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Abstract

The Abel differential equations of second kind, named after Niels Henrik Abel, are a class

of ordinary differential equation studied by many authors. Here we consider the Abel quadratic

polynomial differential equations of second kind denoting this class by QSAb . Firstly we split the

whole family of non-degenerate quadratic systems in four subfamilies according to the number of

infinite singularities. Secondly for each one of these four subfamilies we determine necessary and

sufficient affine invariant conditions for a quadratic system in this subfamily to belong to the class

QSAb . Thirdly we classify all the phase portraits in the Poincaré disc of the systems in QSAb in

the case when they have at infinity either one triple singularity (21 phase portraits) or an infinite

number of singularities (9 phase portraits). Moreover we determine the affine invariant criteria

for the realization of each one of the 30 topologically distinct phase portraits.

Key-words: quadratic differential system, second kind of Abel differential equations, phase por-

traits.

2010 Mathematics Subject Classification: 58K45, 34C23, 34A34

1 Introduction and statement of the main results

We consider the class of real quadratic polynomial differential systems

ẋ = p0 + p1(ã, x, y) + p2(ã, x, y) ≡ P (ã, x, y),

ẏ = q0 + q1(ã, x, y) + q2(ã, x, y) ≡ Q(ã, x, y)
(1)

where
p0 = a, p1(ã, x, y) = cx+ dy, p2(ã, x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(ã, x, y) = ex+ fy, q2(ã, x, y) = lx2 + 2mxy + ny2.
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and with max(deg(p), deg(q)) = 2. Here the dot denotes derivative with respect to an independent

variable t, usually called the time. We denote by ã = (a, c, d, g, h, k, b, e, f, l,m, n) the 12-tuple of the

coefficients of systems (1), and by QS the class of all real quadratic polynomial differential systems,

that sometimes we simply will say quadratic systems.

There are more than one thousand papers published on QS. The main difficulty of studying

QS comes from the fact that they depend on twelve parameters. So people studied subclasses of

QS which modulo the affine group action and time rescaling depend on at most three parameters.

Without trying to be exhaustive we describe some of these subclasses in the following works: systems

in QS having a center [55, 62, 64, 78, 88]; systems in QS without finite real singularities [36, 76];

systems in QS with one anti-saddle and one focus [2]; QS with a unique finite singularity [27, 40, 59,

75, 77, 82, 83]; systems in QS having the infinity filled of singularities [37, 70]; systems in QS having

an integrable saddle [18]; systems in QS having a weak focus of third order [5, 52]; homogeneous

systems in QS [84, 85]; Hamiltonian systems in QS [3, 4, 42]); bounded systems in QS [28, 47];

semilinear systems in QS [54]; Darboux integrable systems in QS [49, 81]; Lotka-Volterra systems in

QS [72, 73]; structurally stable systems in QS [1, 41]; systems in QS having rational first integrals

[24, 50, 51]; systems in QS having a polynomial inverse integrating factor [25]; systems in QS having

invariant straight lines of total multiplicity ≥ 4 [65, 67, 68, 69, 71]; systems in QS having polynomial

first integrals [35]; ... Using modern methods, such as the algebraic and geometric invariants, during

the last years better classifications of some subclasses of QS where obtained. For example systems

in QS having a second order weak focus [8], systems in QS having one invariant straight line and

a weak focus [10], and the complete characterization of the geometric configurations of singularities

of systems in QS [7, 11, 12, 13, 14, 15].

In this paper we study Abel differential equations of the second kind which are of the form

y
dy

dx
= A(x)y2 +B(x)y + C(x), (2)

with A(x), B(x), C(x, y) ∈ R(x, y). These differential equations can be equivalently written as

polynomial differential systems

ẋ = d(x)y, ẏ = a(x)y2 + b(x)y + c(x),

where A(x) = a(x)/d(x), B(x) = b(x)/d(x) and C(x) = c(x)/d(x), with polynomials a(x), b(x), c(x)

and d(x) in R[x, y]. In this paper we are interested in studying the Abel quadratic polynomial

differential systems, i.e., the differential systems of the form

ẋ = (d0 + d1x)y ≡ P̃ (x, y), ẏ = a0y
2 + (b0 + b1x)y + c0 + c1x+ c2x

2 ≡ Q̃(x, y), (3)

coming from the Abel differential equation of second kind (2).

Definition 1. We say that a non-degenerate quadratic system (1) is of Abel type if and only if

there exists an affine transformation which brings this system to the form (3). We denote the class

systems of Abel type by QSAb .

Some subclasses of QSAb have already been studied. In the paper [53] is considered the family of

systems (3) with a0 = 0 and with Z2-symmetries. In the paper [33] the family of systems (3) with
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d1 = 0 and a0 6= 0 is analyzed. Finally, in the paper [34] is considered the family of systems (3) with

a0 6= 0 and having a symmetry with respect to an axis or with respect to the origin.

The goal of this paper is firstly to determine necessary and sufficient conditions in terms of affine

invariant polynomials for an arbitrary quadratic system to be of Abel type. Secondly to topologically

classify all the phase portraits in the Poincaré disc of the systems in QSAb in the case when they

have at infinity either one triple singularity or an infinite number of singularities. Moreover to

determine the affine invariant criteria for the realization of each one of the 30 topologically distinct

phase portraits.

The affine invariant polynomials which appear in the statement of the next theorem are defined

in Section 2. Our main result is the following one.

Main Theorem. A non-degenerate quadratic system (1) (i.e.
∑4

i=0 µi 6= 0) belongs to the class

QSAb of Abel quadratic systems if and only if B1 = 0 and one of the following conditions is satisfied:

A) If η > 0 then either

A1) θ 6= 0, or

A2) θ = 0, Ñ 6= 0, H7 6= 0, or

A3) θ = 0, Ñ 6= 0, H7 = 0, B2 = 0, or

A4) θ = 0, Ñ = 0, θ3 6= 0, or

A5) θ = 0, Ñ = 0, θ3 = 0, B2 = 0, θ4 6= 0, or

A6) θ = 0, Ñ = 0, θ3 = 0, B2 = 0, θ4 = 0, B3 = 0.

B) If η < 0 then either

B1) θ 6= 0, B2 6= 0, or

B2) θ 6= 0, B2 = 0, B3 = 0, or

B3) θ = 0, Ñ 6= 0, H7 6= 0, B2 6= 0, or

B4) θ = 0, Ñ 6= 0, H7 6= 0, B2 = 0, B3 = 0, or

B5) θ = 0, Ñ = 0, B2 6= 0, or

B6) θ = 0, Ñ = 0, B2 = 0, B3 = 0.

C) If η = 0 and M̃ 6= 0 then either

C1) θ 6= 0, or

C2) θ = 0, µ0 6= 0, H7 6= 0, or

C3) θ = 0, µ0 6= 0, H7 = 0, B2 = 0, or

C4) θ = 0, µ0 = 0, Ñ 6= 0, H7 6= 0, or

C5) θ = 0, µ0 = 0, Ñ 6= 0, H7 = 0, B3 = 0, or

C6) θ = 0, µ0 = 0, Ñ = 0, K̃ 6= 0, θ3 6= 0, or

C7) θ = 0, µ0 = 0, Ñ = 0, K̃ 6= 0, θ3 = 0, B3 = 0.
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D) If η = 0 and M̃ = 0 then either

D1) C2 6= 0, θ 6= 0, or

D2) C2 6= 0, θ = 0, Ñ = 0, B2 6= 0, or

D3) C2 = 0, H10 6= 0, or

D4) C2 = 0, H10 = 0, H12 6= 0.

2 The main invariant polynomials associated to the class QSAb

Consider quadratic systems of the form (1). It is known that on the set QS acts the group Aff (2,R)

of affine transformations on the plane (cf. [66]). For every subgroup G ⊆ Aff (2,R) we have an

induced action of G on QS. We can identify the set QS of systems (1) with a subset of R12 via the

map QS−→ R12 which associates to each system (1) the 12–tuple ã = (a, c, d, g, h, k, b, e, f, l,m, n)

of its coefficients. We associate to this group action polynomials in x, y and parameters which

behave well with respect to this action, the GL–comitants (GL–invariants), the T–comitants (affine

invariants) and the CT–comitants. For their definitions as well as their detailed constructions we

refer the reader to the paper [66] (see also [9]).

Next we define the following invariant polynomials associated to the class QSAb :
{
µ0, . . . , µ4, D, P, R, S, T, U, T1, . . . , T4, F , F1, . . . ,F4, H, B, B1, B2, σ,

η, M̃ , C2, θ, θ3, θ4, K̃, Ñ , H7, H9, H10, H11, H12, E1, U1, U2

}
.

(4)

According to [9] (see also [20]) we apply the differential operator L = x · L2 − y · L1 acting on

R[ã, x, y] with

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
,

to construct several invariant polynomials from the set. More precisely using this operator and the

affine invariant µ0 = Res x
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).

Using these invariant polynomials we define some new invariants, which according to [9] are respon-

sible for the number and multiplicities of the finite singular points of (1):

D =
[
3
(
(µ3, µ3)

(2), µ2
)(2) −

(
6µ0µ4 − 3µ1µ3 + µ22, µ4

)(4)]
/48,

P = 12µ0µ4 − 3µ1µ3 + µ22,

R = 3µ21 − 8µ0µ2,

S = R2 − 16µ20P,

T = 18µ20(3µ
2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ21µ4)−PR,

U =µ23 − 4µ2µ4.

(5)
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In what follows we also need the so-called transvectant of order k (see [39], [60]) of two polynomials

f, g ∈ R[ã, x, y]

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

Next we construct the elements T1, . . . , T4 of the set (4) which are responsible for the number of

the vanishing traces corresponding to the finite singularities of systems (1). For this we define a

polynomial (which we call trace polynomial) as follows.

Following [80] we denote by σ(ã, x, y) =
∂p

∂x
+
∂q

∂y
= σ0(ã) + σ1(ã, x, y) and we observe that the

polynomial σ(ã, x, y) ∈ R[x, y] is an affine comitant of systems (1).

Definition 2 ([80]). We call trace polynomial T(w) over the ring R[ã] the polynomial defined as

follows

T(w) =

4∑

i=0

1

(i!)2

(
σi1,

1

i!
L(i)(µ0)

)(i)

w4−i =

4∑

i=0

Gi(ã)w4−i, (6)

where the coefficients Gi(ã) =
1

(i!)2
(σi1, µi)

(i) ∈ R[ã], i = 0, 1, 2, 3, 4
(
G0(ã) ≡ µ0(ã)

)
are GL–

invariants.

Using the polynomial T(w) we could construct the above mentioned four affine invariants T4, T3, T2
and T1:

T4−i(ã)=
1

i!

diT

dwi

∣∣∣
w=σ0

∈ R[ã], i = 0, 1, 2, 3
(
T4 ≡ T(σ0)

)
.

In order to construct the remaining invariant polynomials contained in the set (4) we first need to

define some elementary bricks which help us to construct these elements of the set.

We remark that the following polynomials in R[ã, x, y] are the simplest invariant polynomials of

degree one with respect to the coefficients of the differential systems (1) which are GL-comitants:

Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2; Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2. (7)

Apart from these simple invariant polynomials we shall also make use of the following nine GL-

invariant polynomials:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) , T4 = (C1, C1)

(2) , T5 = (C1, C2)
(1) ,

T6 = (C1, C2)
(2) , T7 = (C1, D2)

(1) , T8 = (C2, C2)
(2) , T9 = (C2, D2)

(1) .

