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Weak approximation of the complex Brownian sheet
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Abstract

We consider a Lévy process in the plane and we use it to construct a family of complex-valued
random fields that we show to converge in law, in the space of continuous functions, to a complex
Brownian sheet. We apply this result to obtain weak approximations of the random field solution to
a semilinear one-dimensional stochastic heat equation driven by the space-time white noise.

2000 Mathematics Subject Classification: 60F17; 60G15; 60H15.
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1 Introduction

Let {N(x, y); x, y ≥ 0} be a Poisson process in the plane and S, T > 0. For any ε > 0, define the following
random field:

xε(s, t) := ε

∫ t
ε

0

∫ s
ε

0

√
xy (−1)N(x,y)dxdy, (s, t) ∈ [0, S] × [0, T ]. (1)

Then, in [2] (see Theorem 1.1 therein) the authors proved that, as ε tends to zero, xε converges in law,
in the Banach space C([0, S] × [0, T ]) of continuous functions, to the Brownian sheet on [0, S] × [0, T ]. It
is worth mentioning that this result was motivated by its one-dimensional counterpart, which was proved
by Stroock in [10] and says the following: the family of processes

yε(t) := ε

∫ t
ε2

0

(−1)N(s)ds, ε > 0,

where here N denotes a standard Poisson process, converges in law, in the space of continuous functions,
to a standard Brownian motion. Note that this kind of processes had already been used by Kac in [9] in
order to express the solution of the telegrapher’s equation in terms of a Poisson process.

In the present paper, we aim to extend the above result of [2] to the case where the Poisson process
is replaced by a Lévy sheet {L(x, y); x, y ≥ 0} (see Section 2 for the precise definition). Indeed, note
that expression (−1)N(x,y) can be written in terms of the complex exponential as eiπN(x,y). Hence, when
replacing N by L, we will use the form eiπL(x,y) = cos(πL(x, y)) + i sin(πL(x, y)) since the expression
(−1)L(x,y) may not be well-defined in R. On the other hand, we will replace π by an arbitrary angle
θ ∈ (0, 2π). The main result of the paper is the following:
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67802P of the Ministerio de Economı́a y Competitividad.
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Theorem 1.1. Let {L(x, y); x, y ≥ 0} be a Lévy sheet and Ψ(ξ) := a(ξ)+ib(ξ), ξ ∈ R, its Lévy exponent.
Let θ ∈ (0, 2π) and S, T > 0, and define, for any ε > 0 and (s, t) ∈ [0, S] × [0, T ],

Xε(s, t) := εK

∫ t
ε

0

∫ s
ε

0

√
xy {cos(θL(x, y)) + i sin(θL(x, y))}dxdy, (2)

where the constant K is given by

K =
1√
2

a(θ)2 + b(θ)2√
a(θ)2 − b(θ)2

. (3)

Assume that a(θ)a(2θ) ̸= 0 and |b(θ)| ̸= a(θ). Then, as ε tends to zero, Xε converges in law, in the space
of complex-valued continuous functions C([0, S] × [0, T ]; C), to a complex Brownian sheet.

We recall that, by definition, a complex Brownian sheet is a complex random field whose real and
imaginary parts are independent Brownian sheets. Hence, in view of the above theorem, we observe that
the real and imaginary parts of Xε are clearly not independent, for any ε > 0, while in the limit they
are. This phenomenon is not new, for it already appeared in the study of analogous problems in the
one-parameter setting (see, e.g., [1, 4]). Indeed, in [1], a family of processes that converges in law to a
complex Brownian motion was constructed from a unique Poisson process. This result was generalized in
[4], where the Poisson process was replaced by processes with independent increments whose characteristic
functions satisfy some properties. Lévy processes are one of the examples where the latter results may
be applied.

The main strategy in order to prove the kind of weak convergence stated in Theorem 1.1 consists
in proving that the underlying family of laws is relatively compact in the space of continuous functions
(with the usual topology). By Prohorov’s theorem, this is equivalent to proving the tightness property of
this family of laws. Next, we will check that every weakly convergent partial sequence converges to the
limit law that we want to obtain.

In the last part of the paper (see Section 5), we consider the following semilinear stochastic heat
equation driven by the space-time white noise:

∂U

∂t
(t, x) − ∂2U

∂x2
(t, x) = b(U(t, x)) + Ẇ (t, x), (t, x) ∈ [0, T ] × [0, 1], (4)

where T > 0 and b is a globally Lipschitz function. We impose some initial datum and Dirichlet bound-
ary conditions. In Theorem 5.1 below, we will prove that the random field solution U of (4) can be
approximated in law, in the space of continuous functions, by a sequence of random fields {Uε}ε, where
Uε is the mild solution to a stochastic heat equation like (4) but driven by either the real or imaginary
part of the noise Xε. This result provides an example of a kind of weak continuity phenomenon in the
path space, where convergence in law of the noisy inputs implies convergence in law of the corresponding
solutions. Another example of this fact was provided by Walsh in [12], where a parabolic stochastic
partial differential equation was used to model a discontinuous neurophysiological phenomenon.

The proof of Theorem 5.1 will follow from [3, Thm. 1.4]. More precisely, Theorem 1.4 of [3] establishes
sufficient conditions on a family of random fields that approximate the Brownian sheet (in some sense)
under which the solutions of (4) driven by this family converges in law, in the space of continuous
functions, to the random field U . We refer to Section 5 for the precise statement of the above-mentioned
conditions. In [3], the authors apply their main result to two important families of random fields that
approximate the Brownian sheet: the Donsker kernels in the plane and the Kac-Stroock processes, where
the latter are defined by

θn(t, x) := n
√

tx (−1)N(
√

n t,
√

n x),

where N denotes a standard Poisson process in the plane (indeed, this case corresponds to (1)). As it will
be exhibited in Section 5, the proof of Theorem 5.1 is strongly based on the treatment of the Kac-Stroock
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processes in [3] (see Section 4 therein), and also on some technical estimates contained in the proof of
the tightness result given in Proposition 3.1 of the present paper.

Finally, we note that the kind of convergence results that are obtained in the present paper assure
that the limit processes, which in our case correspond to the complex Brownian sheet and the solution
to the stochastic heat equation, are robust when used as models in practical situations. Moreover, the
obtained results provide expressions that can be useful to study simulations of these limit processes.

The paper is organized as follows. Section 2 contains some preliminaries on two-parameter random
fields and the definition of Lévy sheet. Section 3 is devoted to prove that the family of laws of (Xε)ε>0 is
tight in the space of complex-valued continuous functions. The limit identification is addressed in Section
4. Finally, the result on weak convergence for the stochastic heat equation is obtained in Section 5.

2 Preliminaries

Let (Ω, F , P) be a complete probability space. We will use some notation introduced by Cairoli and
Walsh in [6]. Namely, let {Fs,t; (s, t) ∈ [0, S] × [0, T ]} be a family of sub-σ-algebras of F satisfying:

(i) Fs,t ⊂ Fs′,t′ , for all s ≤ s′ and t ≤ t′.

(ii) All zero sets of F are contained in F0,0 .

(iii) For any z ∈ [0, S] × [0, T ], Fz = ∩z<z′Fz′ , where z = (s, t) < z′ = (s′, t′) denotes the partial order
in [0, S] × [0, T ], which means that s < s′ and t < t′.

If (s, t) < (s′, t′) and Y denotes any random field defined in [0, S] × [0, T ], the increment of Y on the
rectangle [(s, t), (s′, t′)] is defined by

∆s,tY (s′, t′) := Y (s′, t′) − Y (s, t′) − Y (s′, t) + Y (s, t).

An adapted process {Y (s, t); (s, t) ∈ [0, S] × [0, T ]} with respect to the filtration {Fs,t; (s, t) ∈ [0, S] ×
[0, T ]} is called a martingale if E[|Y (s, t)|] < ∞ for all (s, t) ∈ [0, S] × [0, T ] and

E[∆s,tY (s′, t′)|Fs,t] = 0, for all (s, t) < (s′, t′).

It will be called a strong martingale if E[|Y (s, t)|] < ∞ for all (s, t) ∈ [0, S] × [0, T ], Y (s, 0) = Y (0, t) = 0
for all s, t and

E[∆s,tY (s′, t′)|FS,t ∨ Fs,T ] = 0, for all (s, t) < (s′, t′).

We recall that a Brownian sheet is an adapted process {W (s, t); (s, t) ∈ [0, S] × [0, T ]} such that
W (s, 0) = W (0, t) = 0 P-a.s., the increment ∆s,tW (s′, t′) is independent of FS,t ∨ Fs,T , for all (s, t) <
(s′, t′), and it is normally distributed with mean zero and variance (s′−s)(t′−t). If no filtration is specified,
we will consider the one generated by the process itself, namely FW := σ{W (s, t); (s, t) ∈ [0, S] × [0, T ]}
(conveniently completed).

A Lévy sheet is defined as follows. In general, if Q is any rectangle in R2
+ and Y any random field

in R2
+, we will also denote by ∆QY the increment of Y on Q. It is well-known that, for any negative

definite function Ψ in R, there exists a real-valued random field L = {L(s, t); s, t ≥ 0} such that

(i) For any family of disjoint rectangles Q1, . . . , Qn in R2
+, the increments ∆Q1L, . . . ,∆QnL are inde-

pendent random variables.

(ii) For any rectangle Q in R2
+, the characteristic function of the increment ∆QL is given by

E
[
eiξ∆QL

]
= e−λ(Q)Ψ(ξ), ξ ∈ R, (5)

where λ denotes the Lebesgue measure on R2
+.
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Definition 2.1. A random field L = {L(s, t); s, t ≥ 0} taking values in R that is continuous in probability
and satisfies the above conditions (i) and (ii) is called a Lévy sheet with exponent Ψ.

By the Lévy-Khintchine formula, we have

Ψ(ξ) = iaξ +
1

2
σ2ξ2 +

∫

R

[
1 − eiξx +

ixξ

1 + |x|2
]

η(dx), ξ ∈ R,

where a ∈ R, σ ≥ 0 and η is the corresponding Lévy measure, that is a Borel measure on R \ {0} that
satisfies ∫

R

|x|2
1 + |x|2 η(dx) < ∞.

We write Ψ(ξ) = a(ξ) + ib(ξ), where

a(ξ) :=
1

2
σ2ξ2 +

∫

R
[1 − cos(ξx)]η(dx),

and

b(ξ) := aξ +

∫

R

[
xξ

1 + |x|2 − sin(ξx)

]
η(dx).

Observe that a(ξ) ≥ 0 and, if ξ ̸= 0, a(ξ) > 0 whenever σ > 0 and/or η is nontrivial.

3 Tightness

This section is devoted to prove that the family of probability laws of {Xε}ε>0 is tight in C([0, S]×[0, T ]; C).
This will be a consequence of the next result and the tightness criterion [5, Thm. 3] (see also [7]).

