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THE RATIONAL COHOMOLOGY OF A p-LOCAL COMPACT
GROUP

C. BROTO, R. LEVI, AND B. OLIVER

Let p be a prime number. In [BLO3], we developed the theory of p-local compact
groups. The theory is modelled on the p-local homotopy theory of classifying spaces
of compact Lie groups and p-compact groups, and generalises the earlier concept of
p-local finite groups [BLO2]. It provides a coherent context in which classifying spaces
of compact Lie groups and p-compact groups [DW] can be studied, and also gives rise
to many exotic examples. In this paper, we study the rational p-adic cohomology

H∗Qp
(−)

def
= H∗(−,Zp)⊗Qp

of a p-local compact group. Our main result here is that, as one would expect, the
p-adic rational cohomology of p-local compact groups behaves the same way as that of
a compact Lie group.

Theorem A. Let G = (S,F ,L) be a p-local compact group. Let S0 ≤ S be its maximal

torus, and let W (G)
def
= AutF(S0) be its Weyl group. Then

H∗Qp
(BG) ∼= H∗Qp

(BS0)W (G).

Of course, the Weyl group of a p-local compact group need not be a pseudo-reflection
group, and hence the rational cohomology of the classifying space is not in general a
polynomial algebra.

Like compact Lie groups and p-compact groups, p-local compact groups admit un-
stable Adams operations, which are defined in [JLL], using the internal structure of
the p-local group in question, rather than its rational cohomology. One application of
Theorem A is Proposition 3.2, which states that under a mild condition, the obvious
cohomological definition of an unstable Adams operation characterises the same family
of maps as the one referred to in [JLL] as ”geometric unstable Adams operations”.

Another easy application of Theorem A is the observation that if G is a p-local
compact group with maximal torus S0, then the inclusion in G of the p-local subgroup
given by the normaliser NG(S0) induces a rational p-adic cohomology isomorphism.

In Section 1, we recall the basic concepts in the theory of p-local compact groups
which will be needed to prove Theorem A. Section 2 is dedicated to the proof of the
theorem. Finally in Section 3 we discuss the applications described above.
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1. Some basic concepts

We recall the definition and some basic properties of p-local compact groups. The
reader is referred to [BLO3] for a comprehensive account of these objects.

We begin by defining discrete p-toral groups. By Z/p∞ we mean the union of all
Z/pr with respect to the natural inclusions.

Definition 1.1. A discrete p-torus is a group isomorphic to (Z/p∞)r for some positive
integer r. A discrete p-toral group is a group S which contains a normal discrete
p-torus S0, with p-power index. The normal subgroup S0 will be referred to as the
maximal torus or the identity component of S, and the quotient group Γ ∼= S/S0 will
be called the group of components of S.

The identity component S0 of a discrete p-toral group S can be characterised as
the subset of all infinitely p-divisible elements in S, and also as the unique minimal
subgroup of finite index in S. Thus, S0 is a characteristic subgroup. The rank of S is
the number r = rk(S) such that S0

∼= (Z/p∞)r.

Recall that for P,Q ≤ S, the transporter set TS(P,Q) is the set of all elements
g ∈ S such that gPg−1 ≤ Q. We denote by HomS(P,Q) the set of all homomorphisms
cg : P → Q , which are restrictions of an inner automorphism of S, and by Inj(P,Q)
denote the set of all the injective homomorphisms P → Q. We are now ready to recall
the definition of fusion systems over discrete p-toral groups.

Definition 1.2. A fusion system F over a discrete p-toral group S is a category whose
objects are the subgroups of S, and whose morphism sets HomF(P,Q) satisfy the fol-
lowing conditions:

(a) HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Two subgroups P, P ′ ≤ S are called F-conjugate if P and P ′ are isomorphic as
objects in F . A subgroup P ≤ S is said to be F -centric if for every subgroup P ′ ≤ S
which is F -conjugate to P , CS(P ′) = Z(P ′).