These are of degree two with respect to the coefficients of systems (1).
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We next define a list of T -comitants:

Â(ã) = (C1, T8 − 2T9 +D2
2)(2)/144,

B̂(ã, x, y) =
{
16D1(D2, T8)

(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)
(1)(3D1D2

− 5T6+ 9T7) + 2(D2, T9)
(1)
(
27C1T4− 18C1D

2
1−32D1T2+32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)
[
8C0(T8 − 12T9)− 12C1(D1D2+T7) +D1(26C2D1+32T5)

+ C2(9T4 + 96T3)
]

+ 6(D2, T6)
(1)
[
32C0T9 − C1(12T7 + 52D1D2)

− 32C2D
2
1

]
+ 48D2(D2, T1)

(1)(2D2
2 − T8) + 6D1D2T4(T8 − 7D2

2 − 42T9)

− 32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7)− 16D1(C2, T8)
(1)(D2

1 + 4T3)

+ 12D1(C1, T8)
(2)(C1D2 − 2C2D1) + 12D1(C1, T8)

(1)(T7 + 2D1D2)

+ 96D2
2

[
D1(C1, T6t)

(1) +D2(C0, T6)
(1)
]
− 4D3

1D2(D
2
2 + 3T8 + 6T9)

− 16D1D2T3(2D
2
2+3T8) + 6D2

1D
2
2(7T6+2T7)−252D1D2T4T9

}
/(2833),

D̂(ã, x, y) =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6)− (C1, T5)
(1) − 9D2

1C2

+ 6D1(C1D2 − T5)
]
/36,

Ê(ã, x, y) =
[
D1(2T9 − T8)− 3(C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ (ã, x, y) =
[
6D2

1(D2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1) − 9D2
2T4

+ 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1) − 36C1(D2, T7)
(1)

+ 8D1(D2, T5)
(1)
]
/144,

K̂(ã, x, y) = (T8 + 4T9 + 4D2
2)/72,

Ĥ(ã, x, y) = (−T8 + 8T9 + 2D2
2)/72,

as well as the needed bricks:

A1(ã) = Â, A2(ã) = (C2, D̂)(3)/12, A3(ã) = [[C2, D2)
(1), D2

)(1)
, D2

)(1)
/48,

A4(ã) = (Ĥ, Ĥ)(2), A5(ã) = (Ĥ, K̂)(2)/2, A6(ã) = (Ê, Ĥ)(2)/2,

A7(ã) = [[C2, Ê)(2), D2

)(1)
/8, A8(ã) = [[D̂, Ĥ)(2), D2

)(1)
/8, A9(ã) = [[D̂,D2)

(1), D2

)(1)
, D2

)(1)
/48,

A10(ã) = [[D̂, K̂)(2), D2

)(1)
/8, A11(ã) = (F̂ , K̂)(2)/4, A12(ã) = (F̂ , Ĥ)(2)/4,

A14(ã) = (B̂, C2)
(3)/36, A15(ã) = (Ê, F̂ )(2)/4, A25(ã) = [[D̂, D̂)(2), Ê

)(2)
/16,

A33(ã) = [[D̂,D2)
(1), F̂

)(1)
, D2

)(1)
, D2

)(1)
/128, A34(ã) = [[D̂, D̂)(2), D2

)(1)
, K̂
)(1)

, D2

)(1)
/64.

In the above list the bracket “[[” means a succession of two or up to four parentheses “(” depending

on the row where it appears.
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Now we can define the remaining invariant polynomials of the set (4):

F(ã) =A7,

F1(ã) =A2,

F2(ã) = − 2A2
1A3 + 2A5(5A8 + 3A9) +A3(A8 − 3A10 + 3A11 +A12)−A4(10A8 − 3A9 + 5A10

+ 5A11 + 5A12),

F3(ã) = − 10A2
1A3+ 2A5(A8−A9)−A4(2A8+A9+A10+A11+A12) +A3(5A8+A10−A11+ 5A12),

F4(ã) = 20A2
1A2 −A2(7A8 − 4A9 +A10 +A11 + 7A12) +A1(6A14 − 22A15)− 4A33 + 4A34,

H(ã) = − (A4 + 2A5),

B(ã) = − (3A8 + 2A9 +A10 +A11 +A12),

B1(ã, x, y) =
{(
T7, D2

)(1)[
12D1T3 + 2D3

1 + 9D1T4 + 36
(
T1, D2

)(1)]− 2D1

(
T6, D2

)(1)
(D2

1 + 12T3)

+D2
1

[
D1

(
T8, C1

)(2)
+ 6
((
T6, C1

)(1)
, D2

)(1)]}
/144,

B2(ã, x, y) =
{(
T7, D2

)(1)[
8T3
(
T6, D2

)(1) −D2
1

(
T8, C1

)(2) − 4D1

((
T6, C1

)(1)
, D2

)(1)]

+
[(
T7, D2

)(1)]2
(8T3 − 3T4 + 2D2

1)
}
/384,

K̃(ã, x, y) = 4K̂ ≡ Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
,

M̃(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
,

Ñ(ã, x, y) = K̃ − 4Ĥ,

η(ã) = (M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
,

θ(ã) = − (Ñ , Ñ)(2)/2 ≡ Discrim
(
Ñ(ã, x, y)

)
;

θ3(ã) =A8 +A11,

θ4(ã) =A7,

B1(ã) = Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4) ,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B3(ã, x, y) = (C2, D̃)(1) ≡ Jacob
(
C2, D̃

)
,

E1(ã) =A25,

Ũ1(ã) =A9 − 54A2
1,

Ũ2(ã) = 3A8 −A9,

H7(ã) = (Ñ , C1)
(2),

H9(ã) = − [[D̃, D̃)(2), D̃,
)(1)

, D̃
)(3)

,

H10(ã) = [[Ñ , D̃)(2), D2

)(1)
,

H11(ã, x, y) = 8Ĥ
[
(C2, D̃)(2) + 8(D̃,D2)

(1)
]

+ 3
[
(C1, 2Ĥ − Ñ)(1) − 2D1Ñ

]2
,

H12(ã, x, y) = (D̃, D̃)(2) ≡ Hessian(D̃)

We remark that the above invariant polynomials (except Ũ1 and Ũ2) were constructed and used
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in [80], [70] and [17] and only the invariant polynomials Ũ1 and Ũ2 are defined here.

3 Preliminary results involving the use of polynomial invariants

We remark that the invariant polynomials µi(ã, x, y) (i = 0, 1, . . . , 4) defined in the previous sub-

section are responsible for the total multiplicity of the finite singularities of quadratic systems (1).

Moreover they detect whether a quadratic system is degenerate or not. More exactly we have the

following lemma.

Lemma 1. ([20]) Consider a quadratic system (S) with coefficients a ∈ R12. Then:

(i) The total multiplicity of the finite singularities of this system is 4− k if and only if for every i

such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in R[x, y] and µk(a, x, y) 6= 0.

(ii) The system (S) is degenerate (i.e. gcd(p, q) 6= constant) if and only if µi(a, x, y) = 0 in R[x, y]

for every i = 0, 1, 2, 3, 4.

On the other hand the invariant polynomials η, M̃ and C2 govern the number of real and complex

infinite singularities. More precisely, according to [74] (see also [66]) we have the next result.

Lemma 2. The number of infinite singularities (real and complex) of a quadratic system in QS is

determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M̃ 6= 0;

(iv) 1 real if η = M̃ = 0 and C2 6= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, the quadratic systems (1), for each one of these cases, can be brought via a linear trans-

formation to the corresponding case of the following canonical systems (SI)− (SV ):

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

8



According to [16] (see also [9]) the next proposition is valid.

Proposition 1. Consider a non-degenerate quadratic differential system. Then:

(i) this system has one center if and only if one of the following sets of conditions holds

(C1) T4 = 0, T3F < 0, F1 = F2 = F3F4 = 0;

(C2) T4 = T3 = 0, T2 > 0, B < 0, F = F1 = 0;

(C3) T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0,H < 0, B < 0, F = 0;

(C4) T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0,H = B1 = 0, B2 < 0;

(C5) σ = 0, µ0 < 0, D < 0, R > 0, S > 0;

(C6) σ = 0, µ0 = 0, D < 0, R 6= 0;

(C7) σ = 0, µ0 > 0, D > 0;

(C8) σ = 0, µ0 > 0, D = 0, T < 0;

(C9) σ = 0, µ0 = µ1 = 0, µ2 6= 0,U > 0, K̃ = 0;

(C10) σ = 0, µ0 > 0,D = T = P = 0, R 6= 0;

(8)

(ii) and it has two centers if and only if one of the following sets of conditions holds

(Ĉ1) T4 = T3 = 0, T2 < 0, B < 0, H < 0, F = F1 = 0;

(Ĉ2) σ = 0, µ0 > 0, D < 0, R > 0, S > 0.
(9)

In what follows we also need the next lemma.

Lemma 3. [65] For the existence of an invariant straight line of a system (1) in one (respectively 2;

3 distinct) directions in the affine plane it is necessary that B1 = 0 (respectively B2 = 0; B3 = 0).

4 The proof of the Main Theorem

We shall consider step by step each one of the subfamilies of quadratic systems defined by the

conditions A) - D) which are provided by the Main Theorem.

4.1 The subfamily defined by A): η > 0

According to Lemma 2 we consider systems (S) for which calculations yield:

η = 1, θ = −8(g − 1)(h− 1)(g + h). (10)

We consider two cases: θ 6= 0 and θ = 0.

4.1.1 The case θ 6= 0

Then (g − 1)(h− 1)(g + h) 6= 0 and due to a translation we may assume d = e = 0, i.e. we get the

systems

ẋ = a+ cx+ gx2 + (h− 1)xy, ẏ = b+ fy + (g − 1)xy + hy2, (11)

9



for which we calculate

B1 =ab(g − 1)2(h− 1)2
[
(b− a)(g + h)2 + cf(g − h) + c2h− f2g

]
≡ ab(g − 1)2(h− 1)2H.

So due to θ 6= 0 the condition B1 = 0 is equivalent to abH = 0 and we consider two subcases: ab = 0

and H = 0.

4.1.1.1 The subcase ab = 0 We observe that systems (11) keep the form under the change

(x, y, a, b, c, f, g, h) 7→ (y, x, b, a, f, c, h, g) and hence without loss of generality we may consider that

the condition a = 0 is fulfilled. Then we arrive at the family of systems

ẋ =x
[
c+ gx+ (h− 1)y

]
, ẏ = b+ fy + (g − 1)xy + hy2, (12)

possessing the invariant affine line x = 0. It is not too difficult to detect, that after the affine

transformation

x1 = x, y1 = gx+ (h− 1)y + c

we arrive at the systems

ẋ1 =x1y1, ẏ = b′ + e′x1 + l′x21 + (f ′ + 2m′x1)y1 + n′y2, (13)

where b′, e′, f ′, l′,m′ and n′ are rational functions of the parameters b, c, f, g, h with the same denom-

inator (h− 1) 6= 0.

It remains to observe that these systems belong to the family of systems (3).

4.1.1.2 The subcase H = 0 Then the equality

(b− a)(g + h)2 + cf(g − h) + c2h− f2g = 0

gives us

b = a+
(f − c)(fg + ch)

(g + h)2
≡ b0

and this leads to the family of systems

ẋ = a+ cx+ gx2 + (h− 1)xy, ẏ = b0 + fy + (g − 1)xy + hy2.

Since g + h 6= 0 we can apply to these systems the transformation

x1 = (g + h)(x− y) + c− f, y1 = (g + h)(gx+ hy) + fg + ch, t1 = t/(g + h)

with the determinant (g + h)3 6= 0. As a result we get the family of systems (13) the parameters

b′, e′, f ′, l′,m′ and n′ of which are rational functions of the parameters a, c, f, g, h with the same

denominator (g + h) 6= 0. So we again arrive to a subfamily of systems (3).
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4.1.2 The case θ = 0

For systems (SI) we have

θ = −8(g − 1)(h− 1)(g + h), Ñ = (g2 − 1)x2 + 2(g − 1)(h− 1)xy + (h2 − 1)y2 (14)

and therefore the condition θ = 0 yields (h − 1)(g − 1)(g + h) = 0. Without loss of generality we

can consider g = 1. Indeed, if h = 1 (respectively, g+h = 0) we can apply the linear transformation

which will replace the straight line x = 0 with y = 0 (respectively, x = 0 with y = x) reducing this

case to h = 1.

So we assume h = 1 and in this case by (14) for systems (SI) we have Ñ = (g − 1)(1 + g)x2. We

consider two subcases: N 6= 0 and N = 0.

4.1.2.1 The subcase N 6= 0 Then (g − 1)(g + 1) 6= 0 and due to a translation we may assume

e = f = 0. So we get he family of systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ (g − 1)xy + y2, (15)

for which we calculate

B1 = bd2g(g − 1)2
[
(b− a)(1 + g)2 + (c+ d)(c− dg)

]
≡ bd2g(g − 1)2Φ,

µ0 = g2, H7 = 4d(g2 − 1).

