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PURE C*-ALGEBRAS

RAMON ANTOINE, FRANCESC PERERA, HANNES THIEL, AND EDUARD VILALTA

Dedicated to Mikael Rørdam on the occasion of his 65 th birthday

Abstract. We show that every C∗-algebra that is (m,n)-pure in the sense of
Winter is already pure, that is, its Cuntz semigroup is almost unperforated and
almost divisible. More generally, we show that even weaker comparison and
divisibility properties automatically lead to pureness. We use this to show that,
under a mild comparison assumption, pureness is automatic for C∗-algebras
that are either nowhere scattered with real rank zero or stable rank one, or

simple, unital, non-elementary, with a unique quasitrace.
As an application to the non-simple Toms-Winter conjecture, we show that

every C∗-algebra with the Global Glimm Property and finite nuclear dimension
is pure. It follows that a separable, locally subhomogeneous C∗-algebra with
stable rank one and topological dimension zero is pure if and only if it is Z-
stable, if and only if it is nowhere scattered and has finite nuclear dimension.

1. Introduction

Pureness is a regularity property for C∗-algebras introduced by Winter in his
seminal investigation into Z-stability and finite nuclear dimension of simple, nu-
clear C∗-algebras [Win12]. Interest in these concepts was sparked by Toms’ ground-
breaking examples [Tom08], where he constructed two simple, nuclear C∗-algebras
with the same K-theoretic and tracial data —one pure, Z-stable (i.e., tensori-
ally absorbing the Jiang-Su algebra Z), and of finite nuclear dimension, and the
other not. This led to a revision of the Elliott program, aiming at classifying sep-
arable, simple, nuclear C∗-algebras. Building on decades of research by numer-
ous mathematicians, this was ultimately achieved in a series of remarkable results
[Win14, TWW17, GLN20]. (See also the recent approach [CGS+23] and the sur-
vey [Whi23].) The classification theorem states that separable, simple, nuclear
C∗-algebras that are Z-stable and satisfy the universal coefficient theorem (UCT)
can be distinguished up to isomorphism by their Elliott invariant, which essentially
consists of topological K-Theory and the tracial simplex.

In his work, Winter defined the quantified notions of (m,n)-pureness for simple
C∗-algebras, with m and n specifying types of comparison and divisibility properties
among operators. For simple C∗-algebras with locally finite nuclear dimension (a
strong form of nuclearity), Winter showed that (m,n)-pureness implies Z-stability
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regardless of m and n. Further, it follows from results of Rørdam [Rør04] that every
simple Z-stable C∗-algebra is (0, 0)-pure, usually abbreviated to just pure.

The concept of (m,n)-pureness does not depend on the ideal structure of the
algebra, and hence may be stated for non-simple C∗-algebras; see Definition 5.1.
Moreover, as we show in this paper, all versions of pureness coincide. Our first
main result is:

Theorem A (5.7). If a C∗-algebra is (m,n)-pure for some m,n ∈ N, then it is
pure.

This should be contrasted with the well-known examples of simple, nuclear C∗-
algebras that do not have 0-comparison ([Vil98, Vil99]), or that do not have 0-almost
divisibility ([DHTW09]).

Previously, Theorem A had been obtained for separable, simple, unital C∗-
algebras with locally finite nuclear dimension [Win12], and more recently for ar-
bitrary simple C∗-algebras [APRT24, Theorem 10.5]. Our proof of the general
non-simple, non-nuclear case is based on the methods developed in [APRT24] on
controlled comparison —a version of comparison that is weaker than m-comparison
for any m (see Section 3 for details)— in combination with new techniques involving
functional divisibility —a form of divisibility that is weaker than n-almost divisi-
bility for any n (see Section 4 for details). Our main technical result shows that
pureness follows from controlled comparison together with functional divisibility;
see Proposition 5.5. The techniques on functional divisibility are partly inspired by
results in [RT17].

We show in Section 4 that functional divisibility holds automatically for large
classes of C∗-algebras. Combining this with results in Section 5, we prove:

Theorem B (5.12, 5.13). Let A be a C∗-algebra with controlled comparison. More-
over, assume that

(i) A is nowhere scattered with real rank zero or stable rank one, or
(ii) A is simple, unital, non-elementary, with a unique quasitracial state.

Then A is pure.

In particular, Villadsen algebras are functionally divisible and thus do not enjoy
controlled comparison, let alone m-comparison for any m; see Example 5.16.

