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A COMPLETE CLASSIFICATION OF DEGENERATE QUADRATIC

DIFFERENTIAL SYSTEMS

JOAN C. ARTÉS1 AND NICOLAE VULPE2

Abstract. In this paper we present a complete study of degenerate quadratic differential systems,

i.e. the polynomials from right-hand parts of these systems are not co-prime. We give the complete

set of the phase portraits. as well necessary and sufficient conditions for the realization of each one

of them. These conditions are constructed in invariant form and we present here the ”bifurcation”

diagram directly in the space R12 of the whole set of the quadratic systems.

This paper is part of a project which ultimate goal is the complete classification of topologically

distinct phase portraits of quadratic systems modulo limit cycles. We also provide a label for each

phase portrait inside the global codification related to the global configurations of singularities and

their topological codimensions.

1. Introduction and the statement of the main result

We consider here differential systems of the form

(1)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e. p, q are polynomials with real coefficients in x, y. We call degree of a

system (1) the integer n = max(deg p, deg q). In particular we call quadratic a differential system

(1) with n = 2. We denote here by QS the whole class of real quadratic differential systems.

The motivation of the authors for writing this paper is to advance towards the complete classifi-

cation of topologically distinct phase portraits of quadratic differential systems modulo limit cycles.

During the last decades, more that one thousand of papers have been dedicated to quadratic systems

producing many hundreds of phase portraits.

The approaches used by these papers have been of different kinds:

• some papers considered phase portraits of quadratic systems under very restricted conditions

like: existence of centers (see [25, 28, 30]), chordal quadratic systems (see [19, 23]), systems

with just one finite singularity (see [17,24]) and many others;

• some papers considered phase portraits of a large family of quadratic systems with few

restrictions obtaining the full corresponding bifurcations diagrams like: systems with a finite

nilpotent singularity [21], systems with a weak focus of order two [4], systems with two

saddle-nodes [11,12,15] and many others;

• some papers considered phase portraits of the most generic classes like: structurally stable

phase portraits of quadratic systems (i.e. codimension 0) [2], structurally unstable phase

portraits of quadratic systems of codimension 1 [3] and some papers dealing with phase

portraits of codimension 2 [1, 13,14].
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All these approaches to the study of quadratic systems are important and useful. But none of

them alone can completely determine all the possible phase portraits. It is needed the interaction

among all three approaches for obtaining the full classification.

The class of degenerate quadratic systems (we denote this class by QSD) is in the set of the most

restrictive systems and has not yet being completely classified.

The local behavior of the trajectories in the vicinity of the line at infinity in the generic case of

quadratic systems with finite number of singularities (finite and infinite) have been studied in [26]

where 40 classes were detected.

In [5] there were added the systems with infinite number of infinite singularities (6 classes) as

well as the systems with infinite number of finite singularities (30 classes denoted by QD∞
1 –QD∞

30).

However in the second case one class was omitted and in fact we have 31 topologically distinct phase

portrait in the vicinity at infinity for the class QSD which we present here in Figure 1 using for the

new class notation QD∞
31.

Remark 1. We note that the existence of the class QD∞
31 was already detected in [7] and in paper [6]

where one configuration of singularities for systems in QSD (where the common factor is formed

by two complex parallel lines) did not correspond to any of the 30 initial classes. However QD∞
31

was not formally presented until now. We point out that the existence of this class, allows us

to detect that the topological configuration (192) from [6] is topologically equivalent to topological

configuration (137). This happens because the infinite intersection of two complex parallel lines

produces a real singularity topologically equivalent to an intricate singularity with two hyperbolic

sectors. More detailed explanation could be find in [8, Remark 2] where we already decided not to

shift the code of configurations from (193) up to (208) and let the gap related to (192) considering

this class empty.

In [7] the authors gave the set of all global geometric configurations of singularities for the whole

family of quadratic systems including systems in QSD (in total 1764 cases).

In [6] the authors grouped the set of 1764 geometric configurations into 208 global topologically

distinct configurations of singularities. During this process some geometric configurations of singu-

larities in QSD became identified with other configurations having a finite number of singularities.

This cases are the ones that produce the phase portraits in Figure 2.

The reader must notice that the phase portrait QS47
(2)
1 is drawn here as coming from a degenerate

system and the finite singularity looks like an intricate singularity with two hyperbolic sectors. But

the most generic topological representative ofQS47
(2)
1 is with a nilpotent cusp which is of codimension

two singularity.

Our main result is

Main Theorem. The following statements hold:

(i) The family QSD possesses a total of 41 topologically distinct phase portraits given in Figures

2 and 3.

