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ú

m
6,

ju
n

y
20

19
.

D
ep

ar
ta

m
en

t
d

e
M

at
em

àt
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Abstract

In this paper we deal with a general type of integral formulas of the visual
angle, among them those of Crofton, Hurwitz and Masotti, from the point of
view of Integral Geometry. The purpose is twofold: to provide an interpre-
tation of these formulas in terms of integrals of densities with respect to the
canonical measure in the space of pairs of lines and to give new simpler proofs
of them.
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1 Introduction

Throughout this paper K will be a compact convex set in R2 with boundary of
class C2. We will denote by F the area of K and by L the length of its boundary.

In 1868 Crofton showed ([1]), using arguments that nowadays belong to Integral
Geometry, the well known formula
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∫

P /∈K
(ω − sinω) dP + 2πF = L2, (1)

where ω = ω(P ) is the visual angle of K from the point P , that is the angle between
the two tangents from P to the boundary of K. In terms of Integral Geometry
both sides of this formula represent the measure of pairs of lines meeting K. In fact
the measure of all pairs of lines meeting K is L2, twice the integral of ω−sinω with
respect to the area element dP is the measure of those pairs of lines intersecting
themselves outside K and 2πF is the measure of those intersecting themselves
in K.

The authors were partially supported by grants 2017SGR358, 2017SGR1725 (Generalitat de
Catalunya) and PGC2018-095998-B-100 (Ministerio de Economı́a y Competitividad).
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Later on, Hurwitz in 1902, in his celebrated paper [4] on the application of
Fourier series to geometric problems, considers the integral of some new functions
of the visual angle. Concretely he proves

∫

P /∈K
fk(ω) dP = L2 + (−1)kπ2(k2 − 1)c2k, (2)

where

fk(ω) = −2 sinω +
k + 1

k − 1
sin((k − 1)ω)− k − 1

k + 1
sin((k + 1)ω), k ≥ 2, (3)

and c2k = a2k + b2k, with ak, bk the Fourier coefficients of the support function of K.
In the particular case k = 2 formula (2) gives

∫

P /∈K
sin3 ω dP =

3

4
L2 +

9

4
π2c22. (4)

Masotti in 1955 ([5]) states without proof the following Crofton’s type formula

∫

P /∈K
(ω2 − sin2 ω) dP = −π2F +

4L2

π
+ 8π

∑

k≥1

(
1

1− 4k2

)
c22k. (5)

In [2] a unified approach that encompasses the previous results is provided. As
well the following formula for the integral of any power of the sine function of the
visual angle, that generalises (4), is given:

∫

P /∈K
sinm(ω) dP =

m!

2m(m− 2)Γ(m−12 )2
L2

+
m!π2

2m−1(m− 2)

∑

k≥2, even

(−1)
k
2
+1(k2 − 1)

Γ(m+1+k
2 )Γ(m+1−k

2 )
c2k. (6)

In this paper we deal with a general type of integral formulas of the visual
angle including those we have just commented above, from the point of view of
Integral Geometry according to Crofton and Santaló [6]. The purpose is twofold:
to provide an interpretation of these formulas in terms of integrals of densities
with respect to the canonical measure in the space of pairs of lines and to give new
simpler proofs of them.

For each straight line G of the plane that does not pass through the origin let P
be the point of G at a minimum distance from the origin. We take as coordinates
for G the polar coordinates (p, ϕ) of the point P , with p > 0 and 0 ≤ ϕ < 2π. The
invariant measure in the set of lines of the plane not containing the origin is given
by a constant multiple of dG = dp dϕ. In the space of ordered pairs of lines we
consider the canonical measure dG1 dG2. This measure is, except for a constant
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factor, the only one invariant under Euclidean motions (see [6]). For every function
f̃(G1, G2) integrable with respect to dG1 dG2 we can consider the measure with
density f̃ , that is f̃(G1, G2) dG1 dG2. We prove in Proposition 1 that this measure
is invariant under Euclidean motions if and only if f̃(G1, G2) = f(ϕ2−ϕ1) with f
a π-periodic function on R.

For such densities, and under some additional hypothesis, it follows from The-
orem 1 and Corollary 2 that

A0L
2 + π2

∑

n≥1
c22nA2n =

∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2

= 2H(π)F + 2

∫

P /∈K
H(ω) dP, (7)

where Ak, k ≥ 0, are the Fourier coefficients of f corresponding to cos(kϕ), and
H(x) is a C2 function on [0, π] satisfying H ′′(x) = f(x) sin(x), x ∈ [0, π], and
H(0) = H ′(0) = 0.

