebra of A has no one-dimensional irreducible representations. This shows that (1)
implies (2). The equivalence between (2) and (3) follows from Lemma 4.7.

It remains to show that (2) implies (1). Thus, assume that (2) holds, and note
that it suffices to verify statement (8) of Theorem 3.1. So let B ⊆ A be a hereditary
sub-C∗-algebra. To reach a contradiction, let π : B → C be a one-dimensional
irreducible representation. Extend π to an irreducible representation π̃ of A on
some Hilbert space H, such that there is a one-dimensional subspace H0 ⊆ H that
is invariant under π̃(B), and such that π̃|B agrees with π on H0.

Choose a ∈ B+ with π(a) = 1. By assumption, we obtain b ∈ A+ such that

‖a− b‖ < 1
2 , and such that (b− 1

2 )+A(b− 1
2 )+ has no one-dimensional irreducible

representations. By [KR02, Lemma 2.2], there exists y ∈ A such that (b − 1
2 )+ =

yay∗. Set x := ya1/2. Then

(b− 1
2 )+ = xx∗, and x∗x ∈ aAa ⊆ B.

This implies that x∗Ax is isomorphic (as a C∗-algebra) to xAx∗. We have

xAx∗ = (b− 1
2 )+A(b− 1

2 )+, which does not have one-dimensional irreducible rep-

resentations. It follows that x∗Ax has no one-dimensional irreducible representa-
tions, and thus π vanishes on x∗Ax. Hence, π(x∗x) = 0, and π̃(x∗x) = 0. This
implies π̃(x) = 0, and so

π̃
(
(b− 1

2 )+

)
= π̃(xx∗) = 0.

But

‖a− (b− 1
2 )+‖ ≤ ‖a− b‖+ ‖b− (b− 1

2 )+‖ < 1,

and thus ‖π(a)‖ = ‖π̃(a)‖ < 1, a contradiction. �

Remark 4.9. In condition (2) of Proposition 4.8, it is not enough to require bAb
to have no one-dimensional irreducible representations. Indeed, in any unital C∗-
algebra A without one-dimensional irreducible representations (for example A =
M2), for every a ∈ A+ and ε > 0 we can set b = a + ε

2 ∈ A+, which satisfies

‖a− b‖ < ε and bAb = A.

Proposition 4.10. Let A be a nowhere scattered C∗-algebra, and let B0 ⊆ A be a
separable sub-C∗-algebra. Then there exists a separable, nowhere scattered sub-C∗-
algebra B ⊆ A such that B0 ⊆ B.
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Proof. We will inductively choose:

• an increasing sequence B0 ⊆ B1 ⊆ . . . of separable sub-C∗-algebras of A;
• for each k ≥ 0, a countable, dense subset Fk ⊆ (Bk)+;
• for each b ∈ Fk a countable set Gk,b ⊆ A such that ((b− 1

2 )+x(b− 1
2 )+)2 = 0

for every x ∈ Gk,b, and such that (b − 1
2 )+ belongs to the sub-C∗-algebra

generated by {(b− 1
2 )+x(b− 1

2 )+ : x ∈ Gk,b}.
We will also ensure that Gk,b ⊆ Bk+1 for each k ≥ 0 and b ∈ Fk.

Let k ≥ 0, and assume that we have chosen Bk. We will describe how to
choose Fk, Gk,b and Bk+1. First, let Fk be any countable, dense subset of (Bk)+.

For each b ∈ Fk, using that (b− 1
2 )+A(b− 1

2 )+ has no irreducible one-dimensional
representations (since A is nowhere scattered), we can apply Lemma 4.7 to obtain
a countable subset Gk,b ⊆ A with the claimed properties. Then let Bk+1 be the
sub-C∗-algebra of A generated by Bk together with

⋃
b∈Fk

Gk,b.

Set B :=
⋃
k Bk. Then B is a separable sub-C∗-algebra of A containing B0. To

see that B is nowhere scattered, we verify statement (3) of Proposition 4.8. So let
a ∈ B+. Using that

⋃
k Fk is dense in B+, we can find k and b ∈ Fk such that

‖a − b‖ < 1
2 . By construction, B contains the set Gk,b, which satisfies the desired

conditions. �

A property P for C∗-algebras satisfies the Löwenheim-Skolem condition if for
every C∗-algebra A with property P there exists a family S of separable sub-C∗-
algebras of A that each have property P, and such that S is σ-complete (for every

countable, directed subfamily D ⊆ S, the C∗-algebra
⋃D ⊆ A belongs to S)

and cofinal (for every separable sub-C∗-algebra B0 ⊆ A there exists B ∈ S with
B0 ⊆ B).

It is known that many interesting properties of C∗-algebras (such as real rank
zero, stable rank one, nuclearity, simplicity) satisfy the Löwenheim-Skolem condi-
tion.

For properties of Cu-semigroups, the Löwenheim-Skolem condition was consid-
ered in [TV21b], where it was also shown that properties like (O5), (O6) and weak
cancellation each satisfy it; see Sections 7 and 9 for definitions.

Proposition 4.11. Let A be a nowhere scattered C∗-algebra. Then the family S
of separable, nowhere scattered sub-C∗-algebras of A is σ-complete and cofinal. In
particular, nowhere scatteredness satisfies the Löwenheim-Skolem condition.

Proof. To show that S is σ-complete, let D ⊆ S be a countable, directed subfamily.
Then

⋃D is the inductive limit of D, considered as a net indexed over itself. Hence,

it follows from Proposition 4.6 that
⋃D is nowhere scattered and thus belongs to S,

as desired. Further, by Proposition 4.10, S is cofinal. �

Proposition 4.12. Let A and B be Morita equivalent C∗-algebras. Assume that
A is nowhere scattered. Then so is B.

In particular, a C∗-algebra D is nowhere scattered if and only if its stabilization
D ⊗K is.

Proof. By [Bla06, Theorem II.7.6.9], A and B are isomorphic to complementary full
corners in another C∗-algebra, that is, there exists a C∗-algebra C and a projection
p ∈M(C) such that pCp and (1− p)C(1− p) are full (hereditary) sub-C∗-algebras
of C satisfying A ∼= pCp and B ∼= (1− p)C(1− p).

Assuming that A is nowhere scattered, it follows that pCp is as well. Since pCp
is a full hereditary sub-C∗-algebra, it separates the ideals of C. Hence, C is nowhere
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scattered by Proposition 4.3. Using that (1 − p)C(1 − p) is a hereditary sub-C∗-
algebra of C, it is nowhere scattered by Proposition 4.1. Thus, B is nowhere
scattered. �

Proposition 4.13. Let (Aj)j∈J be a family of nowhere scattered C∗-algebras. Then
the direct sum

⊕
j∈J Aj is nowhere scattered.

Proof. By Proposition 4.2, nowhere scatteredness passes to sums of finitely many
summands. Thus, for every finite subset F ⊆ J , the sum

⊕
j∈F Aj is nowhere

scattered. Now the result follows from Proposition 4.6, using that
⊕

j∈J Aj is

the inductive limit of
⊕

j∈F Aj , indexed over the finite subsets of J ordered by
inclusion. �

The next example shows that nowhere scatteredness does not pass to products
(of infinitely many summands).

