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WHAT DID GAUSS READ IN THE APPENDIX?

JUDIT ABARDIA, AGUSTÍ REVENTÓS, AND CARLOS J. RODRÍGUEZ

Abstract. In a clear analogy with spherical geometry, Lambert
states that in an “imaginary sphere” the sum of the angles of a
triangle would be less than π. In this paper we analyze Gauss’s
reading of Bolyai’s Appendix in 1832, five years after the publi-
cation of Disquisitiones generales circa superficies curvas, on the
assumption that his investigations into the foundations of geom-
etry were aimed at finding, among the surfaces in R3, Lambert’s
hypothetical “imaginary sphere”.

We also wish to point out that the close relation between dif-
ferential geometry and non-Euclidean geometry appears from the
very beginning, and not just at the end with Beltrami’s model.
With this approach, one is able to answer certain natural ques-
tions about the history of non-Euclidean geometry; for instance,
why Gauss decided not to write anymore after reading the Appen-
dix.

In einer deutlichen Analogie mit der Kugelgeometrie behauptet
Lambert, dass in einer “imaginären Kugelfläche” die Summe der
Winkel eines Dreiecks kleiner als π sein würde. In diesem Artikel
analysieren wir die Lesung, die Gauss 1832 – fünf Jahren nach
der Veröffentlichung der Disquisitiones generales circa superficies
curvas – zu Bolyais Appendix gemacht hat, unter der Annahme,
dass seine Forschung über die Grundlagen der Geometrie darauf
gezielt war, Lamberts hypothetische “imaginäre Kugelfläche” unter
den Flächen in R3 zu finden.

Wir möchten auch hiermit hervorheben, dass der enge Zusam-
menhang zwischen der Differentialgeometrie und der nichteuklidis-
chen Geometrie nicht nur am Ende zusammen mit dem Beltramis-
chen Modell vorkommt, sondern schon am Anfang. In dieser Hin-
sicht können gewisse naturelle Fragen der Geschichte der nichteuk-
lidischen Geometrie beantwortet werden; zum Beispiel: Warum
entschloss sich Gauss nach der Lesung des Appendix dazu, nicht
mehr über die nichteuklidische Geometrie zu schreiben?
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1. The classical problem

In definition XXIII of the Elements,1 Euclid defines “straight parallel
lines” as those “straight lines which, being in the same plane and being
produced indefinitely in both directions, do not meet one another in
either direction.”

The Euclidean Theory of Parallels is based on the fifth postulate,
which states that: “If a straight line falling on two straight lines makes
the interior angles on the same side less than two right angles, then the
two straight lines, if produced indefinitely, meet on that side on which
the angles are less than two right angles.”

The ‘classical problem’ of the Euclidean Theory of Parallels consists
of demonstrating that this postulate is a consequence of the other pos-
tulates of the Elements.

Posidonius had already attempted to solve this problem in the 1st
century B.C., when he confused straight parallel lines with equidistant
straight lines (see (Bonola, 1955, 2)).

Nevertheless, the problem was resolved negatively two thousand years
later at the end of 19th century. The definitive proof of this indepen-
dence is attributed to Eugenio Beltrami, in 1868,2 according to the
approach adopted by Bernhard Riemann3.

Beltrami represented the ‘new plane’ by the points inside a circle, its
‘new lines’ by chords, and parallel lines by chords meeting at a point
on the circumference of the circle. In this way he obtained a geometry
that satisfies all of Euclid’s postulates except the fifth (see (Beltrami,
1868)). This geometry is called non-Euclidean geometry.

In the two thousand years separating Posidonius from Beltrami,
many mathematicians believed they had positively resolved the prob-
lem of the Euclidean Theory of Parallels.

One of the most important works during this time was Giovanni
G. Saccheri’s Euclides ab omni naevo vindicatus, published in 1733,
(Saccheri, 1733). Using Saccheri’s quadrilateral — a quadrilateral in
which two opposite sides are equal and are perpendicular to the base —
Saccheri obtained results from Euclid’s postulates, first without using
the fifth postulate and later using the negation of it. Beltrami’s aim
was to find a contradiction and hence prove that the fifth postulate is,

1See, for instance, (Euclid, 1956, 154–155).
2As Jeremy Gray remarked (Gray, 2004), Beltrami was not aware of this, and

it was Roberto Bonola when reading Beltrami who in fact noticed it. See (Bonola,
1955, 177 and 234) and also (Rodŕıguez, 2011).

3The observation that metric relations are independent of coordinates appears
clearly in Riemann’s Habilitastionsschrift (Riemann, 1867).
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in fact, a theorem. He proved, for example, the remarkable fact that
this negation implies the existence of asymptotic straight lines. The
only error he commited was to consider as ordinary points of the ‘new
plane’ points that are not on this plane. However, the real reason was
that some results were much to his dislike, because they went against
his Euclidean intuition.

Johann H. Lambert’s Theorie der Parallellinien (Lambert, 1786) is
developed in a similar way, but without arriving at any satisfactory
conclusion. In fact he says: “I should almost conclude that the third
hypothesis holds on some imaginary sphere.”4 This idea, the analogy
with a sphere of imaginary radius, was the most important tool for the
discovery of non-Euclidean geometry. We shall use the term ‘Analogy’
to denote the method consisting of formal substitution of R by the
imaginary number Ri in all formulas that appear in the study of the
geometry of a sphere of radius R, recalling that sin ix = i sinhx, and
cos ix = coshx.5 The formulas thus obtained will be valid in the new
plane.

However, the slow acceptance of complex numbers during the 18th
and the early 19th centuries meant that the method of ‘The Analogy’
was not discussed sufficiently. Carl F. Gauss deserves great recognition
in this regard, because in 1831 he was bold enough to defend complex
numbers as the numbers that describe the plane.6 Gauss’s argument
was that complex numbers constitutes the basic example of a doubly
extended quantity, in the same way that real numbers describe the line,
the basic example of a simply extended quantity.

In his famous letter of 6 March 1832 on non-Euclidean geometry to
Farkas Bolyai, Gauss suggested to Farkas that he should study complex
numbers,7 thus relating non-Euclidean geometry and complex numbers
(see Section 7, letter 8).

4“Ich sollte daraus fast den Schlufs machen, die dritte Hypothese komme bey
einer imaginären Kugelfläche vor.” Although he does not say so explicitly, it is
possible that this observation comes from the comparison of the formulas for the
area of a triangle (spherical and non-Euclidean)

A = R2(α+ β + γ − π),

A = R2(π − α− β − γ),

the second one deduced synthetically by Lambert, see footnote 18 on page 6.
In 1980 Boris L. Laptev stated that Lambert also arrived at a contradiction. See

(Rosenfeld, 1988, 101). See also (Rodŕıguez, 2006).
5We have developed the importance of the ‘Analogy’ in the discovery of non-

Euclidean geometry in (Reventós and Rodŕıguez, 2005) and (Rodŕıguez, 2006).
6See (Gauss, 1831).
7Farkas followed Gauss’s advice, see (Kiss, 1999), and Letter 8 of Section 7.
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Many articles have been written about the history of non-Euclidean
geometry, but we believe that the close relation between classical and
differential geometry and the key role played by the imaginary sphere
in the discovery of non-Euclidean geometry has not been sufficiently
emphasized.8 These are the main reasons that prompted us to write
the present paper.

2. Lambert

Lambert, in section eleven of (Lambert, 1786), says:9

The question is, can it [the fifth axiom] be correctly deduced from
the Euclidean postulates together with the other axioms? Or, if
these were not sufficient, can other postulates or axioms or both
be given such that they have the same evidence as the Euclidean
ones and from which the eleventh [fifth] axiom could be proved?

For the first part of this question one can abstract from all that
I have previously called representation of the matter. And since
Euclid’s postulates and remaining axioms are already expressed
in words, it can and must be required that in the proof one never
leans on the matter itself, but carries forward the proof in an
absolutely symbolic way. In this respect Euclid’s postulates are as
so many algebraic equations, that one already has as previously
given, and that must be solved for x, y, z, . . . , without looking back
to the matter itself.

We shall use the term ‘Analytical Program’ to refer to this idea
by Lambert: the proof of the fifth postulate should not rely on any
representation of the matter.

In our opinion, Gauss knew Lambert’s work very well: some corre-
spondence between Lambert and Georg S. Klügel10 exists (see (Engels

8In (Gray, 1979), Gray says: “The hyperbolic trigonometry of Lobachevskii and
J. Bolyai was not generally taken as a conclusive demonstration of the existence
of non-Euclidean geometry until it was given a foundation in the study of intrinsic
Riemannian geometry.”

9A reprint of (Lambert, 1786) can be found in (Engels and Stäckel, 1895, 152–
207). The English version included here is due to Albert Dou (Dou, 1970, 401).

10Georg S. Klügel (Hamburg 1739 – Halle 1812). In 1760 he entered the Uni-
versity of Göttingen to study theology; but he soon came under the influence of
Abraham G. Kastner (see next footnote), who interested him in mathematics and
encouraged him to write his thesis on the parallel postulate. Klügel was at the
University of Göttingen until 1765 when he moved to Hannover, Helmstedt and
finally to Halle. Therefore, at the time of his correspondence with Lambert he was
still in Göttingen. See MacTutor History of Mathematics and the Note of Klaus
Thomas Volkert (Volkert, 2006) presenting the German translation of the Klügel’s
thesis. The url with the German translation is given in footnote 13.
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and Stäckel, 1895, 323)). Klügel was eleven years older than Lambert
and his thesis, Conatuum praecipuorum theoriam parallelarum demon-
strandi recensio, (Klügel, 1763), which he defended on 20 August 1763,
was supervised by Abraham G. Kastner.11 In his thesis, Klügel analyses
critically the experiments made so far to prove the parallel postulate.
He believed in the independence of the fifth postulate (see also (Kline,
1972, 867)) and stated that Saccheri’s results contradicted the experi-
ence but not the axioms.12 For instance, when referring to equidistant
lines Klügel in (Klügel, 1763, Section II), says: “It is quite clear that
here it is used that a line, which is at the same distance from a straight
line, is itself a straight line. This can be concluded by experience and
from the judgement of the eyes, not from the nature of the straight
line.”13

Klügel and Johann F. Pfaff (1765–1825) were colleagues at Göttin-
gen, and Pfaff’s thesis was also supervised by Kastner. Pfaff was a
close friend of Gauss and also his thesis advisor. Gauss even stayed at
Pfaff’s house for several months (see (Dunnington, 2004, 415)).