The above two equalities are the main tools to obtain both new proofs of the
formulas discussed above and their interpretation as integrals of densities with
respect to the canonical measure in the space of pairs of lines. As concerning to
this second point, in section 3.3 one obtains the following formulas.

- Crofton’s formula
∫

P /∈K
(ω − sinω) dP = −πF +

1

2

∫

Gi∩K 6=∅
dG1 dG2.

- Hurwitz’s formula
∫

P /∈K
fk(ω) dP =

∫

Gi∩K 6=∅
(1 + (−1)k(k2 − 1) cos(k(ϕ2 − ϕ1))) dG1 dG2.

- Masotti’s formula
∫

P /∈K
(ω2 − sin2 ω) dP = −π2F + 2

∫

Gi∩K 6=∅
| sin(ϕ2 − ϕ1)| dG1 dG2.

- Power sine formula

∫

P /∈K
sinm ω dP

=
1

2

∫

Gi∩K 6=∅

(
m(m− 1)|sinm−3(ϕ2 − ϕ1)|−m2|sinm−1(ϕ2 − ϕ1)|

)
dG1 dG2.

Moreover using the first equality in (7) one gets the announced new proofs of
formulas (1), (5) and (6).
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Concerning Hurwitz’s integral, when we apply the methods here developed,
it appears a different behavior according to k is either even or odd. For k even
using (7) one gets a new proof of (2). Nevertheless when k is odd the density
associated to the Hurwitz integral is not π-periodic since the function cos(kx) is
not, and so we cannot use (7). In this case appealing to Proposition 5 one obtains
a new result that involves a decomposition of the visual angle ω into two parts
ω = ω1 + ω2 that also have a geometrical interpretation.

In this setting it plays a role the function fk(ω) + 2(sinω−ω), that is the sum
of the functions of Hurwitz and Crofton. In spite of

∫
P /∈K(fk(ω)+2(sinω−ω)) dP

depends on k, the surprising fact is that, for k odd, decomposing the visual angle ω
into the two parts ω1, ω2 and adding the corresponding integrals leads to

∫

P /∈K
(fk(ω1) + 2(sinω1 − ω1) + fk(ω2) + 2(sinω2 − ω2)) dP = 2πF,

for each k ≥ 3 odd, as a consequence of Proposition 9.
Moreover it will appear that the functions of Crofton and Hurwitz are in some

sense a basis for the integral of any π-periodic or anti π-periodic density with
respect to the measure dG1 dG2 over the set of pairs of lines meeting a given
compact convex set.

2 Densities in the space of pairs of lines

For every function f̃(G1, G2) defined on the space of pairs of lines integrable with
respect to the measure dG1 dG2 we consider the measure with density f̃ , that is
the measure f̃(G1, G2) dG1 dG2. The measure of a set A of pairs of lines in the
plane is then given by ∫

A
f̃(G1, G2) dG1 dG2.

We want now to determine when this measure is invariant under Euclidean mo-
tions.

Proposition 1. The measure f̃(G1, G2) dG1 dG2 is invariant under the group of
Euclidean motions if and only if f̃(G1, G2) = f̃(p1, ϕ1, p2, ϕ2) = f(ϕ2−ϕ1) with f
a π-periodic function on R, where (pi, ϕi) are the coordinates of Gi.

Proof. The invariance of the measure is equivalent to the equality f̃(p1,ϕ1, p2,ϕ2)=
f̃(p′1, ϕ

′
1, p
′
2, ϕ
′
2) for each Euclidean motion sending the lines with coordinates

(p1, ϕ1, p2, ϕ2) to the lines with coordinates (p′1, ϕ
′
1, p
′
2, ϕ
′
2). First of all let us

show that f̃ does not depend on p1, p2. In fact, for every straight line G = G(p, ϕ)
and an arbitrary a > 0 there is a parallel line to G with coordinates (a, ϕ). Given
two straight lines G1 = G(p1, ϕ1), G2 = G(p2, ϕ2) and two numbers a1, a2 > 0 let
G′1 and G′2 be the corresponding parallel lines with coordinates (a1, ϕ1), (a2, ϕ2).
Performing the translation that sends the point G1 ∩ G2 to the point G′1 ∩ G′2
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we have that f̃(p1, ϕ1, p2, ϕ2) = f̃(a1, ϕ1, a2, ϕ2) and so f̃ does not depend on p1
and p2.

