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REGULAR RING PROPERTIES DEGRADED

THROUGH INVERSE LIMITS

PERE ARA, KEN GOODEARL, KEVIN C. O’MEARA, ENRIQUE PARDO,
AND FRANCESC PERERA

Abstract. We give a number of constructions where inverse limits seriously
degrade properties of regular rings, such as unit-regularity, diagonalisation of
matrices, and finite stable rank. This raises the possibility of using inverse
limits to answer the long standing Separativity Problem (in the negative).

The motivation for this work is to explore inverse limits as a new tool to settle
in the negative the Separativity Problem (SP) for (von Neumann) regular rings.
This problem, which was posed by Ara, Goodearl, O’Meara, and Pardo in 1994,
asks if all regular rings (or exchange rings) R satisfy the property

A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B

for finitely generated (f.g.) projective R-modules A,B. No counter constructions
have worked to date, so why not try a new one! While a resolution of the SP
using this new tool has so far eluded us, the constructions and results in this
paper do confirm that inverse limits can seriously degrade regular ring properties.
For instance, building on a construction of Bergman in the 1970’s, and modified
by O’Meara in 2017, we construct an inverse limit of unit-regular rings which
remains regular but is no longer unit-regular. Thus we have degraded cancellation
of f.g. projectives over rings within a certain class of regular rings but without
destroying regularity. However, these degradations do require certain restrictions
on the connecting maps fi : Ri+1 → Ri in lim←−Ri, such as not being surjective.
All this gives added urgency to the question of whether an inverse limit can also
degrade the property of separativity?

Recall a ring R is regular if each a ∈ R has an inner inverse b in the sense that
a = aba. If b can always be chosen to be a unit, then R is unit-regular. And R is
an exchange ring if its f.g. projective modules possess the finite exchange property.
Exchange rings are more general than regular rings (for instance they include all
locally finite-dimensional algebras) but share many properties with regular rings,
such as an abundance of idempotents and, most notably, the refinement property
for direct sums of f.g. projective modules. For simplicity, however, we restrict our
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discussions to mostly regular rings even though much of what we do can also be
done for exchange rings

Here is a quick outline of the paper. Section 1 reminds us of where separativity
fits within regular rings: it is a much more general, unifying notion than first
appears, and the resolution of the SP has important ramifications. In Section 2,
we recall the basics of inverse limits, while in Section 3 we place our approach
in the framework of varieties in the universal algebra sense. This is a powerful
point of view because of the ability to take free objects in a variety. Constructions
illustrating how inverse limits can degrade properties are given in Section 4, along
with some positive results in Section 5 when the connecting maps are surjective.
In Section 6, we relate inverse limits of regular rings R to inverse limits of their
monoids V (R) of f.g. projectives. A most instructive example is given in Section 7
of a regular inverse limit R of regular rings Ri where, despite the connecting maps
being surjective, V (R) is not isomorphic to lim←−V (Ri). The construction involves
graph algebras, and appeals to some nontrivial results within that area. Finally,
in Section 8, we examine an intermediate step in constructing a non-separative
regular ring.

1. Separativity

The notion itself stems from semigroup theory in the 1950’s. For regular rings,
we view separativity in an equivalent form (to the definition in the Introduction) of
a broad cancellation property for f.g. projective modules, akin to those associated
with finite stable rank:

A ⊕ C ∼= B ⊕ C =⇒ A ∼= B

for f.g. projective R-modules A,B,C when C is isomorphic to both a direct sum-
mand of a finite direct sum of copies of A and of a finite direct sum of copies of B.
See [8, Lemma 2.1]. (We can never expect universal cancellation because not all
regular rings are unit-regular.) Another interesting equivalent view of separativity
is that “multi-isomorphism” of f.g. projective modules coincides with isomorphism:

An ∼= Bn ∀n > 1 =⇒ A ∼= B.

There were three major theorems established in the 1990’s concerning separative
regular rings:

• Extension Theorem. Separativity for regular (or exchange) rings is preserved
in extensions of ideals I (as non-unital rings) by factor rings R/I: R is separative
iff I and R/I are separative.

• Diagonalisation Theorem. Square matrices A over separative regular rings
are equivalent to diagonal matrices: PAQ = D for some invertible P,Q and
diagonal D.

• GE Theorem. Invertible matrices over separative regular rings are products
of elementary matrices.
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Moreover, among regular rings R, the separative ones are characterised by the
property that 2×2 matrices over corner rings eRe (where e is an idempotent) can
be diagonalised by elementary matrices. See [8], [9], and [10] for more detail.

It is the Extension Theorem that makes life difficult for us in directly con-
structing non-separative regular rings. However, this does not appear to be an
impeding factor in inverse limit constructions, because regularity itself is closed
under extensions whereas we construct many non-regular inverse limits of regular
rings.

2. The basics of inverse limits

Inverse limits are the dual of direct limits. However, inverse limits can present
a greater challenge to our intuition in predicting what a particular limit might
look like! Roughly speaking, just as we can think of a direct limit as a “fancy
type of union”, we can think of an inverse limit as a “fancy type of intersection”.
Two excellent references for these limits, as well as universal algebra generally, are
George Bergman’s book [13, Chapter 9] and Nathan Jacobson’s book [22, Chapter
2].

For simplicity, we will restrict ourselves to the indexing set Z>0. But we cer-
tainly don’t rule out much more complex (even uncountable) directed sets playing
a critical role. Given objects Ai in some category, and connecting morphisms
fi : Ai+1 → Ai, the inverse limit lim←−Ai is an object L in the category, together
with morphisms πi : L→ Ai, such that fi ◦ πi+1 = πi, which satisfy the universal
property shown in the picture:

· · · Ai
oo Ai+1

fioo · · ·fi+1oo

L

πi

OO

πi+1

<<②②②②②②②②

M

θ

OO ρi+1

EE☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛

where ρi : M → Ai also satisfy fi ◦ ρi+1 = ρi, and the map θ is unique.
In a general (universal) algebra, we can take

lim←−Ai :=

{
(ai)i∈Z>0 ∈

∏

i∈Z>0

Ai : fi(ai+1) = ai for each i ∈ Z>0

}

and take πi((ai)i∈Z>0) = ai. This set might be empty, but it is automatically
nonempty if there is some 0-ary operation on the algebras.

The prototype of an inverse limit lim←−Ri in the category of rings is the inter-
section of a descending chain R1 ⊇ R2 ⊇ R3 ⊇ . . . of subrings, with the
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connecting maps the inclusion maps. Moreover, in a sense to be made clear later
(see Proposition 4.9), all inverse limits of rings can be viewed this way.

Any direct product
∏∞

i=1 Ri of rings Ri can be viewed as an inverse limit lim←− Si

of the rings Si = R1 × R2 × · · · × Ri with connecting maps fi : Si+1 → Si the
natural projections.

The classical, and most instructive, example of an inverse limit is the ring of
p-adic integers constructed from the rings Z/pi using the natural connecting maps.
This is an example of an inverse limit of exchange rings with surjective connecting
maps and the inverse limit is also an exchange ring (being a local ring). So that
is encouraging.

3. A variety setting

The use of certain varieties (in the universal algebra sense) as a general frame-
work for our inverse limits proves most useful. Among other things it allows us
access to free objects, such as a free separative regular ring on given generators.
Recall, a variety is determined by a class of algebraic objects, a set of operations,
and universal identities satisfied under those operations. Thus we have the variety
Ring of rings with unity relative to the operations +,−, ·, 0, 1. So two binary
operations, one unary, and two nullary (constants). And satisfying the usual iden-
tities such as the distributive law a · (b + c) = a · b + a · c for all a, b, c ∈ R. By
throwing in the unary operation ′ with identity a = aa′a we get the variety Reg
of regular rings. To get the variety UnitReg of unit-regular rings, we can impose
the extra two identities a′(a′)′ = 1 and (a′)′a′ = 1 on Reg. Two other important
varieties for us are DiagReg and SepReg. The former encapsulates diagonalisa-

tion of 2× 2 matrices

[
w x
y z

]
over a regular ring R by elementary matrices (3

each side):
[
1 c
0 1

] [
1 0
b 1

] [
1 a
0 1

] [
w x
y z

] [
1 d
0 1

] [
1 0
e 1

] [
1 f
0 1

]

=

[
∗ 0
0 ∗

]

So given a 4-tuple (w, x, y, z) of elements of R, we can pick out the entries
a, b, c, d, e, f in the elementary matrices in terms of six quaternary-operations,
and then specify that the (1, 2) and (2, 1) entries of the product are zero using the
obvious multilinear equations. Of course, we still need the unary operation ′ of
inner inverse to ensure R is regular but notice the diagonalisation itself does not
involve the inner inverse ′. To describe the variety SepReg of separative regular
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rings in simple terms (at least conceptually), we use the characterisation men-
tioned before of separative regular rings in terms of diagonalising 2 × 2 matrices
over corner rings. But with a nice recent improvement in [7]: only 3 elementary
matrices are needed on each side in the diagonalisation, and nothing less on each
side will work in general. Fortunately also, we can parametrise idempotents as
elements of the form vv′ + v(1 − vv′) as v ranges over the members of R. Again
see [7]. So combined with our description of DiagReg, this makes SepReg a
variety. Notice that this viewpoint does not prioritise one inner inverse operation
over another. As shown in [7] it is possible also to view the class of exchange rings
as a variety but this is much more delicate.

A most surprising result obtained in [7] is that it is possible to view SepReg
as a subvariety of Reg by keeping the same signature of being a ring with a par-
ticular inner inverse operation ′, but imposing an additional equation involving
three recursive uses of ′ to get the necessary diagonal reduction. However, this ap-
proach does require some nontrivial technicalities, and the additional two defining
identities are not exactly obvious.