Thus, given these circumstances in Göttingen,14 it seems unlikely
that Gauss would be unaware of Lambert’s work.15

Moreover, this work on theory of parallels was available to Gauss
at the Göttingen University Library. The records show that he with-
drew Lambert’s books Beiträge zum Gebrauch der Mathematik (3 vols.,
Berlin, 1765-1772) in 1795 and Photometria in 1797 (see (Gray, 1979,
241) and (Dunnington, 2004, 177)).

11Abraham G. Kastner (Leipzig 1719 – Göttingen 1800). In 1756 he was ap-
pointed as professor of mathematics and physics at the University of Göttingen
where he taught Gauss and Farkas Bolyai. Another of his students, Johann C. M.
Bartels (1769–1836) taught Nikolai I. Lobachevsky (1792–1856). See MacTutor
History of Mathematics.

12Perhaps Saccheri’s work came into Gauss’s hands via Klügel.
13“Satis apparet, sumi hic, lineam, quae a recta aequaliter semper distat, ipsam

rectam esse, quod experientia et ex oculorum iudicio, non ex natura lineae rectae
colligitur.” The English version is our free translation from the German version
due to Martin Hellmann accessible at http://www.uni-koeln.de/math-nat-fak/
didaktiken/mathe/volkert/titel.htm.

14Dunnington (Dunnington, 2004, 176) says: “When Gauss went to Göttingen,
J. Wildt (1770–1844) gave a trial lecture on the theory of parallels (1795) [...] and in
1801 Seyffer, the professor of astronomy, published two reviews of attempts to prove
the parallel axiom [...] Gauss was very close to Seyffer, and their correspondence
continued until the latter’s death. Their conversations frequently touched on the
theory of parallels.”

15The famous entry [72] in his diary: “Plani possibilitatem demonstravi”, is
dated 28 July 1797, Göttingen.
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In his note of December 1818 on non-Euclidean geometry, sent to
Gauss by Christian L. Gerling (1788–1864), Ferdinand K. Schweikart
(1780–1857), said: “That this sum [the sum of the three angles in a
non-Euclidean triangle] becomes ever smaller, the more content the
triangle encloses.”16 In his answer to Gerling, Gauss said: “The defect
of the angle sum in the plane triangle from 180◦ is, for example, not just
greater as the area becomes greater, but it is exactly proportional to
it.”17 It is possible that Gauss learnt of this result through Lambert.18

3. The Disquisitiones

The relationship between the Disquisitiones generales circa superfi-
cies curvas19 and non-Euclidean geometry can be analyzed according
to the two following hypotheses, which enable certain natural questions
to be answered.

(1) Gauss was aware that the definitive solution to the problem of
the independence of the acute angle hypothesis was not possi-
ble with the material representation of points, lines and planes
given by pictures. For this reason Gauss adopted Lambert’s
‘Analytical Program’ as the correct method to solve this prob-
lem definitively.

(2) Gauss was determined to find a surface that could play the role
of the imaginary sphere introduced by Lambert.20

16“dass die Summen immer kleiner werden, je mehr Inhalt das Dreieck umfasst.”
See (Halsted, 1900).

17“Der Defect der Winkelsumme im ebenen Dreieck gegen 180◦ ist z.B. nicht
bloss desto grösser, je grösser der Flächeninhalt ist, sondern ihm genau propor-
tional.”

18Lambert states: “If the third hypothesis is true, [...] that for each triangle the
excess of 180◦ over the sum of its three angles is proportional to the area” (“Wenn
es bey der dritten Hypothese möglich wäre, [...] dass bey jedem Triangel der Ue-
berschuss von 180 Gr. über die Summe seiner drey Winkel dem Flächenraume des
Triangles proportional wäre.”) Nevertheless Lambert’s proof is far from rigorous.
In fact, Gauss gave a proof of this in 1832 (Section 7, letter 8) assuming that the
area of an ideal triangle is finite.

19Henceforth referred to simply as the Disquisitiones. It can be found in (Gauss,
1828), or (Dombrowski, 1979).

20Among Gauss’s manuscripts written between 1823 and 1827 there is the ex-
plicit formula for the pseudosphere

y = R sinϕ

x = R cosϕ+ log tan
1

2
ϕ

s = R log
1

sinϕ
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Lambert’s ‘Analytical Program’ first requires an analytic treatment
of the spherical geometry, in such a way that the methods and results
obtained therein could be generalized and applied later to the study
of any curved surface. The Disquisitiones constitutes an attempt by
Gauss in this direction. This justifies the occurrence of Theorem VI of
article 221 in Disquisitiones.

This theorem, which seems unimportant in the 1827 version, plays
an important role in the unpublished version of 1825.22 In fact, the
whole of spherical trigonometry can be analytically deduced from it.

This strengthens even further the idea of looking for a surface analo-
gous to the sphere, but on which the acute angle hypothesis holds: the
Lambert imaginary sphere.

However, which surface does this imaginary sphere represent? How
are triangles represented on it and what is the sum of their angles?

Perhaps this was one of the reasons that led Gauss to write the
Disquisitiones. Moreover, at the same time, his discoveries could be
applied to geodesy, so that the Disquisitiones can also be considered
as a first chapter on “advanced geodesy”, as Gauss stated in the com-
mented letter to Heinrich C. Schumacher (1780–1850), dated 21 No-
vember 1825.

If Gauss had understood, as Riemann himself did, that R2 can be
‘curved’ on itself, without embedding it on R3, he could have developed

preceded by the words “For the curves whose revolution originates the opposite of
the sphere, it is satisfied” (“Für die Curve, durch deren Revolution das Gegenstück
der Kugel entsteht, ist:”) See (Gauss, 1870–1927, Vol. VIII, p. 265). From this
expression it is clear that the curvature is = − 1

R2 , since the curvature of the surface
of revolution obtained by rotating the curve (x(s), y(s)) about the x-axis, where s
is the arc length, is given by

K = −1

y

d2y

ds2
.

Observe that this note on the “opposite of the sphere” was written during the
preparation period of the Disquisitiones.

21If L,L′, L′′, L′′′ denote four points on the sphere, and A the angle which the
arcs L,L′, L′′, L′′′ make at their point of intersection, then we shall have

cosLL′′ · cosL′L′′′ − cosLL′′′ · cosL′L′′ = sinLL′ · sinL′′L′′′ · cosA

22Gauss’s own words in the 1825 version were: “We shall add here another
theorem, which has appeared nowhere else, as far we know, and which can often
be used with advantage.”, (“Wir fügen noch ein anderes Theorem bei, welches
unseres Wissens sonst nirgends vorkommt und öfters mit Nutzen gebraucht werden
kann.”). See (Gauss, 1870–1927, Vol. VIII, p. 416) or (Gauss, 1902, 88) for the
English version.
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the geometry corresponding to the hyperbolic length element. By ap-
plying the ‘Analogy’, we obtain this length element directly from the
length element of the sphere.

Franz Taurinus (1794–1874) had made much progress in this direc-
tion, as can be seen from his writings of 1825 and 1826 on logarithmic-
spherical geometry (see (Engels and Stäckel, 1895, 255–286) and (Ro-
dŕıguez, 2006)). ‘All he needed to say’ was that the triangles he was
considering were the geodesic triangles of the geometry of the hyper-
bolic length element.

Why did Gauss not take this step? We believe that the most natural
explanation is that Gauss was looking for this surface, the Lambert
imaginary sphere, within R3, see Section 8.

In an attempt to answer these questions, Gauss found the intrinsic
geometry of surfaces. This brilliant discovery was included in the Dis-
quisitiones, mainly in the Egregium theorem (Section 12): “If a curved
surface is developped upon any other surface whatever, the measure of
curvature in each point remains unchanged.”23

4. Gauss’s isolation

In 1794, Adrien-Marie Legendre (1752–1833) published his Eléments
de géomètrie. In this work, and in later editions, he gave several proofs
of the fifth postulate; see (Legendre, 1794), (Legendre, 1833), and
(Bonola, 1955, 55–60). Irrespective of whether these proofs were correct
or not, it is clear that Legendre was convinced not only of the certainty
of this postulate, but also that “he had finally removed the serious dif-
ficulties surrounding the foundations of geometry”, see (Bonola, 1955,
60). Due to Legendre’s great influence, mainly on French mathemati-
cians, we believe that the problem of the Euclidean Theory of Parallels
was not sufficiently considered by the great mathematical schools of
that time.24

23“Si superficies curva in quamcunque aliam superficiem explicatur, mensura
curvaturae in singulis punctis invariata manet.” English version from Peter Dom-
browski (Dombrowski, 1979, 38).

24Lutzen in (Lützen, 1990), mentioning Karin Reich, says that it was principally
due to Joseph Liouville (1809–1882) that Gauss’s ideas on differential geometry
became known in France: “To be sure, Sophie Germain had read Gauss’s Disqui-
sitiones generales circa superficies curvas [1828], but during the following 15 years
Lame’s theories of systems of orthogonal surfaces dominated the French scene, and
Gauss’s work was forgotten. In 1843, in a paper in Liouville’s Journal on this sub-
ject, Bertrand admitted that “After having written this memoir, I have learned
about a memoir by Mr. Gauss entitled Disquisitiones generales...”[Bertrand 1843].
The following year, Bonnet also referred to Gauss. It is not impossible that Liouville
himself had called the attention of these two young talents to the Disquisitones,
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Gauss believed in the importance of this problem, but he felt alone
among the great mathematicians of that period.

