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PHASE PORTRAITS OF QUADRATIC SYSTEMS WHICH IMPLY THE EXISTENCE

OF A NILPOTENT OR INTRICATE INFINITE SINGULARITY

JOAN C. ARTÉS1, JAUME LLIBRE1, DANA SCHLOMIUK2 AND NICOLAE VULPE3

Abstract. In this paper we study the phase portraits of all the families of real planar quadratic differential

systems with a nilpotent or intricate singularity at infinity. This paper is part of a series of papers devised to

produce the complete set of topologically distinct phase portrait of quadratic differential systems.

1. Introduction and statement of main results

We consider here differential systems of the form

(1)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a system (1) the integer

m = max(deg p, deg q). In particular we call quadratic a differential system (1) with m = 2. We denote here

by QS the whole class of real quadratic differential systems.

After the geometrical classifications of configurations of singularities given in [3] (there are 1764 due to

a second recounting), after the topological classification of configurations of singularities given in [4] (there

are 208), after the classification of the structurally stable quadratic systems modulo limit cycle [1] (there are

44), after the classification of the structurally unstable quadratic systems of codimension one modulo limit

cycle [2] (there are 202 plus 7 conjectured empty) and after hundreds of papers classifying different classes of

quadratic systems [12], we are close to a complete classification of topologically different phase portraits of

quadratic systems modulo limit cycle.

In this paper we are going to advance one step more by doing a systematic study of all phase portraits of

non-degenerate quadratic systems with a nilpotent or intricate infinite singularity, which is not topologically

equivalent to an elemental or semi-elemental singularity. In the process we collect information from the

families already studied about some quadratic systems with such kind of singularities.

Most of the phase portraits we will find, have appeared previously in several other papers, but the most

relevant are the articles [7,10,11,13]. In these papers it turns out difficult to grasp how many phase portraits

are obtained and how many of them are topologically different. Moreover there are some missed phase portraits

as well as repeated ones. The authors of these papers not always give a clear label to each phase portrait.

With our classification all these problems are solved.

Our main result is:

Theorem 1. A quadratic system with a infinite nilpotent or intricate singularities (which is not topologically

equivalent to an elemental or semi-elemental singularity) at least 155 topologically distinct phase portraits

without limit cycle. From these phase portraits 18 of them appear also with a limit cycle and all of them are

presented in the list below. The phase portraits corresponding to these labels will appear along the paper.

• QS77
(2)
1 , QS77

(2)
2 , QS77

(2)
2(1)LC , QS77

(2)
3 ,QS77

(2)
3(1)LC , QS77

(3)
1 , QS77

(3)
2 , QS77

(3)
3 , QS77

(3)
4 , QS77

(3)
5 ;

• QS781(Vul6), QS785(Vul5);
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• QS79
(2)
1 , QS79

(2)
1(1)LC , QS79

(2)
2 , QS79

(2)
3 , QS79

(3)
1 , QS79

(3)
2 , QS79

(3)
3 ;

• QS80
(2)
1 , QS80

(2)
1(1)LC , QS80

(2)
2 , QS80

(2)
3 , QS80

(2)
4 , QS80

(3)
1 , QS80

(3)
2 ;

• QS81
(2)
1 , QS81

(2)
1(1)LC , QS81

(2)
2 , QS81

(2)
3 , QS81

(3)
1 , QS81

(3)
2 ;

• QS82
(3)
1 , QS82

(3)
2 , QS82

(3)
3 , QS82

(3)
3(1)LC , QS82

(4)
1 , QS82

(4)
2 ;

• QS88
(2)
1 ;

• QS89
(2)
1 , QS89

(2)
1(1)LC , QS89

(3)
1 ;

• QS90
(4)
1 ;

• QS91
(2)
1 , QS91

(2)
1(1)LC , QS91

(2)
2 , QS91

(2)
2(1)LC , QS91

(2)
3 , QS91

(3)
1 , QS91

(3)
2 , QS91

(3)
2(1)LC , QS91

(3)
3 , QS91

(4)
1 ;

• QS921(Vul14);

• QS93
(2)
1 , QS93

(2)
1(1)LC , QS93

(3)
1 ;

• QS941(Vul13);

• QS95
(3)
1 , QS95

(3)
1(1)LC , QS95

(3)
2 , QS95

(4)
1 ;

• QS106
(3)
1 , QS106

(3)
2 , QS106

(3)
3 , QS106

(3)
4 , QS106

(4)
1 , QS106

(4)
2 , QS106

(4)
3 , QS106

(4)
4 , QS106

(4)
5 ;

• QS107
(4)
1 ;

• QS108
(3)
1 , QS108

(3)
2 , QS108

(3)
3 , QS108

(3)
4 , QS108

(3)
5 , QS108

(3)
5(1)LC ;

• QS109
(3)
1 , QS109

(3)
2 , QS109

(3)
3 , QS109

(3)
4 , QS109

(3)
5 , QS109

(3)
6 , QS109

(3)
7 , QS109

(3)
7(1)LC , QS109

(4)
1 ,

QS109
(4)
2 , QS109

(4)
3 , QS109

(4)
4 ; QS109

(4)
5 ;

• QS110
(3)
1 , QS110

(3)
2 , QS110

(3)
3 , QS110

(3)
4 , QS110

(3)
5 , QS110

(3)
5(1)LC , QS110

(4)
1 , QS110

(4)
2 , QS110

(4)
3 ;

• QS111
(4)
1 , QS111

(4)
1(1)LC , QS111

(4)
2 , QS111

(4)
3 , QS111

(4)
4 , QS111

(4)
5 , QS111

(4)
6 , QS111

(5)
1 , QS111

(5)
2 ,

QS111
(5)
3 ;

• QS113
(4)
1 ;

• QS114
(4)
1 ;

• QS115
(4)
1 ;

• QS116
(5)
1 ;

• QS119
(5)
1 , QS119

(6)
1 ;

• QS120
(5)
1 ;

• QS121
(5)
1 ;

• QS123
(3)
1 , QS123

(4)
1 ;

• QS124
(3)
1 ;

• QS125
(3)
1 ;

• QS126
(3)
1 ;

• QS127
(4)
1 ;

• QS129
(3)
1 , QS129

(4)
1 ;

• QS130
(4)
1 ;

• QS135
(3)
1 , QS135

(3)
1(1)LC , QS135

(3)
2 , QS135

(3)
3 , QS135

(4)
1 , QS135

(4)
2 ;

• QS136
(3)
1 , QS136

(3)
2 , QS136

(3)
3 , QS136

(3)
3(1)LC , QS136

(4)
1 , QS136

(4)
2 ;

• QS137
(3)
1 ;

• QS138
(3)
1 , QS138

(4)
1 ;

• QS142
(3)
1 ;

• QS143
(3)
1 ;

• QS144
(4)
1 ;

• QS145
(4)
1 , QS145

(5)
1 ;

• QS146
(5)
1 ;

• QS152
(4)
1 , QS152

(4)
2 , QS152

(4)
3 , QS152

(5)
1 ;

• QS153
(5)
1 ;

• QS154
(4)
1 , QS154

(4)
2 , QS154

(4)
3 , QS154

(5)
1 ;
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• QS155
(5)
1 ;

• QS156
(4)
1 ;

• QS157
(4)
1 ;

• QS158
(5)
1 ;

• QS160
(4)
1 , QS160

(5)
1 ;

• QS162
(5)
1 ;

• QS163
(5)
1 ;

• QS164
(5)
1 ;

• QS165
(5)
1 ;

• QS166
(5)
1 ;

• QS167
(6)
1 ;

• QS168
(6)
1 ;

• QS169
(6)
1 ;

• QS197
(6)
1 .

2. Preliminary

In book [2] the authors already started the study of phase portraits having a single connection of separatrices

(without considering limit cycles) and stated that there are five types:

(a) Heteroclinic between two finite singularities;

(b) Homoclinic (involves two separatrices of the same singularity);

(c) Heteroclinic between a finite and an infinite singularities;

(d) Heteroclinic between an infinite singularity and its opposite;

(e) Heteroclinic between an infinite singularity and another infinite singularity different from its opposite,

in fact an adjacent one since if there is another singularity between them, the stabilities of the finite

separatrices of the infinite singularities would be the same.

Even this description was done for polynomial differential systems of codimension equal to one, it can also

be extended with some modifications to polynomial systems with codimension greater than one. The main

change is that now an infinite singularity could make a connection with itself. Since this is homoclinic we will

call it (b)∞ connection.

We start from the topological distinct local configurations of infinite singularities given in [3] (see also [14])

altogether with topological classification of configurations of singularities given in [4].

In the monograph [3] there are 46 different configurations at infinity, among which 6 have the infinite filled

up with singularities and hence at infinity they do not have isolated singularities. From the other 40 it easily

could be detected that 27 of them have one nilpotent or intricate infinite singularity which is topologically

non-equivalent to a node or a saddle or a semi-elemental saddle-node. Moreover in [3] (see Figure 6.2) there are

presented the 31 topologically distinct local configurations of infinite singular points for degenerate quadratic

systems. Among them there exist only one possessing an isolate nilpotent singular point presented there by

QD∞
18. We will describe the singularities at infinity using the notation given in [4, Section 2].

Some of these configurations of infinite singularities force exactly the number of finite singularities that a

system may have, whereas other configurations have several possibilities. In order to determine the exact

number of finite singularities we will use [4]. All this information is summarized in Table 1.

In this table we indicate in the first column the codes of these 28 configurations of the infinite singular points

from [3]. In the second column we give the topological description of the corresponding infinite singularities.

In the remaining eight columns we give the code (numeration given in the diagrams from the article [4]) of

the global topological configurations of singularities (finite and infinite) which corresponds to each infinite
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configuration. This information is split in several columns according to the total multiplicity mf of finite

singularities (from zero to 3) and also the number of real finite singularities. We have omitted by purpose the

cases with a finite center, even if some configurations could have infinite nilpotent or intricate singularities.

The reason is that systems with centers are already completely studied.

In paper [5] the authors consolidate the notion of codimension related to polynomial differential systems.

Even this concept has been widely used before, in paper [5], the concept gathers a bigger relevance when it

may expand beyond the low codimension degrees to bigger ones, and whichever the equivalence relation that

it is used. The relation between multiplicity of singularities and their codimension is also presented.

We must make now a recall about notation. Along more than 100 years, mathematicians have classified

quadratic phase portraits and have given them all kind of names. Most times, a same phase portrait appears

in different papers having different names. It is maybe a good moment now to establish a systematic way to

name all of them. And we propose the next:

We have 208 different topological configurations of singularities. This implies that two phase portraits

having different configurations of singularities, cannot be topologically equivalent. So the 208 configurations

of singularities provides a nice skeleton on which we can classify the phase portraits. Many of the topo-

logical configurations will have just one phase portrait, some may have several realizable phase portraits,

and a few configurations may have some dozens of phase portraits. We already have the configuration (39):

s, a, sn;
(
0
2

)
SN,N with 99 confirmed distinct phase portraits.

Notation 1. We propose to call each phase portrait as QSr
(b)
a where QS stands for “quadratic differential

system”, ’r’ is the number of the configuration of singularities from [4], ’b’ is the topological codimension of

the phase portrait and ’a’ is simply a cardinal to enumerate the different phase portraits which have the same

configuration and codimension. In case the phase portrait has limit cycles we will add to the sub-index a vector

like QS3
(0)
1(i,j,k)LC , where i, j and k denote the number of limit cycles that a phase portrait may have around

anti-saddles. We are aware that a quadratic system can have at most two foci (i.e. at most two nests of limit

cycles). But configuration like QS3 with three finite anti-saddles may have limit cycle around any of them or

even two of them. So we need a vector with three digits to describe all the possibilities.

The use of the codimension for the notation allows us to reduce the maximum value that may appear as

cardinal, but more important, it helps us to describe the different phase portraits and to detect which ones

can (or cannot) bifurcate from others. That is, it helps us to locate the “neighbors” of the phase portraits.

This notation was already introduced for the first time in [5] but there only few examples of its use were

given. In this paper we will use it widely.

In paper [5] the authors also assigned the topological codimension to each one of the 208 topological

configurations of singularities from [4]. Thus, the topological codimension of the phase portraits that we can

obtain from each configuration of singularities will have the same codimension or greater if the phase portrait

shows one or more separatrix connections, which are not already forced by the configuration of singularities.

In Section 3 we use some canonical forms of the quadratic systems, provided by the following lemma (we

keep the notations from [15] and from Table 6.1 in [3]):

Lemma 1 ( [15], [3]). Assume that a quadratic system possesses finite singular points of total multiplicity

mf ≤ 2. Then via an affine transformation this system could be brought to one of the canonical forms,

correspondingly with the number of finite singularities.

1) In the case of two real distinct finite singularities (mf = 2):

14a)

{
ẋ = cx+ dy − cx2 + 2duxy,

ẏ = ex+ fy − ex2 + 2fuxy, (cf − de)(2u+ 1)u ̸= 0;

14b)

{
ẋ = −(g + ku2)x− 2hy + gx2 + 2hxy + ky2,

ẏ = ux+ y, g − 2hu+ ku2 ̸= 0.
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2) In the case of two complex distinct finite singularities (mf = 2):

15a)

{
ẋ = a+ hux+ 2hxy + ay2,

ẏ = b+mux+ 2mxy + by2, am− bh ̸= 0;

15b)

{
ẋ = a+ cx+ gx2 + 2hxy + ay2,

ẏ = x, a ̸= 0.

3) In the case of one double real singularity (mf = 2):

16a)

{
ẋ = dy + gx2 + 2dxy,

ẏ = fy + lx2 + 2fxy, fg − dl ̸= 0;

16b)

{
ẋ = cx+ dy, c2n− 2cdm+ dl2 ̸= 0,

ẏ = lx2 + 2mxy + ny2.

3) In the case of one real singularity (mf = 1):

17a)

{
ẋ = cx+ dy + (2c+ d)x2 + 2dxy,

ẏ = ex+ fy + (2e+ f)x2 + 2fxy, cf − de ̸= 0;

17b)

{
ẋ = x+ dy, (de− f)(l2 +m2) ̸= 0,

ẏ = ex+ fy + lx2 + 2mxy − d(ld− 2m)y2.