When we talk about an inverse limit in a given variety, we assume the connecting
maps preserve all the operations of the variety, in which case the limit also resides
in that variety. So in the case of an inverse system (Ri, fi) in Reg, each Ri is
equipped with a particular inner inverse operation ′, and the connecting maps fi :
Ri+1 → Ri are ring homomorphisms satisfying fi(a

′) = (fi(a))
′ for all a ∈ Ri+1.

Clearly, if we work in SepReg, then the resulting inverse limit will also be in
SepReg. However, if we are in Ring or Reg, then there is some hope that the
inverse limit might fail to be separative.

4. Constructions where properties are degraded

One of the earliest examples of how inverse limits can degrade properties of
a regular ring was given by George Bergman in the 1970’s and recorded in [18,
Example 1.10].

Construction 4.1. An inverse limit of regular rings taken in Ring that is not
regular.

Let R be a ring, and let S be the subring of RZ>0 consisting of all sequences that
eventually stabilize:

S := {(xi)i∈Z>0 ∈ RZ>0 : xi = xi+1 = · · · for some i > 0}.
Let ϕ be an automorphism of R. The sequences in S are restricted in their tails,
but using ϕ we can restrict these sequences from the start. Namely, we can pass
to the subring

Sn := {(xi)i∈Z>0 ∈ S : ϕ(xi) = xi+1 if i ≤ n}.
5



In this way we obtain a sequence of subrings, S ⊇ S1 ⊇ S2 ⊇ . . ., each isomorphic
to S, and the inverse limit lim←−Si of these subrings, via the inclusion maps, is
isomorphic to the subring of R fixed by ϕ.

Now specialise the construction to R = M2(F ) for a fixed field F and the inner
automorphism ϕ of conjugation by

C =

[
1 1
0 1

]
.

Inasmuch as the centraliser T of C in R is

T =

{[
a b
0 a

]
: a, b ∈ F

}
∼= F [x]/〈x〉2,

which has a nonzero nilpotent ideal, T cannot be regular. Therefore lim←−Si is not
regular. �

In the above construction, the connecting maps (inclusions) cannot preserve
fixed inner inverse operations on each Ri. Otherwise, the limit takes place in the
variety Reg and therefore would be regular!

This type of construction can be generalized. Instead of using one automor-
phism, we could use up to countably many, as follows. Fix, once and for all, a
map σ : Z>0 → Z>0 with the property that each positive integer occurs as an out-
put infinitely often. (For instance, σ could send a number to the sum of its binary
digits.) Let θ1, θ2, . . . be a sequence (either finite or countable) of automorphisms
of R. We then define subrings of S, by setting

Sn := {(xi)i∈Z>0 ∈ S : θk(xi) = xi+1 if i ≤ n and σ(i) = k}.
Now, the inverse limit is (isomorphic to) the subring of R fixed by all of the θk.

Construction 4.2. There exists an inverse limit of unit-regular rings, taken in
Ring, with the property that some 2×2 matrix over the ring is not diagonalizable.

Consider the ring R := M4(F ) with F a field. Let θ1, θ2, and θ3 be conjugations
by the respective elementary matrices

I4+e13 =




1 0 1 0
1 0 0

1 0
1


 , I4+e14 =




1 0 0 1
1 0 0

1 0
1


 , I4+e23 =




1 0 0 0
1 1 0

1 0
1


 .

The subring of R fixed by these three automorphisms is






a 0 b c
a d e

a 0
a


 : a, b, c, d, e ∈ F




∼= F [x1, x2, x3, x4]/〈x1, x2, x3, x4〉2.

By [10, Example 2.12], there are 2 × 2 matrices over this ring that cannot be
diagonalized. The ring R occurs as an inverse limit of unit-regular rings, in the
variety Ring, for the same reason as given in Construction 4.1. �

6



In the previous two constructions, the automorphisms we employed were con-
jugations. In our next construction we will require an outer automorphism.

Construction 4.3. There is an inverse limit of unit-regular rings, taken in Reg,
that is not unit-regular (but is automatically regular).

This construction is also based on an earlier classical one of Bergman in the
1970’s and recorded in [18, Example 5.12]. It exhibits a regular subalgebra R of
a unit-regular algebra Q (over an arbitrary field F ) but with R not unit-regular.
It is not possible to realize Q inside a countably-infinite matrix ring over F if all
the matrices are column-finite or all row-finite. However, in [27] it was shown how
to realise Q and R inside an ω × ω matrix ring when viewed as a Morita context.
We briefly recall the details.

Fix a field F . Let B be the formal 2× 2 matrix ring

B =

[
U M
N V

]

where U is the ring of all ω × ω row-finite matrices over F , M is the F -space of
all ω × ω matrices over F , V is the ring of all ω × ω column-finite matrices over
F , and N is the space of all ω×ω matrices with only finite many nonzero entries.
Establishing that B is actually a ring is a delicate matter (!). See [27]. The key
to the construction is that there is a natural copy K of the Laurent series ring
F [t, t−1] inside B given by

bmt−m + · · ·+ b1t
−1 + c0 + c1t+ c2t

2 + · · ·+ cnt
n + · · ·

7−→



c0 b1 b2 · · · bm 0 · · · c0 c1 c2 · · · cn · · ·
c1 c0 b1 b2 · · · bm

. . . c1 c2 · · · cn · · ·
c2 c1 c0 b1 b2 · · · . . . c2 · · · cn · · ·
...

. . .
. . .

. . .
. . .

. . .
...

cn cn
... cn

...
. . .

b0 b1 b2 · · · bm 0 · · · c0 c1 c2 · · · cn · · ·
b1 b2 · · · bm 0 · · · b1 c0 c1 c2 · · · cn · · ·
b2 · · · bm 0 · · · b2 b1 c0 c1 c2 · · · . . .
...

...
. . .

. . .
. . .

. . .
. . .

bm bm
0 0 bm
...

...
. . .

. . .




.
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Also B is a prime ring with nonzero socle

P =

[
I IM +MJ
N J

]

where I and J are the socles of U and V respectively. Let π : B → B be the
projection onto the diagonal

[
u m
n v

]
7→

[
u 0
0 v

]
.

This is a ring homomorphism modulo P . We set

R =

[
I 0
0 J

]
+ π(K), Q = R + P = P + π(K).

As shown in [27], the ring R is regular, but not unit-regular, while the ring Q is
unit-regular.

For the remainder of this construction, assume that F 6= Z/2, and fix α ∈
F −{0, 1}. Let θ be the automorphism of B induced by conjugation by the matrix[

α 0
0 1

]
. It is easy to see that θ restricts to an outer automorphism of Q, whose

fixed subring is R. By applying the technique in Construction 4.1, we see R occurs
as an inverse limit of unit-regular rings in Ring. Our next lemma shows that the
inverse limit may be forced to occur in Reg. �

Lemma 4.4. Assume that (Ri, fi)i∈Z>0 is an inverse system in the variety Ring,
where each homomorphism fi is injective, and where each ring Ri is regular. If
the inverse limit in Ring happens to be regular, then we can define inner inverse
operations on each of the rings Ri so that the inverse limit occurs in Reg.

Proof. Identify the inverse limit with

R :=

{
x = (xi)i∈Z>0 ∈

∏

i∈Z>0

Ri : fi(xi+1) = xi for all i ∈ Z>0

}

and let πi : R→ Ri be the natural projection. Let ′ be an inner inverse operation
on R. Since the fi are injective, either

(1) xi occurs as the ith coordinate of exactly one infinite sequence x ∈ R, or
(2) xi occurs as the ith coordinate of exactly one finite sequence (x1, . . . xn),

for some n ≥ i, with the property that fj(xj+1) = xj for each 1 ≤ j ≤ n−1,
and where xn /∈ im(fn).

In the latter case, we will call xn the ultimate ancestor of xi. For convenience we
will let x∗i denote some fixed choice of an inner inverse of xi ∈ Ri. We now define
a new inner inverse operation ′ on each Ri in terms of ∗ and the operation ′ on R
by the rule:

x′i : =

{
πi(x

′) if xi = πi(x) for some x ∈ R,

(fi ◦ · · · ◦ fn−1)(x
∗
n) if xn is the ultimate ancestor of xi.

8



These are well-defined inner inverses on each Ri and respected by the connecting
maps. �

Remark 4.5. The conjugation matrix, C := [ α 0
0 1 ], used in Construction 4.3 is

not a member of the ring Q, but of the bigger ring B. It is tempting to arrange
that this matrix is in Q, to force θ to be an inner automorphism. Equivalently, we
would want the idempotent

e :=

[
1 0
0 0

]
= (α− 1)−1(C − 1Q) ∈ Q.

However, then we would lose the unit-regularity of Q, because the corner ring eQe
would not even be directly finite. This shows the importance of having a bigger
universe, B, in which to work. �

Remark 4.6. Any example of an inverse limit R = lim←−Ri of unit-regular rings
that is regular but not unit-regular has to be another example of the Bergman-
type because R sits inside

∏
Ri, which is a product of unit-regular rings, whence

unit-regular. So constructions such as 4.3 are never easy.

Construction 4.7. There is an inverse limit in Reg, of a sequence of regular
rings with stable rank 2, that is regular but has infinite stable rank.

Let F be a field with more than two elements and fix α ∈ F−{0, 1}. By a result
of Menal and Moncasi in [25, Example 3, p. 38] there is a regular F -algebra R of
stable rank 2 that has a corner eRe with infinite stable rank. The fixed ring T of
conjugation of R by αe+ (1− e) is T = eRe+ (1− e)R(1− e), which has infinite
stable rank. We can now apply the same argument used in Construction 4.1 to
obtain our inverse limit once we show the ring S of sequences of elements of R that
stabilize is also of stable rank 2. Given any three elements (ai), (bi), (ci) ∈ S that
are right unimodular in S, then for each i ∈ Z>0 we can fix elements xi, yi ∈ R
such that ui := ai + bixi + ciyi ∈ U(R). Moreover, as the ai, bi, ci eventually
become constant, we can assume that xi and yi likewise become constant, so that
(xi), (yi) ∈ S. Moreover,

(ai) + (bi)(xi) + (ci)(yi) ∈ U(S),

hence S has stable rank at most 2. On the other hand, S has the ring R, whose
stable rank is 2, as a homomorphic image, so S must have stable rank 2. �.