(ii) The topological classification is done using algebraic invariant polynomials and hence it is

independent of the normal forms in which the systems may be presented.

(iii) The bifurcation diagram of the phase portraits of systems in the family QSD is done in the

twelve-dimensional parameter space R12 and it is presented in Figure 4. This diagram gives

us an algorithm to determine for any given system its corresponding phase portrait.
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Figure 1. Topologically distinct local configurations of infinite singular points of

systems in QSD.

Remark 2. The phase portraits from Figure 2 are those which are topologically equivalent to non-

degenerate phase portraits. So they have a lower codimension than the one they would have if they

where realizable only as degenerate phase portraits. The phase portraits presented in Figure 3 are

those which imply the existence of infinite number of real finite singularities.
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Figure 2. Phase portraits of system in QSD topologically equivalent to phase por-

traits of non-degenerate systems.

In order to construct the set of phase portraits of the family of systems in QSD there are at least

three ways to do it, whici we describe below.:

(1) One can start from the ten topologically different phase portraits of linear systems in the

Poincaré disc adding one straight line filled up with singularities (from now on a singular

line). One must also consider the constant systems adding a conic filled up with singularities

(from now on a singular conic).

(2) One can start from the 31 topologically distinct local configurations of infinite singularities

given in Figure 1 and completing them with the possible singular curves compatible with

each QD∞
1 –QD∞

31 and adding a compatible finite singularity if necessary.

(3) One may consider each one of the geometrical configurations of singularities from [7] of

systems in QSD (or topological configurations from [6]) and find the possible phase portrait

generated by each one of them.

We have followed all three ways and obtained the same results concerning the phase portraits.

However if one wants to obtain the “bifurcation” diagram, i.e. to determine the necessary and

sufficient conditions for the realization of each one of the obtained phase portraits, the third way is

compulsory.

This article is organized as follows.

In Section 2 we give notations for singularities and for the phase portraits, we describe the source

from which we take the concept of codimension and we construct affine invariant polynomials which

completely classify the systems in the family QSD.

Section 3 is dedicated to the proof of Main Theorem

2. Preliminary

In this section we bring some concepts and notations from other papers which will be used here.

2.1. Notations for singularities. In the book [7] we defined some new concepts for singularities

closely related to the Jacobian matrix since they were more convenient for the geometrical classifi-

cation than the classical concepts. The new definitions are:

We call elemental a singular point with its two eigenvalues not zero.

We call semi-elemental a singular point with exactly one of its eigenvalues equal to zero.

We maintain the name of nilpotent for a singular point with its two eigenvalues zero but with

its Jacobian matrix at this point not identically zero.

We call intricate a singular point with its Jacobian matrix identically zero.

Since in this paper we deal with the class QSD, we may shorten the description and simplify it

for this specific class. Some concepts such as for example order of weak singularities are not needed
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Figure 3. Phase portraits of system in QSD topologically equivalent those of some

non-degenerate systems

so we remove them. However, since the notation of the most degenerate configuration include many

other simpler notations, we must include most part of what is exposed in [7].
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Figure 3 (cont.) Phase portraits of system in QSD topologically equivalent those of some

non-degenerate systems

First we start describing the finite and infinite singularities, denoting the first ones with lower case

letters and the second with capital letters. When describing in a sequence both finite and infinite

singular points, we will always place first the finite ones and only later the infinite ones, separating

them by a semicolon ‘;’. Even though finite and infinite singular points may either be real of complex,

for the topological viewpoint, only the real ones are interesting and only these will be listed.

Elemental singularities: We use the letters ‘s’,‘S’ for “saddles”; ‘n’, ‘N ’ for “nodes”; ‘f ’ for

“foci” and ‘c’ for “centers”. We will also denote by ‘a’ (anti-saddle) for either a focus or any type of

node when the local phase portraits are topologically equivalent. Since the number of characteristic

directions of nodes is critical in the class QSD, we need to keep the following notations:

• ‘n’ for a node with two distinct eigenvalues;

• ‘nd’ (a one-direction node) for a node with two identical eigenvalues whose Jacobian matrix

cannot be diagonal;

• ‘n∗’ (a star node) for a node with two identical eigenvalues whose Jacobian matrix is diagonal.

Moreover, in the case of an elemental infinite node, there is a geometrical feature that distinguishes

whether all orbits except one arrive tangent to infinity or to an affine direction. And this concept is

also important in the class QSD.

So we must use the notations ‘N∞’, ‘Nf , ‘Nd and ‘N∞ for infinite nodes as they were defined

in [7].

