THE RATIONAL COHOMOLOGY OF A *p*-LOCAL COMPACT GROUP

C. BROTO, R. LEVI, AND B. OLIVER

Let p be a prime number. In [BLO3], we developed the theory of p-local compact groups. The theory is modelled on the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups, and generalises the earlier concept of p-local finite groups [BLO2]. It provides a coherent context in which classifying spaces of compact Lie groups and p-compact groups [DW] can be studied, and also gives rise to many exotic examples. In this paper, we study the rational p-adic cohomology

$$H^*_{\mathbb{Q}_p}(-) \stackrel{\mathrm{def}}{=} H^*(-,\mathbb{Z}_p) \otimes \mathbb{Q}_p$$

of a *p*-local compact group. Our main result here is that, as one would expect, the *p*-adic rational cohomology of *p*-local compact groups behaves the same way as that of a compact Lie group.

Theorem A. Let $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. Let $S_0 \leq S$ be its maximal torus, and let $W(\mathcal{G}) \stackrel{\text{def}}{=} \operatorname{Aut}_{\mathcal{F}}(S_0)$ be its Weyl group. Then

$$H^*_{\mathbb{Q}_p}(B\mathcal{G}) \cong H^*_{\mathbb{Q}_p}(BS_0)^{W(\mathcal{G})}.$$

Of course, the Weyl group of a *p*-local compact group need not be a pseudo-reflection group, and hence the rational cohomology of the classifying space is not in general a polynomial algebra.

Like compact Lie groups and *p*-compact groups, *p*-local compact groups admit unstable Adams operations, which are defined in [JLL], using the internal structure of the *p*-local group in question, rather than its rational cohomology. One application of Theorem A is Proposition 3.2, which states that under a mild condition, the obvious cohomological definition of an unstable Adams operation characterises the same family of maps as the one referred to in [JLL] as "geometric unstable Adams operations".

Another easy application of Theorem A is the observation that if \mathcal{G} is a *p*-local compact group with maximal torus S_0 , then the inclusion in \mathcal{G} of the *p*-local subgroup given by the normaliser $N_{\mathcal{G}}(S_0)$ induces a rational *p*-adic cohomology isomorphism.

In Section 1, we recall the basic concepts in the theory of p-local compact groups which will be needed to prove Theorem A. Section 2 is dedicated to the proof of the theorem. Finally in Section 3 we discuss the applications described above.

²⁰¹⁰ Mathematics Subject Classification. Primary 55R35. Secondary 55R40, 20D20.

Key words and phrases. Classifying space, p-completion, p-local compact groups, fusion.

C. Broto is partially supported by FEDER-MICINN grant MTM 2010-20692.

R. Levi is partially supported by EPSRC grant EP/I019073/1.

B. Oliver is partially supported by UMR 7539 of the CNRS, and by project ANR BLAN08-2_338236, HGRT.

1. Some basic concepts

We recall the definition and some basic properties of p-local compact groups. The reader is referred to [BLO3] for a comprehensive account of these objects.

We begin by defining discrete *p*-toral groups. By \mathbb{Z}/p^{∞} we mean the union of all \mathbb{Z}/p^r with respect to the natural inclusions.

Definition 1.1. A discrete p-torus is a group isomorphic to $(\mathbb{Z}/p^{\infty})^r$ for some positive integer r. A discrete p-toral group is a group S which contains a normal discrete p-torus S_0 , with p-power index. The normal subgroup S_0 will be referred to as the maximal torus or the identity component of S, and the quotient group $\Gamma \cong S/S_0$ will be called the group of components of S.

The identity component S_0 of a discrete *p*-toral group S can be characterised as the subset of all infinitely *p*-divisible elements in S, and also as the unique minimal subgroup of finite index in S. Thus, S_0 is a characteristic subgroup. The rank of S is the number $r = \operatorname{rk}(S)$ such that $S_0 \cong (\mathbb{Z}/p^{\infty})^r$.

Recall that for $P, Q \leq S$, the transporter set $T_S(P,Q)$ is the set of all elements $g \in S$ such that $gPg^{-1} \leq Q$. We denote by $\operatorname{Hom}_S(P,Q)$ the set of all homomorphisms $c_g \colon P \to Q$, which are restrictions of an inner automorphism of S, and by $\operatorname{Inj}(P,Q)$ denote the set of all the injective homomorphisms $P \to Q$. We are now ready to recall the definition of fusion systems over discrete p-toral groups.