4) In the case of the non-existence of finite singularities (mf = 0):

18a)

{
ẋ = h+ gx2 + 2hxy,

ẏ = m+ lx2 + 2mxy, hl − gm ̸= 0;

18b)

{
ẋ = y, l2 +m2 ̸= 0

ẏ = 1 + fy + 2mxy + ny2;

18c)

{
ẋ = x, l2 +m2 ̸= 0,

ẏ = 1 + ex+ lx2 + 2mxy;

18d)

{
ẋ = 1, l2 +m2 + n2 ̸= 0,

ẏ = ex+ fy + lx2 + 2mxy + ny2.

Moreover the invariant polynomial K̃ defined in [3] is not zero for the systems 14a), 15a), 16a), 17a) and

18a) and it vanishes for other normal forms.

Following Proposition 5.10 of [1] we present a similar one adapted to the type of singularities for all quadratic

systems.

Proposition 1. In a quadratic system with at least two pairs of infinite singular points, one of them having

parabolic sectors at both sides at infinity, a finite singularity having at least three separatrices cannot send

two of them with the same stability to one infinite singularity and the third separatrix to the opposite infinite

singularity.

Proof: The proof Proposition 5.10 of [1] was done providing that a finite singularity was an elemental saddle

and now we enlarge the possibility to have a semi-elemental or nilpotent saddle or saddle-node.

A finite nilpotent saddle or saddle-node in a quadratic system implies the existence of an invariant straight

line passing through the point. It is not too hard to check that in these case there appear also to many contact

points with a straight line passing through the second infinite singularity.

In the case of a semi-elemental saddle the proof given in [1] is still valid. Assume that we have a semi-

elemental saddle-node which sends two separatrices with the same stability to the same infinite singularities.

Then the straight line L that connects the second infinite singularity with the finite saddle node may either

cross one of the mentioned separatrices or not. In the first case the proof follows the same pattern as in [1].
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In the second case the separatrices of the saddle-node that go to the same

infinite singularity must arrive to the saddle-node must be tangent to the line

L (because they could not cross the line).

On the other hand the orbits of the parabolic sector of the saddle-node

must arrive transversal to the line L and this produces contact points with a

parallel line to L closed to the saddle-node (see the presented picture).

Remark 1. We have detected a minor error in the paper [5]. More precisely in Diagram 3 on page 11 in

the branch

µ0 = µ1 = 0, µ2 ̸= 0, U > 0, κ = 0, K̃ = 0, η = 0, M̃ ̸= 0, L̃ ̸= 0

the given configuration (135): s, a;
(
2
2

)
PH − H,N occurs only when κ1 ̸= 0. In the case κ1 = 0 the corre-

sponding configuration must be s, a;
(
2
2

)
PH − PH,N but this is not a new topological configuration because it

coincides with configuration (124).

3. Results

We now examine one by one each one of the 28 configurations of infinite singularities given in Table 1. Due

to the technique used for the study of different configurations of singularities we will order them according to

their complexity. The configuration QD∞
18 will appear as a border case inside infinite configuration 11 (more

exactly in topological configuration (154)).

3.1. The configuration 40: HHP − PHH. According to [4] this configuration of infinite singularities

leads to the unique global topological configuration of singularities: (127) a, a; HHP − PHH. We recall

that from [5], configuration (127) has topological codimension 4. Moreover a quadratic system possesses the

configuration (127) if and only if the following conditions hold:

(2) µ0 = µ1 = 0, µ2 < 0, U > 0, κ = 0, K̃ > 0, M̃ = 0, C2 ̸= 0.

Since K̃ ̸= 0, according to Lemma 1 a system with two distinct finite singularities belongs to the canonical

form 14a). For these systems the above conditions imply d = 0, c = −2fu ̸= 0, 2u + 1 < 0 and e ̸= 0.

Moreover we may assume f = 1 = e due to the rescaling (x, y, t) 7→ (x, ey/f, t/f). Therefore we get the family

of systems

(3) ẋ = 2u(x− 1)x, ẏ = x+ y − x2 + 2uxy, u < −1/2.

The systems (3) have the invariant straight lines x = 0 and x = 1 and the

nodes M1(0, 0) and M2(1, 0). This leads to the unique phase portrait given

by QS127
(4)
1 .

3.2. The configuration 39: HE − PHH. According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities: (158) a; HE − PHH. We recall that from [5],

configuration (158) has topological codimension 5. Moreover a quadratic system possesses the configuration

(158) if and only if the following conditions hold:

(4) µ0 = µ1 = µ2 = 0, µ3 ̸= 0, κ = 0, K̃ > 0, L̃ = 0, C2 ̸= 0, K3 < 0.

Since K̃ ̸= 0, according to Lemma 1 a system with a unique finite singularity belongs to the canonical form

17a). For these systems the above conditions imply d = 0, cf > 0, f − c = 0 and c(c+ 2e) > 0. Moreover we

may assume c = 1 due to a time rescaling and we get the family of systems

(5) ẋ = x(1 + 2x), ẏ = ex+ y + (2e+ 1)x2 + 2xy, 1 + 2e > 0.
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The systems (5) have the invariant straight lines x = 0 and x = −1/2

and the node M1(0, 0). This leads to the unique phase portrait given by

QS158
(5)
1 .

3.3. The configuration 38: HPH − P . According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities: (163) a; HPH − P . We recall that from [5],

configuration (163) has topological codimension 5. Moreover a quadratic system possesses the configuration

(163) if and only if the following conditions hold:

µ0 = µ1 = µ2 = 0, µ3 ̸= 0, κ = K̃ = η = M̃ = 0, µ3K1 > 0, K3 < 0.

Since K̃ = 0, according to Lemma 1 a system with a unique finite singularity belongs to the canonical form

17b). For these systems the above conditions imply d = m = 0, l ̸= 0, f > 0 and f(f − 2) > 0.

Moreover we may assume l = 1 due to the rescaling y → ly and we get the

family of systems

ẋ = x, ẏ = ex+ fy + x2, f > 2.

These systems possess one invariant straight line x = 0 and the node

M1(0, 0). This leads to the unique phase portrait given by QS163
(5)
1 .

3.4. The configuration 36: EH − HE. According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities: (167) EH − HE. We recall that from [5],

configuration (167) has topological codimension 6. Moreover a quadratic system possesses the configuration

(167) if and only if the following conditions hold:

µ0 = µ1 = µ2 = µ3 = η = M̃ = 0, µ4 ̸= 0, C2 ̸= 0, K̃ ̸= 0, K3 < 0.

Since K̃ ̸= 0, according to Lemma 1 a system with no finite singularities belongs to the canonical form 18a).

For these systems the above conditions imply h = 0, g = 2m and lm < 0.

Moreover we may assume l = 1 due to the rescaling y → ly and we get the

family of systems

ẋ = 2mx2, ẏ = m+ x2 + 2mxy, m < 0.

These systems possess one invariant straight line x = 0 which is of multiplicity

at least two and one infinite sinularity of total multiplicity 7. This leads to

the unique phase portrait given by QS167
(6)
1 .

3.5. The configuration 35: EE − HH. According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities: (168) EE − HH. We recall that from [5],

configuration (168) has topological codimension 6. Moreover a quadratic system possesses the configuration

(168) if and only if the following conditions hold:

(6) µ0 = µ1 = µ2 = µ3 = η = M̃ = 0, C2 ̸= 0, K̃ = 0, K1 ̸= 0, µ4 < 0.

Since K̃ = 0, according to Lemma 1 a system with no finite singularities belongs to the canonical forms 18b) -

18d). However in this case the conditions (6) could be satisfied only for the canonical systems 18c) and these

conditions imply m = 0 and l < 0.
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So we consider the normal form

ẋ = x, ẏ = 1 + ex+ lx2, l < 0.

which corresponds exactly to the global configuration (168).

These systems possess one invariant straight line x = 0 and this leads to the

unique phase portrait given by QS168
(6)
1 .

3.6. The configuration 33: EE−P . According to [4] this configuration of infinite singularities leads to the

unique global topological configuration of singularities: (162) s; EE−P . We recall that from [5], configuration

(162) has topological codimension 5. Moreover a quadratic system possesses the configuration (162) if and

only if the following conditions hold:

µ0 = µ1 = µ2 = κ = K̃ = η = M̃ = 0, µ3K1 < 0.

We observe that these conditions lead to systems with mf = 1 and the condition K̃ = 0 holds. Therefore

according to Lemma 1 we have to consider the canonical forms 17b). The above conditions imply d = m = 0,

l ̸= 0 and f < 0.

As a result we arrive at the the normal form

ẋ = x, ẏ = ex+ fy + lx2, f < 0.

which corresponds exactly to the global configuration (162). These systems

possess one invariant straight line x = 0 and the saddle M1(0, 0). As a result

we get the unique phase portrait given by QS162
(5)
1 .

3.7. The configuration 29: PHP − PHP, S. According to [4] this configuration of infinite singularities

leads to the unique global topological configuration of singularities: (125) a, a; PHP − PHP, S. We recall

that from [5], configuration (125) has topological codimension 3. Moreover a quadratic system possesses the

configuration (125) if and only if the following conditions hold:

(7) µ0 = µ1 = κ = 0, U > 0, K̃ > 0, L̃ < 0, M̃ ̸= 0, µ2 < 0.

Then according to [3] the finite anti-saddles must be nodes. Since the configuration (125) has two real distinct

singularities and K̃ ̸= 0, by Lemma 1 we have to consider the systems 14a). So the above conditions imply

d = 0, cfu < 0, 1 + 2u < 0 and c(c+ 2fu) < 0. Moreover we may assume f = 1 due to a time rescaling and

we get the family of systems

(8) ẋ = cx(1− x), ẏ = ex+ y − ex2 + 2uxy,

with u < −1/2 and 0 < c < −2u. We observe that the above systems have the invariant straight lines x = 0

and x = 1 and the nodes M1(0, 0) and M2(1, 0).

We observe that the above systems have the invariant straight lines x = 0

and x = 1 and the nodes M1(0, 0) and M2(1, 0). It is not too difficult to

detect, that we could not have neither an (e) connection nor a (d) connection.

And since the nodes are located on the invariant lines this leads to the unique

phase portrait given by QS125
(3)
1 .

3.8. The configuration 28: PHP − PHP, N . According to [4] this configuration of infinite singularities

leads to the unique global topological configuration of singularities (164): PHP − PHP, N , which belongs

to the class mf = 0, i.e. we have no finite singular points. We recall that from [5], configuration (164) has

topological codimension 5.
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According to [4] a quadratic system possesses the configuration (164) if and only if the following conditions

hold:

(9) µ0 = µ1 = µ2 = µ3 = 0, µ4 ̸= 0, η = 0, M̃ ̸= 0, κ = 0, K̃ < 0, R̃ < 0.

Since mf = 0 and K̃ ̸= 0, by Lemma 1 we have to consider the systems 18a). We determine that the

conditions (9) imply h = 0, gm < 0, and g(g + 2m) < 0. Moreover we may assume g = 1 due to a time

rescaling and we get the 2-parameter family of systems

ẋ = x2, ẏ = m+ lx2 + 2mxy, m < −1/2.

We observe that these systems possess the invariant line x = 0 (which is at least double).

It is not too hard to detect that this invariant line forms a (d) connection

of separatrices, i.e. the conditions (9) imply the existence of a separatrix

connection for a quadratic system. Therefore this connection will not increase

the codimension of the global phase portrait. Thus phase portrait QS164
(5)
1

has the codimension 5 given directly by its configuration of singularities.

This is the first case we meet here in which the configuration of singularities

enforces the existence of a separatrix connection. That is, if by means of a

perturbation we try to break the separatrix connection, we would change also

the intricate singularity.

3.9. The configuration 27: HHH −HHH, N . According to [4] this configuration of infinite singularities

leads to the unique global topological configuration of singularities: (126) a, a; HHH −HHH, N . We recall

that from [5], configuration (126) has topological codimension 3. Moreover for this configuration, the same

conditions (7) are satisfied except the condition L̃ < 0. Instead of it, in order to have at infinity exactly the

configuration of singularities (126) the condition L̃ > 0 is necessary and then we arrive at the canonical form

(8) for which the conditions u < −1/2 and c > −2u are fulfilled.

The systems (8) have the invariant straight lines x = 0 and x = 1 and

the nodes M1(0, 0) and M2(1, 0), which are located on these lines. Since at

infinity we have an intricate singular point possessing only hyperbolic sectors

it is clear that the invariant lines passing through this intricate point must

be the separatrices of the corresponding sectors. This leads to the unique

phase portrait given by QS126
(3)
1 .

3.10. The configuration 25: HHH − HP, N . According to [4] this configuration of infinite singularities

leads to the unique global topological configuration of singularities: (157) a; HHH − HP, N . We recall

that from [5], configuration (157) has topological codimension 4. Moreover a quadratic system possesses the

configuration (157) if and only if the following conditions hold:

(10) µ0 = µ1 = µ2 = κ = 0, K̃ > 0, L̃ > 0, µ3 ̸= 0.

Since the above conditions lead to systems with mf = 1 and K̃ ̸= 0, according to Lemma 1 we have to

consider the canonical form 17a). The conditions (10) imply for these systems d = 0, cf > 0 and c(c−f) > 0.

We may assume f = 1 (due to a time rescaling) and we arrive at the family of systems:

(11) ẋ = cx(1 + 2x), ẏ = ex+ y + (2e+ 1)x2 + 2xy, c > 1.
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We observe that these systems possess two invariant lines x = 0 and x =

−1/2 and the finite anti-saddle M1(0, 0) is located on the invariant line x = 0

(and clearly it is a node). Since the invariant lines pass through the infinite

intricate singularity which on one part possess only three hyperbolic sectors

we conclude that these invariant lines must serve as separatrices for these

sectors. So it is not so difficult to detect that we arrive at the unique phase

portrait given by QS157
(4)
1 .

