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LEVELS OF CANCELLATION FOR MONOIDS AND MODULES

PERE ARA, KEN GOODEARL, PACE P. NIELSEN, KEVIN C. O’MEARA, ENRIQUE PARDO,
AND FRANCESC PERERA

Abstract. Levels of cancellativity in commutative monoids M , determined by stable
rank values in Z>0 ∪ {∞} for elements of M , are investigated. The behavior of the
stable ranks of multiples ka, for k ∈ Z>0 and a ∈ M , is determined. In the case of a
refinement monoid M , the possible stable rank values in archimedean components of
M are pinned down. Finally, stable rank in monoids built from isomorphism or other
equivalence classes of modules over a ring is discussed.

1. Introduction

We study the cancellative behavior of elements in commutative monoids, as determined
by their stable ranks, which are values in Z>0∪{∞} modelled on cancellation conditions
for direct sums of modules in algebraic K-theory tied to the concept of stable ranks of
(endomorphism) rings. Cancellation in monoids is thus stratified in different levels: the
higher the stable rank of an element, the more restrictive the level in which it cancels.
The essence of the condition is that if an element a in a commutative monoid M has
finite stable rank, say stable rank n, then a + x = a + y implies x = y for any elements
x, y ∈M such that na is a summand of x (Lemma 2.3).

K-theoretic cancellation for modules was established by Evans [15] (for stable rank 1)
and Warfield [28] (for general stable rank). Namely: If A is a module over a ring R and
the endomorphism ring EndR(A) has finite K-theoretic stable rank (recalled in Definition
8.2), then A cancels from certain direct sums A ⊕ B ∼= A ⊕ C. In case EndR(A) has
stable rank 1, then A ⊕ B ∼= A ⊕ C implies B ∼= C for arbitrary R-modules B and C
[15, Theorem 2], while if EndR(A) has stable rank n ≥ 2, then A ⊕ B ∼= A ⊕ C implies
B ∼= C for B and C such that An is isomorphic to a direct summand of B [28, Theorems
1.6, 1.2]. Warfield proved that the condition sr(EndR(A)) = n is equivalent to a certain
“n-substitution property” [28, Theorem 1.6], which has the following consequence: If
A ⊕ B ∼= A ⊕ C and B ∼= An−1 ⊕ B′, then there is a module E such that An ∼= A ⊕ E
and B′ ⊕ E ∼= C [28, Theorem 1.3].

Suppose M is a monoid whose elements are (labels for) the isomorphism classes [X]
in some class C of R-modules closed under pairwise direct sums and whose operation
is given by direct sums: [X] + [Y ] = [X ⊕ Y ]. Assuming C contains A, B, B′, C and
all direct summands of An, the above consequence of the n-substitution property for
EndR(A) reads

n[A] + [B′] = [A] + [C] =⇒ ∃ [E] such that n[A] = [A] + [E] and [E] + [B′] = [C]

in M . This condition provides the definition of stable rank for an element a in an
arbitrary commutative monoid M [6, p.122]:
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• srM(a) is the least positive integer n such that

na+ x = a+ y =⇒ ∃ e ∈M such that na = a+ e and e+ x = y

for any x, y ∈M (if such n exist), or ∞ (otherwise).

In a monoid of isomorphism classes of the type mentioned, srM([A]) ≤ sr(EndR(A))
by Warfield’s theorem. In case R is an exchange ring and M is the monoid V (R) of
isomorphism classes of finitely generated projective R-modules, there is an equality of
stable ranks: srM([A]) = sr(EndR(A)) for all A ∈M [6, Theorem 3.2].

Stable ranks of elements of refinement monoids have been investigated in [6] and sub-
sequent works such as [1, 3, 5, 19, 21], for application to von Neumann regular and/or
exchange rings. The present work is an investigation of stable ranks in general commu-
tative monoids, with further development for refinement monoids.

Throughout, all monoids will be commutative, written additively.

1.1. Contents. Section 2 contains definitions, examples, and basic properties of stable
ranks of monoid elements. Stable rank values in quotients and o-ideals are studied in
Section 3. Section 4 contains our main results on stable ranks of multiples:

Proposition A. (Lemma 4.1, Proposition 4.2) Let M be a monoid and a ∈M .
(1) The stable ranks of the multiples ka decrease as k increases: srM(ka) ≥ srM(la)

for all positive integers k ≤ l.
(2) If srM(a) is finite, the stable ranks of the ka are eventually ≤ 2, namely for k ≥

srM(a)− 1.

Theorem B. (Theorems 4.9, 4.12) Let M be a monoid and a ∈M with srM(a) = n <∞.
Then

1 +

⌊
n− 1

l

⌋
≤ srM(la) ≤ 1 +

⌈
n− 1

l

⌉

for all positive integers l. Further, srM(la) = 1+
⌈
n−1
l

⌉
in case M is a refinement monoid.

Section 5 concerns stable rank values in archimedean components and in separative
monoids.

Theorem C. (Theorem 5.5) Let C be an archimedean component in a monoid M .
(1) The set srM(C) := {srM(c) | c ∈ C} equals Z>0 or Z≥2 or {∞} or a finite subset

of Z>0.
(2) If M is conical, then srM(C) equals {1} or Z≥2 or {∞} or a finite subset of Z≥2.

Theorem D. (Corollary 5.8) If M is a separative monoid, then the stable rank of any
element of M is 1, 2, or ∞.

Stable rank values in conical refinement monoids are investigated in Sections 6 and 7.

Theorem E. (Theorems 6.3, 6.4, 7.9) Let M be a simple conical refinement monoid.
(1) If the stable ranks of the elements of M have a finite upper bound, then M is

cancellative, and all its elements have stable rank 1.
(2) The set srM(M \ {0}) equals {1} or {∞} or Z≥2. All three possibilities occur.

In Sections 8 and 9, we discuss monoids built from isomorphism or other equivalence
classes of certain types of modules, stable rank values in these monoids, and relations
with the K-theoretic stable ranks of the endomorphism rings of the modules concerned.
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1.2. Terminology and notation. We repeat our general hypothesis, that all monoids
in this paper are commutative and additive.

The units of a monoid M are the elements that are invertible (with respect to addition).
Denote the set of units of M by U(M); it is an abelian group. The monoid M is conical
(or reduced) if x+ y = 0 implies x = y = 0 for any x, y ∈M , that is, if U(M) = {0}.

The algebraic ordering on M is the reflexive, transitive relation ≤ defined by

x ≤ y ⇐⇒ ∃ z ∈M such that x+ z = y.

An element u ∈M is an order-unit if

∀ x ∈M, ∃ n ∈ Z>0 such that x ≤ nu.

An o-ideal of M is a submonoid I such that x ≤ y ∈ I implies x ∈ I for any x, y ∈ M .
We write 〈x〉 for the o-ideal generated by an element x ∈M , that is,

〈x〉 := {y ∈M | y ≤ nx for some n ∈ Z>0〉.
We say that M is simple if it has precisely two o-ideals, that is, M is not a group and its
only o-ideals are U(M) and M . In the conical case, these conditions amount to requiring
that M is nonzero and all its nonzero elements are order-units.

Elements x, y ∈ M are asymptotic, written x � y, if 〈x〉 = 〈y〉, that is, if there exist
m,n ∈ Z>0 such that x ≤ my and y ≤ nx. The relation � is an equivalence relation on
M , the equivalence classes of which are called archimedean components. We write M(x)
for the archimedean component containing an element x of M .

Given an o-ideal I of M , there is a congruence ≡I on M given by the rule

x ≡I y ⇐⇒ ∃ a, b ∈ I such that x+ a = y + b.

The monoid M/≡I is called the quotient of M modulo I and is denoted M/I. We write
[x]I , or just [x] if I is understood, for the ≡I-equivalence class of x in M/I.

The (Riesz ) refinement property for M is the condition

∀ x1, x2, y1, y2 ∈M, x1 + x2 = y1 + y2 =⇒ ∃ zij ∈M such that

xi = zi1 + zi2 for i = 1, 2 and yj = z1j + z2j for j = 1, 2.

When this holds, M has refinement, or is a refinement monoid. The refinement property
implies analogous refinements for all equations

∑m
i=1 xi =

∑n
j=1 yj in M .

The monoid M is cancellative if x+ z = y + z implies x = y for any x, y, z ∈ M , and
it is separative (or has separative cancellation) if 2x = x+ y = 2y implies x = y for any
x, y ∈ M . We say that M is strongly separative if 2x = x + y implies x = y for any
x, y ∈M .

Several conditions equivalent to separativity were given in [6, Lemma 2.1], which we
state here for reference.

Lemma 1.1. For a monoid M , the following conditions are equivalent:
(a) M is separative.
(b) For any x, y ∈M , if 2x = 2y and 3x = 3y, then x = y.
(c) For any x, y ∈M and n ∈ Z>0, if nx = ny and (n+ 1)x = (n+ 1)y, then x = y.
(d) For any x, y, z ∈M , if x+ z = y + z and z ∈ 〈x〉 ∩ 〈y〉, then x = y.
In case M has refinement, separativity is also equivalent to the following:
(e) For any x, y, z ∈M , if x+ 2z = y + 2z, then x+ z = y + z.
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There are similar equivalent conditions for strong separativity:

Lemma 1.2. For a monoid M , the following conditions are equivalent:
(a) M is strongly separative.
(b) For any x, y ∈M and n ∈ Z>0, if (n+ 1)x = nx+ y, then x = y.
(c) For any x, y, z ∈M , if x+ z = y + z and z ∈ 〈x〉, then x = y.
(d) For any x, y, z ∈M , if x+ 2z = y + z, then x+ z = y.

Proof. The equivalence of (a), (c), and (d) was noted in [6, p.126], the straightforward
proofs being monoid forms of arguments for direct sums of modules given/noted in [8,
Proposition 4.2] and [6, Lemma 5.1].

(c)=⇒(b): Given (n + 1)x = nx + y, we have x + nx = y + nx. Since nx ∈ 〈x〉,
condition (c) implies x = y.

(b)=⇒(c): Suppose x+ z = y+ z and z ∈ 〈x〉. Then z+ z′ = nx for some z′ ∈M and
n ∈ Z>0. Add z′ to both sides of x+ z = y + z to get (n+ 1)x = nx+ y. Condition (b)
then implies x = y. �

2. Stable rank conditions

Fix a commutative monoidM throughout this section. We recall the definition of stable
rank for elements of M from [6, p.122], give examples exhibiting all possible values, and
develop some basic properties of stable rank.

Definition 2.1. Let a ∈ M and n ∈ Z>0. We say that a satisfies the n-stable rank
condition (in M) if whenever na+ x = a+ y for some x, y ∈M , there exists e ∈M such
that na = a + e and e + x = y. Observe that the n-stable rank condition implies the
m-stable rank condition for all m > n.

The stable rank of a (in M), denoted srM(a) or just sr(a) if M is understood, is the
least positive integer n such that a satisfies the n-stable rank condition (provided such
an n exists) or ∞ (otherwise).

The value srM(a) may vary if M is changed. For instance, if a cancels from sums
within the submonoid A := {na | n ∈ Z≥0}, then srA(a) = 1, regardless of the value of
srM(a).

An initial cache of examples shows that all allowable values of stable rank occur:

Examples 2.2. (1) First, take M := Z≥0 t {∞}. In this monoid, sr(a) = 1 for all
a ∈ Z≥0, since such elements a cancel from sums in M . On the other hand, sr(∞) =∞,
since for any n ∈ Z>0 we have n · ∞ +∞ = ∞ + 0, but there is no e ∈ M satisfying
e+∞ = 0.

(2) Now let n be an integer ≥ 2, and let M be the commutative monoid presented by
two generators, a and b, and two relations, na = a + b and 2(n − 1)a = 2b. It follows
from the relations that every element of M equals either b or a nonnegative multiple of
a. Moreover, the elements 0, a, b, 2a, 3a, . . . in M are all distinct.

(
There is a monoid

homomorphism M → Z≥0 sending a 7→ 1 and b 7→ n − 1, from which we see that
0, a, 2a, 3a, . . . are distinct and b 6= 0. Also, there is a 3-element monoid M ′ := {0, x,∞}
such that 2x =∞, and there is a monoid homomorphism M →M ′ sending a 7→ ∞ and
b 7→ x. From this we see that b 6= ma for all m ∈ Z≥0.

)
Note for later use that it follows

that M is conical.
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Observe that (n − 1)a + a = a + b, but there is no e ∈ M with (n − 1)a = a + e and
e+ a = b. Consequently, sr(a) � n− 1.

Suppose na+x = a+y for some x, y ∈M . If x = 0, we have na = a+y and y+x = y.
If x 6= 0, either x = b or x = ma for some m ∈ Z>0. In both cases, we check that
y = (n − 1)a + x. Since also na = a + (n − 1)a, we conclude that sr(a) ≤ n. Therefore
sr(a) = n.

For later reference, we record that sr(b) = 2. On one hand, b + b = b + (n− 1)a, but
there is no e ∈ M with b = b + e and e + b = (n − 1)a. Thus, sr(b) > 1. On the other
hand, if 2b+ x = b+ y for some x, y ∈ M , we find that the pair of equations 2b = b+ e
and e+ x = y can be solved with e := b (if y = b) or with e := (n− 1)a (otherwise).

(3) A different example with elements of stable rank 2 will also be useful for later
reference. This time, let M be the commutative monoid presented by two generators,
a and b, and one relation, a + b = a. Clearly, every element of M is either a positive
multiple of a or a nonnegative multiple of b. These elements, namely 0, a, b, 2a, 2b, . . . , are
all distinct, as follows. On one hand, there is a homomorphism M → Z≥0 sending a 7→ 1
and b 7→ 0. Consequently, 0, a, 2a, . . . are all distinct, and ma 6= nb for all m,n ∈ Z>0.
On the other hand, there is a homomorphism M → Z≥0 t {∞} sending a 7→ ∞ and
b 7→ 1, whence 0, b, 2b, . . . are all distinct.