All fusion systems considered in this paper are required to be saturated [BLO3, Def-
inition 2.2]. Although the results we present here are based on properties of saturated
fusion systems proved in [BLO3], we do not explicitly use the saturation axioms, and
thus we will not repeat them here.

Next, we briefly recall what are centric linking systems and p-local compact groups.
The full definition can be found in [BLO3, Definitions 4.1, 4.2]

Definition 1.3. Let F be a fusion system over a discrete p-toral group S. A centric
linking system associated to F is a category L whose objects are the F-centric subgroups
of S, together with a functor

π : L −−−−−−→ F c,
and “distinguished” monomorphisms P

δP−→ AutL(P ) for each F-centric subgroup P ≤
S, which satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for each
pair of objects P,Q ∈ L, the centre Z(P ) acts freely on MorL(P,Q) by composition
(upon identifying Z(P ) with δP (Z(P )) ≤ AutL(P )), and π induces a bijection

MorL(P,Q)/Z(P )
∼=−−−−−−→ HomF(P,Q).
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(B) For each F-centric subgroup P ≤ S and each g ∈ P , π sends δP (g) ∈ AutL(P ) to
cg ∈ AutF(P ).

(C) For each f ∈ MorL(P,Q) and each g ∈ P , the following square commutes in L:

P
f //

δP (g)

��

Q

δQ(π(f)(g))

��
P

f // Q.

A p-local compact group is a triple G = (S,F ,L), where S is a discrete p-toral group,
F is a saturated fusion system over S, and L is a centric linking system associated to
F . The classifying space of G is the p-completed nerve |L|∧p , which we will generally
denote by BG.

In [BLO3], the authors show that compact Lie groups and p-compact groups give rise
to particular examples of p-local compact groups. Another large family of examples
arises from linear torsion groups. In each case, the respective classifying space coincides
up to homotopy (after p-completion in the case of genuine groups) with the classifying
space of the p-local compact group it gives rise to.

Definition 1.4. Let G = (S,F ,L) be a p-local compact group. Then the Weyl group
W (G) of G is defined to be the automorphism group in F of the maximal torus S0 ≤ S.

Notice that H∗Qp
(X)

def
= H∗(X,Zp)⊗Q is not in general isomorphic to H∗(X,Qp). For

instance if X = BZ/p∞, then H∗Qp
(X) is a polynomial ring over the p-adic rationals on

a generator in degree 2, while H∗(X,Qp) is trivial. The use of H∗Qp
as the appropriate

cohomology theory for our purpose goes back to Dwyer and Wilkerson [DW], in their
first paper on p-compact groups.

2. The rational cohomology

Two preparatory lemmas are needed before we prove our main claim.

Lemma 2.1. Let P be a discrete p-toral group with maximal torus P0 ≤ P . Then
H∗Qp

(BP ) ∼= H∗Qp
(BP0)P/P0.

Proof. This is of course a particular case of a much more general statement. Up to
homotopy, BP0 is a covering space of BP with group P/P0, and so one has the usual
transfer map

Tr : H∗(BP0,Z∧p ) → H∗(BP,Z∧p ),

where Tr ◦Res is multiplication by |P/P0|. Hence after tensoring with Q this composite
is an isomorphism. On the other hand, the composition the other way Res ◦ Tr is norm
map for the action of P/P0 on H∗Qp

(BP0), and hence the image of restriction is the

subgroup of invariants H∗Qp
(BP0)P/P0 . �

To prove the theorem, we will use the subgroup decomposition for p-local compact
groups [BLO3, Proposition 4.6]. Hence the following lemma is an essential ingredient.
In order to state it, we need to recall some notation and terminology.