Definition 1.2. A fusion system \mathcal{F} over a discrete p-toral group S is a category whose objects are the subgroups of S, and whose morphism sets $\operatorname{Hom}_{\mathcal{F}}(P,Q)$ satisfy the following conditions:

- (a) $\operatorname{Hom}_{S}(P,Q) \subseteq \operatorname{Hom}_{\mathcal{F}}(P,Q) \subseteq \operatorname{Inj}(P,Q)$ for all $P,Q \leq S$.
- (b) Every morphism in \mathcal{F} factors as an isomorphism in \mathcal{F} followed by an inclusion.

Two subgroups $P, P' \leq S$ are called \mathcal{F} -conjugate if P and P' are isomorphic as objects in \mathcal{F} . A subgroup $P \leq S$ is said to be \mathcal{F} -centric if for every subgroup $P' \leq S$ which is \mathcal{F} -conjugate to $P, C_S(P') = Z(P')$.

All fusion systems considered in this paper are required to be *saturated* [BLO3, Definition 2.2]. Although the results we present here are based on properties of saturated fusion systems proved in [BLO3], we do not explicitly use the saturation axioms, and thus we will not repeat them here.

Next, we briefly recall what are centric linking systems and p-local compact groups. The full definition can be found in [BLO3, Definitions 4.1, 4.2]

Definition 1.3. Let \mathcal{F} be a fusion system over a discrete p-toral group S. A centric linking system associated to \mathcal{F} is a category \mathcal{L} whose objects are the \mathcal{F} -centric subgroups of S, together with a functor

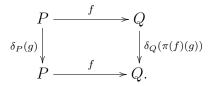
 $\pi\colon \mathcal{L} \longrightarrow \mathcal{F}^c,$

and "distinguished" monomorphisms $P \xrightarrow{\delta_P} \operatorname{Aut}_{\mathcal{L}}(P)$ for each \mathcal{F} -centric subgroup $P \leq S$, which satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for each pair of objects $P, Q \in \mathcal{L}$, the centre Z(P) acts freely on $\operatorname{Mor}_{\mathcal{L}}(P,Q)$ by composition (upon identifying Z(P) with $\delta_P(Z(P)) \leq \operatorname{Aut}_{\mathcal{L}}(P)$), and π induces a bijection

$$\operatorname{Mor}_{\mathcal{L}}(P,Q)/Z(P) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{F}}(P,Q).$$

- (B) For each \mathcal{F} -centric subgroup $P \leq S$ and each $g \in P$, π sends $\delta_P(g) \in \operatorname{Aut}_{\mathcal{L}}(P)$ to $c_g \in \operatorname{Aut}_{\mathcal{F}}(P)$.
- (C) For each $f \in Mor_{\mathcal{L}}(P,Q)$ and each $g \in P$, the following square commutes in \mathcal{L} :



A p-local compact group is a triple $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$, where S is a discrete p-toral group, \mathcal{F} is a saturated fusion system over S, and \mathcal{L} is a centric linking system associated to \mathcal{F} . The classifying space of \mathcal{G} is the p-completed nerve $|\mathcal{L}|_p^{\wedge}$, which we will generally denote by \mathcal{BG} .

In [BLO3], the authors show that compact Lie groups and p-compact groups give rise to particular examples of p-local compact groups. Another large family of examples arises from linear torsion groups. In each case, the respective classifying space coincides up to homotopy (after p-completion in the case of genuine groups) with the classifying space of the p-local compact group it gives rise to.

Definition 1.4. Let $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. Then the Weyl group $W(\mathcal{G})$ of \mathcal{G} is defined to be the automorphism group in \mathcal{F} of the maximal torus $S_0 \leq S$.

Notice that $H^*_{\mathbb{Q}_p}(X) \stackrel{\text{def}}{=} H^*(X, \mathbb{Z}_p) \otimes \mathbb{Q}$ is not in general isomorphic to $H^*(X, \mathbb{Q}_p)$. For instance if $X = B\mathbb{Z}/p^{\infty}$, then $H^*_{\mathbb{Q}_p}(X)$ is a polynomial ring over the *p*-adic rationals on a generator in degree 2, while $H^*(X, \mathbb{Q}_p)$ is trivial. The use of $H^*_{\mathbb{Q}_p}$ as the appropriate cohomology theory for our purpose goes back to Dwyer and Wilkerson [DW], in their first paper on *p*-compact groups.