Proposition 3.1. Let {Xε}ε>0 be the family of random fields defined by (2). There exists a positive
constant C such that, for all (0, 0) ≤ (s, t) < (s′, t′) ≤ (S, T ),

sup
ε>0

E
[
|∆s,tXε(s

′, t′)|4
]

≤ C(s′ − s)2(t′ − t)2.

This implies that the the family of probability laws of (Xε)ε>0 is tight in C([0, S] × [0, T ]; C).
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Proof. By definition of Xε and the properties of the modulus | · |, we have

E
[
|∆s,tXε(s

′, t′)|4
]

= ε4K4E



∣∣∣∣∣

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy {cos(θL(x, y)) + i sin(θL(x, y))}dxdy

∣∣∣∣∣

4



= ε4K4E



∣∣∣∣∣

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy eiθL(x,y)dxdy

∣∣∣∣∣

4



= ε4K4E



(∫ t′

ε

t
ε

∫ s′
ε

s
ε

√
x1y1 eiθL(x1,y1)dx1dy1

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
x2y2 e−iθL(x2,y2)dx2dy2

)2



= ε4K4E



(∫ t′

ε

t
ε

∫ s′
ε

s
ε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
x1x2y1y2 eiθ(L(x2,y2)−L(x1,y1))dx1dx2dy1dy2

)2



= ε4K4E

[∫ t′
ε

t
ε

∫ s′
ε

s
ε

· · ·
∫ t′

ε

t
ε

∫ s′
ε

s
ε

√
x1x2x3x4

√
y1y2y3y4

× eiθ(L(x4,y4)−L(x3,y3)+L(x2,y2)−L(x1,y1))dx1 . . . dx4dy1 . . . dy4

]
.

Taking into account that we can write eiθ
∑4

j=1(−1)jL(xj ,yj) = eiθ
∑4

j=1(−1)j∆0,0L(xj ,yj), we obtain

E
[
|∆s,tXε(s

′, t′)|4
]

= ε4K4

∫ t′
ε

t
ε

∫ s′
ε

s
ε

· · ·
∫ t′

ε

t
ε

∫ s′
ε

s
ε

√
x1x2x3x4

√
y1y2y3y4

× E
[
eiθ

∑4
j=1(−1)j∆0,0L(xj ,yj)

]
dx1 . . . dx4dy1 . . . dy4.

In order to estimate the expectation inside the above term, we need to consider all 24 possible orders
of the x-variables and all 24 possible orders of the y-variables. Altogether, this amounts to take into
account 576 possibilities. Let P4 be the group of permutations of degree 4. Then,

E
[
|∆s,tXε(s

′, t′)|4
]

=
∑

σ∈P4

∑

β∈P4

ε4K4

∫ t′
ε

t
ε

∫ s′
ε

s
ε

· · ·
∫ t′

ε

t
ε

∫ s′
ε

s
ε

√
x1x2x3x4

√
y1y2y3y4 E

[
eiθ

∑4
j=1(−1)j∆0,0L(xj ,yj)

]

× I{xσ(1)<xσ(2)<xσ(3)<xσ(4)}I{yβ(1)<yβ(2)<yβ(3)<yβ(4)}dx1 . . . dx4dy1 . . . dy4

≤
∑

σ∈P4

∑

β∈P4

ε4K4

∫ t′
ε

t
ε

∫ s′
ε

s
ε

· · ·
∫ t′

ε

t
ε

∫ s′
ε

s
ε

√
x1x2x3x4

√
y1y2y3y4

∣∣∣E
[
eiθ

∑4
j=1(−1)j∆0,0L(xj ,yj)

]∣∣∣

× I{xσ(1)<xσ(2)<xσ(3)<xσ(4)}I{yβ(1)<yβ(2)<yβ(3)<yβ(4)}dx1 . . . dx4dy1 . . . dy4. (6)

At this point, we observe that the geometric structure of the resulting increments of L in the expression∑4
j=1(−1)j∆0,0L(xj , yj) of any of the 576 possibilities corresponds to one of the 24 cases drawn in Figure

1; we note that the latter corresponds to all 24 possible orders of the x-variables with y1 < y2 < y3 < y4.
In each of these 24 possible structures, the corresponding increments of L turn out to be multiplied by
c1 ∈ {−1, 1} in the black regions, while they are multiplied by c2 ∈ {−2, 0, 2} in the white regions.
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Let us now fix two permutations σ, β ∈ P4, and we will focus on the term
∣∣∣E
[
eiθ

∑4
j=1(−1)j∆0,0L(xi,yj)

]∣∣∣ I{xσ(1)<xσ(2)<xσ(3)<xσ(4)}I{yβ(1)<yβ(2)<yβ(3)<yβ(4)}. (7)

We perform a change of variables in such a way that, making a harmless abuse of notation and using
again the same one for the new variables, we have x1 < x2 < x3 < x4 and y1 < y2 < y3 < y4.

On the other hand, if we denote by Q the region of Figure 1 corresponding the above fixed variables
order, we know that Q can be decomposed as a union of black rectangles and white rectangles. More
precisely, we can write

Q =
(
∪k Q̄k

)
∪
(

∪l Q̃l

)
,

where the increments ∆Q̄k
L are multiplied by ck

1 ∈ {−1, 1} and ∆Q̃l
L are multiplied by cl

2 ∈ {−2, 0, 2}.
Hence, expression (7) is given by

∣∣∣E
[
e
iθ(

∑
k ck

1∆Q̄k
L+

∑
l cl

2∆Q̃l
L)
]∣∣∣ I{x1<x2<x3<x4}I{y1<y2<y3<y4}

=
∣∣∣E
[
eiθ

∑
k ck

1∆Q̄k
L
]

E
[
e
iθ

∑
l cl

2∆Q̃l
L
]∣∣∣ I{x1<x2<x3<x4}I{y1<y2<y3<y4}

=
∣∣∣E
[
eiθ

∑
k ck

1∆Q̄k
L
]∣∣∣×

∣∣∣E
[
e
iθ

∑
l cl

2∆Q̃l
L
]∣∣∣ I{x1<x2<x3<x4}I{y1<y2<y3<y4}

=
∏

k

∣∣∣e−λ(Q̄k)Ψ(ck
1θ)
∣∣∣
∏

l

∣∣∣e−λ(Q̃l)Ψ(cl
2θ)
∣∣∣ I{x1<x2<x3<x4}I{y1<y2<y3<y4}

=
∏

k

e−λ(Q̄k)a(ck
1θ)
∏

l

e−λ(Q̃l)a(cl
2θ)I{x1<x2<x3<x4}I{y1<y2<y3<y4}

≤
∏

k

e−λ(Q̄k)a(θ)I{x1<x2<x3<x4}I{y1<y2<y3<y4}

= e−λ(Q̄)a(θ)I{x1<x2<x3<x4}I{y1<y2<y3<y4}, (8)

where Q̄ := ∪kQ̄k. In the above computations, we have used that the real part of the Lévy exponent Ψ
is a nonnegative function and satisfies a(−θ) = a(θ). We remark that, independently of the constants
ck
1 and cl

2, we have obtained an estimated of (7) which only involves the black regions multiplied by 1.
Recall that λ denotes the Lebesgue measure on R2.

Taking into account estimate (8), it is readily checked that, among all 24 possibilities drawn in Figure
1, it suffices to deal with 4 of these cases (see Figure 2). This is because, in the rest of the cases, the area
of Q̄ is greater than or equal to the corresponding one of one of these 4 possibilities. Thus, since in (8)
the area of Q̄ appears with a negative sign, we can focus only on the cases of Figure 2.

Let us start tackling the case corresponding to i) in Figure 2. That is, by estimates (6) and (8), we
need to find suitable upper bounds of the term

ε4

∫

I

∫

J

√
x1x2x3x4

√
y1y2y3y4 exp[−a(θ)[(x4 − x3)y3 + (y4 − y3)x3

+(x2 − x1)y1 + (y2 − y1)x1]] dx1...dx4dy1...dy4,

where J = { s
ε ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ s′

ε } and I = { t
ε ≤ y1 ≤ y2 ≤ y3 ≤ y4 ≤ t′

ε }.

First, estimate x4 and y4 in the square roots above by s′

ε and t′

ε , respectively, and then integrate with
respect to theses two variables. The resulting expression can be easily bounded by, up to some positive
constant,

√
s′

√
t′ε3

∫

I1

∫

J1

√
x1x2x3

√
y1y2y3

x3y3
exp

[
− a(θ)[(x2 − x1)y1 + (y2 − y1)x1]

]
dx1...dx3dy1...dy3,

6



Figure 1: Each square represents the rectangle [(s, t), (s′, t′)]. Regions corresponding to∑4
j=1(−1)j∆0,0L(xj , yj), for all possible 24 orders of the x-variables and y1 < y2 < y3 < y4, are drawn

in each square. Black areas are regions where the corresponding increment of L appears an odd number
of times. Note that, indeed, all areas are extended up to the plane axes.
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Figure 2: The 4 relevant cases of Figure 1

where J1 = { s
ε ≤ x1 ≤ x2 ≤ x3 ≤ s′

ε } and I1 = { t
ε ≤ y1 ≤ y2 ≤ y3 ≤ t′

ε }. Now, we estimate x2 and y2 by
s′

ε and t′

ε , respectively, inside the square roots, and then integrate with respect to x2 i y2. Hence, up to
some constant, we obtain an estimate for (9) of the form

s′t′ε2

∫ s′
ε

s
ε

1√
x1

dx1

∫ s′
ε

s
ε

1√
x3

dx3

∫ t′
ε

t
ε

1√
y1

dy1

∫ t′
ε

t
ε

1√
y3

dy3

= C
[√

s′(
√

s′ − √
s)
]2[√

t′(
√

t′ −
√

t)
]2

≤ C(s′ − s)2(t′ − t)2.

This concludes the analysis of i) in Figure 2.

In the remaining three cases, the above-used argument does not directly work. Instead, we will add
some small area in the corresponding drawing in such a way that we will be able to argue similarly as in
case i). We remark that some of the integrand’s estimates that will be obtained in the sequel will hold
everywhere except of a zero Lebesgue measure set of R8.