A key ingredient in our approach is the Cuntz semigroup, a geometric refine-
ment of K-theory that was introduced by Cuntz [Cun78] in his pioneering study of
traces, and that was developed by Coward, Elliott and Ivanescu [CEI08] to its mod-
ern form (see Section 2 for the precise definition). The Cuntz semigroup features
prominently in the structure and classification theory of C∗-algebras, and its power
was demonstrated by Toms [Tom08] when he used it to distinguish simple, nuclear
C∗-algebras with the same Elliott invariant. More recently, the Cuntz semigroup
was used in [APRT22] to resolve three long-standing problems for C∗-algebras of
stable rank one.

The Toms-Winter conjecture. This conjecture [Win18] aims at establishing a
robust class of C∗-algebras covered by the classification theorem mentioned at the
beginning of the introduction. Explicitly, it predicts that for a separable, simple,
unital, non-elementary, nuclear C∗-algebra, the following properties are equivalent:

(1) The C∗-algebra has finite nuclear dimension, a noncommutative general-
ization of finite covering dimension introduced in [WZ10].

(2) The C∗-algebra is Z-stable.
(3) The C∗-algebra has strict comparison of positive elements (see Section 3).
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In two groundbreaking papers [Win12, CET+21], it was shown that condi-
tions (1) and (2) are equivalent. Further, it is known that (2) implies (3) [Rør04].
The implication (3)⇒(2) has been verified under certain additional assumptions
[Sat12, KR14, TWW15, Thi20], but remains open in general.

The Toms-Winter conjecture is closely related to pureness, which we view as a
property lying between (2) and (3). Indeed, Z-stability implies pureness, which in
turn implies strict comparison of positive elements; see Proposition 5.2. Further,
strict comparison of positive elements implies pureness under the additional as-
sumption of a positive solution to the Rank Problem; see Section 2. Such a positive
solution has been obtained for C∗-algebras of real rank zero [ER06] and of stable
rank one [Thi20, APRT22].

The non-simple Toms-Winter conjecture. The regularity properties of the
Toms-Winter conjecture are also relevant for non-simple C∗-algebras, and an inves-
tigation of their interplay was initiated by Robert and Tikuisis [RT17]. While the
assumption of unitality in the original formulation of the Toms-Winter conjecture
could be dispensed with, the condition of being non-elementary is crucial. Indeed,
elementary C∗-algebras have nuclear dimension zero, but they are neither Z-stable
nor pure.

The natural generalization of non-elementariness to the non-simple setting is
the notion of nowhere scateredness: a C∗-algebra is nowhere scattered if none of
its quotients has a nonzero, elementary ideal, or equivalently if every hereditary
sub-C∗-algebra is generated by nilpotent elements [TV24a]. This notion is tightly
related to the Global Glimm Property: a C∗-algebra has the Global Glimm Property
if every hereditary sub-C∗-algebra contains an approximately full, nilpotent element
[TV23]. Clearly, every C∗-algebra with the Global Glimm Property is nowhere
scattered. The converse remains open, and is known as the Global Glimm Problem.
In light of these considerations, the following question is natural:

Question C. Let A be a separable, nowhere scattered, nuclear C∗-algebra. Are the
following properties equivalent?

(1) A has finite nuclear dimension.
(2) A is Z-stable.

(3a) A is pure.
(3b) A has strict comparison of positive elements.

As for simple C∗-algebras, the question whether strict comparison of positive
elements implies pureness is closely related to the Rank Problem. From our dis-
cussion above, it follows that (3b) implies (3a) for C∗-algebras of real rank zero or
stable rank one.

The implication (3a)⇒(2) holds for C∗-algebras that have locally finite nuclear
dimension, no simple purely infinite ideal-quotients, and topological dimension zero
(the primitive ideal space has a basis of compact-open subsets) or Hausdorff prim-
itive ideal space; see [RT17, Theorems 7.10, 7.15].

The implication (2)⇒(1) holds for all locally subhomogeneous C∗-algebras by
[ENST20], for O∞-stable C∗-algebras by [BGSW22], and for twisted étale groupoid
C∗-algebras with finite dynamic asymptotic dimension by [BL24].

The implications (2)⇒(3a)⇒(3b) hold in general, and pureness always implies
the Global Glimm Property; see Proposition 5.2. Therefore, Question C contains in
particular the Global Glimm Problem for C∗-algebras with finite nuclear dimension.