We claim that sr(ma) = 2 for any m ∈ Z>0.
Note that ma + b = ma + 0 but there is no e ∈ M satisfying e + b = 0. Thus,

sr(ma) 6= 1.
Now consider x, y ∈M such that 2ma+x = ma+y. If x is a multiple of b, this equation

reduces to 2ma = ma + y. Since 2ma 6= ma, we find that y = ma = ma + x. If x = na
for some n ∈ Z>0, then (2m+n)a = ma+y. In this case, we find that y = (m+n)a, and
again y = ma+ x. In both cases, e := ma is a solution for 2ma = ma+ e and e+ x = y.
Therefore sr(ma) = 2.

The easy argument that the n-stable rank condition implies the (n + 1)-stable rank
condition also yields the following cancellation result, analogous to [28, Theorem 1.2].

Lemma 2.3. Let a ∈M with sr(a) ≤ n <∞. If (n+ 1)a+ b = a+ c for some b, c ∈M ,
then na + b = c. Equivalently, if a + d = a + c for some d, c ∈ M with na ≤ d, then
d = c.

Proof. Given (n + 1)a + b = a + c, we have na + (a + b) = a + c, so sr(a) ≤ n implies
that there is some e ∈ M with na = a + e and e + (a + b) = c. Combining these two
equations yields na+ b = c. The equivalence with the second condition is clear. �

Theorem 2.4. If a = a1 + · · ·+ at for some ai ∈M , then

sr(a) ≤ max(sr(a1), . . . , sr(at)).

Proof. It suffices to deal with the case when t = 2 and n := max(sr(a1), sr(a2)) <∞.
Suppose na+ x = a+ y for some x, y ∈M . Since na1 + (na2 + x) = a1 + (a2 + y) and

sr(a1) ≤ n, there is some e1 ∈M such that na1 = a1+e1 and e1+(na2+x) = a2+y. Then
sr(a2) ≤ n implies that there is some e2 ∈M such that na2 = a2+e2 and e2+(e1+x) = y.
Setting e := e1 +e2, we conclude that na = a+e and e+x = y. Therefore sr(a) ≤ n. �

Corollary 2.5. If a, b ∈M and b is a unit, then sr(a+ b) = sr(a).
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Proof. Since b is cancellative, sr(b) = 1 ≤ sr(a), and so sr(a + b) ≤ sr(a). The reverse
inequality follows in the same way, because a = (a+ b) + b′ for some unit b′. �

Theorem 2.4 of course implies that if a ∈ M with sr(a) ≤ n, then sr(ka) ≤ n for all
k ∈ Z>0. In the case n = 1, the conclusion sr(ka) = 1 can be slightly improved:

Lemma 2.6. Let a ∈M with sr(a) = 1 and k ∈ Z>0. If x, y ∈M with ka+ x = ka+ y,
there exists e ∈M with a = a+ e and e+ x = y.

Proof. By Lemma 2.3, ka+ x = ka+ y implies a+ x = a+ y. The result follows. �
Low stable rank is closely connected to the following conditions.

Definition 2.7. An element a ∈M is

cancellative in case a+ x = a+ y =⇒ x = y, ∀ x, y ∈M ;

Hermite in case 2a+ x = a+ y =⇒ a+ x = y, ∀ x, y ∈M ;

self-cancellative in case 2a = a+ y =⇒ a = y, ∀ x, y ∈M.

Note that M is strongly separative if and only if all its elements are self-cancellative.

Proposition 2.8. Let a ∈M .
(a) If a is cancellative, then sr(a) = 1.
(b) If sr(a) = 1, then a is Hermite.
(c) If a is Hermite, then it is self-cancellative and sr(a) ≤ 2.
(d) If all elements of the set a + M are self-cancellative in M , then a is Hermite.

Consequently, if M is strongly separative, then all its elements are Hermite.
(e) Assume that sr(a) = 1. If x, y ∈M with a+ x = a+ y, there is a unit e ∈M such

that a = a+ e and e+ x = y.
(f) Assuming M is conical, then sr(a) = 1 if and only if a is cancellative.

Proof. (a), (b), (c) are clear from the definitions and Lemma 2.3, and (f) follows imme-
diately from (a), (e).

(d) Suppose that 2a+ x = a+ y for some x, y ∈M . Then 2(a+ x) = (a+ x) + y, and
self-cancellativity of a+ x implies that a+ x = y, proving that a is Hermite. The stated
consequence is immediate.

(e) First, sr(a) = 1 implies that there exists e ∈M such that a = a+ e and e+ x = y.
Writing a + e = a + 0 and applying sr(a) = 1 a second time, there exists e′ ∈ M with
a = a+ e′ and e′ + e = 0. Therefore e is a unit in M . �
Examples 2.9. (1) The conical hypothesis of Proposition 2.8(f) cannot be dropped.
For example, take M = A t B where A is a nonzero abelian group, B = (Z>0,+), and
a+ b = b for all a ∈ A and b ∈ B. Any b ∈ B fails to be cancellative, since A is nonzero,
but sr(b) = 1 holds, as follows. Suppose b + x = b + y for some x, y ∈ M . If one of x
or y is in A, so is the other (since b + b′ 6= b for any b′ ∈ B), and hence b = b + e and
e + x = y by taking e := y − x ∈ A. Otherwise, x, y ∈ B, whence x = y and so taking
e := 0 yields b = b+ e and e+ x = y.

(2) We observe further that self-cancellativity of an element a ∈ M does not imply
that either a is Hermite or sr(a) ≤ 2. Indeed, take M to be presented by a single element
a subject to the relation 3a = a; so M = {0, a, 2a}. Here a is self-cancellative since the
only solution to 2a = a+ y is y = a. However, a is not Hermite since 2a+ a = a+ 0 but
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a + a 6= 0, and sr(a) � 2 since 2a + a = a + 0 but there is no e ∈ M with e + a = 0. In
fact, sr(a) =∞, as the following lemma shows.

Lemma 2.10. If a ∈ M is a non-unit and (k + 1)a ≤ ka for some positive integer k,
then sr(a) =∞.

Proof. It follows from (k+1)a ≤ ka that ma ≤ ka for all m > k. Given a positive integer
n, we have (k + n)a + x = ka for some x ∈ M (depending on n). If sr(a) ≤ n, then
since ka+ (na+x) = ka+ 0, Lemma 2.3 implies na+x = 0. However, this is impossible
because a is not a unit. Therefore sr(a) > n for all n. �

When M has refinement, the requirements for an element of M to have stable rank
at most n can be reduced, as follows. The argument was given by Ara for monoids of
projective modules [1, Theorem 2.2] and noted in general (unpublished correspondence).

Proposition 2.11. Assume M has refinement. Let a ∈ M and n ∈ Z>0. Then the
following conditions are equivalent:

(a) sr(a) ≤ n.
(b) Whenever na+ x = a+ y for some x, y ∈M , then x ≤ y.
(c) Whenever na+ x = a+ y for some x, y ∈M with x ≤ a and y ≤ na, then x ≤ y.
(d) Whenever na = u+ v and a = u+ w for some u, v, w ∈M , then w ≤ v.

Proof. (a)=⇒(b) and (b)=⇒(c): Obvious.
(c)=⇒(d): From na = u + v and a = u + w, we immediately get a + v = na + w.

Applying (c) with x := w ≤ a and y := v ≤ na, we obtain w ≤ v.
(d)=⇒(a): Suppose that na+ x = a+ y for some x, y ∈ M . By refinement, there are

decompositions na = a1 + a2 and x = x1 + x2 for some ai, xj ∈M with a = a1 + x1 and
y = a2 + x2. Then by (d), x1 ≤ a2, so a2 = x1 + e for some e ∈M . Now we have

na = a1 + a2 = a1 + x1 + e = a+ e

y = a2 + x2 = x1 + e+ x2 = e+ x,

verifying that sr(a) ≤ n. �

3. Quotients

Stable rank typically behaves poorly in the passage from a monoid to a quotient.

For example, any commutative monoid M is a quotient of some direct sum Z(I)
≥0, and

the elements of Z(I)
≥0 have stable rank 1 while the stable ranks of elements of M can be

arbitrary. However, there are certain quotients for which stable rank is reasonably well
behaved, as we show in this section. We continue to fix a commutative monoid M .

Lemma 3.1. If I is an o-ideal of M and a ∈M , then srM/I([a]) ≤ srM(a).

Proof. Suppose srM(a) = n < ∞, and consider x, y ∈ M such that n[a] + [x] = [a] + [y]
in M/I. Then na + x + u = a + y + v for some u, v ∈ I. Hence, there is some e ∈ M
with na = a + e and e + x + u = y + v, so n[a] = [a] + [e] and [e] + [x] = [y]. Thus
srM/I([a]) ≤ n. �
Lemma 3.2. Let I be an o-ideal of M and a ∈ I.

(a) srI(a) ≤ srM(a).
(b) If M has refinement, then srI(a) = srM(a).
(c) If M has refinement and a is Hermite within I, then a is Hermite in M .
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Proof. (a) Suppose srM(a) = n < ∞, and consider x, y ∈ I such that na + x = a + y.
Then there exists e ∈ M such that na = a + e and e + x = y. Since e ≤ na (or since
e ≤ y), we have e ∈ I. Thus, srI(a) ≤ n.

(b) Suppose srI(a) = m <∞, and consider x, y ∈M such that ma+ x = a+ y. Then
ma = a1 +a2 and x = x1 +x2 for some ai, xj ∈M such that a1 +x1 = a and a2 +x2 = y.
Since x1 ≤ a and a2 ≤ ma, we have x1, a2 ∈ I. Moreover,

ma+ x1 = a1 + a2 + x1 = a+ a2 ,

and so there exists e ∈ I with ma = a+ e and e+ x1 = a2. Since

e+ x = e+ x1 + x2 = a2 + x2 = y,

we conclude that srM(a) ≤ m.
(c) This is proved in the same manner as (b). �
In certain quotients by congruences, stable ranks can be controlled. A rather trivial

example is the stable equality congruence, given by

u ≡ v ⇐⇒ u+ w = v + w for some w ∈M.

For this congruence, M/≡ is cancellative, whence sr([a]≡) = 1 for all a ∈M .
We present three other instances. In the first, the quotient M/≡ is known as the maxi-

mal antisymmetric quotient of M , antisymmetry being taken with respect to the algebraic
order. The other two examples concern congruences modelled on near-isomorphism and
multi-isomorphism of abelian groups (see Examples 9.6).

The monoid M is said to be stably finite provided a + x = a =⇒ x = 0, for any
a, x ∈M .

Proposition 3.3. Let ≡ be the congruence on M defined by

x ≡ y ⇐⇒ x ≤ y ≤ x.

(a) If M is a stably finite refinement monoid, then so is M/≡.
(b) srM/≡([a]≡) ≤ srM(a) + 1 for all a ∈M .
(c) If M is stably finite or M/≡ has refinement, then srM/≡([a]≡) ≤ srM(a) for all

a ∈M .
(d) If M has refinement, then srM/≡([a]≡) ≥ srM(a) for all a ∈M .
(e) If M is a stably finite refinement monoid, then srM/≡([a]≡) = srM(a) for all a ∈M .

Proof. We abbreviate [−]≡ to [−] throughout the proof.
(a) Suppose [a] + [b] = [a] for some a, b ∈ M . Then a + b + c = a for some c ∈ M ,

and stable finiteness implies b+ c = 0. In particular, b ≤ 0 ≤ b, and thus [b] = [0]. This
shows that M/≡ is stably finite.

Note that when x, y ∈ M with x ≡ y, we have x + a = y and y + b = x for some
a, b ∈M , whence x+ a+ b = x, so stable finiteness implies a+ b = 0. Thus, we can say
that x ≡ y if and only if x = y + b for some unit b ∈M .

Refinement was proved in [19, Proposition 2.4] under the assumption that M is can-
cellative. We utilise the same argument.

Suppose that [a0] + [a1] = [b0] + [b1] in M/≡ for some ai, bj ∈ M . There is a unit
b2 ∈M such that

a0 + a1 = b0 + b1 + b2 .
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By refinement, there are elements cij ∈M such that

ai = ci0 + ci1 + ci2 ∀ i = 0, 1 and bj = c0j + c1j ∀ j = 0, 1, 2.

Since b2 is a unit, so are c02 and c12. Consequently, [ai] = [ci0] + [ci1] for i = 0, 1. Since
also [bj] = [c0j] + [c1j] for j = 0, 1, refinement in M/≡ is established.

(b) Let a ∈M with srM(a) = n <∞, and consider x, y ∈M such that (n+1)[a]+[x] =
[a]+[y]. On one hand, (n+1)a+x+b = a+y for some b ∈M , whence Lemma 2.3 implies
na+ x+ b = y, and so na+ x ≤ y. On the other hand, (n+ 1)a+ x = a+ y+ c for some
c ∈ M , whence Lemma 2.3 implies na + x = y + c, yielding y ≤ na + x. Consequently,
n[a] + [x] = [y], which means we can solve (n + 1)[a] = [a] + e and e + [x] = [y] with
e := n[a]. Thus, srM/≡([a]) ≤ n+ 1.

(c) Suppose that srM(a) = n <∞; we need to show that srM/≡([a]) ≤ n.
If M is stably finite and n[a] + [x] = [a] + [y] for some x, y ∈M , then, as noted in (a),

na+ x+ b = a+ y for some unit b ∈M . Now srM(a) ≤ n implies the existence of some
e ∈ M such that na = a + e and e + x + b = y. Then n[a] = [a] + [e] and, since b is a
unit, [e] + [x] = [y]. This establishes srM/≡([a]) ≤ n in the stably finite case.

Assume now that M/≡ has refinement. Proposition 2.11 says that in order to prove
srM/≡([a]) ≤ n, it suffices to show that whenever x, y ∈M with n[a] + [x] = [a] + [y], we
have [x] ≤ [y]. Now na + x + b = a + y for some b ∈ M , and srM(a) ≤ n implies there
is some e ∈ M for which e + x + b = y, which yields [x] + [e + b] = [y] and [x] ≤ [y] as
required.

(d) Suppose that srM/≡([a]) = n < ∞; we need to prove that srM(a) ≤ n. By
Proposition 2.11, it suffices to show that whenever x, y ∈ M with na + x = a + y, we
have x ≤ y. Now n[a] + [x] = [a] + [y], and since srM/≡([a]) = n, there is some e ∈ M
such that [e] + [x] = [y]. Consequently, e+ x ≤ y and thus x ≤ y, as desired.