4.1.2.1.1 The possibility H7 6= 0. This implies d 6= 0 and due to Ñ 6= 0 the condition B1 = 0

yields bgΦ = 0. We consider two cases: µ0 6= 0 and µ0 = 0.

a) The case µ0 6= 0. Then g 6= 0 and we get bΦ = 0.

a.1) The subcase b = 0. Then systems (15) possess the invariant line y = 0 and using the

transformation

x1 = y, y1 = (g − 1)x+ y

we arrive at the systems

ẋ1 = x1y1, ẏ1 = a(g − 1)− (c+ d− dg)x1 + cy1 +
1

g − 1

[
gx21 − (g − 1)x1y1 + gy21

]
.

So we get a subfamily of the family of systems (3).

a.2) The subcase Φ = 0. This condition gives

b =
a(1 + g)2 − (c+ d)(c− dg)

(1 + g)2
≡ b0

and systems (15) with b = b0 possess the invariant line (1 + g)(x − y) + c + d = 0. Then applying

the transformation

x1 = (1 + g)(x− y) + c+ d, y1 = gx+ y (Det = (1 + g)2 6= 0)
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we get a subfamily Abel quadratic systems of the form (3):

ẋ1 = x1y1, ẏ1 = Q(x, y),

where Q(x, y) is a quadratic polynomial the coefficients of which are rational functions of the pa-

rameters a, c, d, g, h (denominators are some powers of (g + 1) 6= 0).

b) The case µ0 = 0. Then we have g = 0 and considering systems (15) we obtain the systems

ẋ = a+ cx+ dy, ẏ = b− xy + y2.

Since d 6= 0 we can apply the transformation

x1 = x, y1 = cx+ dy + a

which brings the above systems to the form

ẋ1 = xy1, ẏ1 =
1

d

[
a2 + bd2 + a(2c+ d)x1 + (cd− 2a)y1 + c(c+ d)x21 − (2c+ d)x1y1 + y21

]
.

It is clear that these systems are contained in the family of systems (3) (in the first equation we have

d1 = 0 and d0 = 1).

4.1.2.1.2 The possibility H7 = 0. Then d = 0 and we arrive at the family of systems

ẋ = a+ cx+ gx2, ẏ = b+ (g − 1)xy + y2, (16)

for which we calculate

B1 = 0, B2 = −648b(−1 + g)2
[
(b− a)(1 + g)2 + c2

]
x4 µ0 = g2

and we consider two cases: B2 6= 0 and B2 = 0.

a) The case B2 6= 0. We claim that for B2 6= 0 the above systems could not be brought via an

affine transformation to the form (3). In order to prove this claim we examine two subcases: µ0 6= 0

and µ0 = 0.

a.1) The subcase µ0 6= 0. Then g 6= 0 and systems (16) possess two parallel invariant lines

a+ cx+ gx2 = 0 (which can be real or complex or coinciding).

On the other hand for systems (3) we have µ0 = a0c2d
2
1 and the condition µ0 6= 0 implies d1 6= 0.

This means that systems (3) possess invariant line d0 + d1x = 0 and there does not exist another

parallel invariant line in the direction x = 0.

It remains to observe that according to Lemma 3 for the existence of invariant lines in two distinct

directions for a quadratic system the condition B2 = 0 is necessary. Therefore systems (15) for

B2 6= 0 could not have an invariant affine line in other direction, which could be used for the

construction of the needed affine transformation.

a.2) The subcase µ0 = 0. Then g = 0 and considering (16) we get the systems

ẋ = a+ cx, ẏ = b− xy + y2, (17)
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for which we have

B1 = µ0 = H7 = 0, Ñ = −x2.

On the other hand for systems (3) we have µ0 = a0c2d
2
1 and the condition µ = 0 gives a0c2d1 = 0.

If d1 = 0 then for systems (3) we calculate

H7 = −4(b21 − 4a0c2)d0, Ñ = −(b21 − 4a0c2)x
2

and the conditions H7 = 0 and Ñ 6= 0 implies d0 = 0 which leads to degenerate systems (3).

Assume now d1 6= 0. This means that systems (3) possess invariant line d0 + d1x = 0 in the

direction x = 0 and therefore (d0 + d1x) is a factor in P̃ (x, y). Moreover the second factor of P̃ (x, y)

in (3) is y.

On the other hand systems (17) could possess in the direction x = 0 either one invariant affine

line lines a+ cx = 0 if c 6= 0 or zero lines if c = 0. Moreover the right hand side of the first equation

does not contain the factor y.

It remains to observe that according to Lemma 3 systems (17) for B2 6= 0 could not have an

invariant affine line in other directions, which could be used for the construction of the needed affine

transformation. This completes the prof of our claim.

b) The case B2 = 0. Then b
[
(b− a)(1 + g)2 + c2

]
= 0. We observe that the second factor equals

Φ
∣∣
d=0

and we deduce that we can apply the same arguments as previously in the case H7 6= 0

repeating the steps a) b = 0 and b) Φ = 0 and considering the condition d = 0.

Thus the condition B2 = 0 guarantees the existence of an affine transformation which brings

systems (16) to the form (3).

4.1.2.2 The subcase N = 0 Considering (14) the condition Ñ = 0 yields (g − 1)(h − 1) =

g2 − 1 = h2 − 1 = 0 and we obtain 3 possibilities: (a) g = 1 = h; (b) g = 1 = −h; (c) g = −1 = −h.

The cases (b) and (c) can be brought by linear transformations to the case (a).

So g = h = 1 and systems (SI) after an additional translation (to make c = d = 0 are of the form:

ẋ = a+ dy + x2, ẏ = b+ ex+ y2. (18)

For these systems we calculate

B1 =− d2e2(4a− 4b+ d2 − e2), µ0 = 1, θ3 = −2de, θ4 = −(d+ e)

and we consider two possibilities: θ3 6= 0 and θ3 = 0.

4.1.2.2.1 The possibility θ3 6= 0. Then b = a+ (d2 − e2)/4 and we get the systems

ẋ = a+ dy + x2, ẏ = a+ (d2 − e2)/4 + ex+ y2 (19)

possess the invariant line 2x− 2y + d− e = 0. So by means of the transformation

x1 = 2x− 2y + d− e, y1 = x+ y − (d+ e)/2
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we arrive at the following subfamily of (3):

ẋ1 = x1y1, ẏ1 = (4a+ 2d2 + e2)/2 + (e− d)x1 + (d+ e)y1 + x21/8 + y21/2. (20)

4.1.2.2.2 The possibility θ3 = 0. Then de = 0 and we may consider d = 0 due o the change

(x, y, a, b, d, e) 7→ (x, y, b, a, e, d) which conserves the systems. In this case we have

B1 = 0, B2 = 648e2(4a− 4b− e2)x4, θ4 = −e

and we consider two cases: B2 6= 0 and B2 = 0.

1) The case B2 6= 0. We claim that for B2 6= 0 systems (18) with d = 0 could not be brought via

an affine transformation to the form (3).

Indeed, for systems (3) we calculate µ0 = a0c2d
2
1 6= 0 (since for (18) we have µ = 1). Hence d1 6= 0

and these systems possess a single invariant line d0 + d1x = 0 in the direction x = 0.

On the other hand systems (18) with d = 0 possess in the direction x = 0 two parallel invariant

lines x2 + a = 0, which could be real or complex or coinciding. Taking into account that by Lemma

3 in the case B2 6= 0 these systems could not invariant lines in other directions we conclude that our

claim is proved.

2) The case B2 = 0. Then e(4a− 4b− e2) = 0 and we examine two subcases: θ4 6= 0 and θ4 = 0.

a) If θ4 6= 0 then we obtain b = a − e2/4 and we get systems (19) with d = 0. So applying the

transformation

x1 = 2x− 2y − e, y1 = x+ y − e/2
we arrive at the family of systems (20) with d = 0 which is a subfamily of (3).

b) Assume now θ4 = 0, i.e. e = 0. In this case we get the systems

ẋ = a+ x2, ẏ = b+ y2 (21)

for which calculations yield

B1 = B2 = 0, B3 = −12(a− b)x2y2, µ0 = 1.

These systems have two couples of parallel lines: a+ x2 = 0 (in the direction x = 0) and b+ y2 = 0

(in the direction y = 0) which could be real, or complex, or coinciding.

b.1) If B3 6= 0 then by Lemma 3 systems (21) could not have other invariant lines.

On the other hand, as it was mentioned earlier, since µ0 6= 0 systems (3) have a single line in the

direction x = 0. So we conclude that systems (21) could not be brought to the form (3) by means

of affine transformation.

b.2) Assuming B3 = 0 we obtain b = a and then systems systems (21) possess also the invariant

line y = x. So applying the transformation x1 = x− y, y1 = x+ y we get the family of systems

ẋ1 = x1y1, ẏ1 = 2a+ x21/2 + y21/2.
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Clearly this family is a subfamily of (3).

As all the possibilities in the case η > 0 are examined we conclude that the statement A) of the

Main Theorem is proved.

4.2 The subfamily defined by B): η < 0

In this case by Lemma 2 we have to consider the systems (SII) for which we calculate:

η = −1, θ = 8(1 + h)
[
g2 + (h− 1)2

]
, Ñ = (g2 − 2h+ 2)x2 + 2g(h+ 1)xy + (h2 − 1)y2. (22)

So we examine two cases: θ 6= 0 and θ = 0.

4.2.1 The case θ 6= 0

Then h+ 1 6= 0 and due to a translation we may assume c = d = 0, i.e. we get the systems

ẋ = a+ gx2 + (h+ 1)xy, ẏ = b+ ex+ fy − x2 + gxy + hy2, (23)

for which we calculate

B1 =− a(h+ 1)2(α2 +Bβ2),

B2 =− 648(αγ + βδ)x4 + 648a(1 + h)2αy2(6x2 − y2)− 2592a(1 + h)2βxy(x2 − y2),
where

α =a(1 + g − h)(−1 + g + h)− 2bg(−1 + h) + f(−e+ fg − eh),

β =2ag(−1 + h) + b(1 + g − h)(−1 + g + h)− f2 − efg + e2h,

γ =− a(g2 − 4h− 2g2h) + bg(1 + g2 − h2) + e(egh− f − fg2 − fh),

δ =− ag(1 + g2 − h2)− b(1 + g2 − 2h− 2g2h+ h2)− f2(1 + g2) + e(e+ fg)h.

(24)

We observe that he condition α = β = 0 implies B2 = 0 and so we consider two subcases: B2 6= 0

and B2 = 0.

4.2.1.1 The subcase B2 6= 0 Then due to θ 6= 0 the condition B1 = 0 implies a = 0 and

applying the transformation x1 = x, y1 = gx+ (1 + h)y we arrive at the family of systems

ẋ1 = x1y1, ẏ1 = b(1 + h) + (e− fg + eh)x1 + fy1 −
1

1 + h

[
(g2 + (h− 1)2)x21 − 2gx1y1 − hy21

]
.

So we get a subfamily of the family of systems (3).

4.2.1.2 The subcase B2 = 0 Then we obtain α = β = 0 and considering (24) this condition

yields

a =
1

[
g2 + (h− 1)2

]2
[
(e+ fg − eh)(2egh+ fh2 − f − fg2)

]
≡ a0,

b =− 1
[
g2 + (h− 1)2

]2
[
efg(h− 1)(1 + 3h)− efg3 + (h− 1)2(f2− e2h) + g2(f2 + e2h− 2f2h)

]
≡ b0.
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In this case clearly we obtain systems (23) with a = a0 and b = b0 which we denote by (230). For

these systems calculations yield B1 = B2 = 0 and

B3 =
3

[
g2 + (h− 1)2

]2 (1 + h)2(e+ fg − eh)(f + fg2 − 2egh− fh2)(x2 + y2)2 (25)

We detect that systems (230) possess two complex invariant lines:

[
g ± i(1− h)

]
x+ (1− h∓ ig)y − (f ± ie) = 0

in two different directions (intersecting infinite line at complex singularities).

Since for system (3) we have θ = 8d1(b
2
1c2 − 4a0c

2
2 + 4a0c2d1 − a0d21) 6= 0, we deduce that in order

to exist an affine transformation for bringing systems (230) to the form (3) we need a real invariant

affine line in the third (real) direction.