Given now the line G(p, ϕ) if we perform, for instance, the translation given by
the vector −(p+ε)(cosϕ, sinϕ), ε > 0, the translated line has coordinates (ε, ϕ+π).
Therefore the function f̃ must be π-periodic with respect to the arguments ϕ1, ϕ2.
Finally due to the invariance under rotations it follows that f̃(p1, ϕ1, p2, ϕ2) =
f̃(p1, 0, p2, ϕ2 − ϕ1) and so f̃(p1, ϕ1, p2, ϕ2) = f(ϕ2 − ϕ1) with f a π-periodic
function.

Our goal is now to integrate a measure given by a density over the set of pairs
of lines meeting K. In view of Proposition 1 we shall only consider densities which
depend on the angle of the two lines, that is of the form f̃(G1, G2) = f(ϕ2 − ϕ1),
with Gi = Gi(pi, ϕi), i = 1, 2. Note that ϕ2 − ϕ1 gives one of the two angles
between the lines G1 and G2.

We give a formula to compute the integral of the measure f̃(G1, G2) dG1 dG2 =
f(ϕ2 − ϕ1) dG1 dG2, with f a 2π-periodic function extended to the pairs of lines
meeting K in terms of both the Fourier coefficients of f and of the support function
of K. Recall that when the origin of coordinates is an interior point of K, a
hypothesis that we will assume from now on, the support function p(ϕ) is given
by the distance to the origin of the tangent to K whose normal makes and angle ϕ
with the positive part of the real axis (see [6]).

Theorem 1. Let K be a compact convex set with boundary of length L. Let f be
a 2π-periodic continuous function on R with Fourier expansion

f(ϕ) =
∑

n≥0
An cos(nϕ) +Bn sin(nϕ).

Then ∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2 = A0L

2 + π2
∑

n≥1
c2nAn, (8)

with c2n = a2n + b2n where an, bn are the Fourier coefficients of the support func-
tion p(ϕ) of K.

Proof. We have

∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2 =

∫ 2π

0

∫ 2π

0

∫ p(ϕ1)

0

∫ p(ϕ2)

0
f(ϕ2 − ϕ1) dp1 dp2 dϕ1 dϕ2

=

∫ 2π

0

∫ 2π

0
p(ϕ1)p(ϕ2)f(ϕ2 − ϕ1) dϕ1 dϕ2.

(9)

Performing the change of variables ϕ2 − ϕ1 = w, ϕ1 = u the integral (9) becomes

∫ 2π

0
p(u)

∫ 2π−u

−u
p(u+ w)f(w) dw du. (10)
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The Fourier development of p(u + w) in terms of the Fourier coefficients an, bn
of p(u) is

p(u+ w) = a0 +
∑

n≥1

(
(an cos(nu) + bn sin(nu)) cos(nw)

+ (−an sin(nu) + bn cos(nu)) sin(nw)

)
.

By the Plancherel identity the integral (10) is equal to

∫ 2π

0
p(u)

[
2π A0 a0 + π

∑

n≥1
An(an cos(nu) + bn sin(nu))

+Bn(−an sin(nu) + bn cos(nu))

]
du

=

∫ 2π

0
p(u)

[
2π A0 a0 +π

∑

n≥1
(Anan +Bnbn) cos(nu) + (Anbn−Bnan) sin(nu))

]
du

= 4π2A0 a
2
0 + π2

∑

n≥1
(Anan +Bnbn)an + (Anbn −Bnan)bn

= 4π2A0 a
2
0 + π2

∑

n≥1
An(a2n + b2n) = A0L

2 + π2
∑

n≥1
Anc

2
n,

where we have used that L = 2πa0, which is a consequence of the equality L =∫ 2π
0 p(ϕ) dϕ (see for instance [6]), and the Theorem is proved.

As it is well known (see [4]) the quantities c2k = a2k + b2k, k ≥ 2, are invariant
under Euclidean motions of K. However c21 changes when moving K. So the
integral in (8) is invariant under Euclidean motions of K if and only if A1 = 0. In
particular this is the case when f is π-periodic.