3.11. The configuration 24: HHH−E, N . According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities (165), which belongs to the class mf = 0, i.e.

we have not finite singular points. We recall that from [5], configuration (165) has topological codimension 5.

According to [4] a quadratic system possesses the configuration (165) if and only if the following conditions

hold:

(12) µ0 = µ1 = µ2 = µ3 = 0, η = 0, M̃ ̸= 0, κ = 0, K̃ = 0, L̃ ̸= 0, κ1 = 0, K2 > 0, µ4 < 0.

Since mf = 0 and K̃ = 0 by Lemma 1 we have to consider one of the systems 18b) - 18d). It could be

checked directly that the conditions (12) could be satisfied only for the canonical systems 18b) and these

conditions imply m = 0, n < 0 and f2 − 4n > 0. So we get the family of systems

ẋ = y, ẏ = 1 + fy + ny2, n < 0.

Since f2 − 4n > 0 we deduce that the invariant lines 1 + fy + ny2 = 0 are

real and these lines pass through the infinite intricate singularity possessing

on one side of the line Z = 0 three hyperbolic sectors. Consequently these

lines must be the separatrices for the hyperbolic sectors and, since we have

not finite singularities, it is clear that in the region delimited by the invariant

lines we must have at infinity an elliptic sector. As a result we arrive at the

unique phase portrait given by QS165
(5)
1 .

3.12. The configuration 21: PH −PH,
(
1
1

)
SN . According to [4] this configuration of infinite singularities

leads to the unique global topological configuration of singularities: (161) a; PH−PH,
(
1
1

)
SN . We recall that

from [5], configuration (161) has topological codimension 4, and a quadratic system possesses the configuration

(161) if and only if the following conditions hold:

(13) µ0 = µ1 = µ2 = 0, η = κ = 0, M̃ ̸= 0, K̃ = L̃ = κ1 = 0, µ3K1 > 0.

Since the above conditions lead to systems with mf = 1 and K̃ = 0, according to Lemma 1 we have to

consider the canonical form 17b). Then the conditions (13) imply d = 0, f > 0 and m ̸= 0. We may assume

m = 1 due to the rescaling x → x/m and we arrive at the family of systems:

(14) ẋ = x, ẏ = ex+ fy + lx2 + 2xy, f > 0.

Since the anti-saddle M1(0, 0) is located on the invariant line x = 0 of these systems it is clear that M1 is a

node. It is not too difficult to detect that we could not have a (d) connection formed by the separatrices of the

infinite intricate point because both separatrices of the intricate singularity have the same stability. We can

neither have a (e) connection with the separatrix of the infinite saddle-node, because this produces a graphic

which must contain a focus (or a center) inside.



12 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

Moreover the separatrices of the intricate singularity can not have the

opposite stability with respect to the separatrix of the saddle-node otherwise

we obtain a contradiction with the existence of the invariant line x = 0.

Then all 3 separatrices have the same stability and therefore they must have

the finite singularity as a limit point. It is easy to prove that in fact the

separatrices of the intricate point are parts of the invariant line. As a result

we arrive at the unique phase portrait given by QS161
(4)
1 .

3.13. The configuration 15: E − PH,
(
1
1

)
SN . According to [4] this configuration of infinite singularities

leads to the unique global topological configuration of singularities: (166) which belongs to the class mf = 0,

i.e. we have no finite singular points. We recall that from [5], configuration (166) has topological codimension

5. The affine invariant conditions which define this topological configuration are:

(15) µ0 = µ1 = µ2 = µ3 = 0, µ4 ̸= 0, η = κ = 0, M̃ ̸= 0, K̃ = L̃ = κ1 = 0, K1 ̸= 0.

Since mf = 0 and K̃ = 0, by Lemma 1 we have to consider one of the systems 18b) - 18d). It could be

checked directly that the conditions (15) could be satisfied only for the canonical systems 18c) and these

conditions imply m ̸= 0. So we may assume m = 1 due to the rescaling x → x/m and we arrive at the family

of systems:

ẋ = x, ẏ = 1 + ex+ lx2 + 2xy.

We observe that these systems possess an invariant line x = 0 which con-

nects two sides of the intricate infinite singular point N1[0 : 1 : 0]. Therefore

the affine separatrix of the infinite saddle-node N2[1 : −l/2 : 0] must come

from (go to) the infinite singularity N1[0 : 1 : 0] creating an elliptic sector.

As a result we obtain the phase portrait QS166
(5)
1 .

3.14. The configuration 14: E − PH, N . According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities: (156) s; E − PH, N . We recall that from [5],

configuration (156) has topological codimension 4. By [4] a quadratic system possesses the configuration (156)

if and only if the following conditions hold:

(16) µ0 = µ1 = µ2 = 0, µ3 ̸= 0, κ = 0, K̃ < 0.

Since the configuration (156) contains a single finite singular point (which is a saddle) and K̃ ̸= 0, according

to Lemma 1 we have to consider the canonical form 17a). Then the conditions (16) imply d = 0 and cf < 0.

We may assume f = 1 (due to a time rescaling) and we arrive at the family of systems (11) but with the

condition c < 0 and in this case the 2-parameter family of systems (11) possesses exactly the configuration

(156).

We observe that systems (11) have two invariant lines x = 0 and x = −1/2 as well as the saddle M1(0, 0)

located on the invariant line x = 0. Moreover, we observe that these invariant lines pass through the infinite

intricate singularity and hence, two separatrices of the saddle (the semi-lines) go to the infinite intricate

singularity. Since one of the separatrices of the finite elemental saddle lies on the domain bordered by the

invariant lines x = 0 and x = −1/2, we deduce that this implies the existence of the elliptic sector between

these two invariant lines, bordered by the two separatrices of the finite saddle. The last separatrix of the finite

saddle is located at the semi-plane x > 0 and since we could not have two elliptic sectors, this separatrix must

go to the infinite elemental node.
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Thus we deduce that the hyperbolic sector of the intricate point must

be located on the left of the invariant line x = −1/2 and we observe, that

whether this invariant line serves as the separatrix bordering the hyperbolic

sector or not, we arrive at the same phase portrait. However for accuracy

we could examine the local behavior of the trajectories in the vicinity of the

intricate singularity at infinity and convince ourselves that the invariant line

x = −1/2 indeed serves as a separatrix for this singularity. In such a way we

get the phase portrait given by QS156
(4)
1 .

3.15. The configuration 12: E−E,
(
1
1

)
SN . According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities: (160) s; E−E,
(
1
1

)
SN . We recall that from [5],

configuration (160) has topological codimension 4. By [4] a quadratic system possesses the configuration (160)

if and only if the conditions (13) hold, except for the last one: instead of µ3K1 > 0 must be µ3K1 < 0. As a

result we consider systems (14), for which instead of f > 0 the condition f < 0 is satisfied.

We observe that these systems have the invariant line x = 0 on which the finite saddle is located. Moreover

this line passes through the infinite intricate singularity and this means that the two separatrices of the finite

saddle go to intricate singularity (each one in its direction). Without loss of generality we may assume that

the finite separatrix of the infinite semi-elemental saddle-node is located on the right hand of the invariant line

x = 0. So on this Poincaré semi-disc (defined by x > 0) there are two separatrices and we have two logically

distinct possibilities: there exists a (c) connection and there does not exist any separatrix connection.

The first possibility is realizable, for example, if e = l(f − 1)/2, because

in this case systems (14) possess the invariant line y = −lx/2 which con-

sists of two separatrices of finite saddle going to the infinite saddle-node and

produces a (c) connection. As a result we get the phase portrait given by

QS160
(5)
1 . The codimension is 5 due to the codimension 4 of the configuration

of singularities plus the added codimension given by the (c) connection.

Assume now that there does not exist a separatrix connection. Then both

separatrices on the Poincaré semi-disc defined by x > 0 must go to the

intricate infinite singularity. And clearly they must go in different directions,

otherwise we get two elliptic sectors on the same part of the line Z = 0.

Evidently this produces two elliptic sectors on different sides with respect to

the line Z = 0.

Now we examine the behavior of the separatrix of the finite saddle located on the semi-plane x < 0.

Evidently this separatrix can not go/arrive to/from the infinite intricate singularity because in this case we

get two elliptic sectors on the same part of the line Z = 0. So the unique possibility for this separatrix is to go

to the parabolic sector of the infinite saddle-node. In such a way we get the phase portrait given by QS160
(4)
1

(here we have not a separatrix connection).

The coherence of codimension between these two phase portraits is clear. By means of a perturbation, one

may break the separatrix connection in QS160
(5)
1 and obtain QS160

(4)
1 .

3.16. The configuration 10: E − E, N . According to [4] this configuration of infinite singularities leads

to the unique global topological configuration of singularities: (123) s, s;E − E, N . We recall that from [5],

configuration (123) has topological codimension 3. The affine invariant conditions which define this topological

configuration are:

(17) µ0 = µ1 = 0, U > 0, κ = 0, K̃ < 0, µ2 < 0.

Since the configuration (123) contains two real distinct singularities (which are saddles) and K̃ ̸= 0, by Lemma

1 we have to consider the systems 14a) for which conditions (17) imply d = 0, −cfu < 0 and 1 + 2u < 0.
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Moreover we may assume f = 1 due to a time rescaling and we get the family of systems (8) for which the

conditions u < −1/2 and c < 0 hold.

We observe that the systems (8) have the invariant straight lines x = 0 and x = 1 and on these lines the

saddlesM1(0, 0) andM2(1, 0) are located. So the invariant lines consist of four separatrices of the finite saddles

and hence they connect finite saddles with the infinite intricate singularity (in each part two separatrices).

Since on the lines x = 0 and x = 1 we have

dy

dt

∣∣
x=0

= y,
dy

dt

∣∣
x=1

= y(1 + 2u)

and due to the condition u < −1/2 we deduce that the flow on the half-line x = 0 (respectively x = 1) and

y > 0 goes upwards (respectively downwards). Inside the domain bordered by the invariant lines x = 0 and

x = 1 there are located two separatrices: one of the saddle M1 and another of the saddle M2. Clearly these

separatrices have also different stabilities.

So we could have three logically distinct situations: (i) we have an (a) connection between the saddles; (ii)

both separatrices go to the intricate singularity in different sides and (iii) both separatrices go to the intricate

singularity to the same side.

However the third possibility leads to the existence of at least two elliptic

sectors on the same side of the line Z = 0, which is impossible. The first two

possibilities lead to the existence of two elliptic sectors on different sides of

the line Z = 0. This means that the remaining two separatrices outside the

mentioned domain could go only to the elementary node at infinity (each one

to its side), otherwise we get again two elliptic sectors on the same part of

the line Z = 0, which is impossible.

We observe that an (a) connection exists when e = 0, because in this case

systems (20) possess the invariant line y = 0 passing through the saddles

M1(0, 0) and M2(1, 0). As a result we arrive to the phase portrait QS123
(4)
1 .

In the case when we have not a separatrix connection we get the phase

portrait QS123
(3)
1 .

3.17. The configuration 8: H −H, N . According to [4] this configuration

of infinite singularities leads to the unique global topological configuration

of singularities: (137) H − H, N . We recall that from [5], configuration

(137) has topological codimension 3. In this case we have two finite complex

singularities and it is not difficult to detect that this leads to the unique phase

portrait given by QS137
(3)
1 .

Up to here every configuration at infinity has forced the finite configuration of singularities. Now we start

with configurations at infinity which allows several options for finite singularities.

3.18. The configuration 32: EH − P . According to [4] this configuration of infinite singularities leads to

the following three global topological configurations of singularities:

(169) EH − P ; (146) sn; EH − P ; (130) s, a; EH − P.

3.18.1. The topological configuration (169). We recall that from [5], configuration (169) has topological

codimension 6. According to [4] the affine invariant conditions which define this topological configuration are:

(18) µ0 = µ1 = µ2 = µ3 = 0, µ4 ̸= 0, M̃ = 0, C2 ̸= 0, K̃ = K1 = 0, K3 ̸= 0.

So the configuration (169) is from the class mf = 0 and since K̃ = 0, according to Lemma 1 a system in this

class must belong to one of the canonical forms 18b) - 18d). It could be checked directly that the conditions

(18) could be satisfied only for the canonical systems 18d), i.e. we consider the following family of systems:

ẋ = 1, ẏ = ex+ fy + lx2 + 2mxy + ny2.
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For these systems the conditions M̃ = 0 and C2K3 ̸= 0 imply m = n = 0 and fl ̸= 0. Then due to the

rescaling (x, y, t) 7→ (x/f, ey/f2, t/f) we may assume f = 1 = e in the case e ̸= 0. If e = 0 then we apply the

rescaling (x, y, t) 7→ (x/f, y, t/f) obtaining f = 1. Thus we arrive at the family of systems

ẋ = 1, ẏ = ex+ y + lx2, l ̸= 0, e ∈ {0, 1}.

We observe that these systems possess at infinity one intricate singularity of multiplicity 7 having one elliptic

and one hyperbolic sector on one side of the infinite line Z = 0 and one parabolic sector at the other side.

Since according to [3] (see Diagram 8.1) the geometrical configuration of the

intricate singularity is
(
4
3

) ↷
P⋏EH⋏−

↷
P there is no parabolic sector beside

the hyperbolic sector. Therefore the hyperbolic sector is formed by an affine

separatrix plus a separatrix at infinity. As a result we arrive at the unique

phase portrait given by QS169
(6)
1 .

3.18.2. The topological configuration (146). We recall that from [5], configuration (146) has topological

codimension 5. By [4] the affine invariant conditions which define this topological configuration are:

µ0 = µ1 = 0, µ2 ̸= 0, U = κ = L̃ = 0, K̃ > 0, C2 ̸= 0.

So the configuration (146) is from the class mf = 2 and moreover there exists a double finite singularity.

Since K̃ ̸= 0, according to Lemma 1 such a system belongs to the canonical forms 16a). For these systems

the conditions κ = L̃ = 0 and K̃ ̸= 0 imply d = 0 and g = 2f ̸= 0 and the conditin C2 ̸= 0 imolies l ̸= 0.