All non-elemental singular points are multiple points. Even though multiplicity is in most cases

irrelevant for the local topological phase portrait, for some infinite singularities the type of multi-

plicity could be relevant and we must point out the way we denote these cases. We denote by ‘
(
a
b

)
...’

the maximum number a (respectively b) of finite (respectively infinite) singularities which can be

obtained by perturbation of the multiple point. For example ‘
(
1
1

)
SN ’ and ‘

(
0
2

)
SN ’ correspond to two

saddle-nodes at infinity which are locally topologically distinct.

Semi-elemental singularities: They can either be nodes, saddles or saddle-nodes, finite or

infinite. However semi-elemental nodes and saddles are respectively topologically equivalent with

elemental nodes and saddles. So we will use the same notation as if they were elemental ones. The
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Figure 4. Diagram for the phase portraits of systems in QSD

only new semi-elemental singularity is the saddle-node which we denote by ‘sn’. As indicated above

for infinite saddle-nodes SN we will also keep the multiplicity. Moreover, as in [7] we also need the

notation ‘
(
1
1

)
NS’ for some infinite saddle-nodes.

Nilpotent singularities: They can either be saddles, nodes, saddle-nodes, elliptic-saddles, cusps,

foci or centers. The first four of these could be at infinity. The only finite nilpotent points for which
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Figure 4 (cont.) Diagram for the phase portraits of systems in QSD

we need to introduce notation are the elliptic-saddles and cusps which we denote respectively by es

and cp.

In the case of nilpotent infinite points, the relative positions of the sectors with respect to the line

at infinity, can produce topologically different phase portraits. This forces us to use a notation for

these points similar to the notation which we will use for the intricate points.

Intricate singularities: It is known that the neighborhood of any singular point of a polynomial

vector field (except for foci and centers) is formed by a finite number of sectors which could only

be of three types: parabolic, hyperbolic and elliptic (see [18]). Then, a reasonable way to describe

intricate and nilpotent points at infinity is to use a sequence formed by the types of their sectors.

In the book [7] we use a geometrical notion of sector which is more subtle but which looses part

of its meaning in the topological setting. More precisely any two adjacent parabolic geometrical

sectors merge into one, and parabolic sectors adjacent to elliptic ones can be omitted. To lighten the

notation, we make the convention to eliminate the parabolic sectors adjacent to the elliptic sectors.

Thus in quadratic systems, we have just four topological possibilities for finite intricate singular

points of multiplicity four (see [10]) which are the following ones:

• a) phph;

• b) hh;

• c) hhhhhh;
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• d) ee.

It is worth noting that the singularity hh is topologically equivalent with cp.

For intricate and nilpotent singular points at infinity, we insert a dash (hyphen) between the

sectors to split those which appear on one side or the other of the equator of the sphere. In this

way we will distinguish between
(
2
2

)
P − HHP and

(
2
2

)
PH − HP . When describing a single finite

nilpotent or intricate singular point, one can always apply an affine change of coordinates to the

system, so it does not really matter which sector starts the sequence, or the direction (clockwise or

counter-clockwise) we choose. If it is an infinite nilpotent or intricate singular point, then we will

always start with a sector bordering the infinity (to avoid using two dashes).

The lack of finite singular points after the removal of degeneracies, will be encapsulated in the

notation ∅ (i.e. small size ∅). In similar cases when we need to point out the lack of an infinite

singular point, we will use the symbol ∅.
Finally there is also the possibility that we have an infinite number of finite or of infinite singular

points. In the first case, this means that the quadratic polynomials defining the differential system

are not coprime. Their common factor may produce a line or conic with real coefficients filled up

with singular points. This is mainly the class under study in this paper.

Line at infinity filled up with singularities: It is known that any such system has in a

sufficiently small neighborhood of infinity one of 6 topological distinct phase portraits (see [26]).

The way to determine these portraits is by studying the reduced systems on the infinite local charts

after removing the degeneracy of the systems within these charts. Following [7] we use the notation

[∞; ∅], [∞; N ], [∞; Nd], [∞; S], [∞; C], [∞;
(
2
0

)
SN ] or [∞;

(
3
0

)
ES] indicating the singularities

obtained after removing the line filled with singularities.