Example 4.14. By [RR13, Corollary 8.6], there exists a sequence (Ak)k∈N of unital,
simple, infinite-dimensional C∗-algebras such that their product

∏
k Ak has a one-

dimensional, irreducible representation. Thus, while each Ak is nowhere scattered,
their product is not.

This example also shows that nowhere scatteredness does not pass to multiplier
algebras of separable C∗-algebras. As an example, consider A :=

⊕
k Ak with Ak

as above. Then A is separable and nowhere scattered by Proposition 4.13. Further,
it is well known that M(A) is canonically isomorphic to

∏
k Ak; see, for example,

[Bla06, II.8.1.3].

Example 4.15. Let M be a type II1 factor, let ϕ : M → C be a pure state, and
let A be the associated hereditary kernel, that is,

A =
{
a ∈M : ϕ(aa∗) = ϕ(a∗a) = 0

}
.

By [Sak71, Theorem 1], A is a simple C∗-algebra such that D(A)/A ∼= C, where
D(A) is Sakai’s derived algebra. Pedersen showed that the derived algebra of a sim-
ple C∗-algebra is naturally isomorphic with its multiplier algebra; see the remarks
after Proposition 2.6 in [Ped72].

Thus, A is a simple, nowhere scattered C∗-algebra with M(A)/A ∼= C, whence
M(A) is not nowhere scattered.

Examples 4.14 and 4.15 above show that for a nonunital, nowhere scattered
C∗-algebra A the multiplier algebra M(A) may have a one-dimensional irreducible
representation (and hence M(A) is not nowhere scattered) even if we additionally
assume that A is separable or simple. We suspect that there are also examples for
the case that A is separable and simple.

Question 4.16. Does there exist a nonunital, separable, simple, nonelementary
C∗-algebra A such that M(A) has a one-dimensional irreducible representation?

5. Topological characterizations

A topological space X is said to be scattered (or dispersed) if every nonempty
closed subset C of X contains a point that is isolated relative to C.

Definition 5.1. We say that a topological space X is nowhere scattered if no closed
subset of X contains an isolated point.

A subset of a topological space is said to be perfect if it is closed and contains no
isolated points. Thus, a topological space is nowhere scattered if and only if each of
its closed subsets is perfect. It follows that nowhere scatteredness passes to closed
subspaces. Further, using that an isolated point in an open subset is also isolated
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in the whole space, we see that nowhere scatteredness passes to open subspaces,
and thus to locally closed subspaces. Considering one-element subsets shows that
nowhere scatteredness does not pass to every subspace.

Proposition 5.2. Let X be a topological space. Then the following are equivalent:

(1) X is nowhere scattered;
(2) X has no nonempty, scattered, locally closed subsets;
(3) X has no nonempty, locally closed subset that is T0;
(4) X has no locally closed subset containing only one element.

Proof. Since nowhere scatteredness passes to locally closed subsets, and since a
nowhere scattered space is not scattered, we see that (1) implies (2). Using that
scattered spaces are T0, it follows that (2) implies (3). It is clear that (3) implies (4).
Finally, it follows directly from the definition that (4) implies (1). �

Let A be a C∗-algebra. We use Â to denote the spectrum of A, that is, the set of
unitary equivalence classes of irreducible representations of A, equipped with the
hull-kernel topology. We refer to [Bla06, Paragraph II.6.5.13] for details.

By [Jen78, Corollary 3], A is scattered if and only if A is of type I and Â is
scattered as a topological space. A separable C∗-algebra is of type I if and only if its
spectrum is a T0-space; see [Bla06, Theorem IV.1.5.7]. Since scattered spaces are T0,

it follows that a separable C∗-algebra A is scattered if and only if Â is scattered. The
assumption of separability is necessary: Akemann and Weaver’s counterexample to
the Naimark problem, [AW04], is a C∗-algebra that is nonelementary and simple
(hence, not scattered), but whose spectrum is a one-point space (hence, scattered).
This also shows that the forward implication in Theorem 5.3 below does not hold
for general nonseparable C∗-algebras, although the backwards implication does.

Theorem 5.3. A separable C∗-algebra is nowhere scattered if and only if its spec-
trum is.

Proof. Let A be a separable C∗-algebra. By Theorem 3.1, A is nowhere scattered
if and only if it has no nonzero scattered ideal-quotients. On the other hand, by

Proposition 5.2, Â is nowhere scattered if and only if it has no nonempty scattered
locally closed subsets. Using that a separable C∗-algebra is scattered if and only if
its spectrum is (see [Jen78, Corollary 3]), the result now follows from the natural

correspondence between ideal-quotients of A and locally closed subsets of Â. �

6. Diffuse masas and Haar unitaries

In this section, we observe that a C∗-algebra is nowhere scattered if and only if
each of its positive functionals is. We use this result to connect nowhere scattered-
ness of a C∗-algebra to the existence of Haar unitaries and diffuse masas (maximal
abelian sub-C∗-algebras) for positive functionals.

Let A be a C∗-algebra, and let ϕ : A→ C be a positive functional. We say that ϕ
is nowhere scattered if it gives no weight to scattered ideal-quotients of A, that is,
if ‖ϕ|I‖ = ‖ϕ|J‖ whenever I ⊆ J ⊆ A are ideals such that J/I is scattered; see
[Thi20a, Definition 3.5].

If A is unital, then a unitary u ∈ A is said to be a Haar unitary with respect
to ϕ if ϕ(uk) = 0 for all k ∈ Z \ {0}; see [Thi20a, Definition 4.8]. This definition is
a generalization to the setting of positive functionals of the well-established notion
of Haar unitaries with respect to traces. By [Thi20a, Proposition 4.9], ϕ admits a
Haar unitary if and only if there exists a unital (maximal) abelian sub-C∗-algebra
C(X) ⊆ A such that ϕ induces a diffuse measure on X. We extend this to the
nonunital setting in Lemma 6.1 below.
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Lemma 6.1. Let ϕ be a positive functional on a nonunital C∗-algebra A, and let

Ã := A+C1 ⊆ A∗∗ be the minimal unitization of A. Set ϕ̃ := ϕ∗∗|Ã : Ã→ C, which

is the canonical extension of ϕ to a positive functional on Ã. Then ϕ̃ admits a Haar
unitary if and only if there exists a maximal abelian sub-C∗-algebra C0(X) ⊆ A such
that ϕ induces a diffuse measure µ on X with µ(X) = ‖ϕ‖.
Proof. To show the backward implication, assume that we have an abelian sub-C∗-
algebra C0(X) ⊆ A with the stated properties. We identify C0(X) + C1 ⊆ Ã with

C(X̃), where X̃ is the forced one-point compactification of X. Recall that, if X is

already compact, then X̃ is the disjoint union of X and one extra point.

Let µ̃ be the measure on X̃ induced by ϕ̃. Then

µ̃(X̃) = ‖ϕ̃‖ = ‖ϕ‖ = µ(X).