Moreover we may assume f = 1 due to a time rescaling. Therefore we get the family of systems

ẋ = 2x2, ẏ = y + lx2 + 2xy, l ̸= 0.

We observe that the above systems possess the invariant line x = 0 (of multiplicity at least two) and the

saddle-node (0,0) is located on this line. Moreover both semi-lines of this invariant line are the separatrices

of the saddle-node and the separatrices are both repelors.

We have another separatrix in the semi-plane x < 0 and without loss of

generality we may consider that the parabolic sector of infinite singularity

is located in the semi-plane y > 0. Therefore the finite separatrix can only

come from the opposite region formed by parabolic sector. As a result we

obtain the elliptic sector and this leads to the unique phase portrait given by

QS146
(5)
1 .

Observation 1. It is worth to notice that this phase portrait has codimension 5 while the previous one has

codimension 6. If configuration (169) could be obtained with two complex finite singularities it would have

codimension 4. But this is not possible by [3, Diagram 9.4]. In other words one can not perturb phase portrait

QS146
(5)
1 to produce two complex finite singularities (or perturb QS169

(6)
1 so to extract two finite complex

singularities from infinity). It is possible to perturb it to produce two real finite singularities as we will see in

the next case, but perturbing it in two complex affects infinite singularities.

3.18.3. The topological configuration (130). We recall that from [5], configuration (130) has topological

codimension 4. According to [4] the affine invariant conditions which define this topological configuration are:

(19) µ0 = µ1 = 0, µ2 > 0, U > 0, κ = M̃ = 0, K̃ > 0, C2 ̸= 0.

So the configuration (130) is from the class mf = 2 and moreover there exist two distinct finite singularities

which are a saddle and an anti-saddle. Since K̃ ̸= 0, according to Lemma 1 such a system belongs to the

canonical forms 14a). for which the conditions (19) imply d = 0, c = −2fu ̸= 0, 2u + 1 > 0 and e ̸= 0.

Moreover we may assume f = 1 = e due to the rescaling (x, y, t) 7→ (x, ey/f, t/f). Therefore we get the family

of systems

(20) ẋ = 2u(x− 1)x, ẏ = x+ y − x2 + 2uxy, 0 ̸= u > −1/2.
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We observe that the above systems possess two invariant lines x = 0 and x = 1 and on each one of them

there is located a singular point. As one of the finite singularities is a saddle (we may assume to be located

on x = 0) we conclude that one separatrix of this saddle is located between the two parallel invariant lines.

Without loss of generality we may assume that the parabolic sector of the

infinite intricate singularity is located on the semi-plane y > 0 and that it is

an repelor. This forces the direction of the flow of every separatrix. Therefore

the separatrix between the invariant lines must go to the finite node and the

other separatrix must border the infinite elliptic sector. Thus we obtain the

unique phase portrait given by QS130
(4)
1 .

3.19. The configuration 19: PH−PH, N . According to [4] this configuration of infinite singularities leads

to the following two global topological configuration of singularities:

(144) sn; PH − PH, N ; (124) s, a; PH − PH, N.

Similarly as in the configuration 32 one cannot perturb the saddle-node into complex singularities and maintain

the infinite intricate singularity.

3.19.1. The topological configuration (144). We recall that from [5], configuration (144) has topological

codimension 4. Taking into consideration [4] we determine that the configuration (144) could occur if and

only if one the following three sets of the conditions are satisfied:

(21)

(a) µ0 = µ1 = 0, µ2 ̸= 0, U = κ = 0, K̃ < 0;

(b) µ0 = µ1 = 0, µ2 ̸= 0, U = κ = 0, K̃ > 0, L̃ > 0;

(c) µ0 = µ1 = 0, µ2 ̸= 0, U = κ = 0, K̃ = 0, L̃ ̸= 0, T4 = 0, η = κ1 = 0.

So the configuration (144) is from the class mf = 2 and moreover there exists a double finite singularity.

According to Lemma 1 we arrive at the family of systems 16a) in the cases (a) and (b) (since K̃ ̸= 0) and at

systems 16b) in the case (c) (when K̃ = 0).

For systems 16a) we obtain the following dependencies: d = 0 and either fg < 0 or fg > 0 and g(g−2f) > 0.

We may assume f = 1 due to a time rescaling and we arrive at the family of systems

(22) ẋ = gx2, ẏ = y + lx2 + 2xy, g(g − 2) > 0.

We observe that the above systems possess the invariant line x = 0 (of multiplicity at least two) and the

saddle-node (0,0) is located on this line. Moreover both semi-lines of this invariant line are the separatrices

of the saddle-node and the separatrices are both repelors.

We have another separatrix in the semi-plane x < 0 if g > 0 and we detect

that the node at infinity is located a located at N [l/2 : 0 : 0] and it is an

attractor on the side x > 0. This implies the existence of the unique phase

portrait given by QS144
(4)
1 . We point out that even this phase portrait

contains two separatrix connections, its codimension does not grow above

the value 4 already provided by the configuration of singularities because the

connections are already forced.

In the case g < 0 we obtain a phase portrait which is symmetrical to QS144
(4)
1 with respect to invariant

line x = 0.

For systems 16b) the conditions (c) from (21) imply

n ̸= 0, l = m2/n, m(dm− cn) = 0, dm− cn ̸= 0

and therefore we obtain m = l = 0. So we arrive at the systems

ẋ = cx+ dy, ẏ = ny2, cn ̸= 0
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and due to the rescaling (x, y, t) 7→ (x, cy/n, t/c) we may assume c = n = 1.

Evidently the above system has the invariant line y = 0 on which is located a saddle-node. At infinity

we have a simple node N1[0 : 1 : 0] and the intricate one N2[1 : 0 : 0]. This leads to the phase portrait

topologically equivalent to QS144
(4)
1 .

3.19.2. The topological configuration (124). We recall that from [5], configuration (124) has topological

codimension 3. By [4] the affine invariant conditions which define this topological configuration are:

(23) µ0 = µ1 = 0, µ2 > 0, U > 0, κ = 0 and either K̃ < 0, or K̃ > 0, M̃ ̸= 0, L̃ > 0.

Moreover according to Remark 1 there exist the following third possibility:

(24) µ0 = µ1 = 0, µ2 ̸= 0, U > 0, κ = K̃ = η = 0, M̃ ̸= 0, L̃ ̸= 0, κ1 = 0.

According to Lemma 1 a system with two distinct finite singularities belongs to one of the canonical forms

14a) or 14b). More exactly in the case (23) we have K̃ ̸= 0 and hence we have to consider systems 14a),

whereas in the case (24) (K̃ = 0) and we have to examine the canonical systems 14b).

We examine first the conditions (23). The condition κ = 0 implies d = 0. Then we calculate

K̃ = −4cfux2, U = c4f4(1 + 2u)2x4y2, M̃ = −8(c+ 2fu)2x2, L̃ = 8c(c+ 2fu)2x2, µ2 = c2f2(1 + 2u)x2.

Since c ̸= 0 we may assume c = 1 due to a time rescaling and we consider the family of systems

ẋ = x(1− x), 1 + 2u > 0 and eitherfu > 0 or fu < 0, 1 + 2fu > 0,

ẏ = ex+ fy − ex2 + 2fuxy,

By means of a symmetry with respect to the line x = 1/2 we may assume

that the finite saddle is at the origin of the coordinates. As a result we arrive

at the unique phase portrait given by QS124
(3)
1 .

Now we consider the conditions (24) which must be satisfied for systems 14b). We calculate:

η = 4g2(h2 − gk), L̃ = 8g(gx2 + 2hxy + ky2)

and therefore the condition L̃ ̸= 0 implies g ̸= 0. Then we may assume g = 1 due to a time rescaling and

hence the condition η = 0 yields k = h2. Then we calculate

µ2 = (hu− 1)2(x+ hy)2, κ1 = −32h2u(hu− 1)

and clearly the conditions κ1 = 0 and µ2 ̸= 0 imply hu = 0. This leads to the canonical form

ẋ = −x− 2hy + (x+ hy)2, ẏ = ux+ y, hu = 0.

Assume first u = 0. Then the above systems possess three invariant lines: y = 0, x = −hy and x = 1 − hy.

The last two are parallel and one of them passes through the finite node and another one through the finite

saddle. So for the same arguments as above the existence of these two parallel lines leads to the phase portrait

QS124
(3)
1 .

Suppose now h = 0. Then we get the invariant line x = 0 and x = 1 which again pass through the saddle

and node respectively. Clearly we get the same phase portrait QS124
(3)
1 .

3.20. The configuration 17: E −E, S. According to [4] this configuration of infinite singularities leads to

the following three global topological configuration of singularities:

(138) E − E, S; (145) sn; E − E, S; (129) s, a; E − E, S.
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3.20.1. The topological configuration (138). We recall that from [5], configuration (138) has topological

codimension 3. Taking into consideration [4] we determine that the configuration (144) could occur if and

only if one the following three sets of the conditions are satisfied:

(25)

(a) µ0 = µ1 = 0, µ2 ̸= 0, U < 0, κ = 0, K̃ > 0, L̃ < 0;

(b) µ0 = µ1 = µ2 = µ3 = 0, µ4 ̸= 0, η = 0, M̃ ̸= 0, κ = 0, K̃ > 0, L̃ < 0;

(c) µ0 = µ1 = µ2 = µ3 = 0, µ4 ̸= 0, η = 0, M̃ ̸= 0, κ = 0, K̃ = L̃ = κ1 = K1 = 0, L1 < 0.

According to Lemma 1 we arrive at the family of systems 15a) in the case (a), at systems 18a) in the case (b)

and at systems 18d) in the case (c).

The conditions provided by the set (a) from (25) implies m = 0, bh > 0 and b(b − 2h) < 0. Moreover we

may assume b = 1 due to a time rescaling. Therefore we get the family of systems

(26) ẋ = a+ hux+ 2hxy + ay2, ẏ = 1 + y2, h > 1/2.

The intricate infinite singularity of these systems is located at the point

N1[1 : 0 : 0] , whereas the infinite saddle is at the point N2[a/(1−2h) : 1 : 0].

Since there are no real finite singularities and there are two separatrices of

the infinite saddle we have two logically distinct possibilities: there exists a

(d) connection and there does not exist any separatrix connection.

The first possibility is realizable, for example, if a = 0, because in this

case systems (26) possess the invariant line x = 0 which consists of two

separatrices of the infinite saddle and produces a (d) connection. As a result

we get the phase portrait given by QS138
(4)
1 .

If there does not exist a (d) connection, we arrive at the unique first portrait

defined by QS138
(3)
1 of codimension 3.

Next we consider the conditions (b) from (25). For systems 18a) we calculate κ = 128h2(hl − gm) and

µ4 = (gm − hl)2x4. So clearly the conditions κ = 0 and µ4 ̸= 0 imply h = 0 and gm ̸= 0. Then we may

assume g = 1 due to a time rescaling and considering the remaining conditions from (b) we arrive at the

following family of systems

ẋ = x2, ẏ = m+ lx2 + 2mxy, m > 1/2.

Since the above systems possess the invariant line x = 0 we conclude that they have the phase portrait

QS138
(4)
1 .

In the case of conditions (c) from (25) we have to consider the systems 18d) for which we calculate

µ4 = (lx2 + 2mxy + ny2)2, L̃ = 8n(lx2 + 2mxy + ny2).

Therefore the conditions L̃ = 0 and µ4 ̸= 0 imply n = 0. Then the condition L1 = −64m3x2 < 0 implies

m > 0 and we arrive at the family of systems

(27) ẋ = 1, ẏ = ex+ fy + lx2 + 2mxy, m > 0.

Since there are no real finite singularities and there are two separatrices of the infinite saddle we have two

logically distinct possibilities: there exists a (d) connection and there does not exist any separatrix connection.

The first possibility is realizable, for example, if f = l = 0, because in this case systems (27) possess

the invariant line e + 2my = 0 which consists of two separatrices of the infinite saddle and produces a (d)

connection.

In such a way we obtain two phase portraits (possessing or not possessing a (d) connection ) which are

topologically equivalent to QS138
(4)
1 and QS138

(3)
1 , respectively.
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3.20.2. The topological configuration (145). We recall that from [5], configuration (145) has topological

codimension 4. According to [4] the affine invariant conditions which define this topological configuration are:

µ0 = µ1 = 0, µ2 ̸= 0, U = 0, κ = 0, K̃ > 0, L̃ < 0.

So the configuration (145) is from the class mf = 2 and moreover there exists a double finite singularity.

According to Lemma 1 we arrive again at the family of systems 16a). The above conditions imply the

following dependences for the coefficients of these systems : d = 0, fg > 0 and g(2f −g) > 0. We may assume

f = 1 due to a time rescaling and we arrive at the family of systems (22) but with the condition 0 < g < 2.

We observe that the systems (22) possess the invariant line x = 0 (of multiplicity at least two) and the

saddle-node (0,0) is located on this line. Moreover both semi-lines of this invariant line are the separatrices of

the saddle-node and the separatrices are both repelors. We have another separatrix in the semi-plane x < 0

and we detect that the saddle at infinity is located at N [1 : l/(g − 2) : 0]. Due to the condition 0 < g < 2 the

saddle has a unstable affine separatrix on the semi-plane x < 0 .

So on this Poincaré semi-disc (defined by x < 0) there are two separatrices and we have two logically distinct

possibilities: there exists a (c) connection and there does not exist any separatrix connection.

The first possibility is realizable, for example, if l = 0, because in this

case systems (22) possess the invariant line y = 0 which for x < 0 consists

of two separatrices of the infinite saddle going to the finite saddle-node and

produces a (c) connection. As a result we get the phase portrait given by

QS145
(5)
1 .

Assume now that there does not exist a separatrix connection. Then both

separatrices on the Poincaré semi-disc defined by x < 0 must go to the

intricate infinite singularity. And clearly they must go in different directions,

otherwise we get two elliptic sectors on the same part of the line Z = 0.