For a fusion system F over a discrete p-toral group S, we denote by O(F) the
orbit category associated to F , i.e., the category with the same objects and with



4 C. BROTO, R. LEVI, AND B. OLIVER

morphisms MorO(F)(P,Q) = RepF(P,Q)
def
= HomF(P,Q)/Inn(Q). For P,Q ∈ S, let

NS(P,Q) denote the transporter set consisting of all elements of S which conjugate P
into Q. If F ′ is a full subcategory of F , we denote by O(F ′) the full subcategory of
O(F) whose objects are those of F ′. If Γ is a finite group, we denote by Op(Γ) the
category whose objects are the p-subgroups of Γ and whose morphisms are Mor(P,Q) =
CΓ(P )\NΓ(P,Q)/Inn(Q).

Lemma 2.2. Let F be any saturated fusion system over a discrete p-toral group S.
Define

F ∗ : O(F c)op −−−−−−→ Q-mod

on objects by setting F ∗(P ) = H∗Qp
(BP ). On morphisms, F ∗ sends the class of

ϕ ∈ HomF(P, P ′) to the homomorphism induced by Bϕ. Then F ∗ is acyclic, namely
lim←−

i

O(Fc)

(F ∗) = 0 for all i > 0.

Proof. Set Q = CS(S0) C S, and Γ = OutF(Q). Then Q is F -centric, and is weakly
closed in F since S0 is. Let F≥Q denote the full subcategory of F whose objects are
those P ≤ S which contain Q, and let

Θ: O(F≥Q) −−−−−−→ Op(Γ)

be the functor which sends an object P to OutP (Q) ≤ Γ, and a morphism ϕ ∈
RepF(P, P ′) to the class of ϕ|Q ∈ NΓ(Θ(P ),Θ(P ′)) (see [BLO3, Lemma 5.7]). For
each p-subgroup Π ≤ Γ, regarded as a group of automorphisms of S0, define

Φ∗(Π) = H∗Qp
(BS0)Π.

This defines a graded functor Φ∗ : Op(Γ)op → Q-mod. Furthermore, for each P ≤ S
which contains Q,

F ∗(P ) = H∗Qp
(BQ)P/Q = Φ∗(Θ(P )).

Thus Φ∗ ◦Θ ∼= F ∗|O(F≥Q).

For each P ≤ S, OutQ(P ) acts trivially on F ∗(P ) since Q centralises P0, and F ∗(P )
is a subring of H∗Qp

(BP0). So by [BLO3, Lemma 5.7],

lim←−
∗

O(Fc)

(F ∗) ∼= lim←−
∗

Op(Γ)

(Φ∗).

The functor Φ∗ is a Mackey functor onOp(Γ), and hence is acyclic (see [JM, Proposition
5.14] or [JMO, Proposition 5.2]). �

We are now ready to prove our main theorem.

Theorem 2.3. Let G = (S,F ,L) be a p-local compact group. Then

H∗Qp
(BG) ∼= H∗Qp

(BS0)W (G).

Proof. Let π : L → O(F c) be the projection, and let B̃ : O(F c) → Top denote the
left homotopy Kan extension of the constant functor on L along π. Then there is a
homotopy equivalence

hocolim
O(Fc)

B̃ → |L|,

and for each object P ∈ O(F c), B̃(P ) ' BP [BLO3, Proposition 4.6]. Consider the
Bousfield-Kan spectral sequence [BK] for cohomology of the homotopy colimit, with
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coefficients in the p-adic integers Zp. Since Q is flat as a Z-module, one can tensor the
spectral sequence with Q to get a spectral sequence for p-adic rational cohomology

Ep,q
2 = lim←−

p

O(Fc)

Hq
Qp

(B̃(−)) =⇒ Hp+q
Qp

(|L|).