2. The rational cohomology

Two preparatory lemmas are needed before we prove our main claim.

Lemma 2.1. Let P be a discrete p-toral group with maximal torus $P_0 \leq P$. Then $H^*_{\mathbb{Q}_p}(BP) \cong H^*_{\mathbb{Q}_p}(BP_0)^{P/P_0}$.

Proof. This is of course a particular case of a much more general statement. Up to homotopy, BP_0 is a covering space of BP with group P/P_0 , and so one has the usual transfer map

$$\operatorname{Tr} \colon H^*(BP_0, \mathbb{Z}_p^{\wedge}) \longrightarrow H^*(BP, \mathbb{Z}_p^{\wedge}),$$

where $\operatorname{Tr} \circ \operatorname{Res}$ is multiplication by $|P/P_0|$. Hence after tensoring with \mathbb{Q} this composite is an isomorphism. On the other hand, the composition the other way $\operatorname{Res} \circ \operatorname{Tr}$ is norm map for the action of P/P_0 on $H^*_{\mathbb{Q}_p}(BP_0)$, and hence the image of restriction is the subgroup of invariants $H^*_{\mathbb{Q}_p}(BP_0)^{P/P_0}$.

To prove the theorem, we will use the subgroup decomposition for *p*-local compact groups [BLO3, Proposition 4.6]. Hence the following lemma is an essential ingredient. In order to state it, we need to recall some notation and terminology.

For a fusion system \mathcal{F} over a discrete *p*-toral group *S*, we denote by $\mathcal{O}(\mathcal{F})$ the orbit category associated to \mathcal{F} , i.e., the category with the same objects and with

morphisms $\operatorname{Mor}_{\mathcal{O}(\mathcal{F})}(P,Q) = \operatorname{Rep}_{\mathcal{F}}(P,Q) \stackrel{\text{def}}{=} \operatorname{Hom}_{\mathcal{F}}(P,Q)/\operatorname{Inn}(Q)$. For $P,Q \in S$, let $N_S(P,Q)$ denote the transporter set consisting of all elements of S which conjugate P into Q. If \mathcal{F}' is a full subcategory of \mathcal{F} , we denote by $\mathcal{O}(\mathcal{F}')$ the full subcategory of $\mathcal{O}(\mathcal{F})$ whose objects are those of \mathcal{F}' . If Γ is a finite group, we denote by $\mathcal{O}_p(\Gamma)$ the category whose objects are the p-subgroups of Γ and whose morphisms are $\operatorname{Mor}(P,Q) = C_{\Gamma}(P) \setminus N_{\Gamma}(P,Q)/\operatorname{Inn}(Q)$.

Lemma 2.2. Let \mathcal{F} be any saturated fusion system over a discrete p-toral group S. Define

$$F^* \colon \mathcal{O}(\mathcal{F}^c)^{\mathrm{op}} \longrightarrow \mathbb{Q}\text{-mod}$$

on objects by setting $F^*(P) = H^*_{\mathbb{Q}_p}(BP)$. On morphisms, F^* sends the class of $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, P')$ to the homomorphism induced by $B\varphi$. Then F^* is acyclic, namely $\lim_{\mathcal{O}(\mathcal{F}^c)} (F^*) = 0$ for all i > 0.

Proof. Set $Q = C_S(S_0) \triangleleft S$, and $\Gamma = \operatorname{Out}_{\mathcal{F}}(Q)$. Then Q is \mathcal{F} -centric, and is weakly closed in \mathcal{F} since S_0 is. Let $\mathcal{F}_{\geq Q}$ denote the full subcategory of \mathcal{F} whose objects are those $P \leq S$ which contain Q, and let

$$\Theta\colon \mathcal{O}(\mathcal{F}_{\geq Q}) \longrightarrow \mathcal{O}_p(\Gamma)$$