(e) This is immediate from (c) and (d). �

Proposition 3.4. Let S be a nonempty subset of Z>0 such that Z>0 · S ⊆ S, and let ≡
be the congruence on M defined by the rule

u ≡ v ⇐⇒ mu = mv for some m ∈ S.
(a) If a ∈M has finite stable rank, then [a]≡ is Hermite, hence sr([a]≡) ≤ 2.
(b) If M is conical, then M/≡ is conical and sr([a]≡) ≤ sr(a) for all a ∈M .

Proof. Abbreviate [−]≡ to [−].
(a) Let a ∈ M with sr(a) = n < ∞, and suppose that 2[a] + [x] = [a] + [y] for some

x, y ∈ M . Then m(2a + x) = m(a + y) for some m ∈ S, and so mna + mna + mnx =
mna + mny. Since na ≤ mna + mnx, Lemma 2.3 implies that mna + mnx = mny,
and consequently [a] + [x] = [y], because mn ∈ S. This proves that [a] is Hermite, and
sr([a]) ≤ 2 follows.

(b) If u, v ∈ M with [u] + [v] = [0], then mu+mv = 0 for some m ∈ S. Conicality of
M forces u = v = 0, whence [u] = [v] = [0], showing that M/≡ is conical.

It only remains to prove the final statement in case sr(a) = 1, which under current
hypotheses means that a is cancellative. If [a] + [x] = [a] + [y] for some x, y ∈ M , then
m(a + x) = m(a + y) for some m ∈ S, whence mx = my and thus [x] = [y]. Therefore
[a] is cancellative and sr([a]) = 1. �
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Proposition 3.5. Let S be a nonempty subset of Z≥2, and let ≡ be the congruence on
M defined by the rule

u ≡ v ⇐⇒ mu = mv for all m ∈ S.
(a) Let a ∈ M with finite stable rank, and set n := max(2, sr(a)). If n[a]≡ + [x]≡ =

[a]≡+ [y]≡ for some x, y ∈M , then (n− 1)[a]≡+ [x]≡ = [y]≡. In particular, if sr(a) ≤ 2,
then [a]≡ is Hermite.

(b) sr([a]≡) ≤ max(2, sr(a)) for all a ∈M .
(c) If M is conical, then M/≡ is conical and sr([a]≡) ≤ sr(a) for all a ∈M .

Proof. Abbreviate [−]≡ to [−].
(a) Let a ∈ M with n := max(2, sr(a)) < ∞, and suppose that n[a] + [x] = [a] + [y]

for some x, y ∈M . Then m(na+ x) = m(a+ y) for all m ∈ S. For any m ∈ S, we have
m(n− 1) ≥ 2(n− 1) ≥ n because n ≥ 2, whence na ≤ m(n− 1)a+mx. Since

ma+m(n− 1)a+mx = ma+my

and sr(a) ≤ n, Lemma 2.3 implies that m(n− 1)a+mx = my. Consequently, we obtain
(n− 1)[a] + [x] = [y].

(b) This follows from (a).
(c) The proof of Proposition 3.4(b) may be used, mutatis mutandis. �
In case S is an infinite subset of Z≥2, Proposition 3.5 also holds with respect to the

congruence ≡ defined by the rule

u ≡ v ⇐⇒ mu = mv for all sufficiently large m ∈ S,
with the same proof.

4. Stable rank of multiples

We continue to fix a commutative monoid M .
A famous theorem of Vaserstein [24, Theorem 3] established a formula for the stable

rank of a matrix ring Mk(S) in terms of k and the stable rank of S. It thus provides a
formula for the stable rank of the endomorphism ring of a direct sum of k copies of a
module A in terms of k and the stable rank of the endomorphism ring of A. Within the
monoid of isomorphism classes of finitely generated projective modules over an exchange
ring, this yields a formula for sr(k[A]) in terms of sr([A]). We prove that this formula
is valid in any refinement monoid (Theorem 4.12), and that it holds up to an error of
1 in any commutative monoid (Theorem 4.9). Many of the steps parallel Warfield’s
module-theoretic proof of Vaserstein’s theorem [28, Section 1].

We first observe that the stable ranks of positive multiples of any element of M form
a (non-strictly) decreasing sequence.

Lemma 4.1. If a ∈M and k, l ∈ Z>0 with k ≤ l, then sr(ka) ≥ sr(la).

Proof. If sr(ka) = ∞, there is nothing to prove, so we assume that sr(ka) = n < ∞. It
suffices to deal with the case when l = k + 1.

Suppose n(la) + x = la + y for some x, y ∈ M . Add (k − 1)a to both sides of this
equation and write the result as

ka+ (nk + n− 1)a+ x = ka+ ka+ y.
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Since n(ka) ≤ (nk+n− 1)a, Lemma 2.3 implies that nka+ (n− 1)a+x = ka+ y. Since
sr(ka) = n, it follows that there is some e ∈M with nka = ka+e and e+(n−1)a+x = y.
Adding na to both sides of the penultimate equation and setting e′ := (n− 1)a + e, we
obtain n(la) = la+ e′ and e′ + x = y, proving that sr(la) ≤ n. �

If an element a ∈M has finite stable rank, the decreasing sequence of stable ranks of
multiples of a eventually reaches 2 or 1, as follows.

Proposition 4.2. If a ∈ M and sr(a) = n < ∞, then ka is Hermite for all k ≥ n. In
particular, ka is self-cancellative and sr(ka) ≤ 2.

Proof. Let k ≥ n be an integer, and suppose 2(ka)+x = ka+y for some x, y ∈M . Then

na+ (2k − n)a+ x = a+ (k − 1)a+ y.

Since sr(a) = n, there is some e ∈M with na = a+e and e+(2k−n)a+x = (k−1)a+y.
Observe that

e+ (2k − n)a+ x = a+ e+ (2k − n− 1)a+ x = (2k − 1)a+ x,

whence (k − 1)a + ka + x = (k − 1)a + y. Since na ≤ ka, Lemma 2.3 implies that
ka + x = y, proving that ka is Hermite. The remaining conclusions now follow from
Proposition 2.8(c). �

In Proposition 4.2, we proved that if a ∈ M and sr(a) = n < ∞, then na is Hermite.
Generally, smaller positive multiples of a are not Hermite, or even self-cancellative. For
instance, let M and a be as in Example 2.2(2). Then sr(a) = n, while 2(n − 1)a =
(n − 1)a + b but (n − 1)a 6= b, so that (n − 1)a is not self-cancellative. Now fix an
integer k ≥ 3, and let M2, . . . ,Mk be monoids as in Example 2.2(2) corresponding to
n = 2, . . . , k. Each Mn has a generator an such that srMn(an) = n while (n− 1)an is not

self-cancellative. Set M :=
∏k

n=2Mn and a := (a2, . . . , ak) ∈M . Then srM(a) = k, while
a, 2a, . . . , (k − 1)a all fail to be self-cancellative.

It is interesting to note that by the upcoming Theorem 4.9, we will have sr((n−1)a) = 2
for a ∈ M with sr(a) = n ∈ Z≥2, even though (n − 1)a might not be self-cancellative.
The least positive multiple of a that can possibly have stable rank 1 is thus na. By
Proposition 4.2, the stable ranks of the multiples of a eventually stabilize to either 1 or 2
(and by Theorem 4.9 we will see that such stabilization does occur by na at the latest).

Lemma 4.3. Suppose that a, b ∈ M satisfy a ≤ b ≤ na for some positive integer n.
Then sr(b) ≤ sr(a).

Proof. We may assume that sr(a) = k <∞.
Write b = a + p and na = b + q for some p, q ∈ M . Observe that a + p + q = na.

Suppose that kb+ x = b+ y for some x, y ∈M . Adding q to this equation, we get

(4.3.1) kb+ q + x = na+ y.

Now we have

kb+ q = ka+ kp+ q = ka+ (p+ q) + (k − 1)p = ka+ (n− 1)a+ (k − 1)p.

Hence, (4.3.1) can be written as

(n− 1)a+ [ka+ (k − 1)p+ x] = (n− 1)a+ [a+ y].
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Since ka ≤ ka+ (k − 1)p+ x, we can use Lemma 2.3 to get

ka+ (k − 1)p+ x = a+ y.

Consequently, there is some e ∈ M such that ka = a + e and e + (k − 1)p + x = y.
Moreover observe that

b+ [e+ (k − 1)p] = a+ p+ e+ (k − 1)p = (a+ e) + kp = ka+ kp = kb.

Therefore sr(b) ≤ k = sr(a), as desired. �

The case b = na of Lemma 4.3 says that sr(na) ≤ sr(a) for all positive integers n,
which also follows from either Theorem 2.4 or Lemma 4.1. We obtain a much tighter
upper bound for sr(na) in Theorem 4.9.

Lemma 4.4. If a ∈M and m ∈ Z>0, then sr(a) ≤ m · sr(ma).

Proof. If sr(ma) =∞, the result holds with the usual convention that m · ∞ =∞.
Now assume that sr(ma) = k < ∞, and suppose that kma + x = a + y for some

x, y ∈ M . Then k(ma) + x + (m − 1)a = (ma) + y, whence there is some e ∈ M such
that kma = ma + e and e + x + (m − 1)a = y. Setting e′ := (m − 1)a + e, we obtain
kma = a+ e′ and e′ + x = y, verifying that sr(a) ≤ km. �

Theorem 4.5. Let a ∈M and n ∈ Z>0.
(a) If sr(a) <∞, then all elements of M(a) have finite stable rank.
(b) M(a) contains an element with stable rank ≤ n if and only if sr(ka) ≤ n for some

k > 0, if and only if sr(ka) ≤ n for k � 0.

Proof. (a) Given b ∈ M(a), there exist l,m ∈ Z>0 such that b ≤ la and a ≤ mb. Then
a ≤ mb ≤ lma, and so Lemma 4.3 implies that sr(mb) ≤ sr(a) < ∞. Consequently,
Lemma 4.4 shows that sr(b) ≤ m · sr(mb) <∞.

(b) The reverse direction of the first equivalence holds a priori, and the second equiv-
alence follows from Lemma 4.1. It only remains to show that if there exists b ∈ M(a)
with sr(b) ≤ n, then sr(ka) ≤ n for some k > 0. There exist k,m ∈ Z>0 such that b ≤ ka
and a ≤ mb. Since b ≤ ka ≤ kmb, Lemma 4.3 yields sr(ka) ≤ sr(b) ≤ n, as desired. �

Examples 4.6. In general, elements in the same archimedean component of M need
not have the same stable rank. As we will see, knowing the finite stable rank of one
element in an archimedean component does not generally limit the stable ranks of other
elements.

(1) Let M be as in Example 2.2(2) for some n ≥ 3. The generator a ∈ M has stable
rank n, and the archimedean component M(a) also contains na, which has stable rank
2 as follows. Note first that since a is not cancellative, neither is na, which implies
sr(na) > 1 because M is conical. On the other hand, sr(na) ≤ 2 by Proposition 4.2.

(2) This time, fix an integer n ≥ 2, and let M be presented with generators a and b
and relations na + b = na and 2b = 0. The distinct elements of M are ma for m ∈ Z≥0
together with ma+b for 0 < m < n. To see this, define a relation∼ on N := Z≥0×(Z/2Z)
as follows:

x ∼ y ⇐⇒ x = y or ∃ k ∈ Z≥n and p, q ∈ Z/2Z such that x = (k, p), y = (k, q).

Then ∼ is a congruence on N , and N/∼ ∼= M .
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Now M has two archimedean components, namely M(b) = {0, b} = U(M) and M(a) =
M \ U(M). We claim that sr(a) = n while sr(na) = 1.

First, consider x, y ∈M such that na+x = na+y. Write x = ma+ c and y = m′a+ c′

for some m,m′ ∈ Z≥0 and c, c′ ∈ U(M). Then na+x = (n+m)a and na+y = (n+m′)a,
from which we see that m = m′. There is some e ∈ U(M) such that e + c = c′. Thus,
na = na+ e and e+ x = y, proving that sr(na) = 1.

Next, note that (n − 1)a + (a + b) = a + (n − 1)a, but there is no e ∈ M satisfying
(n − 1)a = a + e and e + (a + b) = (n − 1)a. Thus, sr(a) > n − 1. On the other hand,
sr(a) ≤ n · sr(na) = n by Lemma 4.4, and thus sr(a) = n.

Working toward tight upper bounds for stable ranks of multiples, we adapt Warfield’s
proof of [28, Theorem 1.11] to a monoid form. Given a ∈M and positive integers k, l, we
consider the following condition, which might be called the (k, l)-stable rank condition
for a.

srk,l[a] If ka + x = la + y for some x, y ∈ M , there exists e ∈ M such that ka = la + e
and e+ x = y.

Of course, srk,1[a] holds if and only if sr(a) ≤ k.

Theorem 4.7. Let a ∈M with sr(a) <∞. There is a unique nonnegative integer ma,M

such that for any integers k ≥ l ≥ 1, the condition srk,l[a] holds if and only if

k ≥ sr(a) and k − l ≥ ma,M .

Moreover, ma,M ≤ sr(a)− 1.

Proof. First we show that if srk,l[a] holds for some k ≥ l ≥ 2, then srk,l−1[a] also holds.
Suppose that ka + x = (l − 1)a + y for some x, y ∈ M . Then ka + (a + x) = la + y.
From the hypothesis, there is some e ∈M with ka = la+ e and e+ (a+ x) = y. Taking
e′ := e+ a, then ka = (l − 1)a+ e′ and e′ + x = y.

A consequence of the previous paragraph is that whenever srk,l[a] holds for some k ≥
l ≥ 1, then srk,1[a] also holds. This forces k ≥ sr(a).

On the other hand, when k ≥ sr(a), the condition srk,1[a] holds. Consequently, for
each integer k ≥ sr(a), there is a greatest integer l ∈ [1, k] such that srk,l[a] holds. In
other words, treating k as fixed, but allowing l to vary, there is a minimum value for k− l
where srk,l[a] holds. The existence of ma,M is equivalent to the claim that this minimum
value of k − l remains stable as k ≥ sr(a) varies.