Evidently this produces two elliptic sectors on different sides with respect to

the line Z = 0. This implies the existence of the unique phase portrait given

by QS145
(4)
1 .

3.20.3. The topological configuration (129). We recall that from [5], configuration (129) has topological

codimension 3. By [4] the affine invariant conditions which define this topological configuration are:

µ0 = µ1 = 0, µ2 > 0, U > 0, κ = 0, K̃ > 0, L̃ < 0, M̃ ̸= 0.

So the configuration (129) is from the class mf = 2 and moreover there exists only two real finite singularities

which are a saddle and an anti-saddle. So since K̃ ̸= 0, by Lemma 1 such a system belongs to the canonical

forms 14a) for which these conditions imply d = 0, cfu < 0, 1 + 2u > 0 and c(c+ 2uf) < 0. We may assume

c = 1 via a time rescaling and we get the systems

(28) ẋ = x(1− x), ẏ = ex− ex2 + fy + 2fuxy, u < −1/2, uf < −1/2.
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We observe that by means of a symmetry with respect to the line x = 1/2 we

may assume that the finite saddle is at the origin of the coordinates. There-

fore on the semi-plane x < 0 we have two separatrices: one of the infinite

saddle and one of the finite saddle. So we have two logically distinct possi-

bilities: there exists a (c) connection and there does not exist any separatrix

connection.

The first possibility is realizable, for example, if e = 0, because in this case

systems (28) possess the invariant line y = 0 whose semi-line x < 0 is the (c)

connection under discussion. As a result we get the phase portrait given by

QS129
(4)
1 .

If there does not exist a (c) connection we arrive at the unique first portrait

defined by QS129
(3)
1 .

3.21. The configuration 11: E−H,
(
1
1

)
SN . According to [4] this configuration of infinite singularities leads

to the following five global topologically configurations of singularities, two of which being equivalent:

(143)a E −H,

(
1

1

)
SN ; (143)b E −H,

(
3

1

)
SN.; (154) sn; E −H,

(
1

1

)
SN ;

(155) cp; E −H,

(
1

1

)
SN ; (136) s, a; E −H,

(
1

1

)
SN.

We note that quadratic systems with a finite nilpotent singular point are

already classified (see for instance, [8]). According to [8] a quadratic sys-

tem with a finite cusp and infinite singularities with the configuration

E−H,
(
1
1

)
SN possesses a unique phase portrait given by picture 22 in Figure

20 (see [8, page 200] ). We denote this picture which corresponds to the

configuration (155) by QS155
(5)
1 .

In what follows we consider the configurations (143), (154) and (136).

According to [3] the infinite singularity
(
1
2

)
E − H is nilpotent, whereas the infinite saddle-nodes

(
1
1

)
SN

and
(
3
1

)
SN are semi-elemental. Thus the systems which possess the topological configurations (136), (154)

and (143)a belong to the family of systems with mf = 2, whereas in the case of the configuration (143)b the

systems are in the class with mf = 0.

3.21.1. The topological configurations (143)a and (143)b. We recall that

from [5], configuration (143) has topological codimension 3. We should have

to study two different normal forms, one for (143)a and another for (143)b.

But given the reduced number of singularities of these configurations, we can

do simply a topological argument to find the phase portrait.

Since we have not real finite singularities and only one finite separatrix belongs to the infinite saddle-node,

it is clear that this separatrix must go to the nilpotent infinite singularity forming an elliptic sector. This

leads to the unique phase portrait given by QS143
(3)
1 .

3.21.2. The topological configuration (154). We recall that from [5], configuration (154) has topological

codimension 4. According to [4] the affine invariant conditions which define this topological configuration are:

µ0 = µ1 = 0, µ2 ̸= 0, U = 0, κ = K̃ = L̃ = 0, M̃ ̸= 0, T4 = 0, B1 ̸= 0.

So the configuration (154) is from the class mf = 2 and moreover there exists a double finite singularity. Since

K̃ = 0, according to Lemma 1 we have to consider the canonical form 16b) and these conditions imply n = 0

and cdm(ld − 2cm) ̸= 0. We may assume c = d = m = 1 due to the rescaling (x, y, t) 7→
(
cx

m
,
c2y

dm
,
t

c

)
, and
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we arrive at the family of systems:

(29) ẋ = x+ y, ẏ = lx2 + 2xy, l ̸= 2.

We have 1-parameter family for which one of the bifurcation points is l = 2 because in this case we get a

degenerate system (which by [4] possesses the global topological configuration (197)). By the way, we recall

that from [5], configuration (197) has topological codimension 6.

We observe that the value l = 0 is also a bifurcation value because in this case we get an invariant line

which gives a (c) connection.

Since for l = 0 (respectively for l = 2) we get a special system without parameters we determine that the

corresponding phase portrait is given in Figure 1 by QS154
(5)
1 (respectively, QS197

(6)
1 which is the phase

portrait generated by the infinite configuration QD∞
18).

One could find that there is a lack of coherence here since phase portrait QS154
(5)
1 has topological codimen-

sion 5 and phase portrait QS197
(6)
1 has topological codimension 6, while both may be perturbated inside this

family into systems of codimension 4. However, the configuration of singularities (197) has been proved that

it may be perturbed into other configurations of singularities of codimension 5, and thus any phase portrait

obtained from configuration (197) will have at least codimension 6, even if it appears in a normal form which

suggests a lower codimension.

We claim that there are not more bifurcation values for the parameter l and in each one of the three intervals

defined by l = 0 and l = 2 we get a unique phase portrait.

Indeed, it could be easily proved the following statements: i) the elliptic sector of the nilpotent infinite

singularity N1[0 : 1 : 0] is always on the semi-plane y > 0; ii) on the semi-plane x > 0 the semi-elemental

infinite saddle-node N2[1 : −l/2 : 0] has the hyperbolic sectors if l < 2 and it has parabolic sectors if l > 2;

iii) the finite saddle-node has the center manifold (the separatrix with the eigenvalue zero) on the semi-plane

y > 0 (respectively y < 0) if l < 2 (respectively l > 2); iv) the flow on the line y = 0 goes down if l < 0 and

up if l > 0. According to these conditions we arrive in unique mode to the phase portraits given by QS154
(4)
1

if l < 0; by QS154
(4)
2 if 0 < l < 2 and by QS154

(4)
3 if l > 2 (see Figure 1).

Figure 1. Bifurcation diagram for the family of systems (29).

3.21.3. The topological configuration (136). We recall that from [5], configuration (136) has topological

codimension 3. According to [4] the affine invariant conditions which define this topological configuration are:

µ0 = µ1 = 0, µ2 ̸= 0, U > 0, η = κ = K̃ = L̃ = 0, M̃ ̸= 0.
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For the systems with this configuration it is more convenient to examine canonical form associated to infinite

singularities. Since η = 0 and M̃ ̸= 0 we have to consider the canonical form (SIII) (see [3], Section 6.4),

which possess two real distinct infinite singularities, i.e. we consider the following systems:

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2.

For these systems we calculate κ = −16h2 = 0, i.e. h = 0 and then we have L̃ = 8gx2 = 0 which yields g = 0.

Then we obtain

µ0 = µ1 = 0, µ2 = −cdxy, K̃ = 0.

So due to the condition µ2 ̸= 0 (i.e. cd ̸= 0) we may assume c = d = 1 due to the rescaling (x, y, t) 7→
(cx, c2y/d, t/c) and moreover since we have two real finite singularities, due to a translation we may assume

that one of the singularities is located at the origin of coordinate, i.e. a = b = 0. As a result we arrive at the

2-parameter family of systems

(30) ẋ = x+ y, ẏ = ex+ fy − xy,

with the condition e−f ̸= 0 due to U = (e−f)2x2y2(x+y)2 > 0. These systems possess the finite singularities

M1(0, 0) and M2(f − e, e − f) (one saddle and one anti-saddle). More exactly the singularity M1(0, 0) is a

saddle if f − e < 0 and it is an anti-saddle if f − e > 0. We observe that without loss of generality we may

assume f − e < 0 due to the change (x, y, e, f) 7→ (x+ f − e, y − f + e, f, e).

The family of systems (30) depends on two parameters e and f and we are going to examine the bifurcation

diagram in these parameters. Using the tools described in the monograph [3] we obtain that the relevant

bifurcation curve is e = −1 and namely, on the semi-plane f − e < 0 any system from the family defined

by the points located on the line e = −1 possesses a weak focus. The invariant polynomials also detect that

the straight line f = −1 which has the same geometrical meaning as the line e = −1 but in this case the

corresponding systems possess a weak saddle. However this bifurcation will not have any topological effect as

we will see below.

On the other hand studying the possible existence of invariant straight lines, we detect then they do exist

when ef = 0. However meanwhile the case e = 0 implies he existence of a separatrix (c)-connection the other

case never produces a separatrix connection.

Finally, since the bifurcation e = −1 implies the existence of a weak focus, there must be a limit cycle on

one of the sides of this bifurcation and it is expected also to exist another bifurcation (possible non-algebraic)

which implies the existence of a separatrix connection forming a graphic where the limit cycle must disappear.

We detect that this bifurcation exists inside the band −1 < e < 0, it ends at the point (−1,−1). This

bifurcation curve clearly exists for f < −1 and it can not exists for f > −1 because it would cross then the

line of weak saddle. The coexistence of a loop with a weak saddle produces a known bifurcation which emits

a limit cycle without breaking the loop. So we would have the possibility of a phase portrait with two limit

cycles and this region would end also at the point (−1,−1). On the other hand at this point we have the

phase portrait QS155
(5)
1 which has a cusp. However according to [9] polynomials systems with the cusp of

multiplicity n cannot bifurcate more than n− 1 limit cycles. Therefore a cusp of multiplicity two as we have

in QS155
(5)
1 can only bifurcate at most one limit cycle.

Summarising all the reasons presented above we arrive at the bifurcation diagram given in Figure 2.

This bifurcation diagram presents four bidimensional regions and three one dimensional bifurcation curves.

Also on the line f = e we see the cases with a double finite singularity which correspond to the topological

configurations (154) and (155) investigated earlier. The bifurcation diagram includes the codes of the new

phase portraits presented in Figure 3. The phase portrait QS136
(3)
3wf having a weak focus is topologically

equivalent to QS136
(3)
3 . The phase portrait QS136

(3)
3LC having a limit cycle is topologically equivalent modulo



PHASE PORTRAITS OF QUADRATIC SYSTEMS... 23

Figure 2. Bifurcation diagram for the family of systems (30).

limit cycles to QS136
(3)
3 . The reader may observe from the diagram the coherence of the codimensions assigned

to each phase portrait.

Figure 3. The phase portraits for the family of systems (30).

3.22. The configuration 13: PH −H,N . According to [4] this configuration of infinite singularities leads

to the following four global topologically distinct configurations of singularities:

(142) PH −H,N ; (152) sn; PH −H,N ; (153) cp; PH −H,N ; (135) s, a; PH −H,N.



24 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

3.22.1. The topological configuration (153). As we mentioned earlier the

class of quadratic systems with a finite nilpotent singular point is already

classified (see for instance, [8]). However this classification is not complete

because there exists a quadratic system with a finite cusp and infinite singu-

larities with the configuration PH −H,N which was omitted in [8]. Indeed

it is not too difficult to determine that the system ẋ = y, ẏ = (x − y)2

possesses the phase portrait QS153
(5)
1 which corresponds to the configuration

(153).

Next we prove that QS153
(5)
1 is the unique possible phase portrait which corresponds to configuration of

singularities (153). According to [4] the affine invariant conditions which define this topological configuration

are:

µ0 = µ1 = 0, µ2 ̸= 0, U = 0, κ = K̃ = 0, L̃ ̸= 0, η = T4 = 0, κ1 ̸= 0,B1 = 0.

So the configuration (153) is from the class mf = 2 and moreover there exists a double finite singularity.

Since K̃ = 0, according to Lemma 1 we have to consider the form 16b). For these systems we have L̃ =

8n(lx2+2mxy+ny2) ̸= 0 which implies n ̸= 0. Then we may assume n = 1 due to a time rescaling. Therefore

the condition η = 4(m2 − l) = 0 gives us l = m2. In this case we calculate

µ2 = (c− dm)2(mx+ y)2, κ1 = 32m(c− dm), B1 = 2c2m(c− dm)2

and due to κ1 ̸= 0 the condition B1 = 0 gives us c = 0. Moreover since dm ̸= 0 we may assume d = m = 1 due

to the rescaling (x, y, t) 7→ (dx, dmy, t/(dm)) and this leads to the system ẋ = y, ẏ = (x − y)2 possessing

the phase portrait QS153
(5)
1 .

In what follows we consider the configurations (142), (152) and (135). We point out that the systems which

possess such configurations belong to the family of systems with mf ≤ 2.

According to [3] the infinite singularity PH −H is nilpotent of multiplicity 4, whereas the infinite node is

elemental.

3.22.2. The topological configuration (142). We recall that from [5], configuration (142) has topological

codimension 3. Taking into consideration [4] we determine that the configuration (142) could occur if and

only if one the following two sets of the conditions are satisfied:

(a) µ0 = µ1 = 0, µ2 ̸= 0, U < 0, κ = η = 0, K̃ = 0, κ1 ̸= 0, L̃ ̸= 0;

(b) µ0 = µ1 = µ2 = µ3 = 0, µ4 ̸= 0, η = 0, M̃ ̸= 0, κ = 0, K̃ = 0, L̃ ̸= 0, κ1 ̸= 0.

So the configuration (142) in the case (a) is from the class mf = 2 and in the case (b) is from the class mf = 0.

Moreover there exists only two complex finite singularities in the case (a) and

no finite singularities in the case (b). Since we have not real finite singularities

and only one finite separatrix belonging to infinite nilpotent singularity, we

conclude that this separatrix must go to the infinite node, which is adjacent

to the parabolic part of the nilpotent singularity. This leads to the unique

phase portrait given by QS142
(3)
1 .