We provide a further partial answer to Question C:

Theorem D (6.5). Every C∗-algebra with the Global Glimm Property and finite
nuclear dimension is pure.
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Combining Theorem D with the above mentioned results, we obtain an answer
to Question C for a relevant class of C∗-algebras, thereby verifying the non-simple
Toms-Winter conjecture in this setting.

Theorem E (6.6). Let A be a separable, locally subhomogeneous C∗-algebra that
has stable rank one, topological dimension zero, and the Global Glimm Property.
Then, the answer to Question C is positive.

Conventions. Given a C∗-algebra, we let A+ to denote its positive elements. We
let N denote the set of natural numbers, including 0. Further, K denotes the C∗-
algebra of compact operators on a separable, infinite-dimensional Hilbert space.

Acknowledgements. The authors thank Leonel Robert and Wilhelm Winter for
valuable feedback on an earlier version of this paper.

2. Preliminaries

The techniques used in this paper mainly concern the structure of the Cuntz
semigroup of a C∗-algebra whose definition and properties we describe below.

Given positive elements a, b in a C∗-algebra A, one says that a is Cuntz sube-
quivalent to b, denoted by a - b, if there is a sequence (rn)n in A such that
limn→∞ ‖a − rnbr∗n‖ = 0. Further, a and b are Cuntz equivalent, denoted a ∼ b, if
a - b and b - a. These relations were introduced by Cuntz in [Cun78].

The Cuntz semigroup Cu(A) of A is defined as Cu(A) = (A⊗K)+/∼, equipped
with the partial order induced by -, and addition induced by addition of orthogonal
positive elements.

It is proved in [CEI08] that Cu(A) satisfies the following properties (usually
referred to as axioms):

(O1) If (xn)n is an increasing sequence in Cu(A), then supn xn exists.
(O2) For any x ∈ Cu(A) there exists a sequence (xn)n such that xn � xn+1 for

all n and x = supn xn. (We say that (xn)n is a �-increasing sequence.)
(O3) If x1 � x2 and y1 � y2 in Cu(A), then x1 + y1 � x2 + y2.
(O4) If (xn)n and (yn)n are increasing sequences in Cu(A), then supn(xn+yn) =

supn xn + supn yn.

The relation� in these axioms is defined as follows: x� y if for every increasing
sequence (yn)n satisfying y ≤ supn yn there exists n0 ∈ N such that x ≤ yn0 . The
relation � is called the way-below relation, or the compact containment relation,
and one says that ‘x is way-below y’ (or that ‘x is compactly contained in y’) if
x� y. An element u ∈ S such that u� u is termed compact.

A positively ordered monoid satisfying axioms (O1)-(O4) is called a Cu-semi-
group and belongs to a category of semigroups that has thoroughly been studied
(see, for example, [APT18, APT20c, APT20a, APT20b], among others; see also
the recent survey [GP24]). Yet, when dealing with semigroups obtained as Cuntz
semigroups of C∗-algebras, additional axioms and properties are satisfied:

(O5) For all x′, x, y with x′ � x ≤ y there exists z such that x′ + z ≤ y ≤ x+ z.
Moreover, if x + w ≤ y for some w, and w′ � w, then z may be chosen
such that w′ � z.

This axiom is usually referred to as the axiom of almost algebraic order. For the
Cuntz semigroup of an arbitrary C∗-algebra, the first part of the statement above
was proved in [RW10, Lemma 7.1], and the second part can be found in [APT18,
Proposition 4.6].

Since we will often use the following consequence of (O5), we add a proof here
for completeness.
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Lemma 2.1 ([TV23, Lemma 2.2]). Let S be a Cu-semigroup satisfying (O5), let
k ∈ N, and let z′, z, x ∈ S satisfy z′ � z and (k+ 1)z ≤ x. Then there exists d ∈ S
such that

kz′ + d ≤ x ≤ kz + d, and x ≤ (k + 1)d.

Proof. Choose z′′ ∈ S such that z′ � z′′ � z. Applying (O5) for

kz′ � kz′′, z′′ � z, and kz′′ + z ≤ x,
we obtain d ∈ S satisfying

kz′ + d ≤ x ≤ kz′′ + d, and z′′ � d.