To start verifying the claim, we next show that if srk,l[a] holds for k ≥ l ≥ 1 and
k ≥ sr(a), then srk+1,l+1[a] holds. Suppose (k+ 1)a+x = (l+ 1)a+ y for some x, y ∈M .
From Lemma 2.3, ka + x = la + y. By hypothesis, there exists some e ∈ M with
ka = la+ e and e+ x = y. Adding a to the penultimate equality, we are done.

To finish the claim, we show that if srk,l[a] holds with k ≥ sr(a)+1 and k ≥ l ≥ 2, then
srk−1,l−1[a] holds. Suppose that (k − 1)a + x = (l − 1)a + y for some x, y ∈ M . Adding
a to both sides and using the hypothesis, there exists some e ∈M with ka = la+ e and
e+x = y. Applying Lemma 2.3 to the penultimate inequality yields (k−1)a = (l−1)a+e.
The claim is thus verified, proving the existence of ma,M .

Finally, note that since srk,1[a] holds with k = sr(a), we must havema,M ≤ sr(a)−1. �
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In what follows, b·c and d·e denote the standard floor and ceiling functions. We will
make use of the well-known identity

⌈
n

l

⌉
= 1 +

⌊
n− 1

l

⌋
∀ n, l ∈ Z, l > 0

(e.g., [16, Ch.3, Exercise 12]).

Corollary 4.8. Let a ∈M with sr(a) <∞, let l ∈ Z>0, and let ma,M be as in Theorem
4.7. Then sr(la) is the smallest positive integer p such that pl ≥ sr(a) and (p−1)l ≥ ma,M .
In other words,

sr(la) = max

(⌈
sr(a)

l

⌉
, 1 +

⌈
ma,M

l

⌉)
.

Proof. Note that sr(la) is finite by, e.g., Theorem 2.4. By definition of stable rank, sr(la)
is the smallest positive integer p such that srpl,l[a] holds. The first statement of the
theorem is thus immediate from Theorem 4.7, and the second follows. �

We can now prove that an analog of Vaserstein’s formula holds, up to an error of 1, in
any commutative monoid.

Theorem 4.9. If a ∈M with sr(a) = n <∞ and l ∈ Z>0, then

(4.9.1) 1 +

⌊
n− 1

l

⌋
≤ sr(la) ≤ 1 +

⌈
n− 1

l

⌉
.

In particular, if l | n− 1 then sr(la) = 1 + n−1
l

.

Proof. Write p := sr(la). By Corollary 4.8,

p ≥
⌈
n

l

⌉
= 1 +

⌊
n− 1

l

⌋
.

Now if p′ := 1 +
⌈
n−1
l

⌉
, then p′l ≥ l+n− 1 ≥ n and (p′− 1)l ≥ n− 1 ≥ ma,M , where the

last inequality comes from Theorem 4.7. Corollary 4.8 says that p ≤ p′, which provides
the stated upper bound.

The final statement of the theorem follows immediately. �
The gap in (4.9.1) can be closed to an equality in case M has refinement (Theorem

4.12), but not in general. On one hand, Example 2.2(3) contains an element a such that
sr(ma) = 2 for all m ∈ Z>0. In particular, sr(2a) = 2 = 1 +

⌈
2−1
2

⌉
.

On the other hand, in Example 4.6(2), there is an element a such that sr(a) = 2
while sr(2a) = 1 = 1 +

⌊
2−1
2

⌋
. Such an example cannot be conical, since in the conical

case, sr(2a) = 1 would imply that 2a is cancellative (Proposition 2.8(f)), whence a is
cancellative and sr(a) = 1.

Conical examples where only the left hand inequality of (4.9.1) is an equality do exist,
as follows.

Example 4.10. Let M be presented with generators a and b and relations 4a = 2a+b =
2b. We claim that the distinct elements of M are 0, b and a + b together with na for
n ∈ Z>0.

Obviously any element of M has one of the given forms. Let M0 be the commutative
monoid presented with generators a0, b0 and relations 3a0 = a0 + b0 and 4a0 = 2b0. This
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is Example 2.2(2) with n = 3. As shown there, the elements 0, a0, b0, 2a0, 3a0, . . . are all
distinct. Since there is a monoid homomorphism M → M0 sending a 7→ a0 and b 7→ b0,
we find that the elements 0, a, b, 2a, 3a, . . . in M are all distinct. Now set

S := {(m,n) ∈ Z2
≥0 | m ≥ 4 or (m ≥ 2, n ≥ 1) or n ≥ 2},

a semigroup ideal of Z2
≥0. Let ∼ be the congruence on Z2

≥0 defined by x ∼ y ⇐⇒
x = y or x, y ∈ S, and set M1 := Z2

≥0/∼. Since there is a monoid homomorphism
M → M1 sending a 7→ [(1, 0)]∼ and b 7→ [(0, 1)]∼, we see that a + b is not equal to any
of 0, a, b, 2a, 3a, . . . , thus verifying the claim.

In particular, it follows that M is conical.
We claim that sr(a) = 4 and sr(2a) = 2 = 1 +

⌊
4−1
2

⌋
.

Since a is not cancellative, neither is 2a, and so sr(2a) 6= 1 due to conicality of M .
Suppose that 2(2a) + x = (2a) + y for some x, y ∈ M . Then y 6= 0, a. If y = b, then

x = 0, and if y = a+ b, then x = a. In both of these cases, we can solve

(4.10.1) 4a = 2a+ e and e+ x = y

with e := b. Finally, if y = ma for some integer m ≥ 2, then we can solve (4.10.1) with
e := 2a.

It now follows from Lemma 4.4 that sr(a) ≤ 4. (One can also show this directly with
an argument similar to that in the previous paragraph.) On the other hand, sr(a) > 3
because we have the equation 3a + a = a + (a + b) but there is no e ∈ M such that
3a = a+ e and a+ e = a+ b. Thus sr(a) = 4.

This example is universal in the following sense: if M ′ is a monoid containing an
element a′ such that sr(a′) = 4 and sr(2a′) = 2, there must exist an element b′ ∈M ′ such
that

4a′ = 2a′ + b′ = 2b′ and 3a′ 6= a′ + b′ .

Hence, there is a monoid homomorphism M →M ′ sending a 7→ a′ and b 7→ b′.
First, sr(a′) � 3, so there exist some x′, y′ ∈M ′ with 3a′+x′ = a′+y′, and yet there is

no element e ∈M ′ simultaneously satisfying 3a′ = a′+e and e+x′ = y′. Adding a′ to both
sides of the starting equation, we get 4a′+ x′ = 2a′+ y′. Since sr(2a′) = 2, there is some
b′ ∈M ′ such that 4a′ = 2a′+b′ and b′+x′ = y′. Due to the non-existence of an element e
as above, we must also have 3a′ 6= a′+b′. Now, notice that 4a′+2a′ = 4a′+b′ = 2a′+2b′.
So, since sr(2a′) = 2, there is some f ∈ M ′ with 4a′ = 2a′ + f and f + 2a′ = 2b′. In
particular, 4a′ = 2b′.

As we will see shortly (Corollary 5.8), a monoid M ′ with the above properties cannot
be separative. It is interesting to see the non-separativity occur directly, since we have
2a′ + 2a′ = 2a′ + b′ = b′ + b′, but 2a′ 6= b′.

Lemma 4.11. Suppose that M is a refinement monoid and a ∈M with sr(a) = n <∞.
Then the integer m := ma,M of Theorem 4.7 equals n− 1.

Proof. The proof of Theorem 4.7 shows that m = n− l where l is the largest integer in
[1, n] such that srn,l[a] holds. Since we are then done in case n = 1, assume that n ≥ 2.

We must show that l = 1. If l ≥ 2, it follows as in the proof of Theorem 4.7 that srn,2[a]
holds. Now consider x, y ∈M such that (n− 1)a+x = a+ y. Then na+x = 2a+ y and
srn,2[a] says that there is some e ∈ M with na = 2a + e and e + x = y, whence x ≤ y.
Proposition 2.11 thus implies that sr(a) ≤ n− 1, contradicting our hypotheses.
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Therefore l = 1, as required. �
Theorem 4.12. Suppose that M is a refinement monoid. If a ∈M with sr(a) = n <∞
and l ∈ Z>0, then

sr(la) = 1 +

⌈
n− 1

l

⌉
.

Proof. Set p := sr(la). Then p ≤ 1 +
⌈
n−1
l

⌉
by Theorem 4.9. The reverse inequality

follows from Lemma 4.11 and Corollary 4.8. �
Proposition 4.13. If a ∈M and l, p ∈ Z>0 with sr(la) = p <∞, then

lp− 2l + 2 ≤ sr(a) ≤ lp.

If M has refinement, then lp− 2l + 2 ≤ sr(a) ≤ lp− l + 1.

Proof. We have sr(a) ≤ lp <∞ by Lemma 4.4. Now set n := sr(a). By Theorem 4.9,

p ≤ 1 +

⌈
n− 1

l

⌉
≤ 1 +

n− 1

l
+ 1,

whence lp ≤ 2l + n − 1 and thus n ≥ lp − 2l + 1. Note that equality cannot hold here,
since then 1 +

⌈
n−1
l

⌉
= p− 1 < p. Therefore n ≥ lp− 2l + 2.

If M has refinement, then p = 1 +
⌈
n−1
l

⌉
≥ 1 + n−1

l
by Theorem 4.12. In this case,

lp ≥ l + n− 1 and thus n ≤ lp− l + 1. �

5. Stable rank values in archimedean components

We continue to fix a commutative monoid M . We first investigate the set

srM(C) := {srM(c) | c ∈ C}
of stable rank values within an archimedean component C of M . Namely, srM(C) must
equal Z>0, Z≥2, {∞}, or a finite subset of Z>0. When M is conical, these possibilities are
restricted a bit further. Second, we carry over to monoids the trichotomy of [6, Theorem
3.3] for stable ranks of finitely generated projective modules over separative exchange
rings: Assuming M is separative, the only possible stable rank values for elements of M
are 1, 2, and ∞. Additionally, when M is separative, the function sr is constant on each
archimedean component of M .

There is an obvious dichotomy within M : finite stable rank versus infinite stable rank.
This is respected by the archimedean components, as follows.

Proposition 5.1. Let C be an archimedean component of M . Then either all elements
of C have finite stable rank, or all elements of C have infinite stable rank.

Proof. Theorem 4.5(a). �
When M is conical, we may refine this dichotomy to a trichotomy by separating out

the elements of stable rank 1. That is not possible without conicality, as shown by
Example 4.6(2), in which there is an archimedean component containing elements with
stable ranks 1 and 2.

Proposition 5.2. Assume that M is conical, and let C be an archimedean component
of M . Then exactly one of the following occurs: srM(C) = {1}, or srM(C) ⊆ Z≥2, or
srM(C) = {∞}.
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Proof. In view of Proposition 5.1, it suffices to prove that if C contains an element a
with sr(a) = 1, then sr(c) = 1 for all c ∈ C. Given c ∈ C, we have b + c = na for some
b ∈ M and n ∈ Z>0. Due to conicality, sr(a) = 1 implies that a is cancellative, so it
follows from b+ c = na that c is cancellative, and thus sr(c) = 1. �

We will improve Propositions 5.1 and 5.2 with the help of the following result.

Proposition 5.3. Let a ∈M with sr(a) = n <∞. If k ∈ Z≥2 and

n ≥ max
(
2, k(k − 1)(k − 2)

)
,

then there is some l ∈ Z>0 such that sr(la) = k.

Proof. Let m := ma,M be as in Theorem 4.7, and define f1, f2 : Z>0 → Z>0 by the rules

f1(l) :=

⌈
n

l

⌉
and f2(l) := 1 +

⌈
m

l

⌉
.

Corollary 4.8 says that sr(la) = max(f1(l), f2(l)) for all l ∈ Z>0. Note that f1 and f2 are
non-increasing: if l ≥ l′ in Z>0, then fi(l) ≤ fi(l

′).
Observation 1: If l ∈ Z>0, then f1(l) = k if and only if n

k
≤ l < n

k−1 . Moreover,
f2(l) = k if and only if m > 0 and m

k−1 ≤ l < m
k−2 (where we allow m

0
=∞).

The first equivalence holds because f1(l) = k if and only if k− 1 < n
l
≤ k. The second

is similar, taking into account that f2(l) = 1 when m = 0.
Observation 2: There exists l′ ∈ Z>0 such that f1(l

′) = k. In case m > 0 and
m ≥ (k − 1)(k − 2), there exists l′′ ∈ Z>0 such that f2(l

′′) = k.
Since n, k ≥ 2, we have n ≥ k(k − 1). Consequently, n

k−1 − n
k
≥ 1, and hence there

is an integer l′ in the real interval
[
n
k
, n
k−1
)
. By Observation 1, f1(l

′) = k. The second
statement is proved in the same way.

We now split the proof into cases. Assume first that m = 0 or m < (k− 1)(k− 2), and
note that km < n in these cases. Observation 2 provides a positive integer l such that
f1(l) = k. By Observation 1, l ≥ n

k
> m, from which it follows that f2(l) ≤ 2 ≤ k. Thus

sr(la) = k in this case.
Finally, assume that m > 0 and m ≥ (k− 1)(k− 2). In this case, Observation 2 yields

positive integers l1 and l2 such that fi(li) = k for i = 1, 2. If l1 ≥ l2, then f2(l1) ≤ f2(l2) =
k = f1(l1), whence sr(l1a) = k. Likewise, if l1 ≤ l2, then f1(l2) ≤ f1(l1) = k = f2(l2), and
so sr(l2a) = k. �

Of course, under the hypotheses of Proposition 5.3, there must be positive integers
l2, l3, . . . , lk such that sr(lja) = j for j = 2, 3, . . . , k.