Degenerate systems: We will denote with the symbol ⊖ the case when the polynomials defining

the system have a common factor. The degeneracy can be produced by a common factor of degree

one which defines a straight line or a common quadratic factor which defines a conic. Following [7]

we will indicate each case by the following symbols:

•⊖[|] for a real straight line;

•⊖[◦] for a real ellipse;

•⊖[©] for a complex ellipse (i.e. an irreducible conic over R which has only complex points);

•⊖[ )( ] for an hyperbola;

•⊖[∪] for a parabola;

•⊖[×] for two real straight lines intersecting at a finite point;

•⊖[· ] for two complex straight lines which intersect at a real finite point;

•⊖[∥] for two real parallel lines;

•⊖[∥c] for two complex parallel lines;

•⊖[|2] for a double real straight line.

It is worth to notice that the degeneracy ⊖[©] implies the non-existence of real singularities,

so we have a chordal system whose phase portrait is equivalent to the case when there are four

complex finite singularities and one real infinite singularity. Moreover, the degeneracy ⊖[· ] implies

the existence of one finite real singularity and its local phase portrait is the same as that of a

singularity hh which turns out to be topologically equivalent to a cusp. And finally, we point out

that degeneracy ⊖[∥c] produces one real singularity with configuration H −H at infinity.
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Moreover, we also want to determine whether after removing the common factor of the polynomials,

singular points remain on the curve defined by this common factor. If the reduced system has no

finite singularity on this curve, we will use the symbol ∅ to describe this situation. If some singular

points remain we will use the corresponding notation of their various kinds. In this situation,

the geometrical properties of the singularity that remain after the removal of the degeneracy, may

produce topologically different phenomena, even if they are topologically equivalent singularities.

So, we will need to keep the geometrical information associated to that singularity. Some examples

of the way we denote the complete notation are:

•
(⊖ [|];∅

)
denotes the presence of a real straight line filled up with singular points such that

the reduced system has no singularity on this line;

•
(⊖ [|]; f

)
denotes the presence of the same straight line such that the reduced system has a

strong focus on this line;

•
(⊖ [|];nd

)
denotes the presence of the same straight line such that the reduced system has

a node nd on this line;

•
(⊖ [∪];∅

)
denotes the presence of a parabola filled up with singularities such that no singular

point of the reduced system is situated on this parabola.

Degenerate systems with a non-isolated infinite singular point, which however is iso-

lated on the line at infinity: The existence of a common factor of the polynomials defining the

differential system also affects the infinite singular points. We point out that the projective comple-

tion of a real affine line filled up with singular points has a point on the line at infinity which will

then be also a non-isolated singularity.

There is a detailed description of this notation in [7]. In case that after the removal of the finite

degeneracy, a singular point at infinity remains on the same place, we must denote it with all its

geometrical properties since they may influence the local topological phase portrait. We give below

some examples:

• N,S,
(⊖ [|]; ∅

)
means that the system has at infinity a node, a saddle, and one non-isolated

singular point which is part of a real straight line filled up with singularities (other that the

line at infinity), and that the reduced linear system has no infinite singular point in that

position;

• S,
(⊖ [|];N∗) means that the system has a saddle at infinity, and one non-isolated singular

point which is part of a real straight line filled up with singularities (other that the line at

infinity), and that the reduced linear system has a star node in that position;

• S,
(⊖ [ )( ]; ∅, ∅

)
means that the system has a saddle at infinity, and two non-isolated singular

points which are part of a hyperbola filled up with singularities, and that the reduced constant

system has no singularities in those positions;

•
(⊖[×];N∗, ∅

)
means that the system has two non-isolated singular points at infinity which are

part of two real intersecting straight lines filled up with singularities, and that the reduced

constant system has a star node in one of those positions and no singularity in the other;

• S,
(⊖ [◦]; ∅, ∅

)
means that the system has a saddle at infinity, and two non-isolated (complex)

singular points which are the two points at infinity on the complexification of a (real) ellipse,

and the reduced constant system has no singularities in those positions.

• S,
(⊖ [|];N∞

3

)
means that the system has a saddle at infinity, and one non-isolated singular

point which is part of a real straight line filled up with singularities (other that the line at



DEGENERATE QUADRATIC SYSTEMS 11

infinity), and that the reduced linear system has in that position a node such that none of

the eigenvectors of the node coincides with the line of singularities and all the orbits (except

one) arriving to the node are tangent to the line at infinity.

Degenerate systems with the line at infinity filled up with singularities: According to [7]

there are only two geometrical configurations of this class which are also topologically distinct, and

which produce just the two phase portraits QS207
(7)
1 and QS208

(8)
1 given in Figure 3. The notations

of configurations of infinite singularities in Diagram [7] are [∞;
(⊖ [|]; ∅3

)
] for picture QS207

(7)
1 and

[∞;
(⊖ [|]; ∅2

)
], for picture QS208

(8)
1 .