For a density given by a π-periodic function f and a compact set of constant
width the measure of the pairs of lines that intersect K is proportional to L2.
More precisely we have

Corollary 1. Let K be a compact convex set of constant width and f a continuous
π-periodic function. Then

∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2 = λL2,

where λ = (1/π)
∫ π
0 f(ϕ) dϕ.
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Proof. Since K is of constant width the Fourier development of p(ϕ) has only odd
terms (see for instance §2 of [2]). Moreover the Fourier development of f has only
even terms because it is π-periodic. Hence (8) gives

∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2 = A0L

2,

with A0 = (1/π)
∫ π
0 f(ϕ) dϕ.

3 Integral formulas of the visual angle in terms of den-
sities in the space of pairs of lines

In [2] there is a unified approach to several classical formulas involving integrals
of functions of the visual angle of a compact convex set K. Among them one can
find the integrals of Crofton, Masotti, powers of sine, and Hurwitz.

The original proof of Crofton’s formula, via Integral Geometry, involves a mea-
sure on the space of pairs of lines. The aim of this section is to interpret the
formulas in [2] in terms of integrals of measures given by densities in the space of
pairs of lines.

To begin with let us consider Hurwitz’s formula

∫

P /∈K
fk(ω) dP = L2 + (−1)kπ2(k2 − 1)c2k, (11)

where fk(ω) is given in (3). For a proof of (11) see [4] or [2].
Comparing this equality with (8) one gets immediately the following result.

Proposition 2. Let fk be the Hurwitz function defined in (3). Then

∫

P /∈K
fk(ω) dP =

∫

Gi∩K 6=∅
(1 + (−1)k(k2 − 1) cos(k(ϕ2 − ϕ1))) dG1 dG2.

Nevertheless for the other quoted integral formulas it is not clear at all what
density must be chosen. We shall provide a general method to find the densities
corresponding to integrals of general functions of the visual angle.

3.1 A change of variables

The classical proof of Crofton’s formula is based on the change of variables in the
space of pairs of lines given by

(p1, ϕ1, p2, ϕ2) −→ (P, α1, α2),

where P is the intersection point of the two straight lines and αi ∈ [0, π] are the
angles which determine the directions of the lines. More precisely the angle α
associated to a line through a given point P is defined in the following way. Let
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~u be a unitary vector orthogonal to
−−→
OP where O is the origin of coordinates, and

such that the basis (~u,
−−→
OP ) is positively oriented. Let G be a line through P with

unitary director vector ~v such that the basis (~u,~v) is positively oriented. Then
α = α(G) is defined by cosα = ~u · ~v and 0 < α < π. From now on we shall say
that α is the direction of the line G.

Figure 1: Direction of a line.

With these new coordinates, proceeding as in [6], one has

dG1 dG2 = |sin(α2 − α1)| dα1 dα2 dP. (12)

We have used the fact that ϕ2−ϕ1 = α2−α1 + επ where ε = ε(P, α1, α2) = 0,±1,
according to the position with respect to the origin of the lines G1, G2. As a
consequence if f is a π-periodic function we have

f(ϕ2 − ϕ1) dG1 dG2 = f(α2 − α1)|sin(α2 − α1)| dα1 dα2 dP. (13)

3.2 Integrals of functions of pairs of lines meeting a convex set

For a point P /∈ K let α, β be the directions we have introduced corresponding
to the support lines of K through P , with 0 < α < π/2 and π/2 < β < π. Then
ω = β−α is the visual angle of K from P . This is the reason why we have slightly
modified the definition of the direction angle given by Santaló in [6] as the angle
between the line through P and the positive x axis, because with this definition
one could have ω = β − α or ω = π − (β − α); see Figure 2. We shall provide now
a general formula to calculate the integral of the right-hand side of (13).

Proposition 3. Let f be a 2π-periodic continuous function on R, and H a C2 func-
tion on [−π, π] satisfying the conditions H ′′(x) = f(x) · sin(x), x ∈ [−π, π], and
H(0) = H ′(0) = 0. Denote by αi the direction of the line Gi. Then
∫

Gi∩K 6=∅
f(α2 − α1)|sin(α2 − α1)| dα1 dα2 dP

= (H(π)−H(−π))F +

∫

P /∈K
(H(ω)−H(−ω)) dP,

where ω = ω(P ) is the visual angle of K from P .
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Figure 2: Visual angle of a convex set.

Proof. For a given point P in the plane there are angles α(P ), β(P ) such that
the pairs of lines G1, G2 through P that intersect the convex set K are those
satisfying α(P ) ≤ αi ≤ β(P ), where αi = α(Gi). When P ∈ K we have α(P ) = 0
and β(P ) = π.

