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Abstract. The celebrated Kerékjártó theorem asserts that planar continuous periodic maps
can be continuously linearized. We prove that for each k ∈ {1, 2, . . . ,∞}, Ck-planar periodic
maps can be Ck-linearized. We apply this extension to obtain a Floquet type result for some
non-autonomous planar periodic ordinary differential equations and also to characterize stable
fixed points of smooth planar area preserving maps that reverse orientation.
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1 Introduction

A continuous map F : Rn → Rn satisfying Fm = Id is called m-periodic. Here F j = F ◦ F j−1 and
m is the smallest positive natural number with this property. Usually, 2-periodic maps are called
involutions. The simplest examples of periodic maps are found in the class of linear maps. An
endomorphism L : Rn → Rn is periodic if it is diagonalizable in C and all eigenvalues are roots
of unity. It seems natural to ask if these are the only possible examples, meaning that nonlinear
periodic maps are indeed equivalent to linear maps. The answer to this question depends upon
the dimension n and also on the type of equivalence under consideration.

To initiate the discussions we consider the notion of equivalence induced by topological con-
jugacy. A map F : Rn → Rn is said (globally) C0-linearizable if there exists a homeomorphism
ψ : Rn → Rn, such that L = ψ ◦F ◦ψ−1 is a linear map. The couple (L,ψ) is called a linearization
of F . Notice that we have emphasized the global nature in the above definition. Although many
results in the theory of dynamical systems are concerned with linearization, most of them are of
local nature. This is the case for the well-known Hartman-Grossman theorem.

In dimension n = 1 it is not hard to prove that all periodic maps are C0- linearizable with
L(x) = x or L(x) = −x. A similar result holds for n = 2, now L is either the symmetry or a
rotation of angle commensurable with 2π.

Theorem 1.1. (Kerékjártó theorem) Let F : R2 → R2 be a continuous m-periodic map. Then F
is C0-linearizable.

1



This result goes back to 1919 and appeared in the works of Brouwer and Kerékjártó. Currently
it is known as Kerékjártó theorem. A complete proof was presented by Eilenberg in 1934 (see
[6] for more details). Later it was discovered that this theorem cannot be extended to higher
dimensions. In fact, in [1, 2], Bing constructed examples showing that, for any m ≥ 2, there are
continuous m-periodic maps in R3 which are not linearizable.

Let us now assume that the map F is smooth and consider the equivalence induced by smooth
conjugacy. Given k = 1, 2, . . . ,∞, we say that a map F : Rn → Rn of class Ck is (globally) Ck-
linearizable if it is conjugate to a linear map L via a Ck-diffeomorphism ψ : Rn → Rn. In dimension
n = 1 every non-trivial Ck-periodic map is an involution and can be written as F (x) = ψ(−ψ−1(x)),
for some Ck-diffeomorphism ψ, see for instance [11]. The main goal of this paper is to extend this
result to dimension n = 2 and prove the Ck version of Kerékjártó theorem. A first step in this
direction can be found in [4], where we dealt with C1-involutions. Here we prove:

Theorem A. Let F : R2 → R2 be a Ck-differentiable m-periodic map with k ∈ {1, 2, . . . ,∞}.
Then F is Ck-linearizable.

This result cannot be extended to arbitrary dimension because in the papers [5, 8, 10] it is
shown that for n ≥ 7 there are smooth periodic maps without fixed points. Obviously these maps
cannot be linearized. It is worth to remark that, when dealing with local linearizability, there is
a result valid in arbitrary dimension. Montgomery and Bochner proved that in any dimension,
m-periodic maps having a fixed point and of class Ck, k ≥ 1, are always locally Ck-linearizable in
a neighborhood of this point, see [14] or Theorem 3.8 below. As we will see, an extension of this
result will be one of the clues in our approach.

The proof of Theorem A is done in several steps. To describe them, let us introduce some
notation. Given a m-periodic Ck-map F we can apply the classical Kerékjártó theorem and we
already know that it is C0-conjugated to:

• The symmetry S(x, y) = (x,−y) in the orientation reversing case,

• The rotation Rjm, where Rm is the rotation of angle α = 2π/m and j is coprime with m, in
the orientation preserving case.

We want to show that if F is of class Ck then it is possible to find a Ck-conjugation. Notice
that in the orientation preserving case it suffices to consider the case of a C0-conjugacy with Rm,
because the other cases can be obtained by iteration. In fact when F is conjugated to Rjm and
pj + qm = 1, then F p is conjugated to Rm and F = (F p)j .

For i = 1, . . . ,m, denote the rays starting at the origin by

Ki :=

{
r

(
cos

2(i− 1)π

m
, sin

2(i− 1)π

m

)
: r ≥ 0

}
.

Then we consider Am = ∪mi=1Ki and we call it the m-star. This m-star is a sort of skeleton of our
map and the strategy to prove Theorem A will be developped in three steps, in each of them we
conjugate F with a map having a contact with the linear map R near Am, where R = Rm when
m > 2, and R ∈ {R2, S}, when m = 2. The order of this contact is improved in each step. More
concretely, we prove that the m-periodic Ck-map F is Ck-conjugated with some new m-periodic
maps G1, G2 and G3 having Am as invariant set and satisfying:
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• First step: G1|Am∪U = R, where U is a neighborhood of the origin.

• Second step: G2|Am∪U = R and d(G2)|Am∪U = R, where U is a neighborhood of the origin.

• Third step: G3|V = R, where V is a neighborhood of Am.

Finally the Ck-conjugation between G3 and R is easily constructed by gluing certain diffeo-
morphisms defined on the open sectors of R2 \ Am. As we will see, the resulting map is smooth
precisely because G3 coincides with R in a neighborhood of Am. In the previous discussion we
have unified the cases of maps preserving or reversing orientation but many times in the course of
the proof it will be convenient to study them separately.

The rest of the paper is divided in six sections and an appendix. Some applications of Theo-
rem A are presented in Section 2. In Section 3 we collect some known results which will become
useful tools later. In particular we state the so-called Smoothing Theorem, that allows to modify
a piecewise smooth homeomorphism in order to produce a diffeomorphism. This result is proved
in Hirsch’s book [9] in the C∞ context. We will also need some refinements and a Ck version with
k < ∞. The proof is substantially different in these cases and we have included all the details in
the Appendix. The tools introduced by Munkres in his book [16] will be crucial. The next three
sections of the paper are devoted to prove each of the steps of the proof we described above. The
last section of the paper contains the proofs of the results stated in Section 2.

Throughout the paper k takes any value in {1, 2, . . . ,∞} and all diffeomorphisms are of class
Ck.

2 Some consequences of Theorem A

Recall that linear Floquet theory allows to transform non-autonomous T -periodic linear differential
equations x′ = A(t)x into autonomous linear differential equations y′ = By, by using a T -periodic
non-autonomous change of variables. As a first application of Theorem A we state the following
result that can be interpreted as a Floquet type result for nonlinear equations, see Section 7.1 for
a proof.

Corollary 2.1. Let X : R×R2 −→ R2 be a time dependent C∞-vector field such that X(t+T, x) =
X(t, x) for all (t, x) ∈ R× R2. Assume that every solution of

(1)
dx

dt
= X(t, x)

is periodic with a period rationally dependent with T . Then there exists a C∞, T -periodic time
dependent change of variables that transforms (1) into the linear differential system ẏ = 2nπ

mT Ay
where

A =

(
0 1
−1 0

)

and n,m ∈ N. In particular all orbits have a common period mT .

By a change of variables x = ψ(t, y) we understand a C∞-map ψ : R × R2 → R2 satisfying
ψ(t+ T, y) = ψ(t, y) and such that ψ(t, ·) is a C∞-diffeomorphism of R2.
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The above result does not seem to have a direct extension valid for arbitrary dimensions. In
Section 7.1 we will construct a C∞ vector field, X : R × R7 → R7 which is T -periodic in t and
such that all the solutions of (1) are periodic with period 15T but none of them has period T . In
this case there is no change of variables x = ψ(t, y) transforming (1) to a linear system y′ = Ly in
R7, for otherwise the solution x(t) = ψ(t, 0) should have period T . We do not know if the above
Theorem admits an extension to some higher dimension d with 3 ≤ d ≤ 6

As a second application we study a class of stable fixed points for analytic area preserving
maps that reverse orientation. Let D be an open and connected subset of the plane and let
h : D ⊂ R2 → R2 be a real analytic map satisfying

(2) deth′(x) = −1 for each x ∈ D.

This condition implies that our map is a local diffeomorphism preserving area and reversing ori-
entation.

A fixed point x∗ = h(x∗) is called stable if given any neighborhood U there exists another
neighborhood V such that all forward iterates hn(V), n ≥ 0, are well defined and contained in U .
As an example consider the symmetry S : R2 → R2, S(x1, x2) = (x1,−x2) having the origin x∗ = 0
as a stable fixed point. It was proved in [18] that this is essentially the only possible example. This
means that any map in the above conditions and having a stable fixed point must be conjugate
to S. The proof in [18] was based on Kerékjártó theorem and so the conjugacy was realized via
homeomorphisms. Now we can improve the conclusion in [18] using our main result.

Corollary 2.2. Assume that h : D ⊂ R2 → R2 is a real analytic map satisfying the condition (2)
and having a stable fixed point x∗. Then there exist an invariant neighborhood W ⊂ D of x∗ and
a C∞-diffeomorphism ψ : W → R2 such that ψ ◦ h = S ◦ ψ in W. Moreover, if D = R2 then we
can take W = R2.

Again we refer to Section 7.1 for a proof. We do not know if the map ψ can be chosen as an
analytic real diffeomorphism. Also, it is convenient to notice that the result in [18] was stated in a
slightly more restricted framework. There it was assumed that D = R2 and h was a real analytic
diffeomorphism of the whole plane.

3 Some preliminary results

We start stating three preliminary results. The first one asserts that any local diffeomorphism can
be extended to be a global diffeomorphism, see [15].

Theorem 3.1. Let M be a differentiable manifold and let g : V → g(V) ⊂M be a diffeomorphism
defined on a neighborhood V of a point p ∈ M. Then there exists a diffeomorphism f : M → M
such that f |W = g|W for some neighborhood W ⊂ V of p.