On the other hand according to Lemma 3 for the existence of invariant affine lines in three distinct

directions the condition B3 = 0 is necessary.

So we conclude that in the case η < 0, θ 6= 0, B1 = B2 = 0 and B3 6= 0 a quadratic system could

not be brought to an Abel quadratic differential system.

Assume now B3 = 0. Considering the condition θ 6= 0 and (25) we obtain the condition

(e+ fg − eh)(f + fg2 − 2egh− fh2) = 0.

4.2.1.2.1 The possibility e(1−h)+fg = 0. If g = 0 then due to θ 6= 0 (i.e. g2+(h−1)2 6= 0)

we obtain e = 0 and in this case systems (230) have the form

ẋ = (h+ 1)xy, ẏ = − f2

(h− 1)2
+ fy − x2 + hy2.

Thus we get Abel quadratic systems of the form (3).

Assume now g 6= 0. Then we obtain f = e(h− 1)/g and systems (230) become

ẋ = gx2 + (1 + h)xy, ẏ = −e2/g2 + e(h− 1)y)/g − x2 + gxy + hy2.

Applying the transformation x1 = x, y1 = gx+ (1 + h)y we arrive at the following subfamily of the

family of systems (3):

ẋ1 = x1y1, ẏ1 = −e
2(1 + h)

g2
+ 2ex1 +

e(h− 1)

g
y1 +

1

1 + h

[
(g2 + (h+ 1)2)x21 + 2gx1y1 + hy21

]
.

4.2.1.2.2 The possibility f(1 + g2 − h2)− 2egh = 0. If g = 0 then h2 − 1 6= 0 and we again

get f = 0 and we arrive at the case considered above.

If h = 0 then the condition f(1 + g2) = 0 gives f = 0 and this leads to the degenerate systems

ẋ = x(gx+ y), ẏ = x(e− x+ gy).
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Assume now gh 6= 0. Then we calculate e = f(1+g2−h2)/(2gh) and after the same transformation

applied to systems (230) we obtain the systems

ẋ1 =x1y1,

ẏ1 =
f2(1 + h)

[
g2 + (h+ 1)2

]

4g2h
+
−f(h− 1)(g2 + (h+ 1)2)

2gh
x1 + fy1−

(g2 + (h+ 1)2)

1 + h
x21 +

2g

1 + h
x1y1 +

h

1 + h
y21.

Thus we get Abel quadratic systems of the form (3).

4.2.2 The case θ = 0

According to (22) we have (h + 1)[(h − 1)2 + g2] = 0 and we consider two subcases: Ñ 6= 0 and

N = 0.

4.2.2.1 Subcase N 6= 0. Then by (22) the condition θ = 0 yields h = −1 and in addition we

may assume f = 0 due to the translation x → x and y → y + f/2. Hence, we obtain the family of

systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ ex− x2 + gxy − y2, (26)

for which calculations yield:

B1 =− d2g(α̂2 + β̂2), H7 = 4d(4 + g2),

B2 =− 648(α̂γ̂ + β̂δ̂)x4 + 648a(1 + h)2α̂y2(6x2 − y2)− 2592a(1 + h)2β̂xy(x2 − y2),
(27)

where
α̂ =a(g2 − 4) + 4bg − 2ce− d(d+ e)g,

β̂ =− 4ag + b(g2 − 4) + c2 + d2 − e2 + cdg,

γ̂ =− a(4 + 3g2) + bg3 + c2g − e(d+ e)g + c(dg2 − 2e) + d2g,

δ̂ =− ag3 − b(4 + 3g2) + c2 + c(d+ 2e)g + (d+ e)(d− e+ dg2).

(28)

We observe that he condition α̂ = β̂ = 0 implies B2 = 0 and so we examine two possibilities: B2 6= 0

and B2 = 0.

4.2.2.1.1 The possibility B2 6= 0. Then the condition B1 = 0 implies dg = 0 and we examine

two cases: H7 6= 0 and H7 = 0.

1) The case H7 6= 0. Considering (27) we have d 6= 0 and this implies g = 0. So we get the family

of systems

ẋ = a+ cx+ dy, ẏ = b+ ex− x2 − y2,
and applying the transformation x1 = x, y1 = cx + dy + a and t1 = t/d we arrive at the family of

systems

ẋ1 = dy1, ẏ1 = bd2 − a2 + (d2e− 2ac)x1 + (2a+ cd)y1 − (c2 + d2)x21 + 2cx1y1 − y21.
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So we get a subfamily of the family of systems (3).

2) The case H7 = 0. Then d = 0 and we arrive at the systems

ẋ = a+ cx+ gx2, ẏ = b+ ex− x2 + gxy − y2, (29)

which could have real straight lines only in the direction x = 0. However the right hand side of the

first equation does not have as a factor y. Comparing with systems (3) we deduce that there could

not exist an affine transformation which brought the above systems to the form (3).

4.2.2.1.2 The possibility B2 = 0. Then we obtain α̂ = β̂ = 0 and considering (28) this

condition yields

a =
1

(4 + g2)2
(2c+ dg + eg)(−4e+ 2cg + dg2) ≡ a1,

b =
1

(4 + g2)2
[
cdg3 + (c2 − 3d2 − 4de− e2)g2 − 4c(d+ 2e)g − 4(c2 + d2 − e2)

]
≡ b1.

In this case clearly we obtain systems (26) with a = a1 and b = b1 which we denote by (261). For

these systems calculations yield B1 = B2 = 0 and

B3 = −3d2g(x2 + y2)2, H7 = 4d(4 + g2). (30)

We detect that systems (261) possess two complex invariant lines:

(g ± 2i)x+ (2∓ ig)y + c∓ i(d+ e) = 0.

We consider two cases: B3 6= 0 and B3 = 0.

1) The case B3 6= 0. We have two complex invariant lines. But by the same arguments as earlier

we deduce that in order to exist an affine transformation for bringing systems (261) to the form (3)

we need a real invariant affine line in the third (real) direction. However according to Lemma 3 for

the existence of invariant affine lines in three distinct directions the condition B3 = 0 is necessary.

So we conclude that in the considered case a quadratic system (261) could not be brought to an

Abel quadratic system of the form (3).

2) The case B3 = 0. Considering (30) the condition dg = 0 holds and we consider two subcases:

H7 6= 0 and H7 = 0.

a) The subcase H7 6= 0. Then d 6= 0 and the condition B3 = 0 implies g = 0. Then systems (261)

become

ẋ = −ce/2 + cx+ dy, ẏ = (c2 + d2 − e2)/4 + ex− x2 − y2

and applying the transformation x1 = x, y1 = cx+ dy− ce/2 and t1 = t/d we arrive at the following

subfamily of systems (3):

ẋ1 = dy1, ẏ1 = (c2 + d2)(d2 − e2)/4 + (c2 + d2)ex1 + c(d− e)y1 − (c2 + d2)x21 + 2cx1y1 − y21.
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b) The subcase H7 = 0. Then d = 0 which implies B3 = 0. In this case considering systems (261)

we arrive at the systems

ẋ = a1
∣∣
d=0

+ cx+ gx2, ẏ = b1
∣∣
d=0

+ ex− x2 + gxy − y2.

These systems could possess invariant lines in the unique real direction x = 0. However by the same

arguments as we present earlier for systems (29) we conclude that there could not exist an affine

transformation which brings the above systems to the form (3).

4.2.2.2 Subcase Ñ = 0. Then from (22) we have g = h − 1 = 0 and without loss of generality

we may assume c = d = 0 via the translation x → x − d/2, y → y − c/2. Hence we obtain the

systems

ẋ = a+ 2xy, ẏ = b+ ex+ fy − x2 + y2, (31)

for which calculations yield:

B1 = − 4a(e2 + f2)2, B2 = −648
[
(e4 − 8aef + 2e2f2 + f4)x4 + 16a(e2 − f2)x3y+

48aefx2y2 + 16a(f2 − e2)xy3 − 8aefy4.

We observe that the condition e = f = 0 implies B2 = 0 and so we consider two possibilities: B2 6= 0

and B2 = 0.

1) The possibility B2 6= 0. In this case the condition B1 = 0 gives a = 0 and evidently systems

(31) are of the form (3).

2) The possibility B2 = 0. Then considering the condition B1 = 0 we obtain e = f = 0 and we

get the family of systems

ẋ = a+ 2xy, ẏ = b− x2 + y2,

for which we have B3 = −12a(x2 + y2)2. We detect that these systems possess the following two

couples of complex invariant lines:

b+ ia− (x− iy)2 = 0, −b+ ia− (x+ iy)2 = 0.

According to Lemma 3 if B3 6= 0 then in the real direction x = 0 the above systems do not

have any invariant line and this means that we could not bring them to the form (3) via an affine

transformation.

It remains to observe that for B3 = 0 (i.e. a = 0) the above systems are of the form (3).

Thus all the possibilities in the case η < 0 are examined and we conclude that the statement B)

of the Main Theorem is proved.

4.3 The subfamily defined by C): η = 0, M̃ 6= 0

In this case by Lemma 2 we have to consider the systems (SIII) for which calculations yield:

θ = 8h2(1− g), µ0 = gh2, Ñ = (g2 − 1)x2 + 2h(g − 1)xy + h2y2. (32)

We consider two cases: θ 6= 0 and θ = 0.
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4.3.1 The case θ 6= 0

Then (g − 1)h 6= 0 and due to a translation we may assume d = e = 0, i.e. we get the systems

ẋ = a+ cx+ gx2 + hxy, ẏ = b+ fy + (g − 1)xy + hy2, (33)

for which we calculate

B1 =− a2b(g − 1)2h4.

Therefore due to θ 6= 0 the condition B1 = 0 implies ab = 0 and we consider two subcases: a = 0

and b = 0

4.3.1.1 The subcase a = 0 In this case applying the transformation x1 = x, y1 = gx+ hy + c

we arrive at the family of systems

ẋ1 = x1y1, ẏ1 = c2 − cf + bh+ (c+ cg − fg)x1 + (f − 2c)y1 + gx21 − x1y1 + y21,

which is a subfamily of (3).

4.3.1.2 The subcase b = 0 Then systems (33) possess the invariant line y = 0 and using the

transformation...

x1 = y, y1 = (g − 1)x+ hy + f

we arrive at the systems

ẋ1 = x1y1, ẏ = b′ + e′x1 + l′x21 + (f ′ + 2m′x1)y1 + n′y2,

where b′, e′, f ′, l′,m′ and n′ are rational functions of the parameters a, c, f, g, h with the same de-

nominator (g − 1) 6= 0.

It remains to observe that these systems belong to the family of systems (3).

4.3.2 The case θ = 0

By (32) we obtain h(g − 1) = 0 and we consider two subcases: µ0 6= 0 and µ0 = 0.

4.3.2.1 The subcase µ0 6= 0 Considering (32) we obtain h 6= 0, g = 1 and then we may assume

h = 1 due to the change y → y/h. Moreover, we may assume c = d = 0 via the translation x→ x−d
and y → y + 2d− c. So, we obtain the canonical systems

ẋ = a+ x2 + xy, ẏ = b+ ex+ fy + y2, (34)

for which calculation yields

B1 = −a2e2, B2 = 648
[
(4a− b)e2x4 + 4ae2x3y − a2y4

]
, H7 = −4e.

The condition B1 = 0 implies ae = 0 and we consider two possibilities: H7 6= 0 and H7 = 0.
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4.3.2.1.1 The possibility H7 6= 0. In this case e 6= 0 and we obtain a = 0. Then applying

the transformation x1 = x, y1 = x+ y we arrive at the family of systems

ẋ1 = x1y1, ẏ1 = b+ (e− f)x1 + fy1 + x21 − x1y1 + y21, (35)

which is a subfamily of (3).

4.3.2.1.2 The possibility H7 = 0. Then e = 0 and this leads to the systems

ẋ = a+ x2 + xy, ẏ = b+ fy + y2,

for which

B1 = 0, B2 = −648a2y4.