Nevertheless, he did have a supporting group of friends: Friedrich
Bessel (1784–1846), Friedrich L. Wachter25 (1792–1817), Farkas Bolyai,
Gerling, Heinrich W. Olbers (1758–1840), and Schumacher. It was
thanks to them that he received news of the important works by
Schweikart, Taurinus, and János Bolyai, all of whom were outsiders
or amateur mathematicians. Lobachevsky, the other important person
in this story,26 was a professor of mathematics at the peripheral Uni-
versity of Kazan. Although in 1829 he had already published a text on
the foundations of the geometry in Russian, it was not until 1840 (per-
haps because his ideas on the theory of parallels were ridiculed by his
Russian colleagues) that his book Geometrischen Untersuchungen zur
Theorie der Parallellinien, (Lobachevsky, 1955) appeared, which was
read and immediately appreciated by Gauss. Lobachevsky was rector
of Kazan University and achieved fame as an educational reformer.

5. The three ds2 of Bolyai’s Appendix

In this section we analyze the reading Gauss may have made of
Bolyai’s Appendix (see (Bolyai, 2002)) in 1832, taking into account that
this was done five years after the publication of Disquisitiones and ten
years after Gauss wrote the formula for the curvature of a surface with
respect to some conformally euclidean chart. This formula appears in
his personal notes with the title “The state of my investigations on the

and it is certain that when the interest in Gauss’s ideas spread in France after
1847 it was due to Liouville.” This happened twenty years after the publication of
Disquitiones.

25Wachter was a student of Gauss. In 1816 Wachter suggested to Gauss that
a sphere of infinite radius in non-Euclidean space has Euclidean geometry, see
(Gauss, 1870–1927, Vol. VIII, pp. 175–176). Nevertheless, Wachter’s explanations
were quite obscure. For instance, when saying: “Then came the discomfort that on
this sphere of infinite radius whose parts are merely symmetric but not congruent
and where the radius on one side is infinite but on the other imaginary.” (“Es
entsteht zwar die eine Unbequemlichkeit daraus, dass die Theile dieser Fläche bloss
symmetrisch, nicht, wie bei der Ebene, congruent sind; oder dass der Radius nach
der einen Seite hin unendlcih, nach der andern imaginär ist.”)

However, as Gray says, in (Dunnington, 2004, 463), “Gauss did not claim to
possess knowledge of a new geometry, which surely means that even the ideas
he was discussing with Wachter he considered to be hypothetical, and capable of
turning out to be false.”

26The question of priority has been widely studied, see for instance (Gray, 1989,
111).
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transformation of surfaces” (Gauss, 1870–1927, Vol. VIII, pp. 374–
384); that is, after having acquired a deep knowledge of the role played
by the line element ds in geometry.

As is well known, when speaking about the Euclidean Theory of
Parallels in 1831, and more particularly about one equivalent formula-
tion of the fifth postulate, Gauss said to Schumacher (letter of 17 May
1831):27 “In the last few weeks I have begun to put down a few of my
own meditations, which are already to some extent nearly 40 years old.
These I have never put in writing, so that I have been compelled 3 or
4 times to go over the whole matter afresh in my head. I did not wish
it to perish with me.”28

Nevertheless, some months later, in February 1832, Gauss read
Bolyai’s Appendix and decided to write nothing further on the sub-
ject. In a letter to Gerling (14 February 1832) he said: “In addition,
I note that in recent days I have received a short work from Hungary
on non-Euclidean geometry in which I find all of my ideas and results
developed with great elegance, although in a concentrated form that
is difficult for one to follow who is not familiar with the subject. The
author is a very young Austrian officer, the son of a friend of my youth
with whom I had often discussed the subject in 1798, although my
ideas at that time were much less developed and mature than those
obtained by this young man through his own reflections. I consider
this young geometer, v. Bolyai, to be a genius of the first class.”29

27Gauss’s letters on non-Euclidean geometry are commented, using the ‘Anal-
ogy’, in (Reventós and Rodŕıguez, 2005). See also (Reventós, 2004).

28“Von meinen eigenen Meditationen, die zum Theil schon gegen 40 Jahr alt
sind, wovon ich aber nie etwas aufgeschrieben habe, und daher manches 3 oder 4
mal von neuem auszusinnen genöthigt gewesen bin, habe ich vor einigen Wochen
doch einiges aufzuschreiben angefangen. Ich wünschte doch, dass es nicht mit mir
unterginge.” (Gauss, 1870–1927, Vol. VIII, p. 220).

29“Noch bemerke ich, dass ich dieser Tage eine Schrift aus Ungarn über die
Nicht-Euklidische Geometrie erhalten habe, worin ich alle meine eigenen Ideen und
Resultate wiederfinde, mit grosser Eleganz entwicklet, obwohl in einer für jemand,
dem die Sache fremd ist, wegen der Concentrirung etwas schwer zu folgenden Form.
Der Verfasser ist ein sehr junger österreichischer Officier, Sohn eines Jugendfreundes
von mir, mit dem ich 1798 mich oft über die Sache unterhalten hatte, wiewohl
damals meine Ideen noch viel weiter von der Ausbildung und Reife entfernt waren,
die sie durch das eigene Nachdenken dieses jungen Mannes erhalten haben. Ich
halte diesen jungen Geometer v. Bolyai für ein Genie erster Grösse.” (Gauss,
1870–1927, Vol. VIII, p. 221).
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Would Gauss have said this if he had thought that Bolyai’s was a
mere formal manipulation of concepts, along the lines of Taurinus,30

without consistency?
Would Gauss have stopped writing his notes if he had not considered

that the problem was completely solved?
Moreover, in the above letter to Farkas Bolyai (6 March 1832), he

said:
Now something about the work of your son. If I begin by saying
that I must not praise him, surely, you will be startled for a mo-
ment; but I cannot do otherwise; praising him would mean praising
myself: because all the contents of the work, the way followed by
your son, and the results he obtained agree almost from beginning
to end with the meditations I had been engaged in partly for 30-35
years already. This extremely surprised me indeed.

It had been my intention to publish nothing of my own work during
my life; by the way, I have noted down only a small portion so far.
Most people do not even have a right sense of what this matter
depends on, and I have met only few to accept with particular
interest what I told them. One needs a strong feeling of what in
fact is missing and, as to this point, the majority of people lack it.
On the other hand, I had planned to write down everything in the
course of time so that at least it would not vanish with me some
day.

Thus I was greatly surprised that now I can save myself this trou-
ble, and I am very glad that it is precisely my old friend’s son who
so wonderfully outmatched me.31

30Taurinus developed non-Euclidean geometry formally using the imaginary
sphere. The results were correct, but it was first necessary to prove that this imag-
inary sphere really existed. This work was commented on extensively by Gauss in
his letter to Taurinus (see Section 7, letter 4).

31“Jetzt einiges über die Arbeit Deines Sohnes. Wenn ich damit anfange, “dass
ich solche nicht loben darf”: so wirst Du wohl einen Augenblick stutzen: aber ich
kann nicht anders; sie loben hiesse mich selbst loben: denn der ganze Inhalt der
Schrift, der Weg, den Dein Sohn eingeschlagen hat, und die Resultate, zu denen
geführt ist, kommen fast durchgehends mit meinen eigenen, zum Theile schon seit
30–35 Jahren angestellten Meditationen überein. In der That bin ich dadurch auf
das Äusserste überrascht.

“Mein Vorsatz war, von meiner eigenen Arbeit, von der übrigens bis jetzt wenig
zu Papier gebracht war, bei meinen Lebzeiten gar nichts bekannt werden zu lassen.
Die meisten Menschen haben gar nicht den rechten Sinn für das, worauf es dabei
ankommt, und ich habe nur wenige Menschen gefunden, die das, was ich ihnen
mittheilte, mit besonderm Interesse aufnahmen. Um das zu können, muss man erst
recht lebendig gefühlt haben, was eigentlich fehlt, und darüber sind die meisten
Menschen ganz unklar. Dagegen war meine Absicht, mit der Zeit alles so zu Papier
zu bringen, dass es wenigstens mit mir dereinst nicht unterginge.
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It is in this letter that Gauss suggests the name “parasphere” for the
surface called only F by János Bolyai and “horosphere” by Lobachevsky.
He says: “For instance, the surface and the line your son calls F and
L might be named parasphere and paracycle, respectively: they are, in
essence the sphere and circle of infinite radii. One might call hypercycle
the collection of all points at equal distance from a straight line with
which they lie in the same plane; similarly for hypersphere.”32 Bolyai
introduces the surface F , cited in Gauss’s letter above, in Section §11
of the Appendix.

The first ds2

In later sections, specifically in §24, Bolyai proves that the relation
between the length z of the paracycle (horocycle) cd, the length y of
the paracycle ab and the length x of the straight line ac (see Figure 1)
is given by

z = ye−x/R,

whereR is the constant denoted i by Bolyai (the radius of the imaginary
sphere for us).

From this it is easy to see that33

ds2 = dx2 + e−2x/R dy2.(1)

This computation, given below, could have been performed by a person
with Gauss’s knowledge. It is also important to point out that this
expression is obtained without trigonometry and without resorting to
three dimensions.

Moreover, it hardly seems possible to look at Bolyai’s Figure 9, re-
produced here in Figure 1, without seeing a system of local coordinates.

“Sehr bin ich also überrascht, dass diese Bemühung mir nun erspart werden kann
und höchst erfreulich ist es mir, dass gerade der Sohn meines alten Freundes es ist,
der mir auf eine so merkwürdige Art zuvorgekommen ist.” (Gauss, 1870–1927, Vol.
VIII, pp. 220–221). English version from (Kárteszi, 1987).