The second result is the one we talked about in the introduction. Part (a) is given in [9] for
C∞-manifolds. Here we state a slightly modified version of the theorem for Ck-manifolds that is
proved in the appendix.
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Theorem 3.2. (a) Let W0 and W1 be two manifolds without boundary of dimension n and assume
that they can be decomposed in the form Wi = Mi ∪ Ni, i = 0, 1, where Mi and Ni are closed n-
dimensional sub-manifolds satisfying

Mi ∩Ni = ∂Mi = ∂Ni = Vi.

In addition assume that h : W0 →W1 is a homeomorphism mapping Ck-diffeormophically M0 onto
M1 and N0 onto N1. Then there exists a Ck-diffeomorphism f : W0 →W1 such that

f(M0) = M1, f(N0) = N1 and f = h on V0.

Moreover f can be chosen in such a way that it coincides with h outside a given neighborhood
of V0.

(b) In addition assume that G is an open subset of W0 such that h is a Ck-diffeomorphism from
G onto h(G). Let E be another open subset of W0 having a clean crossing with V0 and a compact
closure cl(E) contained in G. Then f can be constructed with the additional property f = h on E.

h

0M

0V

0N

G

1M

1V

1N

Figure 1: An illustration of the assumptions of Theorem 3.2 (b).

Notice that part (b) essentially says that when h is smooth on some subset G of V0, then it
is not necessary to modify h inside some prescribed compact region contained in G. The above
statement is incomplete because we have not defined the meaning of the term clean crossing. Given
an open subset E of W0, we say that E has a clean crossing with V0 if there exist two sets U (open
subset of W0 with V0 ⊂ U) and E ⊂ V0 (open in the relative topology) and a Ck-diffeomorphism
p : U → V0×]− 1, 1[ satisfying

p(x) = (x, 0), if x ∈ V0, U ∩ E = p−1(E×]− 1, 1[).

To illustrate this definition we consider an example which will play a role later. Assume that
W0 = R2\{0} and V0 = (K1∪· · ·∪Km)\{0} is the punctured m-star with m even. The manifold W0
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is decomposed as the union of M0 and N0, where M0 is the union of the angular sectors determined
by the rays K1 and K2, K3 and K4 and so forth while the manifold N0 has sectors determined by
K2 and K3, K4 and K5 ... It is easy to prove that any annulus E = {z ∈ R2 : δ < |z| < ∆} with
0 < δ < ∆ has a clean crossing with V0.

The third result is a direct corollary of the natural generalization for non-compact Ck-surfaces
of the theorem of classification of C∞-compact surfaces given in [9].

Theorem 3.3. Let M be a simply connected and non-compact Ck-surface such that ∂M is con-
nected and non-empty. Then M is Ck-diffeomorphic to H = {(x, y) ∈ R2 : x ≥ 1}.

The following semi-local version of the inverse function theorem will be used several times
throughout the paper.

Theorem 3.4. Assume that W0 and W1 are Ck manifolds of the same dimension, A ⊂ W0 is a
closed set, U is an open neighborhood of A and g : U −→ W1 is a Ck-map. Assume that g|A is
an homeomorphism between A and g(A) and det(d(g))x 6= 0 for each x ∈ A. Then there exists an
open set V ⊂W0 such that A ⊂ V ⊂ U and g : V −→ g(V) is a Ck-diffeomorphism.

This result can be obtained as a direct consequence of a beatiful topological result due to
Munkres (Lemma 5.7 in [16]):

Theorem 3.5. Assume that X and Y are separable metric spaces and X is locally compact. Let
A ⊂ X be a closed set and let g : X −→ Y be a continuous map whose restriction becomes
a homeomorphism between A and g(A). In addition, for each point x of A there is an open
neighborhood which is mapped homeomorphically by g onto an open subset of Y . Then there exists
an open set V such that A ⊂ V ⊂ U and g : V −→ g(V) is a homeomorphism.

To deal with the first step of our proof we also need to prove the following improvement of the
Theorem 2.4 of [4].

Lemma 3.6. Let C be a closed, connected and non-compact Ck-submanifold of R2. Then there
exists a diffeomorphism ϕ : R2 → R2 such that ϕ(C) = {0} ×R. Moreover, assume that C is such
that there exists a global Ck-parametrization γ : R −→ R2 of C such that γ(y) = (0, y) for all
y ∈ (−a, a), where a > 0. Then ϕ can be chosen such that ϕ|V = Id for some neighborhood V of
the origin.

By a closed, connected and non-compact Ck-submanifold of R2 we mean a Ck curve which is
unbounded and closed as a subset of R2. With some work it can be proved that these curves can
be characterized by the existence of a Ck bijective parametrization γ : R −→ C with γ′(t) 6= 0 for
each t ∈ R and lim|t|→∞ ‖γ(t)‖ =∞.

Proof. The first statement is proved in Theorem 2.4 of [4] for the case k = 1. The result in
the general case follows by the same arguments and using Theorems 3.2 and 3.3 instead of their
corresponding C1 versions.

We look now for the second statement. Consider the orthogonal unitary vector field given by

X(γ(t)) = N
( γ′(t)
‖γ′(t)‖

)
where N(x, y) = (y,−x). Then X is a Ck−1- vector field transversal to the

curve C. Let Y be a unitary Ck-vector field transversal to the curve C obtained by perturbing X.

6



We can choose Y in such a way Y (0, y) = (1, 0) for all y ∈ (−b, b) and 0 < b < a. We are going
to define a map π : R2 −→ R2, π(s, t) = (x, y), extending the parameterization t 7→ γ(t). More
precisely

π(s, t) = γ(t) + sY (γ(t)).

This is a Ck map and we will prove that it is also an embedding when it is restricted to an
appropriate neighborhood of s = 0. This will be our first opportunity to apply Theorem 3.4. Set
M = R2 and A = {0} × R, then the restriction of π to A is a homeomorphism onto the curve C.
Moreover the differential along A can be expressed as a 2× 2 matrix with columns

d(π)(0, t) = (Y (γ(t))|γ̇(t))

and the transversality of Y and C implies that the corresponding determinant does not vanish.
Then we find an open set W ⊂ R2 such that {0} × R ⊂ W and π : W −→ π(W) is a Ck-
diffeomorphism. Now we choose a Ck-map σ : R→ (0, 1) such that

B = {(s, t) ∈ R2 : |s| < σ(t)}

is contained in W. We will work with the restricted diffeomorphism π : B −→ π(B). It satisfies

π(0, t) = γ(t) if t ∈ R and π(s, t) = (s, t) if |t| < b, |s| < σ(t).

π

Ψ

0

*E ′

C

E ′
*E

*J J

E

0

B

Figure 2: Ck-diffeomorphisms, π : B → π(B), ψ : E → E′.

Set E = {(s, t) ∈ R2 : s ≥ σ(t)
2 } and denote by J = {(s, t) ∈ R2 : s = σ(t)

2 } which is a closed
Ck-submanifold of R2 contained in B. Since π is a diffeomorphism it follows that π(J) is also a Ck
submanifold of R2, parameterized by Γ(t) = γ(t) + σ(t)

2 Y (γ(t)). Since ‖γ(t)‖ → ∞ as |t| → ∞, we
also have that ‖Γ(t)‖ → ∞ and so π(J) is a closed subset of R2. The set π(J) ∪ {∞} is a Jordan
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curve lying inside S2 = R2 ∪ {∞}, then it divides the plane in two connected components. The
curves {0} × R and J are disjoint and the same holds for the images under π, C and π(J). Let
D be the connected component that does not intersect C and set E′ = D ∪ π(J). From Theorem
3.3 it follows that both E′ and E are both Ck-diffeomorphic to H = {(x, y) ∈ R2 : x ≥ 1}.
Therefore they are Ck-diffeomorphic. Let ψ : E −→ E′ be a Ck-diffeomorphism between them.
Then ψ(J) = π(J). Now we want to modify ψ in such a way that the new map coincides with π
on J .

To do this consider the map ∆ : J −→ J defined as

∆(z) = ψ−1(π(z))

which is a diffeomorphism. Therefore there exists a diffeomorphism g : R −→ R such that

∆(σ(t)
2 , t) =

(
σ(g(t))

2 , g(t)
)
. Thus the map Ω : E −→ E given by

Ω(s, t) =

(
s+

σ(g(t))− σ(t)

2
, g(t)

)

is a diffeomorphism and it satisfies that Ω|J = ∆. This map is obtained as Ω = ψ−1 ◦ G ◦ ψ
where G(s, t) = (s, g(t)) and ψ(s, t) = (s − σ(t)

2 , t). The composition h+ = ψ ◦ Ω : E −→ E′ is a
diffeomorphism that satisfies (ψ ◦ Ω)|J = π|J .

In a symmetric way we construct a diffeomorphism h− : E∗ −→ E′∗ where E∗ = {(s, t) ∈ R2 :

s ≤ −σ(t)
2 }, E′∗ = D∗ ∪ π(J∗), J∗ is the line of equation s = −σ(t)

2 and D∗ is the component of
R2 \ π(J∗) which does not contain C. It satisfies h− = π on J∗.

Lastly set h : R2 −→ R2 given by

h =





h+, on E
π, on B
h−, on E∗ .

It is a homeomorphism in the conditions of Theorem 3.2 with W0 = W1 = R2, V0 = J ∪ J∗,
M0 = E ∪E∗, N0 = B. Therefore we can find a Ck diffeomorphism Ψ : R2 −→ R2 which coincides
with h outside a prescribed neighborhood of V0. This neighborhood can be chosen so that its
closure is disjoint with the line {0} × R. Then Ψ = π on a neighborhood of the vertical axis. In
particular Ψ equals the identity on a neighborhood of the segment {0} × [−b, b]. Thus Ψ−1 is the
desired diffeomorphism.

Remark 3.7 Notice that if C1 and C2 are closed and non compact submanifolds and γ1, γ2 are
parametrizations of C1 and C2 satisfying γ1(s) = γ2(s) for all s ∈ J , J open subset of R, then the
difeomorphisms ϕ1 and ϕ2 obtained in the above Lemma can be chosen so that they coincide in a
neighborhood of γ1(J). �

Finally we recall the classical Montgomery-Bochner theorem ([14]).