Hence, µ̃(X̃ \ X) = 0, which implies that µ̃ is diffuse. It follows that a Haar

unitary for ϕ̃ can be found in C0(X) + C1 ⊆ Ã.
Conversely, assume that ϕ̃ admits a Haar unitary. By [Thi20a, Proposition 4.9],

we obtain a maximal abelian sub-C∗-algebra C(Y ) ⊆ Ã such that ϕ̃ induces a
diffuse measure µ on Y . We claim that A ∩ C(Y ) has the desired properties.

Note that 1 ∈ C(Y ). Let π : Ã → C be the canonical one-dimensional repre-
sentation such that ker(π) = A. The restriction of π to C(Y ) corresponds to the
evaluation at a point y ∈ Y , and the ideal A∩C(Y ) of C(Y ) naturally corresponds
to the open subset X := Y \ {y}. We identify C0(X) with A ∩ C(Y ), and we
note that the measure on X induced by ϕ|C0(X) is the restriction of µ to X. This
measure on X is therefore diffuse.

Using that µ is diffuse on Y , we have µ(X) = µ(Y ) and thus

µ(X) = µ(Y ) = ‖ϕ̃‖ = ‖ϕ‖.
Finally, using that C(Y ) ⊆ Ã is maximal abelian, it follows that C0(X) ⊆ A is

maximal abelian as well. �

Theorem 6.2. Let A be a C∗-algebra. Then the following are equivalent:

(1) A is nowhere scattered;
(2) every positive functional on A is nowhere scattered;
(3) every pure state on A is nowhere scattered;
(4) for every positive functional ϕ : A→ C and every hereditary sub-C∗-algebra

B ⊆ A there exists a Haar unitary in B̃ with respect to ϕ;
(5) for every pure state ϕ : A → C and every ideal I ⊆ A there exists a Haar

unitary in Ĩ with respect to ϕ;
(6) for every positive functional ϕ : A→ C and every hereditary sub-C∗-algebra

B ⊆ A there exists a maximal abelian sub-C∗-algebra C0(X) ⊆ B such that
ϕ induces a diffuse measure µ on X with µ(X) = ‖ϕ|B‖;

(7) for every pure state ϕ : A→ C and every ideal I ⊆ A there exists a maximal
abelian sub-C∗-algebra C0(X) ⊆ I such that ϕ induces a diffuse measure µ
on X with µ(X) = ‖ϕ|I‖.

Proof. By Theorem 3.1, A is nowhere scattered if and only if A has no nonzero
scattered ideal-quotients. This shows that (1) implies (2), which in turn implies (3).
To see that (3) implies (1), assume for the sake of contradiction that A is not
nowhere scattered. Then there exist ideals I ⊆ J ⊆ A such that J/I is nonzero and
scattered. Choose a nonzero pure state ϕ0 on J/I. Composing with the quotient
map J → J/I we obtain a pure state ϕ on J , which we can extend to a pure state ϕ̃
on A. Then ϕ̃|I = 0, while ϕ̃|J 6= 0, which shows that ϕ̃ is a pure state on A that
is not nowhere scattered, a contradiction.
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By [Thi20a, Theorem 4.11], (2) is equivalent to (4). Similarly, (3) is equivalent
to (5). Finally, it follows from Lemma 6.1 that (4) is equivalent to (6), and that (5)
is equivalent to (7). �

7. A new property of Cuntz semigroups

We introduce a new property for Cu-semigroups, called (O8); see Definition 7.2.
This new property can be thought of as the Cu-semigroup version of the projectivity
of C0((0, 1])⊕ C0((0, 1]), which allows one to lift orthogonal positive elements in a
quotient of a C∗-algebra. We show the the Cuntz semigroup of every C∗-algebra
satisfies (O8); see Theorem 7.4. We also deduce a result that can be interpreted as
the Cu-version of the projectivity of Mn(C0((0, 1])); see Proposition 7.8.

7.1. Let A be a C∗-algebra. Given a, b ∈ A+, one says that a is Cuntz subequivalent
to b, denoted a - b, if there is a sequence (rn)n in A such that limn ‖a−rnbr∗n‖ = 0.
Further, a is said to be Cuntz equivalent to b, in symbols a ∼ b, if a - b and b - a.
The Cuntz semigroup of A is the set of Cuntz equivalence classes of positive elements
in the stabilization of A, that is,

Cu(A) := (A⊗K)+/∼,
where the class of a positive element a is denoted by [a]. One equips Cu(A) with
the addition induced by the orthogonal sum, and with the partial order given by
[a] ≤ [b] if a - b. This turns Cu(A) into a partially ordered, abelian monoid.

As shown in [CEI08], the Cuntz semigroup of any C∗-algebra enjoys additional
order-theoretic properties; see also [APT11] and [APT18]. To state them, recall
that given two elements x, y in a partially ordered set, one says that x is way-
below y, denoted x � y, if for every increasing sequence (yk)k with supremum
satisfying y ≤ supk yk there exists k′ such that x ≤ yk′ . Given a C∗-algebra A,
[a] � [b] in Cu(A) if and only if there exists ε > 0 such that a - (b − ε)+, where
(b − ε)+ is the ε-cut-down of b obtained by applying functional calculus for the
function t 7→ max{0, t− ε} to b.

One says that a positively ordered, abelian monoid S is a Cu-semigroup, also
called abstract Cuntz semigroup, if the following conditions are satisfied:

(O1) Every increasing sequence in S has a supremum.
(O2) For every x ∈ S there exists a �-increasing sequence (xn)n with x =

supn xn.
(O3) If x′ � x and y′ � y in S, then x′ + y′ � x+ y.
(O4) If (xn)n and (yn)n are increasing sequences in S, then supn(xn + yn) =

supn xn + supn yn.

By [CEI08], Cu(A) is a Cu-semigroup for every C∗-algebra A.
Since the introduction of Cu-semigroups, the Cuntz semigroup of any C∗-algebra

has been shown to satisfy additional properties, such as the two stated below; see
[APT18] and [Rob13] respectively, and also [APRT21].

(O5) Given x + y ≤ z, x′ � x and y′ � y in S there exists c ∈ S such that
x′ + c ≤ z ≤ x + c and y′ � c. (This property is often applied with
y′ = y = 0, in which case it says that for x′ � x ≤ z there exists an ‘almost
complement’ c such that x′ + c ≤ z ≤ x+ c.)

(O6) Given x′ � x ≤ y + z in S there exist e, f ∈ S such that x′ ≤ e + f with
e ≤ x, y, and f ≤ x, z.

Definition 7.2. Let S be a Cu-semigroup. We say that S satisfies (O8) if for all
x′, x, y′, y, z, w ∈ S satisfying 2w = w and

x+ y � z + w, x′ � x, and y′ � y
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there exist z1, z2 ∈ S such that

z1 + z2 � z, x′ � z1 + w, y′ � z2 + w, z1 � x+ w, and z2 � y + w.

