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ú

m
07

,
ab

ri
l

20
13

.
D

ep
ar

ta
m

en
t

d
e

M
at

em
àt
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ON THOMPSON’S p-COMPLEMENT THEOREMS FOR
SATURATED FUSION SYSTEMS

JON GONZÁLEZ-SÁNCHEZ, ALBERT RUIZ, AND ANTONIO VIRUEL

Abstract. In this short note we prove that a saturated fusion system admitting
some special type of automorphism is nilpotent. This generalizes classical results
by J.G. Thompson.

1. Introduction

In his PhD Thesis, John G. Thompson proved the long standing conjecture that
the Frobenius kernel of a Frobenius group is nilpotent [Tho59]. The Frobenius kernel
always admits a fixed-point-free automorphism of prime order which turned out to
be a sufficient condition for the nilpotency. In fact both results, the nilpotency of the
Frobenius kernel and the nilpotency of a finite group admitting an fixed-point-free
automorphism of prime order are equivalent. In order to prove this result, Thompson
introduced his famous p-nilpotency criterion for an odd prime p, a group G is p-
nilpotent if and only if the normalizer of the J subgroup of a Sylow p-subgroup and
the centralizer of the center of a Sylow p-subgroup are p-nilpotent (see [Tho64]). In
fact, Thompson proved that a group G admitting automorphisms that leave invariant
some special subgroups is p-nilpotent. The following translates [Tho60, Theorem A]
for saturated fusion systems, and includes an extra hypothesis to cover the p = 2
case:

Theorem 1.1. Let F be a saturated fusion system over a p group S such that either
p is odd, or p = 2 and F is Σ4-free. Let U be a group of automorphisms of (S,F).
Suppose for every U-invariant normal subgroup QE S, AutF(Q) is a p-group. Then
F = FS(S).

As a consequence of [Tho60, Theorem A] Thompson proved that a group G admit-
ting a fixed-point-free automorphism of prime order is p-nilpotent for all primes, and
therefore the group is nilpotent [Tho59, Theorem 1].

Given a finite group G and φ a prime order automorphism without fix points, then
φ fixes a Sylow p-subgroup S of G. For a fixed subgroup H one has that NG(H)
and CG(H) are also fixed. Therefore, φ acts on the quotient group NG(H)/CG(H)
and the action on this quotient is without fix points (see Lemma 2.9(b)). So one
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can translate the concept of a fixed-point-free automorphism of prime order from the
category of finite groups to the category of saturated fusion systems (see Definition
2.10 and Proposition 2.11). It turned out that the concept of fixed-point-free au-
tomorphism in the category of saturated fusion systems is more general since there
exist finite groups admitting automorphism of prime order with fix points such that
the induced automorphism on the fusion category is fixed-point-free (see Example
3.4). Nevertheless, p-nilpotency holds under this mild assumption, as we prove this
generalization of [Tho59, Theorem 1]:

Theorem 1.2. Let F be a saturated fusion system over a p group S such that either p
is odd, or p = 2 and F is Σ4-free. Then, if (S,F) admits a prime order fixed-point-free
automorphism, F = FS(S).

These results contribute to the list of nilpotency criteria for saturated fusion sys-
tems that generalize classical criteria for finite groups, and fits within the framework
of previous work by Kessar-Linckelmann [KL08], Dı́az-Glesser-Park-Stancu [DGPS11]
and Cantarero-Scherer-Viruel [CSV13].

The note is organized as follows. In Section 2 we recall the main properties of satu-
rated fusion system and we introduce the concept of a fixed-point-free automorphism
of a saturated fusion system. In Section 3 we provide a unified proof of Theorems 1.1
and 1.2.

2. Background on saturated fusion systems and finite groups

In this section we review the concept of a saturated fusion system over a p-group S
as defined in [BLO03], and define fixed-point-free automorphism of a saturated fusion
system.