Remark 4.8. The only possibilities for the stable rank of separative exchange
rings are 1, 2, or ∞, by [8, Theorem 3.3(a)].

It turns out that, in quite general settings, the injectivity hypothesis on the
connecting maps in an inverse system is no limitation on the types of inverse
limits that can arise. The following proposition makes this formal.
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Proposition 4.9. Given any inverse system (Si, fi)i∈Z>0 in Ring, then there is
another inverse system (Ti, gi)i∈Z>0 with each gi injective, and with an isomor-
phic inverse limit. Moreover, if P is an isomorphism-invariant property of rings
satisfied by each Si, which passes to countable direct products, then each Ti has P .

Proof. For each j ∈ Z>0, let

Tj := {x = (xi)i∈Z>0 ∈
∏

i∈Z>0

Si : fi(xi+1) = xi for each positive integer i < j}.

The inclusions Tj+1 ⊆ Tj induce a new inverse system. Moreover, the intersection
⋂

i∈Z>0

Ti = {x = (xi)i∈Z>0 ∈
∏

i∈Z>0

Si : fi(xi+1) = xi for each i ∈ Z>0}

is an inverse limit of this new system as well as the original inverse system. Notice
that Tj

∼=
∏

i≥j Si, so the last claim quickly follows. �

Remark 4.10. The idea used in Proposition 4.9 applies to more general inverse
systems and appears in the proof of [14, Theorem 2].

5. Some positive results

When the connecting maps in inverse limits are surjective, the behaviour of the
limit is much better. We will make use of the fact that for an ideal I of a regular
ring R, inner inverses of an element ā ∈ R/I lift to inner inverses of a. This is
a well-known consequence of a lemma of Brown and McCoy [16, Lemma 1] (see
also [18, Lemma 1.3]). Also if R is unit-regular, units lift modulo an ideal (see
[12, Lemma 3.5]). We need a stronger form of the latter result:

Lemma 5.1. Let R be a ring and I an ideal of R. Assume that for any idempotent
e ∈ R, all units of eRe lift to units of eRe. (This holds in case R is unit-regular.)
Let a ∈ R be unit-regular. Then all unit inner inverses of a lift to unit inner
inverses of a.

Proof. Let w be a unit inner inverse for a. We may as well assume w ∈ R is a
lift of w that is also an inner inverse for a because inner inverses lift. Set g := aw
and h := wa. Let w1 = hwg and w2 := (1 − h)w(1 − g). Then w = w1 + w2

because the cross terms hw(1 − g) and (1 − h)wg in the Peirce decomposition
relative to h, 1 − h and g, 1 − g are both zero. Since a is unit-regular, we know
that (1− g)R ∼= (1− h)R. Fix elements s ∈ (1 − h)R(1 − g), t ∈ (1− g)R(1 − h)
such that left multiplication by these elements are inverse isomorphisms between
(1 − g)R and (1− h)R. Now, tw2 ∈ U((1− g)R(1 − g)). By hypothesis, tw2 lifts
to a unit v of (1− g)R(1 − g).

Consider w1 + sv. First, it is an inner inverse for a, since

a(w1 + sv)a = a(waw + sv(1− g))a = awawa+ 0 = a.
10



Second, it is a unit; its inverse is simply a + v−1t. Finally, w1 + sv is a lift of w
since

w1 + sv = w1 + stw2 = w1 + w2 = w.

�
Theorem 5.2. Given any inverse system lim←−Ri in the variety Ring, where each
homomorphism is surjective, and where each ring is a regular ring, then the inverse
limit is a regular ring. The same is true for unit-regular rings and for exchange
rings.

Proof. Fix any inner inverse operation, or unit inner inverse operation, on R1.
Applying Lemma 5.1 we can recursively find similar operations on R2, R3, . . . so
that the connecting homomorphisms respect these operations. The inverse limits
are now taking place in the varieties Reg and UnitReg respectively, whence that
is also where the limit must reside. The result for exchange rings was obtained by
Pedersen and Perera [28, Theorem 1.4]. �

Question 5.3. Does Theorem 5.2 also hold for separative regular (or separative
exchange) rings? Here is a partial answer, which we extend to exchange rings
later (Theorem 6.8).

Theorem 5.4. Let (Ri, fi)i∈Z>0 be an inverse system in the variety Ring, where
each fi is surjective, and where each Ri is a separative regular ring. Assume that
for any idempotent e in any Ri+1, all units of fi(e)Rifi(e) lift (along fi) to units
of eRi+1e. Then the inverse limit is a separative regular ring.

Proof. We will use the separativity criterion of [2, Proposition 6.2]: A regular ring
R is separative if and only if each a ∈ R satisfying

(*) Rr(a) = ℓ(a)R = R(1− a)R

is unit-regular in R. (Here r(a) and l(a) are the right and left annihilator ideals
of the element a.) Since Rr(a) and ℓ(a)R are always contained in R(1− a)R, the
above condition is equivalent to

(**) 1− a ∈ Rr(a) ∩ ℓ(a)R.

Thus, let a be an element of the regular ring R := lim←−Ri satisfying (∗∗). Then

1− a =
m∑

j=1

sjxj =
n∑

k=1

yktk

for some sj, xj , yk, tk ∈ R such that axj = yka = 0 for all j, k. These equations
project to corresponding equations in each Ri, and so each component ai of a
satisfies the (∗∗) condition in Ri. Consequently, each ai is unit-regular in Ri.

Starting with a unit inner inverse for a1 and applying Lemma 5.1 recursively, we
obtain components for a unit inner inverse of a in R. ThereforeR is separative. �
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Corollary 5.5. (to Theorem 5.2) Let F be a field. If (Ri, fi)i∈Z>0 is an inverse
system of finite-dimensional regular F -algebras (resp. exchange F -algebras), and
the connecting maps are F -algebra homomorphisms, then the inverse limit is a
unit-regular ring (resp. an exchange ring.)

Proof. Notice that f.d. regular algebras are unit-regular because they are semisim-
ple. For each integer i ≥ 1, define

Si :=
⋂

j>i

fifi+1 · · · fj−1(Rj).

For any j > i, the image of Rj in Ri is an F -subalgebra, of possibly smaller dimen-
sion. Since the dimension cannot decrease infinitely often, then Si is the image of
Rj in Ri for any sufficiently large integer j > i. Hence Si is a finite dimensional
F -algebra of the same type. The connecting maps fi restrict to connecting maps
between the Si. The inverse limit is unchanged, but now the restricted connecting
maps are surjective. Hence our corollary follows from Theorem 5.2. �

The trick used in the proof of the previous corollary had been observed by
Grothendieck in the 1960’s (see [21]). Later, others such as Pedersen and Perera
in [28] observed one can quickly reduce to the case where the connecting maps are
surjective by replacing the Ri by the image Si of πi, where πi : lim←−Ri → Ri is the
projection map. Let’s formally record the result.

Proposition 5.6. Let R = lim←−Ri be an inverse limit in Ring (or in any variety),
with projection maps πi : R→ Ri. Then R can also be viewed as an inverse limit
of rings (algebras) Si = πi(R) with surjective connecting maps restricted from the
original connecting maps fi : Ri+1 → Ri. However, the modification of Ri to Si

can sometimes alter properties, such as going from unit-regular to non-unit-regular
(as must happen in Construction 4.3 by Theorem 5.2). In fact, the passage from Ri

to Si doesn’t particularly respect properties that don’t already pass to non-surjective
inverse limits.

Proof. It is clear that fi induces a surjection of Si+1 onto Si, and the inverse limit
from this new system agrees with the original. �

Remark 5.7. The proposition is somewhat dual to Proposition 4.9 for assuming
the connecting maps are injective, except there the properties of the modified Ri

in lim←−Ri remain largely the same as the original (e.g. regularity, unit-regularity,

separativity). �

In the situation of Corollary 5.5, the inverse limit turns out to be a direct
product of f.d. regular F -algebras, as follows from our next result. Let us say
that a ring homomorphism g : A → B is an ideal-split ring epimorphism if g
is surjective and ker g is an ideal direct summand of A, hence also a nonunital
ring direct summand. There is then a nonunital ring homomorphism h : B → A
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such that gh = 1B , so that g splits in the category Rng of nonunital rings.
Corresponding statements hold for F -algebra homomorphisms.

Proposition 5.8. Let R be an inverse limit of a system (Ri, fi)i>0 where the fi
are ideal-split ring (resp., F -algebra) epimorphisms. Then

R ∼= R1 ×
∏

i≥1

ker fi

as rings (resp., F -algebras).

Proof. We give the proof for inverse limits of rings. The proof for inverse limits
of F -algebras is identical. We assume with no loss of generality that

R = {(ai)i∈Z>0 ∈
∏

Ri : fi(ai+1) = ai for each i ∈ Z>0},

and for i ∈ Z>0 we let πi denote the projection R → Ri. For i ≥ 1, set Ki+1 :=
ker fi ⊳ Ri+1. By assumption, there is an ideal Li+1 ⊳ Ri+1 such that Ri+1 =
Ki+1⊕Li+1. Thus Li+1 is a unital ring and fi maps Li+1 isomorphically onto Ri.
Now set R11 := R1 and write R2 = R21 ⊕ R22 with R21 := L2 and R22 := K2,
so that f1 maps R21 isomorphically onto R11. There is an ideal decomposition
L3 = R31⊕R32 such that f2 maps R31 and R32 isomorphically onto R21 and R22,
respectively. Then R3 = R31 ⊕R32 ⊕R33 with R33 := K3.