Let us start with the analysis of the integral corresponding to ii). We need to bound the following
term:

ε4

∫

I

∫

J

√
x1x2x3x4

√
y1y2y3y4 e−λ(Q̄)a(θ)dx1...dx4dy1...dy4,

where J = { s
ε ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ s′

ε }, I = { t
ε ≤ y1 ≤ y2 ≤ y3 ≤ y4 ≤ t′

ε }, and Q̄ is the union of
black rectangles corresponding to the case ii). Note that A := λ(Q̄) is given by

A = (x4 − x3)y1 + (y4 − y3)x1 + (x2 − x1)y1 + (y2 − y1)x1 + (x3 − x2)(y2 − y1) + (y3 − y2)(x2 − x1).
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We split the above integral into two terms:

ε4

∫

I

∫

J

√
x1x2x3x4

√
y1y2y3y4 e−a(θ)A I{A≥2(x2−x1)(y2−y1)}dx1...dx4dy1...dy4

+ ε4

∫

I

∫

J

√
x1x2x3x4

√
y1y2y3y4 e−a(θ)A I{A<2(x2−x1)(y2−y1)}dx1...dx4dy1...dy4. (9)

When A ≥ 2(x2 − x1)(y2 − y1), we have

−a(θ)A ≤ −a(θ)

2
A − a(θ)(x2 − x1)(y2 − y1)

= −a(θ)

2
[(x4 − x3)y1 + (y4 − y3)x1 + (x2 − x1)y3 + (y2 − y1)x3].

Hence, the first integral in (9) is less or equal than

ε4

∫

I

∫

J

√
x1x2x3x4

√
y1y2y3y4 exp

{
−a(θ)

2
[(x4 − x3)y1 + (y4 − y3)x1

+ (x2 − x1)y3 + (y2 − y1)x3]
}

dx1...dx4dy1...dy4,

and following the same arguments used in the case i), this term can be estimated by (s′ − s)2(t′ − t)2, up
to some positive constant.

On the other hand, as far as the second integral in (9) is concerned, observe that we have

{A < 2(x2 − x1)(y2 − y1)}
= {(x4 − x3)y1 + (y4 − y3)x1 + (y2 − y1)x3 + (x2 − x1)y3 < 4(x2 − x1)(y2 − y1)}.

In particular, in this region we have

1

4
y3 < (y2 − y1) and

1

4
x3 < (x2 − x1),

which implies that

A ≥ (x4 − x3)y1 + (y4 − y3)x1 +
1

4
x3y1 +

1

4
y3x1 +

1

4
(x3 − x2)y3 +

1

4
(y3 − y2)x3

≥ 1

4

[
x4y1 + y4x1 + (x3 − x2)y3 + (y3 − y2)x3

]
.

Thus, the second integral in (9) can be bounded by

ε4

∫

I

∫

J

√
x1x2x3x4

√
y1y2y3y4

× exp

{
−a(θ)

4
[x4y1 + y4x1 + (x3 − x2)y3 + (y3 − y2)x3]

}
dx1...dx4dy1...dy4,

and here again the arguments of the case i) may be applied, yielding an estimate of the form (s′ −s)2(t′ −
t)2, up to some positive constant.

The same idea can be used to deal with the integral corresponding to iii). Indeed, in this case the
area A is given by

A = (x4 − x3)y1 + (x2 − x1)y1 + (x3 − x2)(y3 − y1) + (y4 − y3)x2 + (y2 − y1)x1,

9



and here one splits the underlying integral taking into account the regions {A ≥ 2(x3 − x2)y1} and
{A < 2(x3 − x2)y1}. In the former, one has

−a(θ)A ≤ −a(θ)

2
A − a(θ)(x3 − x2)y1

= −a(θ)

2
[(x4 − x1)y1 + (y2 − y1)x1 + (x3 − x2)y3 + (y4 − y3)x2

and the desired estimated is obtained by using the same computations as for the case i). Note that, in
fact, variables which have to be bounded and integrated with respect to are x4, y4, y2, x3, following this
specific order. On the other hand, in the region {A < 2(x3 − x2)y1}, we get

{A < 2(x3 − x2)y1} = {(x4 − x1)y1 + (y2 − y1)x1 + (x3 − x2)y3 + (y4 − y3)x2 < 4(x3 − x2)y1}.

So, in particular, in this region we have

1

4
y3 < y1 and

1

4
(x4 − x1) < (x3 − x2),

where we deduce

A ≥ 1

4

[
(x4 − x3)y3 + (x2 − x1)y3 + (x4 − x1)(y3 − y1) + (y4 − y3)x2 + (y2 − y1)x1

]

≥ 1

4

[
(y4 − y3)x1 + (x2 − x1)y3 + (x4 − x3)y1 + (y2 − y1)x3

]
.

At this point, we can follow the arguments of the preceding cases.

Finally, it only remains to estimate the integral involving case iv) in Figure 2. In this case,

A = (x4 − x3)y2 + (x2 − x1)y2 + (y4 − y3)x2 + (y2 − y1)x1 + (x3 − x2)(y3 − y2)]

and the splitting regions are {A ≥ 2(x3 −x2)y2}∪{A ≥ 2(y3 −y2)x2} and the corresponding complement.

In the first region, condition A ≥ 2(x3 − x2)y2 turns out to be equivalent to

−a(θ)A ≤ −a(θ)

2
[(x3 − x2)y3 + (y4 − y3)x2 + (y2 − y1)x1 + (x4 − x1)y1],

so we will be able to mimic the arguments used so far. Moreover, note that this case is symmetric in
x and y, which implies that the computations in the case A ≥ 2(y3 − y2)x2 will be the same just by
exchanging x and y.

As far as the case {A < 2(x3 − x2)y2} ∩ {A < 2(y3 − y2)x2} is concerned, we have

{A < 2(x3 − x2)y2} ∩ {A < 2(y3 − y2)x2}
= {(x4 − x1)y2 + (y4 − y3)x2 + (y2 − y1)x1 + (x3 − x2)y3 ≤ 4(x3 − x2)y2}

∩ {(y4 − y1)x2 + (x4 − x3)y2 + (x2 − x1)y1 + (y3 − y2)x3 ≤ 4(y3 − y2)x2}.

In particular, one has
1

4
y3 ≤ y2 and

1

4
(x4 − x1) ≤ (x3 − x2),

1

4
x3 ≤ x2 and

1

4
(y4 − y1) ≤ (y3 − y2),

which implies

A ≥ 1

4

[
(x4 − x3)y3 + (x2 − x1)y3 + (y4 − y3)x3 + (y2 − y1)x1

]
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≥ 1

4

[
(x4 − x3)y3 + (y4 − y3)x3 + (x2 − x1)y1 + (y2 − y1)x1

]
.

One can conclude the proof by following the same arguments as in the preceding cases.

4 Limit identification

Let {Pε}ε>0 be the family of probability laws in C([0, S] × [0, T ]; C) corresponding to {Xε}ε>0. By
Proposition 3.1, there exists a subsequence {Pεn}n≥1 of {Pε}ε>0 converging, in the weak sense in the
space C([0, S] × [0, T ]; C), to some probability measure P. This section is devoted to prove that P is the
law of a complex random field whose real and imaginary parts are independent Brownian sheets.

We will use the following characterization of the Brownian sheet, which is a quotation of [2, Thm.
4.1]. Note that other characterizations of Brownian sheet can be found, e.g., in [8, 11].

Theorem 4.1. Let Y = {Y (s, t); (s, t) ∈ [0, S]× [0, T ]} be a real-valued and continuous process such that
Y (s, 0) = Y (0, t) = 0 for all s ∈ [0, S] and t ∈ [0, T ]. Let {Fs,t; (s, t) ∈ [0, S] × [0, T ]} be the natural
filtration associated to Y . Then, the following statements are equivalent:

(i) Y is a Brownian sheet.

(ii) Y is a strong martingale and, for all (0, 0) < (s, t) ≤ (s′, t′) ≤ (S, T ),

E
[(

∆s,tY (s′, t′)
)2|Fs,T

]
= (s′ − s)(t′ − t).

Owing to Theorem 4.1 and Proposition 3.1, the following two propositions will guarantee the validity
of (almost all) the statement of Theorem 1.1.

Proposition 4.2. Recall that P denotes the weak limit in C([0, S]× [0, T ]; C) of a converging subsequence
of the family {Pε}ε>0. Let X = {X(s, t); (s, t) ∈ [0, S] × [0, T ]} be the corresponding (complex-valued)
canonical process and {Fs,t; (s, t) ∈ [0, S] × [0, T ]} its associated natural filtration. Then, the real and
imaginary parts of X define strong martingales under the probability P.

Proposition 4.3. Let X be the canonical process defined in the previous proposition. Then, for all
(0, 0) < (s, t) ≤ (s′, t′) ≤ (S, T ), it holds:

EP
[(

∆s,tRe(X)(s′, t′)
)2|Fs,T

]
= (s′ − s)(t′ − t),

and
EP
[(

∆s,tIm(X)(s′, t′)
)2|Fs,T

]
= (s′ − s)(t′ − t),

The proof of Proposition 4.2 is based on the following lemma.

Lemma 4.4. Let Xε = {Xε(s, t); (s, t) ∈ [0, S] × [0, T ]} be the (complex-valued) random field defined in
(2) and {Fε

s,t; (s, t) ∈ [0, S] × [0, T ]} its natural filtration. Then, for all (0, 0) < (s, t) ≤ (s′, t′) ≤ (S, T ),

lim
ε→0

E[∆s,tXε(s
′, t′)|Fε

S,t ∨ Fε
s,T ] = 0, (10)

where the limit is understood in L2(Ω).

Proof. We will use the notation Yε := E[∆s,tXε(s
′, t′)|FS,t ∨ Fs,T ]. First, note that we can write

∆s,tXε(s
′, t′) = εK

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy e

iθ

(
L( s

ε ,y)+L(x, t
ε )−L( s

ε , t
ε )+∆ s

ε
, t

ε
L(x,y)

)

dxdy.

11



Thus, we have

Yε = εK

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy eiθ(L( s

ε ,y)+L(x, t
ε )−L( s

ε , t
ε ))E

[
e
iθ∆ s

ε
, t

ε
L(x,y)

]
dxdy

= εK

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy eiθ(L( s

ε ,y)+L(x, t
ε )−L( s

ε , t
ε ))e−Ψ(θ)(x− s

ε )(y− t
ε )dxdy

and also

E[Y 2
ε ] = ε2K2

∫ t′
ε

t
ε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ s′
ε

s
ε

√
x1x2

√
y1y2 e−Ψ(θ)((x1− s

ε )(y1− t
ε )+(x2− s

ε )(y2− t
ε ))

× E
[
eiθ(L( s

ε ,y1)+L( s
ε ,y2)+L(x1, t

ε )+L(x2, t
ε )−2L( s

ε , t
ε ))
]
dx1dx2dy1dy2.

At this point, we take into account the possible orders of x1, x2 and y1, y2, respectively, which amounts
to consider 4 possibilities. Then, in each case we express the exponent in the complex exponential above
as a suitable combination of rectangular increments of L, so that we can compute the corresponding
expectation thanks to (5). Using this procedure, we end up with

E[Y 2
ε ] = 2(I1 + I2), (11)

where

I1 = ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2

√
y1y2 e−Ψ(θ)((x2−x1)

t
ε +(y2−y1)

s
ε +(x1− s

ε )(y1− t
ε )+(x2− s

ε )(y2− t
ε ))

× e−Ψ(2θ)((x1− s
ε ) t

ε +(y1− t
ε ) s

ε + st
ε2 )dx1dx2dy1dy2

and

I2 = ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2

√
y1y2 e−Ψ(θ)((x2−x1)

t
ε +(y2−y1)

s
ε +(x1− s

ε )(y2− t
ε )+(x2− s

ε )(y1− t
ε ))

× e−Ψ(2θ)((x1− s
ε ) t

ε +(y1− t
ε ) s

ε + st
ε2 )dx1dx2dy1dy2.