Definition 2.1. A fusion system F over a finite p-group S is a category whose objects
are the subgroups of S, and whose morphisms sets HomF(P,Q) satisfy the following
two conditions:

(a) HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q) for all P and Q subgroups of S.
(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

We say that two subgroups P ,Q ≤ S are F-conjugate if there is an isomorphism
between them in F . As all the morphisms are injective by condition (b), we denote
by AutF(P ) the group HomF(P, P ). We denote by OutF(P ) the quotient group
AutF(P )/AutP (P ).

The fusion systems that we consider are saturated, so we need the following defi-
nitions:

Definition 2.2. Let F be a fusion system over a p-group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P ′)| for all P ′

which is F -conjugate to P .
• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P ′)| for all P ′

which is F -conjugate to P .
• F is a saturated fusion system if the following two conditions hold:
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(I) Every fully normalized in F subgroup P ≤ S is fully centralized in F
and AutS(P ) ∈ Sylp(AutF(P )).

(II) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕP is fully centralized, and
if we set

Nϕ = {g ∈ NS(P ) | ϕcgϕ−1 ∈ AutS(ϕP )},
then there is ϕ ∈ HomF(Nϕ, S) such that ϕ|P = ϕ.

As expected, every finite group G gives rise to a saturated fusion system over S, a
Sylow p-subgroup of G, denoted by (S,FG(S)) [BLO03, Proposition 1.3]. But there
exist saturated fusion systems that are not the fusion system of any finite group, e.g.
[BLO03, Section 9] or [RV04].

Let F be a fusion system over a p-group S, and Q a subgroup of S. We can take
the normalizer of Q in F as the fusion system over the normalizer of Q in S, NS(Q),
with morphisms:

HomNF (Q)(P, P
′) = {ϕ ∈ HomF(P, P ′) | ∃ψ ∈ HomF(PQ,P ′Q), ψ|P = ϕ}.

Although, (NS(Q), NF(Q)) is not always a saturated fusion system, it is so when Q
is fully normalized [BLO03, Proposition A.6]:

Proposition 2.3. Let F be a saturated fusion system over a p-group S. If Q ≤ S is
fully normalized in F , then (NS(Q), NF(Q)) is a saturated fusion system.

We also need results concerning the quotients of saturated fusion systems. Recall
that if (S,F) is a saturated fusion system, we say that Q ≤ S is a weakly F-closed
subgroup if Q is not F -conjugate to any other subgroup of S.

In [Oli04, Lemma 2.6] we can find the following result:

Lemma 2.4. Let (S,F) be a saturated fusion system, and let Q C S be a weakly
F-closed subgroup. Let F/Q be the fusion system over S/Q defined by setting:

HomF/Q(P/Q, P ′/Q) = {ϕ/Q | ϕ ∈ HomF(P, P ′)}
for all P , P ′ ≤ S which contains Q. Then F/Q is saturated.

Some classical results for finite groups can be generalized to saturated fusion sys-
tems, as for example, Alperin’s Fusion Theorem for saturated fusion systems [BLO03,
Theorem A.10]:

Definition 2.5. Let F be any fusion system over a p-group S. A subgroup P ≤ S
is:

• F-centric if P and all its F -conjugates contain their S-centralizers.
• F-radical if OutF(P ) is p-reduced, that is, if OutF(P ) has no nontrivial normal
p-subgroups.

Theorem 2.6. Let F be a saturated fusion system over S. Then for each morphism
ψ ∈ AutF(P, P ′), there exists a sequence of subgroups of S

P = P0, P1, . . . , Pk = P ′ and Q1, Q2, . . . , Qk,

and morphisms ψi ∈ AutF(Qi), such that
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• Qi is fully normalized in F , F-radical and F-centric for each i;
• Pi−1, Pi ≤ Qi and ψi(Pi−1) = Pi for each i; and
• ψ = ψk ◦ ψk−1 ◦ · · · ◦ ψ1.