By Lemma 2.2, the higher limits all vanish and we obtain the formula

H∗Qp
(|L|) ∼= lim←−

O(Fc)

H∗Qp
(B̃(−)). (1)

For each F -centric subgroup P ≤ S, let ιP : P → S denote the inclusion. The inverse
limit in (1) consists of all elements x ∈ H∗Qp

(BS) such that ϕ∗ ◦ ι∗Q(x) = ι∗P (x) for all

F -centric subgroups P,Q ≤ S, and all morphisms ϕ ∈ HomF(P,Q).

Let ϕ : P → Q be any morphism in F , where P and Q are F -centric. Then by
[BLO3, Lemma 2.4] the restriction ϕ|P0 coincides with the restriction to P0 of some
automorphism σ ∈ W (G). Let x ∈ H∗Qp

(BS0)W (G) ≤ H∗Qp
(BS) be any element. Then

ι∗P (x) ∈ H∗Qp
(BP ) ≤ H∗Qp

(P0), and ι∗Q(x) ∈ H∗Qp
(BQ) ≤ H∗Qp

(BQ0), and

ϕ∗(ι∗Q(x)) = σ∗(ι∗Q(x)) = ι∗Pσ
∗(x) = ι∗P (x).

Hence

H∗Qp
(BS0)W (G) ≤ lim←−

O(Fc)

H∗Qp
(B̃(−)).

Conversely, let y ∈ H∗Qp
(BS) ≤ H∗Qp

(BS0) be an element which is stable under

each morphism in F between centric subgroups, and let σ ∈ W (G). By Alperin’s
fusion theorem, σ can be decomposed into a sequence σ = σ1 ◦ σ2 ◦ · · ·σn, where each
σi ∈ W (G) can be extended to an automorphism of some F -centric subgroup Pi ≤ S.
But since y is stable under each of the σ∗i , it is also stable under σ∗. This shows that

lim←−
O(Fc)

H∗Qp
(B̃(−)) ∼= H∗Qp

(BS0)W (G)

and thus completes the proof of our claim. �

3. Applications

For a compact Lie group G, one defines an unstable Adams operation of degree
ζ to be a selfmap of the classifying space inducing multiplication by ζ i on rational
cohomology in dimension 2i, where ζ is an integer. An analogous definition is made for
p-compact groups, except ζ is required to be a p-adic unit, and rational cohomology
is replaced by p-adic rational cohomology. Unstable Adams operations are a very
important concept in the homotopy theory of classifying spaces of compact Lie groups
and p-compact groups.

In [JLL], it is shown that p-local compact groups also admit unstable Adams oper-
ations. Let G = (S,F ,L) be a p-local compact group and let ζ be a p-adic unit. A
normal Adams automorphism of degree ζ on S is an automorphism φ ∈ Aut(S) which
restricts to the ζ-power map on S0, and induces the identity on the group of compo-
nents S/S0. A geometric unstable Adams operation of degree ζ on G is a selfmap Ψ
of BG, such that there exist a normal Adams automorphism φ of degree ζ on S, with
the property that ι ◦ Bφ ' Ψ ◦ ι. Here ι : BS → BG is the canonical inclusion. (See
[JLL, Definitions 2.3, 3.4]) Theorem A allows us to define geometric unstable Adams
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operations of p-local compact groups, along the lines of the classical cohomological
definition.

The following lemma is an analogue of a theorem of Notbohm [N, Proposition 4.1].

Lemma 3.1. Let G = (S,F ,L) be a p-local compact group, and let T be a discrete
p-torus. Then there is an isomorphism

Hom(T, S0)/W (G)
∼=−→ [BT,BG],

where W (G) acts by left translation. Also, two maps f, h : BT → BG are homotopic if
and only if they induce the same homomorphism on H∗Qp

(−).

Proof. By [BLO3, Theorem 6.3 (a)] there is an isomorphism of sets

Rep(T,L)
∼=−→ [BT,BG],

where Rep(T,L)
def
= Hom(T, S)/∼, with α ∼ β if and only if there is some ϕ ∈

HomF(α(T ), β(T )) such that ϕ ◦ α = β. Since T is a discrete p-torus, the image
of every homomorphism from it to S is contained in S0, and by [BLO3, Lemma 2.4
(b)], every homomorphism in F between subgroups of S0 is the restriction of some
element in W (G). Thus

Rep(T,L) ∼= Hom(T, S0)/W (G),

as claimed.