be the functor which sends an object P to $\operatorname{Out}_P(Q) \leq \Gamma$, and a morphism $\varphi \in \operatorname{Rep}_{\mathcal{F}}(P, P')$ to the class of $\varphi|_Q \in N_{\Gamma}(\Theta(P), \Theta(P'))$ (see [BLO3, Lemma 5.7]). For each *p*-subgroup $\Pi \leq \Gamma$, regarded as a group of automorphisms of S_0 , define

$$\Phi^*(\Pi) = H^*_{\mathbb{Q}_n}(BS_0)^{\Pi}.$$

This defines a graded functor $\Phi^* \colon \mathcal{O}_p(\Gamma)^{\mathrm{op}} \longrightarrow \mathbb{Q}\text{-mod}$. Furthermore, for each $P \leq S$ which contains Q,

$$F^*(P) = H^*_{\mathbb{Q}_n}(BQ)^{P/Q} = \Phi^*(\Theta(P)).$$

Thus $\Phi^* \circ \Theta \cong F^*|_{\mathcal{O}(\mathcal{F}_{>Q})}.$

For each $P \leq S$, $\operatorname{Out}_Q(P)$ acts trivially on $F^*(P)$ since Q centralises P_0 , and $F^*(P)$ is a subring of $H^*_{\mathbb{Q}_n}(BP_0)$. So by [BLO3, Lemma 5.7],

$$\lim_{\mathcal{O}(\mathcal{F}^c)} (F^*) \cong \lim_{\mathcal{O}_p(\Gamma)} (\Phi^*).$$

The functor Φ^* is a Mackey functor on $\mathcal{O}_p(\Gamma)$, and hence is acyclic (see [JM, Proposition 5.14] or [JMO, Proposition 5.2]).

We are now ready to prove our main theorem.

Theorem 2.3. Let $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. Then

$$H^*_{\mathbb{Q}_p}(B\mathcal{G}) \cong H^*_{\mathbb{Q}_p}(BS_0)^{W(\mathcal{G})}$$

Proof. Let $\pi: \mathcal{L} \to \mathcal{O}(\mathcal{F}^c)$ be the projection, and let $\widetilde{B}: \mathcal{O}(\mathcal{F}^c) \to \text{Top}$ denote the left homotopy Kan extension of the constant functor on \mathcal{L} along π . Then there is a homotopy equivalence

$$\operatorname{hocolim}_{\mathcal{O}(\mathcal{F}^c)} \widetilde{B} \longrightarrow |\mathcal{L}|,$$

and for each object $P \in \mathcal{O}(\mathcal{F}^c)$, $\widetilde{B}(P) \simeq BP$ [BLO3, Proposition 4.6]. Consider the Bousfield-Kan spectral sequence [BK] for cohomology of the homotopy colimit, with

coefficients in the *p*-adic integers \mathbb{Z}_p . Since \mathbb{Q} is flat as a \mathbb{Z} -module, one can tensor the spectral sequence with \mathbb{Q} to get a spectral sequence for *p*-adic rational cohomology

$$E_2^{p,q} = \lim_{\widetilde{\mathcal{O}}(\mathcal{F}^c)} H^q_{\mathbb{Q}_p}(\widetilde{B}(-)) \Longrightarrow H^{p+q}_{\mathbb{Q}_p}(|\mathcal{L}|).$$

By Lemma 2.2, the higher limits all vanish and we obtain the formula

$$H^*_{\mathbb{Q}_p}(|\mathcal{L}|) \cong \lim_{\mathcal{O}(\mathcal{F}^c)} H^*_{\mathbb{Q}_p}(\tilde{B}(-)).$$
(1)

For each \mathcal{F} -centric subgroup $P \leq S$, let $\iota_P \colon P \to S$ denote the inclusion. The inverse limit in (1) consists of all elements $x \in H^*_{\mathbb{Q}_p}(BS)$ such that $\varphi^* \circ \iota^*_Q(x) = \iota^*_P(x)$ for all \mathcal{F} -centric subgroups $P, Q \leq S$, and all morphisms $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$.