Theorem 3.8. (Montgomery-Bochner theorem). Let U ⊂ Rn be an open set and let F : U → U be
a class Ck, k ≥ 1, m-periodic map, having a fixed point p ∈ U and let L = d(F )p be the differential
of F at p. Then the map ψ = 1

m

∑m−1
i=0 L−i ◦ F i conjugates F and L in a neighborhood of p.

8



Nowadays the above map ψ is called the Montgomery-Bochner transformation. It can be seen
it is not necessarily a global conjugation, see for instance [3]. It may be convenient to be precise
on the meaning of the local conjugacy in the above result. Indeed the identity ψ ◦F = L ◦ψ holds
everywhere but ψ is a diffeomorphism from V onto ψ(V), where V is a neighborhood of the origin
which can be chosen invariant under F .

4 First step: Conjugacy with a map having the m-star fixed

The goal of this section is to prove the following proposition, that in the orientation preserving
case allows to linearize F on the m-star and near the origin.

Proposition 4.1. Let F : R2 → R2 be a m-periodic Ck-map which is C0-conjugate to Rm. Then
F is Ck-conjugate to a map G : R2 → R2 that has Am as invariant set and satisfies G = Rm on
Am ∪ U , where U is some neighborhood of the origin.

Proof. It is divided in four steps.

Step 1. There exists a map F̃ : R2 → R2 which is Ck-conjugate to F and coincides with Rm on
some neighborhood of the origin.

By assumption F and Rm are topologically conjugate and so F has a unique fixed point.
Moreover we know by Theorem 3.8 that F is locally conjugate (in Ck) to its linear part L. Hence
Rm and L are also locally conjugate (in Ck) and, being linear, they are conjugate in the linear
sense. After a linear change of variables we can assume L = Rm. Let ϕ : W −→ R2 be a Ck-map
that conjugates F to Rm in a neighborhood W of p. From Theorem 3.1 the embedding ϕ can be
extended to be a global diffeomorphism π : R2 → R2 such that π|V = ϕ|V for some neighborhood
V ⊂ W of p. Since F is topologically conjugate to Rm we can select V so that F (V) = V. Consider
now F̃ = π ◦ F ◦ π−1. The map F̃ has 0 as a fixed point and in the neighborhood of the origin
π(V), F̃ is exactly Rm.

Next we introduce some topological notions that will play a role in the second step. An arc γ
from 0 to ∞ is the image of a continuous and one-to-one map f : [0,∞)→ R2 satisfying f(0) = 0
and limt→∞ ‖f(t)‖ =∞. Given two arcs γ1 and γ2 with γ1 ∩ γ2 = {0}, the set γ1 ∪ γ2 ∪ {∞} is a
Jordan curve lying in S2 = R2 ∪ {∞} and Schonflies theorem implies that R2 \ (γ1 ∪ γ2) has two
connected components, both homeomorphic to the open disk.

A topological m-star A = ∪mi=1Ki will be composed by m arcs Ki from 0 to ∞ satisfying
Ki ∩ Kj = {0} if i 6= j, R2 \ A has m components and the component Bi is characterized by two
properties: its boundary is the union of Ki and Ki+1 and the remaining arcs are disjoint with Bi.
In practice we will simply say that A is a star while Am will be distinguished as the standard star.

Step 2. There exists a star L = ∪mi=1Li satisfying

L ∩B = Am ∩B for some closed ball B centered at the origin

L \ {0} is a Ck manifold

Li = F̃ (i−1)(L1), i = 2, . . . ,m.

Let ψ : R2 → R2 be the homeomorphism such that ψ−1 ◦ F̃ ◦ ψ = Rm. Consider the m-star
Am and let L := ψ(Am) = ∪mi=1ψ(Ki). Then L is a star invariant under F̃ . Furthermore, if we

denote by K̃i := ψ(Ki) we get that K̃i = F̃ i(K̃0). This is not the star we are looking for since it is
probably non smooth and we do not have any information around the origin. For this reason we
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are going to rearrange the rays K̃i. To this end, let b > 0 be such that the closed ball Bb(0) ⊂ π(V).
Consider the the last point of K̃1 meeting Bb(0). Here the orientation of the arc K̃1 going from 0
to ∞ has been selected. In principle this point can be anywhere on the circumference of radius b
but, after rotating the coordinate system, we can assume that it is precisely the point (b, 0).

Let us do some surgery: we remove from K̃1 the arc between the origin and (b, 0) and substitute
it by the segment joining these two points. We denote the obtained arc by L′1 and by L′i :=

F̃ (i−1)(L′1). Now the set L′ := ∪mi=1L
′
i is again a star invariant under F̃ and L′∩Bb(0) = Am∩Bb(0).

This is not yet the searched star because it is not necessarily smooth. Denote by B′1 the connected
component of R2\L′ adjacent to L′1 and L′2. This set can be seen as one of the connected components
of S2 \ Γ where Γ is the Jordan curve composed by the two arcs and the point of infinity. In
consequence ∞ is accessible from B′1 and we can find an arc L1 = f([0,∞)) joining 0 and ∞
satisfying the following properties:

(i) f(t) = (t, 0) if t ≤ b/2,

(ii) f(t) ∈ B′1 and ‖f(t)‖ > b
2 for all t > b/2,

(iii) f is Ck and f ′(t) 6= 0 for all t ≥ 0.

Defining L := ∪mi=1F̃
i(L1) we have the searched star.

Step 3. There exists a map G : R2 −→ R2 satisfying

• G is Ck conjugated to F̃

• G = Rm in a neighborhood of the origin

• G(Ki) = Ki+1, i = 1, . . . ,m where Ki are the rays of the standard star Am

To do this let g : R −→ R be a degree one Ck-map, (i.e. g(θ + 2π) = g(θ) + 2π)) such that
g(0) = −π/2, g(2π

m ) = π/2 and g′(x) > 0 for all x ∈ R. Then the map H : R2 −→ R2 which in
polar coordinates is given by H(r, θ) = (r, g(θ)) is a homeomorphism of R2 and the restriction to
R2 \ {(0, 0)} is a diffeomorphism.

Consider now T = H(L1 ∪ L2 ∪ {(0, 0)} which is a Ck-closed submanifold. Now we are in the
conditions of Lemma 3.6 and we get a diffeomorphism h : R2 −→ R2 verifying h(T ) = {0}×R and
h|V = Id in some neighborhood V of the origin, see Figure 3. Thus the map ψ1 := H−1 ◦h ◦H is a
diffeomorphism on R2 \ {(0, 0)} and a homeomorphism on R2. Furthermore, since it is the identity
in a neighborhood of the origin, we conclude that ψ1 is a diffeomorphism of R2.

In addition it has the following properties:

ψ1(L1) = K1 , ψ1(L2) = K2 and ψ1(B1) = B1,

where we denote by Bi the connected component of R2 \Am adjacent to Ki and Ki+1.

Doing a similar process we obtain a diffeomorphism ψ̃2 : R2 −→ R2 such that it is the identity
in a neighborhood of the origin, and

ψ̃2(L2) = K2 , ψ̃2(L3) = K3 and ψ̃2(B2) = B2.
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Figure 3: Construction of ψ1 := H−1 ◦ h ◦H to regularize one sector of the topological star L.

Now we want to modify ψ̃2 in such a way that it coincides with ψ1 at L2. Since ψ1(L2) = ψ̃2(L2) =
K2 the map p2 := ψ1 ◦ ψ̃−1

2 : K2 −→ K2 is given by an one dimensional diffeomorphism which
is the identity near of the origin. Thus we can consider the map p̃2 : R2 −→ R2 that in polar
coordinates is given by p̃2(r, θ) = (p2(r), θ). Since p2 is a diffeomorphism that begins being the
Identity, it follows that p̃2 is a diffeomorphism of R2 that is the Identity in a neighborhood of the
origin. Now consider ψ2 := p̃2 ◦ ψ̃2. Then ψ2 is a diffeomorphism such that it is the identity in a
neighborhood of the origin, maps Li onto Ki for i = 2, 3, ψ2(B2) = B2 and coincides with ψ1 on
L2. Proceeding in this way we obtain diffeomorphisms ψ1, ψ2, . . . , ψm−1.

To construct a diffeomorphism ψm such that ψm(Bm) = Bm, ψm|Lm = ψm−1|Lm and ψm|L1
=

ψ1|L1
we proceed in a slightly different way. First we construct ψ̃m : R2 −→ R2 in an analogous way

as ψ̃2 was constructed. After that the map pm := ψm−1 ◦ ψ̃−1
m : Km −→ Km is a diffeomorphism

that begins with the Identity. In a similar way the map p1 := ψ1 ◦ ψ̃−1
m : K1 −→ K1 has the same

property. Thus we define p̃m : R2 −→ R2 that in polar coordinates is given by

p̃m(r, θ) = (a(θ)pm(r) + (1− a(θ)) p1(r), θ) with a(0) = 0, a

(
2(m− 1)π

m

)
= 1

where a : R→ [0, 1] is a 2π-periodic function in Ck. Since both p1 and pm begin with the Identity
we get that for r small enough p̃m(r, θ) = (r, θ). Thus p̃m is also a diffeomorphisms of R2 that is
the identity in a neighborhood of the origin. Lastly we define ψm = p̃m ◦ ψ̃m that has the desired
properties.

Now let ϕ̃ : R2 −→ R2 defined by ϕ̃(z) = ψi(z) when z ∈ Bi ∪ Li ∪ Li+1. Thus ϕ̃ is an
homeomorphism that restricted to each piece Bi ∪ Li ∪ Li+1 \ {(0, 0)} is a diffeomorphism and
is the identity near the origin. Thus we can apply parts (a) and (b) of Theorem 3.2 to obtain
a diffeomorphism φ : R2 −→ R2 that is the identity near the origin and φ(L) = Am. Therefore
the map G = φ ◦ F̃ ◦ φ−1 is obviously Ck-conjugated to F̃ , has Am = φ(L) as invariant set and
near the origin coincides with Rm. It is perhaps worth to give more details on the way Theorem
3.2 is applied to construct φ−1. When m is even we take W0 = W1 = R2 \ {0}, V0 = Am \ {0},
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V1 = L \ {0}, M0 = ∪i oddBi, N0 = ∪i evenBi. The set G is any open neighborhood of the origin
where ϕ̃ equals the identity and E is an annulus 0 < r < |z| < R whose closure is contained in G.
We observe that the map given by the Theorem can be modified in the disk |z| ≤ r in order to get
a diffeomorphism which coincides with identity in a neigborhood of the origin. When m is odd we
must proceed in two steps. First we apply the Theorem with W0 = B1 ∪B2 ∪ (L2 \ {0}), V0 = L1

and then we apply it again with W0 = R2 \ {0} and V0 = L1 ∪ L3 ∪ · · · ∪ Lm.