Remark 7.3. A Cu-semigroup S satisfies (O8) if and only if for all x′, x, y′, y, z, w
in S satisfying 2w = w and

x+ y � z + w, x′ � x, and y′ � y

there exist z1, z2 ∈ S such that

z1 + z2 ≤ z, x′ ≤ z1 + w, y′ ≤ z2 + w, z1 ≤ x+ w, and z2 ≤ y + w.

Indeed, the forward implication is trivial. To see the backward implication, let
x′, x, y′, y, z, w satisfy the conditions in the statement, and choose x̃, ỹ, z̃ such that

x+ y � z̃ + w, x′ � x̃� x, y′ � ỹ � y, and z̃ � z.

Then, there exist t1, t2 ∈ S with

t1 + t2 ≤ z̃, x̃ ≤ t1 + w, ỹ ≤ t2 + w, t1 ≤ x+ w, and t2 ≤ y + w.

In particular, since x′ � t1 + w and y′ � t2 + w, we can find elements z1 � t1
and z2 � t2 such that x′ � z1 + w and y′ � z2 + w. It is easy to check that such
elements satisfy the desired conditions.

Theorem 7.4. The Cuntz semigroup of every C∗-algebra satisfies (O8).

Proof. Let A be a C∗-algebra, and let x′, x, y′, y, z, w ∈ Cu(A) satisfy 2w = w and

x+ y � z + w, x′ � x, and y′ � y.

We may assume that A is stable. Let I be the ideal of A corresponding to the
ideal {s ∈ Cu(A) : s ≤ w} of Cu(A), and let π : A→ A/I denote its quotient map.
Choose a, b, c ∈ A+ and ε > 0 such that a and b are orthogonal,

x = [a], y = [b], z = [c], x′ ≤ [(a− ε)+], and y′ ≤ [(b− ε)+].

By [CRS10, Proposition 3.3], two elements e, f ∈ A+ satisfy [e] ≤ [f ] +w if and
only if π(e) - π(f). Thus,

π(a) + π(b) = π(a+ b) - π(c).

Using Rørdam’s Lemma (see for example [Thi17, Theorem 2.30]), there exists
r ∈ A/I such that

(π(a)− ε)+ + (π(b)− ε)+ = ((π(a) + π(b))− ε)+ = r∗r

and rr∗ ∈ π(c)(A/I)π(c).
Set

e := r(π(a)− ε)+r
∗, and f := r(π(b)− ε)+r

∗.

Note that e and f are orthogonal positive elements contained in the hereditary
sub-C∗-algebra π(c)(A/I)π(c). Since π maps the hereditary sub-C∗-algebra cAc

onto π(c)(A/I)π(c), and since the C∗-algebra C0((0, ‖e‖])⊕C0((0, ‖f‖]) is projective

(see [EK86, Section 4]), we can choose orthogonal positive elements ẽ, f̃ ∈ cAc such

that π(ẽ) = e and π(f̃) = f . Set

z1 := [ẽ], and z2 := [f̃ ].

Using that ẽ and f̃ are orthogonal, and that ẽ+ f̃ ∈ cAc, we get z1 +z2 ≤ [c] = z.
Also note that, since π(ẽ) = e - (π(a) − ε)+ - π(a), we have z1 ≤ x + w.

Similarly, z2 ≤ y + w.
Moreover, one also gets

r∗er = r∗r(π(a)− ε)+r
∗r = (π(a)− ε)3

+ ∼ (π(a)− ε)+,

which shows that x′ ≤ z1 + w. An analogous argument proves y′ ≤ z2 + w.
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It follows from Remark 7.3 that Cu(A) satisfies (O8), as desired. �

One can think of (O8) as a weak form of Riesz refinement. In this sense, Propo-
sition 7.5 below can be seen as a Cu-version of the fact that a cancellative, alge-
braically ordered semigroup with Riesz decomposition has Riesz refinement.

A Cu-semigroup S is said to be weakly cancellative if for all x, y, z ∈ S with
x+ z � y+ z we have x� y. It follows from [RW10, Theorem 4.3] that the Cuntz
semigroup of every stable rank one C∗-algebra is weakly cancellative.

Proposition 7.5. Let S be a weakly cancellative Cu-semigroup satisfying (O5) and
(O6). Then S satisfies (O8).

Proof. Let x′, x, y′, y, z, w satisfy

x+ y � z + w, x′ � x, y′ � y, and 2w = w.

Applying (O6) for x′ � x� z + w, we obtain z̃1 such that

x′ � z̃1 + w, and z̃1 � x, z.

Choose z1 ∈ S such that

x′ � z1 + w, and z1 � z̃1.

Applying (O5) for z1 � z̃1 ≤ z, we find c ∈ S with

z1 + c ≤ z ≤ z̃1 + c.

Then,
x+ y � z + w ≤ z̃1 + c+ w

and, since S is weakly cancellative and z̃1 ≤ x, we get y � c+ w.
Applying (O6) for y′ � y � c+ w, we obtain z2 such that

y′ � z2 + w, and z2 � y, c.

We have z1 + z2 ≤ z1 + c ≤ z. It now follows from Remark 7.3 that z1 and z2

have the desired properties. �

Lemma 7.6. Let S be a Cu-semigroup satisfying (O8), let w ∈ S satisfy 2w = w,
and let x′1, . . . , x

′
n, x1, . . . , xn, z ∈ S satisfy

x1 + . . .+ xn � z + w, x′1 � x1, . . . , and x′n � xn.

Then there exist z1, . . . , zn ∈ S such that

z1 + . . .+ zn � z, x′j � zj + w, and zj � xj + w

for j = 1, . . . , n.

Proof. We prove the result by induction over n. The case n = 1 is clear, and the
case n = 2 holds by definition of (O8).

Thus, let n ≥ 3, and assume that the statement holds for n− 1. Let x′j , xj , z, w
for j = 1, . . . , n be as in the statement, and choose x′′n−1, x

′′
n such that

x′n−1 � x′′n−1 � xn−1, and x′n � x′′n � xn.

Applying the assumption for the n − 1 pairs x′1 � x1, . . . , x
′
n−2 � xn−2 and

x′′n−1 + x′′n � xn−1 + xn, we obtain z1, . . . , zn−2, v such that

z1 + . . .+ zn−2 + v � z, x′j � zj + w, and zj � xj + w

for j = 1, . . . , n− 2 and

x′′n−1 + x′′n � v + w, and v � xn−1 + xn + w.

Applying (O8) for

x′′n−1 + x′′n � v + w, x′n−1 � x′′n−1, and x′n � x′′n,
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we obtain zn−1, zn with zn−1 + zn � v and such that

x′n−1 � zn−1 + w, x′n � zn + w, zn−1 � x′′n−1 + w, and zn � x′′n + w.

Then z1, . . . , zn have the desired properties. �

Proposition 7.7. Let S be a Cu-semigroup satisfying (O6) and (O8), let w ∈ S
be such that 2w = w, and let x′1, . . . , x

′
n, x1, . . . , xn, z ∈ S satisfy

x1 + . . .+ xn � z + w, and x′1 � x1 � x′2 � x2 � . . .� x′n � xn.