On the link http://mat.uab.cat/∼artes/articles/notation.pdf we offer a table with the geometrical

notations of singularities (from which the topological one can be easily extracted) for an easy access

during unlimited time in principle.

2.2. Codimension. In paper [8] the concept of codimension applied to polynomial differential sys-

tems was developed covering different equivalence classes (topological or geometrical). Using the

new definition of codimension given in [8] one can assign a codimension to singularities, to global

configurations of singularities or to phase portraits in the Poincaré disc.

In the paper [8] a topological codimension was given to each one of the 207 global topologically

distinct configurations of singularities, except those with the centers for the reasons explained there.

The topological codimension of a phase portrait is greater or equal to the topological codimension of

its configuration of singularities. More precisely it is greater if the phase portrait has one (or more)

non-forced separatrix connection. In the case of systems in QSD there does not exist any non-forced

separatrix connection and therefore the topological codimension of a phase portrait coincides always

with the topological codimension of its configuration of singularities.

In this current paper we indicate the topological codimension (modulo limit cycles) of each phase

portrait of a system in QSD.

2.3. Notations for phase portraits. In the paper [8] a new notation to identify every phase

portrait of a quadratic system was proposed.

Notation 1. Let us denote each phase portrait as QSr
(b)
a where QS stands for “quadratic differential

system”, r is the number of the configuration of singularities from [6], ’b’ is the topological codimen-

sion of the phase portrait and ’a’ is simply a cardinal to enumerate the different phase portraits which

have the same configuration and codimension.

This notation has already been widely used in paper [9] where every phase portrait having a

nilpotent or intricate infinite singularity has already received its definitive name. In the current

paper we continue using the style described in Notation 1.

The final goal of this general project is to obtain all the phase portraits of quadratic systems

modulo limit cycle and recognize each one of them by an individual name.

2.4. Invariant polynomials associated to the systems in the class QSD.

Consider real quadratic systems of the form

(2)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),
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with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

It is known that on the set quadratic systems acts the group Aff (2,R) of affine transformations on

the plane (cf. [26]). For every subgroup G ⊆ Aff (2,R) we have an induced action of G on QS. We can

identify the set QS of systems (2) with a subset of R12 via the map QS−→ R12 which associates to

each system (2) the 12–tuple ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) of its coefficients.

We associate to this group action polynomials in x, y and parameters which behave well with respect

to this action, the GL–comitants (GL–invariants), the T–comitants (affine invariants) and the CT–

comitants. For their definitions as well as their detailed constructions we refer the reader to the

paper [26] (see also [7]).

Following [7] (see also [16]) we apply the differential operator L = x ·L2−y ·L1 acting on R[ã, x, y]
with

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
,

to construct several invariant polynomials which are needed here. More precisely using this operator

and the affine invariant µ0 = Res x
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).

According to [7, Lemma 5.2] these invariant polynomials are responsible for the total multiplicity of

the finite singular points of an arbitrary quadratic system. In particular by [7, Lemma 5.2, statement

(iii) ] we have the following

Lemma 1. An arbitrary quadratic system belongs to the family QSD (i.e. it is degenerate) if and

only if µi = 0 for every i = 0, 1, . . . , 4.

We single out the following five polynomials, basic ingredients in constructing invariant polynomials

for systems (2):

(3)

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2)

Di(ã, x, y) =
∂pi
∂x

+
∂qi
∂y

, (i = 1, 2).

As it was shown in [27] these polynomials of degree one in the coefficients of systems (2) are GL–

comitants of these systems. Let f, g ∈ R[ã, x, y] and

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

The polynomial (f, g)(k) ∈ R[ã, x, y] is called the transvectant of index k of (f, g) (cf. [20], [22])).

Proposition 1 (see [29]). Any GL–comitant of systems (2) can be constructed from the elements

(3) by using the operations: +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 3. We point out that the elements (3) generate the whole set of GL–comitants and hence

also the set of affine comitants as well as the set of T -comitants.
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We construct the following GL–comitants of the second degree with respect to the coefficients of

the initial systems

(4)

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

Using these GL–comitants as well as the polynomials (3) we construct the additional invariant

polynomials (see also [26] )

M̃(ã, x, y) =(C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
;

η(ã) =(M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
;

K̃(ã, x, y) =
[
T8 + 4T9 + 4D2

2

]
/18;

H̃(ã, x, y) =
[
T8 − 8T9 − 2D2

2

]
/18;