Step 4. Conclusion.

To finish the proof of the proposition we only need to conjugate in Ck the map G to a map
G preserving the properties of G and additionally satisfying that G = Rm on Ki for all i =
0, 1, . . . ,m− 1.

We start with a modification of G satisfying this condition on K1. Since G(K1) = K2 the map
G|K1 is given in polar coordinates by G(r, 0) =

(
f(r), 2π

m

)
for some diffeomorphism f of [0,∞) that

is the identity for r small enough. Thus as in the previous reduction we now consider the map
that in polar coordinates writes as ∆(r, θ) = (b(θ)f(r) + (1− b(θ))r, θ) where b : R → [0, 1] is a
2π-periodic function in Ck satisfying

b(0) = 0, b

(
2π

m

)
= 1 and b

(
2πi

m

)
= 0, i = 2, 3, . . . ,m− 1.

Then the map G = ∆−1 ◦ G ◦ ∆ satisfies G(r, 0) =
(
r, 2π

m

)
. Hence G satisfies all the required

properties on K1 and does not change the map on Ki, i 6= 1. In a similar way we can continue the
procedure arranging G on the remaining rays. Note that in the penultimate step we already know
that G = Rm on Am \ Km. Then, we do not need to impose G = Rm on Km because this is a
direct consequence of Gm = Id. This identity holds because G and Rm are conjugate.

5 Second step: smooth matching with Rm on the m-star

The main result of this section is the following proposition. Notice that it only deals with the
orientation preserving case and allows to obtain a map, Ck-conjugated to F and that has a C1-
contact with Rm on the m-star Am. Remember that in Proposition 4.1 the contact was only of
class C0.

Proposition 5.1. Let F : R2 −→ R2 be a m-periodic Ck-map, C0-conjugate to Rm. Then F is
Ck-conjugate to a m-periodic map G that has Am as invariant set and satisfies G = Rm on Am∪ U ,
for some neighborhood U of the origin, and moreover d(G)(x,y) = Rm for each (x, y) ∈ Am.

To prove it we will use the following result, already given for the case k = 1 in [4, Lem. 2.3].
The proof for the general case follows exactly the same arguments as in that paper, by using
Theorems 3.2 and 3.3 instead of their corresponding C1 versions.

Lemma 5.2. Let D ⊂ R2 be an open and simply connected set such that {0} × R ⊂ D. Then
there exist an open set V such that {0} ×R ⊂ V ⊂ D and a diffeomorphism ψ : D → R2 such that
ψ|V = Id .

Corollary 5.3. Let C be a closed and non-compact Ck-submanifold of R2, U an open neighborhood
of C and g : U −→ R2 such that g is a diffeomorphism onto its image and g(C) is closed in R2.
Then there exists a diffeomorphism ψ : R2 −→ R2 such that ψ|V = g|V for some open neighborhood
Vof C contained in U .
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Proof. Without loss of generality we can assume that U is simply connected. Let ϕ1, ϕ2 : R2 −→ R2

be the diffeomorphisms given by Lemma 3.6 such that ϕ1(C) = ϕ2(g(C)) = {0} × R. Ap-
plying Lemma 5.2 to ϕ1(U) and ϕ2(g(U)) we obtain diffeomorphisms ψ1 : ϕ1(U) −→ R2 and
ψ2 : ϕ2(g(U)) −→ R2 that are the identity in suitable neighborhoods of {0} × R. Therefore we
obtain the desired diffeomorphism by considering ϕ−1

2 ◦ ψ2 ◦ ϕ2 ◦ g ◦ ϕ−1
1 ◦ ψ−1

1 ◦ ϕ1.

Next result also plays a key role in our approach. From now on, GL2(R) will denote the group
of linear automorphisms of R2.

Theorem 5.4. Let C ⊂ R2 be a closed and non compact Ck-submanifold. Let γ : R −→ C be a
Ck-parametrization1 of C and ψ : R −→ GL2(R) a Ck−1 map satisfying that

ψ(y)(γ′(y)) = γ′(y) for all y ∈ R.

Then there exists a diffeomorphism Ψ : R2 −→ R2 such that

Ψ|C = Id and d(Ψ)γ(y) = ψ(y) for all y ∈ R.

If in addition ψ(y) = Id for all y ∈ J , J open subset of R, then Ψ can be chosen in such a way
that Ψ|V = Id in some neighborhood V of γ(J).

Proof. First we prove the result in the case that C = {0} × R and γ(y) = (0, y). In this situation

ψ(y) =

(
A(y) 0
B(y) 1

)
,

for some A,B : R −→ R, Ck−1-maps with A(y) 6= 0 for all y ∈ R. Now consider the map
H : R2 −→ R2 given by

H(x, y) =

(∫ y+x

y
A(s)ds, y +

∫ y+x

y
B(s)ds

)
.

Clearly H is of class Ck, H(0, y) = (0, y) and d(H)(0,y) =

(
A(y) 0
B(y) 1

)
. Since

(
det(d(H)(0,y)

)
=

A(y) 6= 0 we can apply Corollary 3.4 and we obtain that H|U is a diffeomorphism for a certain
neighborhood U of {0} × R that we can choose simply connected. Now the result follows by
applying Corollary 5.3 to {0} ×R and H|U . Observe that if ψ(y) = Id for all y ∈ J then A(y) = 1
and B(y) = 0 for all y ∈ J and therefore H(x, y) = (x, y) in a suitable neighborhood of {0} × J.
This ends the proof of the Theorem in this case.

Now we turn to the general case. From Lemma 3.6 there exists a diffeomorphism π : R2 −→ R2

such that π({0} ×R) = C. After some modifications following previous ideas we can even assume
that π(0, y) = γ(y). Then consider the Ck−1 map ∆ : R −→ GL2(R) given by

∆(y) = d(π−1)π(0,y) ◦ ψ(y) ◦ d(π)(0,y).

1in particular γ′ 6= 0 everywhere
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By differentiating the identity π(0, y) = γ(y) we get that ty = d(π)(0,y)((0, 1)) = γ′(y) is a
tangent vector to C at the point π(0, y) = γ(y). Moreover, by hypothesis, ψ(y)(γ′(y)) = γ′(y).
Therefore we get:

∆(y)(0, 1) = d(π−1)π(0,y)(ψ(y)(d(π)(0,y)))(0, 1) = d(π−1)π(0,y)(ty) = (0, 1).

Thus we obtain a diffeomorphism Ψ̃ : R2 −→ R2 such that Ψ̃|{0}×R = Id and d(Ψ̃)(0,y) = ∆(y).

Now the result follows by considering Ψ = π ◦ Ψ̃ ◦ π−1.

Remark 5.5 Notice that if C1, γ1, ψ1 and C2, γ2, ψ2 satisfy the hypotheses of the theorem and,
for some open subset J of R, γ1(t) = γ2(t) and ψ1(t) = ψ2(t) for all t ∈ J then the diffeomorphisms
Ψ1 and Ψ2 obtained in the above theorem coincide in a neighborhood of γ1(J). The proof of this
assertion combines Remark 3.7 with the previous proof. In particular the following observation
plays a role: ψ1 = ψ2 on J implies that A1 = A2, B1 = B2 on the same set J .

Assume now that in addition to the previous conditions on γ1 and γ2, ψ1 and ψ2, we know that
ψ1(t) = Id if t ∈ J∗, where J∗ is an open subset of R. Then we can construct Ψ1 and Ψ2 satisfying
simultaneously Ψ1 = Ψ2 in a neighborhood of γ1(J) and Ψ1 = Id in a neighborhood of γ1(J∗). �

Now we are ready to go ahead with the second step in the proof of theorem A.

Proof of Proposition 5.1. From Proposition 4.1 we can assume that F satisfies all required prop-
erties except that d(F )(x,y) = Rm if (x, y) ∈ Am. Denote by GL2(R)∗ be the subgroup of GL2(R)
of the automorphisms having (1, 0) as an eigenvector of eigenvalue 1. We recall that α = 2π/m
and define the vectors vi = (cos iα, sin iα) for each i ∈ {0, . . . ,m − 1}. From F = Rm on Am we
get that R−1

m F (xvi) = xvi for each x > 0 and differentiating this identity,

d(R−1
m ◦ F )xvi(vi) = vi.

Since vi = Rim(1, 0) we obtain

(R−(i+1)
m ◦ d(F )xvi ◦Rim)(1, 0) = (1, 0).

For each i = 0, 1, . . . ,m− 1 we define Λi(x) as the matrix

Λi(x) := R−(i+1)
m ◦ d(F )xvi ◦Rim.

Then Λi(x) ∈ GL2(R)∗ and
d(F )xvi = R(i+1)

m ◦ Λi(x) ◦R−im .
We claim that the automorphisms Λi satisfy

(i) Λi(x) = Id for x small enough, and

(ii) Λm−1(x) ◦ . . . ◦ Λ1(x) ◦ Λ0(x) = Id for all x > 0.

Statement (i) follows from the fact that F = Rm in a neighborhood of the origin. To prove (ii) we
see that

Id = d(Fm)xv0 = d(F )xvm−1 ◦ . . . ◦ d(F )xv1 ◦ d(F )xv0 = Λm−1(x) ◦ . . . ◦ Λ1(x) ◦ Λ0(x).
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This ends the proof of the claim.

Now we look for a diffeomorphism ϕ satisfying that ϕ|Am = Id, d(ϕ−1 ◦ F ◦ ϕ)|Am = Rm
and ϕ|U = Id for a certain neighborhood U of the origin. Direct computations show that if such
diffeomorphism exists it must satisfy

d(ϕ)xvi+1 = d(F )xvi ◦ d(ϕ)xvi ◦R−1
m .