Let $\varphi: P \to Q$ be any morphism in \mathcal{F} , where P and Q are \mathcal{F} -centric. Then by [BLO3, Lemma 2.4] the restriction $\varphi|_{P_0}$ coincides with the restriction to P_0 of some automorphism $\sigma \in W(\mathcal{G})$. Let $x \in H^*_{\mathbb{Q}_p}(BS_0)^{W(\mathcal{G})} \leq H^*_{\mathbb{Q}_p}(BS)$ be any element. Then $\iota_P^*(x) \in H^*_{\mathbb{Q}_p}(BP) \leq H^*_{\mathbb{Q}_p}(P_0)$, and $\iota_Q^*(x) \in H^*_{\mathbb{Q}_p}(BQ) \leq H^*_{\mathbb{Q}_p}(BQ_0)$, and

$$\varphi^*(\iota_Q^*(x)) = \sigma^*(\iota_Q^*(x)) = \iota_P^*\sigma^*(x) = \iota_P^*(x).$$

Hence

$$H^*_{\mathbb{Q}_p}(BS_0)^{W(\mathcal{G})} \leq \varprojlim_{\mathcal{O}(\mathcal{F}^c)} H^*_{\mathbb{Q}_p}(\widetilde{B}(-)).$$

Conversely, let $y \in H^*_{\mathbb{Q}_p}(BS) \leq H^*_{\mathbb{Q}_p}(BS_0)$ be an element which is stable under each morphism in \mathcal{F} between centric subgroups, and let $\sigma \in W(\mathcal{G})$. By Alperin's fusion theorem, σ can be decomposed into a sequence $\sigma = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_n$, where each $\sigma_i \in W(\mathcal{G})$ can be extended to an automorphism of some \mathcal{F} -centric subgroup $P_i \leq S$. But since y is stable under each of the σ_i^* , it is also stable under σ^* . This shows that

$$\lim_{\mathcal{O}(\mathcal{F}^c)} H^*_{\mathbb{Q}_p}(\tilde{B}(-)) \cong H^*_{\mathbb{Q}_p}(BS_0)^{W(\mathcal{G})}$$

and thus completes the proof of our claim.

3. Applications

For a compact Lie group G, one defines an unstable Adams operation of degree ζ to be a selfmap of the classifying space inducing multiplication by ζ^i on rational cohomology in dimension 2i, where ζ is an integer. An analogous definition is made for p-compact groups, except ζ is required to be a p-adic unit, and rational cohomology is replaced by p-adic rational cohomology. Unstable Adams operations are a very important concept in the homotopy theory of classifying spaces of compact Lie groups and p-compact groups.

In [JLL], it is shown that p-local compact groups also admit unstable Adams operations. Let $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and let ζ be a p-adic unit. A normal Adams automorphism of degree ζ on S is an automorphism $\phi \in \operatorname{Aut}(S)$ which restricts to the ζ -power map on S_0 , and induces the identity on the group of components S/S_0 . A geometric unstable Adams operation of degree ζ on \mathcal{G} is a selfmap Ψ of $B\mathcal{G}$, such that there exist a normal Adams automorphism ϕ of degree ζ on S, with the property that $\iota \circ B\phi \simeq \Psi \circ \iota$. Here $\iota \colon BS \to B\mathcal{G}$ is the canonical inclusion. (See [JLL, Definitions 2.3, 3.4]) Theorem A allows us to define geometric unstable Adams operations of p-local compact groups, along the lines of the classical cohomological definition.

The following lemma is an analogue of a theorem of Notbohm [N, Proposition 4.1].

Lemma 3.1. Let $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$ be a p-local compact group, and let T be a discrete p-torus. Then there is an isomorphism

$$\operatorname{Hom}(T, S_0) / W(\mathcal{G}) \xrightarrow{\cong} [BT, B\mathcal{G}],$$

where $W(\mathcal{G})$ acts by left translation. Also, two maps $f, h: BT \to B\mathcal{G}$ are homotopic if and only if they induce the same homomorphism on $H^*_{\mathbb{O}_n}(-)$.

Proof. By [BLO3, Theorem 6.3 (a)] there is an isomorphism of sets

$$\operatorname{Rep}(T, \mathcal{L}) \xrightarrow{=} [BT, B\mathcal{G}],$$

where $\operatorname{Rep}(T, \mathcal{L}) \stackrel{\text{def}}{=} \operatorname{Hom}(T, S)/\sim$, with $\alpha \sim \beta$ if and only if there is some $\varphi \in \operatorname{Hom}_{\mathcal{F}}(\alpha(T), \beta(T))$ such that $\varphi \circ \alpha = \beta$. Since T is a discrete p-torus, the image of every homomorphism from it to S is contained in S_0 , and by [BLO3, Lemma 2.4 (b)], every homomorphism in \mathcal{F} between subgroups of S_0 is the restriction of some element in $W(\mathcal{G})$. Thus

$$\operatorname{Rep}(T, \mathcal{L}) \cong \operatorname{Hom}(T, S_0) / W(\mathcal{G}),$$

as claimed.