Here we will recall some definitions and results concerning groups [Gor68, Chapter
2] and group automorphisms [Gor68, Chapter 10]:

A finite group G is nilpotent if the lower central series of G, defined as

γ1(G) = G, γi(G) = [γi−1(G), G] for i ≥ 2

satisfies that there exists m such that γm = {1}.
As examples we have that every finite p-group is nilpotent [Gor68, Theorem 3.3(iii)],

and more generally:

Theorem 2.7. A finite group G is nilpotent if and only if it is the direct product of
its Sylow p-subgroups.

So the fusion on S, a Sylow p-subgroup of a nilpotent group G, satisfies FS(G) =
FS(S).

Definition 2.8. An automorphism ϕ of a group G is said to be fixed-point-free if it
leaves only the identity element of G fixed.

The following result shows that fixed-point-free are compatible with the p-local
structure [Gor68, Theorem 10.1.2 and Lemma 10.1.3]:

Theorem 2.9. Let G be a finite group and p a prime dividing the order of G. If
ϕ : G→ G is a fixed-point-free morphism then:

(a) There exists a unique ϕ-invariant Sylow p-subgroup S of G, and it contains every
ϕ-invariant p-subgroup of G.

(b) If H is a ϕ-invariant normal subgroup of G, then ϕ induces a fixed-point-free
automorphism of G/H.

Let Aut(F) denote the group of automorphisms of F :

Aut(F) = {ϕ ∈ Aut(S) | if α ∈ HomF(P,Q)

then ϕ|Q ◦ α ◦ (ϕ|P )−1 ∈ HomF(ϕ(P ), ϕ(Q))}.
We are now ready to give a definition of what a fixed-point-free automorphism of a
saturated fusion system is.

Definition 2.10. Let (S,F) be a saturated fusion system. Then ϕ ∈ Aut(F) is a
fixed-point-free automorphism if the following hold

• ϕ : S → S is fixed-point-free and
• ϕ] : AutF(P ) → AutF(P ), defined as ϕ](α) = ϕ ◦ α ◦ (ϕ|P )−1, is fixed-point-

free for all ϕ-invariant subgroup P ≤ S.

The next result shows that this definition generalizes the concept of fixed-point-free
automorphism of a finite group:

Proposition 2.11. Let G be a finite group and p be a prime dividing the order of
G. If ϕ : G→ G is a fixed-point-free automorphism then ϕ induces a fixed-point-free
automorphism of FG(S), where S is the only ϕ-invariant Sylow p-subgroup of G.
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Proof. According to Theorem 2.9(a) there exists S a unique ϕ-invariant Sylow p-
subgroup of G. As ϕ|S is the restriction of a fixed-point-free group morphism, it is
also fixed-point-free.

Consider now P ≤ S such that ϕ(P ) = P . Then, CG(P ) and NG(P ) are ϕ-invariant
and ϕ|CG(P ) and ϕ|NG(P ) are fixed-point-free. Using Theorem 2.9(b), ϕ induces a fixed-
point-free group morphism

ϕ] : AutFG(S)(P ) ∼= NG(P )/CG(P )→ NG(P )/CG(P ) ∼= AutFG(S)(P ).

�

3. Thompson Theorems for saturated fusion systems

In this section we give a unified proof of Theorems 1.1 and 1.2. In order to it so,
we introduce the concept of T -automorphism:

Definition 3.1. Let (S,F) be a saturated fusion system. We say that F admits
T -automorphisms if there exists U ≤ Aut(F) such that one of the following holds:

• U = 〈ϕ〉 where ϕ is a fixed-point-free automorphism of prime order.
• For every U -invariant normal subgroup QE S, AutF(Q) is a p-group.

The following lemma is a particular case for finite groups which can be proved
directly.

Lemma 3.2. Let G be the semidirect product V o H where V is an elementary
abelian p-group V and H is a group with an element of order prime to p which does
not centralize V . Then, given any p-sylow subgroup S of G, FS(G) does not admit
T -automorphisms that leave V invariant.