Then x ≤ (k + 1)d, which shows that d satisfies the desired conditions. �

Two more axioms are used very often in the theory of Cu-semigroups. The
first one, (O6), is a weaker form of Riesz decomposition and the second one, (O7),
is a weak form of interpolation. That the Cuntz semigroup of any C∗-algebra
satisfies both (O6) and (O7) was proved in [Rob13, Proposition 5.1.1] and [APRT21,
Proposition 2.2], respectively. We will not need the precise formulation of these
axioms here, but rather a very useful consequence of them that allows to take
infima with idempotent elements. We make this precise below.

Recall that a Cu-semigroup S is said to be countably based if all elements can
be written as suprema of elements from a fixed countable subset. It is known that
Cu(A) is countably based whenever A is separable; see [APS11, Lemma 1.3].

Theorem 2.2 ([APRT21, Theorems 2.4, 2.5]). Let S be a countably based Cu-
semigroup satisfying (O5)-(O7). Then each x ∈ S and each idempotent element
w ∈ S have an infimum x ∧ w in S. Further, the map S → S given by x 7→ x ∧ w
is a monoid homomorphism preserving the order and the suprema of increasing
sequences.

Let S be a Cu-semigroup. A map λ : S → [0,∞] is called a functional if λ
preserves addition, the zero element, order and suprema of increasing sequences.
We denote by F (S) the set of functionals on S. This is a cone when endowed with
the operations of pointwise addition and pointwise scalar multiplication by positive
real numbers. When equipped with the appropriate topology, F (S) becomes a
compact Hausdorff cone (see [ERS11, Theorems 4.4, 4.8], [Rob13, Section 2.2]; see
also [Kei17, Theorem 3.17]).

Given x ∈ S, we obtain a map x̂ : F (S) → [0,∞] defined by x̂(λ) = λ(x), for
λ ∈ F (S). The map x̂ is linear and lower semicontinuous. Denote by Lsc(F (S))
the set of all linear, lower semicontinuous maps on F (S) with values in [0,∞].

Two main questions arise in this setting. The first concerns the extent to which
the ordering in A can be inferred from the ordering in Lsc(F (S)). Note that whilst
x 7→ x̂ is an additive map that preserves the order and suprema of increasing
sequences, it typically does not preserve the way-below relation and, moreover, is
generally not an order embedding. Still, the result below will be useful.

Given elements x and y in a partially ordered semigroup, one writes x <s y if
there exists k ∈ N such that (k + 1)x ≤ ky.

Proposition 2.3 ([Rob13, Lemma 2.2.5], [APRT24, Lemma 5.3]). Let S be a Cu-
semigroup satisfying (O5), and let x, y ∈ S. Then:

(i) If x� y, and s, t ∈ (0,∞] satisfy s < t, we have sx̂� tŷ in Lsc(F (S)).
(ii) If x̂ ≤ γŷ for some γ ∈ (0, 1), then x′ <s y for all x′ ∈ S with x′ � x.

The second question that arises consists of determining the range of the map
x 7→ x̂. This is referred to as the Rank Problem and was explored in detail in



6 RAMON ANTOINE, FRANCESC PERERA, HANNES THIEL, AND EDUARD VILALTA

[Thi20] and [APRT22]. For a Cu-semigroup S, let us denote by L(F (S)) the small-
est subsemigroup of Lsc(F (S)) closed under suprema of increasing sequences and
containing all elements of the form 1

n x̂ (see [Rob13, Section 3]). Recall that an
element x ∈ S is termed soft if for every x′ ∈ S with x′ � x there exists t ∈ S
such that x′ + t � x and x′ � ∞t (see [TV24b, Definition 4.3, Remark 4.4]; for
C∗-algebras of stable rank one, this agrees with [APT18, Definition 5.3.1]).

The following theorem summarizes the realization results from [APRT22], which
will be required in Section 4. The existence of the map α is shown in [APRT22,
Theorem 7.2], and the properties of α are proved in [APRT22, Proposition 7.4,
Theorem 7.13, Proposition 8.2, Theorem 8.4, Corollary 8.5].

Theorem 2.4 ([APRT22]). Let A be a separable, nowhere scattered C∗-algebra
with stable rank one. Then there is a natural, additive, order-preserving map
α : L(F (Cu(A)))→ Cu(A) that preserves suprema of increasing sequences and such

that f = α̂(f) for every f ∈ L(F (Cu(A))).
The image of α consists of soft elements, and we have

α(f + x̂) = α(f) + x

whenever x ∈ Cu(A) and f ∈ L(F (Cu(A))) satisfy x̂ ≤ ∞f .