It remains to prove the last statement. Two maps $f, h: BT \to B\mathcal{G}$ that are homotopic clearly induce the same map on cohomology. Conversely, assume that $f, h: BT \to B\mathcal{G}$ are two maps such that $f^* = g^*: H^*_{\mathbb{Q}_p}(B\mathcal{G}) \longrightarrow H^*_{\mathbb{Q}_p}(BT)$. Let $\alpha, \beta: T \longrightarrow S_0$ be homomorphisms such that $f = \iota \circ B\alpha$ and $g = \iota \circ B\beta$, where $\iota: BS_0 \longrightarrow B\mathcal{G}$ is the inclusion of the maximal torus.

We will show that there is $w \in W(\mathcal{G})$ such that $w \circ \alpha = \beta$, following the argument used by Adams and Mahmud to prove [AM, Theorem 1.7]: an argument based on the uniqueness of factorisation in the polynomial ring $H^*_{\mathbb{Q}_p}(BS_0)$. For simplicity, write $V = H^2_{\mathbb{Q}_p}(BS_0)$ and $V' = H^2_{\mathbb{Q}_p}(BT)$. For each $w \in W(\mathcal{G})$, define

$$V(w) = \{ x \in V \,|\, B\beta^*(x) = B(w \circ \alpha)^*(x) \} = \operatorname{Ker}((B\beta^* - B(w \circ \alpha)^*)|_V).$$

For each $x \in V$, set

w

$$\widehat{x} = \prod_{w \in W(\mathcal{G})} Bw^*(1+x) \in S(V) \cong H^*_{\mathbb{Q}_p}(BS_0)$$

where S(V) denotes the symmetric algebra on the \mathbb{Q}_p -vector space V. Since \hat{x} is $W(\mathcal{G})$ invariant, Theorem 2.3 implies that $\hat{x} \in \text{Im}(\iota^*)$, and hence that $B\alpha^*(\hat{x}) = B\beta^*(\hat{x})$. In
other words,

$$\prod_{\in W(\mathcal{G})} (1 + B\alpha^* Bw^* x) = \prod_{w \in W(\mathcal{G})} (1 + B\beta^* Bw^* x) \in S(V').$$

Since S(V') is a unique factorization domain, there is $w \in W(\mathcal{G})$ such that $(1+B\beta^*x) = \lambda(1+B\alpha^*Bw^*x)$, for some $\lambda \in \mathbb{Q}_p^{\times}$. Then $\lambda = 1$ and hence $B\beta^*x = B\alpha^*Bw^*x$. In particular, $x \in V(w)$.

This proves that $V = \bigcup_{w \in W(\mathcal{G})} V(w)$. Since \mathbb{Q}_p is infinite, V finite dimensional, and $W(\mathcal{G})$ finite, there is $w \in W(\mathcal{G})$ such that V = V(w) (cf. [AM, Lemma 3.1]). Hence $B\beta^* = B(w \circ \alpha)^*$. Since $\operatorname{Hom}(T, S_0)$ injects into $\operatorname{Hom}(H^*_{\mathbb{Q}_p}(BS_0), H^*_{\mathbb{Q}_p}(T))$, it now follows that $w \circ \alpha = \beta \in \operatorname{Hom}(T, S_0)$, and hence that $f \simeq g$ as maps $BT \longrightarrow B\mathcal{G}$. \Box

Proposition 3.2. Let $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$ be a p-local compact group, and let ζ be a p-adic unit. Then any geometric unstable Adams operation Ψ of degree ζ induces multiplication by ζ^i on $H^{2i}_{\mathbb{Q}_p}(\mathcal{B}\mathcal{G})$. If S_0 is self centralising in S, then any self equivalence Ψ of $\mathcal{B}\mathcal{G}$ which induces multiplication by ζ^i on $H^{2i}_{\mathbb{Q}_p}(\mathcal{B}\mathcal{G})$ for each i is a geometric unstable Adams operation on \mathcal{F} .