Proof. Assume G = V o H is a minimal counterexample to the statement, S be
a p-sylow subgroup of G, and U be a group of T -automorphisms of FS(G) that
leaves V invariant. Since V is U -invariant normal in G, it is so in S: According to
the hypothesis, AutF(V ) = NG(V )/CG(V ) contains an element of order prime to p
(coming from H), hence we may assume that U = 〈ϕ〉 where ϕ is a fixed-point-free
automorphism of prime order r. Without loss of generality, we may assume that ϕ is
an honest fixed-point-free automorphism of G.

The automorphism ϕ restricts to a fixed-point-free automorphism of V , and ac-
cording to Theorem 2.9(b), ϕ induces a fixed-point-free automorphism on G/V ∼= H,
namely ϕ̃.

Let q be any prime dividing the order of H. By Theorem 2.9(a), there exists Q,
a ϕ̃-invariant Sylow q-subgroup in H. Now, if Q � H, ϕ induces a fixed-point-free
automorphism on V o Q � G in contradiction to the minimality of G. Therefore
H must be a q-group. Moreover, if H is not abelian then the center Z(Q) � H
is ϕ̃-invariant and ϕ induces a fixed-point-free automorphism on V o Z(H) � G
in contradiction to the minimality of G. Hence H is abelian. Finally if H is not
elementary abelian, then characteristic subgroup Ω(H) � H of elements of order q
is ϕ̃-invariant and ϕ induces a fixed-point-free automorphism on V o Ω(H) � G in
contradiction to the minimality of G.
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Now r, the order of ϕ, is different to p: the restriction of ϕ to V gives a fixed-point-
free action over V , a p-group, so r 6= p.

We can assume that H acts over V without fixed points: consider a set A =
{h1, . . . , hn} of generators of H. Also ϕ(A) generates H. If x ∈ V and h ∈ H,
then we have the identity ϕ(h(x)) = ϕ(h)(ϕ(x)), so if h(x) = x for all h ∈ H,
ϕ(x) = ϕ(h)(ϕ(x)). But H = {ϕ(h)}h∈H and the fixed points by H is a ϕ invariant
subgroup. Let N be the subgroup of V of fixed points by H and assume N is not
trivial. Then we can construct the group (V/N)oH and ϕ induces a fixed-point-free
action by Theorem 2.9(b), and we get a contradiction with the minimality of G.

Consider now L the semidirect product H o Z/r. The centralizer of H in L is
itself, and we are assuming that V is a faithful H-module, and p 6= r. Then we can
apply [Gor68, Theorem 3.4.4] to deduce that ϕ cannot restrict to a fixed-point-free
automorphism of V , getting a contradiction. �

By [BCG+05, 4.3], if F is a saturated fusion system over a p-group S and P is an
F -centric fully normalized in F subgroup of S, there is, up to isomorphism, a unique
finite group L = LFP having NS(P ) as a Sylow p-subgroup such that CL(P ) = Z(P )
and NF(Q) = FNS(P )(L).

Recall that a saturated fusion system F over a p-group S is called H-free, where
H is a finite group, if H is not involved in any of the groups LFP , with Q running over
the set of F -centric fully normalized in F subgroups of S.

Proof of Theorems 1.1 and 1.2. We will proceed considering a minimal counterexam-
ple and getting a contradiction. So, let S be the smallest p-group and F the saturated
fusion system with a minimal number of morphisms such that (S,F) admits U a group
of T -automorphisms and FS(S) � F .
Step 1: There exists a non-trivial elementary abelian proper subgroup W (S) � S
such that (S,F) = (S,NF(W (S))):

Given a group G, let Z(G), J(G), and Ω(G) denote the center, the Thompson
subgroup, and the group generated by the elements of order p of G respectively.
Let W (S) be the characteristic subgroup of S defined in [OS09, Section 4]. Then
Ω(Z(S)) ≤ W (S) ≤ Ω(Z(J(S))), and W (S) is non-trivial and elementary abelian.
Moreover, as W (S) is characteristic, it is U -invariant and normal in S. This implies
that W (S) is fully normalized in F so, by Proposition 2.3, NF(W (S)) is a saturated
fusion system over S.