D̃(ã, x, y) =
[
2C0T8 − 16C0T9 − 4C0D

2
2 − C1T6 + 6C1T7 − 6D1T5 + 6C1D1D2

− 9D2
1C2 − (C1, T5)

(1)
]
/36;

K1(ã, x, y) =
[
T5 + 2C1D2 − 3C2D1

]
/6;

K2(ã, x, y) =4(T2, M̃ − 2K̃)(1)+ 3D1(C1, M̃ − 2K̃)(1) − (M̃ − 2K̃)
(
16T3 − 3T4/2 + 3D2

1

)
;

K3(ã, x, y) =C2
2 (4T3 + 3T4) + C2(3C0K̃ − 2C1T7) + 2K1(3K1 − C1D2);

L̃(ã, x, y) =4K̃ + 8H̃ − M̃ ;

L1(ã, x, y) =(C2, D̃)(2);

L2(ã, x, y) =(C2, D̃)(1);

L3(ã, x, y) =C2
1 − 4C0C2;

R̃(ã, x, y) =L̃+ 8K̃;

κ(ã) =(M̃, K̃)(2)/4;

κ1(ã) =(M̃, C1)
(2);

θ2(ã) =
(
C1, Ñ

)(2)
/16;

θ6(ã, x, y) =C1T8 − 2C2T6.

3. Proof of the Main Theorem

We start by reproducing here Diagram 12.2 from [7] as diagram in Figure 5. We apply to this

diagram some few modifications:

• since for the systems in QSD with an infinite number of real finite singularities there is a

bijective map between the set of geometric configurations of singularities and the set of topo-

logical configurations of singularities, we have added the code of the topological configuration

given in [6] to the corresponding geometric configuration;

• in the case of configurations of singularities of systems in QSD with a complex singular conic,

we have added the code and configuration of the non-degenerate topologically equivalent

configurations;
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• we have removed from the configurations of singularities the complex infinite singularities

which are irrelevant for systems in QSD.

• we have corrected an error in [6] which was already pointed out in [8]; more precisely the

geometric configuration which received the code (192) in [6] is topologically equivalent to

configuration (137) as we indicate in diagram from Figure 5.

Remark 4. Some of the configurations of singularities in Figure 5 correspond to systems with a

singular line and no finite singular point. However removing this singular line, the resulting linear

system does have a finite singularity. For example this occurs in (173), (174) and others. For

shortness we will say that the finite singularity is located “under” the singular line.

Remark 5. Some of the configurations of singularities in Figure 5 correspond to systems with

a singular curve (line or conic) which intersects the line at infinity. Removing this singular curve

the resulting linear or constant system does have an infinite singularity at one of the intersection

points of the singular cure with infinite line. For example this occurs in (185), (193) and others.

For shortness we will say that the infinite singularity is located “under” the singular curve.

In what follows we examine case by case the configurations provided by diagram from Figure 5

and present the corresponding phase portrait (give in Figures 2 and 3) with one exception when

we have two phase portrait generated by the same configuration of singularities.

(171): This configuration has a finite focus and a singular line which does not pass through it.

The only possible phase portrait is QS171
(4)
1 . The codimension value 4 assigned to this phase

portrait comes directly from the topological codimension of the configuration of singularities

(171).

(172): We have center and a singular line which does not pass through it. As a result we get a

single phase portrait QS1721 also known as Vul29 (see [28]). We do not assign a codimension

with this phase portrait because we do not assign codimensions to configurations with centers.

(173): We have a singular line and a focus “under” it. The unique phase portrait is QS173
(5)
1 .

(174): We have a singular line and a center “under” it. The unique phase portrait is QS174
(6)
1 .

(175): This configuration has a real ellipse as a singular curve. Therefore the system obtained

after removing this singular curve is constant. The unique phase portrait is QS175
(5)
1 .

(12): This configuration has a complex ellipse as a singular curve. Therefore there is no finite

real singular points and this configuration is topological equivalent to (12) . The unique

phase portrait is QS12
(0)
1 . The topological codimension of this portrait is 0 because it is

structurally stable even though the geometrical the codimension of the original configuration

of singularities is much higher. This same configuration (12) will appear again but for a

different geometric configuration.

(47): This configuration has two complex lines (intersecting at a finite point) as a singular

curve. The neighborhood of this singular point is formed by two hyperbolic sectors and

looks like an intricate singular point hh(4). Moreover such a singular point is topologically

equivalent to a nilpotent cusp and the global configuration is topological equivalent to (47).

The unique phase portrait is QS47
(2)
1 . The topological codimension of this portrait is 2

because this is the codimension of the cusp.