Continuing recursively, we obtain ideal decompositions Ri+1 =
⊕i+1

k=1Ri+1,k

such that Ri+1,i+1 = Ki+1 and for k ∈ [1, i], the map fi restricts to an isomorphism
fik : Ri+1,k → Rik. Let pi+1,k denote the projection Ri+1 → Ri+1,k relative to
the above decomposition. We include the case i = 0 in this notation, so that p11
is the identity map R1 → R11. Then pi+1,kfi+1 = fi+1,kpi+2,k for all k ≤ i + 1.
For k ≥ 1, the map pk := (pkkπk, pk+1,kπk+1, . . . ) projects

∏
i≥1 Ri onto

∏
i≥k Rik.

The family (pk)k≥1 induces a homomorphism p :
∏

i≥1Ri →
∏

k≥1

(∏
i≥k Rik

)
. If

x ∈∏
i≥1 Ri, then

• Each xi = xi1 + · · ·+ xii for some xik ∈ Rik.
• pik(xi) = xik for i ≥ k ≥ 1.
• pk(x) = (xkk, xk+1,k, . . . ) for k ≥ 1.

Hence, in case x ∈ ker p =
⋂

k≥1 ker pk, we have xik = 0 for all i ≥ k ≥ 1, and

consequently x = 0. Therefore p is injective. For k ≥ 1, let Sk ⊆
∏

i≥k Rik

denote the inverse limit of the system (Rik, fik)i≥k. Since fik : Ri+1,k → Rik is
an isomorphism for all i ≥ k, we have Sk

∼= Rkk, which equals R1 when k = 1
and Kk when k > 1. From the fact that pikfi = fikpi+1,k for all i ≥ k, we obtain
pk(R) ⊆ Sk, and thus p(R) ⊆ S :=

∏
k≥1 Sk.

We claim that p(R) = S. Thus let s = (sk)k≥1 ∈ S, and write sk = (sik)i≥k ∈ Sk

for k ≥ 1. Then fik(si+1,k) = sik for all i ≥ k ≥ 1. Set xi := si1 + · · · + sii ∈
Ri1 + · · ·+Rii = Ri for all i ≥ 1, and observe that

fi(si+1,1 + · · ·+ si+1,i) = fi1(si+1,1) + · · ·+ fii(si+1,i) = si1 + · · · + sii = xi .
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Since xi+1 = si+1,1 + · · · + si+1,i + si+1,i+1 with si+1,i+1 ∈ Ri+1,i+1 = ker fi, it
follows that fi(xi+1) = xi. Thus x := (xi)i≥1 lies in R. Now

pk(x) = (xkk, xk+1,k, . . . ) = (skk, sk+1,k, . . . ) = sk ∀ k ≥ 1,

whence p(x) = (s1, s2, . . . ) = s. Thus p(R) = S, as claimed.

Therefore p restricts to an isomorphism of R onto S. Since

S =
∏

k≥1

Sk
∼=

∏

k≥1

Rkk = R1 ×
∏

k≥1

Kk+1 = R1 ×
∏

k≥1

ker fk = R1 ×
∏

i≥1

ker fi ,

the proposition is proved. �

In particular, if the Ri are semisimple rings, then for the fi to be ideal-split ring
epimorphisms they just need to be surjective. The proposition shows that if the
Ri are semisimple, then R is isomorphic to a direct product of semisimple rings.
In particular, the limit is unit-regular, yielding another proof of Corollary 5.5.

Remark 5.9. Our results on algebraic inverse limits of regular (or exchange)
rings do not appear to impact their operator algebra cousins, say C∗-algebras.
One reason is an old result of Kaplansky (see [23]) saying that Banach algebras
that are regular have to be finite-dimensional. Therefore, in general, (algebraic)
inverse limits lim←−Si of C

∗-algebras need not be C∗-algebras (even with surjective

connecting maps). As a simple example, for i = 1, 2, . . ., let Ri = M2(C) with
standard involution and norm, and set Si = R1 × R2 × · · · × Ri. Then with the
natural projections fi : Si+1 → Si as connecting maps,

lim←−Si
∼=

∞∏

i=1

Ri

is an infinite-dimensional, regular algebra, whence not a Banach algebra let alone
a C∗-algebra. However, Brown and Pedersen (see [17]) have shown that an inverse
limit in the analytic sense (so strings (a1, a2, . . .) in the inverse limit are bounded)
of C∗-algebras of real rank 0, and with surjective connecting maps, is again a C∗-
algebra of real rank 0. This fits neatly with algebraic inverse limits of exchange
rings because C∗-algebras of real rank 0 are exactly the C∗-algebras which are
exchange rings by [8, Theorem 7.2]. �

6. Inverse limits of associated monoids

Much of the work in regular rings R since the 1990’s has been done by applying
monoid techniques to the commutative monoid V (R) of isomorphism classes [A]
of f.g. projective right R-modules A, where addition is defined by [A] + [B] =
[A ⊕ B]. Alternatively, we can view V (R) as the monoid of isomorphism classes
[e] of idempotents e from

⋃∞
n=1Mn(R), where [e], for an idempotent e ∈ Mn(R),

corresponds to the isomorphism class [eRn]. So a natural question is how our
14



study of inverse limits of regular rings relates to inverse limits of these associated
monoids. This is particularly relevant to the Separativity Problem because the
inverse limit of separative monoids is always separative, being a submonoid of
a product of separative monoids. Thus, given an inverse limit R = lim←−Ri of

separative regular rings Ri, if we know V (R) ∼= lim←−V (Ri), we can immediately

conclude that R is separative. On the other hand, if V (R) does not match the
limit of the V (Ri), there is some hope that R may not be separative.

We recall two properties of monoids. Given a commutative monoid M , written
additively, then it is conical when for any a, b ∈M ,

a+ b = 0 =⇒ a = b = 0.

Also, an element u ∈ M is called an order-unit if for each a ∈ M , there exists
some nonnegative integer n ∈ Z≥0 such that a ≤ nu, which means

a+ b = nu for some b ∈M.

Notice that V (R) is conical, and the isomorphism class of the right regular module
RR is an order-unit. Conversely, any conical commutative monoid with an order-
unit is isomorphic to V (R) for some ring R, with the order-unit mapping to [RR]
(and the ring can be forced to satisfy extra properties); this deep result is due to
the work of Bergman and Dicks; see the paragraph following Theorem 3.4 in [15].

We can view V (R) as a functorial construction. Indeed, given any ring homo-
morphism ϕ : R→ S, there is a corresponding ring homomorphismMn(ϕ) : Mn(R)→
Mn(S), for each integer n ≥ 1. Thus, we can define V (ϕ) : V (R) → V (S) by the
rule [e] 7→ [Mn(ϕ)(e)] for any idempotent e ∈Mn(R).

Let Mon1 denote the category whose objects are pairs (M,u), where M is a
commutative monoid and u is an order-unit in M . The morphisms are monoid
homomorphisms that respect the distinguished order-units. This category is not a
variety by Birkhoff’s theorem (see [22, Theorem 2.15]), since the class of objects is
not closed under infinite direct products. Thus, we need to provide an alternative
argument for why inverse limits exist in Mon1.

Suppose that for each i ∈ Z>0 we are given a pair (Mi, ui), as well as con-
necting morphisms ϕi : (Mi+1, ui+1)→ (Mi, ui) in Mon1. The Cartesian product∏

i∈Z>0
Mi is a monoid containing the element u = (ui)i∈Z>0 ; however, u may

not be an order-unit in the product. Let M be the collection of elements a in
the product such that a ≤ nu for some n ∈ Z>0. Then M is a monoid with u
as an order-unit; it is the product object of the family ((Mi, ui))i∈Z>0 in Mon1.
Next, let I be the inverse limit object of the inverse system ((Mi, ϕi)), taken in
the variety of monoids. In other words,

I =

{
(ai)i∈Z>0 ∈

∏

i∈Z>0

Mi : ϕi(ai+1) = ai for each i ∈ Z>0

}
.
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Now, fix N := I ∩M , which is a submonoid of M containing u. We claim that u
is an order-unit in N . Given a ∈ N , we have a = (ai) with ϕi(ai+1) = ai for all i,
and a+ b = mu for some b ∈∏

i∈Z>0
Mi and m ∈ Z>0. For each i, we have

ai + bi = mui = ϕi(mui+1) = ϕi(ai+1 + bi+1) = ai + ϕi(bi+1).

Adding bi to each end of these equations yields

mui + bi = mui + ϕi(bi+1) = ϕi(mui+1 + bi+1).

Thus, c := (mui + bi)i∈Z>0 is an element of I with a + c = 2mu, so that c ∈ N
and a ≤N 2mu. This shows that u is an order-unit in N . It is straightforward to
check that (N,u), together with the projection maps, is an inverse limit for the
system ((Mi, ui), ϕi) in Mon1.

One can also start with I, take Iu to be the set of those a ∈ I such that a ≤I nu
for some n ∈ Z>0, and then show that (Iu, u) with the projection maps is an
inverse limit in Mon1 for the given inverse system. The argument above amounts
to showing that Iu = I ∩M .

Our first result is that the V -functor is respected in surjective inverse limits
of unit-regular rings. Before we prove that, we need the following result of inde-
pendent interest, which complements much of the material in [24, Example 3.7].
Given a ring R with idempotents e, f ∈ R, write e ∼= f when they are isomorphic,
and write e ∼ f when they are conjugate. Conjugate idempotents are always iso-
morphic, and the fact that the converse holds in unit-regular rings is well-known.

Lemma 6.1 (cf. [19, Lemmas 5 and 9]). Let R be a ring, let I E R be an ideal, and
let π : R→ R := R/I be the natural quotient map. Let e, f ∈ R be idempotents.