We need to integrate the function f(α2 − α1)|sin(α2 − α1)| over [α, β]2 with
α = α(P ) and β = β(P ). In order to perform this integral we divide [α, β]2 into
the union of the regions R1 = {(α1, α2) ∈ [α, β]2 : α2 ≥ α1} and R2 = {(α1, α2) ∈
[α, β]2 : α2 < α1}. Therefore

∫

[α,β]2
f(α2 − α1)|sin(α2 − α1)| dα1 dα2

=

∫

R1

f(α2 − α1) sin(α2 − α1) dα1 dα2 −
∫

R2

f(α2 − α1) sin(α2 − α1) dα1 dα2

=

∫ β

α

(∫ α2

α
f(α2 − α1) sin(α2 − α1) dα1

)
dα2

−
∫ β

α

(∫ α1

α
f(α2 − α1) sin(α2 − α1) dα2

)
dα1

=

∫ β

α

[
−H ′(α2 − α1)

]α2

α
dα2 −

∫ β

α

[
H ′(α2 − α1)

]α1

α
dα1

= [H(α2 − α)]βα − [H(α− α1)]
β
α = H(β − α)−H(α− β).

Hence
∫

Gi∩K 6=∅
f(α2 − α1)|sin(α2 − α1)| dα1 dα2 dP

=

(∫

P∈K
+

∫

P /∈K

)
(H(β − α)−H(α− β)) dP.
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Taking into account that the visual angle ω(P ) is given by β(P )−α(P ) the result
follows.

In the next result we assume the additional hypothesis that f(x) is an even
function.

Proposition 4. Let f be a 2π-periodic continuous function on R, with f(−x) =
f(x), x ∈ R, and H a C2 function on [0, π] satisfying the conditions H ′′(x) =
f(x) · sin(x), x ∈ [0, π], and H(0) = H ′(0) = 0. Denote by αi the direction of the
line Gi. Then
∫

Gi∩K 6=∅
f(α2 − α1)|sin(α2 − α1)| dα1 dα2 dP = 2H(π)F + 2

∫

P /∈K
H(ω) dP,

where ω = ω(P ) is the visual angle of K from P .

Proof. Just proceed as in the above proof taking into account that

∫

[α,β]2
f(α2 − α1)|sin(α2 − α1)| dα1 dα2

= 2

∫ β

α

(∫ α2

α
f(α2 − α1) sin(α2 − α1) dα1

)
dα2.

For the special case where f is a π-periodic function one has

Corollary 2. Let f be a π-periodic continuous function on R, and H a C2 function
on [−π, π] satisfying the conditions H ′′(x) = f(x) ·sin(x), x ∈ [−π, π], and H(0) =
H ′(0) = 0. Then

∫

Gi∩K 6=∅
f(ϕ2−ϕ1) dG1 dG2=

(
(H(π)−H(−π))F +

∫

P /∈K
(H(ω)−H(−ω)) dP

)
.

If moreover f(−x) = f(x) and H(x) is C2 on [0, π] with H ′′(x) = f(x) · sin(x),
x ∈ [0, π], and H(0) = H ′(0) = 0, one has

∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2 = 2H(π)F + 2

∫

P /∈K
H(ω) dP. (14)

Proof. When f is a π -periodic function we have equality (13) and the result is
then a consequence of Proposition (3) and Proposition (4).

Integral formulas as those given in (8) and (14) open the possibility to prove
interesting relations for quantities linked to convex sets. For instance when applied
to the function f(x) = cos kx they give Hurwitz’s formula (11) for k even (see
section 4).
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For odd values of k the Corollary 2 does not apply because f(x) = cos kx is not
a π-periodic function. In this case we have f(x + π) = −f(x) and we say that f
is an anti π-periodic function. For this type of functions we can modify the above
proofs to obtain a new result that involve a decomposition of the visual angle ω
into ω = ω1 + ω2 where ω1 and ω2 are defined in the following way. Given a point
P /∈ K we have considered in section 3.2 the directions 0 < α < π/2 < β < π of
the support lines of K through P and the visual angle ω = β − α. Let us take
ω1 = π/2− α and ω2 = β − π/2. Then we have

Figure 3: Angles ω1 and ω2.