It remains to prove the last statement. Two maps f, h : BT → BG that are homo-
topic clearly induce the same map on cohomology. Conversely, assume that f, h : BT →
BG are two maps such that f ∗ = g∗ : H∗Qp

(BG) −−→ H∗Qp
(BT ). Let α, β : T −−→ S0 be

homomorphisms such that f = ι ◦ Bα and g = ι ◦ Bβ, where ι : BS0 −−→ BG is the
inclusion of the maximal torus.

We will show that there is w ∈ W (G) such that w ◦ α = β, following the argument
used by Adams and Mahmud to prove [AM, Theorem 1.7]: an argument based on
the uniqueness of factorisation in the polynomial ring H∗Qp

(BS0). For simplicity, write

V = H2
Qp

(BS0) and V ′ = H2
Qp

(BT ). For each w ∈ W (G), define

V (w) = {x ∈ V |Bβ∗(x) = B(w ◦ α)∗(x) } = Ker
(
(Bβ∗ −B(w ◦ α)∗)|V

)
.

For each x ∈ V , set

x̂ =
∏

w∈W (G)

Bw∗(1 + x) ∈ S(V ) ∼= H∗Qp
(BS0)

where S(V ) denotes the symmetric algebra on the Qp-vector space V . Since x̂ is W (G)-
invariant, Theorem 2.3 implies that x̂ ∈ Im(ι∗), and hence that Bα∗(x̂) = Bβ∗(x̂). In
other words,

∏

w∈W (G)

(1 +Bα∗Bw∗x) =
∏

w∈W (G)

(1 +Bβ∗Bw∗x) ∈ S(V ′) .

Since S(V ′) is a unique factorization domain, there is w ∈ W (G) such that (1+Bβ∗x) =
λ(1 + Bα∗Bw∗x), for some λ ∈ Q×p . Then λ = 1 and hence Bβ∗x = Bα∗Bw∗x. In
particular, x ∈ V (w).

This proves that V =
⋃
w∈W (G) V (w). Since Qp is infinite, V finite dimensional, and

W (G) finite, there is w ∈ W (G) such that V = V (w) (cf. [AM, Lemma 3.1]). Hence
Bβ∗ = B(w ◦ α)∗. Since Hom(T, S0) injects into Hom

(
H∗Qp

(BS0), H∗Qp
(T )
)
, it now

follows that w ◦ α = β ∈ Hom(T, S0), and hence that f ' g as maps BT −−→ BG. �
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Proposition 3.2. Let G = (S,F ,L) be a p-local compact group, and let ζ be a p-adic
unit. Then any geometric unstable Adams operation Ψ of degree ζ induces multiplica-
tion by ζ i on H2i

Qp
(BG) . If S0 is self centralising in S, then any self equivalence Ψ of

BG which induces multiplication by ζ i on H2i
Qp

(BG) for each i is a geometric unstable
Adams operation on F .

Proof. Let ι : BS → BG be the canonical inclusion (induced by the distinguished
monomorphism δS : S → AutL(S)), and set ι0 = ι|S0 . If ψ is a geometric unstable
Adams operation on G of degree ζ, then by definition, there exists a normal Adams
automorphism φ of S such that Ψ ◦ ι ' ι ◦Bφ, and hence Ψ ◦ ι0 ' ι0 ◦B(φ|S0). For each
i ≥ 0, φ|S0 induces multiplication by ζ i on H2i

Qp
(BS0), and hence Ψ does the same on

H2i
Qp

(BG).