3. Variants of comparison

In this section we deal with various comparison properties. In particular, we
recall the definition of m-comparison (first considered in [TW09, Lemma 6.1] and
later formalized in [OPR12, Definition 2.8]) and clarify the equivalence between
0-comparison (also known as almost unperforation) with the notion of strict com-
parison for C∗-algebras. We also recall the concept introduced in [APRT24, Defi-
nition 6.1], which in this paper is renamed as controlled comparison.

Definition 3.1. Let m ∈ N. A Cu-semigroup S has m-comparison if for all
x, y0, . . . , ym ∈ S satisfying x <s yj for j = 0, . . . ,m, we have x ≤ y0 + . . .+ ym.

We say that a C∗-algebra has m-comparison if its Cuntz semigroup does. A Cu-
semigroup or C∗-algebra is said to be almost unperforated if it has 0-comparison.

Remarks 3.2. (1) Robert showed in [Rob11, Theorem 1.3] that a C∗-algebra has
m-comparison whenever it has nuclear dimension at most m.

(2) Let m ∈ N and let S be a Cu-semigroup that has m-comparison. Then,
x <s y implies x ≤ (m+ 1)y, for all x, y ∈ S.

The notion of strict comparison was first considered in [Bla88]. For Cu-semi-
groups, the concept was considered in [ERS11, Section 6].

Definition 3.3. A Cu-semigroup S has strict comparison if for all x, y ∈ S satis-
fying x ≤ ∞y and λ(x) < λ(y) for any λ ∈ F (S) with λ(y) = 1, one has x ≤ y.

A C∗-algebra A has strict comparison of positive elements by quasitraces (specif-
ically, [0,∞]-valued, lower semicontinuous 2-quasitraces) if its Cuntz semigroup
does.

3.4 (Strict comparison and almost unperforation). We take the opportunity here
to clarify the equivalence between the concepts of strict comparison and almost
unperforation. Let S be a Cu-semigroup, and let x, y ∈ S. The following conditions
relating the comparison of x, y and x̂, ŷ were considered in [APT18]:

(i) We have x <s y, that is, there exists k ∈ N such that (k + 1)x ≤ ky.
(ii) We have x̂ <s ŷ, that is, there exists ε ∈ (0, 1) such that x̂ ≤ (1− ε)ŷ.
(iii) We have x ≤ ∞y and λ(x) < λ(y) for any λ ∈ F (S) with λ(y) = 1.
(iv) We have x′ <s y for every x′ ∈ S with x′ � x.
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It was shown in [APT18, Theorem 5.2.18] that the implications (i)⇒(ii)⇒(iii)⇒(iv)
always hold. Using this, it follows that the following conditions are equivalent
for S. (This was first obtained in [ERS11, Proposition 6.2]; see also [APT18,
Proposition 5.2.20].)

(i’) S is almost unperforated.
(ii’) If x, y ∈ S satisfy x̂ ≤ (1− ε)ŷ for some ε ∈ (0, 1), then x ≤ y.

(iii’) S has strict comparison.

Now, let A be a C∗-algebra. There is a natural correspondence between functionals
on Cu(A) and quasitraces on A. This is defined by sending a quasitrace τ : (A ⊗
K)+ → [0,∞] to the functional dτ : Cu(A)→ [0,∞] given by

dτ ([a]) = lim
n→∞

τ(a1/n)

for a ∈ (A⊗K)+; see, for example, [ERS11, Proposition 4.2].
Using this, it follows that A has strict comparison if and only if for all a, b ∈

(A ⊗ K)+ such that a belongs to the closed ideal generated by b, and such that
dτ ([a]) < dτ ([b]) for every quasitrace τ with dτ ([b]) = 1, we have a - b.

It also follows from the above considerations that a C∗-algebra A has strict com-
parison (of positive elements by quasitraces) if and only if it is almost unperforated.

Some of the confusion surrounding the notion of strict comparison arises since
it is applied in a more restrictive setting, for example by considering comparison of
projections (instead of positive elements), or by considering comparison by traces
(instead of quasitraces); see [NR16, Section 3] for some clarifications.

Another source of confusion is that strict comparison is often used in the context
of simple C∗-algebras, in which case every element is automatically contained in
the closed ideal generated by a nonzero element. Therefore, a simple, unital C∗-
algebra A has strict comparison if and only if for all nonzero elements a, b ∈ (A⊗K)+
such that dτ ([a]) < dτ ([b]) for every normalized quasitrace τ , we have a - b.