Theorem 5.4. Let S be a subset of M such that Z>0 · S ⊆ S. If the set srM(S) is
infinite, then srM(S) ⊇ Z≥2.
Proof. Since srM(S) is infinite, it must contain infinitely many positive integers. Given
k ∈ Z≥2, choose an element a ∈ S with sr(a) = n <∞ and n ≥ k3. By Proposition 5.3,
there exists l ∈ Z>0 such that sr(la) = k, and la ∈ S by hypothesis. �

Propositions 5.1 and 5.2 can now be upgraded via Theorem 5.4:

Theorem 5.5. Let C be an archimedean component of M .
(a) The set srM(C) equals one of Z>0, Z≥2, {∞}, or a finite subset of Z>0.
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(b) If M is conical, then srM(C) equals one of {1}, Z≥2, {∞}, or a finite subset of
Z≥2. �

Examples 5.6. For any monoid M , the group U(M) is an archimedean component of
M , and srM(U(M)) = {1}. We thus restrict attention to archimedean components not
containing any units.

(1) Let M := Z≥0t{∞} as in Example 2.2(1). Then srM(Z>0) = {1} and srM({∞}) =
{∞}.

(2) Let M be as in Example 2.2(3). Then srM(Z>0b) = {1} (since b is cancellative)
and srM(Z>0a) = {2}.

(3) Let M be as in Example 2.2(2), with n ≥ 3. As shown in the example, sr(a) = n,
whence n ≥ sr(ma) ≥ 2 for all m ∈ Z>0, since ma is not cancellative. As also shown,
sr(b) = 2. Therefore srM(M \ {0}) ⊆ [2, n].

The set srM(M \ {0}) need not equal the full integer interval [2, n], however. For
instance, if n = 5, then srM(M \ {0}) = {2, 3, 5}. Namely, from sr(a) = 5, we get
sr(2a) = 3 and sr(4a) = 2 by Theorem 4.9, and then sr(ma) ≤ 3 for all m > 2 by Lemma
4.1.

Similarly, if n = 7, then srM(M \ {0}) = {2, 3, 4, 7}.
(4) Let M be as in Example 4.6(2), with n ≥ 3. As shown there, sr(a) = n and

sr(na) = 1. If z = ma+ b with 0 < m < n, then sr(z) = sr(ma) ≤ n by Corollary 2.5 and
Theorem 2.4. As in Example (3), we conclude that srM(M \ U(M)) ⊆ [1, n]. Similarly,
if n = 5, then srM(M \ U(M)) = {1, 2, 3, 5}, while if n = 7, then srM(M \ U(M)) =
{1, 2, 3, 4, 7}.

(5) In Theorem 7.9, we will establish the existence of simple conical refinement monoids
N with srN(N \ {0}) = Z≥2.

We now turn to the influence of separativity on stable ranks. The proof of [6, Theorem
3.3] converts directly to the monoid setting and yields the following two results.

Proposition 5.7. Assume that M is separative. Then an element a ∈ M has finite
stable rank if and only if sr(a) ≤ 2, if and only if a is Hermite.

Proof. It suffices to show that sr(a) = n <∞ implies that a is Hermite. Given x, y ∈M
such that 2a + x = a + y, we want to show that a + x = y. In view of Lemma 1.1(d),
it suffices to show that a ∈ 〈y〉. Add (n − 1)y to both sides of 2a + x = a + y to get
2a + x + (n − 1)y = a + ny. By repeatedly replacing a + y by 2a + x on the left hand
side, we find that

na+ (a+ nx) = a+ ny.

Since sr(a) = n, there exists e ∈ M such that na = a + e and e + (a + nx) = ny. The
latter equation shows that a ≤ ny, and so a ∈ 〈y〉 as required. �

Separative monoids thus satisfy the following elementwise trichotomy:

Corollary 5.8. If M is separative, then every element of M has stable rank 1, 2, or ∞.

The monoid M := Z≥0 t {∞} of Example 2.2(1) is easily seen to be separative, and
1, ∞ both occur as stable ranks of elements of M . An example of a separative monoid
containing elements of stable rank 2 follows.
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Example 5.9. Let M be the monoid of Example 2.2(3), and observe that M is conical.
By direct calculation, one can show that M is separative, as well as having refinement
(which we shall need later). Alternatively, M is a graph monoid in the sense of [7, item
(M), p.163], corresponding to the directed graph

a
&& // b

and so [7, Theorem 6.3 and Proposition 4.4] imply that M is a separative refinement
monoid.

As shown in Example 2.2(3), the generator a ∈ M has the property that sr(ma) = 2
for all m ∈ Z>0.

Lemma 5.10. Assume that M is a refinement monoid. Then a ∈ M is Hermite if and
only if whenever 2a+ x = a+ y for some x, y ∈ 〈a〉, then a+ x = y.

Proof. It suffices to establish the reverse implication. Suppose 2a + x = a + y for some
arbitrary x, y ∈M . Use refinement to write 2a = a1+a2 and x = x1+x2 with a1+x1 = a
and a2 + x2 = y. Then we have

2a+ x1 = a1 + a2 + x1 = a+ a2 ,

with x1 ≤ a and a2 ≤ 2a, so that x1, a2 ∈ 〈a〉. Therefore, we get a + x1 = a2, and so
a+ x = a+ x1 + x2 = a2 + x2 = y. �

We can now state:

Theorem 5.11. Given a ∈M , consider the following conditions:

(1) sr(a) <∞.
(2) sr(a) ≤ 2.
(3) a is Hermite.
(4) All elements of M(a) are Hermite.
(5) All elements of M(a) are self-cancellative.

If M is separative, then (1)–(4) are equivalent. Moreover, all the elements in any
archimedean component of M have the same stable rank.

If M has refinement, then (4) and (5) are equivalent.

Proof. The implications (4)=⇒(3)=⇒(2)=⇒(1) and (4)=⇒(5) hold without any assump-
tions on M , and follow from Proposition 2.8.

AsumingM is separative, we show (1)=⇒(4). By Theorem 4.5(a), condition (1) implies
that all elements of M(a) have finite stable rank, and so by Proposition 5.7 they are
Hermite.

We next address the statement about archimedean components. Given the equivalence
above and the trichotomy of Corollary 5.8, all that remains is to show that if a ∈ M
with sr(a) = 1 and b ∈ M(a), then sr(b) = 1. Then b ≤ ma and a ≤ nb for some
positive integers m and n. Since a ≤ nb ≤ mna, Lemma 4.3 implies that sr(nb) = 1.
Now suppose that b+ x = b+ y for some x, y ∈M . Then nb+ x = nb+ y, and so there
exists e ∈ M such that nb = nb + e and e + x = y. Applying Lemma 1.1(d), we obtain
b = b+ e, proving that sr(b) = 1.

Finally, assuming that M has refinement (but no longer assuming separativity), we
show (5)=⇒(4). Since M(b) = M(a) for all b ∈M(a), it suffices to show that (5) implies
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a is Hermite. We use the specialized characterization of the Hermite property in Lemma
5.10. Suppose that 2a+ x = a+ y for some x, y ∈ 〈a〉. Then we have

2(a+ x) = (a+ x) + y,

and a+ x ∈M(a), so that we get a+ x = y by (5), showing that a is Hermite. �

We note that one still cannot add “a is self-cancellative” to the list of equivalent
conditions in Theorem 5.11, even assuming the monoid is conical as well as having
refinement and being separative. Indeed, the three element monoid M = {0, a, 2a}
of Example 2.9(2) again provides a counterexample. (The facts that M is separative and
has refinement are straightforward.)

As noted in Proposition 2.8, with no extra hypotheses on M , if M is strongly separative
(i.e., all its elements are self-cancellative), then M is Hermite (i.e., all its elements are
Hermite), and conversely. This was also previously given as the equivalence (a)⇐⇒(d)
of Lemma 1.2.

6. Stable rank values in refinement monoids

We continue to investigate sets of stable rank values, concentrating now on refinement
monoids. As before, we continue to fix a commutative monoid M .

When M is a simple conical refinement monoid, we prove that srM(M \ {0}) must
be one of {1}, Z≥2, or {∞}. In particular, if srM(M) is bounded above, then M is
cancellative. Dropping simplicity, when M is a conical refinement monoid and C is an
archimedean component of M , we prove that srM(C) must equal one of {1}, Z≥2, {∞},
or a finite subset of Z≥2.

Recall that an element a ∈ M is irreducible provided a is not a unit and whenever
a = b+ c in M , either b or c is a unit. If M is conical, this just means one of b or c equals
0 and the other equals a.

The following facts are well known; see, e.g., [5, Lemma 2.1, Proposition 2.2].

Lemma 6.1. Let M be a conical refinement monoid.
(a) Let a ∈M be an irreducible element. Then a is cancellative, 〈a〉 = {ma | m ∈ Z≥0},

and all elements of 〈a〉 are cancellative in M . In particular, Z≥0 ∼= 〈a〉 via m 7→ ma.
(b) The submonoid of M generated by all irreducible elements is an o-ideal of M , and

all elements of this submonoid are cancellative in M .

Lemma 6.2. Let M be a simple conical refinement monoid that has no irreducible ele-
ments. For any nonzero a1, . . . , ak ∈M and n ∈ Z>0, there exists a nonzero c ∈M such
that nc ≤ ai for all i ∈ [1, k].

Proof. [21, Lemma 5.1(a)]. �

Analogs of the following theorem were first proved for (monoids of) finitely generated
projective modules over stably finite simple C*-algebras ([22, Theorem 2.2] with [13,
Theorem A1]) and then for (monoids of) finitely generated projective modules over simple
regular rings [3, Theorem 1.2].

Theorem 6.3. Let M be a simple conical refinement monoid. If there exists n ∈ Z>0

such that all elements of M have stable rank at most n, then M is cancellative.
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Proof. If there is an irreducible element a ∈ M , then by Lemma 6.1, all elements of 〈a〉
are cancellative in M . Since 〈a〉 = M by simplicity, we are done in this case.

Assume now that M has no irreducible elements, and consider a, x, y ∈M with a+x =
a+ y. Since there is nothing to do if x = y = 0, we may assume that x 6= 0. By Lemma
6.2, there is a nonzero z ∈ M such that nz ≤ x. Using simplicity again, a + u = mz
for some u ∈ M and m ∈ Z>0. Adding u to both sides of a + x = a + y, we obtain
mz + x = mz + y. Since sr(z) ≤ n and nz ≤ x, Lemma 2.3 implies that x = y. �

A trichotomy for the stable rank values in a simple conical refinement monoid follows:

Theorem 6.4. Let M be a simple conical refinement monoid. Then exactly one of the
following holds:

(a) sr(a) = 1 for all a ∈M .
(b) sr(a) =∞ for all nonzero a ∈M .
(c) The set srM(M \ {0}) equals Z≥2.

Proof. These three conditions are obviously pairwise incompatible. Assume that M does
not satisfy (a) or (b); we must prove that (c) holds. Since M \ {0} is an archimedean
component of M (by simplicity), Proposition 5.2 implies that srM(M \{0}) ⊆ Z≥2. There
is no finite upper bound on srM(M \{0}), in view of Theorem 6.3. Therefore we conclude
from Theorem 5.4 that srM(M \ {0}) = Z≥2. �

It is easy to find simple conical refinement monoids for which cases (a) or (b) of
Theorem 6.4 hold. E.g., for (a) take M = Z≥0, and for (b) let M be the 2-element
monoid {0,∞}. We will construct examples of case (c) in the following section (see
Theorem 7.9).

When M is simple and conical, it has two archimedean components, namely {0} and
M\{0}. Assuming M also has refinement, Theorem 6.4 implies that for each archimedean
component C of M , the set srM(C) is equal to one of {1}, {∞}, or Z≥2. In the non-simple
(but conical) case, Theorem 5.5(b) says that the only other possibilities are finite subsets
of Z≥2. One such, at least, is known:

Example 6.5. Let M be the monoid of Examples 2.2(3) and 5.9; then M is a conical
refinement monoid (and also separative). Now M has three archimedean components:
{0}, Z>0 b, and Z>0 a. As noted in Example 2.2(3), sr(ma) = 2 for all m ∈ Z>0, and thus

srM(Z>0 a) = {2}.
No examples are known of a conical refinement monoid M that has an archimedean

component C such that srM(C) is a finite subset of Z≥2 other than {2}. That possibility
can be ruled out when C satisfies certain weak divisibility conditions, as we will show in
Theorem 6.8.

Lemma 6.6. Let C be an archimedean component in a monoid M . Then for any a, b ∈ C
with a ≤ b, it follows that sr(a) ≥ sr(b).

Proof. Since b is in the same component as a, we have b ≤ na for some positive integer
n. Apply Lemma 4.3. �
Lemma 6.7. [25, Lemma 2.2] If M is a refinement monoid, then every archimedean
component of M is downward directed.
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Theorem 6.8. Let C be an archimedean component in a conical refinement monoid M ,
and assume that C = C +C (i.e., every element of C is a sum of two elements from C).
Then srM(C) equals one of {1}, {2}, Z≥2, {∞}.
Proof. In view of Theorem 5.5(b), we only need to consider the case when srM(C) is a
finite subset of Z≥2.

Set n := max srM(C) and choose c ∈ C with sr(c) = n. In view of Lemma 6.6, it
follows that sr(a) = n for all a ∈ C with a ≤ c. By hypothesis, c = c1 + c2 for some
c1, c2 ∈ C. Lemma 6.7 shows that there is some b ∈ C with b ≤ ci for i = 1, 2, whence
2b ≤ c. Consequently, sr(b) = sr(2b) = n. By Theorem 4.12, sr(2b) equals (n + 1)/2 if
n is odd, or (n + 2)/2 if n is even. But this means n ≤ (n + 2)/2, which is impossible
unless n = 2.

Therefore srM(C) = {2} in this case. �

7. Stable ranks ranging over Z≥2
This section is devoted to the construction of simple conical refinement monoids for

which the stable ranks of the nonzero elements range over all of Z≥2.

Definition 7.1. A monoid homomorphism φ : M → N is weakly unitary if

• Whenever u, v ∈M and z ∈ N with φ(u) + z = φ(v), then z ∈ φ(M).

Following [25, Definition 1.2], we say that φ is unitary if

• φ is injective;
• φ(M) is cofinal in N with respect to the algebraic ordering;
• φ is weakly unitary.

We will make crucial use of one of Wehrung’s embedding theorems [25, Corollary 2.7],
which states that any simple conical monoid can be unitarily embedded in a simple
conical refinement monoid.

Lemma 7.2. Let φ : M → N be a unitary monoid homomorphism. Then srN(φ(a)) ≥
srM(a) for all a ∈M .