(1) If e ∼ p for some idempotent p ∈ R, and if units lift from R to R, then
we can choose an idempotent g ∈ R satisfying g = p and e ∼ g.

(2) Assume e ∼= f . Then every isomorphism eR→ fR lifts to an isomorphism
eR→ fR if and only if all units lift from eRe to eRe.

If R is a unit-regular ring, then both lifting hypotheses hold.

Proof. (1) Fix v ∈ U(R) with p = v−1ev. Let u ∈ U(R) be a lift of v. Take
g := u−1eu.

(2) Since e ∼= f , we can fix a ∈ eRf and b ∈ fRe such that ab = e and ba = f .
Left multiplications by a and b induce inverse isomorphisms between eR and fR.

(=⇒): If v is a unit of eRe, then (multiplication by) bv and v−1a give inverse
isomorphisms between eR and fR. By assumption, bv lifts to some w ∈ fRe
which provides an isomorphism eR→ fR, say with inverse provided by w′ ∈ fRe.
Then aw is a unit of eRe (with inverse w′b), and aw = abv = v.

(⇐=): Given an isomorphism ϕ : eR→ fR, we can view it as left multiplication
by an element x ∈ fRe, whose inverse map is left multiplication by some y ∈ eRf .
In particular, xy = f and yx = e.

Now, we find

(yb)(ax) = yfx = yx = e and (ax)(yb) = afb = ab = e.
16



So, yb ∈ U(eRe), with inverse ax. By assumption, yb lifts to some w ∈ U(eRe),
say with inverse w′. Then setting u := wa ∈ eRf and v := bw′ ∈ fRe, they satisfy

uv = wew′ = ww′ = e,

vu = bw′wa = bea = ba = f, and

v = bw′ = b(yb)−1 = bax = x.

So, left multiplication by v is an isomorphism eR→ fR that lifts ϕ.
Finally, we prove the last sentence. As unit-regularity passes to corner rings,

the lifting hypotheses follow from [12, Lemma 3.5]. �

Theorem 6.2 ([19, Proposition 7]). Let (Ri, ϕi) be an inverse system of unit-
regular rings, where each ϕi is a surjective ring homomorphism. Fix R = lim←−Ri,

with projection maps πi : R→ Ri. Also fix (N,u) to be an inverse limit in Mon1

of the corresponding inverse system ((V (Ri), [Ri]), V (ϕi)), with projection maps
pi : N → V (Ri).

There is a unique Mon1-morphism η : (V (R), [R]) → (N,u) such that piη =
V (πi) for each i ∈ Z>0. Moreover, η is a Mon1-isomorphism.

Proof. The morphisms

V (πi) : (V (R), [R])→ (V (Ri), [Ri])

satisfy V (ϕi)V (πi+1) = V (πi) for each integer i ≥ 1, by functoriality of V , together
with the equalities ϕi ◦ πi+1 = πi. Thus, the existence and uniqueness of η are
clear, from the universal property of inverse limits.

Next we prove injectivity. Consider v,w ∈ V (R) such that η(v) = η(w). Then
there exist idempotents e, f ∈ Mn(R) for some integer n ≥ 1 such that v = [e]
and w = [f ]. Write e = (ei) and f = (fi) for idempotents ei, fi ∈ Mn(Ri), by
identifying Mn(R) with the inverse limit of the system (Mn(Ri),Mn(ϕi)). Then

[ei] = V (πi)([e]) = piη(v) = piη(w) = V (πi)([f ]) = [fi]

for each integer i ≥ 1. Thus, ei and fi are isomorphic in Mn(Ri) for each integer
i ≥ 1.

Fix an isomorphism e1Mn(R1)→ f1Mn(R1), viewed as left multiplication by an
element x1 ∈ f1Mn(R1)e1, say with inverse y1 ∈ e1Mn(R1)f1. By using Lemma
6.1(2) and the fact that matrix rings over unit-regular rings are still unit-regular,
then there is an element x2 ∈ f2Mn(R2)e2 such that left multiplication by x2
yields an isomorphism

e2Mn(R2)→ f2Mn(R2),

and ϕ1(x2) = x1. The inverse map is left multiplication by some y2 ∈ e2Mn(R2)f2
that lifts y1. Recursively repeating this process, we can create a compatible se-
quence of elements x = (xi) ∈Mn(R), whose inverses form a compatible sequence
y = (yi) ∈Mn(R). Since e = xy and f = yx, then e ∼= f , hence v = [e] = [f ] = w
as desired.

Finally, we prove surjectivity. Fix some arbitrary t = (ti) ∈ N . Then t ≤ nu
for some integer n ≥ 1, and so (for each integer i ≥ 1) we have ti ≤ n[Ri]. Hence,
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ti = [ei] for some idempotent ei ∈ Mn(Ri). Since V (ϕi)(ti+1) = ti, we have
ϕi(ei+1) ∼= ei.

Fix f1 = e1. By part (1) and the last sentence of Lemma 6.1, there is an
idempotent f2 ∈ Mn(R2) with e2 ∼= f2 and ϕ1(f2) = f1. Recursively repeating
this process, there is a compatible sequence of idempotents f = (fi) ∈ Mn(R)
with fi ∼= ei for each integer i ≥ 1. Since

πiη([f ]) = V (πi)([f ]) = [fi] = [ei] = πi(t)

for each integer i ≥ 1, we see that η([f ]) = t. Therefore, η is surjective. �

Remark 6.3. The surjectivity hypothesis in Theorem 6.2 is certainly not super-
fluous. Indeed, Construction 4.3 produced an inverse limit of unit-regular rings
that is regular but not unit-regular. However, a regular ring R is unit-regular if
and only if the monoid V (R) is cancellative. So V (R) cannot be isomorphic to the
inverse limit of the V (Ri), otherwise the limit is a submonoid of the cancellative
monoid

∏
V (Ri), whence cancellative. In Section 7, we show that even when the

connecting maps are surjective, the monoid of the inverse limit may not match the
inverse limit of the individual V (Ri). This suggests there are limitations to what
inverse limits of the associated monoids V (Ri) can tell us about lim←−Ri. �

Theorem 6.2 and its proof naturally generalize to give:

Corollary 6.4. Let (Ri, ϕi) be an inverse system of unit-regular rings, where
each ϕi is a surjective ring homomorphism. Fix R = lim←−Ri, with projection maps

πi : R → Ri. Also fix (G,u) to be an inverse limit, in the category of partially
ordered abelian groups with distinguished order-unit, of the corresponding inverse
system ((K0(Ri), [Ri]),K0(ϕi)), with projection maps pi : G→ K0(Ri).

There is a unique morphism η : (K0(R), [R]) → (G,u) such that piη = K0(πi)
for each i ∈ Z>0. Moreover, η is an isomorphism of partially ordered abelian
groups.

A careful examination of the proof of injectivity in Theorem 6.2 shows we can
weaken the hypothesis that the Ri are unit-regular; we only need the ability to
lift units through corners of matrix rings. We record that result, as it will have
some bearing on separativity for rings.

Proposition 6.5. Let (Ri, ϕi)i∈Z>0 be an inverse system of rings, where each ϕi is
a surjective ring homomorphism. Fix R = lim←−Ri, with projection maps πi : R →
Ri. Assume that for any i, n ∈ Z>0, and for any idempotent e ∈ Mn(Ri+1),
all units of ϕi(e)Mn(Ri)ϕi(e) lift to units of eMn(Ri+1)e. Also fix (N,u) to be
an inverse limit in Mon1 of the inverse system ((V (Ri), [Ri]), V (ϕi))i∈Z>0 , with
projection maps pi : N → V (Ri).

The unique morphism η : (V (R), [R]) → (N,u) such that piη = V (πi) for each
i ∈ Z>0 is injective.

Corollary 6.6. Using the same notation from Proposition 6.5, and assuming the
same lifting conditions, if each Ri is separative, then R is separative.
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Proof. Given a ring R, then by definition, to say that R is separative means that
V (R) satisfies

[e] + [e] = [e] + [f ] = [f ] + [f ] =⇒ [e] = [f ]

for any two idempotents e, f in matrix rings over R.
Assume the premise of the implication, in the case when R = lim←−Ri. Write

η([e]) = ([ei]) and η([f ]) = ([fi]) as compatible sequences from the monoids V (Ri).
Then (for each integer i ≥ 1) note that [ei] + [ei] = [ei] + [fi] = [fi] + [fi]. Separa-
tivity implies that [ei] = [fi] for each i ≥ 1. Hence η([e]) = η([f ]). Injectivity of η
yields [e] = [f ]. �

For inverse systems of regular rings, Theorem 5.4 establishes Corollary 6.6 with
weaker lifting conditions. The lifting conditions can also be weakened for separ-
ative exchange rings, as follows, so that Theorem 5.4 can be extended to inverse
systems of exchange rings (Theorem 6.8).

Recall that an ideal J of a ring R is called a trace ideal if there exists a finitely
generated projective R-module P such that J =

∑{f(P ) : f ∈ HomR(P,R)}, the
trace ideal of P . If R is an exchange ring, then the trace ideals are exactly the
ideals generated by a single idempotent. Indeed, since R is exchange, we have
P ∼= e1R⊕· · ·⊕enR for some idempotents e1, . . . , en ∈ R, and then the trace ideal
of P is J = Re1R+ · · · +RenR. By [10, Lemma 2.1], there exists an idempotent
e ∈ R such that J = ReR. Conversely, ReR is the trace ideal of eR, for any
idempotent e ∈ R.

Proposition 6.7. Let R be a separative exchange ring and let I be an ideal of R.
Set R := R/I and denote by x, for x ∈ R, the class of x in R. Let E be a set of
idempotents in R such that the collection {ReR : e ∈ E} contains all trace ideals
of R. Then the following conditions are equivalent.