3.22.3. The topological configuration (152). We recall that from [5], configuration (152) has topological

codimension 4. By [4] the affine invariant conditions which define this topological configuration are:

(31) µ0 = µ1 = 0, µ2 ̸= 0, U = 0, κ = η = T4 = 0, K̃ = 0, L̃ ̸= 0, κ1 ̸= 0, B1 ̸= 0.

So the configuration (152) is from the class mf = 2 and moreover there exists a double finite singularity.

Since K̃ = 0, according to Lemma 1 such a system belongs to the canonical systems 16b) for which the

condition L̃ ̸= 0 implies n ̸= 0. So we may assume n = 1 due to a time rescaling and then the condition
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η = 4(m2− l) = 0 gives l = m2 and then the conditions (31) yield cm(c−dm) ̸= 0. We may assume c = m = 1

due to the rescaling (x, y, t) 7→ (cx/m, cy, t/c) and we arrive at the family of systems:

(32) ẋ = x+ dy, ẏ = (x+ y)2, d ̸= 1.

We determine that for d = −1 the above system possess the invariant parabola Φ(x, y) = x2 − 2y + 2xy + y2

which passes through the finite saddle-node (0, 0) and the infinite nilpotent point producing a (c) connection.

Thus we have two bifurcation values of the parameter d: d = −1 and d = 1. So these two bifurcation points

split the parameter line d in five parts, including the bifurcation points. We will provide the phase portraits

in each one of these regions and then we will prove that they are the only realizable for systems (32).

Thus for the values of the parameter d we obtain the corresponding phase portraits given in Figure 4.

Figure 4. Bifurcation diagram for the family of systems (32).

In order to prove that these are the only realizable phase portraits for systems (32) we have to prove that any

other potential phase portraits compatible with the singularities of these systems cannot be realizable. The

technique used to prove this is similar to the one used in papers like [1] and [2]. In these papers the authors

start by producing all potential phase portraits compatible with certain properties, prove the realizable ones

by means of the corresponding examples and the impossibilities of the others by some geometrical arguments.

In order to produce all the potential phase portraits for systems (32) we start from the phase portrait

QS142
(3)
1 which has the same infinite singularities and no real finite singularities.

The potential phase portraits of systems (32) will be obtained by adding a finite saddle-node to the phase

portrait QS142
(3)
1 . We observe that in this phase portrait there exits a unique separatrix which splits the

Poincaré disc in two canonical regions. We call the minor region the one whose border has only two infinite

singularities and the major region possessing on hos border four infinite singularities.

If the finite saddle-node is located in interior of minor region we get two realizable phase portraits: QS152
(4)
1

and QS152
(4)
3 . We claim that the saddle-node cannot be in the major region. Indeed supposing the contrary we

arrive at the phase portraits QS152I1 or QS152I2 given in Figure 5. As we can see the saddle-node is sending

two separatrices to the same infinite singularity and the other to the opposite one. Then by Proposition 1 we

deduce that these phase portraits are impossible.

Assume now that the finite saddle-node appear in the phase portrait QS142
(3)
1 as the ω-limit of the infinite

separatrix. Then this separatrix either forms a (c) connection with one of the three separatrices of the finite

saddle-node or it goes to the parabolic part of this saddle-node. These four possibilities are given in Figure

5 (three of them with a (c) connection) and they generate four potential phase portraits, only two of them
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are realizable. The phase portraits QS152I3 and QS152I4 are not realizable because a perturbation of QS152I3
would produce QS152I1 and a perturbation of QS152I4 would produce QS152I2.

Figure 5. Potential phase portraits for the family of systems (32).

3.22.4. The topological configuration (135). We recall that from [5], configuration (135) has topological

codimension 3. By [4] the affine invariant conditions which define this topological configuration are:

µ0 = µ1 = 0, µ2 ̸= 0, U > 0, κ = η = 0, K̃ = 0, M̃ ̸= 0, L̃ ̸= 0, κ1 ̸= 0.

Since η = 0 and M̃ ̸= 0 we have to consider the canonical form (SIII) (see [3], Section 6.4), which possess two

real distinct infinite singularities, i.e. we consider the following systems:

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2.

For these systems we calculate κ = −16h2 = 0, i.e. h = 0 and we obtain

µ0 = 0, µ1 = dg(g − 1)2x, K̃ = 2g(g − 1)x2, L̃ = 8gx2,

So the conditions K̃ = 0 and L̃ ̸= 0 imply g = 1 and then the condition µ2 ̸= 0 gives f ̸= 0. Then we have

κ1 = −32d ̸= 0. Due to a translation we may also assume a = b = 0 and moreover we may consider f = 1 = d

due to the rescaling (x, y, t) 7→ (fx, f2y/d, t/f). Now we calculate U = (e− c)2x4(ex+ y)2 > and this implies

e− c ̸= 0. As a result we arrive at the 2-parameter family of systems

(33) ẋ = cx+ y + x2, ẏ = ex+ y, e− c ̸= 0.

Even we have one normal form with just two parameters constructed above and could produce a bifurcation

diagram for it obtaining the realizable phase portraits, we will also need some other arguments to discard non

realizable ones. So we chose to start with the second line.

We start again with the phase portrait QS142
(3)
1 where the only separatrix splits the Poincaré disc in two

canonical regions, mentioned above: a minor and a major region. Now we must introduce a finite saddle and

a finite anti-saddle in this phase portrait. It is not possible to put one singularity in each of the canonical

regions because each region is only compatible with global index zero in its interior (see [1, Corollary 4.9]).

Therefore both finite singularities must be inside the same canonical region ar at least one singularities must

be in the common border of the regions.

We point out that both singularities cannot be in the major region due to the same argument as the saddle

node of the configuration (152) cannot be in the major region (see phase portraits QS152I1 or QS152I2 given

in Figure 5).
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Both singularities can be in the minor region and then we obtain two phase portraits QS135
(3)
1 and QS135

(3)
2

without separatrix connection and one phase portrait QS135
(4)
1 with separatrix connection (see Figure 6).

The phase portraits without separatrix connection could have limit cycles. However this is irrelevant for the

topological classification of phase portraits modulo limit cycles but anyway since we have detected one limit

cycle in the considered configuration and we present it here as QS135
(3)
1LC .

However the reader may observe that there are two other potential phase portraits. One of them is the

same as QS135
(4)
1 but changing the orientation of the finite anti-saddle and we denote it by QS135

(4)?
2 . The

other is the one that we obtain by adding the limit cycle to QS135
(3)
2 and we denote it by QS135

(3)?
2LC .

We can prove the existence of QS135
(4)
1 and QS135

(3)
1LC by means of a bifurcation diagram and numerical

examples. The other two do not appear in the bifurcation diagram but this does not discard that they

could exist in a small island in the parameter space of the corresponding systems. This phenomena was

first pointed out in [2] where the authors studied structurally unstable phase portraits of quadratic systems

with codimension one. In this paper 7 skeletons of separatrices showing the same feature that happens with

QS135
(4)
1 (a graphic with an internal anti-saddle with two possible stabilities of which only one appears to be

realizable), were conjectured to produce one realizable and one non-realizable phase portrait. If case QS135
(4)?
2

were realizable, by means of a perturbation, QS135
(3)?
2LC would also be realizable. Even the opposite is not

compulsory, the existence of QS135
(3)?
1LC would be a good starting point to look for an example of QS135

(4)?
2 .

Using the same arguments as in [2], we will also conjecture that QS135
(4)?
2 and QS135

(3)?
2LC are non realizable,

and so we add the “?” to their code.

Figure 6. Phase portraits for the topological configuration (135).

Next we consider the case when at least one of the finite singularities appears on the separatrix on the

phase portrait QS142
(3)
1 . First we assume that this point is a saddle and we obtain the scheme (a) given in

Figure 7. Notice that all the phase portraits generated by this scheme will have a (c) separatrix connection.

Suppose that the finite anti-saddle is unstable (i.e. a repelor). There is only one attractor point which is

at infinity. Then we have one generic possibility and two non-generic. In the generic possibility the attractor

at infinity must receive the two unstable separatrices of the saddle. This leads to the phase portrait QS135I1
which is unrealizable because a perturbation of it would be in contradiction with Proposition 1.

The two non-generic possibilities could be obtained when two finite separatrices form a loop obtaining two

phase portraits: QS135I2 and QS135I3. We point out that both phase portraits are non-realizable because the

phase portrait QS135I1 can be obtained by a perturbation of any of them.

Admit now that the finite anti-saddle is stable (i.e. an attractor). Then we have two non-generic possi-

bilities for the α-limit of the unstable separatrix of the saddle (QS135I4 and QS135
(4)
2 ) and two non-generic

possibilities: QS135I5 and QS135I6 (all of them given in Figure 7).
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We determine that QS135Ii , i = 4, 5, 6 are also non-realizable because the phase portrait QS135I1 (or a

version of the same portrait with limit cycle) can be obtained by a perturbation of any of them.

Figure 7. Phase portraits for the topological configuration (135) (cont.)

Assume finally that the finite anti-saddle appears on the separatrix. Then

it must be an attractor. On the phase plane there exists a saddle located

anywhere. We point out that on the Poincaré disc there exist two sources

and two sinks and every source already sends some orbits to each sink close

to the infinity as well as along the separatrix of the nilpotent singularity.

Therefore each source and sink must received on separatrix from the finite

saddle, producing the phase portrait QS135
(3)
3 .

Next we present for each one of the realizable phase portraits the corresponding numeric example using the

canonical form (33) with e = −2 and one free parameter c. In the case of the existence of a loop we will give

an approximate set of parameters.

QS135
(3)
1 c = −11/10; QS135

(3)
1LC c = −9/10; QS135

(3)
2 c = −6/10;

QS135
(3)
3 c = 0; QS135

(4)
1 c ≈ −0.72 . . .; QS135

(4)
2 c = −1/2.

3.23. The configuration 37: HHP − P . According to [4] this configuration of infinite singularities leads

to the following three global topological configuration of singularities:

(95)a a;

(
3

3

)
HHP − P ; (95)b a;

(
1

3

)
HHP − P ; (95)c n(3);

(
1

3

)
HHP − P ;

(116) a, cp; HHP − P ; (111) a, sn; HHP − P ; (82) s, a, a; HHP − P.

According to [3] if a system possesses finite singularities of total multiplicity three, then this system cannot

have intricate infinite singularities. So in the cases of the configurations (95)b, (95)c, (116), (111) and (82)

the infinite singularity is a nilpotent singular point, whereas in the case (95)a at infinity we have an intricate

singularity. We recall that by n(3) we denote a finite node of multiplicity 3.

3.23.1. The topological configuration (95)a. We recall that according to [5] the configuration (95) has

topological codimension 3, but the configuration (95)a has a greater geometrical codimension and by [4] the

affine invariant conditions which define this topological configuration are:

(34) µ0 = µ1 = µ2 = 0, µ3 ̸= 0, κ = 0, K̃ > 0, L̃ = 0, C2 ̸= 0, K3 > 0.

Since the configuration (95)a is from the class mf = 1 and K̃ ̸= 0, by Lemma 1 such a system belongs to the

canonical systems 17a). For these systems the conditions (34) imply d = 0, f = c ̸= 0 and c(c + 2e) > 0.
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Moreover we may assume c = 1 due to a time rescaling and we get the family of systems (5) but for these

systems the condition 1 + 2e > 0 must be satisfird.

According to [3] the finite anti-saddle must be a node. It is clear that

systems (5) have the invariant straight lines x = 0 and x = −1/2 on which

is located the node M1(0, 0). Due to the above conditions this leads to the

unique phase portrait given by QS95
(3)
1 .

3.23.2. The topological configuration (95)b. According to [4] the affine invariant conditions which define

this topological configuration are:

(35) µ0 = 0, µ1 ̸= 0, D > 0, κ = 0, K̃ > 0, C2 ̸= 0, L̃ = 0.

So the configuration (95)b is from the class mf = 3 and according to [3] (see Table 6.1) such a system must

belong to the canonical forms 11). So we consider the family of systems

ẋ = 2(h− gu)x+ g(u2 + 1)y + gx2 − 2hxy,

ẏ = 2(m− lu)x+ l(u2 + 1)y + lx2 − 2mxy, gm− hl ̸= 0,

for which the conditions (35) imply: h = 0, gm < 0, g + 2m = 0 and l ̸= 0. Moreover due to a time rescaling

we may assume m = 1 and we arrive at the 2-parameter family of systems

(36)
ẋ = 4ux− 2x2 − 2(1 + u2)y, l ̸= 0

ẏ = 2(1− lu)x+ l(u2 + 1)y + lx2 − 2xy.

According to [3] the above systems possess either a node or a focus. Moreover the focus can be either strong

or weak of order one, and in order to have a weak focus the condition l = −4u/(u2 + 1) is necessary and

sufficient. It clear that the phase portraits of the systems (36) must have two separatrices, both at infinity

and on the same part of the equator. Note also that due the change (x, y, t, l, u) 7→ (−x, y,−t,−l,−u) (which

conserves systems (36)) there exists a symmetry in the parameter space with respect to the line l = u. So we

will consider u < 0.

So we can have a separatrix connection ((b)∞ connection) or not, and both possibilities are realizable.

Moreover in the case l = −2u/(1+u2) the loop can be realizable by the parabola 2(1+u2)y = −x2+2ux+1+u2.

However we cannot know if the loop may exist in anothe r form including non-algebraic one. If the condition

l = −2u/(1 + u2) holds (i.e. there exists an algebraic loop), the phase portrait is given by QS95
(4)
1 having a

stable focus inside the loop (see Figure 8).

Figure 8. Phase portraits for the topological configuration (95)
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If l > 0 and l < −2u/(1 + u2) then the loop connection is broken and we get the phase portrait QS95
(3)
2 .

If −2u/(1 + u2) < l < −4u/(1 + u2) then the loop connection is broken in other direction producing a limit

cycle and we denote the obtained phase portrait as QS95
(3)
1LC . For l = −4u/(1+u2) the limit cycle disappears

in a Hopf bifurcation and we get a phase portrait which is topological equivalent to the phase portrait which

is obtained for l > −4u/(1 + u2). We denote this phase portrait by QS95
(3)
1 and it is topological equivalent

to the one obtained earlier for configuration (95)a but now without invariant lines.