We observe that these systems possess only two (parallel) invariant lines b + fy + y2 = 0 in the

direction y = 0 which could be real or complex or could coincide. Moreover by Lemma 3 in the case

B2 6= 0 we do not have any other invariant line in the second direction x = 0. Therefore by the same

arguments as we presented earlier for systems (29), we conclude that for B2 6= 0 there cannot exist

an affine transformation which brings the above systems to the form (3).

Assuming B2 = 0 we obtain a = 0 and using the transformation x1 = x, y1 = x + y we arrive at

the systems (35) with e = 0, i.e. we get systems of the form (3).

4.3.2.2 The subcase µ0 = 0 Since θ = 0 this implies h = 0 and for the systems (SIII) we have

Ñ = (g2 − 1)x2 and we examine two possibilities: Ñ 6= 0 and Ñ = 0.

4.3.2.2.1 The possibility Ñ 6= 0. In this case g − 1 6= 0 and we may assume e = f = 0 via

the translation x→ x+ f/(1− g) and y → y + e/(1− g). This leads to the systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ (g − 1)xy, (36)

for which we have

B1 = −bd4(g − 1)2g2, Ñ = (g2 − 1)x2, H7 = 4d(g2 − 1).

So due to Ñ 6= 0 the condition B1 = 0 gives bdg = 0 and we consider two cases: H7 6= 0 and H7 = 0.

1) The case H7 6= 0. Then d 6= 0 and we get bg = 0.

If b = 0 then it is evident that after the interchange x↔ y systems (36) become of the form (3).

Assume now g = 0. Since d 6= 0 we can apply the transformation x1 = x, y1 = cx + dy + a and

this leads to a subfamily of (3):

ẋ1 = y1, ẏ1 = bd+ ax1 + cy1 + cx21 − x1y1.

2) The case H7 = 0. Then d = 0 and we obtain the systems

ẋ = a+ cx+ gx2, ẏ = b+ (g − 1)xy (37)
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which possess the invariant lines a+cx+gx2 = 0 in the real double direction x = 0 because C2 = x2y.

We calculate

B1 = B2 = 0, B3 = −3b(g − 1)2x4

and we conclude that an invariant line exists in the direction y = 0 if and only if B3 = 0. So by the

same arguments as we presented earlier for systems (29), we conclude that for B3 6= 0 there cannot

exist an affine transformation which brings the above systems to the form (3).

Assuming B3 = 0 we obtain b = 0 (due to Ñ 6= 0) and in the same manner as above by the

interchanging x↔ y systems (36) become of the form (3).

4.3.2.2.2 The possibility Ñ = 0. In this case g2 − 1 = 0, i.e. g = 1 or g = −1.

On the other hand for systems (SIII) with h = 0 we have K̃ = g(g − 1)x2 and we consider two

cases: K̃ 6= 0 and K̃ = 0.

1) The case K̃ 6= 0. Then g−1 6= 0 and this implies g = −1. In this case we may assume e = f = 0

via the translation x→ x+ f/2 and y → y + e/2 and we arrive at the family of systems

ẋ = a+ cx+ dy − x2, ẏ = b− 2xy, (38)

for which calculations yield:

B1 = −4bd4, θ3 = 2d2.

a) If θ3 6= 0 then the condition B1 = 0 gives b = 0 and after interchange x↔ y the above systems

become of the form (3).

b) Assume now θ3 = 0, i.e. d = 0 and we get the systems (37) with g = −1. So we repeat the

same steps as before in this particular case and we conclude that the systems (37) could be brought

via an affine transformation to the form (3) if and only if either θ3 6= 0 or θ3 = 0 and B3 = 0.

2) The case K̃ = 0. Then g = 1 and we may assume c = 0 due to the translation x → x − c/2
and y → y. Then we obtain the systems

ẋ = a+ dy + x2, ẏ = b+ ex+ fy. (39)

It is clear that in order to have invariant lines in the direction x = 0 (respectively y = 0) the condition

d = 0 (respectively e = 0) has to be satisfied. However in the case d = 0 we obtain two parallel

complex lines and clearly we could use them for the construction of the transformation which brings

these systems to the form (3).

On the other hand if e = 0 we have the invariant line fy + b = 0 for f 6= 0. However applying

the transformation x1 = fy + b, y1 = γx+ δy + ν with free parameters γ, δ and ν, we arrive at the

systems

ẋ1 = fx1, ẏ1 = Q̃(x1, y1).

As it can be observed these systems do not have the form (3).
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So we deduce that in the case Ñ = 0 = K̃ there cannot exist an affine transformation which brings

a system (SIII) to an Abel quadratic system of the form (3).

So since all the possibilities in the case η = 0 and M̃ 6= 0 are examined we deduce that the

statement C) of the Main Theorem is proved.

4.4 The subfamily defined by D): η = M̃ = 0

According to the conditions provided by Main Theorem we consider two cases: C2 6= 0 and C2 = 0.

4.4.1 The case C2 6= 0

Then by Lemma 2 we examine the systems (SIV ) for which calculations yield:

η = M̃ = 0, C2 = x3, θ = 8h3. (40)

4.4.1.1 The subcase θ 6= 0. Then h 6= 0 and due to a translation we may assume c = d = 0,

i.e. we get the systems

ẋ = a+ gx2 + hxy, ẏ = b+ ex+ fy − x2 + gxy + hy2, (41)

for which we calculate B1 = −a3h6. So the condition B1 = 0 gives a = 0 and then the above systems

after the transformation x1 = x, y1 = gx+ hy become

ẋ1 = x1y1, ẏ = bh+ (eh− fg)x1 + fy1 − hx21 + y2,

i.e. we get a subfamily of (3).

4.4.1.2 The subcase θ = 0. Then h = 0 and we calculate

B1 = −d6g3, Ñ = g2x2

and we consider two possibilities: Ñ 6= 0 and Ñ = 0.

4.4.1.2.1 The possibility Ñ 6= 0. We have g 6= 0 and the condition B2 = 0 gives d = 0. In

this case due to a translation we may assume e = f = 0 and this leads to the systems a

ẋ = a+ cx+ gx2, ẏ = b− x2 + gxy. (42)

Since for these systems we have C2 = x3 (i.e. we could have real invariant affine lines only in this

direction) we conclude, that besides the parallel invariant lines a+ cx+ gx2 = 0 the above systems

cannot have other invariant lines.

Thus applying the same arguments as we present earlier for systems (29), we deduce that for

Ñ 6= 0 there cannot exist an affine transformation which brings systems (42) to the form (3).
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4.4.1.2.2 The possibility Ñ = 0. Then g = 0 (this implies B1 = 0) and we arrive at the

systems

ẋ = a+ cx+ dy, ẏ = b+ ex+ fy − x2,

for which B2 = −648d4x4.

1) The case B̃2 6= 0. We obtain d 6= 0 and applying the transformation x1 = x, y1 = cx+ dy + a

we obtain a subfamily of (3):

ẋ1 = y1, ẏ1 = bd− af + (de− cf)x1 + (c+ f)y1 − dx21. (43)

2) The case B̃2 = 0. Then we get the systems

ẋ = a+ cx, ẏ = b+ ex+ fy − x2,

and since the right hand side of the first equation does not have as a factor y we deduce that there

could not exist an affine transformation which brings the above systems to the form (3).

4.4.2 The case C2 = 0

Then by Lemma 2 we examine the systems (SV ) which have the infinite line fulfilled with singularities.

This family of systems is considered in [70], where are presented a total of 9 canonical forms of this

family: C2.1 – C2.9 (see Table 1, page 741).

We observe that the canonical systems C2.1 – C2.4 for H10 6= 0 as well as C2.5 – C2.7 for H10 = 0

and H12 6= 0 after the additional interchange x↔ y have the form

ẋ = xy, ẏ = Qi(x, y), (i = 1, . . . , 7)

where Qi(x, y) is the corresponding to C2.i quadratic polynomial depending of at least one parameter.

It is evident that these canonical systems belong to the family (3).

It remains to consider two canonical systems given in Table 1 of [70]:

(C2.8) :

{
ẋ = x+ x2,

ẏ = 1 + xy;
(C2.9) :

{
ẋ = x2,

ẏ = 1 + xy,

and we claim that there does not exist an affine transformation bringing any of these two systems

to the form (3).

Indeed, for both systems (C2.8) and (C2.9) we have: C2 = 0 and H10 = 0 = H12.

On the other hand for systems (3) we calculate

C2 = −a0x3 − b1x2y − (c2 − d1)xy2

and hence the condition C2 = 0 implies a0 = b1 = 0 and d1 = c2. Then we get the systems

ẋ = (d+ 2hx)y, ẏ = b+ ex+ fy + 2hy2
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for which calculations yield

H10 = 36c21c
4
2 = 0, H12

∣∣
{c1c2=0} = −8c20c

4
2y

2 = 0.

If c2 6= 0 then we obtain c1 = 0 = c0 and this leads to degenerate systems

ẋ = (d0 + d1x)y, ẏ = y(b0 + d1y).

On the other hand assuming d1 = 0 we get the linear systems

ẋ = d0y, ẏ = c0 + c1x+ b0y.

This completes the proof of our claim.

Thus all the cases are examined and we deduce that the the Main Theorem is proved.

4.5 Phase portraits of the quadratic systems from the family D)

defined in the Main Theorem

According to Lemma 2 the systems from the family D) defined by the condition η = M̃ = 0 could be

brought via an affine transformation either to the systems (SIV ) (if C2 6= 0) or to the systems (SV )

(if C2 = 0). So we examine these two subfamilies separately. We give examples for the realization of

each one of the constructed phase portraits of systems (1) belonging to one of the above mentioned

two classes in the form (a, c, d, g, h, k), (b, e, f, l,m, n).

4.5.1 Systems (SIV ): η = M̃ = 0, C2 6= 0

Theorem 1. Assume that for a quadratic system the conditions η = M̃ = 0, and C2 6= 0 hold.

Then this system belongs to the class QSAb if and only if either θ 6= 0 or θ = Ñ = 0 and B2 6= 0.

Moreover its phase portrait is topologically equivalent to one of the pictures given in Figure 1 if and

only the following corresponding conditions are verified:
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Picture SIV .1 ⇔ θ 6= 0, D < 0, R > 0, S > 0, µ0 < 0, ¬(C2), Ũ1Ũ2 < 0; [Conf. (3)]

Picture SIV .2 ⇔ θ 6= 0, D < 0, R > 0, S > 0, µ0 < 0, ¬(C2), Ũ1Ũ2 > 0; [Conf. (3)]

Picture SIV .3 ⇔ θ 6= 0, D < 0, R > 0, S > 0, µ0 < 0, (C2); [Conf. (4)]

Picture SIV .4 ⇔ θ 6= 0, D < 0, R > 0, S > 0, µ0 > 0; [Conf. (8)]

Picture SIV .5 ⇔
{
θ 6= 0,D < 0, (R ≤ 0) ∨ (S ≤ 0) or

θ = Ñ = 0, B2 6= 0,U < 0;
[Conf. (12)]

Picture SIV .6 ⇔
{
θ 6= 0,D > 0, µ0 < 0,¬(Ĉ1), Ũ1 < 0, or

θ 6= 0,D = T = P = 0,R 6= 0, T4 6= 0, µ0 < 0;
[Conf. (16)]

Picture SIV .7 ⇔ θ 6= 0, D > 0, µ0 < 0, ¬(Ĉ1), Ũ1 > 0; [Conf. (16)]

Picture SIV .8 ⇔ θ 6= 0, D > 0, µ0 < 0, (Ĉ1); [Conf. (18)]

Picture SIV .9 ⇔
{θ 6= 0,D > 0, µ0 > 0,¬(C2), or

θ 6= 0,D = T = P = 0,R 6= 0, T4 6= 0, µ0 > 0, or

θ = Ñ = 0, B2 6= 0,U > 0,¬(C9);

[Conf. (23)]

Picture SIV .10 ⇔
{
θ 6= 0,D > 0, µ0 > 0, (C2), or

θ = Ñ = 0, B2 6= 0,U > 0, (C9);
[Conf. (24)]

Picture SIV .11 ⇔ θ 6= 0, D = 0, T < 0 µ0 < 0, B2Ũ1 6= 0, E1 6= 0; [Conf. (30)]

Picture SIV .12 ⇔ θ 6= 0, D = 0, T < 0 µ0 < 0, B2Ũ1 6= 0, E1 = 0; [Conf. (34)]

Picture SIV .13 ⇔ θ 6= 0, D = 0, T < 0 µ0 < 0, B2 = 0; [Conf. (30)]

Picture SIV .14 ⇔ θ 6= 0, D = 0, T < 0 µ0 < 0, Ũ1 = 0; [Conf. (30)]

Picture SIV .15 ⇔ θ 6= 0, D = 0, T < 0 µ0 > 0; [Conf. (37)]

Picture SIV .16 ⇔
{
θ 6= 0,D = 0,T > 0, E1 6= 0 or

θ 6= 0,D = T = P = R = 0, µ0 > 0;
[Conf. (44)]

Picture SIV .17 ⇔
{
θ 6= 0,D = 0,T > 0, E1 = 0 or

θ = Ñ = 0, B2 6= 0,U = 0;
[Conf. (47)]

Picture SIV .18 ⇔ θ 6= 0, D = 0, T = 0 P 6= 0; [Conf. (50)]

Picture SIV .19 ⇔ θ 6= 0, D = 0, T = 0 P = 0, R 6= 0, T4 = 0, µ0 < 0; [Conf. (60)]

Picture SIV .20 ⇔ θ 6= 0, D = 0, T = 0 P = 0, R 6= 0, T4 = 0, µ0 > 0; [Conf. (64)]

Picture SIV .21 ⇔ θ 6= 0, D = 0, T = 0 P = 0, R = 0, µ0 < 0; [Conf. (67)]

The

last column in the above table contains the corresponding topological configurations according to the

notations given in the set of diagrams provided by the Main Theorem in [16].