(1) For any n > 0 and for any idempotent f ∈ Mn(R), all units of fMn(R)f
lift to units of fMn(R)f .

(2) For any idempotent e ∈ E, all units of eRe lift to units of eRe.
(3) For each e ∈ E, the natural map K1(eRe)→ K1(eRe) is surjective.

Proof. (1)=⇒(2) is obvious.
(2)=⇒(3): Let e ∈ E, and assume that all units of eRe lift to units in eRe.

Since the natural map GL1(eRe) → K1(eRe) is surjective by [10, Theorem 2.8],
it follows that the map K1(eRe)→ K1(eRe) is surjective.

(3)=⇒(1): Let n > 0 and let f be an idempotent in Mn(R). Let J be the
ideal of R generated by the entries of f . Then J is a trace ideal, corresponding
to the finitely generated projective module P := fRn, so there is an idempotent
e ∈ E such that J = ReR. By (3), the natural map K1(eRe) → K1(eRe) is
surjective. Observe that eRe and fMn(R)f are Morita-equivalent unital rings,
and so are eRe and fMn(R)f . There are isomorphismsK1(eRe)→ K1(fMn(R)f)
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and K1(eRe)→ K1(fMn(R)f) such that the following diagram is commutative:

K1(eRe) //

∼=
��

K1(eRe)

∼=
��

K1(fMn(R)f) // K1(fMn(R)f)

It follows that the map K1(fMn(R)f) → K1(fMn(R)f) is surjective. Hence the
connecting map δ : K1(fMn(R)f) → K0(fMn(I)f) is zero, and it follows from
[29, Theorem 2.4] that all units in fMn(R)f lift to units in fMn(R)f . �
Theorem 6.8. Let (Ri, ϕi)i∈Z>0 be an inverse system in the variety Ring, where
each ϕi is surjective, and where each Ri is a separative exchange ring. For each
i, let Ei be a set of idempotents in Ri such that the collection {RieRi : e ∈ Ei}
contains all trace ideals of Ri, and assume that for any idempotent e ∈ Ei+1, all
units of ϕi(e)Riϕi(e) lift to units of eRi+1e. Then the inverse limit is a separative
exchange ring.

Proof. Proposition 6.7 and Corollary 6.6. �

The upcoming paper [5] presents a comprehensive account of stable rank and
cancellation properties of monoids under various hypotheses, along with applica-
tions to various classes of modules.

7. An instructive example

In this section, we aim to construct an example of a surjective inverse limit of
regular rings Qi whose associated monoid does not match the inverse limit of the
monoids of the Qi, that is, V (lim←−Qi) 6∼= lim←−V (Qi). This contrasts sharply with

the case where the Qi are unit-regular (Theorem 6.2).

We first recall the definition of a separated graph, following [6]. We will use the
notation in [6] concerning directed graphs. See, for example, [1] for general graph
algebra results. In particular, s, r : E1 → E0 will denote the source and range
maps, respectively, of a graph E = (E0, E1) with vertex set E0 and edge set E1.

Definition 7.1 ([6]). A separated graph is a pair (E,C) where E is a directed
graph, C =

⊔
v∈E0 Cv, and Cv is a partition of s−1(v) (into pairwise disjoint

nonempty subsets) for every vertex v. (In case v is a sink, we (necessarily) take
Cv = ∅.)

If all the sets in C are finite, we say that (E,C) is a finitely separated graph.
Corresponding to (E,C) is a commutative graph monoid M(E,C) [6, Definition

4.1]. When (E,C) is finitely separated, M(E,C) can be presented with E0 as a
set of generators and relations v =

∑{r(e) : e ∈ s−1(v)} for v ∈ E0 [6, p.186].

We now introduce a version of the construction used in [3] (see also [4]). We fix
a field K. We consider a particular class of finitely separated graphs, as follows.
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Let (E,C) be a separated graph such that

E0 := {v} ⊔W,

where W is a finite or countable set. Moreover, let

E1 := {αi : 1 ≤ i < N} ⊔ {βj
i : 1 ≤ i < N, 1 ≤ j ≤ g(i)}

where 2 ≤ N ≤ ∞ and 1 ≤ g(i) <∞ for all i. Moreover we set s(αi) = v = r(αi),

s(βj
i ) = v for all i, j, and W =

⋃
1≤i<N{r(β

j
i ) : 1 ≤ j ≤ g(i)}.

Now the set C is defined as C := {Xi : 1 ≤ i < N}, where

Xi := {αi, β
1
i , . . . , β

g(i)
i }.

We consider a set of commuting indeterminates {twi : i = 1, 2, 3 . . . } at each
vertex w ∈ W , such that wtwi = twi = tiww, and the quotient field Lw := K(twi ) of
the polynomial ring K[twi ]. The algebra Lw has unit w for all w ∈ W , and has a
unique K-algebra involution ∗ such that (twi )

∗ = (twi )
−1 for all i.

Let R be the ∗-algebra over K generated by E0, E1 and Lw for all w ∈ W ,
subject to the following relations:

(1) uu′ = δu,u′u and u∗ = u for all u, u′ ∈ E0,
(2) s(e)e = e = er(e) for all e ∈ E1,
(3) α∗

iαi = v for all i,
(4) αiαj = αjαi and αiα

∗
j = α∗

jαi for all i 6= j,

(5) v = αiα
∗
i +

∑g(i)
j=1 β

j
i (β

j
i )

∗ for all i,

(6) (βj
i )

∗βt
s = 0 if (i, j) 6= (s, t) and (βj

i )
∗βj

i = r(βj
i ) for all i, j,

(7) α∗
i β

s
i = 0 = (βs

i )
∗αi for all i, s,

(8) For all i 6= j, αiβ
s
j = βs

j t
r(βs

j )

i and α∗
i β

s
j = βs

j (t
r(βs

j )

i )−1.

Note that these are relations as a ∗-algebra, so all the relations obtained by ap-
plying the involution in the above equations hold in R.

For each finite subset F of {i : 1 ≤ i < N}, we consider the separated graph
(EF , CF ) obtained by considering only the edges in

⋃
i∈F Xi and the corresponding

source and range vertices, and where CF := {Xi : i ∈ F}. Let uF =
∑

u∈E0
F
u.

Then uF is the unit for the corresponding algebra RF . Let ΣF be the set of all
polynomials f in K[xi : i ∈ F ] such that xi does not divide f for any i ∈ F .
Since the αi, i ∈ F , are commuting elements of vRF v, there is an evaluation map
f 7→ f(αi), and we may consider the universal localization

QK(EF , CF ) := Σ−1
F RF ,

which is a unital K-algebra. If F ⊂ F ′, there is a natural (not necessarily unital)
algebra homomorphism QK(EF , CF ) → QK(EF ′ , CF ′), and we can define the
direct limit QK(E,C) := lim−→QK(EF , CF ). We set Σ :=

⋃
F ΣF .

The K-algebra QK(E,C) is unital if and only if W is finite.

Theorem 7.2. The K-algebra QK(E,C) defined above is a strongly separative
regular ring and moreover the natural map M(E,C)→ V (QK(E,C)) is a monoid
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isomorphism. (A ring is strongly separative if A ⊕ A ∼= A⊕ B =⇒ A ∼= B for
f.g. projective modules A,B.)

Proof. For finite F , the K-algebra QF := QK(EF , CF ) is regular and the natural
map M(EF , CF ) → V (QF ) is an isomorphism by the main result in [3]. Passing
to direct limits, we obtain regularity of QK(E,C) and the stated monoid isomor-
phism.

To see that QK(E,C) is strongly separative, it suffices to show that each QF

is strongly separative. Take IF to be the ideal of QF generated by E0
F \ {v}, and

observe that QF/IF is isomorphic to the rational function field K(xi : i ∈ F ). Also
wQFw ∼= Lw, a field, for each w ∈ E0

F \ {v}. Thus IF is semisimple. Inasmuch as
both IF and QF/IF are now strongly separative regular rings, by [8, Theorem 5.5
and Proposition 1.4] we must have QF strongly separative. �

Observe that for finite F ⊂ F ′, the map QF → QF ′ is injective. This is due to
the fact that there is no vertex in EF which is sent to 0, and the (classes of the)
vertices generate the V -monoid of the regular ring QF . Accordingly, we will view
QF as a subalgebra of QK(E,C) for all finite F ⊆ {i : 1 ≤ i < N}.

By [3, Theorem 2.12], the elements of Q := QK(E,C) are K-linear combina-
tions of terms of the form γmν∗, where γ is a fractional c-path, m is a fractional
monomial and ν is a c-path. Here a fractional monomial at v is an expression of
the form

f−1
n∏

i=1

αki
i (α∗

i )
li ,

where f ∈ Σ, ki, li ≥ 0, and a fractional monomial at a vertex w ∈ W is just a
term of the form f(twi ) ∈ Lw. Fractional c-paths are either trivial (i.e. vertices) or
paths of the form

f−1αm
i βj

i

for some f ∈ Σ, some i, j and some m ≥ 0. Moreover c-paths are of the same
form as fractional c-paths, but with f = 1. See [3, Section 2].

We will need also some additional formulas, see [3, Lemma 2.8] and [2, Lemma
2.9] for the proof of the next two equations: For f ∈ Σ we have

(1) (v − αiα
∗
i )f

−1 = (f ′
0)

−1ρ∗(v − αiα
∗
i ) = (v − αiα

∗
i )(f

′
0)

−1ρ∗,

(2) α∗
i f

−1 = f−1α∗
i + f−1(f ′

0)
−1gρ∗(v − αiα

∗
i )

where ρ is a monomial in {αj : j 6= i}, f ′
0 ∈ K[αj : j 6= i] ∩ Σ, and g ∈ K[αj].