Proof. It suffices to prove the following: If n ∈ Z>0 and srN(φ(a)) ≤ n, then srM(a) ≤ n.
Assume n ∈ Z>0 with srN(φ(a)) ≤ n, and let x, y ∈ M such that na + x = a + y.

Since nφ(a) + φ(x) = φ(a) + φ(y), there exists f ∈ N such that nφ(a) = φ(a) + f
and f + φ(x) = φ(y). Unitarity of φ implies that f = φ(e) for some e ∈ M , and then
na = a+ e and e+ x = y because φ is injective. Therefore srM(a) ≤ n. �

We aim to construct unitary embeddings of simple conical monoids into refinement
monoids that nearly preserve stable ranks, at least up to an error of 1. Most of the work
is done in terms of the following higher-level analogs of the Hermite condition.

Definition 7.3. Let a ∈M and m ∈ Z>0. Let us say that a satisfies the strong m-stable
rank condition in M provided that whenever ma + x = a + y for some x, y ∈ M , it
follows that (m − 1)a + x = y. Clearly the strong m-stable rank condition implies the
strong m′-stable rank condition for all m′ > m. Define the strong stable rank of a in
M , denoted sr+M(a), to be the smallest positive integer m such that a satisfies the strong
m-stable rank condition in M (if such m exist) or ∞ (otherwise).
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The strong m-stable rank condition implies the m-stable rank condition, and Lemma
2.3 shows that the m-stable rank condition implies the strong (m + 1)-stable rank con-
dition. Consequently,

(7.3.1) srM(a) ≤ sr+M(a) ≤ srM(a) + 1 ∀ a ∈M.

We have implicitly used strong stable rank arguments previously, such as in Proposition
3.3(b) (which explains the +1 term there), as well as in Proposition 4.2. The interested
reader is welcome to prove an analog of Theorem 4.9 for strong stable ranks.

Clearly Lemma 7.2 also holds for strong stable rank. In fact:

Observation 7.4. If φ : M → N is an injective monoid homomorphism, then sr+N(φ(a)) ≥
sr+M(a) for all a ∈M .

Given a congruence ≡ on a monoid N , let π≡ : N → N/≡ denote the quotient map.

Lemma 7.5. Let N be a monoid, b ∈ N , and m ∈ Z>0.
(a) There is a smallest congruence ≡ on N such that sr+N/≡(π≡(b)) ≤ m.

(b) If u, v ∈ N satisfy u ≡ v, then either u = v or there exist a positive integer k and
a sequence of elements u0 = u, u1, . . . , ut = v in N such that for each j ∈ [1, t], one of
(uj−1, uj) or (uj, uj−1) equals ((m−1)b+xj, yj) for some xj, yj ∈ N with (k+m−1)b+xj =
kb+ yj.

(c) If u, v ∈ N satisfy u ≡ v, then there is some w ∈ Z≥0 b such that w + u = w + v.

Proof. (a) The stated property is a universally quantified implication for any congruence
≈, since sr+N/≈(π≈(b)) ≤ m if and only if

(7.5.1) (mb+ x ≈ b+ y) =⇒ ((m− 1)b+ x ≈ y), ∀ x, y ∈ N.
Thus, any intersection of congruences satisfying (7.5.1) will satisfy (7.5.1). Take ≡ to be
the intersection of the set of all congruences on N satisfying (7.5.1) (which is nonempty
because it contains N ×N).

(c) This will follow from (b) by taking w := 0 or w := kb in the respective cases.
(b) It is convenient to set n := m− 1 ∈ Z≥0 and

X := {(x, y) ∈ N ×N | (n+ k)b+ x = kb+ y for some k ∈ Z>0}.
Observe that X is closed under N -translations, in the sense that (x, y) ∈ X implies that
(x+ z, y + z) ∈ X for any z ∈ N . Let

∼ := (nb, 0) +X = {(nb+ x, y) | (x, y) ∈ X},
and let ≈ be the smallest equivalence relation containing ∼. Notice that ≈ is a congru-
ence, due to closure under N -translations. Since ∼ is contained in ≡, so is ≈.

We now show that ≈ satisfies the property stated in (b) for ≡. Suppose that u, v ∈ N
with u ≈ v but u 6= v. Then there is a sequence of elements u0 = u, u1, . . . , ut = v in N
such that for each j ∈ [1, t] we have (uj−1, uj) in ∼ or ∼−1. For each such j, there exists
(xj, yj) ∈ X such that (uj−1, uj) equals (nb+ xj, yj) or (yj, nb+ xj). By definition of X,
there are some kj ∈ Z>0 for which (n+kj)b+xj = kjb+yj, whence kjb+uj−1 = kjb+uj.
Thus, taking k to be the maximum of these kj, we see that (k +m− 1)b+ xj = kb+ yj
for j ∈ [1, t]. Moreover, kb+ uj−1 = kb+ uj for j ∈ [1, t], whence kb+ u = kb+ v.

This verifies the condition of (b) for ≈. Part (b) itself will follow once we show that
≈ is the same as ≡.
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To that end, it suffices to show that π≈(b) satisfies the strong m-stable rank condition
in N/≈. Suppose that mπ≈(b)+x = π≈(b)+y, for some x, y ∈ N/≈. Fix x′, y′ ∈ N with
π≈(x′) = x and π≈(y′) = y. Thus, mb + x′ ≈ b + y′. From the previous paragraph, we
know that there exists some positive integer k such that (n+ k)b+ x′ = kb+ y′. Hence,
nb+ x′ ∼ y′ and therefore nπ≈(b) + x = y. �

Lemma 7.6. Let N be a monoid, (bk)k∈K a nonempty family of elements of N , and
(mk)k∈K a corresponding family of positive integers.

(a) There is a smallest congruence ≡ on N such that sr+N/≡(π≡(bk)) ≤ mk for all

k ∈ K.
(b) If u, v ∈ N satisfy u ≡ v, then there is some w in the submonoid

∑
k∈K Z≥0 bk

such that w + u = w + v.

Proof. (a) This holds for the same reason as Lemma 7.5(a).
(b) We induct on κ := card(K), the case κ = 1 being Lemma 7.5(c). Now let κ > 1 and

assume that part (b) holds for congruences obtained as in (a) from nonempty families
indexed by sets with cardinality less than κ. We break the induction step into the cases
when κ is finite or infinite.

(κ finite). Identify K with [1, `] for some integer ` ≥ 2. We define a countable sequence
of congruences

≈0 ⊆ ≈1 ⊆ ≈2 ⊆ · · · ⊆ ≈
onN as follows. First, let≈0 be the equality relation. Supposing that≈j has been defined
for some even nonnegative integer j, let ≈j+1 be the smallest congruence containing ≈j
such that sr+N/≈j+1

(π≈j+1
(bk)) ≤ mk for all k ∈ [1, ` − 1]. (This congruence exists by

applying the inductive hypothesis to N/≈j coupled with the correspondence theorem for
congruences on N/≈j and N .) Once ≈j has been defined for some odd positive integer
j, let ≈j+1 be the smallest congruence containing ≈j such that sr+N/≈j+1

(π≈j+1
(b`)) ≤ m`.

Finally, let ≈ be the union of the chain of ≈j.
An easy inductive argument shows that all ≈j are contained in ≡, whence ≈ ⊆ ≡. On

the other hand, it is straightforward to show that sr+N/≈(π≈(bk)) ≤ mk for all k ∈ [1, `].

Thus, ≈ equals ≡.
Now consider u, v ∈ N satisfying u ≡ v. Then u ≈j v for some j ≥ 0, and we proceed

by a secondary induction on j. If j = 0, then u = v, so we assume that j > 0. Writing
i := j − 1 and letting ≡j denote the congruence on N/≈i induced from ≈j, we have
π≈i

(u) ≡j π≈i
(v). If i is even, it follows from the construction of ≈j and the inductive

hypothesis that w+π≈i
(u) = w+π≈i

(v) for some w ∈∑`−1
k=1 Z≥0 π≈i

(bk). Similarly, if i is
odd, it follows from the construction of≈j and Lemma 7.5(b) that w+π≈i

(u) = w+π≈i
(v)

for some w ∈ Z≥0 π≈i
(b`). In either case, we obtain an element wi ∈

∑
k∈K Z≥0 bk such

that wi + u ≈i wi + v. By our secondary induction, there is some w ∈∑k∈K Z≥0 bk such
that w+wi + u = w+wi + v. This completes the secondary induction, and the proof of
(b), for K = [1, `].

The inductive step for our primary induction is now done for finite κ, proving that (b)
holds for all finite index sets K.

(κ infinite). Identify K with the set of ordinals less than λ, where λ is the first ordinal
with cardinality κ. Let ≈0 be the equality relation on N , and for nonzero j ∈ K, let ≈j be
the smallest congruence on N such that sr+N/≈j

(π≈j
(bk)) ≤ mk for all k ∈ K with k < j.
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Set ≈ equal to the union of the ≈j for j ∈ K. Clearly ≈i ⊆ ≈j ⊆ ≡ for 0 ≤ i ≤ j < λ,
whence ≈ is a congruence on N contained in ≡. Again, it is straightforward to show
that sr+N/≈(π≈(bk)) ≤ mk for all k ∈ K. Thus, ≈ equals ≡.

To establish (b) for the current index set K, it suffices to show that if u, v ∈ N and
u ≈j v for some j ∈ K, then there exists w ∈∑k∈K Z≥0 bk such that w + u = w + v. If
j = 0, then u = v and we are done. If j > 0, then the set K ′ of ordinals less than j has
cardinality less than κ, and our inductive step provides an element w ∈ ∑k∈K′ Z≥0 bk
such that w + u = w + v.

This completes the primary induction and the proof of (b). �

Proposition 7.7. Let φ : M → N be a homomorphism of monoids, (ak)k∈K a nonempty
family of elements of M , and (mk)k∈K a corresponding family of positive integers. Let
≡ be the smallest congruence on N such that sr+N/≡(π≡(φ(ak))) ≤ mk for all k ∈ K.

(a) If φ is weakly unitary, then π≡φ is weakly unitary.
Now assume that φ is unitary, and that sr+M(ak) ≤ mk for all k ∈ K.
(b) π≡φ is unitary.
(c) If N is simple, then N/≡ is simple.
(d) If N is conical, then N/≡ is conical.

Proof. Let us abbreviate N ′ := N/≡ and π := π≡, and set bk := φ(ak) for k ∈ K.
(a) Suppose that u, v ∈M and z′ ∈ N ′ with πφ(u) + z′ = πφ(v). Fix some z ∈ N such

that π(z) = z′; then φ(u) + z ≡ φ(v). By Lemma 7.6(b), there is some w ∈∑k∈K Z≥0 bk
such that w+φ(u)+z = w+φ(v). In particular, w ∈ φ(M), and hence the weak unitarity
of φ implies that z ∈ φ(M). Therefore z′ ∈ πφ(M).

For the remainder of the proof, assume that φ is unitary, and that sr+M(ak) ≤ mk for
all k ∈ K.

(b) Since φ(M) is cofinal in N , it follows immediately that πφ(M) is cofinal in N ′.
Further, πφ is weakly unitary by (a). Hence, we just need to show that πφ is injective.
We proceed by transfinite induction on κ := card(K).

Suppose first that κ = 1, and take K = {1}. Let u, v ∈ M such that πφ(u) = πφ(v).
By Lemma 7.5(b), either u = v or there exist a positive integer k and a sequence of
elements u0 = φ(u), u1, . . . , ut = φ(v) in N such that for each j ∈ [1, t], one of (uj−1, uj) or
(uj, uj−1) equals ((m1−1)b1+xj, yj) for some xj, yj ∈ N with (k+m1−1)b1+xj = kb1+yj.
Assume that u 6= v. After removing any repeated terms from the sequence of uj, we
may assume that t > 0 and uj−1 6= uj for j ∈ [1, t]. In particular, u0 6= u1 and
kb1 + u0 = kb1 + u1. In other words, φ(ka1 + u) = φ(ka1) + u1. The unitary assumption
guarantees that u1 ∈ φ(M), say u1 = φ(u′1).

We will only consider the case when (u0, u1) = ((m1 − 1)b1 + x1, y1), as the other case
is very similar. The unitary hypothesis guarantees that x1 = φ(x′1) for some x′1 ∈ M .
Consequently, u = (m1 − 1)a1 + x′1. Since (k + m1 − 1)b1 + x1 = kb1 + y1, we also have
(k +m1 − 1)a1 + x′1 = ka1 + u′1. Then, the strong m1-stable rank condition on a1 in M
tells us that u = u′1. But this means u0 = u1, a contradiction. Therefore u = v in this
case, proving that πφ is injective when κ = 1.

Now suppose that κ ≥ 2 and that the proposition holds for nonempty families of fewer
than κ elements. If κ is finite, express ≡ =

⋃∞
j=0 ≈j as in the proof of Lemma 7.6(b). By

induction, injectivity of π≡j
φ implies injectivity of π≡j+1

φ for all j ≥ 0. Consequently,
πφ is injective.
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When κ is infinite, identify K with the set of ordinals less than the first ordinal of
cardinality κ, and express ≡ =

⋃
j∈K ≈j as in the proof of Lemma 7.6(b). By induction,

π≡j
φ is injective for all j ∈ K, forcing πφ to be injective in this case.

This concludes the induction, proving that πφ is injective, and thus unitary.
(c) Assuming N is simple, it contains an element x that is not a unit. Since φ(M) is

cofinal in N , there is some y ∈ M such that x ≤ φ(y). If y is a unit in M , then y ≤ 0
in M , whence x ≤ φ(y) ≤ 0 in N , contradicting our assumption on x. Thus, y is not a
unit in M . If πφ(y) is a unit in N ′, say with inverse z, then from πφ(y) + z = πφ(0) and
unitarity of πφ we obtain z = πφ(z′) for some z′ ∈M . But then y+z′ = 0, contradicting
the fact that y is a non-unit in M . Thus, πφ(y) is not a unit in N ′, which shows that N ′

is not a group.
Given an ideal I of N ′ different from the group of units, choose a non-unit c ∈ I, and

write c = π(b) for some non-unit b ∈ N . Since N is simple, b is an order-unit in N .
Consequently, c is an order-unit in N ′ and thus I = N ′. Therefore N ′ is simple.