Thus choosing d(ϕ)xv0 = Id, we obtain inductively

(3) d(ϕ)xvi = Rim ◦ Λi−1(x) ◦ . . . ◦ Λ1(x) ◦ Λ0(x) ◦R−im .

To obtain such a diffeomorphism we proceed as follows. If we denote by Bk the connected
component of R2 \ Am adjacent to the rays Kk and Kk+1 we want to construct a diffeomorphism
ϕk defined in a neighborhood of Bk that sends Bk onto itself, is the identity in a neighborhood of
the origin and satisfies equation (3) for i = k. Moreover we want that ϕk and ϕk+1 coincide in a
neighborhood of Kk+1. We will see that we will obtain the desired difeomorphism ϕ by gluing the
corresponding diffeomorphisms ϕk|Bk .

Let us start the construction of ϕ. Let r be small enough such that F |Br(0) = Rm, Ki :=

Ki ∩
(
R2 \Br/2(0)

)
and let γi be a compact Ck-arc joining the points r

2vi−1 and r
2vi and such that

the open arc is contained in Bi ∩Br/2(0) and the curve Di := Ki ∪ γi ∪Ki+1 is Ck.
Now we have that D1 is a closed and non-compact Ck-submanifold. We parametrize it by the

map l1 : R −→ R2 given by

l1(x) =




−xv0 if x ≤ −r/2;
δ1(x), if x ∈ [−r/2, r/2];
xv1 if x ≥ r/2,

where δ1 : [−r/2, r/2] −→ R2 is a Ck-parametrization of γ1 chosen such that l1 is also a Ck-
parametrization.

Consider the Ck−1 map Φ1 : R −→ GL2(R) given by

Φ1(x) =

{
Id, if x ≤ r/2;
Rm ◦ Λ0(x) ◦R−1

m , if x ≥ r/2.

Now we can apply Theorem 5.4 with C = D1, γ = l1 and ψ = Φ1. Thus we obtain a difeomor-
phism

ϕ1 : R2 −→ R2 such that ϕ1|D1 = Id and d(ϕ1)l1(x) = Φ1(x).

Moreover since Φ1(x) = Id for all x < r we get that ϕ1 is the identity in a neighborhood of K1∪γ1,
see Figure 4.

In a similar way can parametrize D2 by l2 : R −→ R2 given by

l2(x) =




−xv2 if x ≤ −r/2;
δ2(x), if x ∈ [−r/2, r/2];
xv1 if x ≥ r/2,
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Figure 4: The Ck-diffeomorphisms ϕ1 and ϕ2 are defined in such a way that coincide on an open
neighborhood of the common boundary between D1 and D2 and are the identity in a neighborhood
of the ball of radius r/2.

and consider the Ck−1 map Φ2 : R −→ GL2(R) given by

Φ2(x) =





R2
m ◦ Λ1(x) ◦ Λ0(x) ◦R−2

m , if x ≤ −r/2;
Id, if x ∈ [−r/2, r/2];
Rm ◦ Λ0(x) ◦R−1

m , if x ≥ r/2.

Applying again Theorem 5.4 with C = D2, γ = l2 and ψ = Φ2 we obtain a diffeomorphism

ϕ2 : R2 −→ R2 such that ϕ2|D2 = Id and d(ϕ2)l2(x) = Φ2(x).

Moreover, as on the first sector, since Φ2(x) = Id for all x ∈]− r, r[ we get that ϕ2 is the identity
in a neighborhood of γ2. Lastly since the parametrization of K2 given by l1 and l2 coincide, and
Φ1(x) = Φ2(x) when x ∈ K2 from Remark 5.5 we obtain that ϕ1 and ϕ2 also coincide in some
neighborhood of K2, see again Figure 4.

Iterating this procedure we obtain diffeomorphisms of R2, ϕ1, ϕ2, . . . , ϕm satisfying the follow-
ing properties:

(a) ϕi|Di = Id,

(b) ϕi is the identity in a neighborhood of γi,

(c) d(ϕi)|xvi−1 = Ri−1
m ◦ Λi−2(x) ◦ . . . ◦ Λ1(x) ◦ Λ0(x) ◦R−(i−1)

m ,

(d) d(ϕi)|xvi = Rim ◦ Λi−1(x) ◦ . . . ◦ Λ1(x) ◦ Λ0(x) ◦R−im ,

(e) For i = 2 . . . ,m we have that ϕi−1 and ϕi coincide in a neighborhood of Ki.
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Moreover since Φm(x) = Id when lm(x) ∈ K1 we also obtain that ϕm = Id in a neighborhood
of K1. Thus ϕm and ϕ1 also coincide in a neighborhood of K1.

Now denote by Ei the closure of the connected component of R2 \ Di contained in Bi and
consider ϕ : R2 −→ R2 defined by

ϕ(x) =

{
ϕi(x), if x ∈ Ei;
x, otherwise.

Clearly ϕ is a diffeomorphism and by construction satisfies that it is the identity in a neigh-
borhood of the origin and that d(ϕ−1 ◦ F ◦ ϕ)|Am = Rm, as we wanted to prove.

6 Third step and proof of Theorem A

We start proving next two propositions. The first one gives the third step of our approach in the
orientation preserving case. The second one is the equivalent statement for the orientation reversing
situation. We remark that the orientation reversing case has not been treated yet, therefore the
proof of Proposition 6.1 deals simultaneously with the three steps of our approach.

Proposition 6.1. Let F : R2 −→ R2 be a Ck, m-periodic map, C0-conjugated to Rm. Then F is
Ck-conjugated to a m-periodic map G that coincides with Am in some neighborhood of Am.

Proposition 6.2. Let F : R2 → R2 be a planar involution C0-conjugated to S. Then F is Ck-
conjugated to an involution G that coincides with S in some neighborhood of A2.

Proof of Proposition 6.1. From Proposition 5.1 we can assume that F has Am as invariant set
F |Am = Rm|Am , d(F )(x,y) = Rm if (x, y) ∈ Am and F = Rm in some neighborhood U of the origin.

Now consider the Montgomery-Bochner transformation ψ = 1
m

∑m−1
i=0 R−im ◦F i. Clearly we have

that Rm ◦ ψ = ψ ◦ F. On the other hand since F = Rm on Am we have that ψ|Am = Id. Moreover
since d(F )(x,y) = Rm if (x, y) ∈ Am we also have that d(ψ)(x,y) = Id. Note also that ψ|U = Id.
Therefore from Corollary 3.4 we deduce that there exists V, an open neighborhood of Am, such
that ψ|V is a diffeomorphism onto its image.

Now set r > 0 such that Br(0) ⊂ U ∩ V. Now we repeat the construction given in the proof of
the Proposition 5.1. That is, we consider Ck-arcs γi contained in Ci∩Br/2(0) joining the points r

2vi
and r

2vi+1 such that the curve Di := Ki∪γi∪Ki+1 is of class Ck. By construction V is still and open
neighborhood of Di, for each i = 1, . . . ,m, and hence by Corollary 5.3 we obtain diffeomorphisms
fi : R2 −→ R2 and Vi neighborhoods of Di such that fi|Vi = ψ|Vi .

Using the notation introduced in the proof of Proposition 5.1 we define a diffeomorphism
f : R2 −→ R2 by

f(x) =

{
fi(x), if x ∈ Ei;
x, otherwise.

Since fi|Vi = ψ and fi+1|Vi+1 = ψ it follows that fi and fi+1 coincide in a neighborhood of
Ki+1 ∩

(
R2 \Br/2(0)

)
. On the other hand since γi ⊂ U ∩ V it follows that fi is the identity in a

suitable neighborhood of γi. In particular Ei is invariant under f . These facts show that f is a well
defined diffeomorphism. Note also that by construction f |W = ψ|W for a suitable neighborhood
W of Am.
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Lastly set G = f ◦F ◦ f−1. Since Rm ◦ψ = ψ ◦F and ψ is a diffeomorphism in a neighborhood
of Am it follows that in a suitable neighborhoofd of Am the following equality holds:

Rm = ψ ◦ F ◦ ψ−1.

Since f coincides with ψ in a neighborhood of Am we obtain that G = Rm in some neighborhood
of Am, as we wanted to prove.

Proof of Proposition 6.2. Let g : R2 → R2 be the homeomorphism given by Kerékjártó theorem,
such that F ◦ g = g ◦ S. Then, since g is a homeomorphism, we know that M := g(A2) is a
non-compact, closed and connected topological submanifold of R2 which is fixed by F. Recall that
A2 = R×{0}. We claim that M is a differentiable submanifold of R2. To do this we show that M
is locally the graph of a Ck-function.

Let (a, b) ∈ M. Then (a, b) is a fixed point of F and d(F )(a,b) is conjugated to S. Then
d(F )(a,b)−Id 6= 0. If we write F = (F1, F2) this implies that at least one of the functions F1(x, y)−x
and F2(x, y) − y has non-zero gradient at (a, b). Assume for instance that ∂(F1(x,y)−x)

∂x (a, b) 6= 0.
By the Implicit Function theorem there exist neighborhoods V of (a, b) and W of b and a Ck-map
ψ :W → R such that M ∩W = {(ψ(t), t) : t ∈ W}. This proves the claim.

¿From Lemma 3.6 there exists a diffeomorphism φ : R2 −→ R2 such that φ(M) = R × {0}.
Thus the map F̃ := φ◦F ◦φ−1 is Ck-conjugated to F and has R×{0} as a manifold of fixed points.
Thus F̃ (x, 0) = (x, 0) and

d(F̃ )(x,0) =

(
1 B(x)
0 A(x)

)

for some A,B : R→ R of class Ck−1. Moreover since d(F̃ )(x,0) must be conjugated to S it follows
that A(x) = −1 for all x ∈ R.

¿From Theorem 5.4 there exists a diffeomorphism ψ : R2 −→ R2 such that ψ(x, 0) = (x, 0) for
all x ∈ R and

d(ψ)(x,0) =

(
1 −B(x)/2
0 1

)
.