Then, there exist z1, . . . , zn ∈ S such that

z1 + z2 + . . .+ zn � z, z1 � . . .� zn, x′j � zj + w, and zj � xj + w

for j = 1, . . . , n.

Proof. Applying Lemma 7.6, we obtain y1, . . . , yn such that

y1 + . . .+ yn � z, x′j � yj + w, and yj � xj + w

for j = 1, . . . , n.
For every j, let y′j � yj be such that x′j � y′j + w. Set zn := yn, and note that

y′n−1 � yn−1 ≤ xn−1 + w ≤ x′n + w ≤ yn + w = zn + w.

Applying (O6), we obtain zn−1 such that

y′n−1 � zn−1 + w, and zn−1 � yn−1, zn,

where note that one also has

y′n−2 � yn−2 ≤ xn−2 + w ≤ x′n−1 + w ≤ y′n−1 + w ≤ zn−1 + w.

Proceeding in this manner, we obtain elements z1, . . . , zn such that

y′j � zj + w, and zj � yj , zj+1

for every j ≤ n− 1.
It is easy to see that such elements satisfy the required properties. �

The next result can be interpreted as the Cu-semigroup version of the projectivity
of C0((0, 1],Mn).

Proposition 7.8. Let S be a Cu-semigroup satisfying (O8), let n ≥ 1, and let
x′, x, y, w ∈ S satisfy

nx� y + w, x′ � x, and 2w = w.

Then there exists z ∈ S such that

nz � y, x′ � z + w, and z � x+ w.

Proof. Choose x′1, x1, x
′
2, x2, . . . , xn such that

x′ � x′1 � x1 � x′2 � x2 � . . .� x′n � xn � x.

Applying Proposition 7.7, we obtain z1, . . . , zn satisfying

z1 + . . .+ zn � y, z1 � . . .� zn, x′j � zj + w, and zj � xj + w

for j = 1, . . . , n.
Set z := z1. Then

nz ≤ z1 + . . .+ zn � y, x′ ≤ x′1 � z1 + w = z + w,

and z = z1 ≤ zn � xn + w ≤ x+ w. �
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8. C*-algebras and Cu-semigroups without elementary
ideal-quotients

In this section we prove that a Cu-semigroup S satisfying (O5), (O6) and (O8)
has no nonzero elementary ideal-quotients if and only if S is weakly (2, ω)-divisible;
see Proposition 8.8. In Paragraph 8.1 we provide a tailored definition of elementary
Cu-semigroup, which is justified by Lemma 8.2. We deduce in Theorem 8.9 that a
C∗-algebra is nowhere scattered if and only if every element in its Cuntz semigroup
is weakly (2, ω)-divisible. This can also be deduced from results in [RR13]; see
Remark 8.10.

8.1. A C∗-algebra is said to be elementary if it is isomorphic to the compact
operators on some Hilbert space.

In [APT18, Paragraph 5.1.16], a nonzero Cu-semigroup was said to be ‘elemen-
tary’ if it is simple and contains a minimal nonzero element. This definition includes
{0,∞}, which is the Cuntz semigroup of simple, purely infinite C∗-algebras – and
these C∗-algebras are very far from elementary. To amend this, we will instead say
that a nonzero Cu-semigroup is elementary if it is simple and contains a minimal,
nonzero element x that is finite (that is, x 6= 2x). Lemma 8.2 below shows that
this refined definition fits the established terminology in C∗-algebras.

The next result is shown in [Eng14, Theorem 4.4.4]. We include a proof for the
convenience of the reader.

Lemma 8.2. Let A be a (nonzero) C∗-algebra. Then the following are equivalent:

(1) A is elementary;
(2) Cu(A) ∼= N;
(3) Cu(A) is elementary.

Proof. To show that (1) implies (2), assume that A is elementary. Upon stabiliza-
tion, we may assume that A ∼= K(H) for some infinite-dimensional Hilbert space H.
Using the spectral theorem for compact operators, one can show that A+ → N,
mapping a ∈ A+ to its rank, induces the desired isomorphism Cu(A) ∼= N.

Alternatively, one sees that every projection in K(H) has finite-rank, and that
two projections are Murray-von Neumann equivalent if and only their ranks agree.
It follows that the Murray-von Neumann semigroup V (A) is isomorphic to N. Using
that A has real rank zero, we obtain that Cu(A) is isomorphic to the sequential
ideal completion of N, and thus Cu(A) ∼= N; see for example [APT18, Remark
5.5.6].

It is clear that (2) implies (3). To show that (3) implies (1), assume that Cu(A)
is elementary. Then Cu(A) is simple, and consequently so is A (see [APT18, Corol-
lary 5.1.12]). Choose a minimal, nonzero element x ∈ Cu(A) with x 6= 2x, and let
a ∈ A+ be a nonzero element.

Since x is minimal, we have x � x. Using that A is simple, it follows from
[BC09, Theorem 5.8] that we can choose a projection p ∈ A⊗K with [p] = x. Since
a 6= 0, we have [a] 6= 0 and therefore x ≤ [a]. Then p - a, whence we obtain a
projection q ∈ A with [q] = x. Thus, q is a minimal projection, that is, qAq = Cq.
This is well-known to imply that A is elementary. �

Given a Cu-semigroup S, a downward-hereditary submonoid I ⊆ S is an ideal
if it is closed under suprema of increasing sequences. For each ideal I of S, one
can consider its corresponding quotient S/I, which is again a Cu-semigroup; see
[APT18, Lemma 5.1.2].

We omit the proof of the following lemma.
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Lemma 8.3. Let S be a Cu-semigroup satisfying (O8) and let I be an ideal of S.
Then, I and S/I satisfy (O8).

Lemma 8.4. Let S be a Cu-semigroup satisfying (O5) and (O8). Let I be an ideal
of S and denote by π the canonical map S → S/I. Given y ∈ S and e, e′ ∈ S/I
such that

e′ � e, and 2e ≤ π(y),

there exists z ∈ S such that e′ � π(z)� e and 2z � y.

Proof. Let x ∈ S be such that π(x) = e and take x′ � x such that e′ � π(x′).
Since π(2x) ≤ π(y), there exists w ∈ I satisfying 2x ≤ y + w. Thus, we have
2x ≤ y +∞w, where we note that ∞w ∈ I.

Applying Proposition 7.8, we obtain an element z ∈ S such that

2z � y, x′ � z +∞w, and z � x+∞w.
Passing to the quotient, and using that ∞w ∈ I, we get

e′ � π(x′)� π(z)� π(x) = e,

as required. �

By an ideal-quotient in a Cu-semigroup S we mean a quotient J/I for some
ideals I ⊆ J of S.

Lemma 8.5. Let S be a Cu-semigroup satisfying (O5), (O6) and (O8). Assume
that S has no nonzero elementary ideal-quotients. Let x ∈ S be nonzero. Then
there exists z ∈ S with 0 6= 2z ≤ x.

Proof. Using that x is nonzero, we can choose nonzero elements x′′, x′ ∈ S such
that x′′ � x′ � x.

Applying (O5), we obtain c ∈ S with

x′′ + c ≤ x ≤ x′ + c.