(d) Suppose x, y ∈ N ′ with x + y = 0. Write x = π(x′) and y = π(y′) for some
x′, y′ ∈ N , so that x′ + y′ ≡ 0. By Lemma 7.6(b), there is some w ∈ ∑k∈K Z≥0 bk such
that w + x′ + y′ = w. Since w ∈ φ(M), unitarity of φ implies that x′ + y′ = φ(z) for
some z ∈M . Then πφ(z) = πφ(0), whence z = 0 and consequently x′ + y′ = 0. Since N
is conical, x′ = y′ = 0, and therefore x = y = 0. �
Theorem 7.8. Let M0 be a simple conical monoid. Then there exist a simple conical
refinement monoid N and a unitary embedding φ : M0 → N such that

sr+N(φ(a)) = sr+M0
(a) ∀ a ∈M0 .

Consequently,
srM0(a) ≤ srN(φ(a)) ≤ srM0(a) + 1 ∀ a ∈M0 .

Proof. Once the first statement is proved, the second follows via Lemma 7.2 and (7.3.1).
Set F := {a ∈ M0 | sr+M0

(a) < ∞}. In particular, 0 ∈ F . Choose a set K and a

surjective map k 7→ ak from K onto F , and set mk := sr+M0
(ak) ∈ Z>0 for k ∈ K. In view

of Observation 7.4, it suffices to find a unitary embedding φ of M0 into a simple conical
refinement monoid N such that sr+N(φ(ak)) ≤ mk for all k ∈ K.

We recursively construct a sequence of monoid homomorphisms

(7.8.1) M0
φ0−→ N0

π0−→M1
φ1−→ N1

π1−→M2 −→ · · ·
such that the following hold for all i ≥ 0:

(1) Mi+1 is a simple conical monoid;
(2) Ni is a simple conical refinement monoid;
(3) φi and πiφi are unitary;
(4) sr+Mi+1

(πiφi · · · π0φ0(ak)) ≤ mk for all k ∈ K.

To start, choose a simple conical refinement monoid N0 and a unitary embedding
φ0 : M0 → N0, using [25, Corollary 2.7]. Then let ≡0 be the smallest congruence
on N0 such that sr+N0/≡0

(π≡0φ0(ak)) ≤ mk for all k ∈ K. Set M1 := N0/≡0 and let

π0 := π≡0 : N0 → M1. Proposition 7.7 shows that M1 is simple and conical and π0φ0 is
unitary. Moreover, sr+M1

(π0φ0(ak)) ≤ mk for all k ∈ K by the choice of ≡0. Thus, (1)–(4)
hold for i = 0.

Now repeat this process recursively.
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Having set up (7.8.1), let N be a direct limit of this sequence, with limit maps µi :
Mi → N and νi : Ni → N . Moreover, set

ψi := πi−1φi−1 · · · π0φ0 : M0 →Mi ∀ i ≥ 0.

In view of (3), all of the maps ψi are unitary. It follows that µ0 is unitary, which implies in
particular that N is nonzero. Since all of the Ni are simple and conical with refinement,
N is a simple conical refinement monoid. Thus, taking φ := µ0, we are almost done.

It remains to show that sr+N(µ0(ak)) ≤ mk for all k ∈ K. Suppose k ∈ K and
mkµ0(ak) + x = µ0(ak) + y for some x, y ∈ N . There is an index i such that x = µi(x

′)
and y = µi(y

′) for some x′, y′ ∈ Mi, and after increasing i suitably we may assume
also that mkψi(ak) + x′ = ψi(ak) + y′. Since sr+Mi

(ψi(ak)) ≤ mk by (4), it follows that
(mk− 1)ψi(ak) +x′ = y′. Applying µi, we conclude that (mk− 1)µ0(ak) +x = y, proving
that sr+N(µ0(ak)) ≤ mk. �

The second statement of Theorem 7.8 cannot be reduced to a general equality. On
one hand, sr+ = 1 is the same as cancellativity, so if M0 is cancellative, the theo-
rem yields srM0(a) = 1 = srN(φ(a)) for all a ∈ M0. On the other hand, if we apply
the theorem with M0 equal to the monoid M of Example 4.10, we cannot have both
srN(φ(a)) = srM0(a) = 4 and srN(φ(2a)) = srM0(2a) = 2 because of Theorem 4.12. In
fact, sr+N(φ(a)) = sr+M0

(a) = 5, whence srN(φ(a)) is either 4 or 5, and so srN(φ(2a)) = 3
by Theorem 4.12.

We can now show that the third case of the trichotomy established in Theorem 6.4
occurs.

Theorem 7.9. There exist simple conical refinement monoids N such that

(7.9.1) srN(N \ {0}) = Z≥2 .

Proof. Let M0 be one of the monoids of Example 2.2(2), for some integer n ≥ 2, with the
generator a having stable rank n. It is clear from the construction that M0 is simple and
conical. Applying Theorem 7.8, we obtain a simple conical refinement monoid N and a
unitary embedding φ : M0 → N such that n ≤ srN(φ(a)) ≤ n + 1. Since n ≥ 2, (7.9.1)
follows from Theorem 6.4. �

Once a monoid with the properties of Theorem 7.9 is in hand, it can be cut down to
a countable monoid with the same properties by standard procedures, as follows.

Corollary 7.10. There exist countable simple conical refinement monoids C such that

srC(C \ {0}) = Z≥2 .

Proof. Choose N as in Theorem 7.9. For each nonzero a ∈ N , set na := srN(a), and
choose xa, ya ∈ N such that

• (na − 1)a+ xa = a+ ya but @ e ∈ N with (na − 1)a = a+ e and e+ xa = ya .

Also, set Xa := {(x, y) ∈ N2 | naa + x = a + y}, and for each (x, y) ∈ Xa, choose
e(x, y) ∈ N such that

• naa = a+ e(x, y) and e(x, y) + x = y.

We will build C by repeating several basic steps, the first of which is

(1) For any countable submonoid K ⊆ N , there is a countable submonoid L ⊆ N
such that K ⊆ L and srL(a) = srN(a) for all a ∈ L.
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To prove (1), construct countable submonoids K0 := K ⊆ K1 ⊆ · · · of N where

• Ki+1 is the submonoid of N generated by Ki together with {xa, ya | a ∈ Ki} and
{e(x, y) | (x, y) ∈ Xa ∩K2

i }.
Then L :=

⋃∞
i=0Ki is a countable submonoid of N satisfying (1).

By similar means, we see that

(2) For any countable submonoid K ⊆ N , there is a countable submonoid L ⊆ N
such that K ⊆ L and L has refinement.

(3) For any countable submonoid K ⊆ N , there is a countable submonoid L ⊆ N
such that K ⊆ L and L is simple.

Our final construction consists of cycling through (1), (2), and (3) countably many
times. To start, choose a2, a3, . . . ∈ N such that sr(ak) = k for each k ∈ Z≥2, and let C0

be the submonoid of N generated by {a2, a3, . . . }. Then construct countable submonoids
C0 ⊆ C1 ⊆ · · · of N such that for all i ∈ Z≥0,

• srC3i+1
(a) = srN(a) for all a ∈ C3i+1.

• C3i+2 has refinement.
• C3i+3 is simple.

Then C :=
⋃∞
j=0Cj is a countable submonoid of N with the desired properties. �

8. Monoids of projective modules

We discuss monoids built from isomorphism classes of projective modules, with addi-
tion induced from direct sums, and consider stable ranks within these monoids. Monoids
built from more general classes of modules will be discussed in the following section.

All rings mentioned are assumed to be associative, and unital unless otherwise indi-
cated.

Definition 8.1. Let R be a ring and FP(R) the class of finitely generated projective
right R-modules. For each A ∈ FP(R), let [A] be a label for the isomorphism class of
A. (These isomorphism classes are proper classes, so they cannot be members of a set,
but we can choose a set of labels for them, since there are subsets FP0(R) ⊂ FP(R) such
that each module in FP(R) is isomorphic to exactly one module in FP0(R).) Then define

V (R) := {[A] | A ∈ FP(R)}.
There is a well-defined addition operation on V (R) induced from the direct sum opera-
tion:

[A] + [B] := [A⊕B] ∀ A,B ∈ FP(R).

With this operation, V (R) becomes a conical commutative monoid, and [R] is an order-
unit in V (R). The algebraic order in V (R) is given by the following rule:

[A] ≤ [B] ⇐⇒ A is isomorphic to a direct summand of B.

One may equally well build V (R) from the class FP`(R) of finitely generated projective
left R-modules, since the functors HomR(−, R) restrict to equivalences between the full
subcategories of Mod-R and R-Mod generated by FP(R) and FP`(R) that preserve and
reflect isomorphisms and direct sums.
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Recall that a ring R is (von Neumann) regular if, for each a ∈ R, there is some x ∈ R
satisfying axa = a. It is an exchange ring if the regular left module RR satisfies the
finite exchange property in direct sums of modules. (By [27, Corollary 2], this condition
is left-right symmetric.) Every regular ring is an exchange ring [27, Theorem 3].

Definition 8.2. For any ring S, we let sr(S) denote the K-theoretic stable rank of S,
which is the least positive integer in the stable range of S (if such integers exist) or ∞
(otherwise). A positive integer n lies in the stable range of S if for any left unimodular
row (s1, . . . , sn+1) ∈ Sn+1 (meaning that

∑n+1
i=1 Ssi = S), there are elements ai ∈ S such

that (s1 + a1sn+1, . . . , sn + ansn+1) ∈ Sn is left unimodular. This condition is left-right
symmetric by [24, Theorem 2].

Theorem 8.3. Let R be an exchange ring.
(a) [6, Corollary 1.3] V (R) is a refinement monoid.
(b) [6, Theorem 3.2] srV (R)([A]) = sr(EndR(A)) for each A ∈ FP(R).

When R is an exchange ring, Theorem 8.3(b) combined with Vaserstein’s theorem [24,
Theorem 3] implies that if a ∈ V (R) with srV (R)(a) = n <∞, then

srV (R)(ka) = 1 +

⌈
n− 1

k

⌉
∀ k ∈ Z>0 ,

matching Theorem 4.12. Consequently, a monoid with the properties of Example 4.10
cannot be isomorphic to V (R) for any exchange ring R.

For any ring R, the separativity condition in V (R) translates to modules in the form:

(8.3.1) A⊕ A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B, ∀ A,B ∈ FP(R).

We say that R is separative provided (8.3.1) holds.

Problems 8.4. Separativity is a longstanding open question for regular rings and ex-
change rings:

The Separativity Problem: Is every regular (resp., exchange) ring separative?

To test this and many other questions, one would like to know which monoids can be
realized as V (R)s for regular or exchange rings R. Any such monoid must be conical
and have refinement and an order-unit, so the question was first raised in terms of those
properties alone. However, Wehrung then constructed examples of conical refinement
monoids (with order-units) that cannot be realized as V (R) for any regular ring R [26,
Corollary 2.12 and remark following]. (It is unknown whether these examples can be
realized as V (R) for some exchange rings R.) On the other hand, separativity and many
other questions can be reduced to countable monoids and countable regular or exchange
rings, and the question remains open in countable cases:

The Realization Problem: Is every countable conical refinement monoid with an
order-unit isomorphic to V (R) for some exchange (or regular) ring R?

These two problems are inextricably linked:

The Separativity Problem and the Realization Problem cannot both have positive
answers.

This is due to the existence of monoids that are countable, conical, have refinement and
order-units, but are not separative, as discussed in [2, Section 1]. If such a monoid is
isomorphic to V (R) for an exchange ring R, then R is not separative. On the other
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hand, if all regular (resp., exchange) rings are separative, then a monoid with the above
properties cannot be realized as V (R) for a regular (resp., an exchange) ring R.

For instance, let M be one of the monoids in Example 2.2(2), and observe that M is
simple and conical. It is not separative because 2(n − 1)a = 2b = (n − 1)a + b while
(n− 1)a 6= b. By [25, Corollary 2.7], M embeds into a simple conical refinement monoid
N . Note that simplicity implies that a is an order-unit in N . Then there is a countable
submonoid M+ of N that contains (the image of) M , has refinement, and in which a is
an order-unit. Since N is conical, so is M+. Since M is not separative, neither is M+.

Another example is given by Corollary 7.10: a countable simple conical refinement
monoid C such that srC(C \ {0}) = Z≥2. By Theorem 5.11, C cannot be separative.

An additional advantage of this second example is that if C ∼= V (R) for some regular
ring R, then elements ak ∈ C with srC(ak) = k correspond to finitely generated projective
R-modules Ak such that EndR(Ak) is a simple regular ring with stable rank k, for each
integer k ≥ 2.

Remark 8.5. An obstacle to possible constructions of non-separative exchange rings is
the following Extension Theorem [6, Theorem 4.2]: If R is an exchange ring, I an ideal
of R that is separative in a suitable non-unital sense, and R/I is separative, then R is
separative. No module-theoretic proof of this theorem has been found; it is derived from
a corresponding extension theorem for refinement monoids [6, Theorem 4.5].

An application of our current monoid results yields the following:

Theorem 8.6. Let R be a separative exchange ring. If e and f are any idempotents in
R such that ReR = RfR, then sr(eRe) = sr(fRf). In particular, if ReR = R, then
sr(eRe) = sr(R).

Proof. By Theorem 8.3(b), sr(eRe) = srV (R)([eR]) and sr(fRf) = srV (R)([fR]).
Since e ∈ RfR, we must have e = x1fy1 + · · ·+xnfyn for some elements xi ∈ eRf and

yi ∈ fRe. Consequently, there is a surjective R-module homomorphism φ : (fR)n → eR
given by the rule φ(r1, . . . , rn) = x1r1 + · · ·+ xnrn. Since φ splits by projectivity of fR,
we find that eR is isomorphic to a direct summand of (fR)n, and so [eR] ≤ n[fR] in
V (R). By symmetry, [fR] ≤ m[eR] for some m ∈ Z>0, and thus [eR] and [fR] lie in the
same archimedean component of V (R).