If we denote by F = ψ−1◦F̃◦ψ direct computations show that F (x, 0) = (x, 0) and d(F )(x,0) = S
for all x ∈ R.

Lastly let N := 1
2(Id + S ◦ F ) be the associated Montgomery-Bochner transformation. Direct

computations show that N(x, 0) = (x, 0) and d(N)(x,0) = Id for all x ∈ R. Therefore from Corol-
lary 3.4 it follows that N is a diffeomorphism in a neighborhood of A2. Moreover from Corollary 5.3
there exists a diffeomorphism Ψ : R2 −→ R2 that coincides with N in a suitable neighborhood of
A2. Thus we obtain the result by considering G = Ψ ◦ F ◦Ψ−1.

Proof of Theorem A. We begin with the orientation preserving case. As we said in the introduction
we can reduce to the case that F is C0-conjugated to Rm with m ≥ 2. From Proposition 6.1 we
can assume that F = Rm in some neighborhood V of Am.

As before, for i = 1, . . . ,m we denote by Bi the closure of the connected component of R2 \Am
adjacent to Ki and Ki+1. Since F is a homeomorphism mapping Ki ∪Ki+1 onto Ki+1 ∪Ki+2 we
deduce that F (Bi) = Bi+1. Consider now the map H : R2 −→ R2 defined by H = Ri−1

m ◦F−(i−1) in
Bi. Note that the sets Bi are invariant under H and H restricted to a suitable neighborhood of Am

18



is the identity. Thus H is a Ck-diffeomorphism. Lastly by construction we have Rm ◦H = H ◦ F.
This ends the proof of the theorem in this case.

Now we turn to the orientation reversing case. From Proposition 6.2 we can assume that
F |V = S|V in some neighborhood of A2 = R× {0}. Now define

H(x, y) =

{
(x, y) if y ≥ 0;
F (S(x, y)) if y ≤ 0.

Since H is the identity in a neighborhood of A2 it follows that H is diffeomorphism. Also direct
computations show that F ◦H = H ◦ S. This ends the proof of the theorem.

7 Proof of corollaries

This section is devoted to prove the two corollaries of Theorem A stated in Section 2.

7.1 Proof of Corollary 2.1

Let ϕ(t, x) be the solution of (1) passing through x at time t = 0, that is

∂ϕ

∂t
(t, x) = X(t, ϕ(t, x)), ϕ(0, x) = x.

Set F : R2 −→ R2 the Poincaré map, defined by F (x) = ϕ(T, x). By hypothesis for each x ∈ R2

there exists mx ∈ N such that Fmx(x) = x. That is F is pointwise periodic. It is well-known (see
[7, 13]) that in this situation there exists m ∈ N such that Fm = Id. That is all solutions are mT -
periodic. From Theorem A there exists a Ck-diffeomorphism Φ of R2 such that F = Φ ◦Rα ◦Φ−1,
where α = 2nπ/m. Thus the change y = Φ(x) transforms our original system into a new system
satisfying that the corresponding Poincaré map is exactly Rα. Thus we can assume that our system
satisfies that F = Rα and

ϕ(t+ T, x) = ϕ(t, Rαx).

Now, define Ψ(t, x) = ϕ(t, R(−αt
T

)x), where Rθ denotes the rotation of angle θ. Notice that

Ψ(t+ T, x) = ϕ(t+ T,R
(−α(t+T )

T
)
x) = ϕ(t, Rα(R

(−α(t+T )
T

)
x)) = ϕ(t, R(−αt

T
)x) = Ψ(t, x),

so Ψ is T -periodic. Now consider the change of variables x = Ψ(t, y). We will have

X(t, x) = ẋ =
∂ϕ

∂t
(t, R(−αt

T
)x) +

∂ϕ

∂x
(t, R(−αt

T
)y)
(
Ṙ(−αt

T
)y +R(−αt

T
)ẏ
)
.

From X = ∂ϕ
∂t and det(∂ϕ∂x ) 6= 0 we conclude that

Ṙ(−αt
T

)y +R(−αt
T

)ẏ = 0

and obtain

ẏ = −R−1
(−αt

T
)
Ṙ(−αt

T
)y =

α

T
Ay,

as we wanted to prove.
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7.2 Construction of the example in R7

Following [8] one can find C∞ periodic maps F : R7 → R7 without fixed points as soon as the
period is not a power of a prime number. Hence the first possible periods are 6, 15, . . . We choose
the period 15 to guarantee that detF ′ > 0 so that F is an orientation-preserving diffeomorphism.
In that case F is also diffeotopic to the identity (see Theorem 8.3.1 in [9]) and so it can be realized
as the Poincaré map of some periodic and smooth vector field X : R×R7 → R7, see Theorem 8.2.1
in [12].

7.3 Proof of Corollary 2.2

First we select a small neighborhood W ⊂ D of x∗ with the following properties:

• W is open and simply connected

• h(W) =W

• The restriction of h to W is one-to-one.

This is possible thanks to the inverse function theorem and a well-known result on the existence
of invariant neighborhoods (see [18] and the references therein). The same argument of the proof
of [18] allow us to find a sequence {xn} of fixed points accumulating at x∗; that is,

xn → x∗, xn 6= x∗ and h(xn) = xn.

These points are also fixed under h2 = h◦h and so x∗ is a non-isolated fixed point of h2. Corollary 1
in [17] can be applied2 to the map h2 :W → R2. It implies that h2 = Id in W.

Next we transport our map via a C∞-diffeomorphism between W and R2. Note that there are
many diffeomorphisms of this type. A way to construct examples is to use Riemann’s theorem
to map W conformally onto the open unit disk D and then to compose this map with a radial
C∞-diffeomorphism between D and R2. Define H = ϕ ◦ h ◦ ϕ−1. Then H is a C∞-map satisfying
H2 = Id. Our main result applies and the conclusion is obtained after pulling back from R2 to W.
In the case D = R2 the identity h2 = Id in W leads to h2 = Id in R2 by analytic continuation. In
this case the change of variables ϕ is not employed.

8 Appendix: Proof of Theorem 3.2

The so-called Smoothing Theorem is an useful tool to transform piecewise smooth homeomorphisms
into diffeomorphisms. It is stated and proved by Hirsch for C∞-manifolds in [9, p. 182]. The same
result is also valid for manifolds of finite class and we will state it in this more general framework. As
in the previous sections, manifolds, maps and diffeomorphisms will be understood in the class Ck,
where k = 1, 2, . . . is fixed. The case k =∞ is also included. All manifolds under consideration will
be in particular topological spaces with a countable basis. In this appendix we prove Theorem 3.2.
In [4] we stated part (a) of this result for the case k = 1 and we referred to the book [9] for a proof.
As previously mentioned, Hirsch’s book deals with the case k =∞, in the paper [4] we left to the

2the set U in the statement of this result must be connected
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reader the details of the passage from k =∞ to k = 1. This was probably misleading because the
proof in [9] cannot be easily modified. Indeed there are at least two steps in that proof where there
is a loss of derivatives. This is the case in the construction of isotopies via differential equations
([9, Chp. 8]) and also in the proposed isotopy between a map and its derivative at a point ([9, p.
112]). The loss of derivatives is irrelevant when working in C∞ but it would decrease the class of
the diffeomorphism when one is working in a finite class. Fortunately the book by Munkres [16]
contains all the tools needed for the proof of Theorem 3.2. The isotopies in Munkres’ book are
constructed carefully in order to preserve the level of differentiability. Next we present a proof
based on [16] and [9], hoping that this time our patient readers will easily follow all the details.
The terminology is taken from [9]. We start with a preliminary observation which will be employed
several times and it is somehow linked with the definition of clean crossing. In a neighborhood
of V0 the manifolds W0, M0 and N0 can be viewed as cylinders based on V0. More precisely, it
is possible to find an open set U in W0 with V0 ⊂ U and a diffeomorphism p : U → V0×] − 1, 1[
satisfying

p(x) = (x, 0) if x ∈ V0, p(U ∩M0) = V0 × [0, 1[, p(U ∩N0) = V0×]− 1, 0].

This is a direct consequence of the existence of tubular neighborhoods in the C∞ case (see [16], page
53). However in the Ck case with k < ∞ the map p constructed from the tubular neighborhood
will be of class Ck−1. Thus an alternative procedure has to be employed if we want to avoid the
loss of one derivative. We explain it briefly. Given a Ck-manifold M with boundary ∂M , there
exists a Ck-diffeomorphism p : U → ∂M × [0, 1[, where p(x) = (x, 0) if x ∈ ∂M and U is an open
subset of M containing ∂M . This is the conclusion of Theorem 5.9 in [16] and it will be convenient
to summarize the proof. The local retraction theorem (Th. 5.5 in [16]) guarantees the existence of
a Ck-retraction r from some neighborhood of ∂M onto ∂M . On the other hand we can find a Ck
function g defined again on some neighborhood of ∂M and such that g = 0 and the differential dg
has rank one on the points of ∂M . The restriction of p = (r, g) to some appropriate neighborhood
of ∂M is the searched map. From our perspective a crucial point in the above proof is the use of the
retraction theorem since this result applies to general submanifolds and does not requires that the
submanifold is a boundary. Hence we can adapt the previous proof to our situation V0 ⊂W0 if we
select a retraction r from a neighborhood of V0 onto V0 and a function g defined on a neighborhood
of V0 and such that g = 0 on V0, g > 0 in M0 \ V0, g < 0 in N0 \ V0 and the differential dg has
rank one everywhere. Since both r and g are of class Ck, the same can be said about p.

Before the proof of the Smoothing Theorem we need two lemmas. They will be stated now but
their proof is postponed to the end of the Appendix.

Lemma 8.1. (a) In the conditions of Theorem 3.2 (a), there exist an open set V in W0 containing
V0 and a map ϕ : V → W1 which coincides with h on V0 and is a diffeomorphism from V onto
ϕ(V).

(b) Assume now that the conditions of Theorem 3.2 (b) hold and let E be an open subset of W0

such that cl(E) ⊂ G. Then the map ϕ can be constructed in such a way that it also coincides with
h on E ∩ V.