Let I ⊆ S be the ideal generated by c. Then, x is either in I or not. We study
each case separately.

Case 1: We have x ∈ I. In this case, and since ideals are downward hereditary,
we have x′′ ∈ I, and therefore x′′ � ∞c. Thus, there exists n ∈ N such that
x′′ ≤ nc.

Let x′′′ � x′′ be a nonzero element. Following the proof of [Rob13, Proposi-
tion 5.2.1], we can apply (O6) to x′′′ � x′′ ≤ nc to obtain elements c1, . . . , cn ≤ x′′, c
such that

x′′′ ≤ c1 + . . .+ cn.

Using that x′′′ 6= 0, it follows that there exists some j such that the element cj
is nonzero. Setting z = cj , one has 2z ≤ x′′ + c ≤ x, as required.

Case 2: We have x /∈ I. Let K ⊆ S denote the ideal generated by x. Then the
image of x in K/I is a nonzero, compact, full element.

It follows that there exists a maximal ideal J ⊆ K containing I. Consequently,
the quotient K/J is simple. Let π : K → K/J be the quotient map.

By [APT18, Proposition 5.1.3], (O5) and (O6) pass to ideals and quotients.
Thus, K/J is a simple, nonelementary Cu-semigroup satisfying (O5) and (O6).
Applying [Rob13, Proposition 5.2.1], we obtain e ∈ K/J with 0 6= 2e ≤ π(x).
Choose e′ ∈ K/J with 0 6= e′ � e. By Lemmas 8.3 and 8.4, we obtain z ∈ K ⊆ S
such that e′ � π(z) and 2z ≤ x. It follows that z is nonzero and has the desired
properties. �
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8.6. Let S be a Cu-semigroup and let k ≥ 1. An element x ∈ S is said to be
(k, ω)-divisible if for every x′ ∈ S satisfying x′ � x there exist n ∈ N and y ∈ S
such that ky ≤ x and x′ ≤ ny. Further, x is said to be weakly (k, ω)-divisible if for
every x′ ∈ S satisfying x′ � x there exist n ∈ N and y1, . . . , yn ∈ Cu(A) such that
ky1, . . . , kyn ≤ x and x′ ≤ y1 + . . . + yn; see [RR13, Definition 5.1] or [APRT18,
Paragraph 5.1].

We say that S is (weakly) (k, ω)-divisible if each of its elements is.

Lemma 8.7. Let S be a weakly (2, ω)-divisible Cu-semigroup. Then, S is weakly
(k, ω)-divisible for every k ∈ N.

Proof. It suffices to show that every element in S is weakly (2k, ω)-divisible for each
k ≥ 1. We prove this by induction over k, where we note that the case k = 1 holds
by assumption.

Thus, let k ≥ 1 and assume that every element is weakly (2k, ω)-divisible. To
verify that every element is weakly (2k+1, ω)-divisible, let x′, x ∈ S satisfy x′ � x.
Choose x′′ ∈ S such that x′ � x′′ � x. Using that x is weakly (2, ω)-divisible, we
obtain m ∈ N and y1, . . . , ym ∈ S such that

2y1, . . . , 2ym ≤ x, and x′′ ≤ y1 + . . .+ ym.

Choose y′1, . . . , y
′
m ∈ S such that

y′1 � y1, . . . , y′m � ym, and x′ ≤ y′1 + . . .+ y′m.

Applying the induction assumption for each pair y′i � yi, we obtain n(i) ∈ N
and zi,1, . . . , zi,n(i) ∈ S such that

2kzi,1, . . . , 2
kzi,n(i) ≤ yi, and y′i ≤ zi,1 + . . .+ zi,n(i).

Consequently,
2k+1zi,j ≤ 2yi ≤ x,

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n(i)}. Further,

x′ ≤ y′1 + . . .+ y′m =
m∑

i=1

y′i ≤
m∑

i=1

n(i)∑

j=1

zi,j ,

which shows that the elements zi,j have the desired properties. �

Proposition 8.8. Let S be a Cu-semigroup satisfying (O5), (O6) and (O8). Then
the following are equivalent:

(1) S has no nonzero elementary ideal-quotients;
(2) every element in S is weakly (2, ω)-divisible;
(3) every element in S is weakly (k, ω)-divisible for every k ≥ 2.

Proof. The equivalence between (2) and (3) follows from Lemma 8.7. To show
that (2) implies (1), assume that S is weakly (2, ω)-divisible, and note that a
nonzero elementary Cu-semigroup T is not weakly (2, ω)-divisible. Indeed, if x ∈ T
is minimal, nonzero and x 6= 2x, then one can see that x is not weakly (2, ω)-
divisible. Since weak (2, ω)-divisibility passes to ideals and quotients, it follows
that S has no nonzero elementary ideal-quotients.

Conversely, to show that (1) implies (2), assume now that S has no nonzero ele-
mentary ideal-quotients and let x ∈ S. The proof is inspired by that of [APGPSM10,
Theorem 6.7]. Set

D :=
{
z ∈ S : 2z ≤ x

}
.

Let I ⊆ S be the ideal generated by D. Note that s ∈ S belongs to I if and only
if there exists a sequence (zk)k in D such that s ≤∑∞k=0 zk.

Claim: We have x ∈ I.



NOWHERE SCATTERED C*-ALGEBRAS 19

To prove the claim, let π : S → S/I denote the quotient map. To reach a con-
tradiction, assume that π(x) 6= 0. By [APT18, Proposition 5.1.3] and Lemma 8.3,
we know that (O5), (O6) and (O8) pass to quotients.

Hence, we can apply Lemma 8.5 to S/I. Thus, since π(x) 6= 0, we obtain e ∈ S/I
with 0 6= 2e ≤ π(x). Choose e′ ∈ S/I with 0 6= e′ � e. By Lemma 8.4, we obtain
z ∈ S such that e′ � π(z) and 2z ≤ x. Consequently, z ∈ D ⊆ I, which implies
π(z) = 0 and therefore e′ = 0, a contradiction. Thus, we have π(x) = 0 and so
x ∈ I, which proves the claim.

Now, given any x′ ∈ S such that x′ � x, take u ∈ S with x′ � u � x. Using
that u� x ∈ I, we obtain z1, . . . , zn ∈ D such that u ≤ z1 + . . .+ zn.

Note that we have 2zj ≤ x for every j and x′ � u ≤ z1 + . . . + zn. It follows
that x is weakly (2, ω)-divisible, as desired. �

Theorem 8.9. Let A be a C∗-algebra. Then the following are equivalent:

(1) A is nowhere scattered;
(2) every element in Cu(A) is weakly (2, ω)-divisible;
(3) every element in Cu(A) is weakly (k, ω)-divisible for every k ≥ 2;

Proof. It follows from [APT18, Proposition 5.1.10] that ideal-quotients in A nat-
urally correspond to ideals-quotients in Cu(A). Thus, by Lemma 8.2, A has no
nonzero elementary ideal-quotients if and only if Cu(A) has no nonzero elementary
ideal-quotients. Applying Theorem 3.1, we see that A is nowhere scattered if and
only if Cu(A) has no nonzero elementary ideal-quotients.