32“So könnte z. B. die Fläche, die Dein Sohn F nennt, eine Parasphäre, die Linie
L ein Paracykel genannt werden: es ist im Grunde Kugelfläche, oder Kreislinie von
unendlichem Radius. Hypercykel könnte der Complexus aller Punkte heissen, die
von einer Geraden, mit der sie in Einer Ebene liegen, gleiche Distanz haben; eben
so Hypersphäre.” (Gauss, 1870–1927, Vol. VIII, p. 221). English version from
(Kárteszi, 1987, 35).

33Observe that this metric, with the change u = ex/R, v = y/R, is the metric of
the Poincaré half-plane. This could be the “extra work” mentioned by Gray in his
comments to the Appendix, see page 20 of this paper. Could Gauss have done this
“extra work”?

34See Figure 4 for all 23 figures in the Appendix.
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Figure 1. Figure 9 in Bolyai’s Appendix.34

In fact, it is clear that the length element, in the sense used by Gauss,
can be written in x, y coordinates as

ds2 = dx2 + f 2(x)dy2

for a certain function f(x), since

• this coordinate system is orthogonal35 (so the term dx dy does
not appear),
• the lines y = constant are geodesics parametrized by the arc

length (so the coefficient of dx is 1), and
• it is invariant under translation in the y direction (so f(x, y) =
f(x)).

To find f(x), one takes the curve γ(t) = (x, t), for a constant value
of x, with 0 ≤ t ≤ y (a portion of a horocycle). The length L of γ is
given by

L =

∫ y

0

|γ′(t)|dt =

∫ y

0

f(x)dt = yf(x)

However, since L = ye−x/R, we have f(x) = e−x/R.

35The paracycles are orthogonal to the family of parallel straight lines.
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The second ds2

In Section §30, Bolyai gives the length of a circle in terms of its
radius r. This relation is36

L(r) = 2π R sinh
r

R
.

Nevertheless, calculations similar to above imply37 that the metric in
cyclic coordinates (r, θ) is given by

ds2 = dr2 +R2 sinh2 r

R
dθ2.(2)

Indeed, it is clear that

ds2 = dr2 + f 2(r)dθ2

for a certain function f(r), since this coordinate system is orthogo-
nal38 (so the term dr dθ does not appear), θ = constant are geodesics
parametrized by the arc length (so the coefficient of dr is 1), and it is
invariant under rotation (so f(r, θ) = f(r)).

To find f(r), one takes the curve γ(t) = (r, t), for a constant value
of r, with a ≤ t ≤ b (a portion of the circle). The length L of γ(t) is
given by

L =

∫ b

a

|γ′(t)|dt =

∫ b

a

f(r)dt = (b− a)f(r)

However, since L(r) = 2π Rsinh r
R
, the length of γ is

L = (b− a)R sinh
r

R
.

36This formula is given without proof by Gauss in his letter to Schumacher in
1831, see (Gauss, 1870–1927, Vol. VIII, p. 218). We suggest that the approach
adopted by Gauss to prove the formula was the inverse of that taken by Bolyai:
Gauss obtained the length of the circumference of the circle from the line element
of the imaginary sphere. How Gauss arrived at this formula, so easy to explain
according to our hypothesis, has not been sufficiently explained in the literature.
Less influence between differential geometry and the discovery of non-Euclidean
geometry than we suppose is admitted in much of the literature. For example,
Gray says: “there is no evidence that Gauss derived the relevant trigonometric
formulae from the profound study of differential geometry that occupied him in the
1820s”, see (Gray, 2006). See also the section Differential geometric foundations
of non-Euclidean Geometry in (Gray, 1987a) or (Gray, 2007, Chapter 20). For a
slightly different point of view on this topic see (Scholz, 2004) in German or its
Spanish translation by José Ferreirós in (Scholz, 2005). The relation between non-
Euclidean and differential geometry it is usually supposed to have first appeared in
Beltrami’s work (Beltrami, 1868).

37This computation does not appear in the Appendix; but Gauss would have
found it easy to do.

38Gauss’s lemma, proved in (Gauss, 1828).
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Hence, f(r) = R sinh
r

R
, and the metric of the Bolyai plane in cyclic

coordinates is the metric of the imaginary sphere.
Note that the metric of the sphere in cyclic coordinates is given by

ds2 = dr2 + R2 sin2 r

R
dθ2. Applying here the ‘Analogy’, we obtain

expression (2).
Did Gauss see this in Section §30 of the Appendix? Although we are

unable to prove it, we are convinced that the answer to this question
is affirmative, since Gauss had all the necessary knowledge on differ-
ential geometry to perform the above computations, and also because
he stopped writing his notes on non-Euclidean geometry after reading
Bolyai’s work.

We remark that expressions (1) and (2) do not appear explicitly in
Bolyai’s work.

The third ds2

In Section §32 of the Appendix a metric appears explicitly. Bolyai
says:

Figure 2. The metric of the Appendix.

that is,

It can be proved that
dz2

dy2 + bh2
∼ 1;

which, using the computation of bh given in Section §27 of the Appen-
dix, is equivalent to

ds2

dy2 + cosh2 y

R
dx2

= 1,

that is

ds2 = dy2 + cosh2 y

R
dx2,(3)

which is the expression of the metric in hypercyclic coordinates.39

39See Appendix A for details of hypercyclic coordinates.
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In fact, expression (3) is apparent to anyone (Gauss, for instance)
who knows the local theory of surfaces well.40

Specifically, it is clear that

ds2 = dy2 + f 2(y)dx2

for a certain function f(y), independent of x, since, by Gauss’s lemma,
this coordinate system is orthogonal (so the term dx dy does not ap-
pear), the lines x =constant are geodesics (so the coefficient of dy is
1), and it is invariant under translation in the x direction (so f(x, y) =
f(y)).

L

y

x

yy y

Figure 3. Mixed quadrilateral of base x and height y.

To find f(y), one take the curve γ(t) = (t, y), for a constant value of
y, with a ≤ t ≤ b (a portion of equidistant). The length of γ(t) is

L =

∫ b

a

|γ′(t)|dt =

∫ b

a

f(y)dt = f(y)(b− a)

However, in Section §27 of the Appendix, Bolyai gives the formula of
the length L of the equidistant in terms of the length x of the base and
the length y of the height of the mixed quadrilateral (Figure 3). This
relation is

L = x cosh
y

R
.

Hence, f(y) = cosh
y

R
, as we wished to demonstrate.

40Unfortunately János Bolyai never knew Gauss’s work on the theory of sur-
faces: Kárteszi in (Kárteszi, 1987, 32), says: “Even of Gauss’s results only a small
proportion was known to him; for example, he has not heard of the investigations
of Gauss in surface theory contained in the work Disquisitiones generales circa su-
perficies curvas through his life”. This fact may explain how Gauss might have
recognized that Bolyai had solved the problem of the theory of parallels, while
Bolyai himself did not, and so Gauss gave up writing his notes on the subject. One
can only assume that it would have been clear to Gauss that expression (3) is a
length element corresponding to a ‘surface’ of constant negative curvature.
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Note that the metric of the sphere in hypercyclic coordinates is given

by ds2 = dy2 + cos2
y

R
dx2. Applying here the ‘Analogy’, we obtain

expression (3).
Bolyai realizes the importance of the ‘third ds2’ and finishes Section

32, III, with these words: “The surfaces of bodies may also be deter-
mined in S, as well as the curvatures, the involutes, and evolutes of any
lines, etc.”41

Curvature

The curvature formula

k = − 1√
G

∂2
√
G

∂2r
,

known by Gauss since his first version of the Disquisitiones in 1825,
could be applied to the expressions (1), (2) and (3), with G = e−2x/R,
G = R2 sinh2 y

R
and G = cosh2 y

R
, respectively, to prove that Bolyai’s

plane is represented by a surface of constant negative curvature −1/R2.
Gauss may have seen that Bolyai’s expressions for the metric, equa-

tions (2) and (3), could be directly obtained by ‘Analogy’ from the
metric on the sphere written with regard to the cyclic and hypercyclic
coordinates, respectively; especially (2), which gives the length of the
circle directly, a formula well known to Gauss (letter to Schumacher,
17 May 1831). However, the expression of the metric in paracyclic co-
ordinates, equation (1), cannot appear by ‘Analogy’, since the concept
of paracycle is characteristic of hyperbolic geometry. However, Gauss’s
manuscripts on the Theory of Parallels of 1831 may be the beginning
of a synthetic approach to finding this paracyclic metric, see (Gauss,
1870–1927, Vol. VIII, pp. 202–209).

In Appendix A, we make the change between cyclic, paracyclic and
hypercyclic coordinates explicit.

Relation with the consistency

Did Gauss see that the hypercyclic coordinates on the ‘new plane’
were global, unlike on the sphere, where they are not? In particular,
that the imaginary sphere can be covered with only one chart?

Did Gauss see the proof of the consistency in the Appendix? The
letters to Gerling and Farkas Bolyai referred to above lead us to con-
jecture that he did, but did he have a clear concept of the problem of
the consistency?

41“Superficies quoque corporum in S determinari possunt, nec non curvaturae,
evolutae, evolventesque linearum qualiumvis etc.”
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Gauss, who could have done the computations that we perform in
this article, did not realize that the problem of the consistency had
been solved, because the question ‘Which surface of R3 has one of
these metrics?’ that he could have been trying to answer was in fact
incorrect. Gauss was the founder of the intrinsic geometry of surfaces,
but all the length elements (metrics) used by Gauss came from the
Euclidean metric of R3.

This epistemological mistake is very understandable: he was dis-
covering a new world, and like all pioneers he happened to overlook
something very important.

It seems that Beltrami also made the same mistake (see footnote 2).
If one assumes that Gauss used the ‘Analogy’ to find the ds2 of

the imaginary sphere, it is easy to explain all the results of the new
geometry that Gauss in his letters showed that he knew. It also explains
why he did not include proofs: the use of imaginary numbers was not
sufficiently accepted.

However, after reading the Appendix, Gauss saw all these results de-
duced axiomatically and without any reference to imaginary numbers.