The next result is a refinement of Lemma 6.1 in [16]. We have changed the notation slightly
in order to adapt it to our setting.
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Lemma 8.2. (a) Let V be a manifold without boundary and let N be an open neighborhood of
V × {0} in V × R+, where R+ = [0,∞[. Let g be an embedding of N into V × R+ which equals
the identity on V × {0}. Then there exists another embedding g̃ from N into V × R+ satisfying
g̃(N ) = g(N ), g̃ = id in a neighborhood of V × {0}, g̃ = g in a neighborhood of the complement of
N .

(b) Assume in addition that G and E are open subsets of V with cl(E) ⊂ G and such that g = id
on (G×R+)∩N . Then g̃ can be constructed with the additional property g̃ = id on (E×R+)∩N .

Proof of Theorem 3.2. (a) In view of Lemma 8.1 we can consider the map ϕ−1 ◦ h, defined in a
neighborhood of V0 and such that it equals the identity on V0. This map can be transported to
the cylinder V0×R via the map p : U → V0×]− 1, 1[ described above. Next we select the domains
of the maps so that this process can be made rigorous. The map ϕ is defined on some open set
V and coincides with h on V0. Therefore it is possible to find an open set W∗ in W0 satisfying
V0 ⊂ W∗ ⊂ U ∩ V and h(W∗) ⊂ ϕ(U ∩ V). Then the map

g :W → V0×]− 1, 1[, g = p ◦ ϕ−1 ◦ h ◦ p−1

with W = p(W∗) is a well defined topological embedding.

Next we are going to apply Lemma 8.2 (a) with V = V0 and N =W∩ (V0× [0, 1[). This allows
us to construct a diffeomorphism g̃ : N → g(N ) and two sets O and O∗ which are open in V0×R+

and satisfy

(V0 × R+) \ N ⊂ O, V0 × {0} ⊂ O∗ ⊂ N , g̃ = g in O ∩N , g̃ = id in O∗.

Next we define

f+ : M0 →M1, f+ =

{
ϕ ◦ p−1 ◦ g̃ ◦ p in p−1(N );
h in M0 \ p−1(N ),

and observe that f+ and h coincide on p−1(O ∩N ). This shows that f+ is smooth and we deduce
that f+ has an inverse which is also smooth. Finally we observe that f+ and ϕ coincide on p−1(O∗).
In this way we have constructed a diffeomorphism between M0 and M1 that coincides with ϕ in
a neighborhood of the boundary of M0 and coincides with h far from this boundary. The same
process can be applied to construct f− : N0 → N1 and the map

f =

{
f+ on M0;
f− on N0,

satisfies all the required conditions. This end the proof of part (a).

(b) We start the proof of the second part of the theorem with a remark concerning the notion of
clean crossing. The cylinder V0×]− 1, 1[ was employed in the formal definition but it is clear that
the interval ]− 1, 1[ plays no essential role. It can be replaced by any interval of the type ]− δ, δ[
with δ > 0. Later we will be interested in reducing the size of the domain of the diffeomorphism
p : U → V0×]−1, 1[. To do this we will consider δ ∈]0, 1[ and Uδ = p−1(V0×]−δ, δ[). The restricted
diffeomorphism p : Uδ → V0×]− δ, δ[ is admissible for the definition of clean crossing, as it enjoys
the properties

p(x) = (x, 0) if x ∈ V0, Uδ ∩ E = p−1(E×]− δ, δ[).
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To prove (b) we will introduce some changes in the construction of f so that it coincides with h on
E . The first step is the construction of a subset G of V0 with the following properties: G is open in
the relative topology of V0, the closure of G is compact, cl(E) ⊂ G, p−1(cl(G)× [−1

2 ,
1
2 ]) ⊂ G. Then

we define the set G∗ = p−1(G×]− 1
2 ,

1
2 [) and observe that it is an open subset of W0 having a clean

crossing with V0. Since the closure of G∗ is contained in G, we can apply Lemma 8.1 (b) to find
ϕ : V →W1 with ϕ = h on G∗ ∩V. In principle this open set V is unrelated to the set U appearing
in the condition of clean crossing. After constructing the set W∗ in the same way as in (a) we find
some δ < 1

2 such that the set Uδ ∩ G∗ is contained in W∗. The existence of δ must be justified. To
this end we observe that the compact set cl(G)× [−δ, δ] converges to cl(G)×{0} as δ goes to zero.
This convergence is understood in the space of compact subsets of V0×]− 1, 1[, endowed with the
Hausdorff topology. Then p−1(cl(G)× [−δ, δ]) converges to p−1(cl(G)× {0}) = cl(G), now in the
space of compact subsets of U . Since cl(G) is contained in the open set W∗, the same will hold for
p−1(cl(G)× [−δ, δ]) when δ is small. In particular Uδ ∩ G∗ = p−1(G×]− δ, δ[) ⊂ W∗.

We can now define the embedding

g :W → V0×]− 1, 1[, g = p ◦ ϕ−1 ◦ h ◦ p−1

with W = p(Uδ ∩ W∗). Note that the set W is smaller than the corresponding set in (a). Since
ϕ = h on G∗ ∩ Uδ ∩ W∗ = G∗ ∩ Uδ = p−1(G×] − δ, δ[), we deduce that g equals the identity on
G×] − δ, δ[. We can now apply Lemma 8.2 (b) to modify g and obtain g̃ : W → g(W) satisfying
the additional property g̃ = id on (E × R+) ∩ N where N = W ∩ (V0 × [0, δ[). The rest of the
proof is as in (a)

Proof of Lemma 8.1. (a) Following previous remarks we will construct special neighborhoods of
Vi in Wi. Indeed we described the construction for the manifold W0 but the same applies to W1.
For i = 0, 1 we construct diffeomorphisms pi : Ui → Vi×]− 1, 1[ with

pi(x) = (x, 0) if x ∈ Vi, pi(Mi ∩ Ui) = Vi × [0, 1[, pi(Ni ∩ Ui) = Vi×]− 1, 0].

The domains Ui ⊂ Wi are open neighborhoods of Vi. The restriction of h as a map from V0 to V1

is a diffeomorphism and the same can be said for

H : V0×]− 1, 1[→ V1×]− 1, 1[, H(x, t) = (h(x), t).

The searched map is ϕ = p−1
1 ◦H ◦ p0 defined on V = U0.

(b) Since E has a clean crossing with V0 we can assume that E ∩ U0 = p−1
0 (E×] − 1, 1[) for some

open and relatively compact set E in V0. Then we can select two sets F1 and F2 contained in V0,
open in the relative topology and having the following properties: cl(E) ⊂ F2, cl(F2) ⊂ F1, cl(F1)
is compact and p−1

0 (cl(F1)× [−1
2 ,

1
2 ]) ⊂ G. These sets will be employed later.

In the notations of (a) let U∗0 ⊂ W0 be an open set satisfying V0 ⊂ U∗0 ⊂ U0 and h(U∗0 ) ⊂ U1.
This is possible because h maps V0 onto V1. After restricting the size we can assume that U∗0 has
the following geometric property, U∗0 = p−1

0 (U∗) where

U∗ = {(x, t) ∈ V0×]− 1, 1[: |t| < µ(x)}

for some continuous function µ : V0 →]0, 1
2 [. Next we define the topological embedding

ĥ : U∗ → V1×]− 1, 1[, ĥ = p1 ◦ h ◦ p−1
0 .
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This map can be expressed in coordinates

ĥ(x, t) = (X(x, t), T (x, t)), (x, t) ∈ U∗.

In particular, T (x, 0) = 0 and X(x, 0) = h(x). The last ingredient for our construction will be a
Ck function χ : V0×]− 1, 1[→ [0, 1] satisfying χ = 1 in E×]− 1, 1[ and χ = 0 in (V0 \F2)×]− 1, 1[.
This function can be constructed via a Ck partition of unity (see Problem 2.6 in [16]). We are
ready to define the map H : U∗ → V1×]− 1, 1[ which will be different from the map defined in (a).
Namely,

H(x, t) = (X(x, χ(x, t)t), χ(x, t)T (x, t) + (1− χ(x, t))t).

The geometric condition on U∗ was imposed to guarantee that H is a well defined map. Moreover
H coincides with ĥ on V0 × {0} and also on p0(E ∩ U∗0 ) = (E×] − 1

2 ,
1
2 [) ∩ U∗. We claim that, in

contrast to ĥ, the map H is of class Ck in U∗. Actually we will prove that there exist two open
sets O1,O2 ⊂ U∗ with O1∪O2 = U∗ and such that the restriction H|Oi is in Ck for i = 1, 2. Define

O1 = (F1×]− 1

2
,
1

2
[) ∩ U∗, O2 = U∗ \ (cl(F2)×]− 1

2
,
1

2
[).

By assumption ĥ is smooth on O1. Moreover O1 has the following geometric property: if (x, t) lies
in O1 then the same holds for (x, s) if |s| ≤ |t|. These two properties together with the definition
of H imply the smoothness of H on O1. The function χ vanishes on O2, leading to the identity
H(x, t) = (h(x), t) if (x, t) ∈ O2. The restriction of h to V0 is smooth and so the same can be said
about the restriction of H to O2.

Once we know that H is Ck, we are going to apply an inversion result stated in Section 3,
namely Corollary 3.4. First of all we observe that H|V0 is a homeomorphism between V0 × {0}
and V1 × {0}. Next we must prove that det(d(H)(x, 0)) 6= 0 for each x ∈ V0. We distinguish
two cases: i) Assume x ∈ V0 ∩ O1. We know that ĥ|O1

is an embedding and so d(ĥ)(x, 0) is a

linear isomorphism. From T (x, 0) = 0 we deduce that ∂T
∂x (x, 0) = 0 and d(ĥ)(x, 0) has a triangular

structure. We deduce that

det(d(ĥ)(x, 0)) = det(
∂X

∂x
(x, 0))

∂T

∂t
(x, 0) 6= 0.

The manifold M0 is mapped by h onto M1 and this implies T (x, t) ≥ 0 whenever t ≥ 0. The
previous observations imply that ∂T

∂t (x, 0) > 0. After differentiating H some straightforward
computations lead to

det(d(H)(x, 0)) =

[
∂X
∂x (x, 0) ?