For the definition below, we need to recall the notion of a scale in a Cu-semigroup.

3.5 (Scales). Let S be a Cu-semigroup. Following [APT20c, Definition 4.1], a scale
in S is a subset Σ ⊆ S satisfying the following conditions:

(i) Σ is downward hereditary: If x ≤ y for some x ∈ S and y ∈ Σ, then x ∈ Σ.
(ii) Σ is closed under suprema of increasing sequences.
(iii) Σ generates S as an ideal, that is, for x′, x ∈ S with x′ � x, there exist

y1, . . . , yn ∈ Σ such that x′ ≤ y1 + . . .+ yn.

We say that the pair (S,Σ) is a scaled Cu-semigroup.
Given a scale Σ and d ∈ N, the d-fold amplification of Σ is defined as Σ(0) := {0},

and for d ≥ 1 as

Σ(d) :=

{
x ∈ S :

for each x′ ∈ S with x′ � x there exist
y1, . . . , yd ∈ Σ such that x′ ≤ y1 + . . .+ yd

}
.

If A is a C∗-algebra, then

ΣA :=
{
x ∈ Cu(A) : x ≤ [a] for some a ∈ A+

}

is a scale in Cu(A), and the pair (Cu(A),ΣA) is called the scaled Cuntz semigroup
of A; see [APT20c, Paragraph 4.2] and [TV23, Lemma 3.3], and also [APRT24,
Paragraph 4.5]. By [APRT24, Proposition 7.4], for d ≥ 1 we have

Σ
(d)
A =

{
x ∈ Cu(A) : x ≤ [a] for some a ∈Md(A)+

}
.

Given N ∈ N and elements x and y in a partially ordered semigroup, we write
x ≤N y if nx ≤ ny for all n ∈ N with n ≥ N . The following was termed ‘locally
bounded comparison amplitude’ in [APRT24, Definition 6.1].
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Definition 3.6. A scaled Cu-semigroup (S,Σ) has controlled comparison if for
every γ ∈ (0, 1) and d ∈ N there exists N = N(γ, d) such that the following holds:

x̂ ≤ γŷ implies x ≤N y, for all x, y ∈ Σ(d).

We say that a C∗-algebra A has controlled comparison if (Cu(A),ΣA) does.

The next result follows easily from [APRT24, Proposition 10.3].

Proposition 3.7. If a C∗-algebra has m-comparison for some m ∈ N, then it has
controlled comparison.

Proof. In order to apply [APRT24, Proposition 10.3] it is required that the Cuntz
semigroup of a C∗-algebra satisfies (O5), (O6), and the so-called Edward’s condi-
tion. The first two are always satisfied, as mentioned in the preliminaries, and the
third condition was shown to hold in [APRT21, Theorem 5.3]. �
Corollary 3.8. Every C∗-algebra with finite nuclear dimension has controlled com-
parison.

Proof. Let A be a C∗-algebra with nuclear dimension at most m for some m ∈ N.
Then A has m-comparison by [Rob11, Theorem 1.3], hence the result follows from
Proposition 3.7. �

4. Variants of divisibility

In this section we introduce the concept of functional divisibility and show it is
a natural generalization of n-almost divisibility (as introduced in [Win12, Defini-
tion 3.5] for simple, unital C∗-algebras, and later refined in [RT17, Section 2.3] for
general C∗-algebras). We prove that functional divisibility is automatic for nowhere
scattered C∗-algebras of stable rank one, and also for simple, unital, non-elementary
C∗-algebras with a unique normalized quasitrace.

Definition 4.1. Let n ∈ N. A Cu-semigroup S is n-almost divisible if for every
x′ � x in S and every k ∈ N with k ≥ 1, there exists y ∈ S such that

ky ≤ x, and x′ ≤ (k + 1)(n+ 1)y.

We say that a C∗-algebra is n-almost divisible if its Cuntz semigroup is. A Cu-
semigroup or C∗-algebra is said to be almost divisible if it is 0-almost divisible. In
other words, if for all x′ � x in S and k ∈ N with k ≥ 1 there exists y ∈ S such
that ky ≤ x, and x′ ≤ (k + 1)y.