We recall that Ψ(ξ) = a(ξ) + ib(ξ) is the Lévy exponent. We take the modulus in (11) and estimate the
modulus of the integrands in I1 and I2 simply by bounding by 1 the modulus of corresponding complex
exponentials. This yields that E[Y 2

ε ] ≤ 4I, where

I = ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2

√
y1y2 e−a(θ)((x2−x1)

t
ε +(y2−y1)

s
ε +(x1− s

ε )(y2− t
ε )+(x2− s

ε )(y1− t
ε ))

× e−a(2θ)((x1− s
ε ) t

ε +(y1− t
ε ) s

ε + st
ε2 )dx1dx2dy1dy2.

Taking into account the domain of integration in I above and applying Fubini theorem, we have that

I ≤ ε2K2

∫ t′
ε

t
ε

∫ t′
ε

y1

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2

√
y1y2 e−a(θ)((x2−x1)

t
ε +(y2−y1)

s
ε )e−a(2θ)(y1− t

ε ) s
ε dx1dx2dy2dy1.

If we estimate
√

x1 by
√

x2 and
√

y2 by
√

t′
ε , and integrate with respect to x1, we get that

I ≤ Cε2
√

εK2

∫ t′
ε

t
ε

∫ t′
ε

y1

∫ s′
ε

s
ε

x2
√

y1e
−a(θ)(y2−y1)

s
ε e−a(2θ)(y1− t

ε ) s
ε dx2dy2dy1,

12



where C is some positive constant. Integrating now with respect to y2 and then bounding x2 and y1 by
s′

ε and t′

ε , respectively, and integrating in x2 and y1 (with this order), we finally prove that

I ≤ Cε2K2
(
1 − e−a(2θ)( t′

ε − t
ε ) s

ε

)
.

The latter expression converges to 0 as ε tends to 0, which proves the lemma’s statement.

We are now in position to prove Proposition 4.2:

Proof of Proposition 4.2. It is very similar that of [2, Prop. 4.2]. Let (0, 0) < (s, t) < (s′, t′) ≤ (S, T ).
It suffices to prove that, for any n ≥ 1 and (s1, t1), . . . , (sn, tn) such that either si ≤ S and ti ≤ t, or
si ≤ s and ti ≤ T , i = 1, . . . , n, and for any continuous and bounded function φ : Cn → R, it holds that

|EP[φ(X(s1, t1), . . . , X(sn, tn))∆s,tX(s′, t′)]| = 0.

We recall that the notation |z| stands for the modulus of z ∈ C. Without any loss of generality, the
converging subsequence of probability measures to P will be simply denoted by {Pε}ε>0. Thus, by
Proposition 3.1, it suffices to check that

lim
ε→0

|EPε [φ(X(s1, t1), . . . , X(sn, tn))∆s,tX(s′, t′)]| = 0.

For this, we recall that, as in the statement of Lemma 4.4, {Fε
s,t; (s, t) ∈ [0, S] × [0, T ]} is the natural

filtration associated to the (complex-valued) random field Xε introduced in (2). Then, we can argue as
follows:

|EPε [φ(X(s1, t1), . . . , X(sn, tn))∆s,tX(s′, t′)]|
= |E[φ(Xε(s1, t1), . . . , Xε(sn, tn))∆s,tXε(s

′, t′)]|
≤
∣∣E
[
φ(Xε(s1, t1), . . . , Xε(sn, tn)) E[∆s,tXε(s

′, t′)|Fε
S,t ∨ Fε

s,T ]
]∣∣

≤ C
(
E
[∣∣E[∆s,tXε(s

′, t′)|Fε
S,t ∨ Fε

s,T ]
∣∣2
]) 1

2

.

The latter term converges to zero as ε → 0, by Lemma 4.4.

In order to prove Proposition 4.3, we need two auxiliary results. The first one is the following.

Lemma 4.5. For any (0, 0) ≤ (s, t) ≤ (s′, t′) ≤ (S, T ), it holds:

lim
ε→0

E
[
|∆s,tXε(s

′, t′)|2
]

= 2(s′ − s)(t′ − t).

Proof. We split the proof in three steps.

Step 1. Owing to the definition of Xε (see (2)) and applying Fubini theorem, we have

E
[
|∆s,tXε(s

′, t′)|2
]

= ε2K2

∫ t′
ε

t
ε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ s′
ε

s
ε

√
x1x2

√
y1y2 E

[
eiθ
(
∆0,0L(x2,y2)−∆0,0L(x1,y1)

)]
dx1dx2dy1dy2.

As in the proof of Lemma 4.4, we need to take into account the possible orders of x1, x2 and y1, y2,
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respectively. Then, applying also some suitable changes of variables, we have

E
[
|∆s,tXε(s

′, t′)|2
]

= ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(θ)((y2−y1)x1+(x2−x1)y2)dx1dx2dy1dy2

+ ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(θ)(x2−x1)y1e−Ψ(−θ)(y2−y1)x1dx1dx2dy1dy2

+ ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(−θ)(x2−x1)y1e−Ψ(θ)(y2−y1)x1dx1dx2dy1dy2

+ ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(−θ)((y2−y1)x1+(x2−x1)y2)dx1dx2dy1dy2. (12)

Recalling that Ψ(θ) = a(θ) + ib(θ), where a(θ) = a(−θ) and b(θ) = −b(−θ), we observe that

e−Ψ(θ)((y2−y1)x1+(x2−x1)y2) + e−Ψ(θ)(x2−x1)y1e−Ψ(−θ)(y2−y1)x1

+ e−Ψ(−θ)(x2−x1)y1e−Ψ(θ)(y2−y1)x1 + e−Ψ(−θ)((y2−y1)x1+(x2−x1)y2)

= e−a(θ)(x2y2−x1y1)2 cos (b(θ)(x2y2 − x1y1))

+ e−a(θ)((y2−y1)x1+(x2−x1)y1)2 cos (b(θ)((y2 − y1)x1 + (x2 − x1)y1)) .

As a consequence, we can infer that

E
[
|∆s,tXε(s

′, t′)|2
]

= 2(Iε
1 + Iε

2), (13)

where

Iε
1 = ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−a(θ)(x2y2−x1y1) cos (b(θ)(x2y2 − x1y1)) dx1dx2dy1dy2 (14)

and

Iε
2 = ε2K2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−a(θ)((y2−y1)x1+(x2−x1)y1)

× cos (b(θ)((y2 − y1)x1 + (x2 − x1)y1)) dx1dx2dy1dy2. (15)

Step 2. Let us consider the case s = t = 0. In order to deal with Iε
1 , we make the changes of variables

zi := xiyi and vi := ε
s′ xi, i = 1, 2, and we define u := s′t′

ε2 . Thus, by l’Hôpital’s rule, we have

lim
ε→0

Iε
1 = lim

u→∞
s′t′K2

∫ 1

0

∫ v2

0

∫ uv1

0

√
z1uv2

v1
e−a(θ)uv2+a(θ)z1 cos (b(θ)(uv2 − z1)) dz1dv1dv2.

Applying now the changes of variables v′
2 := uv2 and v′

1 := uv1, and again l’Hôpital’s rule, we obtain
that the latter limit equals to

lim
u→∞

s′t′K2

∫ u

0

∫ v′
1

0

√
z1u

v′
1

e−a(θ)u+a(θ)z1 cos (b(θ)(u − z1)) dz1dv′
1. (16)

In order to compute the above limit, we use the formula cos(θ) = 1
2 (eiθ + e−iθ). Hence, the expression

inside the limit (16) can be written as the sum 1
2 (Au + Bu), where these terms are given by

Au := s′t′K2

∫ u

0

∫ v

0

√
zu

v
e−a(θ)u+a(θ)z eib(θ)(u−z)dzdv,
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Bu := s′t′K2

∫ u

0

∫ v

0

√
zu

v
e−a(θ)u+a(θ)z e−ib(θ)(u−z)dzdv.

We will only deal with limu→∞ Bu, because limu→∞ Au can be treated in a similar way. Indeed, rewriting
Bu as

Bu = s′t′K2

∫ u

0

∫ v

0

√
z

v e(a(θ)+ib(θ))zdzdv

u− 1
2 e(a(θ)+ib(θ))u

and applying l’Hôpital’s rule twice, one easily proves that

lim
u→∞

Bu =
s′t′K2

(a(θ) + ib(θ))2
.

Similarly, one gets

lim
u→∞

Au =
s′t′K2

(a(θ) − ib(θ))2
.

Thus,

lim
ε→0

Iε
1 = s′t′K2 a(θ)2 − b(θ)2

(a(θ)2 + b(θ)2)2
.

Now, we are going to compute limε→0 Iε
2 . Recall that the latter term is given in (15). The strategy

that we have followed to deal with Iε
1 cannot be applied here. More precisely, we have not been able to

compute the limit of Iε
2 directly, but we will introduce an auxiliary term which will converge to some

quantity, and we will prove that the remainder converges to zero.

To start with, we apply the same changes of variables that we performed for Iε
1 , we set u := s′t′

ε and
apply l’Hôpital’s rule, so limε→0 Iε

2 equals to

lim
u→∞

K2s′t′
∫ 1

0

∫ v2

0

∫ uv1

0

√
uv2

√
z1

v1
e
a(θ)

(
2z1−uv1− z1v2

v1

)
cos
(
b(θ)

(
2z1 − uv1 − z1v2

v1

))
dz1dv1dv2.

Next, we make the changes of variables v̄1 := uv1 and v̄2 := uv2 and we apply again l’Hôpital’s rule.
Hence, the latter limit becomes

lim
u→∞

K2s′t′
√

u

∫ u

0

∫ v̄1

0

√
z1

v̄1
e
a(θ)

(
2z1−v̄1− z1u

v̄1

)
cos
(
b(θ)

(
2z1 − v̄1 − z1u

v̄1

))
dz1dv̄1.