Using these formulas we obtain, for f ∈ Σ

(3) (βs
i )

∗f−1 ∈ Lr(βs
i )
(βs

i )
∗

(4) (v − αiα
∗
i )f

−1 ∈
g(i)∑

s=1

βs
iLr(βs

i )
(βs

i )
∗
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Relation (3) is shown in the proof of [3, Theorem 2.12]. We now show relation
(4):

(v − αiα
∗
i )f

−1 =

g(i)∑

s=1

βs
i (β

s
i )

∗f−1 ∈
g(i)∑

s=1

βs
iLr(βs

i )
(βs

i )
∗,

where we have used (5) for the first equality and (3) for the second.

Example 7.3. We consider a family of separated graphs (En, C
n), for n ≥ 0

defined as follows. For n = 0 we set

E0
0 := {v,w0}, E1

0 := {αi, β
1
i : i ∈ Z>0},

r(αi) = s(αi) := v, s(β1
i ) := v, r(β1

i ) := w0 for all i ∈ Z>0,

C0 := {{αi, β
1
i } : i ∈ Z>0}.

For n ≥ 1, we set

E0
n := {v,w0, w1, . . . , wn}, E1

n := {αi, β
1
i , β

2
j : i ∈ Z>0, 1 ≤ j ≤ n},

r(αi) = s(αi) := v, s(β1
i ) = s(β2

j ) := v, r(β1
i ) := w0,

r(β2
j ) := wj for all i ∈ Z>0 and all 1 ≤ j ≤ n,

Cn := {{αj , β
1
j , β

2
j }, {αi, β

1
i } : 1 ≤ j ≤ n, i > n}.

Observe that QK(En, C
n) is a unital K-algebra, with unit v +

∑n
i=0wi. We

consider maps πn : QK(En+1, C
n+1) → QK(En, C

n) sending v to v, wi to wi

for 0 ≤ i ≤ n and wn+1 to 0. Similarly all the edges of En+1 are mapped
to the corresponding edges in En, except for β2

n+1, which is sent to 0. It is
straightforward to show that there is a surjective unital K-algebra homomorphism
πn : QK(En+1, C

n+1)→ QK(En, C
n) with these assignments.

Set Q := lim←−QK(En, C
n). By Theorems 7.2 and 5.2, Q is a unital regular

K-algebra. However, V (Q) 6∼= lim←−V (QK(En, C
n)).

Proof. To ease the notation, write Qn := QK(En, C
n). Our first, and most major,

step is to show that the natural monoid homomorphism η : V (Q) → lim←−V (Qn)

is not injective. To approach this, consider the sequences e = (v, v, v, . . . ) and
f = (v + w0, v + w0, v + w0, . . . ) in Q. Observe that

η([e]) = ([v], [v], . . . ) = ([v + w0], [v + w0], . . . ) = η([f ])

in lim←−V (Qn). This is due to the fact that for each n we have

v = αiα
∗
i + β1

i (β
1
i )

∗ ∼ v + w0

in Qn, for all i > n, since {αi, β
1
i } ∈ Cn for i > n.

Claim 1: [e] 6= [f ] in V (Q), that is, e is not equivalent to f in Q.
By way of contradiction, suppose that there are elements x, y ∈ Q such that

x ∈ eQf , y ∈ fQe and xy = e, yx = f .
Write x = (x0, x1, . . . ) and y = (y0, y1, . . . ), where xn, yn ∈ Qn and πn(xn+1) =

xn, πn(yn+1) = yn for all n. There exists a natural number N such that all
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terms appearing in the expressions of x0 and y0 belong to the subalgebra QN
0 :=

QK(EN
0 , C0

N ) of Q0, where

C0
N := {{αi, β

1
i } : 1 ≤ i ≤ N}

and EN
0 is the subgraph of E0 generated by the edges in C0

N . Note that for all
n ≥ 0,

xn+1 = x̃n + zn, yn+1 = ỹn + qn,

where x̃n and ỹn are the elements of Qn+1 obtained by the same expressions as the
elements xn and yn, but seen in the algebra Qn+1, and zn, qn ∈ Qn+1wn+1Qn+1.
Therefore each of zn, qn are sums of terms of the form γg(t

wn+1

i )ν∗, where γ is a
fractional c-path ending at wn+1 and ν is a c-path ending at wn+1, and g(t

wn+1

i ) ∈
Lwn+1 .

Proceeding recursively, we can write

xN = x̂0 +
N∑

i=1

z′i, yN = ŷ0 +
N∑

i=1

q′i,

where x̂0, ŷ0 are elements ofQN which belong to the subalgebraQN
N := QK(EN

N , CN
N ),

where

CN
N := {{αj , β

1
j , β

2
j } : 1 ≤ j ≤ N}

and EN
N is the subgraph of EN generated by the edges in CN

N , and z′i, q
′
i ∈ QNwiQN .

For f ∈ Σ, we set uN,f = fv+
∑N

i=0wi ∈ QN and vN,f = f−1v+
∑N

i=0 wi ∈ QN .

Observe that uN,fvN,f = v +
∑N

i=0 wi = vN,fuN,f , and v +
∑N

i=0 wi is the unit of
the algebra QN .

We need the following lemma.

Lemma 7.4. For f ∈ Σ we have

uN,fQ
N
NvN,f ⊆ QN

N .

Proof. First observe that using (2), (3) and the defining relations of QN , we get,
for a c-path ν = αt

iβ
s
i , t ≥ 0, s = 1, 2,

ν∗f−1 = (βs
i )

∗(α∗
i )

tf−1 ∈
∞∑

u=0

Lr(βs
i )
(βs

i )
∗(α∗

i )
u ⊆ QN

N .

It is also clear that fλ ∈ QN
N for a fractional c-path λ in QN

N .

With this observation at hand, we only need to show that fmf−1 ∈ QN
N for

each fractional monomial m at v. Such a fractional monomial is of the form

m = h−1
N∏

i=1

αki
i (α∗

i )
li

for h ∈ ΣN and ki, li ≥ 0. Hence it suffices to check that fα∗
i f

−1 ∈ QN
N for

1 ≤ i ≤ N . By (2), we have

fα∗
i f

−1 = α∗
i + (f ′

0)
−1gρ∗(v − αiα

∗
i ),
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where f ′
0 ∈ K[αj : j 6= i] ∩ Σ, ρ is a momomial in {αj : j 6= i}, and g ∈ K[αj ].

Note that (f ′
0)

−1βs
i ∈ βs

iLr(βs
i )

because f ′
0 ∈ K[αj : j 6= i]. Hence using repeatedly

relations (7) and (8) and the latter observation we obtain that

(f ′
0)

−1gρ∗(v − αiα
∗
i ) =

2∑

s=1

g(f ′
0)

−1ρ∗βs
i (β

s
i )

∗

∈
2∑

s=1

g(f ′
0)

−1βs
iLr(βs

i )
(βs

i )
∗

⊆
2∑

s=1

gβs
i Lr(βs

i )
(βs

i )
∗

⊆
2∑

s=1

∞∑

u=0

αu
i β

s
iLr(βs

i )
(βs

i )
∗ ⊆ QN

N .

It follows that fmf−1 ∈ QN
N , as desired. �

Returning to the proof of the Example, observe that there exists f ∈ Σ such
that for each 1 ≤ i ≤ N we have

z′i = vf,N (
∑

j

γijzijν
∗
ij), q′i = vf,N (

∑

j

λijqijµ
∗
ij),

where γij , νij , λij , µij are (possibly trivial) c-paths inQN
N ending at wi, and zij , qij ∈

Lwi , for all 1 ≤ i ≤ N .
As we have seen in the proof of Lemma 7.4, ν∗vf,N ∈ QN

N for every c-path ν in

QN
N . Hence we obtain

uf,Nz′ivf,N =
∑

j

γijzij(ν
∗
ijvf,N ) ∈ QN

N , uf,Nq′ivf,N =
∑

j

λijqij(µ
∗
ijvf,N ) ∈ QN

N

for all i ∈ {1, . . . , N}. Since x̂0, ŷ0 ∈ QN
N , this together with Lemma 7.4 gives that

uf,NxNvf,N ∈ QN
N and uf,NyNvf,N ∈ QN

N . Now observe that

(uf,NxNvf,N )(uf,NyNvf,N ) = uf,Nvvf,N = v

and similarly

(uf,NyNvf,N )(uf,NxNvf,N ) = uf,N (v +w0)vf,N = v + w0.

We thus obtain that v ∼ v + w0 in QN
N . However we know that

V (QN
N ) ∼= M(EN

N , CN
N ) = 〈v,w0, w1, . . . , wN | v = v + w0 + wi, 1 ≤ i ≤ N〉,

and thus v ≁ v + w0 in QN
N . This contradiction shows that e is not equivalent to

f in Q, proving Claim 1.

We next exhibit the structure of V (Q), making use of the canonical isomor-
phisms M(En, C

n)→ V (Qn) given by Theorem 7.2. We treat these isomorphisms
as identifications.
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First, V (Q0) = 〈v,w0 : v = v+w0〉. For n > 0, the monoid V (Qn) is generated
by v,w0, . . . , wn with relations v = v + w0 + wj for 1 ≤ j ≤ n and v = v + w0, so
in fact

V (Qn) = 〈v,w0, . . . , wn : v = v + wj ∀ 0 ≤ j ≤ n〉 ∀ n ≥ 0.

Note that V (Qn) has an o-ideal Wn :=
∑n

j=0 Z>0wj such that

• V (Qn) = Wn ⊔ Z>0 v;
• kv 6= lv for all distinct k, l ∈ Z>0;
• v + w = v for all w ∈Wn;
• Wn = {x ∈ V (Qn) : x is cancellative in V (Qn)}.