As noted in Paragraph 7.1, Cu(A) is a Cu-semigroup satisfying (O5) and (O6).
By Theorem 7.4, Cu(A) also satisfies (O8). Now the result follows from Proposi-
tion 8.8. �

Remark 8.10. Let us indicate an alternative proof of Theorem 8.9 that is based
on the results by Rørdam and Robert in [RR13].

Let A be a C∗-algebra. By Proposition 4.12, A is nowhere scattered if and only
if its stabilization is. We may therefore assume that A is stable.

First, assume that A is nowhere scattered. Let x ∈ Cu(A) and k ≥ 2. Choose
a ∈ A+ with x = [a], and let B := aAa be the generated hereditary sub-C∗-algebra.
By [RR13, Theorem 5.3(iii)], B has no irreducible representations of dimension
less than or equal to k − 1 if and only if [a] is weakly (k, ω)-divisible in Cu(B)
(equivalently, in Cu(A)). Thus, it follows from Theorem 3.1 that x is weakly (k, ω)-
divisible.

Conversely, assume that every element of Cu(A) is weakly (2, ω)-divisible. To
reach a contradiction, assume that A is not nowhere scattered. We need to find
x ∈ Cu(A) that is not weakly (2, ω)-divisible. Applying Theorem 3.1 we obtain a
hereditary sub-C∗-algebra B ⊆ A that admits a one-dimensional irreducible repre-
sentation π. Choose c ∈ B+ with π(b) 6= 0, and consider the hereditary sub-C∗-
algebra C := cAc. Then π restricts to a one-dimensional irreducible representation
of C. Using [RR13, Theorem 5.3(iii)] again, it follows that [c] is not weakly (2, ω)-
divisible in Cu(C), and therefore also not in Cu(A).

9. Real rank zero and stable rank one

In this section, we establish characterizations of nowhere scatteredness among
C∗-algebras of real rank zero or stable rank one.

A unital C∗-algebra has real rank zero if the invertible, selfadjoint elements are
dense in the set of selfadjoint elements. A nonunital C∗-algebra has real rank zero
if its minimal unitization does. This important property is well-studied and enjoys
many nice permanence properties. We refer to [Bla06, p.453ff] and [BP91].
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The Murray-von Neumann semigroup V (A) of a C∗-algebra A is defined as the
set of equivalence classes of projections in A ⊗ K, where two projections p and
q are equivalent if there exists a partial isometry v ∈ A ⊗ K with p = vv∗ and
q = v∗v. Equipped with the addition induced by orthogonal sum and the algebraic
order ≤alg, V (A) becomes a pre-ordered monoid.

A semigroup S is weakly divisible if for every x ∈ S there exist y, z ∈ S such
that x = 2y + 3z.

Theorem 9.1. Let A be a C∗-algebra of real rank zero. Then the following are
equivalent:

(1) A is nowhere scattered;
(2) V (A) is weakly divisible;
(3) Cu(A) is weakly divisible.

Proof. To show that (1) implies (2), assume that A is nowhere scattered. By
Proposition 4.12, we may assume A to be stable. Thus, any element in V (A) is of
the form [p] with p a projection in A.

Then, given any [p] ∈ V (A), it follows from Theorem 3.1 (7) that pAp has no
one-dimensional irreducible representation. As shown in the proof of [APGPSM10,
Corollary 6.8], this implies that [p] = 2y + 3z for some y, z ∈ V (A).

Assume now that (2) is satisfied. In this case, if x′ ≤alg x and x′ = 2y′ + 3z′

in V (A), then there exist y, z ∈ V (A) with y′ ≤alg y and z′ ≤alg z, and such that
x = 2y + 3z. Indeed, given w ∈ V (A) such that x′ + w = x, we can find u, v
satisfying w = 2u+ 3v. Setting y = y′ + u and z = z′ + v, the result follows.

Since A has real rank zero, there exists an order preserving, monoid morphism
α : V (A)→ Cu(A) with sup-dense image; see, for example, [TV21a, Theorem 5.7].
That is, every element x ∈ Cu(A) can be written as the supremum of an increasing
sequence in α(V (A)). By the remark above, this implies that

x = sup
n

(2yn + 3zn)

with (yn)n, (zn)n increasing sequences in α(V (A)).
Thus, we get x = 2 supn(yn) + 3 supn(zn), as desired.
Finally, to show that (3) implies (1), assume that Cu(A) is weakly divisible.

By Theorem 8.9 it suffices to show that every element in Cu(A) is weakly (2, ω)-
divisible. So let x′, x ∈ Cu(A) satisfy x′ � x. By assumption, we obtain y, z ∈
Cu(A) such that x = 2y+ 3z. Set s := x+ y. Then, one gets 2s = 2x+ 2y ≤ x and
x′ ≤ x ≤ 3y + 3z = 3s, as required. �

Remark 9.2. If A does not have real rank zero, then weak divisibility of V (A) is
not equivalent to nowhere scatteredness.

Take, for example, the Jiang-Su algebra Z. Then, since 1 ∈ N cannot be decom-
posed as 2x+ 3y in N, it follows that V (Z) ∼= N is not weakly divisible.

However, it follows from Example 3.2 that Z is nowhere scattered.

A unital C∗-algebra has stable rank one if its invertible elements are dense. A
nonunital C∗-algebra has stable rank one if its minimal unitization does. Just as
real rank zero, the property of stable rank one enjoys many permanence properties.
We refer to [Bla06, Section V.3.1].

Cuntz semigroups of stable rank one C∗-algebras have additional regularity char-
acteristics; see [Thi20b, APRT18]. In particular, by [APRT18, Theorem 3.5], they
satisfy the Riesz Interpolation Property : If x1, x2, y1, y2 are such that xj ≤ yk for
each j, k ∈ {1, 2}, then there exists z with x1, x2 ≤ z ≤ y1, y2.

A Cu-semigroup S is countably based if it contains a countable subset B such
that every element in S is the supremum of an increasing sequence of elements in B.
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If S is a countably based Cu-semigroup, then every upward directed subset of S
has a supremum. Separable C∗-algebras have countably based Cuntz semigroups.

Given a separable, stable rank one C∗-algebra A, it follows from [APRT18,
Theorem 3.8] that Cu(A) is inf-semilattice ordered. That is, infima of finite sets
exists and, for every triple x, y, z, one has

(x+ z) ∧ (y + z) = (x ∧ y) + z.

Definition 9.3. We say that a Cu-semigroup S satisfies the interval axiom if for
all x′, x, y, u, v ∈ S satisfying

x′ � x, x� y + u, and x� y + v,

there exists w ∈ S such that

x′ � y + w, and w � u, v.

Remark 9.4. The interval axiom as defined in Definition 9.3 above is the Cu-
version of the ‘algebraic interval axiom’ considered by Wehrung for positively or-
dered monoids in [Weh96, Paragraph 1.3].

Proposition 9.5. Let S be a countably based Cu-semigroup. Then S is inf-
semilattice ordered if and only if S has the Riesz Interpolation Property and satisfies
the interval axiom.