Proposition 5. Let f be an anti π-periodic continuous function on R such that
f(x) = f(−x) and H a C2 function on [0, π] with H ′′(x) = f(x) · sin(x), x ∈ [0, π],
and H(0) = H ′(0) = 0. Then

∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2

= 2(2H(π/2)−H(π))F + 2

∫

P /∈K
(2H(ω1) + 2H(ω2)−H(ω)) dP. (15)

Proof. In section 3.1 we have seen that ϕ2 − ϕ1 = α2 − α1 + επ where ε =
ε(P, α1, α2) = 0,±1. Then

∫

Gi∩K 6=∅
f(ϕ2 − ϕ1) dG1 dG2

=

∫

P∈R2

∫

[α(P ),β(P )]2
(−1)εf(α2 − α1)|sin(α2 − α1)| dα1 dα2 dP.

11



If P /∈ K we consider the regions

R1 = {(α1, α2) : α ≤ α1 < α2 ≤ π/2},
R2 = {(α1, α2) : π/2 ≤ α1 < α2 ≤ β},
R3 = {(α1, α2) : α ≤ α1 < π/2 < α2 ≤ β}.

In R1 and R2 we have ε = 1 and ε = −1 in region R3. Therefore, for P /∈ K
∫ β

α

∫ β

α
(−1)εf(α2 − α1)|sin(α2 − α1)| dα1 dα2

= 2

(∫

R1

f(α2 − α1) sin(α2 − α1) dα1 dα2 +

∫

R2

f(α2 − α1) sin(α2 − α1) dα1 dα2

= −
∫

R3

f(α2 − α1) sin(α2 − α1) dα1 dα2

)
.

The integrals over R1 and R2 are easily computed and their values are 2H(ω1)
and 2H(ω2) respectively. Let us compute the third integral.

∫

R3

f(α2 − α1) sin(α2 − α1) dα1 dα2

=

∫ β

π/2

∫ π/2

α
f(α2 − α1) sin(α2 − α1) dα1 dα2)

= 2

∫ β

π/2

[
−H ′(α2 − α1)

]α1=π/2

α1=α
dα2 = 2

∫ β

π/2
(H ′(α2 − α)−H ′(α2 − π/2)) dα2

= 2 [H(α2 − α)−H(α2 − π/2)]α2=β
α2=π/2

= 2 (H(ω)−H(β − π/2)−H(π/2− α))

= 2 (H(ω)−H(ω2)−H(ω1)) .

Finally, for G1 ∩G2 = P /∈ K we have

∫

P /∈K
f(ϕ2 − ϕ1) dG1 dG2 = 2

∫

P /∈K
(2H(ω1) + 2H(ω2)−H(ω)) dP. (16)

When P ∈ K we do the same computations but now α = 0, β = π and ω =
β − α = π and so ω1 = π/2 = ω2. Thus

∫

G1∩G2∈K
f(ϕ2 − ϕ1) dG1 dG2 = 2(4H(π/2)−H(π))F. (17)

Joining (16) and (17) the Proposition follows.
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3.3 Interpretation in terms of densities of the formulas of Crofton,
Masotti and powers of sine

In this section we will give an interpretation of the integrals of the visual angle ap-
pearing in the formulas of Crofton, Masotti and power of sine in terms of integrals
of densities in the space of pairs of lines. For Hurwitz’s formula this was done in
Proposition 2.

Crofton’s formula

Taking H(x) = x− sin(x) it follows that f = 1 in Corollary 2 and since H(π) = π
using (14) we get

Proposition 6. The following equality holds.

∫

Gi∩K 6=∅
dG1 dG2 = 2πF + 2

∫

P /∈K
(ω − sinω) dP.

Masotti’s formula

Taking H(x) = x2 − sin2(x) one gets H ′′(x)/ sin(x) = 4 sin(x). So the function
f(x) = 4|sin(x)|, x ∈ R, satisfies the hypothesis of Corollary 2 and equation (14)
gives

Proposition 7. The following equality holds

2

∫

Gi∩K 6=∅
|sin(ϕ2 − ϕ1)| dG1 dG2 = π2F +

∫

P /∈K
(ω2 − sin2 ω) dP.

Powers of sine formula

Finally, in an analogous way we can interpretate the integral of any power of the
sine of the visual angle. Effectively for H(x) = sinm(x) it follows that

H ′′(x)/ sin(x) = m(m− 1) sinm−3(x)−m2 sinm−1(x).