(176): This configuration has a finite generic node (with two different eigenvalues) and a

singular line which does not pass through it. Moreover the singular line is not parallel to



DEGENERATE QUADRATIC SYSTEMS 15

Figure 5. Diagram for the geometric configurations of singularities of systems in QSD.
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Figure 5 (cont.) Diagram for the geometric configurations of singularities of systems in QSD.

the invariant lines generated by the eigenvectors of the finite node. The only possible phase

portrait is QS176
(4)
1 .

(177): We have a singular line and a generic node “under” it. Moreover the singular line is not

parallel to the invariant lines generated by the eigenvectors of this node. The unique phase

portrait is QS177
(5)
1 .

(178): This configuration has a finite saddle and a singular line which does not pass through it

and it is not parallel to the invariant lines generated by the eigenvectors of the saddle. The

only possible phase portrait is QS178
(4)
1 .

(179): We have a singular line and a generic saddle “under” it. Moreover the singular line is

not parallel to the invariant lines generated by the eigenvectors of this saddle. The unique

phase portrait is QS179
(5)
1 .

(180): This configuration has no finite isolated singularities and a singular line. The linear

system after the removal of this line has an infinite semi-elemental
(
1
1

)
SN and a node Nd,

i.e. a node with coinciding eigenvalues and non diagonalizable Jacobian matrix. The infinite

singular points are not “under” the singular line. This leads to the unique phase portrait

QS180
(5)
1 .

(181): This configuration has a real hyperbola as a singular curve and an isolated infinite

singularity which is a star node. This is the unique configuration for a system in QSD

which produces two different phase portraits. It depends on whether the infinite star node

is located between the two infinite singular points produced by the same component of the

hyperbola or not. In the first case we get the phase portrait QS181
(5)
2 whereas in the second

case we obtain QS181
(5)
1 .
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(182): This configuration has two complex singular straight lines intersecting at a real finite

singularity. The constant flow that remains after removing the singular curve has an infinite

singularity which does not coincide with any of the infinite singularities produced by the

singular curve. The only possible phase portrait is QS182
(6)
1 .

(183): This configuration has a finite one-direction node (nd) and a singular line which does

not pass through it. Moreover the singular line is not parallel to the invariant line generated

by the eigenvector of the finite node. The only possible phase portrait is QS183
(5)
1 .

(184): We have a singular line and a finite one-direction node “under” it. Moreover the singular

line is not parallel to the invariant line generated by the eigenvector of the finite node. This

leads to the unique phase portrait QS184
(6)
1 .

(185): This configuration has a finite saddle and a singular line which does not pass through

it. But the singular line is parallel to one of the invariant lines generated by the eigenvectors

of the saddle. The only possible phase portrait is QS185
(5)
1 .

(186): We have a singular line and a generic saddle “under” it. Moreover the singular coincide

with one of the invariant lines generated by the eigenvectors of this saddle. The unique phase

portrait is QS186
(6)
1 .

(187): This configuration has a finite generic node (with two different eigenvalues) and a

singular line which does not pass through it. Moreover the singular line is parallel to the

invariant line generated by the eigenvector corresponding to eigenvalue of higher absolute

value of the finite node. The only possible phase portrait is QS187
(5)
1 .

(188): We have a singular line and a generic node “under” it. Moreover the singular line

coincides with the invariant line generated by the eigenvector corresponding to eigenvalue of

higher absolute value of the finite node. This leads to the unique phase portrait QS188
(6)
1 .

(189): This configuration has a finite generic node (with two different eigenvalues) and a

singular line which does not pass through it. Moreover the singular line is parallel to the

invariant line generated by the eigenvector corresponding to eigenvalue of lower absolute

value of the finite node. The only possible phase portrait is QS189
(5)
1 .

(190): We have a singular line and a generic node “under” it. Moreover the singular line

coincides with the invariant line generated by the eigenvector corresponding to eigenvalue of

lower absolute value of the finite node. This leads to the unique phase portrait QS190
(6)
1 .

(191): This configuration has a real parabola as a singular curve. Moreover the system obtained

after removing this singular curve is constant and it has an infinite singularity not contained

in the singular parabola. The unique phase portrait is QS191
(6)
1 .

(192)→(137): This configuration has two parallel complex singular straight lines. Moreover

the system obtained after removing this singular curve is constant and it has an infinite sin-

gularity not contained in the singular curve. The intersection between two parallel complex

singular straight lines is a real singular point at infinity whose neighborhood behaves like an

intricate singularity with two hyperbolic sectors. Then the geometrical configuration of sin-

gularities is topologically equivalent to (137) and we get the unique phase portrait QS137
(3)
1 .