Assuming l < 0 we obtain again QS95
(3)
1 due to the symmetry mentioned above.

We would like to point out that there are two other potential phase portraits that we denote by QS95
(4)?
1

and QS95
(3)?
1LC given also in Figure 8. In case they exist they must live in an island of the parameter space as it

was explained earlier discussing the topological configuration (135). So we conjecture them to be unrealizable.

3.23.3. The topological configuration (95)c. According to [4] and [3] the affine invariant conditions which

define this topological configuration are:

(37) µ0 = 0, µ1 ̸= 0, D = P = 0, κ = 0, K̃ > 0, F1 ̸= 0, L̃ = 0.

So the configuration (95)c is from the class mf = 3 containing a triple finite anti-saddle which is a node.

According to [3] (see Table 6.1) such a system must belong to the canonical forms 13). So we consider the

family of systems

ẋ = gy + gx2 + 2hxy, ẏ = ly + lx2 + 2mxy, gm− hl ̸= 0,

for which the conditions (37) imply: h = 0, gm > 0, g − 2m = 0 and l ̸= 0. Moreover due to a time rescaling

we may assume m = 1 and we arrive at the following 1-parameter family of systems

ẋ = 2(x2 + y) ẏ = ly + lx2 + 2xy, l ̸= 0.

Due to the rescaling (x, y, t) 7→ (−x, y,−t) we may assume l > 0. Then the finite triple node is a repelor and

we arrive in unique mode to a phase portrait which is topologically equivalent to QS95
(3)
1 .

3.23.4. The topological configuration (111). We recall that from [5], configuration (111) has topological

codimension 4. According to [4] and [3] the affine invariant conditions which define this topological configu-

ration are:

(38) µ0 = 0, µ1 ̸= 0, D = κ = 0, P ̸= 0, K̃ > 0, E1 ̸= 0, C2 ̸= 0, L̃ = 0.

So the configuration (111) is from the class mf = 3 containing on the phase plane one semi-elemental saddle-

node and one elemental anti-saddle. According to [3] (see Table 6.1) such a system must belong to the

canonical forms 12). So we consider the family of systems

(39) ẋ = cx+ cy − cx2 + 2hxy, ẏ = ex+ ey − ex2 + 2mxy, cm− eh ̸= 0,

for which the conditions (38) imply: h = 0, cm < 0, c+ 2m = 0 and e(e− 2m) ̸= 0. Moreover due to a time

rescaling we may assume m = 1 and we arrive at the following 1-parameter family of systems

(40) ẋ = 2(−x− y + x2) ẏ = ex− ex2 + ey + 2xy, e(e− 2) ̸= 0.

For e = −2 we have the invariant parabola −2x + x2 − 2y = 0. Moreover for e = 1 we have the second

invariant parabola −x+ x2 − 2y = 0.

We need also the invariant polynomial B1 in order to distinguish if a focus is weak or not. For systems (40)

we calculate B1 = −8(e − 2)2(e + 4). As a result we obtain the following algebraic bifurcation values of the

parameter e: e ∈ {−4,−2, 0, 1, 2}. Moreover we detect that there exists one non-algebraic bifurcation value

−3.168 < e∗ < −3.167, where limit cycle disappear in a loop.

Following the parameter line we have the phase portraits given in Figure 9.

We point out that among the phase portraits corresponding to the topological configuration (111), on the

bifurcation diagram we also present two phase portraits which are on the border of systems (40): one with
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Figure 9. Bifurcation diagram for the systems (40)

the infinite line filled up with singularities (QS112
(5)
1 ) and another with the cusp (QS116

(5)
1 ). Both phase

portraits have codimension 5 according to [5].

We mention that there are other potential phase portraits for the configuration (111), as for example, a

similar to the phase portrait QS111
(5)
1 , but with the internal anti-saddle having opposite stability. Following

the argumentation applied up to now, either this phase portrait lives in an island in the corresponding

parameter space or must be conjectured impossible.

Remark 2. We remark that up to this moment we have detected all realizable phase portraits, proved the

non-existence of some potential ones as well as conjectured some of them as impossible. But starting from this

configuration and the ones remaining to study, the number of potential phase portraits increases a lot. And

the technique applied here is not so effective as the technique used in papers like [1] and [2] for a complete

clarification of the situation in discussion. So we let for another paper using those techniques, the study of the

rest of potential phase portraits of this configuration and the ones that may remain from the remaining ones.

3.23.5. The topological configuration (116). . From [5], configuration (116) has topological codimension

5. According to [4] and [3] the affine invariant conditions which define this topological configuration are:

(41) µ0 = 0, µ1 ̸= 0, D = κ = 0, P ̸= 0, K̃ > 0, E1 = 0, L̃ = 0.

So the configuration (116) is from the class mf = 3 containing on the phase plane one nilpotent cusp and one

elemental anti-saddle. According to [3] (see Table 6.1) such a system must belong to the canonical forms 12).

So we consider the family of systems (39) for which the conditions (41) imply: h = 0, cm < 0, c + 2m = 0

and e− 2m = 0. Moreover due to a time rescaling we may assume m = 1 and we arrive at the system which

belong to the family (40) for e = 2. According to bifurcation diagram presented in Figure 9 we have the

phase portrait QS116
(5)
1

3.23.6. The topological configuration (82). We recall that from [5], configuration (82) has topological

codimension 3. According to [4] and [3] the affine invariant conditions which define this topological configu-

ration are:

(42) µ0 = 0, µ1 ̸= 0, D < 0, κ = 0, K̃ > 0, C2 ̸= 0, L̃ = 0.

So the configuration (82) is from the class mf = 3 containing on the phase plane three real elemental

singularities: and saddle and two anti-saddles. According to [3] (see Table 6.1) such a system must belong to
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the canonical forms 10). So we consider the family of systems

ẋ = cx+ dy − cx2 + 2hxy, ẏ = ex− ex2 + fy + 2mxy, (eh− cm)(fh− dm) ̸= 0,

for which the conditions (42) imply: h = 0, cm < 0, c + 2m = 0 and de ̸= 0. Moreover we may assume

m = d = 1 due to the rescaling (x, y, t) 7→ (x,my/d, t/m). Therefore we arrive at the following 2-parameter

family of systems

ẋ = −2x+ y + 2x2, ẏ = ex+ fy − ex2 + 2xy, e(e+ 2f)(e+ 2f + 4) ̸= 0.

In order to obtain a symmetry in the bifurcation diagram of the above systems we replace f by f−1 obtaining

the systems

(43) ẋ = −2x+ y + 2x2, ẏ = ex+ (f − 1)y − ex2 + 2xy, e(e+ 2f − 2)(e+ 2f + 2) ̸= 0.

Moreover we detect that the transformation (x, y, t, e, f) 7→ (−x+1, y,−t,−e,−f) conserves the above systems.

Thus we conclude that in order to detect all the possible phase portraits of the systems (43) it is sufficient

to consider the condition e > 0.

We determine that systems (43) possess the following three finite singularities (one saddle and two anti-

saddles):

M1(0, 0), M2(1, 0), M3

(1
4
(2− e− 2f),

1

8

(
4− (e+ 2f)2)

)
.

We also detect that these systems could have one of the following tree invariant parabolas:

Φ1(x, y) =− (4 + f − 1)x+ x2 + y = 0 if e = 2(f + 3);

Φ2(x, y) =f − 2 + (1− f)x+ x2 + y = 0 if e = 2(f − 3);

Φ3(x, y) =− x+ x2 + y = 0 if e = −f.

We have to study the two parameter family of quadratic systems (43) and we will apply the same technique

as used in papers like [1], [2] and [6].

We begin by detecting all the relevant bifurcations related to singularities plus those related to invariant

parabolas and later we add the bifurcations related to non-algebraic separatrix connections. For these family

of systems the relevant algebraic bifurcations are:

• D = −192(e+ 2f − 2)2(e+ 2f + 2)2 = 0, where tho finite singularities coalesce;

• B1 = 2(f − 3)(f + 3)(3e+ 4f) = 0, where we have a finite weak singularity;

• ζ22 = −288(e− 6− 2f)(e+ 6− 2f)(e+ f) = 0, where there exist at least one invariant parabola;

• C2 = ex3 = 0 ⇒ e = 0, where we have the infinite line filled up with singularities.

These bifurcations split the parameter space into a set of regions of dimensions 2, 1 and 0. We will denote

the two-dimensional regions by Si with i ∈ N.

The one-dimension regions are denoted by kLi with i ∈ N and k = 2 (respectively 3; 4; 5) if D = 0

(respectively B1 = 0; ζ22 = 0; C2 = 0) and k = 7 if the region corresponds to a non-algebraic bifurcation1.

The zero-dimension regions (just points) are denoted by m.kPi with i ∈ N where m and k correspond to

the two geometrically most relevant bifurcations curves that intersect at these points (the values of m and k

are defined above).

Moreover in the bifurcation diagram we have used dashed lines if that part of the bifurcation diagram is

not relevant, i.e. does not implies a topological change.

In a more generic system we usually find the bifurcation D = 0 so we obtain different sign of D on

different sides of the bifurcation. By [3, Diagram 6.1] changing the sign of D two of the real singularities after

coalescence pass to two complex singularities. However for systems (43) we have D ≤ 0 (see its value above)

1The number used to denote different bifurcations are not in correlative order because we use the same codes applied in many

previous papers for similar bifurcations
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and then the two finite singularities that coalesce due to this bifurcations split also in two real. So for example

S4 ≡ S9, S6 ≡ S7 and 7L1 ≡ 7L2 and even S1 ≡ S19 because we make a path from one to the other passing

through non-topological relevant bifurcations. On this bifurcation curve (defined by D = 0) we will find the

same phase portraits that we obtained before when study the topological configuration (111) and (116).

Next we prove the existence of non-algebraic bifurcation and describe its position. On the region 3L3

systems (43) possess a weak focus and the invariant B1 changes the sign passing through the bifurcation

implying the change of stability of the focus (by Hopf bifurcation). This implies the existence of a limit cycle

in one of two regions having as a common border 3L3. Since the region producing limit cycle does not extend

to the all region S5 there must be a bifurcation curve 7L1 splitting S5 from S6 and the existence of this curve

is numerically confirmed.

We point out that the non-algebraic bifurcation curve must cut the bifurcation curve D = 0 at a point

2.7P1 separating 2L2 from 2L3 and enters the next region as 7L2 splitting S7 from S8.

We claim that this non-algebraic curve must end at 2.3P1 without crossing any other algebraic bifurcation.

Indeed it can not cross 3L4 because B1 changes the sign when crossing 3L4 and then the point of intersection

would have to imply a weak focus of higher degree or a center which are not possible in this family of systems

by [3, Theorem 6.2]. We point out that at 2.3P1 we have a phase portrait having a cusp which by Bogdanov-

Takens bifurcation may produce phase portraits with limit cycles or loops as we have in the Diagram given

in Figure 10. In case the non-algebraic bifurcation would cross 3L5 we would have a weak saddle having

a loop which would implies the existence of two limit cycle closed to this point. Once inside region S16 the

non-algebraic bifurcation would have to arrive at the point 2.3P1 because it can not cross the other borders

of S16. Even it is possible that a cusp may produce more that one limit cycle this is not possible when the

conditions for the weak focus are are the conditions given by statement (e2) of Theorem 6.2 from [3]. This

completes the proof of our claim.

The list of phase portraits that the family of systems (43) can have is given in Figure 12. Here are listed

only topologically distinct phase portraits of these systems. Moreover for each one of these phase portraits

we will indicate all the regions in which it exists as well the definitive name in our codification. First we

enumerate the phase portraits of the topological configuration (82).

(1) QS82
(3)
1 is the name of the phase portrait S1 which is equivalent to the phase portraits corresponding

to the regions: S2, S4, S9, S13, S14, S15, S19, S20, 3L2, 3L6, 3L9, 4L1, 4L6 and 4L7.

(2) QS82
(3)
2 is the name for S3 ≡ S5 ≡ S8 ≡ S16 ≡ S18 ≡ S21 ≡ 3L1 ≡ 3L5 ≡ 3L8.

(3) QS82
(3)
3 is the name for S10 ≡ S11 ≡ S12 ≡ 3L3 ≡ 3L4 ≡ 3L7.

(4) QS82
(3)
3(1)LC is the name for S6 ≡ S7 ≡ S17.

(5) QS82
(4)
1 is the name for 4L2 ≡ 4L3 ≡ 4L4 ≡ 4L5 ≡ 4L8 ≡ 4L9 ≡ 3.4P1 ≡ 3.4P2 ≡ 3.4P31.

(6) QS82
(4)
2 is the name for 7L1 ≡ 7L2 ≡ 7L3.

Next we describe the phase portraits which appear on the border of normal form (43).

(1) QS111
(4)
1 is the phase portrait corresponding to the regions 2L1 ≡ 2.3P1.

(2) QS111
(4)
1(1)LC for 2L2.

(3) QS111
(5)
1 for 2.7P1.

(4) QS111
(4)
2 for 2L3.

(5) QS111
(5)
2 for 2.4P1.

(6) QS111
(4)
3 for 2L4.

(7) QS112
(5)
1 for 2.5P1 ≡ 2.5P2.

(8) QS111
(4)
4 for 2L5.

(9) QS111
(5)
3 for 2.4P2.

(10) QS111
(4)
5 for 2L6.

(11) QS116
(5)
1 for 2.3P1.
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(12) QS111
(4)
6 for 2L7.

In the border of systems (43) there also appears the phase portrait corresponding to region 5L1 whose

topological configuration of singularity is (83). By [4] this configuration has codimension 4 and we denote the

corresponding phase portrait by QS83
(4)
1 . This phase portrait also occurs in the regions 5L2, 5L3, 5L4, 5L5,

5L6, 4.5Pl, 4.5P2 and 4.5P3.

We point out the bifurcation diagram given in Figure 10 may contains islands with different phase portrait

inside as it was mentioned earlier (see Remark 2). So we could not consider this classification being complete

until a complete topological study of all potential phase portraits will be done.