Finally, performing the changes x := z1

v̄1
and y := v̄1

u , we end up with

lim
ε→0

Iε
2 = lim

u→∞
Cu,

with

Cu = K2s′t′u2

∫ 1

0

∫ 1

0

√
xy ea(θ)(2xy−y−x)u cos(b(θ)(2xy − y − x)u)dxdy. (17)

At this point, we introduce the auxiliary term mentioned above:

C̃u := K2s′t′u2

∫ 1

0

∫ 1

0

√
y ea(θ)(2xy−y−x)u cos(b(θ)(2xy − y − x)u)dxdy, (18)

where we note that, compared to the right hand-side of (17), we have only replaced
√

xy by
√

y. For the

moment, assume that limu→∞(Cu − C̃u) = 0. Let us compute the limit of C̃u, recalling that this term
has been defined in (18). As in the analysis of the term Iε

1 , we use the formula cos(θ) = 1
2 (eiθ + e−iθ), so

we split C̃u as the sum of two terms (multiplied by 1
2 ), one of which is given by

K2s′t′u2

∫ 1

0

∫ 1

0

√
y eu(2xy−y−x)(a(θ)+ib(θ))dxdy,
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and the other one is the same with a(θ) − ib(θ) instead of a(θ) + ib(θ). Integrating first with respect to
x and then applying l’Hôpital’s rule, one gets that the limit of the above term equals to

lim
u→∞

K2s′t′
∫ u

0

√
y e(a(θ)+ib(θ))ydy

(a(θ) + ib(θ))
√

u e(a(θ)+ib(θ))u
.

It is straightforward to check that the latter limit is K2s′t′

(a(θ)+ib(θ))2 . The limit of the term involving a(θ) −
ib(θ) will be given by K2s′t′

(a(θ)−ib(θ))2 . Therefore, we have that

lim
ε→0

Iε
2 = lim

u→∞
C̃u = s′t′K2 a(θ)2 − b(θ)2

(a(θ)2 + b(θ)2)2
.

Note that this is exactly the same limit that we obtained for Iε
1 . In conclusion, owing to (13) and the

expression of K given in (3), the lemma’s statement holds in the case s = t = 0.

In order to conclude the present step, we need to check that limu→∞(Cu − C̃u) = 0, that is

lim
u→∞

u2

∫ 1

0

∫ 1

0

(
√

xy − √
y) ea(θ)(2xy−y−x)u cos(b(θ)(2xy − y − x)u)dxdy = 0.

Let us introduce the notation

Du := u2

∫ 1

0

∫ 1

0

(
√

xy − √
y) ea(θ)(2xy−y−x)udxdy.

Then, it clearly holds that
−Du ≤ Cu − C̃u ≤ Du.

In order to apply a sandwich type argument, we will prove that both −Du and Du converge to zero as
u tends to infinity. We will only tackle the term Du, since the analysis of −Du is analogous. Note that
Du = D1

u − D2
u, where

D1
u = u2

∫ 1

0

∫ 1

0

√
xy ea(θ)(2xy−y−x)udxdy and D2

u = u2

∫ 1

0

∫ 1

0

√
y ea(θ)(2xy−y−x)udxdy.

Regarding D2
u, observe that the integral in x can be computed explicitly and we can argue as follows:

lim
u→∞

D2
u = lim

u→∞
u

∫ 1

0

√
y

a(θ)(2y − 1)

(
ea(θ)(y−1)u − e−a(θ)yu

)
dy

= lim
u→∞

1

a(θ)

∫ 1

0

√
y

(2y−1)

(
e(a(θ)(y−1)+1)u − e(−a(θ)y+1)u

)
dy

eu

u

= lim
u→∞

1

a(θ)

∫ 1

0

√
y
(
e(a(θ)(y−1)+1)u + e(−a(θ)y+1)u

)
dy

ueu−eu

u2

.

In the last inequality, we have applied l’Hôpital’s rule. By performing a change of variable, the latter
expression equals to

lim
u→∞

1

a(θ)

{ ∫ u

0

√
y ea(θ)ydy

√
u ea(θ)u − ea(θ)u√

u

+

∫ u

0

√
y e−a(θ)ydy√
u − 1√

u

}
.

The second term in the above sum clearly converges to zero as u → ∞, while the limit of the first one
equals to, thanks to l’Hôpital’s rule,

lim
u→∞

1

a(θ)

√
u ea(θ)u

ea(θ)u(a(θ)
√

u + o(
√

u))
=

1

a(θ)2
.

16



Thus, we have proved that limu→∞ D2
u = 1

a(θ)2 . On the other hand, in order to deal with D1
u we will use

again a sandwich type argument, as follows. First, note that we trivially have D1
u ≤ D2

u. Next, applying
the changes of variables v = uy and z = xv

u , we end up with

lim
u→∞

D1
u = lim

u→∞

√
u

∫ u

0

∫ v

0

√
z

v
e−a(θ)(v+ zu

v −2z)dzdv

≥ lim
u→∞

√
u

∫ u

0

∫ v

0

√
z

v
e−a(θ)(u−z)dzdv.

Observe that the latter limit equals to 1
a(θ)2 because it corresponds to the limit of Bu defined above in

the particular case of s′ = t′ = K = 1 and b = 0. Hence, we obtain that

lim
u→∞

D1
u =

1

a(θ)2

and therefore limu→∞ Du = 0.

Step 3. Assume that either s ̸= 0 or t ̸= 0. By step 1, recall that we have

E
[
|∆s,tXε(s

′, t′)|2
]

= 2(Iε
1 + Iε

2),

where the terms on the right hand-side have been defined in (14) and (15), respectively. Set

F ε(s, t) := ε2K2

∫ t
ε

0

∫ s
ε

0

∫ t
ε

0

∫ s
ε

0

f(x1, x2, y1, y2)1{x1≤x2,y1≤y2}dx1dx2dy1dy2,

where f(x1, x2, y1, y2) :=
√

x1x2y1y2 e−a(θ)(x2y2−x1y1) cos(b(θ)(x2y2 − x1y1)), and

Gε(s, t) := ε2K2

∫ t
ε

0

∫ s
ε

0

∫ t
ε

0

∫ s
ε

0

g(x1, x2, y1, y2)1{x1≤x2,y1≤y2}dx1dx2dy1dy2,

where g(x1, x2, y1, y2) :=
√

x1x2y1y2 e−a(θ)((y2−y1)x1+(x2−x1)y1) cos(b(θ)((y2 − y1)x1 + (x2 − x1)y1)). Ob-
serve that Iε

1 and Iε
2 can be written as follows:

Iε
1 = ∆s,tF

ε(s′, t′) − ε2K2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ t′
ε

t
ε

∫ s
ε

0

f(x1, x2, y1, y2)1{y1≤y2}dx1dx2dy1dy2

− ε2K2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ t′
ε

0

∫ s
ε

0

f(x1, x2, y1, y2)dx1dx2dy1dy2

− ε2K2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ t
ε

0

∫ s′
ε

s
ε

f(x1, x2, y1, y2)1{x1≤x2}dx1dx2dy1dy2

=: ∆s,tF
ε(s′, t′) − Iε

11 − Iε
12 − Iε

13,

and
Iε
2 = ∆s,tG

ε(s′, t′) − Iε
21 − Iε

22 − Iε
23,

where Iε
2i, i = 1, 2, 3, are defined analogously by using the function g. By step 1, one verifies that

lim
ε→0

∆s,tF
ε(s′, t′) = lim

ε→0
∆s,tG

ε(s′, t′) =
1

2
(s′ − s)(t′ − t).

In order to conclude the proof, it suffices to check that Iε
ji converges to zero as ε → 0, for all j = 1, 2

and i = 1, 2, 3. For this, we estimate any Iε
ji by Ĩε

ji, where the latter are defined by simply bounding the

17



cosinus by 1. Next, we note that Ĩε
1,i ≤ Ĩε

2,i, for all i = 1, 2, 3, and that any of the Ĩε
2,i can be bounded by

ε2K2

∫ t′
ε

0

∫ s
ε

0

∫ y2

0

∫ s′
ε

s
ε

g(x1, x2, y1, y2)dx2dy1dx1dy2. (19)

In this integral, we use the explicit expression of g, we perform the changes of variables x̄i := εxi and
ȳi := εyi, i = 1, 2, we set u := 1

ε2 , we use that x̄2 ≤ s′ and we integrate with respect to x̄2. Thus, (19)
can be bounded, up to some positive constant, by (using again the notation xi and yi for the variables)

u

∫ t′

0

∫ s

0

∫ y2

0

√
x1y2√
y1

e−a(θ)((y2−y1)x1+(s−x1)y1)udy1dx1dy2.

Estimating now y2 by t′ inside the square root and integrating in y2, the above expression can be bounded
by (up to some constant) ∫ s

0

∫ t′

0

1√
x1y1

e−a(θ)u(s−x1)y1dy1dx1.

This expression converges to zero as u → ∞, by the Monotone convergence theorem.

Here is the second auxiliary result needed to prove Proposition 4.3.

Lemma 4.6. Let (0, 0) ≤ (s, t) ≤ (s′, t′) ≤ (S, T ). Then, there exists a sequence {Cε}ε>0 such that
limε→0 Cε = 4(s′ − s)2(t′ − t)2 and

E
[(

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

])2] ≤ Cε.

Proof. We split the proof in four steps.

Step 1. By definition of the random field Xε, we first observe that

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

]

= K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
x1x2y1y2 E

[
eiθ(L(x2,y2)−L(x1,y1))|Fε

s,T

]
dx1dx2dy1dy2.

In order to compute the above conditional expectation, we have to consider all possible orders of x1, x2

and y1, y2, respectively, which corresponds to a total of 4 possibilities. Hence,

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

]
= K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 eiθ(L( s

ε ,y2)−L( s
ε ,y1))

× e−Ψ(θ)((x2−x1)y2+(y2−y1)(x1− s
ε ))dx1dy1dx2dy2

+ K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 e−iθ(L( s

ε ,y2)−L( s
ε ,y1))

× e−Ψ(θ)(x2−x1)y1e−Ψ(−θ)(y2−y1)(x1− s
ε )dx1dy1dx2dy2

+ K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 eiθ(L( s

ε ,y2)−L( s
ε ,y1))

× e−Ψ(−θ)(x2−x1)y1e−Ψ(θ)(y2−y1)(x1− s
ε )dx1dy1dx2dy2

+ K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 e−iθ(L( s

ε ,y2)−L( s
ε ,y1))

× e−Ψ(−θ)((x2−x1)y2+(y2−y1)(x1− s
ε ))dx1dy1dx2dy2.

18



We have also applied changes of variables in order to have x1 ≤ x2 and y1 ≤ y2 in all terms. We denote
by Aε

i , i = 1, 2, 3, 4, the above four terms, respectively. Thus, we have

E
[(

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

])2]
=

4∑

i,j=1

E
[
Aε

i A
ε
j

]
.