0 γ(x)

]

with γ(x) = χ(x, 0)∂T∂t (x, 0)+1−χ(x, 0). The quantity γ(x) is positive and so the above determinant
does not vanish. ii) Assume x ∈ V0∩O2. This case is easy because we know that H(x, t) = (h(x), t)
and h defines a diffeomorphism between V0 and V1.

After having checked the assumptions of Corollary 3.4 we can say that there exists an open set
V∗ ⊂ U∗ with V0 × {0} ⊂ V∗ and such that H is a diffeomorphism between V∗ and H(V∗). The
map ϕ = p−1

1 ◦H ◦ p0 is defined on V = p−1
0 (V∗) and satisfies all the required properties.
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Proof of Lemma 8.2. For the proof of (a) we refer to Lemma 6.1 in Munkres’ monograph [16]. To
prove (b) we need to modify some of the arguments in [16]. First of all we observe that it is not
restrictive to assume that N has the special form

Nβ = {(x, t) ∈ V × R+ : 0 ≤ t < β(x)}
where β : V →]0, 1[ is a Ck function. This follows from the condition g = g̃ in the neighborhood
of the complement of N .

After expressing g in coordinates, g = (X,T ), we notice that T (x, 0) = 0 and, since g is an
embedding, we conclude that ∂T

∂t (x, t) > 0 for every x ∈ V . We claim that there exist two Ck

functions ε : V →]0, 1] and β1 : V →]0, 1[ such that β1 < β and

ε(x) = 1 if x ∈ E and
∂T

∂t
(x, t) ≥ ε(x) if x ∈ V, t < β1(x).

To construct β1 we recall the positivity of ∂T∂t on t = 0 and find a neighborhood of V ×{0} where ∂T
∂t

is still positive. Then we can find β1 such that the closure of Nβ1 is contained in this neighborhood.
That is, ∂T

∂t (x, t) > 0 if x ∈ V , 0 ≤ t ≤ β1(x). The construction of ε is more delicate. First we
define

ν : V →]0, 1], ν(x) = min[1,min{∂T
∂t

(x, t) : 0 ≤ t ≤ β1(x)}].
Next we construct a covering of V by open sets U∗i having a compact closure and such that the
following property holds: if U∗i ∩E 6= ∅ then cl(U∗i ) ⊂ G. A locally finite covering {Ui} of open sets
with Ui ⊂ U∗i can be constructed together with a Ck partition of unity {ϕi} dominated by {Ui};
that is, 0 ≤ ϕi ≤ 1,

∑
i ϕi = 1 everywhere and supp(ϕi) ⊂ Ui. Define mi = min{ν(x) : x ∈ cl(Ui)}

and ε(x) =
∑

imiϕi(x). Let us check that this function has the required properties. Given x ∈ E,
if i is an index with ϕi(x) > 0 then supp(ϕi) ∩ E is non-empty. This implies that also U∗i ∩ E is
non-empty and therefore Ui ⊂ U∗i ⊂ G and mi = 1. This argument works for all points x ∈ E and
all indexes with ϕi(x) > 0 so that ε(x) =

∑
i ϕi(x) = 1. Given any x ∈ V , ν(x) ≥ mi whenever

ϕi(x) > 0. This implies ε(x) ≤ ν(x) and so ε(x) ≤ ∂T
∂t (x, t) if t ≤ β1(x).

The rest of the proof will consist in a sequence of modifications of the original map g leading to
the searched map g̃. All intermediate maps will be denoted by gi : Nβ → V ×R+, i = 1, 2, . . . with
coordinates gi = (Xi, Ti) and satisfying the properties: gi is an embedding and gi(Nβ) = g(Nβ),
gi = id on V ×{0} and also on (E ×R+)∩Nβ, gi = gi−1 in a neighborhood of (V ×R+) \Nβ. We
use the convention g0 = g and sum up the above properties by saying that gi is in the class M.
The rest of the proof is organized in three steps.

Step 1. There exists g1 ∈M satisfying ∂T1
∂t (x, t) ≥ 1 in a neighborhood of V × {0}.

Let α ∈ C∞(R) be a monotone function satisfying α(t) = 0 if t ≤ 1
3 and α(t) = 1 if t ≥ 2

3 . As in
[16] we define

Ψ(x, t) =

(
1− α

(
t

β1(x)

))
ε(x)t+ α

(
t

β1(x)

)
t

and observe that Ψ is Ck and Ψ(x, ·) is an increasing diffeomorphism of the interval [0, β1(x)].
Indeed, Ψ(x, 0) = 0, Ψ(x, β1(x)) = β1(x) and ∂Ψ

∂t = (1 − α)ε + α + α′
β1

(1 − ε)t > 0. The map
η1 : cl(Nβ1)→ cl(Nβ1), η1(x, t) = (x,Ψ(x, t)) is a diffeomorphism and we define

g1 : Nβ → V × R+, g1 =

{
η−1

1 ◦ g in Nβ1
g otherwise .
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Since η1 equals the identity for t ≥ 2
3β1(x), this map is an embedding with g1(Nβ) = g(Nβ).

Moreover the condition ε = 1 on E implies that η1 also equals the identity on (E × R+) ∩ Nβ. It
is now clear that g1 belongs to the class M. To check the additional condition imposed on ∂T1

∂t

we observe that η−1
1 (x, t) = (x, t

ε(x)) if t ≤ ε(x)β1(x)
3 . Let β2 : V →]0, 1[ be a Ck function such that

T (x, t) ≤ ε(x)β1(x)
3 if 0 ≤ t ≤ β2(x). Then if (x, t) lies in Nβ2 , ∂T1

∂t (x, t) = 1
ε(x)

∂T
∂t (x, t) ≥ 1.

Step 2. There exists g2 ∈M satisfying T2(x, t) = t in a neighborhood of V × {0}.
Given (x, t) ∈ Nβ2 , consider the equation with unknown τ ,

F (x, t; τ) :=

(
1− α

(
t

β2(x)

))
T1(x, τ) + α

(
t

β2(x)

)
τ − t = 0.

Since ∂T1
∂t (x, t) ≥ 1 if 0 ≤ t ≤ β2(x) we deduce that T1(x, t) ≥ t. This inequality implies that

F (x, t; ·) has a change of sign, F (x, t; 0) ≤ 0 ≤ F (t, x;β2(x)), and so F = 0 has at least one
solution τ in [0, β2(x)]. This solution is unique because F (t, x; ·) is strictly increasing. Actually,
∂F
∂τ = (1− α)∂T1∂t + α ≥ 1. The positivity of this derivative also implies that τ = τ(x, t) is of class
Ck on x ∈ V , 0 ≤ t ≤ β2(x). For future use we note that T1(x, τ(x, t)) = t if 0 ≤ t ≤ 1

3β2(x)
and τ(x, t) = t if t ≥ 2

3β2(x). In particular, τ(x, 0) = 0 and τ(x, β2(x)) = β2(x). By implicit
differentiation,

[(1− α)
∂T1

∂t
+ α]

∂τ

∂t
= 1 +

α′

β2
(T1 − τ) ≥ 1,

implying that ∂τ
∂t (x, t) > 0. The map η2(x, t) = (x, τ(x, t)) is a diffeomorphism of the closure

of Nβ2 . It equals the identity on t ≥ 2
3β2(x) and also on t = 0. Since T1(x, t) = t if x ∈ E,

0 ≤ t ≤ β2(x), we deduce that τ(x, t) = t if x ∈ E and so η2 is also the identity on (E×R+)∩Nβ2 .
The map

g2 : Nβ → V × R+, g2 =

{
g1 ◦ η2 in Nβ2
g otherwise,

is in M and satisfies T2(x, t) = T1(x, τ(x, t)) = t if 0 ≤ t ≤ 1
3β2(x).

Step 3. In this step we proceed exactly as in [16]. We sketch the main ideas of the construction
and refer to [16] for more details. As in [16] we employ the notation Y = Nβ2 . The manifold V can
be covered by a locally finite collection {Ui}i∈I of open subsets of V such that the closure of each
Ui is diffeomorphic to a closed ball in Rn−1. The set of indexes can be chosen at most countable
and we will assume that it is either a finite set of the type I = {i ∈ N : 3 ≤ i ≤ N} or the infinite
set I = {3, 4, 5, . . . }. We select a second covering of V , now by compact sets Ci ⊂ Ui. Finally Vi
will be open sets (in V ) sastisfying Ci ⊂ Vi and cl(Vi) ⊂ Ui. Let c3 > 0 be such that U3 × [0, c3] is
contained in Y and consider the restriction of g2 to this set. We apply Lemma 6.2 in [16] to find
an embedding g3 : U3 × [0, c3] → V × R+ satisfying g3(U3 × [0, c3]) = g2(U3 × [0, c3]), T3 = t and
the properties below,

(1) g3 = id on U3 × {0} and on C3 × [0, δ3] for some δ3 > 0

(2) X3 = X2 outside V3 × [0, c32 ]

(3) If g2 is the identity on {x} × [0, b] for some x ∈ U3 and b < β2(x), then g3 is also the identity
on this set.

This last property is important because it guarantees that g3 = id on (E×R+)∩Y . The map g3

can be extended to Y via the formula g3 = g2 on Y \ (U3× [0, c3]). The embedding g3 : Y → g2(Y )
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satisfies T3 = t everywhere and g3 = id on C3 × [0, δ3] for some δ3 <
β2(x)

2 . The process can be
repeated inductively on the set I and the figures below illustrate the passage from gi−1 to gi. The
horizontal axis is the manifold V and the regions in blue are Ci × [0, δi]. The map is not modified
in the white region.

1−= ii gg

idgi =

Y

idg =3
idg =6

idg =4

idg =5

Figure 5: Construction of gi and overlapping of the succesive modifications.

The succesive modifications preserve the previous conditions gi−1 = id on Cj × [0, δj ], j < i,
thanks to property (3). The same can be said about the condition gi−1 = id on (E × R+) ∩ Y . If
the set I is finite we find, after a finite number of modifications, the map

g̃ : Nβ → V × R+, g̃ =

{
gN in Y

g2 otherwise.

If I is infinite then g̃ is defined by

g̃(x, t) = lim
i→∞

gi(x, t) if (x, t) ∈ Y.

Then g̃ is extended to Nβ by letting g̃ = g2 on Nβ \ Y .
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