6. The drawings in the Appendix : Revision of some of
Gray’s comments

While we agree with Gray’s comments on the Appendix, see (Gray,
2004, 123–127), we would nevertheless like to make some further re-
marks, which we trust will contribute to extending the recognition of
Bolyai’s work, which has already been acknowledged by Gray.

First of all, the coordinates used by Bolyai are the hypercyclic coor-
dinates (the lines x =constant are straight lines, while y =constant are
equidistant). It is in this sense that Gray uses the expression “usual
system of Cartesian (x, y) coordinates.”

Some of Gray’s expressions can be considered as a moderate criticism
of Bolyai’s work; for instance:

– “Without as much as a hint in the direction just outlined, Bolyai
supposed that his readers would recognise these arguments.”

– “but it requires an interpretation that Bolyai was unwilling to
provide.”

– “Bolyai escaped the pedagogic problem, not for the first or only
time in the Appendix by saying: “It can be demonstrated”.”

These comments are perfectly understandable if we accept the hypoth-
esis that the Appendix was written with the foremost reader in mind:
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Gauss himself. In fact, the Appendix was sent to Gauss in 183142 and
the Tentamen was published in 1832.

János Bolyai sent a first version of his work to his former professor
Herr Johann Walter von Eckwehr in 1825,43 and “on the prompting of
his father” he translated it from German into Latin for publication in
Tentamen, which was issued in Latin.44 Given the friendship between
Gauss and Farkas, it is logical to assume that Farkas had already de-
cided to send a copy to Gauss.

The writing of the Appendix is very concise. We do not know whether
for financial difficulties45 or for mathematical reasons. In his letter
to Gerling (see above) Gauss says: [the results of the Appendix are
developed] “in a concentrated form that is difficult for one to follow
who is not familiar with the subject.”

The 23 drawings in the Appendix, with the caption “Tabula Appen-
dicis” at the top on the right, reproduced here from (Bolyai, 2002, 29)
in Figure 4, should not be interpreted as drawings in the Euclidean
plane, as might be erroneously inferred from Gray’s remark in (Gray,
2004, 124): “He drew a picture of a curve ABC in the familiar Carte-
sian plane with x- and y- axes and outlined an interpretation of it as a
picture of non-Euclidean geometry drawn in a Euclidean plane.”

These figures play the same role as the figures that appear in the ma-
jority of versions of Euclid’s Elements: they are guides for the proofs.
In fact, Bolyai does not use the Euclidean plane at all. Note that in
his few notes on the subject Gauss uses similar drawings.

Nevertheless, a valid objection to Bolyai’s drawings is that he repre-
sents non-Euclidean segments in the same way that we usually repre-
sent Euclidean segments. This problem was skillfully solved by Batta-
glini,46 and was the basis for the proof of the consistency given by Bel-
trami, using a model where non-Euclidean segments were represented
by Euclidean ones.

42It seems that this copy never arrived, see for instance, (Bonola, 1955, 100),
(Gray, 1989, 97) or (Gray, 1987b, 18).

43This manuscript has not been found. It seems that it was not returned to
János. Perhaps for this reason it was not sent to Gauss until 1831.

44See (Bonola, 1955, XXVIII of Halsted’s introduction).
45Halsted in (Bonola, 1955, XXVIII of Halsted’s introduction) remarks that

János contributed 104 florins and 50 kreuzers to the printing of the Appendix.
(The yearly salary of a university professor was about 1300 florins. 60 krazers were
equivalent to 1 florin.) In opinion of Barna Szénássy, althought the two Bolyai’s had
financial difficulties throughout their lives, the economy was not the main reason
for the Appendix being concise, see (Kárteszi, 1987, 224).

46See (Battaglini, 1867), or (Montesinos, 1994) and (Rodŕıguez, 2011).
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Figure 4. All drawings in the Appendix.

As Gray says (Gray, 2004, 123), it is a pity that Bolyai did not find
the hyperbolic half-plane model: “With a bit of extra work, he could
have shown that the entire picture of non-Euclidean two-dimensional
geometry could appear in the right half-plane (the region defined by
x > 0), and that in his new space straight lines were curves of a certain
appearance.”

However, in order to prove the consistency it is not necessary to
have this specific model of hyperbolic geometry. It suffices to have a
‘plane’ with an appropriate metric, as Bolyai had. But this presupposes
the idea of abstract Riemannian manifold, which was Riemann’s great
contribution many years later.

Finally, we completely agree with Gray (Gray, 2004, 126) when he
says: “But the fact that Bolyai got as close as he did to formulating the
elements of his new geometry in terms of the calculus is striking testi-
mony to his insight, and seems not to have been appreciated sufficiently
in his day or since.”

7. The problem of the independence of the fifth
postulate

In Gauss’s time the consistency of Euclidean geometry was accepted
without discussion. But this was not the case with the geometry aris-
ing from the negation of the fifth postulate. Perhaps because of their
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surprising results, a proof of the consistency of this new geometry was
demanded.

There are some letters written or received by Gauss in which “astral”
geometry or “anti-euclidean” geometry are discussed,47 and from which
we can deduce that Gauss was convinced of the consistency of this new
geometry.

We may mention the following:48

(1) Gauss to Olbers. Göttingen, 28 April 1817. “Wachter has writ-
ten a short note on the foundations of the geometry [...] I am
coming ever more to the conviction that the necessity of our ge-
ometry cannot be proved, at least not by human comprehension
nor for human comprehension. Perhaps in another life we will
come to other views on the nature of space which are currently
unobtainable for us. Until then one must not put Geometry
into the same rank as Arithmetic, which stands a priori, but
rather in the same rank as, say, Mechanics.”49

(2) Schweikart’s Note to Gauss. Marburg, December 1818. “There
is a two-fold geometry, a geometry in the narrow sense, the
Euclidean; and an astral study of magnitudes.”50

(3) Gauss to Gerling. Marburg, 16 March 1819. “The note of Herr
Professor Schweikart gave me an incredible amount of pleasure,
[...] because although I can really imagine that the Euclidean
geometry is not correct,[...]”51

(4) Gauss to Taurinus. Göttingen, 8 November 1824. “The as-
sumption that the sum of the three angles is smaller than 180◦

47See (Gauss, 1870–1927, Vol. VIII, pp. 159–225), Grundlagen der Geometrie,
Nachträge zu Band IV, for the complete Gauss’s correspondence about the subject.

48English translation is quoted from Stanley N. Burris (Burris, 2003) and
(Kárteszi, 1987).

49“Wachter hat eine kleine Piece drucken lassen über die ersten Gründe der Ge-
ometrie [...] Ich komme immer mehr zu der Überzeugung, dass die Nothwendigkeit
unserer Geometrie nicht bewiesen werden kann, wenigstens nicht vom menschlichen
Verstande noch für den menschlichen Verstand. Vielleicht kommen wir in einem
andern Leben zu andern Einsichten in das Wesen das Raums, die uns jetzt unerre-
ichbar sind. Bis dahin müsste man die Geometrie nicht mit der Arithmetik, die rein
a priori steht, sondern etwa mit der Mechanik in gleichen Rang setzen.” (Gauss,
1870–1927, Vol. VIII, p. 177).

50“Es gibt eine zweifache Geometrie, – eine Geometrie im engern Sinn – die
Euklidische; und eine astralische Grössenlehre.” (Gauss, 1870–1927, Vol. VIII, p.
180).

51“Die Notiz von Hrn. Prof. Schweikart hat mir ungemein viel Vergnügen
gemacht, [...] denn obgleich ich mir recht gut die Unrichtigkeit der Euklidischen
Geometrie denken kann, [...]” (Gauss, 1870–1927, Vol. VIII, p. 181).
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leads to a geometry that is quite different from ours (Euclidean),
which is consistent, and which I have developed quite satisfac-
torily to the point that I can resolve every question in it with
the exception of the determination of a constant which does not
present itself a priori. [...] All of my efforts to find a contra-
diction, an inconsistency in this non-Euclidean geometry have
been fruitless.”52

(5) Gauss to Bessel. Göttingen, 27 January 1829. “and my convic-
tion that we cannot completely establish geometry a priori has
become stronger.”53

(6) Bessel to Gauss. Königsberg, 10 February 1829. “From what
Lambert has said, and what Schweikart told me, it has become
clear that our geometry is incomplete and needs a correction
which is hypothetical and which disappears if the sum of the
angles of a triangle = 180◦.”54

(7) Gauss to Bessel. Göttingen, 9 April 1830. “My innermost con-
viction is that the study of space is a priori completely different
than the study of magnitudes; our knowledge of the former is
missing that complete conviction of necessity (thus of absolute
truth) that is characteristic of the latter.”55

(8) Gauss to Farkas Bolyai.56 Göttingen, 6 March 1832. “Precisely
the impossibility of deciding a priori between Σ and S gives the

52“Die Annahme, dass die Summe der 3 Winkel kleiner sei als 180◦, führt auf eine
eigene, von der unsrigen (Euklidischen) ganz verschiedene Geometrie, die in sich
selbst durchaus consequent ist, und die ich für mich selbst ganz befriedigend ausge-
bildet habe, so dass ich jede Aufgabe in derselben auflösen kann mit Ausnahme der
Bestimmung einer Constante, die sich a priori nicht ausmitteln lässt. [...] Alle meine
Bemühungen, einen Widerspruch, eine Inconsequenz in dieser Nicht-Euklidischen
Geometrie zu finden, sind fruchtlos gewesen.” (Gauss, 1870–1927, Vol. VIII, p.
187).

53“und meine Überzeugung, dass wir die Geometrie nicht vollständig a priori
begründen können, ist, wo möglich, noch fester geworden.” (Gauss, 1870–1927,
Vol. VIII, p. 200).

54“Durch das, was Lambert gesagt hat, und was Schweikart mündlich
äusserte, ist mir klar geworden, dass unsere Geometrie unvollständig ist, und eine
Correction erhalten sollte, welche hypothetisch ist und, wenn die Summe der Winkel
des ebenen Dreiecks = 180◦ ist, verschwindet.” (Gauss, 1870–1927, Vol. VIII, p.
201).