We point out that this configuration was not detected being topologically equivalent to (137)

in [6]. The error was detected in [8] where we decided to leave the code (192) unassigned.

(193): This configuration has no finite isolated singularities and a singular line. The linear

system after the removal of this line has an infinite semi-elemental
(
1
1

)
SN and a node Nd.
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However the infinite saddle-node is “under” the singular line which does not coincide with

the invariant line of the linear system. This leads to the unique phase portrait QS193
(6)
1 .

(194): This configuration has two real parallel singular straight lines. Moreover the system

obtained after removing this singular curve is constant and it has an infinite singularity not

contained in the singular curve. The unique phase portrait is QS194
(7)
1 .

(195): This configuration has no finite isolated singularities and a singular line. The linear

system after the removal of this line has an infinite semi-elemental
(
1
1

)
SN and a node Nd.

However the infinite saddle-node is “under” the singular line which coincides with the invari-

ant line of the linear system. This leads to the unique phase portrait QS195
(7)
1 .

(196): This configuration has a double real singular straight line. Moreover the system ob-

tained after removing this singular line is constant and it has an infinite singularity not

contained in the singular line. The unique phase portrait is QS196
(8)
1 .

(197): This configuration has no finite isolated singularities and a singular line. The linear

system after the removal of this line has an infinite nilpotent elliptic saddle
(̂
1
2

)
E − H.

However the infinite nilpotent is not “under” the singular line. This leads to the unique

phase portrait QS197
(6)
1 .

(198): This configuration has no finite isolated singularities and a singular line. The linear

system after the removal of this line has an infinite semi-elemental
(
1
1

)
SN and a node Nd.

However the infinite node is “under” the singular line. It is important to notice that all

orbits that arrive to this infinite node are tangent to the infinite line1. So every orbit going

out from infinite node must cross exactly one the singular line.

This leads to the unique phase portrait QS198
(6)
1 .

(199): This configuration has a real hyperbola as a singular curve and an infinite star node

“under” it. Then the only phase portrait is QS199
(6)
1 .

(200): This configuration has rel non-parallel straight lines as a singular curve. and an infinite

star node “under” it. This leads to the unique phase portrait QS200
(7)
1 .

(201): This configuration has a finite one-direction node (nd) and a singular line which does

not pass through it. However the singular line is parallel to the invariant line generated by

the eigenvector of the finite node. The only possible phase portrait is QS201
(6)
1 .

(202): We have a singular line and a finite one-direction node “under” it. Moreover the singular

line coincides with the invariant line generated by the eigenvector of the finite node. This

leads to the unique phase portrait QS202
(7)
1 .

(203): This configuration has no finite isolated singularities and a singular line. The linear

system after the removal of this line has an infinite nilpotent elliptic saddle
(̂
1
2

)
E − H.

Moreover the infinite nilpotent is “under” the singular line. Then we get to the unique phase

portrait QS203
(7)
1 .

(204): This configuration has a real parabola as a singular curve. Moreover the system obtained

after removing this singular curve is constant and it has an infinite singularity “under” the

singular parabola. The unique phase portrait is QS204
(7)
1 .

(12): This configuration has two parallel complex singular straight lines. Moreover the system

obtained after removing this singular curve is constant and it has an infinite singularity which

is a star node “under” the singular curve. In this case the coincidence of the real infinite star

1The infinite node in configurations (180), (193) and (195) is also an Nd. But since it is not under the singular lie,

this is not relevant.
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node of the constant system with the real infinite singularity produced by the intersection of

the complex parallel lines, produces a point whose neighborhood behaves like a normal star

node. Thus this configuration is topological equivalent to (12) and the unique phase portrait

is QS12
(0)
1 .

(205): This configuration has two real parallel singular straight lines. Moreover the system

obtained after removing this singular curve is constant and it has an infinite singularity

“under” the singular curve. The unique phase portrait is QS205
(8)
1 .

(206): This configuration has a double real singular straight line. Moreover the system ob-

tained after removing this singular line is constant and it has an infinite singularity “under”

the singular line. The only possible phase portrait is QS206
(9)
1 .

(207): This configuration has the line at infinity filled up with singularities, a real singular

straight and a finite star node. The unique phase portrait is QS207
(7)
1 .

(208): This configuration has the line at infinity filled up with singularities and a real singular

straight with a finite star node “under” it. This leads to the unique phase portrait QS208
(8)
1 .

Since we examined all the branches of the diagram given in Figure 5 we conclude that the Main

Theorem is proved.
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