Proof: We prove this theorem following the conditions provided by the statement D) of the Main

Theorem.

4.5.1.1 The case θ 6= 0. Considering the systems (41) and the corresponding transformed sys-

tems we examine the family:

ẋ = xy, ẏ = b+ ex+ fy − hx2 + y2. (44)

We shall consider step by step the conditions provided by the the Diagrams 1-6 form [16], taking

into account that the conditions η = M̃ = 0, and C2 6= 0 are satisfied.
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Figure 1: Global phase portraits of quadratic systems with η = M̃ = 0, C2 6= 0.

For these systems calculations yield:

C2 = hx3, µ0 = −h, D = −48b2(f2 − 4b)(e2 + 4bh), B2 = −648b2h2x4,

T4 = −f2h(9b− 2f2), T3 = −fh(18b− 5f2), T2 = −3(3b− f2)h, F = 9fh/8,

F1 = 0, F2 = −9f2h2/2 = −F3, B = −9(9e2 + 36bh− 8f2h)/8, H = −9h/2, σ = f + 3y.

(45)

We observe that the condition C2 6= 0 implies µ0 6= 0 and according to [9, Table 6.2] the above
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systems possess finite singularities of total multiplicity four. More exactly we have the singularities

M1,2(0, y1,2) and M3,4(x3,4, 0), where

y1,2 =
(
− f ±

√
f2 − 4b

)
/2, x3,4 =

(
e±

√
e2 + 4bh

)
/(2h). (46)

It is clear that on the real invariant line x = 0 are located the singularities M1,2(0, y1,2) and these

singularities are real if f2 − 4b > 0 and they are complex if f2 − 4b < 0.

First we prove the following lemma:

Lemma 4. For a system (44) the conditions (C1) as well as the conditions (C5) - (C10) and (Ĉ2)

could not be satisfied.

Proof: First of all from (45) we obtain that for systems (44) the condition σ = f + 3y 6= 0 holds.

Therefore considering (8) and (9) we deduce that the conditions (C5) - (C10) and (Ĉ2) could not be

satisfied for these systems.

It remains to examine the conditions (C1). According to (8) these conditions imply T3 6= 0 and

F2 = 0. However considering (45) it is clear that the condition T3 6= 0 (i.e. fh 6= 0) implies F2 6= 0.

This completes the proof of the lemma.

According to [9, Table 6.2] all the finite singularities of systems (44) are distinct if D 6= 0 and we

have multiple singular points if D = 0. So we examine three subcases: D < 0, D > 0 and D = 0.

4.5.1.1.1 The subcase D < 0. According to [9, Table 6.2, page 124] systems (44) possess

either four real distinct finite singularities in the case R > 0, S > 0, or four complex finite singularities

if (R ≤ 0) ∨ (S ≤ 0).

1) The possibility R > 0, S > 0 So systems (44) possess four real distinct finite singularities and

following [16, Diagram 1, page 3] we consider two cases: µ0 < 0 and µ0 > 0.

a) The case µ0 < 0. According to this diagram we could have either the topological configuration

(3) s, a, a, a; S if ¬(C2) or (4) s, a, a, c; S if (C2).

Consider first the configuration (3). It is clear that if the saddle is located on the invariant line

x = 0 then we have the separatrix connection between the finite saddle and the infinite one. So we

need a condition to distinguish this case.

On the other hand denoting by ∆i (i = 1, 2, 3, 4) the determinant of the linear matrix corresponding

to the singular point Mi we calculate

∆1,2 = −2b+ (f2 ± f
√
f2 − 4b )/2 ⇒ ∆1∆2 = b(4b− f2).

We remark that when two finite singularities coalesce it is important to distinguish if they are located

on the invariant line, i.e. if 4b− f2 = 0. For systems (44) we have:

Ũ1 = −27(f2 − 4b)h/8, Ũ2 = 9bh/2. (47)

Therefore Ũ1Ũ2 = 243b(4b− f2)h2/16 = 243∆1∆2h
2/16 and we conclude that the following remark

is valid:
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Remark 1. Assume that two real singularities of a system (44) are located on the invariant line

x = 0 and in addition the condition Ũ1Ũ2 6= 0 holds. Then sign (∆1∆2) = sign (Ũ1Ũ2), i.e. on the

invariant line of this system lies exactly one saddle if and only if Ũ1Ũ2 < 0.

So, considering the above remark and the fact that we have a single saddle, in the case of the

topological configuration (3): s, a, a, a; S (see [16]) we obtain Picture SIV .1 if Ũ1Ũ2 < 0 and Picture

SIV .2 if Ũ1Ũ2 > 0. The corresponding example are:

Picture SIV .1 if ¬(C2) and Ũ1Ũ2 < 0 [Ex: (0, 0, 0, 0, 1/2, 0), (1/8, 0, 1,−1, 0, 1)];

Picture SIV .2 if ¬(C2) and Ũ1Ũ2 > 0 [Ex: (0, 0, 0, 0, 1/2, 0), (−3/4, 2, 1,−1, 0, 1)];

Consider now the configuration (4): s, a, a, c; S. Since we have a center (i.e. the conditions (C2)

hold), considering [78] (see also [79]) we get the unique phase portrait given by Picture SIV .3 [Ex:

(0, 0, 0, 0, 1/2, 0), (−1,
√

5, 0,−1, 0, 1)].

b) The case µ0 > 0. In this case by [16, Diagram 1, page 3] we could have either the topological

configuration (8) s, s, a, a; N if ¬((Ĉ1) ∨ (Ĉ2)) or (9) s, s, c, c; N if (Ĉ1) ∨ (Ĉ2).

However the configuration (9) with two centers is not realizable for systems (44) because by Lemma

4 the conditions (Ĉ2) are incompatible.

Consider now the conditions (Ĉ1). According to (45) and (9) the condition H = −9h/2 < 0 is

necessary but this implies h > 0 which contradicts µ0 = −h > 0. This completes the proof of our

claim.

It remains to examine the configuration (8) s, s, a, a; N . It is not too difficult to convince ourself

that both saddles could not be located on the invariant line x = 0 (since ∆1 + ∆2 = f2 − 4b >

0). If both singularities on x = 0 are nodes, then we get Picture SIV .4 [Ex: (0, 0, 0, 0, 1/2, 0),

(−3/4, 1, 1, 1, 0, 1)]. We claim that if we have a saddle and a node on x = 0 then the phase portrait

is topologically equivalent to Picture SIV .4. This results from the following lemma:

Lemma 5. The only possible phase portrait of systems (44) with configuration s, s, a, a; N and a

saddle and a node on x = 0, is topologically equivalent to Picture SIV .4.

Proof. We will prove first that Picture SIV .4 is the only generic phase portrait that we may have in

family (44) and later we will prove that no other non-generic phase portrait may exist. So assume

we are looking first for a generic phase portrait.

The ordinates of both singularities on x = 0 must have the same sign, otherwise, a) if both

singularities on y = 0 had the same sign of abscissa, three of them would form a triangle inside of

which is the remaining singularity, and this forces three points of index +1 (respectively −1) and

one of index −1 (respectively +1) and this is incompatible with µ0 > 0; or b) singularities on y = 0

have different signs and all form a quadrilateral but again this is incompatible with the result of

Berlinski (see [21]) since we get that a saddle and an anti-saddle occupy opposite vertices.

So, the ordinates of both singularities on x = 0 have the same sign, and due to a symmetry we

may assume both positive. Again, the abscissa of both singularities on y = 0 must have the same

sign, otherwise this contradicts the result of Berlinski [21]. By means of another symmetry we may
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consider them also to be positive. And since we do not have yet applied a time change, we may

assume that the node at [0 : 1 : 0] is attractor.

The isocline on which ẏ = 0 is a real ellipse since the homogeneous quadratic part of this ellipse

(see systems (44)) is −hx2 + y2 and h < 0 by µ0 > 0. The other possibility would be a complex

conic or a single point, but since we have 4 real singularities, we could only have a real ellipse.

A generic phase portrait of these systems must be topologically equivalent to a structurally stable

quadratic system of family 3 (see [1]) which we portray in Figure 2. We have already mentioned

that the triple node at infinity behaves as a simple node.

Figure 2: Structurally stable quadratic systems of Family 3 of [1].

Four of these phase portraits contain what is called in some papers (see [1, 6]) a basin, that is,

a saddle sending two of its separatrices to a same singularity and enclosing at least one finite anti-

saddle in the region formed by the two separatrices. The only case which does not contain any basin

is S23,4, is topologically equivalent to Picture SIV .4. We claim then that a system (44) cannot contain

any basin.

By (46) we have that y1,2 =
(
− f ±

√
f2 − 4b

)
/2 and we are assuming that both ordinates are

positives and we have that f2 − 4b > 0. By means of a change of parameters b = (f2 − u2)/4 we

may write them simply as y1,2 = (−f ± u)/2 and their determinants are ∆1,2 = u(u∓ f)/2. Due to

the change u→ −u we get y1 ↔ y2 and we may assume 0 < y1 < y2. Then the singularity on (0, y1)

must be a saddle and correspondingly (0, y2) is a node, otherwise we will have ∆1 > 0 > ∆2 and the

conditions {0 < −f + u < −f − u, u(−f + u) > 0, u(f + u) < 0} are clearly incompatible.

So we assume we have a basin from the finite saddle at (0, y1) and that the finite node is at (0, y2)

with 0 < y1 < y2, so the basin formed by this saddle must end at the infinite node [0 : 1 : 0]. Then

we put the other two singularities on (x1, 0) and (x2, 0) with 0 < x1 < x2. The saddle must be on

(x2, 0) by Berlinski. We plot also with doted lines the isocline on which ẏ = 0. This is an ellipse and

the remaining component y = 0 of the isocline ẋ = xy = 0 (see Figure 3). The eigenvectors of the

saddle (0, y1) are (1, 0) and (0, 1), then the right separatrix of the saddle (0, y1) in the (1, 0) direction

must enter inside the ellipse. But after entering, it must leave it again if we want it to arrive at

[0 : 1 : 0], and in order to leave the ellipse it must cross it again (at a point we may call p) with slope

zero. Then a straight line passing through the point p and the saddle (0, y1) will have three contact

points. So, the left separatrix of (0, y1) must go to the infinite singularity [0 : 1 : 0] and the other to

the anti-saddle at (x1, 0) (remember that we are looking for a generic phase portrait). Then, since

both anti-saddles already receive a separatrix from the saddle (0, y1), the saddle at (x2, 0) cannot

form a basin by itself since there is no anti-saddle inside the basin. So we have proved that if the
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phase portrait is generic it must be S23,4 which is topologically equivalent to Picture SIV .4 in Figure 1.

Figure 3: Impossibility of a portrait with a basin.