For the sake of clarity, we will only analyze one of the terms in the above sum, since the other ones can
be treated exactly in the same way. So, we proceed to tackle the term E

[
(Aε

1)
2
]
. In fact, by Fubini

theorem, we have that

E
[
(Aε

1)
2
]

= K4ε4

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y4

t
ε

∫ x4

s
ε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2x3x4

√
y1y2y3y4

× E
[
eiθ(L( s

ε ,y2)−L( s
ε ,y1)+L( s

ε ,y4)−L( s
ε ,y3))

]

× e−Ψ(θ)((x2−x1)y2+(y2−y1)(x1− s
ε )+(x4−x3)y4+(y4−y3)(x3− s

ε ))

× dx1dy1dx2dy2dx3dy3dx4dy4. (20)

Note that in the above integral we have y1 ≤ y2 and y3 ≤ y4. However, in order to compute the expectation
in (20), we need to consider all possible orders of the variables y1, y2, y3, y4, with the restrictions y1 ≤ y2

and y3 ≤ y4. This amounts to take into account 6 different possibilities, which we split in two groups:

(i) y1 ≤ y2 ≤ y3 ≤ y4 and y3 ≤ y4 ≤ y1 ≤ y2,

(ii) y1 ≤ y3 ≤ y2 ≤ y4, y1 ≤ y3 ≤ y4 ≤ y2, y3 ≤ y1 ≤ y4 ≤ y2 and y3 ≤ y1 ≤ y2 ≤ y4.

Then, we have that

E
[
(Aε

1)
2
]

=
6∑

k=1

Bε
k(1, 1), (21)

where Bε
1(1, 1), Bε

2(1, 1) correspond to (20) with the orders of (i), respectively, while Bε
k(1, 1), k = 3, 4, 5, 6,

correspond to (20) with the orders of (ii), respectively. It turns out that we have a similar decomposition
of any of the terms E

[
Aε

i A
ε
j

]
, which we denote by

E
[
Aε

i A
ε
j

]
=

6∑

k=1

Bε
k(i, j).

Hence

E
[(

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

])2]
=

4∑

i,j=1

6∑

k=1

Bε
k(i, j). (22)

In the next two steps, we will focus on the analysis of (some of) the terms in the decomposition (21) of
E
[
(Aε

1)
2
]
. As already mentioned, the terms arising from E

[
Aε

i A
ε
j

]
can be treated analogously. We will

come back to expansion (22) later in step 4.

Step 2. We claim that, for any k = 3, 4, 5, 6, it holds

|Bε
k(1, 1)| ≤ K4ε4

∫

D

√
x1x2x3x4

√
y1y2y3y4 1{x1≤x2}1{x3≤x4}1{y1≤y2≤y3≤y4}

× e−a(θ)((x4−x3)
t
ε +(x2−x1)

t
ε +(y4−y3)

s
ε +(y2−y1)

s
ε +(y3−y2)(x1− s

ε ))

× dx1dy1dx2dy2dx3dy3dx4dy4, (23)
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where D := [ s
ε , s′

ε ]4 × [ t
ε , t′

ε ]4, and we recall that a(θ) is the real part of Ψ(θ). We prove this estimate for
Bε

3(1, 1). For the remaining terms the argument is completely analogous. So, let us assume that in (20)
we have the order y1 ≤ y3 ≤ y2 ≤ y4. In this case, the expectation in (20) equals to

e−Ψ(θ)((y4−y2)
s
ε +(y3−y1)

s
ε +2(y2−y3)

s
ε ).

Plugging this term in (20) and shifting the modulus inside the integral, we can infer that

|Bε
3(1, 1)| ≤ K4ε4

∫

D

√
x1x2x3x4

√
y1y2y3y41{x1≤x2}1{x3≤x4}1{y1≤y3≤y2≤y4}

× e−a(θ)((x4−x3)
t
ε +(x2−x1)

t
ε +(y4−y2)

s
ε +(y3−y1)

s
ε +(y2−y1)(x1− s

ε ))

× e−a(θ)(2(y2−y3)
s
ε +(y4−y3)(x3− s

ε ))dx1dy1dx2dy2dx3dy3dx4dy4

≤ K4ε4

∫

D

√
x1x2x3x4

√
y1y2y3y41{x1≤x2}1{x3≤x4}1{y1≤y3≤y2≤y4}

× e−a(θ)((x4−x3)
t
ε +(x2−x1)

t
ε +(y4−y2)

s
ε +(y3−y1)

s
ε +(y2−y1)(x1− s

ε ))

× dx1dy1dx2dy2dx3dy3dx4dy4.

Performing a change of variable, we obtain that the latter term equals to

K4ε4

∫

D

√
x1x2x3x4

√
y1y2y3y41{x1≤x2}1{x3≤x4}1{y1≤y2≤y3≤y4}

× e−a(θ)((x4−x3)
t
ε +(x2−x1)

t
ε +(y4−y3)

s
ε +(y2−y1)

s
ε +(y3−y1)(x1− s

ε ))

× dx1dy1dx2dy2dx3dy3dx4dy4.

In order to obtain (23), it suffices to observe that, in the domain of integration, it holds that (y3−y1)(x1−
s
ε ) ≥ (y3 − y2)(x1 − s

ε ).

Step 3. Here, we prove that the right hand-side of (23) converges to zero as ε → 0. Let us introduce
the following notation:

βε := ε4

∫

D

√
x1x2x3x4

√
y1y2y3y4 1{x1≤x2}1{x3≤x4}1{y1≤y2≤y3≤y4}

× e−a(θ)((x4−x3)
t
ε +(x2−x1)

t
ε +(y4−y3)

s
ε +(y2−y1)

s
ε +(y3−y2)(x1− s

ε ))

× dx1dy1dx2dy2dx3dy3dx4dy4,

so we want to check that limε→0 βε = 0.

To start with, in the expression of βε we bound the two square roots by using the upper limit of any
xi and yi. Next, we integrate with respect to x4, x3 and x2. We also use the fact that, according to the
statement of Proposition 4.3, we may assume that t > 0. Thus,

βε ≤ Cε

∫ s′
ε

s
ε

∫ t′
ε

t
ε

∫ y3

t
ε

∫ t′
ε

y3

∫ y2

t
ε

e−a(θ)((y4−y3)
s
ε +(y2−y1)

s
ε +(y3−y2)(x1− s

ε )) dy1dy4dy2dy3dx1.

At this point, we integrate with respect to y1 and y4, thus

βε ≤ Cε3

∫ s′
ε

s
ε

∫ t′
ε

t
ε

∫ y3

t
ε

e−a(θ)(y3−y2)(x1− s
ε )dy2dy3dx1

= Cε3

∫ s′−s
ε

ε

∫ t′
ε

t
ε

∫ y3

t
ε

e−a(θ)(y3−y2)xdy2dy3dx

+ Cε3

∫ ε

0

∫ t′
ε

t
ε

∫ y3

t
ε

e−a(θ)(y3−y2)xdy2dy3dx.
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Note that the second term in the latter sum may be bounded, up to some positive constant, by ε2, which
converges to zero. Regarding the first term, it can be bounded by

Cε2

∫ s′−s
ε

ε

1

x
dx = Cε2 (ln(s′ − s) − 2 ln(ε)) ,

which also converges to zero as ε → 0.

Step 4. By (22) in step 1 and steps 2 and 3, we have that

E
[(

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

])2]
=

4∑

i,j=1

6∑

k=1

Bε
k(i, j)

=

4∑

i,j=1

2∑

k=1

Bε
k(i, j) + ρε, (24)

where we recall that Bε
1(i, j) and Bε

2(i, j) are the terms in the decomposition of E
[
Aε

i A
ε
j

]
with the orders

of (i), respectively, and limε→0 ρε = 0.

Focusing again (only) on the case i = j = 1, one easily verifies that

2∑

k=1

Bε
k(1, 1) = K4ε2

∫

D

√
x1x2x3x4

√
y1y2y3y4 1{x1≤x2}1{x3≤x4}1{{y1≤y2≤y3≤y4}∪{y3≤y4≤y1≤y2}}

× e−Ψ(θ)((x2−x1)y2+(x4−x3)y4+(y2−y1)x1+(y4−y3)x3)

× dx1dy1dx2dy2dx3dy3dx4dy4,

where we recall that D := [ s
ε , s′

ε ]4 × [ t
ε , t′

ε ]4. Observing that

1{{y1≤y2≤y3≤y4}∪{y3≤y4≤y1≤y2}} ≤ 1{y1≤y2}1{y3≤y4},

we end up with

2∑

k=1

Bε
k(1, 1) ≤ K4ε2

∫

D

√
x1x2x3x4

√
y1y2y3y4 1{x1≤x2}1{x3≤x4}1{y1≤y2}1{y3≤y4}

× e−Ψ(θ)((x2−x1)y2+(x4−x3)y4+(y2−y1)x1+(y4−y3)x3)

× dx1dy1dx2dy2dx3dy3dx4dy4.

One can get similar estimates for Bε
1(i, j) + Bε

2(i, j) with i, j ̸= 1. Gathering all the resulting bounds
together, it can be verified that

E
[(

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

])2] ≤ Θ2
ε + ρε, (25)

where

Θε = K2ε2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(θ)((x2−x1)y2+(y2−y1)x1)dx1dx2dy1dy2

+ K2ε2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(θ)(x2−x1)y1e−Ψ(−θ)(y2−y1)x1dx1dx2dy1dy2

+ K2ε2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(−θ)(x2−x1)y1e−Ψ(θ)(y2−y1)x1dx1dx2dy1dy2

+ K2ε2

∫ t′
ε

t
ε

∫ y2

t
ε

∫ s′
ε

s
ε

∫ x2

s
ε

√
x1x2y1y2 e−Ψ(−θ)((x2−x1)y2+(y2−y1)x1)dx1dx2dy1dy2.
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Note that Θε coincides with the right hand-side of equality (12) in the proof of Lemma 4.5, where in the
latter it was precisely proved that

lim
ε→0

Θε = 2(t′ − t)(s′ − s).

Therefore, by (25) and recalling that limε→0 ρε = 0, we conclude the proof by taking Cε := Θ2
ε + ρε.

We can now provide the proof of Proposition 4.3.

Proof of Proposition 4.3. We prove that, for all 0 ≤ s1 < · · · < sn ≤ s and 0 ≤ t1 < · · · < tn ≤ T ,
and any continuous and bounded function φ : C → R, we have

EP
[
φ(X(s1, t1), . . . , X(sn, tn))

((
∆s,tRe(X)(s′, t′)

)2 − (s′ − s)(t′ − t)
)]

= 0

and
EP
[
φ(X(s1, t1), . . . , X(sn, tn))

((
∆s,tIm(X)(s′, t′)

)2 − (s′ − s)(t′ − t)
)]

= 0.

Since Pε converges to P weakly in C([0, S] × [0, T ]; C), it suffices to check that

lim
ε→0

Aε = 0 and lim
ε→0

Bε = 0, (26)

where
Aε := E

[
φ(Xε(s1, t1), . . . , Xε(sn, tn))

((
∆s,tRe(Xε)(s

′, t′)
)2 − (s′ − s)(t′ − t)

)]

and
Bε := E

[
φ(Xε(s1, t1), . . . , Xε(sn, tn))

((
∆s,tIm(Xε)(s

′, t′)
)2 − (s′ − s)(t′ − t)

)]
.