So taking f(x) = m(m−1)|sinn−3(x)|−m2|sinm−1(x)| the hypothesis of Corollary 2
are satisfied and by (14) we have

Proposition 8. The following equality holds

2

∫

P /∈K
sinm(ω) dP

=

∫

Gi∩K 6=∅

(
m(m− 1)|sinm−3(ϕ2 − ϕ1)| −m2|sinm−1(ϕ2 − ϕ1)|

)
dG1 dG2.
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4 New proofs of classical formulas

Combining the results of the previous section with Theorem 1 new proofs of the
formulas of Masotti and the powers of sine can be obtained, in the spirit of the
classical proof of Crofton’s formula via Integral Geometry

To begin with we note that Theorem 1 implies the equality
∫
Gi∩K 6=∅ dG1 dG2 =

L2 which is also an immediate consequence of the well known Cauchy–Crofton’s
formula (see [6]). Now this equality together with Proposition 6 gives Crofton’s
formula

L2 = 2πF + 2

∫

P /∈K
(ω − sinω) dP. (18)

Masotti’s formula

A simple calculation shows that the Fourier expansion of the function |sin(t)| is

|sin(t)| = 2

π
+

4

π

∑

n≥1

cos(2nt)

1− 4n2
. (19)

So by Theorem 1,

∫

Gi∩K 6=∅
|sin(ϕ2 − ϕ1)| dG1 dG2 =

2L2

π
+ 4π

∑

n≥1

c22n
1− 4n2

,

and using Proposition 7 one gets

∫

P /∈K
(ω2 − sin2 ω) dP = −π2F +

4L2

π
+ 8π

∑

n≥1

c22n
1− 4n2

,

which is Masotti’s formula (5).

Another example

In the preceding sections we have interpreted integral formulas of some functions
of the visual angle in terms of densities in the space of pairs of lines. But one can
also proceed in the reverse sense, that is to start from a density and to look for
the corresponding function of the visual angle.

For instance the proof of Masotti’s formula leads to compute
∫
Gi∩K |sin(ϕ2 −

ϕ1)| dG1dG2. If we consider now the density function |cos(ϕ2 − ϕ1)|, using Theo-
rem 1 and that

|cos(t)| = 2

π
+

4

π

∑

n≥1

(−1)n cos(2nt)

1− 4n2

we get ∫

Gi∩K 6=∅
|cos(ϕ2 − ϕ1)| dG1 dG2 =

2L2

π
+ 4π

∑

n≥1

(−1)nc22n
1− 4n2

.
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The function H appearing in Corollary 2 is in this case

H(ω) =





1
4(ω − sinω cosω) 0 ≤ ω ≤ π/2,
1
4(3ω − π + sinω cosω) π/2 ≤ ω ≤ π.

Hence, by (14) we have
∫

Gi∩K 6=∅
|cos(ϕ2 − ϕ1)| dG1 dG2 = πF + 2

∫

P /∈K
H(ω) dP.

Powers of sine formula

In order to apply Theorem 1 to the right-hand side of the equality in Proposi-
tion 8 we need to compute the Fourier coefficients of the function f(x) = m(m−
1)|sinm−3(x)| −m2|sinm−1(x)|. It is clear that Ak = 0 for k odd. For k even we
have

Ak =
1

π

∫ 2π

0
f(x) cos(kx) dx

=
1

π

[
2m(m− 1)

∫ π

0
sinm−3 x cos(kx) dx− 2m2

∫ π

0
sinm−1 x cos(kx) dx

]

=
1

π
[2m(m− 1)Im−3,k − 2m2Im−1,k], (20)

where

Im,k =

∫ π

0
sinm(x) cos(kx) dx = (−1)k/2

2−mm!π

Γ(1 + m−k
2 )Γ(1 + m+k

2 )
,

(see, for instance, [3], p. 372). Substituting this expression in (20) it follows

Ak =
m!

2m−2(m− 2)

(−1)
k
2
+1(k2 − 1)

Γ(m+1+k
2 )Γ(m+1−k

2 )
.

Finally using Theorem 1 we get

∫

P /∈K
sinm(ω) dP =

m!

2m(m− 2)Γ(m−12 )2
L2

+
m!π2

2m−1(m− 2)

∑

k≥2,even

(−1)
k
2
+1(k2 − 1)

Γ(m+1+k
2 )Γ(m+1−k

2 )
c2k.

Note that for m odd the index k in the sum runs only from 2 to m− 1.
This formula, which was first obtained by a different method in [2], provides

an interpretation of the coefficients of c2k as the Fourier coefficients of the above
function f .
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Crofton-Hurwitz’s integral

In the above two previous sections we have strongly used equality (14) of Corol-
lary 2 that depends on the fact that the function f(x) is π-periodic, a fact that is
crucial in order that equality (13) holds.