55“Nach meiner innigsten Überzeugung hat die Raumlehre in unserm Wissen
a priori eine ganz andere Stellung, wie die reine Grössenlehre; es geht unserer
Kenntniss von jener durchaus diejenige vollständige Überzeugung von ihrer Noth-
wendigkeit (also auch von ihrer absoluten Wahrheit) ab, die der letztern eigen ist.”
(Gauss, 1870–1927, Vol. VIII, p. 201).

56This letter is discussed on pages 3 and 11 of this paper.
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clearest proof that Kant was not justified in asserting that space
is just the form of our perception. Another equally strong rea-
son is in a brief essay in the Scholarly Notices of Göttingen 1831,
article 64, p. 625.57 Perhaps it will not be a disappointment if
you try to procure that volume of the G.G.A. (which may be
accomplished through any bookseller in Vienna or Buda58), as
you also find there, developed in a few pages, the essence of my
views concerning imaginary quantities.”59

The arguments put forward by Gauss in these letters for the belief
in the consistency of non-Euclidean geometry were of an inductive and
physical type. Inductive: no matter how much he had searched for an
inconsistency with the hypothesis of the acute angle, he had been un-
able to find it. Physical: although Euclidean geometry was a very good
candidate for the geometry of the physical space, an “anti-euclidean”
geometry with small negative curvature could also provide the answer.

Did Gauss have the concept of a mathematical model ? Certainly
not, but it is no exaggeration to think that he may have entertained
the idea that a surface in the space of three dimensions, with con-
stant negative curvature and without singularities (the “opposite of the
sphere”60 mentioned in footnote 20 had singularities), could be a proof
of the possibility of a new plane. We completely agree with (Burago
et al., 2001, 158) on this point.61

57See (Gauss, 1831). In this paper Gauss gives the geometrical interpretation of
complex numbers.

58The German name for Buda is Ofen. Budapest became a single city with the
unification in 1873 of Buda and Óbuda (Old Buda) together with Pest.

59“Gerade in der Unmöglichkeit, zwischen Σ und S a priori zu entscheiden, liegt
der klarste Beweis, dass Kant Unrecht hatte zu behaupten, der Raum sei nur Form
unserer Anschauung. Einen andern ebenso starken Grund habe ich in einem kleinen
Aufsatze angedeutet, der in den Göttingischen Gelehrten Anzeigen 1831 steht Stück
64, pag. 625. Vielleicht wird es Dich nicht gereuen, wenn Du Dich bemühest Dir
diesen Band der G.G.A. zu verschaffen (was jeder Buchhändler in Wien oder Ofen
leicht bewirken kann), da darin unter andern auch die Quintessenz meiner Ansicht
von den imaginären Grössen auf ein Paar Seiten dargelegt ist.” (Gauss, 1870–1927,
Vol. VIII, p. 224).

60“Gegenstück der Kugel.”
61In his letters, Gauss did express his personal belief that there is no contradic-

tion in the axioms of non-Euclidean geometry. He had an ill-fated, though extremely
wise idea of how to construct a model: he wanted to realize hyperbolic geometry as
the intrinsic geometry in some surface in R3 –the same way as spherical geometry is
realized by Euclidean spheres. Gauss even found small embedded regions with de-
sired properties (so-called pseudo-spheres), but he was unable to realize the whole
plane. This led him to suspect that this might be an indication that a contradiction
was still hidden somewhere.



24 JUDIT ABARDIA, AGUSTÍ REVENTÓS, AND CARLOS J. RODRÍGUEZ

In the above-mentioned letter of 1832 to Farkas Bolyai, Gauss says
that he had obtained the same results as his son and in similar ways
(see page 11). Nevertheless, in his letter to Schumacher, dated 1846, he
says that Lobachevsky had obtained the same results but in a different
way:62 “in the work of Lobachevsky I did not find new results, but the
development follows a different approach to the one I took, and indeed
Lobachevsky carried out the task in a masterly fashion and in a truly
geometric spirit,”63 (see (Reventós and Rodŕıguez, 2005, 106)). Perhaps
this “different approach” refers to the use of the length element of the
imaginary sphere, which he obtained by ‘Analogy’ (whereas János Bo-
lyai had deduced one of this length elements explicitly, and the other
two implicitly). However, as Gauss was unable to show a complete
surface64 in the space of three dimensions with this length element,
he did not publish anything. The synthetic rewriting of the Theory
of Parallels, which Gauss began in 1831, was far surpassed by the
Appendix, a complete and masterly synthetic deduction of a hyperbolic
arc length.

Perhaps Gauss thought that “anti-euclidean” geometry could emerge
by using the geometrical interpretation of complex numbers;65 that
would explain the suggestion made to Farkas Bolyai at the end of the
letter. János indeed read Gauss’s paper,66 and developed independently
a conception of complex numbers that applied to number theory. As far
as we know, J. Bolyai did not relate the new geometrical conception of
complex numbers with the problem of consistency of the new geometry.

It is also possible that Gauss made the same suggestion to Riemann;
but Riemann was by this time occupied with other mathematical and
physical problems that lead him to the discovery of Riemann surfaces
(the first example of a topological manifold of dimension two that is not
a surface of a three dimensional space: the first example of an abstract
manifold!), as well as to a conception of physical space as a perfectly
elastic and massless medium formed by an elastic fluid, affected by
the energy-momentum of the physical fields within it. Klein compared

62Gauss refers to the German version (Lobachevsky, 1955) that does not use
differential calculus.

63“materiell für mich Neues habe ich also im Lobatschewskyschen Werke
nicht gefunden, aber die Entwickelung ist auf anderm Wege gemacht, als ich selbst
eingeschlagen habe, und zwar von Lobatschewsky auf eine meisterhafte Art in
ächt geometrischem Geiste.” (Gauss, 1870–1927, Vol. VIII, p. 239).

64A surface without singularities, where the straight lines are infinite.
65In B we sketch an elementary proof of consistency using complex numbers.
66Kiss comments in (Kiss, 1999, 73), that Gauss does not give the correct refer-

ence, because the subject was completely developed in another of Gauss’s works.
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Riemann with Faraday, who had described the electromagnetic field
with the idea of “lines of force”. With Riemann, geometry became a
physical geometry. This idea will be developed in (Rodŕıguez, 2011).

8. Looking for an imaginary sphere within R3

Perhaps the most crucial mistake committed by Gauss in this matter
was to look for an imaginary sphere within R3.

In fact, there exists no imaginary sphere in the usual sense of a
surface in R3 of constant negative curvature.67 Therefore, the search
for an imaginary sphere proved to be a futile struggle.68 It is possible
that in 1831 Gauss was aware that he would come to a dead end, and
decided to take the deductive point of view. But it was too late: János
Bolyai had already followed up this path in the Appendix.

The impossibility of finding a complete surface in R3 of constant
negative curvature could have caused Gauss to doubt his belief in the
consistency of non-Euclidean Geometry, and may be the main reason
why he made no effort to publicize the Appendix.

The Appendix proves that the problem of the consistency is almost
the same in both geometries: the parasphere (a surface of the non-
Euclidean space) has Euclidean geometry (see footnote 25). Hence, for
symmetry, it seems reasonable to look for an imaginary sphere within
R3.

It would be interesting to answer the following question: Why did
Gauss only look at surfaces in three dimensional space ?

67The interpretation of the Gauss curvature as the product of principal curva-
tures, and hence equal to 1/R2 for a sphere of radius R, appears in the first version
of Disquisitiones in 1825. In fact, Olinde Rodrigues essentially proved it in 1815
when he proved what today we know as the Gauss-Bonnet theorem, see (Rodrigues,
1815). Indeed, Rodrigues in his study of the integral of the product of the principal
curvatures says: “Let us imagine a sphere with radius equal to the unit; and let
us move the radius of this sphere in a way such that it will be paralell to all the
normals of the piece of the surface which we want to integrate. The area described
by the endpoint of this radius will coincide with the value of the desired integral.”
(“Concevons une sphère d’un rayon égal à l’unité; puis faisons mouvoir le rayon de
cette sphère, de manière qu’il soit successivement parallèle à toutes les normales de
la portion de surface sur laquelle on veut prendre l’intégrale, l’aire sphérique décrite
par l’extrémité de ce rayon, sera la valeur de l’intégrale cherchée.”) Free English
translation.

68In 1910, Hilbert proved that there exists no complete regular surface of con-
stant negative curvature immersed in R3. In 1955, Kuiper (Kuiper, 1955) proved
that such a surface does exist if we change regular for C1.
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A possible answer is that numbers and geometry were on different
levels, in the sense that the identification of R, R2 and R3 as geometri-
cal objects was still to be clearly made. Gauss, and other contemporary
mathematicians, do not identify the set of pairs of real numbers as is
done today. It was necessary to wait for Dedekind for the foundation
of real numbers; he probably learned from Riemann the importance of
thinking about mathematics conceptually, in order to take the defini-
tive step towards the geometrization of Rn.

As Ferreirós has observed, it is precisely with Riemann that the idea
of a conceptual mathematics arises; a mathematics that studies man-
ifolds and their mappings (see (Ferreirós, 2000, 93–95) and (Ferreirós,
2007)). Riemann took this giant step because he needed to extend geo-
metric intuition to areas of mathematics different from geometry. How-
ever, at the same time, he also found the study of multiply extended
quantities useful for thinking about geometry without any spatial intu-
ition (see (Ferreirós, 2000, 94)); Riemann coincides on this point with
Lambert and his ‘Analytical Program’, which was introduced with the
hope of solving the classical problem of the Euclidean Theory of Par-
allels (see (Reventós and Rodŕıguez, 2005, 16)). This program was
completed by Hilbert in his fundamental work on foundations of ge-
ometry of 1899 (Hilbert, 1899), using set theory introduced by Cantor.
As Hilbert said: “No one shall expel us from the paradise that Cantor
has created for us.”69

9. Non-Euclidean geometry as absolute Euclidean
geometry on a reduced scale

A note by Gauss dated about 1840–1846 (Gauss, 1870–1927, Vol.VIII,
pp. 255–257) was found in his copy of Lobachevsky’s work Geome-
trischen Untersuchungen zur Theorie der Parallellinien, (Lobachevsky,
1955). This note70 is quite short and Gauss did not give it a title.
However, it is referred to as “The spherical and the non-Euclidean
geometry”71 by Stäckel who carefully commented on it.