4.2 (Connections with earlier divisibility notions). In parts of the literature, ‘almost
divisible’ is defined as the slightly stronger condition that for every x ∈ S and k ∈ N
with k ≥ 1 there exists y ∈ S such that

ky ≤ x ≤ (k + 1)y.

This version of ‘almost divisibility’ implies the one from Definition 4.1, and
for almost unperforated Cu-semigroups both versions agree by [APT18, Proposi-
tion 7.3.7]. The advantage of the version from Definition 4.1 is that it enjoys better
permanence properties; see [APT18, Remark 7.3.5].

Almost divisibility is automatic in certain cases. For example, it was shown in
[TV24a, Theorem 9.1] that every nowhere scattered C∗-algebra A of real rank zero is
almost divisible. In fact, Cu(A) is even ‘weakly divisible’ in the sense that for every
x ∈ Cu(A), there are y, z ∈ Cu(A) such that x = 2y + 3z; see also [APGPSM10,
Section 6]. In the simple case, and for the Murray-von Neumann semigroup, this
was obtained in [PR04, Proposition 5.3].

Inspired by the results in [RT17, Section 6] and also in [Win12], we introduce the
following more general divisibility condition in terms of comparison by functionals.
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Definition 4.3. We say that a Cu-semigroup S is functionally divisible if the
following conditions are satisfied:

(L) For every x′ � x in S, every k ∈ N with k ≥ 1, and every ε ∈ (0, 1), there
exists y ∈ S such that

ky ≤ x, and (1− ε)x̂′ ≤ kŷ.
(U) For every x′ � x in S, every k ∈ N with k ≥ 1, and every ε ∈ (0, 1), there

exists z ∈ S such that

z ≤ x, (1− ε)kẑ ≤ x̂, and x′ ≤ kz.
We say that a C∗-algebra A is functionally divisible if Cu(A) is.

Remark 4.4. Let S be a Cu-semigroup satisfying (O5), and let x ∈ S. While
Definition 4.1 captures notions of divisibility of x in S, one may also consider the
divisibility of x̂ in Lsc(F (S)). The straightforward concept would be to require
that for every x ∈ S and every k ∈ N with k ≥ 1, there exists y ∈ S such that
kŷ = x̂. Taking also the way-below relation into account in order to obtain better
permanence properties, one is led to the following notion:

(D) For every x ∈ S, every f ∈ Lsc(F (S)) with f � x̂, and every k ∈ N with
k ≥ 1, there exists y ∈ S such that

f ≤ kŷ ≤ x̂.
Using Proposition 2.3(i), we see that a function f ∈ Lsc(F (S)) satisfies f � x̂

if and only if there exists x′ ∈ S with x′ � x and ε > 0 such that f ≤ (1 − ε)x̂′.
Thus, condition (D) holds if and only if for every x′ � x in S, every k ∈ N with
k ≥ 1, and every ε > 0, there exists y ∈ S such that

(1− ε)x̂′ ≤ kŷ ≤ x̂.
Conditions (L) and (U) in Definition 4.3 are natural strengthenings of this, where

one of the inequalities on functionals is upgraded to an inequality in S. The ‘L’
stands for ‘lower’, since in this condition the element ky is smaller than x, while
the ‘U’ stands for ‘upper’ since here ky is larger than x′.

The next result shows that it suffices to consider k = 2 in order to verify condi-
tion (L) in Definition 4.3.

Proposition 4.5. Let S be a Cu-semigroup satisfying (O5). Then the following
statements are equivalent:

(i) S satisfies condition (L) in Definition 4.3.
(ii) For every x′ � x in S and k ∈ N, there exists y ∈ S such that

ky ≤ x, and x̂′ ≤ (k + 1) ŷ.

(iii) For every x′ � x in S and every ε ∈ (0, 1) there exists y ∈ S such that

2y ≤ x, and (1− ε)x̂′ ≤ 2ŷ.

Proof. Assuming (i), let us verify (ii). For k = 0, we use y = x. For k ≥ 1, we
apply (i) with ε > 0 small enough such that (1 − ε)−1k ≤ k + 1. Similarly, to
see that (ii) implies (iii), for a given ε ∈ (0, 1) apply (ii) with 2k where k is large
enough such that 1− ε ≤ (1 + 1

2k )−1.