Consider now the function f(x) = cos kx with k > 1. This function satisfies
the hypothesis of Corollary 2 for k even and the hypothesis of Proposition 5 for
k odd. We have that

Hk(x) =
1

2(k2 − 1)
(fk(x) + 2(sinx− x)) , (21)

with fk(x) the Hurwitz’s function given in (3), satisfies the equation H ′′k (x) =
cos kx·sinx, x ∈ [0, π], and Hk(0) = H ′k(0) = 0. Therefore, for k even, equalities (8)
and (14) give

π2c2k =

∫

Gi∩K 6=∅
cos(k(ϕ2 − ϕ1)) dG1 dG2 = − πF

k2 − 1
+ 2

∫

P /∈K
Hk(ω) dP,

and using Crofton’s formula (18) one gets a new proof of Hurwitz’s formula (11)
for k even.

When k is odd equation (15) gives

∫

Gi∩K 6=∅
cos k(ϕ2 − ϕ1) dG1 dG2 =

= − 2πF

k2 − 1
+ 2

∫

P /∈K
(2Hk(ω1) + 2Hk(ω2)−Hk(ω)) dP.

Using the equality (8) one deduces that

∫

P /∈K
Hk(ω) dP = −π

2c2k
2
− 2πF

k2 − 1
+

∫

P /∈K
(Hk(ω1) +Hk(ω2) dP.

Now by (21) and Crofton’s formula we obtain

∫

P /∈K
fk(ω) dP = L2−π2(k2−1)c2k−2πF + 2(k2−1)

∫

P /∈K
(Hk(ω1) +Hk(ω2)) dP.

(22)
Since we do not know the value of

∫
P /∈K(Hk(ω1) +Hk(ω2)) dP we are not able to

prove Hurwitz formula in the case of k odd. But from (11) we get the following
result.

Proposition 9. Let K be a compact convex set of area F . Then

(k2 − 1)

∫

P /∈K
(Hk(ω1) +Hk(ω2) dP = πF (23)

for each k ≥ 3 odd, where Hk is given in (21).
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Notice that the above equation is equivalent to

∫

P /∈K
(fk(ω1) + 2(sinω1 − ω1) + fk(ω2) + 2(sinω2 − ω2)) dP = 2πF. (24)

The function Hk is the sum, except for a constant, of Hurwitz’s function and
Crofton’s function and so are the terms in the above integrand. The integral of
the sum of Crofton’s and Hurwitz’s functions of the visual angle is

∫

P /∈K
(fk(ω) + 2(sinω − ω)) dP = 2πF + (−1)kπ2(k2 − 1)c2k, k ≥ 2.

The surprising fact is that, for k odd, decomposing the visual angle ω into the two
parts ω = ω1 + ω2 and adding the corresponding integrals one gets (24) in which
the right-hand side does not depend on k.

In concluding we make the following remark. Theorem 1 states that the inte-
gral

∫
Gi∩K 6=∅ f(ϕ2−ϕ1) dG1 dG2 depends only on the integrals

∫
Gi∩K 6=∅ cos k(ϕ2−

ϕ1) dG1 dG2. So, by the results of section 3.1 we are lead to calculate the func-
tions Hk(x) such that H ′′k (x) = cos(kx) sin(x) with Hk(0) = H ′k(0) = 0. These
functions appear to be the sum of the functions of Hurtwitz and Crofton given
in (21), that is

Hk(x) =
1

2(k2 − 1)
(fk(x) + 2(sinx− x)) , k ≥ 2,

and H1(x) = (1/8)(2x− sin(2x)).
As a consequence when f is a π-periodic density, according to Corollary 2,

the integral
∫
Gi∩K 6=∅ f(ϕ2 − ϕ1) dG1 dG2 is a linear combination of integrals ex-

tended outside K of the functions of the visual angle Hk(ω). Likewise when the
density f is anti π-periodic, according to Proposition 5, the corresponding inte-
gral of the density is a linear combination of integrals extended outside K of the
functions Hk(ω), Hk(ω1) and Hk(ω2).

Summarizing, it appears that the functions of Crofton and Hurwitz are some
kind of basis for the integral of any π-periodic or anti π-periodic density with
respect to the measure dG1 dG2 over the set of pairs of lines meeting a given
compact convex set.
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