Although this note was written many years after the Gauss-Bolyai
relation discussed in the previous sections, we would like to draw atten-
tion to it because it gives a clue as to how Gauss uses differential geom-
etry in order to consider problems of non-Euclidean geometry. Perhaps

69“Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben
können.”

70In this note, not written for publication, Gauss reveals a part of his method
for doing Differential Geometry: he applies classical geometry to a small variation
of a diagram.

71“Die Sphärische und die Nicht-Euklidische Geometrie.”
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Gauss was trying to arrive at the same conclusions as Lobatschevsky,
but by his own method.

Before continuing, we would like to point out that the formulas72

which head this note by Gauss (Gauss, 1870–1927, Vol. VIII, p. 255)
relating the angles and the sides of a triangle with two unknown func-
tions f, g, and from which he is able to compute f and g, hold for
absolute geometry. Indeed they can be deduced solely from absolute
geometry – where the side-angle-side criterion holds –, under the hy-
pothesis that in this absolute geometry trigonometric formulas exist
that relate the sides and the angles of a triangle, and assuming that
this absolute geometry is Euclidean on a reduced scale.

These two hypotheses, together with the relations among the sides
of a Saccheri quadrilateral, imply the rectificability of equidistants, and
the rectificability of a circle (which are true in absolute geometry and
were well-known by Gauss at that time).73 Using these hypotheses
and relations, Gauss’s note can be written without any great difficulty.
Although Stäckel’s explanations in (Gauss, 1870–1927, Vol. VIII, pp.
257–264) are totally clear and can be followed easily, we give here, for
the benefit of the reader, the deduction of the first formula adapted to
our approach.

Let 4ABC be a right-angle triangle with sides a, b, c, and assume
that it is changing with time in such a way that the right-angle C
remains constant.

Because of the SAS Theorem (side-angle-side), every trigonometric
relation between A,B,C, a, b, c can be reduced to a relation between
b, c, A. Thus we can assume that the relation F (b(t), c(t), A(t)) = 0
holds for each t. Hence, differentiating we obtain

Fb
db

dt
+ Fc

dc

dt
+ FA

dA

dt
= 0

72

ga.∂b− sinB.∂c+ fc. cosB.∂A = 0

gb.∂a− sinA.∂c+ fc. cosA.∂B = 0

sinB.∂a− ga. cosB.∂b− fc.∂A = 0

gb. cosA.∂a− sinA.∂b+ fc.∂B = 0.

73The upper side of a Saccheri quadrilateral of equal sides a and base b is equal
to g(a)b for some function g, and the length of a circular sector of α radians and
radius r is f(r)α for some function f .
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a

b

c
a

b b

a a c

c
a

c

c

b=constantc=constant

da

dc

dAdA

da

db

A=constant

dcda

db

B'

C' A

B

B'
B'

C

B

C A C AC'

D

B

D

Figure 5. Stäckel’s diagram redrawn, (Gauss, 1870–
1927, Vol. VIII, p. 259).

From the first diagram (Figure 5) we deduce

sinB =
g(a)db

dc

since the small triangle with hypotenuse dc can be considered as Eu-
clidean, and one of the cathetus is the top side of a Saccheri quadrilat-
eral with base db and height a.

From the second diagram we deduce

cosB =
BD

BB′
=
−g(a)db

f(c)dA

since the small triangle 4BB′D can be considered as Euclidean and
BB′ as the arc length of a circular sector of radius c and angle dA. The
minus sign comes from the relative position between C and C ′.

From the third diagram we deduce

tanB =
BD

dc
=
f(c)dA

dc

since the small triangle 4BB′D can be considered as Euclidean, and
BD as the arc length of a circular sector of radius c and angle dA.

From these three relations we easily compute the partial derivatives
Fa, Fb, Fc (up to a constant) and obtain the first Gauss formula in
(Gauss, 1870–1927, Vol. VIII, p. 255):

g(a)db− sinBdc+ f(c) cosBdA = 0.(4)

In fact, the three above steps followed by Stäckel can be viewed
together in the following diagram (Figure 6), since formula (4) says
only that

FD = FE + ED.
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Figure 6. Representation of the three differentials.

From (4) and similar expressions, Gauss with his characteristic ge-
nius arrives at a second order differential equation, which allows the
functions f(c) and g(a) to be computed easily. Gauss assumes that the
integration constant is negative (−kk in Gauss’s notation), thereby
obtaining

f(x) =
α

k
sin kx

g(x) = cos kx

and, in particular, the spherical trigonometric formulas for a sphere of
radius 1/k. Nevertheless, if we assume that the integration constant
is positive, we obtain, without the introduction of imaginary numbers,
the non-Euclidean trigonometric formulas (those corresponding to a
sphere of radius i/k).

We also remark that by arriving at these formulas Gauss obtains two
of the ds2 in the Appendix : expressions (2) and (3) above.

This note by Gauss is widely commented upon in (Reichardt, 1985,
Section 2.3).

In Section 19 of the Disquisitiones, Gauss computes f ′(0), obtaining
f ′(0) = 1, i.e. the constant α introduced by Gauss in the above com-
putations is 1, if there is a tangent plane in A. In fact α 6= 1 only if A
is a singular point, such as the vertex of a cone.

In fact Gauss says (Gauss, 1828, Section 19): “Generally speaking,

m [m =
√
G]74 will be a function of p, q and mdq the expression for

the element of any line whatever of the second system. But in the
particular case where all the lines p go out from the same point [...]
for an infinitely small value of p the element of a line of the second

74Note that, under the hypothesis of radial symmetry, we are assuming, m = f .
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system (which can be regarded as a circle described with radius p) is
equal to pdq, we shall gave for an infinitely small value of p, m = p,
and consequently, for p = 0, m = 0 at the same time, and ∂m

∂p
= 1.”75,76

Why was it clear to Gauss in 1827 that the “element of any line”
of the second system is pdq, while in 1840 this element is αpdq? The
reason could be that in the Disquisitiones the argument used is that
the metric is defined in the singular point p = 0, which is guaranteed
because the metrics on the surfaces considered in the Disquisitiones
come from the ambient metric in R3.77

10. Conclusions

In this paper we analyze a crucial moment in the history of the dis-
covery of non-Euclidean geometry: the reading Gauss made of Bolyai’s
Appendix in 1832. We assume the very plausible hypothesis that Gauss
was following Lambert’s ‘Analytical Program’ (described on page 4)
and that he was looking, among the surfaces in R3, for Lambert’s hy-
pothetical imaginary sphere (see page 3).

Gauss placed on record this reading in two letters; one to Gerling
in February 1832 and another longer letter to Bolyai’s father in March
1832.

In the letter to Farkas, Gauss says:

(1) “The way followed by your son, and the results he obtained
agree almost from beginning to end with the meditations I had
been engaged in partly for 30–35 years already.”

(2) “I had planned to write down everything in the course of time
[...] now I can save myself this trouble.”

75Spivak, in his comments on the Disquisitiones, gives a more complete proof of
this fact; see (Spivak, 1979, Vol. 2, pp. 84 and 120.).

76“Generaliter loquendo m erit functio ipsarum p, q atque mdq expressio ele-
menti cuiusvis lineae systematis. In casu speciali autem, ubi omnes lineae p ab
eodem puncto proficiscuntur, manifesto pro p = 0 esse debet m = 0; porro si in hoc
casu pro q adoptamus angulum ipsum, quem elementum primum cuiusvis lineae
primi systematis facit cum elemento alicuius ex ipsis ad arbitrium electae, quum
pro valore infinite parvo ipsius p, elementum lineae secundi systematis (quae con-
siderari potest tamquam circulus radio p descriptus), sit = p dq, erit pro valore
infinite parvo ipsius p, m = p, adeoque, pro p = 0 simul m = 0 et dm

dp = 1.”
77Many years later, the introduction of conical singularities into the study of

hyperbolic manifolds led to the introduction of metrics of the type ds2 = dp2 +
α2R2 sin2 p

Rdq
2, which verify f ′(0) = α. All these metrics, for different values of

α, have the same curvature, but the length of the element of a line p = constant is
αpdq.
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(3) “Perhaps it will not be a disappointment if you try to procure
that volume [...] as you also find there, developed in a few pages,
the essence of my views concerning imaginary quantities.”

We answer some natural questions arising from these statements by
Gauss:

(1) What was the approach adopted by Gauss in his meditations?
Was it the same as that adopted by Bolyai?

(2) Why did he feel that there was no longer any need to write
anything more about it?

(3) What is the relation between imaginary quantities and the prob-
lem of the Euclidean Theory of Parallels?

In Section 5 we see how Bolyai axiomatically deduces a formula for
the ds2 in the hypercyclic coordinate system, which is the system most
similar to that of rectangular coordinates in Euclidean geometry. This
shows that he wanted to follow the method of the differential geometry
of his time: he was looking for an arc length element in the new plane.
Gauss says in his letter that the approach adopted by Bolyai is his own.
However, Bolyai was not familiar with the Disquisitiones and did not
recognize the two first ds2. Nevertheless, it seems clear that they were
indeed recognized by Gauss.

In 1831, Gauss gave up searching for Lambert’s imaginary sphere in
R3 and opted for the deductive method: after studying the transitiv-
ity of parallelism, he described synthetically the paracycle (see (Gauss,
1870–1927, Vol. VIII, pp. 202–209) or (Bonola, 1955, 67–74)). How-
ever, in January 1832, after his reading of the Appendix, he gave up
writing about such a difficult subject: the son of his old friend Farkas
had “wonderfully outmatched him”.