Since V (R) is separative, Theorem 5.11 implies that srV (R)([eR]) = srV (R)([fR]). �

Concerning general rings, we cite a theorem of Bergman [11, Theorem 6.4], as corrected
and extended by Bergman and Dicks [12, Remarks following Theorem 3.4], which states
that any conical commutative monoid with an order-unit is isomorphic to V (R) for some
hereditary algebra R over a pre-chosen field K. (The order-unit condition can be dropped
if R is allowed to be non-unital [4, Corollary 4.5].) Consequently, the monoids V (R) for
arbitrary rings R cannot satisfy any less-than-general conical monoid properties.

Theorem 8.7. If R is a ring, then

srV (R)([A]) ≤ sr(EndR(A)) ∀ A ∈ FP(R).

Proof. Let A ∈ FP(R), and assume that sr(EndR(A)) = n <∞. Suppose we have some
X, Y ∈ FP(R) with n[A] + [X] = [A] + [Y ], so that An ⊕X ∼= A⊕ Y . By [28, Theorem
1.6], A satisfies the n-substitution property of [28, Definition 1.1], and so [28, Theorem
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1.3] implies that there is a direct summand L of An such that Y ∼= X⊕L and L⊕A ∼= An.
Hence, n[A] = [A] + [L] and [L] + [X] = [Y ]. This proves that srV (R)([A]) ≤ n. �

The inequality in Theorem 8.7 is usually strict. For instance, let R = k[x1, . . . , xn] be
a polynomial ring over a field k. By the Quillen-Suslin Theorem, all finitely generated
projective modules over R are free, and so V (R) ∼= Z≥0. As a result, srV (R)([A]) = 1 for
all A ∈ FP(R), and, in particular, srV (R)([R]) = 1

On the other hand, the stable rank of EndR(R) ∼= R can be arbitrarily large (but
finite). For instance, if k is a subfield of R then sr(R) = n + 1 as shown by Vaserstein
[24, Theorem 8].

Example 8.8. Let R := R[x0, . . . , xn]/〈x20 + · · ·+ x2n − 1〉, where n is a positive integer
different from 1, 3, 7. Then srV (R)([R]) = n+ 1, as follows.

On one hand, since R has Krull dimension n, a theorem of Bass [10, Theorem 11.1] says
that sr(R) ≤ n+1. On the other hand, by [23, Theorem 3] there is a projective R-module
P such that P ⊕R ∼= Rn+1 but P is not free. Then [R] + n[R] = [R] + [P ] in V (R), but
n[R] 6= [P ], so Lemma 2.3 implies that srV (R)([R]) � n. Therefore srV (R)([R]) = n+ 1.

In particular, since n ≥ 2, the trichotomy of Corollary 5.8 now shows that V (R) is
not separative. This also follows from the facts that 2n[R] = n[R] + [P ] = 2[P ], where
the first equality is immediate from (n+ 1)[R] = [R] + [P ] and the second holds because
C⊗R P ∼= (C⊗R R)n as modules over C⊗R R [23, Remark, p.270].

In case n is even, the module P is also indecomposable [23, Theorem 3]. Consequently,
the equality [R] + [P ] = [R] +n[R] cannot be refined in V (R), and therefore V (R) is not
a refinement monoid.

9. Monoids of general modules

The construction of V (R) can obviously be applied to classes of modules other than
FP(R), and equivalence relations other than isomorphism can be used. We discuss some
of these monoids in the present section.

Definition 9.1. Suppose C is a class of modules (say right modules) over a ring R,
closed under isomorphisms and finite direct sums, and containing the zero module (or,
a corresponding class of objects in a category with finite coproducts and a zero object).
Assume also that C is essentially small (or skeletally small), meaning that there is a
subset C0 of C such that each module in C is isomorphic to exactly one module in C0. For
A ∈ C, let [A] := [A]C be a label for the isomorphism class of A. Exactly as in Definition
8.1, we set

V (C) := {[A] | A ∈ C},
and we define

[A] + [B] := [A⊕B] ∀ A,B ∈ C.
Then V (C) becomes a conical commutative monoid, with zero element [0], but it may or
may not have an order-unit. (For instance, if C is the class of all finite abelian groups,
there is no order-unit in V (C).) Note that for [A], [B] ∈ V (C), we have

[A] ≤ [B] in V (C) ⇐⇒ ∃ X ∈ C such that A⊕X ∼= B.

If C is closed under direct summands (within Mod-R), we have [A] ≤ [B] if and only if
A is isomorphic to a direct summand of B.
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A natural choice of a class C as above is the class FG(R) of all finitely generated right
R-modules. There is no standard notation for the monoid V (FG(R)).

The same argument used to prove Theorem 8.7 also shows that:

Theorem 9.2. Let C be an essentially small class of modules over some ring R, closed
under isomorphisms, finite direct sums and direct summands, and containing the zero
module. Then

srV (C)([A]) ≤ sr(EndR(A)) ∀ A ∈ C.
For certain classes C of modules, there are known finite upper bounds for the sets

sr(V (C)). We recall that a commutative ring S is called J-noetherian if it satisfies the
ascending chain condition for semiprimitive ideals (i.e., ideals I for which J(S/I) = 0),
and that the J-dimension of S is the supremum of the lengths of chains of semiprimitive
prime ideals of S. Bass proved in [10, Theorem 11.1] that if S is a commutative J-
noetherian ring of J-dimension d <∞ and R is a module-finite S-algebra (meaning that
R is finitely generated as an S-module), then sr(R) ≤ d + 1. Warfield extended this to
endomorphism rings of finitely presented R-modules, from which we obtain

Theorem 9.3. Let S be a commutative J-noetherian ring of J-dimension d < ∞, and
R an S-algebra such that for each semiprimitive prime ideal P of S, the localization RP

is a module finite SP -algebra. Let C be the class of finitely presented right R-modules (or
any subclass closed under isomorphisms, finite direct sums and direct summands, and
containing the zero module). Then

srV (C)([A]) ≤ d+ 1 ∀ A ∈ C.
Proof. By [28, Theorem 3.4], sr(EndR(A)) ≤ d+ 1 for all A ∈ C. The result thus follows
from Theorem 9.2. �

Example 8.8 provides instances in which the upper bound d + 1 of Theorem 9.3 is
attained, for any positive integer d 6= 1, 3, 7.

Example 9.4. Let T denote the class of torsion-free abelian groups of finite rank. (It
is essentially small because every group in T is isomorphic to a subgroup of one of the
vector spaces Qn, n ∈ Z>0.) It is well known that many types of cancellation fail to hold
in T , whence the analogs also fail in V (T ). For instance:

• There exist A,X, Y ∈ T such that A ⊕ X ∼= A ⊕ Y but X � Y [18, Section 2]
(also [9, Example 2.10]).
• There exist A, Y ∈ T such that A⊕ A ∼= A⊕ Y but A � Y [9, Example 8.20].
• There exist A,B ∈ T such that A⊕A ∼= A⊕B ∼= B⊕B but A � B [20, Theorem

12].
• There exist A,B ∈ T such that An ∼= Bn for all integers n ≥ 2 but A � B [20,

Theorem 12].

In particular, V (T ) is not separative. It is also known that V (T ) does not have
refinement. This follows from an example of Jónsson [17], which provides pairwise non-
isomorphic indecomposable groups A,B,C,D ∈ T such that A ⊕ B ∼= C ⊕ D. Since
A, C, D are indecomposable and A � C,D, there is no decomposition A ∼= A1 ⊕ A2

such that A1 is isomorphic to a direct summand of C and A2 is isomorphic to a direct
summand of D. Consequently, the equation [A] + [B] = [C] + [D] in V (T ) cannot be
refined.
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Warfield proved that sr(End(A)) ≤ 2 for all A ∈ T [28, Theorem 5.6], which by
Theorem 9.2 implies that srV (T )([A]) ≤ 2 for all such A. (This conclusion, in group-
theoretic form, was also proved in [28, Theorem 5.6].) Since “most” A ∈ T do not cancel
from direct sums, srV (T )([A]) = 2 for “most” A ∈ T . However, there do exist torsion-free
abelian groups A of finite rank which are cancellative, starting with A = Z (e.g., [9,
Corollary 8.8(b)]).

Warfield also noted, in [28, Remark, p.479], that there exist groups A ∈ T such that
(in our terminology) [A] is not Hermite in V (T ).

Monoids analogous to V (C) may also be constructed using relations coarser than iso-
morphism, as follows.

Definition 9.5. Let C be an essentially small class of modules over some ring R, closed
under isomorphisms, finite direct sums and direct summands, and containing the zero
module. Suppose we have an equivalence relation∼ on C that is stable under isomorphism
and stable under additional summands, that is, (A ∼= B =⇒ A ∼ B) and (A ∼ B =⇒
A⊕ C ∼ B ⊕ C) for any A,B,C ∈ C.

For each A ∈ C, let [A]∼ be a label for the ∼-equivalence class of A. Following the
pattern of Definition 9.1, we set

V (C/∼) := {[A]∼ | A ∈ C},
and we define

[A]∼ + [B]∼ := [A⊕B]∼ ∀ A,B ∈ C.
Then V (C/∼) becomes a commutative monoid. Unlike V (C), however, V (C/∼) is not
necessarily conical. For instance, let C be the class of finite abelian groups, fix an integer
n ≥ 3, and define ∼ on C by the rule A ∼ B if and only if card(A) ≡ card(B) (mod n).
Then (Z/(n− 1)Z)⊕ (Z/(n− 1)Z) ∼ {0} but Z/(n− 1)Z 6∼ {0}.
Examples 9.6. The following relations on the class T have been intensively studied.
Groups A and B in T are

multi-isomorphic in case An ∼= Bn ∀ n ≥ 2;

stably isomorphic in case A⊕ C ∼= B ⊕ C for some C ∈ T ;

near-isomorphic in case An ∼= Bn for some n > 0;

quasi-isomorphic in case A ∼= A′ ≤ B ∼= B′ ≤ A.

(The original definition of near-isomorphism required the existence of a homomorphism
f : A → B such that the localization fp : Ap → Bp is an isomorphism for all primes
p. Warfield proved that near-isomorphism is equivalent to the condition given above
[28, Theorem 5.9]. The original definition of quasi-isomorphism required the existence
of mutual embeddings whose cokernels are bounded. By, e.g., [9, Corollary 6.2], the
boundedness condition is redundant for groups in T .)

As discussed in [20, pp.539,540],

isomorphism =⇒ multi-isomorphism =⇒ stable isomorphism

=⇒ near-isomorphism =⇒ quasi-isomorphism,

and none of these implications is reversible. It is clear that these relations are equivalence
relations, and that they are stable under isomorphisms and additional summands.
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(1) If si is the relation of stable isomorphism on T , then V (T /si) is clearly cancellative,
and so we have srV (T /si)([A]si) = 1 for all A ∈ T .

(2) It follows from [28, Corollary 5.10] that the relation ni of near-isomorphism on T
cancels from direct sums. Hence, V (T /ni) is cancellative, and so srV (T /ni)([A]ni) = 1 for
all A ∈ T .

(3) Proposition 3.5, together with the fact that srV (T )([A]) ≤ 2 for all A ∈ T (recall
Example 9.4), implies that if mi is the relation of multi-isomorphism on T , then all
elements of V (T /mi) are Hermite, and so srV (T /mi)([A]mi) ≤ 2 for all A ∈ T .

As noted in [20, p.540], Jónsson’s example [18, Section 2] (cf. [9, Example 2.10])
provides groups A, B, C, D in T such that A ∼= C and A ⊕ B ∼= C ⊕ D but B
and D are not multi-isomorphic. Thus [A]mi is not cancellative in V (T /mi), yielding
srV (T /mi)([A]mi) = 2 (because V (T /mi) is conical).

(4) The relation qi of quasi-isomorphism is cancellative with respect to direct sums,
as follows from the uniqueness of quasi-decompositions into strongly indecomposable
groups in T up to quasi-isomorphism (e.g., [9, Corollary 7.9]). In particular, V (T /qi) is
cancellative. Thus srV (T /qi)([A]qi) = 1 for all A ∈ T .

More strongly, the uniqueness theorem implies that V (T /qi) is a direct sum of copies
of Z≥0, one copy for each quasi-isomorphism class of strongly indecomposable groups in
T .

The nonzero subgroups of Q are certainly strongly indecomposable, and two of them
are quasi-isomorphic if and only if isomorphic (e.g., [9, Corollary 1.3]). Therefore V (T /qi)
is an infinite direct sum of copies of Z≥0. It follows that V (T /qi) does not have an order-
unit. Since there exist surjective monoid homomorphisms

V (T )→ V (T /mi)→ V (T /si)→ V (T /ni)→ V (T /qi),

none of the monoids V (T ), V (T /mi), V (T /si), V (T /ni) has an order-unit.

Example 9.7. Let N be the class of all noetherian modules (right modules, say) over a
ring R. Define a relation ∼ on N by

A ∼ B if and only if A and B have isomorphic submodule series, meaning that
there exist chains of submodules A0 = 0 ≤ A1 ≤ · · · ≤ An = A and B0 = 0 ≤
B1 ≤ · · · ≤ Bn = B together with a permutation σ ∈ Sn such that Ai/Ai−1 ∼=
Bσ(i)/Bσ(i)−1 for all i = 1, . . . , n.

This is an equivalence relation on N [14, Proposition 3.3], which is clearly stable under
isomorphisms and additional summands. We can thus construct the monoid V (N /∼).
It is conical, and [R]∼ is an order-unit in V (N /∼). By [14, Proposition 3.8 and Theorem
5.1], V (N /∼) has refinement and is strongly separative. Thus, all elements of V (N /∼)
are Hermite (Lemma 1.2) and consequently have stable rank at most 2.

On the other hand, stable rank 1 (equivalently, cancellation) can fail in V (N /∼).
Take R = Z for instance. As noted at the end of [14, p.223], [Z]∼ = [Z/2Z]∼ + [Z]∼ but
[0]∼ 6= [Z/2Z]∼. Therefore srV (N/∼)([Z]∼) = 2.

A mixed version of cancellation does hold relative to N : if A ∈ N and X, Y are
arbitrary R-modules such that A⊕X ∼= A⊕ Y , then X ∼ Y [14, Theorem 5.5].
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Email address: perera@mat.uab.cat