Since S23,4 is the only structurally stable possible phase portrait with these conditions, we cannot

have a higher codimension phase portrait (with connections of separatrices) since a small perturba-

tion that keeps the infinity untouched would produce a structurally stable phase portrait which we

have proved it is not possible to be. So the lemma is proved.

2) The possibility (R ≤ 0) ∨ (S ≤ 0). It was mentioned earlier that in this case we have four

complex singularities. According to [16, Diagram 1, page 3] we could have a single topological

configuration (12) N , which leads to the Picture SIV .5: [Ex: (0, 0, 0, 0, 1/2, 0), (1, 0, 0, 1, 0, 1)]

4.5.1.1.2 The subcase D > 0. According to [9, Table 6.2, page 124] systems (44) possess

two real and two complex finite singularities. Considering the coordinates (46) of the singularities

M1,2(0, y1,2) we observe that they are real if f2 − 4b > 0 and they are complex if f2 − 4b < 0.

On the other hand for systems (44) we have Ũ1 = −27(f2 − 4b)h/8 and µ0 = −h and hence,

sign (f2 − 4b) = sign (µ0Ũ1).

Remark 2. Assume that for a quadratic system (44) the condition Dµ0 6= 0 holds. Then the finite

singularities located on the invariant line x = 0 of this system are real if µ0Ũ1 > 0 and they are

complex if µ0Ũ1 < 0.

1) The possibility µ0 < 0. Since η = M̃ = 0, by [16, Diagram 1, page 4] systems (44) could have

either the topological configuration (16) a, a; S if ¬((C1)∨ (Ĉ1)), or (17) a, c; S if (C1), or (18) c, c; S

if (Ĉ1).

We observe that by Lemma 4 the conditions (C1) from (8) are incompatible for systems (44). This

means that the topological configuration (17) could not be realizable for these systems.

Since µ0 < 0, considering Remark 2 it is not difficult to detect that in the case of the configuration

(16) a, a; S we get the Picture SIV .6 if Ũ1 < 0 and the Picture SIV .7 if Ũ1 > 0.

On the other hand the configuration (18) c, c; S leads to the Picture SIV .8. exhibit three examples

of realization of the pictures:

Picture SIV .6: [Ex: (0, 0, 0, 0, 1/2, 0), (−1, 2, 1,−2, 0, 1)];

Picture SIV .7: [Ex: (0, 0, 0, 0, 1/2, 0), (2, 0,−1,−1, 0, 1)];
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Picture SIV .8: [Ex: (0, 0, 0, 0, 1/2, 0), (1, 0, 0,−1, 0, 1)].

2) The possibility µ0 > 0. Considering the condition η = M̃ = 0, by [16, Diagram 1, page 3]

systems (44) could either have the topological configuration (23) s, a; N if ¬((C2) ∨ (C7)), or (24)

s, c; N (C2) ∨ (C7). However by Lemma 4 the conditions (C7) could not be satisfied.

Thus considering Remark 2 and the condition µ0 > 0 we deduce that the configuration (23) s, a; N

with the condition ¬(C2) leads to the Picture SIV .9 if Ũ1 > 0 and to the Picture (a) (see Figure 4)

if Ũ1 < 0. We observe that the last phase portrait is topologically equivalent to the Picture SIV .9.

On the other hand the configuration (24) c, c; S (with the conditions (C2)) leads to the Picture

SIV .10. The realization of these phase portraits is proved by the next examples:

Picture SIV .9: [Ex: (0, 0, 0, 0, 1/2, 0), (1/8, 0, 1, 1, 0, 1];

Picture (a), Fig.4 : [Ex: (0, 0, 0, 0, 1/2, 0), (2, 3,−1, 1, 0, 1];

Picture SIV .10: [Ex: (0, 0, 0, 0, 1/2, 0), (1/2, 2, 0, 1, 0, 1)].

Figure 4: Some phase portraits of quadratic systems with η = M̃ = 0, C2 6= 0.

4.5.1.1.3 The subcase D = 0. If T 6= 0 then according to [9, Table 6.2, page 125] systems

(44) possess one double real singular point and two distinct finite singularities. Moreover these two

singular points are real if T < 0 and complex T > 0. In the case T = 0 and µ0 6= 0 by [9, Table 6.2]

these systems possess at most two finite singularities of total multiplicity four.

Considering (45) we detect that the condition D = 0 gives three possibilities: 1) b = 0; 2) f2−4b =

0 and 3) (e2 + 4bh) = 0. Taking into account the values of the invariant polynomials D, B2 and

Ũ1 from (45) and (47) it is easy to determine, that due to µ0 6= 0 the three mentioned possibilities

could be distinguished by means of these invariant polynomials. More precisely, considering also the

coordinates (46) of the finite singularities M1,2(0, y1,2) and M3,4(x3,4, 0) we have the next remark.

Remark 3. (i) The following conditions are equivalent:

1) b = 0 ⇔ B2 = 0;

2) f2 − 4b = 0 ⇔ Ũ1 = 0;

3) (e2 + 4bh) = 0 ⇔ D = 0, B2Ũ1 6= 0.

(ii) In the case B2 = 0 (respectively Ũ1 = 0; D = 0, B2Ũ1 6= 0) the singular point M4 coalesces

with M1 (respectively M2 with M1; M4 with M3).
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(iii) the condition B2 = 0 (i.e. b = 0) implies T = −3e2f2x2y2(fhx− ey)2 ≤ 0.

In what follows we consider three cases: T < 0, T > 0 and T = 0.

1) The possibility T < 0. Then all three finite singularities (one of them is double) are real and

following [16, Diagram 1, page 4] we consider two cases: µ0 < 0 and µ0 > 0.

a) The case µ0 < 0. Since η = M̃ = 0, according to this diagram we could have either the

topological configuration (30) a, a, sn; S if E1 6= 0 or (34) a, a, cp; S if E1 = 0.

Considering Remark 3 (i) we examine three subcases: B2Ũ1 6= 0; B2 = 0 and Ũ1 = 0.

a.1) The subcase B2Ũ1 6= 0. Then by Remark 3 (i) the condition D = 0 yields e2 + 4bh = 0 and

we obtain b = −e2/(4h). In this case for systems (44) we calculate:

T = −3e2(e2 + f2h)x2(ehx2 + 2fhxy − ey2)2/(16h), E1 = −e2f(e2 + f2h)/(8h) (48)

and since T < 0, the condition E1 = 0 is equivalent to f = 0.

By Remark 3 (ii) we deduce that in this case the singularities located outside the invariant line

coalesced. So in the case E1 6= 0 the configuration (30) a, a, sn; S leads to the phase portrait given

by Picture SIV .11 (see Figure 1).

If E1 = 0 we have the topological configuration (34) a, a, cp; S which leads to the Picture SIV .12.

The corresponding examples are:

Picture SIV .11: [Ex: (0, 0, 0, 0, 1/2, 0), (−1, 2,−1,−1, 0, 1)];

Picture SIV .12: [Ex: (0, 0, 0, 0, 1/2, 0), (−1,−2, 0,−1, 0, 1)].

a.2) The subcase B2 = 0. Then by Remark 3 we have b = 0 and in this case we obtain:

T = −3e2f2x2y2(fhx− ey)2, E1 = −e2f3/2 (49)

and evidently the condition T 6= 0 implies E1 6= 0. So in this case we could have only the config-

uration (30) a, a, sn; S. Taking into account Remark 3 (ii) we arrive at the Picture SIV .13: [Ex:

(0, 0, 0, 0, 1/2, 0), (0,−1,−1,−1, 0, 1)].

a.3) The subcase Ũ1 = 0. By Remark 3 we have b = f2/4 and in this case we obtain:

T = −3f2(e2 + f2h)y2(−fhx2 + 2exy + fy2)2/16, E1 = f3(e2 + f2h)/16. (50)

Clearly that the condition T 6= 0 implies E1 6= 0 and again we could have only the configuration

(30) a, a, sn; S. In this case according to Remark 3 (ii) in this case the singularities located on

the invariant line coalesced. Therefore we arrive at the Picture SIV .14: [Ex: (0, 0, 0, 0, 1/2, 0),

(1/4, 1,−1,−1, 0, 1)].

b) The case µ0 > 0. In this case by [16, Diagram 1, page 4] we could have either the topological

configuration (37) s, a, sn; N if E1 6= 0, or (40) s, a, cp; N if E1 = 0 and ¬(C8), or (41) s, c, cp; N if

E1 = 0 and (C8). However by Lemma 4 the conditions (C8) are incompatible for systems (44). So it

remains to examine the phase portraits given by the topological configurations (37) and (40).
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b.1) The subcase B2Ũ1 6= 0. Then by Remark 3 (i) we have e2 + 4bh = 0, i.e. b = −e2/(4h) and

we calculate:

T = −3e2(e2 + f2h)x2(ehx2 + 2fhxy − ey2)2/(16h), E1 = −e2f(e2 + f2h)/(8h)

and since T < 0, the condition E1 = 0 is equivalent to f = 0. However for f = 0 we get T =

−3e6x2(hx2 − y2)2/(16h) and therefore the condition T < 0 implies h > 0 and this contradicts

µ0 = −h > 0.

Thus in the case B2Ũ1 6= 0 we could only have the configuration (37) s, a, sn; N and considering

Remark 3 (ii) there are two singularities (saddle and node) on the invariant line x = 0 and a saddle-

node outside. Since the triple infinite node behaves as a simple one, the possible generic phase

portraits that may appear in these systems under the current conditions must be topologically

equivalent to one of the 9 codimension 1 structurally unstable phase portraits ranging from U1
A,2

to U1
A,10 from [6]. We do not plot them to save space. Note that they are simply the five phase

portraits given in Figure 2 where one anti-saddle had coalesced with a saddle. However if any one

of them cpold be then by a small perturbation that leaves the infinity untouched, we could produce

the respective structurally stable phase portrait. Since we have proved that only S23,4 is realizable,

then the only codimension 1 realizable phase portrait for these systems is U1
A,7 which is topologically

equivalent to Picture SIV .15.

For the same reason, as we proved that S23,4 was unique, here we cannot have other phase portraits

with separatrix connections and hence U1
A,7 is also unique. As an example of Picture SIV .15 we

may take [Ex: (0, 0, 0, 0, 1/2, 0), (1/8, 1,−1, 2, 0, 1)]. Moreover, the next two cases must also be

topologically equivalent to Picture SIV .15 with the difference of the relative position of the saddle-

node with respect to the the invariant straight line.

b.2) The subcase B2 = 0. According to (49) in this case the condition T 6= 0 implies E1 6= 0 and

we could only have the configuration (37) s, a, sn; N . Taking into account Remark 3 (ii) we arrive

at the Picture (b), Fig.4: [Ex: (0, 0, 0, 0, 1/2, 0), (0,−1,−1, 1, 0, 1)].

b.3) The subcase Ũ1 = 0. Considering (50) we conclude that the condition T 6= 0 implies E1 6= 0

and again systems (44) could have only the configuration (37) s, a, sn; N . In this case taking into

account Remark 3 (ii) we get the Picture (c), Figure 4: [Ex: (0, 0, 0, 0, 1/2, 0), (1/4, 1,−1, 1/2, 0, 1)].

We remark that the phase portraits Picture (b) and Picture (c) from Figure 4 are topologically

equivalent to the Picture SIV .15.

2) The possibility T > 0. According to [16, Diagram 1, page 4] systems (44) possess one real

(double) and two complex singularities. Moreover in this case we could have either the topological

configuration (44) sn; N if E1 6= 0 or (47) cp; N if E1 = 0.

According to Remark 3 (iii) the condition B2 = 0 implies T < 0 and therefore we examine two

cases: Ũ1 6= 0 and Ũ1 = 0.

a) The case Ũ1 6= 0. In this case the condition D = 0 gives b = −e2/(4h) and we obtain the values

of T and E1 given in (48). Clearly the condition T > 0 implies e2h(e2 + f2h) < 0 and then the

condition E1 = 0 is equivalent to f = 0.
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So in the case E1 6= 0 we get the Picture SIV .16: [Ex: (0, 0, 0, 0, 1/2, 0), (1,−2,−1, 1, 0, 1)].