Figure 10. Bifurcation diagram for the systems (43)

3.24. The configurations 9: E −H,N ; 16: E −H,S, 23: HHH −H,N and 26: PHP − E,S.

We will study all four configurations together since all the information concerning their classification is

contained in a set of bifurcation diagrams given in [6].

According to [4] each one the the mentioned configurations of infinite singularities leads to the following

global topological configurations of singularities, correspondingly:

• 9: E −H,N
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Figure 11. Magnification of part of Figure 10

(77): s, s, a;
(
1
2

)
E −H,N

(88): s;
(
1
2

)
E −H,N

(106): s, sn;
(
1
2

)
E −H,N

(107): s, cp;
(
1
2

)
E −H,N

• 16: E −H,S

(79): s, a, a;
(
1
2

)
E −H,S

(89): a;
(
1
2

)
E −H,S

(119): es;
(
1
2

)
E −H,S

(108): a, sn;
(
1
2

)
E −H,S

(113): a, cp;
(
1
2

)
E −H,S

• 23: HHH −H,N

(81): s, a, a;
(
1
2

)
HHH −H,N

(93): a;
(
1
2

)
HHH −H,N

(121): es;
(
1
2

)
HHH −H,N

(110): a, sn;
(
1
2

)
HHH −H,N
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Figure 12. Phase portraits of systems (43)

(115): a, cp;
(
1
2

)
HHH −H,N

• 26: PHP − E,S

(80): s, a, a;
(
1
2

)
PHP − E,S

(91): a;
(
1
2

)
PHP − E,S

(120): es;
(
1
2

)
PHP − E,S

(109): a, sn;
(
1
2

)
PHP − E,S

(114): a, cp;
(
1
2

)
PHP − E,S

In paper [6] the authors have classified all the phase portraits of the family of quadratic systems having

an infinite elliptic saddle or a nilpotent saddle obtaining 124 distinct phase portraits. Most of them belong

to the 19 topological configurations presented above, whereas a few others are in the borders of the studied

normal forms. We point out that the phase portrait corresponding to the borders may belong to some more

degenerate configurations (possessing a nilpotent or intricate singularity) studied above and having already

a name. However there could be some phase portraits obtained earlier in other papers and following our

strategy (see Notation 1) we attached to each one of them the corresponding name.

Next we extract from paper [6] all the phase portraits and split them in 4 sets corresponding to different

topological configurations of infinite singularities (i.e. 9, 16, 23 and 26) given above. In addition we present

also a fifth set containing the phase portraits corresponding to the borders of the normal forms considered

in [6].
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For each phase portrait we attach two labels: one is the definitive name which we give according to Notation

1 and another one corresponds to the labels given in paper [6]. In this paper three normal forms A, B and

C. The phase portrait A (respectively B; C) are given in Fig.1,2 and 3 (respectively Fig.4; Fig.5). We have

insert the corresponding letter A, B or C in front of the label given by authors in [6] in order to recognize

the normal form possessing the corresponding portraits.

Considering [6], [4] and Notation 1 we arrive at the following set of four lemmas.

Lemma 2. The topological configuration of infinite singularities 9 has the 20 realizable phase portraits given

in Figure 13.

Figure 13. Phase portraits with the configuration of infinite singularities 9

Lemma 3. The topological configuration of infinite singularities 16 has the 19 realizable phase portraits given

in Figure 14.
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Figure 14. Phase portraits with the configuration of infinite singularities 16

Lemma 4. The topological configuration of infinite singularities 23 has the 20 realizable phase portraits given

in Figure 15.

Lemma 5. The topological configuration of infinite singularities 26 has the 31 realizable phase portraits given

in Figure 16.

Lemma 6. The borders of the normal forms A, B and C of [6] produce the 33 realizable phase portraits given

in Figure 17.

4. Miscelanea

When the authors of [3] split the set of 1764 geometric configurations of singularities into 208 topologically

classes in [4], the goal was to concentrate the research of topologically different phase portraits into a more

reduced set of classes with the assurance that if a phase portrait belonged to one class, could not belong

to another one. In this sense it seemed clear that a phase portrait having the geometric configuration of

singularities s, n;
(
0
3

)
N , or s, n;

(
2
1

)
N,©,© or s(3), n; N,©,© or s, n(3); N,©,© would not have a phase

portrait topologically different from the ones that may be obtained for the most generic configuration s, a;N .

Of course, il will be normal that the most generic configuration may have phase portraits that cannot be

obtained in more degenerated configurations.

The phase portraits with a finite intricate singularity are already known, and those with a finite nilpotent

singularity appeared in [8] (with a couple of mistakes that we have pointed out here). The phase portraits
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Figure 15. Phase portraits with the configuration of infinite singularities 23

of quadratic systems with the infinite line filled with singularities are also known, and the phase portraits of

degenerate quadratic systems are easy to find and will be done in a future paper so to assign a name to each

one of them.

Thus, the goal of this current paper was to determine all the topologically different phase portraits of qua-

dratic systems having a nilpotent or intricate singularity at infinity, which cannot be obtained with elemental

and semi-elemental singularities. In this way we complete the less generic phase portraits of quadratic systems.

We want to be sure that after these steps are done, all other phase portraits remaining to be classified have

at most semi-elemental singularities (finite or infinite).

However since we have not proved that any phase portrait obtained from a geometric very degenerate

configuration of singularities must always be realizable for a less degenerate configuration, such possibilities

must be checked carefully. Indeed the next subsection deals with one of these possibilities.

4.1. The phase portrait QS91
(4)
1 . After having produced the first draft of phase portraits which correspond

to topological configuration (91): a;
(
1
2

)
PHP −E,S we thought that it was complete. However comparing our

results with some papers with which this paper has intersections, we realized that at least one phase portrait

was missing in our work. The fact is that the reduction of geometric configurations of singularities into

topological ones, produces that some configurations with intricate or nilpotent singularities become identified

with configurations with more generic singularities. So it is not guaranteed that certain phase portraits may be

realizable only when the singularity is the intricate one and it is not realizable with a topologically equivalent
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Figure 16. Phase portraits in the border with the configuration of infinite singularities 26

nilpotent, semi-elemental or elemental, even if it is locally topologically equivalent. This has forced us to
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Figure 17. Phase portraits corresponding to the borders of normal forms A, B and C of [6]
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investigate here all the possible cases in which this phenomenon may happen, even though at the end, it has

appeared a single case which it is the one we first discovered. This has forced us to investigate here all the

possible cases in which this phenomenon may happen, even though at the

end, it has appeared a single case which it is the one we first discovered.

More precisely, the phase portrait that has helped us to complete the study

is the phase portrait E24 from [7] that we rename here as QS91
(4)
1 . This

phase portrait has the geometric configuration of singularities n ;
(
3
2

) ↶
P H

↷
P−

↶
P

↷
P E, S which is topologically equivalent to a ;

(
1
2

)
PHP−E, S, that is the

configuration (91) inside the infinite configuration 23.

Notice that infinite configurations 9, 16, 23 and 26 have not been studied in the same way as all previous

configurations, that is, we have not studied all the possible geometric conditions that lead to every topological

configuration of singularities, thus confirming that every case is considered. For the cases 9, 16, 23 and 26, we

have relied in paper [6] but in this paper only the case mf = 3 is studied, i.e. the non elemental singularity at

infinity must be always a nilpotent singularity of multiplicity 3 formed by the coalescence of a finite singularity

with two infinite singularities. So, if a phase portrait with geometric configuration n ;
(
3
2

) ↶
P H

↷
P −

↶
P

↷
P E, S

is not realizable with a topologically equivalent singularity, then we are missing it.

We will start by proving that the mentioned geometric configuration has only the phase portrait QS91
(4)
1

and we confirm that the codimension must be 4 due to the multiplicity of the infinite intricate singularity.

Indeed, according to [4] and [3] the affine invariant conditions which define this geometric configuration are:

(44) µ0 = µ1 = µ2 = 0, µ3 ̸= 0, κ = 0, K̃ > 0, L̃ > 0.

So this configuration is from the class mf = 1 containing on the phase plane one elemental anti-saddle. In

this case, instead of using a normal form from Lemma 1 which is based on the finite singularities, we better

use a normal form based on infinite singularities. So we consider the family of systems

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2.

Since there must exist one finite singularity, we may assume that a = b = 0. For this system we obtain that

κ = −16h2, thus we set h = 0. Then K̃ = 2(g−1)gx2 > 0 and µ1 = d(g−1)2gx+0. So d = 0 and (g−1)g > 0.

Moreover, µ2 = fg(c − cg + fg)x2 and µ3 = cfx2
[
− egx + (cg − c − fg)y

]
. Since µ3 ̸= 0 then f ̸= 0 and

µ2 = 0 implies c = −fg/(1− g). Then we obtain the family system

ẋ = fg
1−gx+ gx2,

ẏ = ex+ fy + (g − 1)xy.

This system has clearly two invariant vertical lines x(x − f/(1 − g)) = 0 and this is incompatible with the

presence of an infinite nilpotent singularity at [0 : 1 : 0]. The finite singular point is on x = 0 and the infinite

saddles have only one candidate to send their separatrices. So the phase portrait is unique and corresponds

to QS91
(4)
1 .

4.2. Other possible cases. After the case studied in the previous subsection, it is compulsory to detect

all other possible situations investigated in this paper where this phenomenon may occur. And it is also

important to detect which geometric configurations with nilpotent and intricate singularities have been reduced

to topological configurations with semi-elemental or elemental singularities. In case there appeared some new

phase portraits, they must be included in this paper so to let for a future work the most generic cases with

the assurance that we do not have missed phase portraits of this class.

These cases will not be hard to study since all of them imply that at least two finite singularities have

escaped to infinity. In the next list we describe the generic configuration of singularities and add those

geometrical configurations (with infinite nilpotent or intricate singularities) which are reduced to the most
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generic topological one. We will name them adding a letter to the corresponding code. We have not displayed

all the geometric features as Nf or N∞ and so on so not to make the list too long, but we have reduced them

to a representative which covers the changes in the multiple singularities that could produce a new phase

portrait.

(1) The configuration (93) a ;
(
1
2

)
HHH−H, N may also be present as (93)b a ;

(̂
3
2

)
HHH−H, N ;

(2) The configuration (12) N may also be present as (12)b ©,© ;
(
2
3

)
P−P or (12)c ∅ ;

(
4
3

)
P−P ;

(3) The configuration (14)
(
0
2

)
SN, N may also be present as (14)b ∅ ;

(
4
2

)
PH−HP, N ;

(4) The configuration (23) s, a ;N may also be present as (23)b s, a ;
(
2
3

)
P−P ;

(5) The configuration (44) sn ;N may also be present as (44)b sn ;
(
2
3

)
P−P ;

(6) The configuration (47) cp ;N may also be present as (47)b ĉp ;
(
2
3

)
P−P ;

(7) The configuration (84) a ;
(
1
1

)
SN may also be present as (84)b a ;

(
3
3

)
HH−PP .

The study of all the cases is quite simple since there are very few separatrices to control.

1: The case (93)b is the only one which implies a reduction of multiplicity passing from a nilpotent singularity

(of multiplicity 5) to another nilpotent singularity (of multiplicity 3). But the system has only two separatrices

and the pase portraits that can be obtained from (93)b are the same that could be obtained from (93).

2: The configuration (12)b has no separatrices, so the only possible phase portrait is the same that one can

obtain from (12).

3: Consider the configuration (14)b. According to [4] and [3] the affine invariant conditions which define

this geometric configuration are:

(45) µ0 = µ1 = µ2 = µ3 = 0, µ4 ̸= 0, η = κ = 0, M̃ ̸= 0, K̃ > 0, L̃ > 0.

So this configuration is from the class mf = 0. Since K̃ ̸= 0, according to Lemma 1 such a system belongs to

the canonical form 18a) for which we have

κ = 128h2(hl − gm) = 0, K̃ = −4(hl − gm)x2 ̸= 0.

Therefore we get h = 0 and then we obtain µ4 = g2m2x4 ̸= 0. Due to a time rescaling we can assume g = 1

and we get the family of systems

ẋ = x2, ẏ = m+ lx2 + 2mxy, 0 < m < 1/2.

These systems have the invariant straight line x = 0 which split the plane in two semi-planes. But we have to

determine if this straight line is formed by separatrices of the intricate infinite singularity or not. This can be

verified by computing the systems in the local chart U2 and doing the required sequence of blow-ups to the

intricate singularity N [0 : 1 : 0] we confirmed that the vertical invariant straight line x = 0 is formed by both

separatrices of the intricate infinite singularity.

Therefore it is easy to determine that in each one of semi-planes there exist a unique source of orbits and

one sink of orbits. So we obtain the unique phase portrait which is topologically equivalent to the phase

portrait of the system:

ẋ = x2 + 2xy, ẏ = −1− 9x2/8− 2xy.

It remains to point out that the above system has the geometrical configuration ©,© ;
(
0
2

)
SN

(
2
1

)
N which is

topological equivalent to configuration (14)b and to (14) but only has semi-elemental singularities.

4: The configurations (23)b, (44)b and (47)b have an intricate singular point at infinity which is topologically

equivalent with an elemental node (the same as configurations (12)b and (12)c). So we conclude that we cannot

obtain any phase portrait which is topologically different from the ones that can be obtained with an elemental

infinite node.
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Remark 3. During the investigation of the configurations (44)b and (47)b we detected a misprint in the

paper [4, Diagram 3, page 13]: in the last two branches corresponding to configurations {44} and {47} instead

of B1 must be B4 (see the last two branches in the Diagram 9.2 on page 284 in [3]).

5: The configuration (84)b has an infinite intricate singularity which is topologically equivalent to
(
1
1

)
SN .

The systems have a unique separatrix which must go to the finite anti-saddle (or to a limit cycle surrounds

it) .

Thus all the configurations from the above list have been investigated and we have proved that no other

phase portrait of a quadratic system implying the existence of an infinite nilpotent or intricate singularity

could exist beyond the set of the phase portraits provided by the statement of Theorem 1.
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