Assume now that S0 is self centralising in S. Let Ψ: BG → BG be a self equivalence
such that Ψ∗ is multiplication by ζ i on H2i

Qp
(BG). By [BLO3, Theorem 6.3(a)] and

Lemma 3.1, the natural maps

End(S)/AutF(S)
∼=−→ [BS,BG] and End(S0)/W (G)

∼=−→ [BS0, BG] (2)

are bijections. Hence there is ϕ ∈ End(S) such that ι ◦ Bϕ ' Ψ ◦ ι, and ϕ ∈ Aut(S)
since Ψ is a homotopy equivalence. Let ϕ0 ∈ Aut(S0) be the restriction of ϕ to S0, let

ζ̂ denote the ζ-power map on S0, and set ρ = ζ̂ ◦ ϕ−1
0 ∈ Aut(S0). Then

Bϕ∗0 ◦ ι
∗
0 = Bζ̂∗ ◦ ι∗0 : H∗Qp

(BG) −−−−−−→ H∗Qp
(BS0),

and by Lemma 3.1, there is w ∈ W (G) such that w ◦ ϕ0 = ζ̂ ∈ Aut(S0).

Fix a morphism ι̂ ∈ MorL(S0, S) such that π(ι̂) is the inclusion, and regard this
as the inclusion of S0 in S in the category L. By [BLO3, Lemma 4.3(a)], for each
g ∈ S, there is a unique restriction δS0(g) ∈ AutL(S0) of δS(g) ∈ AutL(S); i.e., a
unique morphism such that ι̂ ◦ δS0(g) = δS(g) ◦ ι̂. Identify S and S0 with their images
in AutL(S0). Let α ∈ AutL(S0) be a lift of w, i.e., π(α) = w. By Axiom (C), for each

t ∈ S0, α ◦ δS0(t) = δS0(w(t)) ◦α. Hence, cα|S0 = w, and so χ
def
= cα|S ◦ϕ : S → AutL(S0)

restricts to w ◦ ϕ0 = ζ̂ on S0.

Now, for each g ∈ S, χ ◦ cg = cχ(g) ◦ χ as automorphisms of S0, and since χ|S0 = ζ̂ is
central in Aut(S0), cg|S0 = cχ(g)|S0 . Since S0 is self centralising in S, it follows that for
each g ∈ S, g ≡ χ(g) (mod S0). In particular, χ(S) = S, and χ induces the identity
on S/S0. Thus χ is a normal Adams automorphism of S of degree ζ. Also,

ι ◦Bχ ' ι ◦B(cα|S) ◦Bϕ ' ι ◦Bϕ ' Ψ ◦ ι ,

and thus Ψ is a geometric unstable Adams operation on G as claimed. �

If G = (S,F ,L) is a p-local compact group, and P ≤ S is a subgroup satisfying a
certain mild condition (fully normalised), then one can define the normaliser fusion
system, NF(P ), which is shown in [BLO6, Theorem 2.3] to be a saturated fusion
system. The normaliser linking system NL(P ) can be defined in exactly the same way
as in [BLO2, Definition 6.1], and the proof of [BLO2, Lemma 6.2] applies verbatim to
show that NL(P ) is a centric linking system associated to NF(P ). Thus in this case
NG(P ) = (NS(P ), NF(P ), NL(P )) is a p-local compact subgroup of G.

In particular, the maximal torus S0, is fully normalised, since it is unique in its
F -conjugacy class, and we may consider the inclusion

NG(S0) −−−→ G . (3)
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Then, S0 is the maximal torus in both G and NG(S0), and from the definition of
morphisms in the normaliser fusion system [BLO6, Definition 2.1],

W (G) = AutF(S0) = AutNF (S0)(S0) = W (NG(S0)).

Thus one obtains as an immediate corollary of Theorem A, that the inclusion (3)
induces an isomorphism in p-adic rational cohomology. This is analogous to the corre-
sponding statements for compact Lie groups and p-compact groups.
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