In the Appendix, Bolyai gives the rectification of the paracycle. This
should have allowed him to deduce the first ds2 (see page 12), but he
failed to notice it. The new geometry can be deduced from this arc
length element with the methods of the Disquisitiones; Bolyai had to
deduce the third ds2 to arrive at this conclusion (see page 17).

The problem of consistency still remained to be solved. This was
possible if Lambert’s imaginary sphere could be found. However, this
depended on the consistency of imaginary quantities, a question re-
solved by Gauss in his note of 1831 (that recommended for reading to
F. Bolyai). Gauss was right: in Appendix B we see how the ‘Anal-
ogy’ and the complex plane as conceived by Gauss lead naturally to
the Poincaré disc model of the hyperbolic plane. This shows that non-
Euclidean geometry is as consistent as Euclidean geometry.
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Why did Gauss not publish a review of the Appendix? This would
have attracted the attention of the mathematical community to this
important work.

His fear of the Kantians, led by his colleague Lotze, is not a convinc-
ing reason. We provide another possible reason: Gauss hoped to find
the imaginary sphere. He knew the pseudosphere (see page 6), but it
was not complete. If the singularities were in some sense inevitable,
Bolyai’s plane would also be inconsistent. Furthermore the Appendix
fails to satisfy Lambert’s ‘Analytical Program’: it contains 23 drawings
(see Section 6), which far from the idea that in the proof “we should
never rely on any representation of the matter” (see page 4).

Gauss was isolated (see Section 4) and made the mistake of looking
for the imaginary sphere in R3. In 1910, Hilbert proved that there exists
no complete regular surface of constant negative curvature immersed
in R3 (see Section 8). For Gauss, and also for Beltrami (see footnote
2), the length element ds is always the length element of a surface in
R3. The notion of abstract surface had yet to appear.

Section 9 has been added for completeness, in order to see how Gauss
uses differential geometry for considering problems of non-Euclidean
geometry. We also see how Gauss again addresses singularities and
eventually finds the last two ds2 of the Appendix.
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Appendix A. Coordinate systems

In the hyperbolic plane, apart from the polar or “cyclic” coordi-
nates and the cartesian or “hypercyclic” coordinates, there are also the
“paracyclic” or “horocyclic” coordinates in which one of the distances
is measured on paracycles.

Cyclic (r, α). Here, r is the distance between the point P and the
origin O; and α is the angle between the straight line PO and a given
straight line through O. Observe that r = constant is a hyperbolic
circle.
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Figure 7. Three coordinate systems.

Hypercyclic (x̄, ȳ). Here, x̄ is the distance between the origin O and
the point Q, the intersection of the line through P orthogonal to a
given line through O; and ȳ is the distance between the point P and
Q. Observe that ȳ = constant is a hypercycle (equidistant).

Both cyclic and hypercyclic coordinates were introduced and widely
used by Gauss in the Disquisitiones.

Paracyclic (x, y). Here, x is the distance between the origin O and
the point Q, the intersection with a given line through O of the horo-
cycle through P and the axis of this line; and y is the length of the
horocycle OR, where R is the intersection of the axis through P with
the horocycle of this family through O. Observe that x = constant is
a paracycle (horocycle).

Recall that three points of the hyperbolic plane determine a straight
line, a circle, a hypercycle or a paracycle. The assumption that three
points not on a line determine a circle is equivalent to the fifth postu-
late. In fact, this was the mistake made by Farkas Bolyai in his proof
of this postulate.

Hypercyclic-Cyclic

The change of coordinates cyclic-hypercyclic is immediate applying
trigonometry to a right triangle of sides x̄, ȳ and hypotenuse r (see
(Reventós and Rodŕıguez, 2005, 120))

cosh
r

R
= cosh

x̄

R
cosh

ȳ

R

sinh
ȳ

R
= sinh

r

R
sin θ,

From this system we can write: x = x(r, θ), y = y(r, θ).
In particular,

dȳ2 + cosh2 ȳ

R
dx̄2 = dr2 +R2 sinh2 r

R
dθ2.
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Hypercyclic-Paracyclic

Let us assume that the point P has hypercyclic coordinates (x̄, ȳ),
and paracyclic coordinates (x, y).

z

y

x

C

y

a

x
_

_

O

P

A B

Figure 8. Relation between hypercyclic and paracyclic coordinates.

In the diagram (Figure 8) CO and PA are arcs of horocycles orthogo-
nal to the parallel straight lines CP , OA. The hypercyclic coordinates
are given by x̄ = OB, ȳ = PB; and the paracyclic coordinates are
given by x = OA, y = CO.

The relation between the length z of the horocycle PA and the length
ȳ of the straight line PB is

z = ye−x.(5)

Also

z = sinh ȳ.(6)

And

ea = cosh ȳ,(7)

where a = AB. We remark that equations (5), (6) and (7) are given
directly in the Appendix: Equation (5) in §24 and equations (6) and
(7) in §32. Bolyai writes z = i cotCBN , which in our notation is
z = cot Π(ȳ), (we are assuming curvature = −1, i.e. i = 1), but it is
easy to see that cot Π(ȳ) = sinh ȳ, and thus we have equation (6).

From these equations we can make the change of coordinates explicit:

x̄ = x+
1

2
ln(1 + y2e−2x)

ȳ = ln(ye−x +
√
y2e−2x + 1).

In particular,

dȳ2 + cosh2 ȳ dx̄2 = dx2 + e−2x dy2.
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Appendix B. A wasted opportunity

As we commented in Section 2, as a result of Legendre’s influence,
the French school was not interested in the classical problem of the
Euclidean Theory of Parallels. Moreover, Lagrange’s analytical point
of view spread rapidly throughout the mathematical community and
the synthetical approach remained buried until Poincaré unearthed it
again.

The ‘wasted opportunity’ is revealed in the following argument, avail-
able to the French school, which allows us to give a construction of the
Poincaré disc model of non-Euclidean geometry.

This construction only uses the stereographic projection and the
‘Analogy’. So it could easily have been performed by Monge or his
school in the École Polytechnique, thirty years before the Appendix
(which they did not do). This school had as its leitmotif the transla-
tion of geometric properties using geometric transformations; in par-
ticular, stereographic projections of the quadrics over the plane. For
instance, Michel F. Chasles (1793 – 1880) in (Chasles, 1837, 191) says:
“From then on, Monge’s students successfully cultivated this Geome-
try of a really new kind, which has often been rightly referred to as
the “Monge School”, which as we have said consists in introducing into
plane Geometry considerations of the three dimensional Geometry.”78

The stereographic projection between the sphere SR of radius R and
the plane that contains the equator is given by

p =
Rx

R− z
q =

Ry

R− z

with x2 + y2 + z2 = R2.
Equivalently, the image of the point (x, y, z) ∈ SR is the complex

number w = p+ iq.
Let us ‘translate’ the geometry of SR to the extended complex plane

C via this stereographic projection. First we note that the equator is
given by

ww̄ = R2.

78“Depuis, les élèves de Monge cultivèrent avec succès cette Géométrie, d’un
genre vraiment nouveau, et à laquelle on a souvent donné, avec raison, le nom
d’école de Monge, et qui consiste, comme nous venons de dire, à introduire dans la
Géométrie plane des considerations de Géométrie à trois dimensions.”
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Moreover, if w,w′ are the images under the stereographic projection
of antipodal points, then

w′ = −R
2

w̄
.(8)

Since stereographic projection takes circles to circles, the image of
a meridian is a circle in the complex plane. Hence, if P,Q ∈ C,
the ‘straight line’ PQ is the circle determined by the three points
P,Q,−P ∗, where P ∗ is the inverse point of P with respect to the circle
ww̄ = R2.

The ‘angles’ of this geometry on C are the angles in SR. ‘Congruent’
relations can also be derived in this way. It is the geometry of the
sphere considered as C ∪ {∞}.

If we now apply the ‘Analogy’ by changing formally R by Ri in (8),
we obtain

w′ =
R2

w̄
.

What are the straight lines of this new geometry? If P,Q ∈ C, the new
straight line PQ is the circle determined by the three points P,Q, P ∗.
Since this circle is orthogonal to the circle ww̄ = R2, the new straight
lines are circles orthogonal to the boundary of the disc of radius R.

Note that we are obliged to exclude the case P = P ∗ because the
three points must be different. However, the set of points P with
P = P ∗ is the boundary of the disc. Therefore this boundary does not
belong to the new geometry.

Thus we have the open disc and its complement, which are ‘equal’
through inversion. If we consider the open disc with the straight lines
defined above, and further consider that ‘movements’ are generated by
inversions, we have the classical Poincaré disc. In other words, we have
a model of non-Euclidean geometry and the problem of the consistency
is solved. In fact, an inconsistency in non-Euclidean geometry would
be translated into an inconsistency in inversion geometry, and hence
into an inconsistency in Euclidean geometry. Non-Euclidean geometry
is thus as consistent as Euclidean geometry.
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Engels, F., Stäckel, P., 1895. Die Theorie der Parallellinien von Euklid
bis auf Gauss. Teubner, Leipzig.

Euclid, 1956. The thirteen books of Euclid’s Elements. Vol. 1. Dover,
translated and commented by Sir Thomas L. Heath.

Ferreirós, J., 2000. Riemanniana Selecta. Colección Clásicos del Pen-
samiento. CSIC.

Ferreirós, J., 2007. Labyrinth of thought. A history of set theory and its
role in modern mathematics, 2nd Edition. Birkhäuser Verlag, Basel.
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Kárteszi, F., 1987. Bolyai, János. Appendix. The theory of space.

Vol. 138. North-Holland Mathematics Studies, with a supplement
by Barna Szénássy.
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José Ferreirós.

Spivak, M., 1979. A Comprehensive Introduction to Differential Geom-
etry. Publish or Perish, Inc. Berkeley, 2a ed., 5 v.
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