Proof. To show that forward implication, assume that S is inf-semilattice ordered.
Given xj , yk ∈ S with xj ≤ yk for i, j ∈ {1, 2}, we have x1, x2 ≤ (y1 ∧ y2) ≤ y1, y2,
which shows that S has the Riesz Interpolation Property. To verify the interval
axiom, let x′, x, y, u, v ∈ S satisfy

x′ � x, x� y + u, and x� y + v.

Then

x′ � x ≤ (y + u) ∧ (y + v) = y + (u ∧ v),

which allows us to choose w ∈ S such that x′ � y + w and w � (u ∧ v). Thus, w
has the desired properties.

Let us show the backward implication. Given x, y ∈ S, it follows from the Riesz
Interpolation Property that the set L := {z ∈ S : z ≤ x, y} is upward directed.
Since S is countably based, the supremum of L exists and x ∧ y = supL. Thus, S
is an inf-semilattice.

To show that addition distributes over infima, let x, y, z ∈ S and note that the
inequality (x + z) ∧ (y + z) ≥ (x ∧ y) + z is clear. For the other inequality, set
w = (x + z) ∧ (y + z), and let w′ ∈ S satisfy w′ � w. Applying the interval
axiom, we obtain s such that w′ ≤ z + s and s ≤ x, y. Then s ≤ x ∧ y, and
therefore w′ ≤ (x ∧ y) + z. Since this holds for every w′ way-below w, we get
w ≤ (x ∧ y) + z. �

A submonoid T of a Cu-semigroup S is said to be a sub-Cu-semigroup if T
is a Cu-semigroup with the induced order, and if the inclusion T → S preserves
suprema of increasing sequences and the way-below relation.

In analogy to its definition for C∗-algebras (as defined in Section 4), we say that
a property P for Cu-semigroups satisfies the Löwenheim-Skolem condition if for
every Cu-semigroup with property P there exists a family S of countably based
sub-Cu-semigroups of S each having property P, and such that S is σ-complete
and cofinal; see [TV21b, Paragraph 5.2]. The next result can be proved with the
methods that are used to to prove [TV21b, Proposition 5.3]. We omit the details.

Proposition 9.6. The interval axiom and the Riesz Interpolation Property both
satisfy the Löwenheim-Skolem condition.
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If A is a separable C∗-algebra of stable rank one, then Cu(A) is inf-semilattice
ordered by [APRT18, Theorem 3.8], and thus satisfies the interval axiom. With the
techniques of [TV21b], we can show that this also holds in the nonseparable case.

Corollary 9.7. Let A be a C∗-algebra of stable rank one. Then Cu(A) satisfies
weak cancellation, the Riesz Interpolation Property, and the interval axiom.

Proof. It follows from [RW10, Theorem 4.3] and [APRT18, Theorem 3.5] that
Cu(A) is weakly cancellative and has the Riesz Interpolation Property. To show
that Cu(A) satisfies the interval axiom, let x′, x, y, u, v ∈ Cu(A) satisfy

x′ � x, x� y + u, and x� y + v.

Applying [TV21b, Proposition 6.1], we obtain a σ-complete and cofinal collec-
tion of separable sub-C∗-algebras B ⊆ A such that the inclusion B → A induces an
order-embedding Cu(B) → Cu(A) whose image contains x′, x, y, u, v. Using that
stable rank one satisfies the Löwenheim-Skolem condition, we may choose such sep-
arable sub-C∗-algebras B ⊆ A with stable rank one. Thus, each Cuntz semigroup
Cu(B) is inf-semilattice ordered by [APRT18, Theorem 3.8]. It follows from Propo-
sition 9.5 that Cu(B) satisfies the interval axiom. Hence, an element w with the
desired properties can be found in Cu(B) and, since Cu(B) can be identified with a
sub-Cu-semigroup of Cu(A), we deduce that Cu(A) satisfies the interval axiom. �

Remark 9.8. Cuntz semigroups of separable C∗-algebras of real rank zero do not
necessarily satisfy the interval axiom. Indeed, in [Goo96] Goodearl constructs a
separable (stably finite, nuclear) C∗-algebra A of real rank zero such that K0(A)
does not have the Riesz decomposition property. Thus, K0(A) does not have the
Riesz interpolation property and, by [Per97, Lemma 4.2], it follows that V (A) does
not have the Riesz interpolation property either. However, as noted in [Weh96], if
a refinement monoid satisfies the (algebraic) interval axiom, then it satisfies Riesz
interpolation. By [AP96, Lemma 2.3], V (A) is a refinement monoid and, therefore,
V (A) does not satisfy the algebraic interval axiom. Using that Cu(A) is isomorphic
to the sequential ideal completion of V (A) (see for example [APT18, Remark 5.5.6]),
we deduce that Cu(A) does not satisfy the interval axiom.

Question 9.9. For which C∗-algebras does the Cuntz semigroup satisfy the interval
axiom?

Lemma 9.10. Let S be a weakly cancellative Cu-semigroup satisfying (O5), the
interval axiom, and the Riesz Interpolation Property, and let x ∈ S and k ≥ 2.
Then x is weakly (k, ω)-divisible if and only if x is (k, ω)-divisible.

Proof. It suffices to show the forward implication. Thus, assume that x is weakly
(k, ω)-divisible. Then there exists a sequence (yn)n in S such that kyn ≤ x for each
n, and such that x ≤∑∞n=1 yn.

By [TV21b, Propositions 5.3, 5.4] and Proposition 9.6, the properties (O5),
weak cancellation, the interval axiom, and the Riesz Interpolation Property each
satisfy the Löwenheim-Skolem condition. Using this, we find a countably based
sub-Cu-semigroup T ⊆ S containing x, y1, y2, . . . , and such that T satisfies (O5),
weak cancellation, the interval axiom, and the Riesz Interpolation Property. By
Proposition 9.5, T is inf-semilattice ordered.

We note that x is weakly (k, ω)-divisible in T . Applying [APRT18, Theorem 5.5],
it follows that x is (k, ω)-divisible in T , and hence also in S. �

Theorem 9.11. Let A be a C∗-algebra of stable rank one. Then the following are
equivalent:

(1) A is nowhere scattered;
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(2) every element in Cu(A) is (2, ω)-divisible;
(3) every element in Cu(A) is (k, ω)-divisible for every k ≥ 2.

Proof. As observed in Paragraph 7.1, Cu(A) is a Cu-semigroup satisfying (O5). By
Corollary 9.7, Cu(A) satisfies weak cancellation, the Riesz Interpolation Property,
and the interval axiom. Thus, Lemma 9.10 shows that an element in Cu(A) is
weakly (k, ω)-divisible if and only if it is (k, ω)-divisible. Now the result follows
from Theorem 8.9. �

The question of whether this stronger divisibility property in Cu(A) characterizes
nowhere scatteredness is connected to the Global Glimm Problem, which will be
studied in [TV21c].
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08193 Bellaterra, Barcelona, Spain

Email address: evilalta@mat.uab.cat

URL: www.eduardvilalta.com