Let us see now that (S,F) = (S,NF(W (S))): assume NF(W (S)) � F . Then U
induces a group of T -automorphisms in (S,NF(W (S))), so if there are morphisms
in F which are not in NF(W (S)), by minimality of F , NF(W (S)) = FS(S). But,
as p is an odd prime (respectively p = 2 and F Σ4-free), by [OS09, Theorem 1.3]
(respectively [OS09, Theorem 1.1]) this implies F = FS(S), so NF(W (S)) = F ,
getting a contradiction.

If W (S) = S then, applying Lemma 3.2, (S,F) = (S,FS(S)), so it is not a coun-
terexample.
Step 2: According to Lemma 2.4, (S,F) projects onto a saturated fusion system
(S/W (S),F/W (S)) and U induces a group of T -automorphism of F/W (S). So, by
the minimality hypothesis, F/W (S) = FS/W (S)(S/W (S)).
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Step 3: There is an element α of prime order q in AutF(W (S)), with q 6= p:
As we are assuming that FS(S) � F , using the Alperin’s Theorem for saturated

fusion systems (Theorem 2.6), there exists P , a fully normalized in F , F -centric,
F -radical subgroup of S with an F -automorphism α of prime order q, q 6= p. By
[BCG+05, Proposition 1.6], as W (S) is normal in F and P is F -radical, W (S) is
contained in P and we have induced maps in the normal series 1 E W (S) E P .
By Step 2 α̃ projects to the identity in P/W (S). If the restriction of α̃ to W (S) is
also the identity, by [Gor68, Theorem 5.3.2] the order of α̃ is a power of p, getting a
contradiction. So α̃ restricts to an automorphism α on W (S) of order q.
Last step: We finish the proof by considering G=W (S)oH where H=AutF(W (S)),
then the automorphism group induced by U on G is a group of T -automorphism that
leaves W (S) invariant, what contradicts Lemma 3.2. Therefore there is no minimal
counterexample (S,F). �

We finish this section with a couple of examples that ilustrate the scope of these
results. The first example, what seems to be well known for the experts (see comments
below [Tho59, Theorem A]), shows that the Σ4-free hypothesis in the p = 2 case is a
necessary one.

Example 3.3. Let G be the simple group L(2, 17), and let S ≤ G be a 2-sylow
subgroup. According to [CCN+85, p. 9], the 2-fusion is completely determined by its
self normalizing sylow S ∼= D16 and two conjugacy classes of rank two elementary
abelian subgroups of type 2A2 whose normalizer is isomorphic to Σ4. So F = FS(G)
is not Σ4-free, F 6= FS(S), and for every normal QE S, AutF(Q) is a 2-group (since
the only maximal subgroup of G of index coprime to 2 is S). Therefore, for every
U ≤ Aut(F), and U -invariant normal subgroup Q E S, AutF(Q) is a 2-group, but
F 6= FS(S).

The last example shows that group automorphisms with fixed points can induce a
fixed-point-free automorphisms of saturated fusion system.

Example 3.4. Let S be a finite p-group such that there exist a fixed-point-free
automorphism φ of S. Consider H = S o 〈φ〉 and let N be a group whose order is
coprime to p and a homomorphism f : H → Aut(N). The homomorphism f defines
a semidirect product G = N oH, where the subgroup K = SN is a normal subgroup
of G and φ acts on K not necessary without fix points, but it acts on the fusion
category FS(G) = FS(S) without fix points.

An example of this situation is the group A4 and φ ∈ aut(A4) given by conjugation
in S4 by the transposition (1, 2). Then φ fixes the Sylow 3-subgroup S = 〈(1, 2, 3)〉,
and furthermore it acts without fix points on the fusion category FS(A4).
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