If E1 = 0 we have a cusp and this leads to the phase portrait given by Picture SIV .17: [Ex:

(0, 0, 0, 0, 1/2, 0), (1,−2, 0, 1, 0, 1)].

b) The case Ũ1 = 0. Then b = f2/4 and in this case we obtain the values of T and E1 given

in (50). Evidently the condition T > 0 implies E1 6= 0 and we could have only the configuration

(44) sn; N . Then we obtain a phase portrait topologically equivalent to the Picture SIV .16: [Ex:

(0, 0, 0, 0, 1/2, 0), (1/4, 0,−1, 1, 0, 1)].

2) The possibility T = 0. Since D = 0, according to [16, Diagram 1, page 5] we consider two cases:

P 6= 0 and P = 0.

a) The case P 6= 0. Then by [9, Table 6.2] systems (44) possess two double finite singularities,

which are real if PR > 0 and complex if PR < 0. However we have the next lemma.

Lemma 6. The conditions D = 0 = T and P 6= 0 imply for a system (44) PR > 0 and B2 6= 0.

Proof: Suppose first that the condition B2 = 0. Then b = 0 and for systems (44) we have:

D = 0, T = −3e2f2x2y2(fhx− ey)2, P = e2f2x2y2,

and clearly the condition P 6= 0 implies T 6= 0, i.e. we get a contradiction.

So B2 6= 0 and then the condition D = −48b2(f2−4b)(e2 + 4bh) = 0 gives (f2−4b)(e2 + 4bh) = 0.

We claim that the condition D = 0 = T implies f2 − 4b = e2 + 4bh = 0.

Indeed, assuming b = f2/4 we obtain:

D = 0, T = −3(e2 + f2h)y2P, P = f2(fhx2 − 2exy − fy2)2/16

and therefore the conditions T = 0 and P 6= 0 imply (e2 + f2h) = 0 and f 6= 0. So we have

h = −e2/f2 and we get e2 + 4bh = 0 and this proves our claim.

On the other hand for b = f2/4 and h = −e2/f2 calculations yield

D = T = 0, P = (ex+ fy)4/16, R = e2(ex+ fy)2/f2, T4 = e2f2/4 6= 0

and we observe that PR > 0 and this completes the proof of the lemma.

Considering the conditions D = T = 0, PR > 0 and T4 6= 0, according to [16, Diagram 1, page

5] we arrive at the unique topological configuration (50) sn, sn; N . According to Remark 3 (ii)

we have one saddle-none on the invariant line and another outside. As a result we arrive at the

Picture SIV .18: [Ex: (0, 0, 0, 0, 1/2, 0), (1/4, 0,−1, 1, 0, 1)]. There are other topologically different

phase portraits with two finite saddle-nodes and one infinite node as it is pointed out in [19] but in

this case, the existence of the invariant straight line, or simply continuity arguments from the cases

already studied s, a, sn; N and s, s, a, a; N , give that there is only one possible phase portrait in

these conditions.

b) The case P = 0. We prove the following lemma:
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Lemma 7. Assume that for a system (44) the condition D = T = P = 0 holds. Then the following

conditions are equivalent:

R 6= 0, T4 6= 0 ⇔ b = e = 0, f 6= 0;

R 6= 0, T4 = 0 ⇔ b = f = 0, e 6= 0;

R = 0 ⇔ b = e = f = 0.

Proof: The condition D = 0 yields b(f2− 4b)(e2 + 4bh) = 0 and we consider all three cases given by

this relation.

(i) If b = 0 then for systems (44) we have:

T = −3e2f2x2y2(fhx− ey)2, P = e2f2x2y2, T4 = 2f4h.

It is clear that the condition T = P = 0 implies ef = 0 and therefore R = 3f2h2x2 + 3e2y2. We

observe that the condition f = 0 is equivalent to T4 = 0.

Thus in the case R 6= 0 we have either b = e = 0 and f 6= 0 if T4 6= 0, or b = f = 0 and e 6= 0 if

T4 = 0.

(ii) Assuming b = f2/4 we obtain:

T = −3(e2 + f2h)y2P, P = f2(fhx2 − 2exy − fy2)2/16, T4 = −f4h/4

and clearly the condition T = P = 0 yields f = 0 and we have T4 = 0 and R = 3e2y2. So if R 6= 0

we get the conditions b = f = 0 and e 6= 0.

(iii) Suppose now that the condition b = −e2/(4h) holds. Then we calculate:

T = −3h(e2 + f2h)x2P, P = e2(ehx2 + 2fhxy − ey2)2/(16h2), T4 = f2(9e2 + 8f2h)/4

and evidently the condition T = P = 0 gives e = 0 and in this case we obtain R = 3f2h2x2 and

T4 = 2f4h. Therefore the condition R 6= 0 implies T4 6= 0 and in this case we have b = e = 0 and

f 6= 0.

It remains to observe that in all three cases (i), (ii) and (iii) the condition T = P = R = 0 gives

b = e = f = 0 and this completes the proof of the lemma.

In what follows we consider each one of the subcases provided by Lemma 7.

b.1) The subcase R 6= 0, T4 6= 0. By Lemma 7 we have b = e = 0 and considering [16, Diagram 1,

page 6] we calculate:

E3 = −f2h/4, T4 = 2f4h, µ0 = −h.

If µ0 < 0 then h > 0 and this implies E3 < 0. Then by [16, Diagram 1, page 6] we arrive at the

configurations (16) a, a; S. This leads to the Picture SIV .6: [Ex: (0, 0, 0, 0, 1/2, 0), (0, 0, 1,−1, 0, 1].

Assuming µ0 > 0 we obtain E3 > 0 and by the same Diagram 1 from paper [16] we obtain either

the configuration (23) s, a; N if ¬(C10) or (24) s, c; N if (C10). However by Lemma 4 the conditions

(C10) are not compatible for systems (44).
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On the other hand the configuration (23) s, a; N leads to the phase portrait which is equivalent

to Picture SIV .9: [Ex: (0, 0, 0, 0, 1/2, 0), (0, 0, 1, 1, 0, 1].

b.2) The subcase R 6= 0, T4 = 0. By Lemma 7 we have b = f = 0 (this implies T3 = 0) and e 6= 0.

Therefore we obtain E3 = −e2/4 < 0 and following [16, Diagram 1, page 6] we need to distinguish

two cases: µ0 < 0 and µ0 > 0.

If µ0 < 0 then by [16, Diagram 1, page 5] we get either the configuration (59) a, es; N if ¬(C3) or

(60) c, es; N if (C3). Considering the conditions (C3) from (8) in the case b = e = 0 we obtain:

T4 = T3 = T2 = T1 = 0, σ = 3y 6= 0, F = F1 = 0, H = −9h/2, B = −81e2/8 < 0.

Since µ0 < 0 (i.e. h > 0) we have H < 0 and we deduce that the conditions (C3) are satisfied in the

considered case. So we could have only the configuration (60) c, es; N which leads to the Picture

SIV .19: [Ex: (0, 0, 0, 0, 1/2, 0), (0, 1, 0,−1, 0, 1].

Assume now µ0 > 0. Since E3 < 0 and T4 = T3 = 0 by [16, Diagram 1, page 5] we have the unique

configuration (64) s, es; N which leads to the Picture SIV .20: [Ex: (0, 0, 0, 0, 1/2, 0), (0, 1, 0, 1, 0, 1]

b.3) The subcase R = 0. By Lemma 7 we have b = e = f = and this leads to the homogeneous

quadratic systems (44)

ẋ = xy, ẏ = −hx2 + y2.

In this case by [16, Diagram 1, page 6] we could have either the topological configuration (67) ee; S

if µ0 < 0, or (44) sn; N if µ0 > 0.

In the first case we arrive at the Picture SIV .21: [Ex: (0, 0, 0, 0, 1/2, 0), (1/4, 1,−1, 1, 0, 1)].

The configuration (44) sn; N leads to a phase portrait topologically equivalent with Picture SIV .16:

[Ex: (0, 0, 0, 0, 1/2, 0), (1/4, 1,−1, 1, 0, 1)].

4.5.1.2 The case θ = Ñ = 0, B2 6= 0. Considering the systems (43) we shall examine the

family:

ẋ = y, ẏ = b+ ex+ fy + hx2. (51)

For these systems calculations yield:

C2 = −hx3, η = M̃ = 0, µ0 = µ1 = 0, µ2 = h2x2,

U = h2(e2 − 4bh)x4y2, κ = K̃ = L̃ = 0, T4 = B1 = 0, σ = f.
(52)

Since µ0 = µ1 = 0 and the condition C2 6= 0 implies µ2 6= 0, according to [9, Table 6.2] the above

systems possess finite singularities of total multiplicity two. More exactly we have the singularities

M1,2(x1,2, 0), where

(
− e±

√
e2 − 4bh

)
/(2h), and sign (e2 − 4bh) = sign (U). (53)

So we examine three subcases: U > 0, U < 0 and U = 0.
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4.5.1.2.1 The subcase U > 0. Then considering (52) by [16, Diagram 3, page 9] we obtain

either the configuration (23) s, a;
(
2
3

)
P − P if ¬(C9) or (24) s, c;

(
2
3

)
P − P if (C9).

On the other hand comparing the conditions (C9) from (8) with (52) we deduce that all the

conditions are satisfied except σ = 0, because for systems (51) we have σ = f . So we deduce that in

the considered case the conditions (C9) are satisfied if and only if f = 0.

Thus we obtain that the configuration (23) s, a;
(
2
3

)
P − P leads to a phase portrait topologically

equivalent with Picture SIV .9: [Ex: (0, 0, 1, 0, 0, 0), (0, 1,−1,−1, 0, 0)].

In a similar way we detect that the configuration (24) s, c;
(
2
3

)
P − P leads to a phase portrait

topologically equivalent with Picture SIV .10: [Ex: (0, 0, 1, 0, 0, 0), (0, 1, 0,−1, 0, 0)].

4.5.1.2.2 The subcase U < 0. By [16, Diagram 3, page 9] we get the topological configuration

(12)
(
2
3

)
P − P . This configuration leads to a phase portrait topologically equivalent with Picture

SIV .5: [Ex: (0, 0, 1, 0, 0, 0), (−1, 0,−1,−1, 0, 0)].

4.5.1.2.3 The subcase U = 0. In this case systems (51) possess a double singular point which

could be a saddle-node or a cusp. But since the conditions κ = K̃ = L̃ = 0, T4 = B1 = 0 hold,

according to [16, Diagram 3, page 11] we arrive at the topological configuration (47) cp;
(
2
3

)
P − P .

This configuration leads to a phase portrait topologically equivalent with Picture SIV .17: [Ex:

(0, 0, 1, 0, 0, 0), (−1, 2, 0,−1, 0, 0)].

Since all the cases are examined Theorem 1 is proved.

4.5.2 Systems (SV ): C2 = 0

These systems have the infinite line filled with singularities and this family is considered in [70],

where a total of 9 canonical forms of this family are presented: C2.1 – C2.9 (see Table 1, page 741).

Following [70] and considering our Main Theorem we arrive at the next result.

Theorem 2. Assume that for a quadratic system the condition C2 = 0 holds. Then this system

belongs to the class QSAbel if and only if the condition H2
10 + H2

12 6= 0 is satisfied. Moreover its

phase portrait is topologically equivalent to one of the pictures given in Figure 5 if and only the

following corresponding conditions are verified:

Picture C2.1 ⇔ H10 6= 0, H9 < 0;

Picture C2.2(a) ⇔ H10 6= 0, H9 > 0, H7 6= 0;

Picture C2.2(b) ⇔ H10 6= 0, H9 > 0, H7 = 0;

Picture C2.3 ⇔ H10 6= 0, H9 = 0, H12 6= 0;

Picture C2.4 ⇔ H10 6= 0, H9 = 0, H12 = 0;

Picture C2.5(a) ⇔ H10 = 0, H12 6= 0, H11 > 0, µ2 < 0;

Picture C2.5(b) ⇔ H10 = 0, H12 6= 0, H11 > 0, µ2 > 0;

Picture C2.6 ⇔ H10 = 0, H12 6= 0, H11 < 0;

Picture C2.7 ⇔ H10 = 0, H12 6= 0, H11 = 0.
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Figure 5: Global phase portraits of quadratic systems with C2 = 0.
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