The homomorphisms V (πn) : V (Qn+1) → V (Qn) send v 7→ v and wj 7→ wj for

j ≤ n while wn+1 7→ 0. Consequently, the monoid V̂ := lim←−V (Qn) has an o-ideal

W := lim←−Wn and an element v̂ := (v, v, . . . ) such that

• V̂ = W ⊔ Z>0 v̂;
• v̂ + w = v̂ for all w ∈W ;

• W = {x ∈ V̂ : x is cancellative in V̂ }.
In particular, V̂ \W is cyclic in the sense that every element of this set is a positive
multiple of the single element v̂.

To get corresponding information about V (Q), we need some of the ideal theory
of Q. Observe that for each n ≥ 0 we have row-exact commutative K-algebra
diagrams

0 // In+1
⊆ //

��

Qn+1
ρn+1 //

πn

��

L //

idL
��

0

0 // In
⊆ // Qn

ρn // L // 0

where In is the ideal of Qn generated by w0, w1, . . . , wn and L is the rational
function field K(xi : 1 ≤ i <∞). It follows immediately that there is a surjective
K-algebra homomorphism ρ : Q → L defined by ρ((q0, q1, . . . )) = ρn(qn), which
is independent of n. The kernel of ρ is the ideal I := lim←− In. Now observe that

{In, πn} is a surjective inverse system of (non-unital) semisimple rings. It follows
from Theorem 5.2 that pQp is unit-regular for each idempotent p = (p0, p1, . . . ) ∈
I, and from Theorem 6.2 that V (I) ∼= lim←−V (Ii) ∼=

∏
Z≥0

Z≥0.

Thus V (I) is a maximal o-ideal of V (Q), and all elements in V (I) are cancella-
tive in V (Q). The idempotent e ∈ Q is not in I, and [e] is not cancellative in
V (Q), e.g. because [e] = [e] + [f ] + [g] where g := (0, w1, w1, . . . ). Since the set
of cancellative elements of V (Q) is an o-ideal, it follows from the maximality of
V (I) that

• V (I) = {x ∈ V (Q) : x is cancellative in V (Q)}.
Finally, suppose that V (Q)\V (I) is cyclic, say equal to Z>0 u for some element

u. Then [e] = ku and [f ] = lu for some k, l ∈ Z>0. Applying V (π0), we find
that v = ku0 and v = v + w0 = lu0 for some u0 ∈ V (Q0). From the structure of
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V (Q0), it follows that k = l = 1. But then [e] = [f ], contradicting Claim 1. Thus
V (Q) \ V (I) is not cyclic.

Therefore V̂ 6∼= V (Q). �

Remark 7.5. The Example 7.3 shows that the lifting of units hypothesis in Propo-
sition 6.5 is not superfluous because the map η in the Example is not injective.
Curiously, it can be shown however that η is surjective.

It is not difficult to show that each Qi is strongly separative. Indeed, taking Ii
as the ideal of Qi generated by w0, w1, . . . , wi, we see that Qi/Ii ∼= K(t1, t2, . . .),
whence Qi/Ii is a field. Also each wiQiwi

∼= Lw, a field. Thus Ii is semisimple.
Inasmuch as both Ii and Qi/Ii are now strongly separative regular rings, by the
Extension Theorem 5.5 in [8] we must have Qi strongly separative. Note however,
that the Qi can’t be unit-regular, otherwise by Theorem 6.2 the map η would be
a monoid isomorphism.

Since the connecting maps in the inverse limit of the Example are surjective,
each Qi is a homomorphic image of Q. So having the Qi separative (resp. strongly
separative) is necessary for the algebra Q to be separative (resp. strongly separa-
tive). In fact, Q is strongly separative, as we now outline. Observe that for each
i we have commutative diagrams

0 // Ii+1
//

��

Qi+1
ρi+1 //

πi

��

L //

idL
��

0

0 // Ii // Qi
ρi // L // 0

where ρi are the natural quotient maps. It follows immediately that there is a
surjective K-algebra isomorphism ρ : Q→ L defined by ρ((qn)) = ρi(qi), which is
independent of i. The kernel of ρ is the ideal I := lim←− Ii. Now observe that {Ii, πi}
is a surjective inverse limit of (non-unital) unit-regular rings, and it follows from
Theorem 5.2 that I is unit-regular and from Theorem 6.2 that V (I) ∼= lim←−V (Ii) ∼=∏

Z≥0
Z≥0. It follows from [8, Theorem 5.5] that Q is strongly separative.

Thus Q is unit-regular by unit-regular, although Q can’t be unit-regular by the
same argument used in the preceding paragraph. Still, despite the complexity of
the construction of Example 7.3, the resulting algebra Q is ring-structurally still
fairly nice. Of course, this raises the question of what additional complexities
might one impose on separated graph algebras to get a nonseparative algebra via
a construction similar to our Example? When one question ends, another begins
— a recurring pattern in mathematics!
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8. An intermediate step

A strongly separative regular ring R satisfies the property

A ⊕ A ∼= A ⊕ B =⇒ A ∼= B

for f.g. projective R-modules A,B, and more generally but equivalently the can-
cellation

A ⊕ C ∼= B ⊕ C =⇒ A ∼= B

for f.g. projective R-modules A,B,C when C is isomorphic to a direct summand of
a finite direct sum of copies of A. See [8, Lemma 5.1]. These rings are necessarily
separative but not conversely because strong separativity implies the stable rank
of R is 1 or 2. See [8, Theorem 3.3].

Question 8.1. Can we construct an inverse limit lim←−Ri of strongly separative

regular (resp. exchange) rings Ri that is regular (resp. exchange) but not strongly
separative?

A positive answer to this question could well show the way to answering the
Separativity Problem itself. In fact, it could even be that Question 8.1 and its
separative regular counterpart (in terms of inverse limits) will stand or fall to-
gether (both positive answers or both negative answers). Since a negative answer
involving an inverse limit lim←−Ri of strongly separative regular rings Ri is a subring

of
∏

Ri, with the latter a strongly separative regular ring, at a minimum we would
need to have an explicit example of a regular subring R of a strongly separative
regular Q such that R is not strongly separative (but almost certainly separative).
Notice that in the ring Q used in 4.3, all regular subrings R of Q are strongly
separative, because Q is prime with nonzero socle and is a field modulo its socle.
Therefore, R will be an extension of its socle by a field, both strongly separative,
whence so is S by the Extension Theorem for strongly separative regular rings.
On the other hand, the regular ring used in Construction 4.7 won’t do as a suit-
able Q because it is not strongly separative (for all corners of regular strongly
separative rings have stable rank at most 2). Without the “explicit” requirement,
we can achieve this initial minimum goal, but so far not otherwise. However, we
can construct an explicit, non-strongly-separative exchange subring R of a very
nice unit-regular ring Q. Here are the details.

Let F be any field. Let B(F ) be the ring of ω×ω row-and-column-finite matrices
over F . This ring is known to be an exchange ring by [26, Theorem 1]; however, it
is never regular. Following the work done in [20, p. 413–414], which follows earlier
work of Tyukavkin, let

R :=

{
x = (xn)n∈Z>0 ∈

∏

n∈Z>0

Mn(F ) : the rows and columns of the xn stabilize

}
.
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There is a beautiful surjective algebra homomorphism of R onto B(F ) given by
the rule

t : R −→ B(F ), x 7−→ matrix of stabilized rows and columns .

Further, as explained in [20], the kernel of this Tyukavkin map t is a (huge) unit-
regular ideal. Since unit-regular ideals are (nonunital) exchange rings, relative to
which idempotents lift, and B(F ) is an exchange ring, R is also an exchange ring.

Let B = B(F ). It is straightforward to show B ⊕B ∼= B ∼= B ⊕ 0, whence B is
not strongly separative. Therefore, R is not strongly separative either because it
has B as a homomorphic image. From [11, Corollary 1.9] we know B is separative
and therefore so is R by the Extension Theorem for separative regular rings. Fi-
nally, R sits explicitly inside the unit-regular algebra Q =

∏
n∈Z>0

Mn(F ). Initial
minimum goal achieved at least for exchange rings.

Our constructions in Section 4, showing failure of various regular ring properties
to be preserved in inverse limits, used variations of a Bergman argument involving
the fixed ring of a set of automorphisms. This method will not work, however,
in showing for example the non-strongly separative R above can be obtained as
an inverse limit of strongly separative regular rings — for the simple reason that
R can’t be the fixed ring of a set of automorphisms of some subalgebra S of Q
containing R. The argument is as follows. Let I = soc(Q) =

⊕∞
n=1Mn(F ).

Note soc(R) = soc(S) = I as well. Therefore an automorphism θ of S induces
an automorphism of I and of each of the homogeneous components Mn(F ) when
identified with enS for the central idempotent en = (0, 0, . . . , 1, 0, . . . ) (because
the homogeneous components have different lengths, they are not non-trivially
permuted). In particular, θ(en) = en. Hence the action of θ is completely deter-
mined by its restrictions to the enS, since the components of θ(s), for s ∈ S, are
given by θ(s)(en) = θ(sen), thus determining θ(s). Therefore, if θ is a nontrivial
automorphism of S, its fixed ring when restricted to some ekS must be a proper
subalgebra of ekS. But now the fixed ring of θ can’t contain I. In particular, it
can’t fix R. So we need to develop other techniques.

In summary, perhaps our paper has at least established a base camp from which
our Mt. Everest, the Separativity Problem, might be conquered — but watch out
for crevasses.
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by the DGI-MINECO and European Regional Development Fund, jointly, through grant

PID2020-113047GB-I00, and by the grant “Operator Theory: an interdisciplinary ap-

proach”, reference ProyExcel 00780, a project financed in the 2021 call for Grants for

Excellence Projects, under a competitive bidding regime, aimed at entities qualified as

Agents of the Andalusian Knowledge System, in the scope of the Plan Andaluz de Inves-

tigación, Desarrollo e Innovación (PAIDI 2020), Consejeŕıa de Universidad, Investigación
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