Proof. Let $\iota: BS \to B\mathcal{G}$ be the canonical inclusion (induced by the distinguished monomorphism $\delta_S: S \to \operatorname{Aut}_{\mathcal{L}}(S)$), and set $\iota_0 = \iota|_{S_0}$. If ψ is a geometric unstable Adams operation on \mathcal{G} of degree ζ , then by definition, there exists a normal Adams automorphism ϕ of S such that $\Psi \circ \iota \simeq \iota \circ B\phi$, and hence $\Psi \circ \iota_0 \simeq \iota_0 \circ B(\phi|_{S_0})$. For each $i \geq 0, \phi|_{S_0}$ induces multiplication by ζ^i on $H^{2i}_{\mathbb{Q}_p}(BS_0)$, and hence Ψ does the same on $H^{2i}_{\mathbb{Q}_p}(B\mathcal{G})$.

Assume now that S_0 is self centralising in S. Let $\Psi: B\mathcal{G} \to B\mathcal{G}$ be a self equivalence such that Ψ^* is multiplication by ζ^i on $H^{2i}_{\mathbb{Q}_p}(B\mathcal{G})$. By [BLO3, Theorem 6.3(a)] and Lemma 3.1, the natural maps

$$\operatorname{End}(S)/\operatorname{Aut}_{\mathcal{F}}(S) \xrightarrow{\cong} [BS, B\mathcal{G}] \quad \text{and} \quad \operatorname{End}(S_0)/W(\mathcal{G}) \xrightarrow{\cong} [BS_0, B\mathcal{G}]$$
(2)

are bijections. Hence there is $\varphi \in \text{End}(S)$ such that $\iota \circ B\varphi \simeq \Psi \circ \iota$, and $\varphi \in \text{Aut}(S)$ since Ψ is a homotopy equivalence. Let $\varphi_0 \in \text{Aut}(S_0)$ be the restriction of φ to S_0 , let $\widehat{\zeta}$ denote the ζ -power map on S_0 , and set $\rho = \widehat{\zeta} \circ \varphi_0^{-1} \in \text{Aut}(S_0)$. Then

$$B\varphi_0^* \circ \iota_0^* = B\widehat{\zeta}^* \circ \iota_0^* \colon H^*_{\mathbb{Q}_p}(B\mathcal{G}) \longrightarrow H^*_{\mathbb{Q}_p}(BS_0),$$

and by Lemma 3.1, there is $w \in W(\mathcal{G})$ such that $w \circ \varphi_0 = \widehat{\zeta} \in \operatorname{Aut}(S_0)$.

Fix a morphism $\hat{\iota} \in \operatorname{Mor}_{\mathcal{L}}(S_0, S)$ such that $\pi(\hat{\iota})$ is the inclusion, and regard this as the inclusion of S_0 in S in the category \mathcal{L} . By [BLO3, Lemma 4.3(a)], for each $g \in S$, there is a unique restriction $\delta_{S_0}(g) \in \operatorname{Aut}_{\mathcal{L}}(S_0)$ of $\delta_S(g) \in \operatorname{Aut}_{\mathcal{L}}(S)$; i.e., a unique morphism such that $\hat{\iota} \circ \delta_{S_0}(g) = \delta_S(g) \circ \hat{\iota}$. Identify S and S_0 with their images in $\operatorname{Aut}_{\mathcal{L}}(S_0)$. Let $\alpha \in \operatorname{Aut}_{\mathcal{L}}(S_0)$ be a lift of w, i.e., $\pi(\alpha) = w$. By Axiom (C), for each $t \in S_0, \alpha \circ \delta_{S_0}(t) = \delta_{S_0}(w(t)) \circ \alpha$. Hence, $c_{\alpha}|_{S_0} = w$, and so $\chi \stackrel{\text{def}}{=} c_{\alpha}|_S \circ \varphi \colon S \to \operatorname{Aut}_{\mathcal{L}}(S_0)$ restricts to $w \circ \varphi_0 = \hat{\zeta}$ on S_0 .