Indeed, in order to check the validity of the limits in (26), we will prove that

lim
ε→0

(Aε + Bε) = 0 and lim
ε→0

(Aε − Bε) = 0.

We will first deal with the limit of Aε + Bε. More precisely, we have that

Aε + Bε = E
[
φ(Xε(s1, t1), . . . , Xε(sn, tn))

(
|∆s,tX

ε(s′, t′)|2 − 2(s − s′)(t − t′)
)]

= E
[
φ(Xε(s1, t1), . . . , Xε(sn, tn))

(
E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

]
− 2(s − s′)(t − t′)

)]
.

Hence, to prove that limε→0(Aε + Bε) = 0, it is enough to check that E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

]
converges

in L2(Ω) to 2(s − s′)(t − t′), as ε → 0. Indeed, by Lemma 4.6, we have:

E
[(

E
[
|∆s,tX

ε(s′, t′)|2 |Fε
s,T

]
− 2(s − s′)(t − t′)

)2]

≤ Cε − 4(s − s′)(t − t′)E
[
|∆s,tX

ε(s′, t′)|2
]
+ 4(s − s′)2(t − t′)2, (27)

where limε→0 Cε = 4(s′ − s)2(t′ − t)2. So, by Lemma 4.5, the right hand-side of (27) converges to zero as
ε → 0.

Let us now deal with the limit of Aε − Bε. To start with, note that

Aε − Bε =
1

2
E

[
φ(Xε(s1, t1), . . . , Xε(sn, tn))

×





(
Kε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy eiθL(x,y)dxdy

)2

+

(
Kε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy e−iθL(x,y)dxdy

)2





 .

22



We are going to prove that limε→0 Λε = 0, where

Λε := E


φ(Xε(s1, t1), . . . , Xε(sn, tn))

(
Kε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy eiθL(x,y)dxdy

)2

 .

The limit involving the complex conjugate e−iθL(x,y) can be tackled using analogous arguments. Expand-
ing the squared integral of Λε, we end up with

Λε = E

[
φ(Xε(s1, t1), . . . , Xε(sn, tn))

× K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
x1x2y1y2 eiθ(L(x1,y1)+L(x2,y2))dx1dx2dy1dy2

]
.

As we have already done several times throughout the paper, we consider the four possible orders of
x1, x2 and y1, y2 and, in each of these terms, we apply a change of variables so that we have x1 ≤ x2 and
y1 ≤ y2. Thus,

Λε = E

[
φ(Xε(s1, t1), . . . , Xε(sn, tn))

×
(

2K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 eiθ(L(x1,y1)+L(x2,y2))dx1dy1dx2dy2

+ 2K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 eiθ(L(x2,y1)+L(x1,y2))dx1dy1dx2dy2

)]
.

At this point, the idea is to write L(x1, y1) + L(x2, y2) and L(x2, y1) + L(x1, y2) as sums of suitable
rectangular increments of L (which will be clearly specified in the next equation), and use the property of
independent (rectangular) increments of L (see Definition2.1). Proceeding in this way, one obtains that

Λε = E
[
φ(Xε(s1, t1), . . . , Xε(sn, tn)) ei2θL( s

ε , t
ε )
]

×
(

2K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 E

[
eiθ(∆x1,y1L(x2,y2)+∆0,y1L(x1,y2)+∆x1,0L(x2,y1))

]

× E

[
e
i2θ

(
∆ s

ε
, t

ε
L(x1,y1)+∆

0, t
ε

L( s
ε ,y1)+∆ s

ε
,0L(x1, t

ε )

)]
dx1dy1dx2dy2

+ 2K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 E

[
eiθ(∆0,y1L(x1,y2)+∆x1,0L(x2,y1))

]

× E

[
e
i2θ

(
∆ s

ε
, t

ε
L(x1,y1)+∆

0, t
ε

L( s
ε ,y1)+∆ s

ε
,0L(x1, t

ε )

)]
dx1dy1dx2dy2

)
.

Recalling that φ is a bounded function and computing the expectations of complex exponentials in terms
of the Lévy exponent Ψ(ξ) = a(ξ) + ib(ξ), one can easily obtain that |Λε| ≤ C Λ̃ε, where C is a positive
constant and

Λ̃ε := K2ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ y2

t
ε

∫ x2

s
ε

√
x1x2y1y2 e−a(θ)((y2−y1)x1+(x2−x1)y1)

× e−a(2θ)((y1− t
ε ) s

ε +(x1− s
ε )y1)dx1dy1dx2dy2.
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We finally prove that limε→0 Λ̃ε = 0. Indeed, taking into account the integration limits of all variables
and applying Fubini theorem, we have

Λ̃ε ≤ C

∫ t′
ε

t
ε

∫ s′
ε

s
ε

∫ t′
ε

y1

∫ s′
ε

x1

e− min(a(θ),a(2θ))((y2− t
ε ) s

ε +(x2− s
ε ) t

ε )dx2dy2dx1dy1.

We integrate with respect to x2 and y2, thus

Λ̃ε ≤ C ε2

∫ t′
ε

t
ε

∫ s′
ε

s
ε

e− min(a(θ),a(2θ))((y1− t
ε ) s

ε +(x1− s
ε ) t

ε )dx1dy1

≤ C ε4.

Hence, we have limε→0 Λ̃ε = 0, which implies that limε→0 Λε = 0, and so limε→0 Aε − Bε = 0. The proof
is complete.

We have all needed ingredients to prove the main result of the paper:

Proof of Theorem 1.1. The tightness result Proposition 3.1 and Propositions 4.2 and 4.3 imply, by
Theorem 4.1, that Xε converges in law, as ε → 0 and in the space C([0, S] × [0, T ]; C), to a complex
random field X = {X(s, t); (s, t) ∈ [0, S] × [0, T ]} whose real and imaginary parts are (real-valued)
Brownian sheets. It only remains to check that those real and imaginary parts are independent, for
which it suffices to prove that the corresponding covariance vanishes. For this, we will make use of the
approximation sequence (Xε)ε>0, as follows:

Note that Re(X) and Im(X) are independent if, for any (0, 0) ≤ (s, t) ≤ (s′, t′) ≤ (S, T ), 0 ≤ s1 <
· · · < sn ≤ s and 0 ≤ t1 < · · · < tn ≤ t, and any continuous bounded function φ : Cn → R, we have

lim
ε→0

E [φ(Xε(s1, t1), . . . , Xε(sn, tn)) (∆s,tRe(Xε)(s
′, t′)) (∆s,tIm(Xε)(s

′, t′))] = 0.

Using the equality αβ = i
4

{
(α − iβ)2 − (α + iβ)2

}
, we obtain that

E [φ(Xε(s1, t1), . . . , Xε(sn, tn)) (∆s,tRe(Xε)(s
′, t′)) (∆s,tIm(Xε)(s

′, t′))]

=
i

4
E

[
φ(Xε(s1, t1), . . . , Xε(sn, tn))





(
Kε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy e−iθL(x,y)dxdy

)2

−
(

Kε

∫ t′
ε

t
ε

∫ s′
ε

s
ε

√
xy eiθL(x,y)dxdy

)2





 . (28)

We observe that, in the analysis of the term Aε−Bε in the proof of Proposition 4.3, we indeed proved that
the two terms arising from the difference in (28) converge to zero as ε → 0. So the proof is complete.

5 Weak convergence for the stochastic heat equation

We consider the following one-dimensional quasi-linear stochastic heat equation:

∂U

∂t
(t, x) − ∂2U

∂x2
(t, x) = b(U(t, x)) + Ẇ (t, x), (t, x) ∈ [0, T ] × [0, 1], (29)

where T > 0 stands for a fixed time horizon, b : R → R is a globally Lipschitz function and Ẇ (t, x)
denotes the space-time white noise. We impose the initial condition U(0, x) = u0(x), x ∈ [0, 1], where
u0 : [0, 1] → R is a continuous function, and boundary conditions of Dirichlet type:

U(t, 0) = U(t, 1) = 0, t ∈ [0, T ].
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For simplicity’s sake, throughout the section we will assume that T = 1. All results presented here can
be easily extended to a general T > 0.

The solution to equation (29) is interpreted in the mild sense, as follows. Let {W (t, x); (t, x) ∈ [0, 1]2}
be a Brownian sheet defined on some probability space (Ω, F , P) and {Ft; t ∈ [0, 1]} its natural filtration.
A jointly measurable and adapted random field U = {U(t, x); (t, x) ∈ [0, 1]2} is a solution of (29) if it
holds that

U(t, x) =

∫ 1

0

Gt(x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gt−s(x, y) b(U(s, y))dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)W (ds, dy), a.s. (30)

for all (t, x) ∈ (0, 1] × (0, 1), where G denotes the Green function associated to the heat equation in [0, 1]
with Dirichlet boundary conditions. Existence, uniqueness and pathwise continuity of the solution to
(30) are a consequence of [13, Thm 3.5]. For the reader’s convenience, we recall that the Green function
G is given by

Gt(x, y) = 2

∞∑

n=1

sin(nπx) sin(nπy)e−n2π2t.

In this section, we aim to apply [3, Thm. 1.4] in order to deduce that the above solution U can be
approximated in law, in the space C([0, 1]2) of continuous functions, by the family of mild solutions
{Un}n≥0, where Un solves a stochastic heat equation perturbed by (the formal derivative of) either the
real or imaginary part of the family introduced in (2):

Xε(t, x) = εK

∫ t
ε

0

∫ x
ε

0

√
sy {cos(θL(s, y)) + i sin(θL(s, y))} dyds,

where we recall that {L(s, y); s, y ≥ 0} denotes a Lévy sheet and its Lévy exponent is given by Ψ(ξ) =
a(ξ) + ib(ξ). The constant K is given in (3) and θ ∈ (0, 2π), where we assume that a(θ)a(2θ) ̸= 0. Note
that, compared to (2), in the above expression of Xε we have modified the variables’ notation in order
to properly match with the framework of stochastic partial differential equations.

Let us be more precise about the above statement. First, we rewrite Xε in the following way:

Xε(t, x) = nK

∫ t

0

∫ x

0

√
sy
{
cos
(
θL
(√

n s,
√

n y
))

+ i sin
(
θL
(√

n s,
√

n y
))}

dyds,

with n = ε−2. Set

θ1
n(s, y) := nK

√
sy cos

(
θL
(√

n s,
√

n y
))

and θ2
n(s, y) := nK

√
sy sin

(
θL
(√

n s,
√

n y
))

.

Let i ∈ {1, 2} and consider the stochastic heat equation

∂U i
n

∂t
(t, x) − ∂2U i

n

∂x2
(t, x) = b(U i

n(t, x)) + θi
n(t, x), (t, x) ∈ [0, 1]2,

with initial condition u0 and Dirichlet boundary conditions. The mild form of this equation is given by

U i
n(t, x) =

∫ 1

0

Gt(x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gt−s(x, y) b(U i
n(s, y))dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)θi
n(s, y)dyds. (31)

Owing to [3, Sec. 3], equation (31) admits a unique solution U i
n whose paths are continuous almost surely.