Now, for each $g \in S$, $\chi \circ c_g = c_{\chi(g)} \circ \chi$ as automorphisms of S_0 , and since $\chi|_{S_0} = \widehat{\zeta}$ is central in Aut (S_0) , $c_g|_{S_0} = c_{\chi(g)}|_{S_0}$. Since S_0 is self centralising in S, it follows that for each $g \in S$, $g \equiv \chi(g) \pmod{S_0}$. In particular, $\chi(S) = S$, and χ induces the identity on S/S_0 . Thus χ is a normal Adams automorphism of S of degree ζ . Also,

$$\iota \circ B\chi \simeq \iota \circ B(c_{\alpha}|_{S}) \circ B\varphi \simeq \iota \circ B\varphi \simeq \Psi \circ \iota \,,$$

and thus Ψ is a geometric unstable Adams operation on \mathcal{G} as claimed.

If $\mathcal{G} = (S, \mathcal{F}, \mathcal{L})$ is a *p*-local compact group, and $P \leq S$ is a subgroup satisfying a certain mild condition (fully normalised), then one can define the *normaliser fusion* system, $\mathcal{N}_{\mathcal{F}}(P)$, which is shown in [BLO6, Theorem 2.3] to be a saturated fusion system. The normaliser linking system $N_{\mathcal{L}}(P)$ can be defined in exactly the same way as in [BLO2, Definition 6.1], and the proof of [BLO2, Lemma 6.2] applies verbatim to show that $N_{\mathcal{L}}(P)$ is a centric linking system associated to $N_{\mathcal{F}}(P)$. Thus in this case $N_{\mathcal{G}}(P) = (N_S(P), N_{\mathcal{F}}(P), N_{\mathcal{L}}(P))$ is a *p*-local compact subgroup of \mathcal{G} .

In particular, the maximal torus S_0 , is fully normalised, since it is unique in its \mathcal{F} -conjugacy class, and we may consider the inclusion

$$\mathcal{N}_{\mathcal{G}}(S_0) \longrightarrow \mathcal{G}$$
. (3)

Then, S_0 is the maximal torus in both \mathcal{G} and $\mathcal{N}_{\mathcal{G}}(S_0)$, and from the definition of morphisms in the normaliser fusion system [BLO6, Definition 2.1],

$$W(\mathcal{G}) = \operatorname{Aut}_{\mathcal{F}}(S_0) = \operatorname{Aut}_{\mathcal{N}_{\mathcal{F}}(S_0)}(S_0) = W(N_{\mathcal{G}}(S_0)).$$

Thus one obtains as an immediate corollary of Theorem A, that the inclusion (3) induces an isomorphism in *p*-adic rational cohomology. This is analogous to the corresponding statements for compact Lie groups and *p*-compact groups.

References

- [AM] J.F. Adams & Z. Mahmud, Maps between classifying spaces, Inv. Math. 35 (1976), 1–41
- [BK] P. Bousfield & D. Kan, Homotopy limits, completions, and localizations, Lecture notes in math. 304, Springer-Verlag (1972)
- [BLO2] C. Broto, R. Levi, & B. Oliver, The homotopy theory of fusion systems, Journal Amer. Math. Soc. 16 (2003), 779–856
- [BLO3] C. Broto, R. Levi, & B. Oliver, Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups, Geom. & Topol. 11 (2007), 315427.
- [BLO6] C. Broto, R. Levi, & B. Oliver, In Preparation.
- [DW] W. G. Dwyer, & C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces. Ann. of Math. (2) 139 (1994), no. 2, 395–442.
- [JLL] F. Junod, R. Levi and A. Libman, Unstable Adams operations of p-local compact groups, Alg. and Geom. Topol. 12 (2012) 4974
- [JM] Stefan Jackowski, J. McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups. Topology 31 (1992), no. 1, 113132.
- [JMO] S. Jackowski, J. McClure, & B. Oliver, Homotopy classification of self-maps of BG via Gactions, Annals of Math. 135 (1992), 184–270
- [N] D. Notbohm, Abbildungen zwischen klassifizierenden Räume, Dissertation, Göttingen, 1988

Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

E-mail address: broto@mat.uab.es

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ABERDEEN, MESTON BUILDING 339, ABERDEEN AB24 3UE, U.K.

E-mail address: ran@maths.abdn.ac.uk

LAGA, INSTITUT GALILÉE, AV. J-B CLÉMENT, 93430 VILLETANEUSE, FRANCE

E-mail address: bob@math.univ-paris13.fr