Here is the main result of the section:
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Theorem 5.1. For any i ∈ {1, 2}, the sequence {U i
n}n≥1 converges in law, as n → ∞ and in the space

C([0, 1]2), to the solution U of (30).

The proof of this theorem is based on [3, Thm. 1.4], where sufficient conditions on a family of random
fields {θn}n≥1 have been established such that the sequence of solutions to the stochastic heat equation
driven by θn converges in law to U , in the space of continuous functions. The first requirement is that
θn ∈ L2([0, 1]2) a.s., and then there are the following conditions (see hypotheses 1.1, 1.2 and 1.3 in [3]):

(i) The finite dimensional distributions of the processes

ζn(t, x) :=

∫ t

0

∫ x

0

θn(s, y)dyds, (t, x) ∈ [0, 1]2,

converge in law to those of the Brownian sheet.

(ii) For some q ∈ [2, 3), there exists a positive constant Cq such that, for any f ∈ Lq([0, 1]2), it holds:

sup
n≥1

E

[(∫ 1

0

∫ 1

0

f(t, x)θn(t, x) dxdt

)2
]

≤ Cq

(∫ 1

0

∫ 1

0

|f(t, x)|q dxdt

) 2
q

.

(iii) There exist m > 8 and a positive constant C such that the following is satisfied: for all s0, s′
0 ∈ [0, 1]

and x0, x′
0 ∈ [0, 1] satisfying 0 < s0 < s′

0 < 2s0 and 0 < x0 < x′
0 < 2x0, and for any f ∈ L2([0, 1]2),

it holds:

sup
n≥1

E

[∣∣∣∣∣

∫ s′
0

s0

∫ x′
0

x0

f(s, y) θn(s, y)dyds

∣∣∣∣∣

m]
≤ C

(∫ s′
0

s0

∫ x′
0

x0

f(s, y)2 dyds

)m
2

.

Hence, in the proof of Theorem 5.1 we will prove the validity of all above conditions in the case
where θn is given by θi

n, for any i ∈ {1, 2}. Indeed, as it will be explained below, we will use similar
arguments as those used in one of the applications tackled in [3], namely the case where θn are given by
the Kac-Stroock processes on the plane:

θn(t, x) = n
√

tx (−1)Nn(t,x),

where Nn(t, x) := N (
√

nt,
√

nx), and {N(t, x); (t, x) ∈ [0, 1]2} is a standard Poisson process in the plane.

We start with the following technical lemma, which is the analogous of [3, Lem. 4.2]:

Lemma 5.2. Let f ∈ L2([0, 1]2) and α ≥ 1. Then, for any u, u′ ∈ (0, 1) satisfying that 0 < u < u′ ≤ 2αu,
it holds

sup
n≥1

E



(∫ 1

0

∫ u′

u

f(t, x)θi
n(t, x) dxdt

)2

 ≤ 3

a(θ)2
(2α+1 − 1)K2

∫ 1

0

∫ u′

u

f(t, x)2 dxdt,

for any i ∈ {1, 2}.

Proof. We will only deal with the case involving θ1
n, since the result for θ2

n follows exactly in the same
way. Note that we clearly have

E



(∫ 1

0

∫ u′

u

f(t, x)θi
n(t, x) dxdt

)2

 ≤ E



∣∣∣∣∣nK

∫ 1

0

∫ u′

u

√
tx eiθL(

√
n t,

√
n x)f(t, x) dxdt

∣∣∣∣∣

2

 ,
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and the latter term equals to

n2K2

∫ 1

0

∫ u′

u

∫ 1

0

∫ u′

u

√
t1x1t2x2 E

[
eiθ(∆0,0L(

√
n t1,

√
n x1)−∆0,0L(

√
n t2,

√
n x2))

]

× f(t1, x1)f(t2, x2)dx1dt1dx2dt2.

Observe that this expression is completely analogous as that at the beginning of the first step in the proof
of Lemma 4.5. Thus, the same arguments used therein yield

E



(∫ 1

0

∫ u′

u

f(t, x)θi
n(t, x) dxdt

)2

 ≤ 2 (In

1 + In
2 ) , (32)

where

In
1 = n2K2

∫ 1

0

∫ t2

0

∫ u′

u

∫ x2

u

f(t1, x1)f(t2, x2)
√

t1x1t2x2 e−a(θ)n(x2t2−x1t1)

× cos(b(θ)n(x2t2 − x1t1))dx1dx2dt1dt2

and

In
2 = n2K2

∫ 1

0

∫ t2

0

∫ u′

u

∫ x2

u

f(t1, x1)f(t2, x2)
√

t1x1t2x2 e−a(θ)n((t2−t1)x1+(x2−x1)t1)

× cos (b(θ)n ((t2 − t1)x1 + (x2 − x1)t1)) dx1dx2dt1dt2.

At this point, we apply the inequality zw ≤ 1
2 (z2 + w2) in such a way that

f(t1, x1)f(t2, x2)
√

t1x1t2x2 ≤ 1

2

(
t1x1f(t1, x1)

2 + t2x2f(t2, x2)
2
)
.

This makes that both In
1 and In

2 can be bounded by the sum of two terms of the form In
j,1 + In

j,2, j = 1, 2,
respectively, where In

j,1 involves f(t1, x1) and In
j,2 involves f(t2, x2). Then, once all cosinus are simply

bounded by 1, one observe that the resulting four terms are completely analogous as those appearing in
the proof of Lemma 4.2 in [3], and can be treated using the same kind of arguments. Thus, we obtain
that

In
1,1 ≤ 1

2

1

a(θ)2
K2

∫ 1

0

∫ u′

u

f(t1, x1)
2dx1dt1,

In
1,2 ≤ 1

2

2α

a(θ)2
K2

∫ 1

0

∫ u′

u

f(t2, x2)
2dx2dt2,

In
2,1 ≤ 1

2

2α

a(θ)2
K2

∫ 1

0

∫ u′

u

f(t1, x1)
2dx1dt1,

In
2,2 ≤ 1

2

4(2α − 1)

a(θ)2
K2

∫ 1

0

∫ u′

u

f(t2, x2)
2dx2dt2.

Plugging everything together and using (32), we conclude the proof.

The above lemma allows us to prove the following proposition. In fact, its proof follows exactly the
same lines as that of Proposition 4.1 in [3] and therefore will be omitted.
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Proposition 5.3. Let p > 1 and f ∈ L2p([0, 1]2). Then, there exists a positive constant Cp which does
not depend on f such that

sup
n≥1

E

[(∫ 1

0

∫ 1

0

f(t, x)θi
n(t, x) dxdt

)2
]

≤ Cp

(∫ 1

0

∫ 1

0

|f(t, x)|2p dxdt

) 1
p

,

for any i ∈ {1, 2}.

The last needed ingredient for the proof of Theorem 5.1 is the following result, which is the analogous
of [3, Prop. 4.4] in our setting.

Proposition 5.4. Let m ∈ N be an even number and f ∈ L2([0, 1]2). Then, there exists a positive
constant Cm which does not depend on f such that, for all s0, s′

0, x0, x′
0 ∈ [0, 1] satisfying 0 < s0 < s′

0 <
2s0 and 0 < x0 < x′

0 < 2x0, we have that

sup
n≥1

E

[(∫ s′
0

s0

∫ x′
0

x0

f(s, y) θi
n(s, y)dyds

)m]
≤ Cm

(∫ s′
0

s0

∫ x′
0

x0

f(s, y)2 dyds

)m
2

,

for any i ∈ {1, 2}.

Proof. Let i ∈ {1, 2}. For any (s0, x0) ∈ [0, 1]2, we define

Zi
n(s0, x0) :=

∫ s0

0

∫ x0

0

f(s, y)θi
n(s, y)dyds.

Observe that, for all (0, 0) ≤ (s0, x0) < (s′
0, x

′
0) ≤ (1, 1), we have

E
[(

∆s0,x0Z
i
n(s′

0, x
′
0)
)m] ≤ E

[∣∣∆s0,x0Z̄n(s′
0, x

′
0)
∣∣m] , (33)

where the random field Z̄n, which does not depend on i, is complex-valued and given by

Z̄n(s0, x0) :=

∫ s0

0

∫ x0

0

f(s, y)
(
θ1

n(s, y) + iθ2
n(s, y)

)
dyds

(here i =
√

−1). In order to bound the right hand-side of (33), we can proceed as in the first part of the
proof of the tightness result Proposition 3.1, obtaining

E
[(

∆s0,x0Z
i
n(s′

0, x
′
0)
)m] ≤ nmKm

∫

[s0,s′
0]

m

∫

[x0,x′
0]

m

m∏

j=1

f(sj , yj)
√

sjyj

×
∣∣∣E
[
eiθ

∑m
j=1(−1)j∆0,0L(

√
n sj ,

√
n yj)

]∣∣∣ dy1 · · · dymds1 · · · dsm.

At this point, we apply that yj < x′
0 < 2x0 and sj < s′

0 < 2s0, and we compute the modulus of the
expectation as it has been done in the proof of Proposition 3.1; more precisely, using the method set up
therein in order to end up with the estimate (8). Thus, we can infer that

E
[(

∆s0,x0Z
i
n(s′

0, x
′
0)
)m]

≤ 2m(s0x0)
m
2 nmKm

∫

[s0,s′
0]

m

∫

[x0,x′
0]

m

m∏

j=1

f(sj , yj) e−a(θ)ns0((y(m)−y(m−1))+···+(y(2)−y(1)))

× e−a(θ)nx0((s(m)−s(m−1))+···+(s(2)−s(1))) dy1 · · · dymds1 · · · dsm

= 2m(s0x0)
m
2 m! nmKm

∫

[s0,s′
0]

m

∫

[x0,x′
0]

m

m∏

j=1

f(sj , yj) e−a(θ)ns0((y(m)−y(m−1))+···+(y(2)−y(1)))

× e−a(θ)nx0((sm−sm−1)+···+(s2−s1)) 1{s1≤···≤sm} dy1 · · · dymds1 · · · dsm.
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Note that the latter expression is almost equal to that in the right hand-side of equation (31) in the proof
of [3, Prop. 4.4]. Hence, we can conclude the proof exactly in the same way as in that result.

Proof of Theorem 5.1. As explained above, we need that θi
n ∈ L2([0, 1]2), a.s., which is clear by

definition of the random fields θi
n, i = 1, 2, and that conditions (i), (ii) and (iii) are fulfilled.

First, note that (i) is a consequence of Theorem 1.1. Secondly, Proposition 5.3 implies that (ii) is
satisfied and, finally, Proposition 5.4 assures the validity of condition (iii).
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