Next, assuming that (iii) holds, let us verify (i). First, by induction over m, we
verify that the following statement holds:

(L2m) For every x′ � x in S and ε ∈ (0, 1) there exists y ∈ S such that

2my ≤ x, and (1− ε)x̂′ ≤ 2mŷ.
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The case m = 1 holds by assumption. Assume that (L2m) holds for some m ≥ 1.
To verify (L2m+1), let x′ � x in S and ε ∈ (0, 1). Pick x′′ ∈ S and δ > 0 such that

x′ � x′′ � x, and (1− δ)3 = 1− ε.
Applying (L2m) for x′′ � x and δ, we obtain w ∈ S such that

2mw ≤ x, and (1− δ)x̂′′ ≤ 2mŵ.

By Proposition 2.3(i), we have (1 − δ)2x̂′ � (1 − δ)x̂′′ in Lsc(F (S)), hence also

(1− δ)2x̂′ � 2mŵ. This allows us to choose w′ ∈ S such that

w′ � w, and (1− δ)2x̂′ ≤ 2mŵ′.

Next, applying (iii) for w′ � w and δ, we obtain y ∈ S such that

2y ≤ w, and (1− δ)ŵ′ ≤ 2ŷ.

Then

2m+1y ≤ 2mw ≤ x, and (1− ε)x̂′ = (1− δ)3x̂′ ≤ (1− δ)2mŵ′ ≤ 2m+1ŷ,

which verifies (L2m+1).

Now, to prove (i), let x′ � x in S, let k ∈ N with k ≥ 1, and let ε ∈ (0, 1). Pick
x′′ ∈ S and δ > 0 such that

x′ � x′′ � x, and (1− δ)2 = 1− ε.
Using that dyadic rationals are dense in R, choose n,m ≥ 1 such that

(1− δ) 1

k
≤ n

2m
≤ 1

k
.

Then

(1− δ)2m ≤ kn ≤ 2m.

Applying (L2m) for x′′ � x and δ, we obtain w ∈ S such that

2mw ≤ x, and (1− δ)x̂′ ≤ 2mŵ.

Set y := nw. Then

ky = k(nw) ≤ 2mw ≤ x, and (1− ε)x̂′ = (1− δ)2x̂′ ≤ (1− δ)2mŵ ≤ knŵ = kŷ,

which shows that y has the desired properties. �

Remark 4.6. Let S be a Cu-semigroup satisfying (O5). It is not clear if there exists
a characterization of condition (U) in Definition 4.3 analogous to Proposition 4.5.
The reason is that condition (U) has the additional assumption that the dividing
element is dominated by x, which is automatic in condition (L).

On the other hand, for m ≥ 1 let us consider the following condition:

(U2m) For every x′ � x in S and every ε ∈ (0, 1), there exists y ∈ S such that

y ≤ x, (1− ε)2mŷ ≤ x̂, and x′ ≤ 2my.

An argument as in the proof of Proposition 4.5 shows that if S satisfies (U2), then
it satisfies (U2m) for all m. (See also Remark 5.6.)

To show that n-almost divisible Cuntz semigroups are functionally divisible
(Proposition 4.9), we first need some preparatory technical results. We will use
the concept of (2, ω)-divisibility (see also Section 6). Given k ∈ N with k ≥ 2, a
Cu-semigroup S is said to be (k, ω)-divisible if for all x′ � x in S there exists y ∈ S
such that

ky ≤ x, and x′ ≤ ∞y.
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If S is (k, ω)-divisible for some k ≥ 2, then it is (2, ω)-divisible. The converse
also holds by [TV23, Lemma 3.4]. Thus, a Cu-semigroup is (2, ω)-divisible if and
only if it is (k, ω)-divisible for all k ≥ 2.

Condition (L’) in the result below was considered in [RT17, Theorem 6.1].

Lemma 4.7. Let S be a Cu-semigroup satisfying (O5)-(O7). Then S satisfies
condition (L) in Definition 4.3 if and only if S is (2, ω)-divisible and satisfies

(L’) For every x′ � x in S, every k ∈ N with k ≥ 1, and every ε > 0, there
exists y ∈ S such that

ky ≤ x, and x̂′ ≤ kŷ + εx̂.

Proof. To show the forward implication, assume that S satisfies

(L) For every x′ � x in S, every k ∈ N \ {0}, and every ε ∈ (0, 1), there exists
y ∈ S such that

ky ≤ x, and (1− ε)x̂′ ≤ kŷ.
To verify that S is (2, ω)-divisible, let x′ � x in S. Applying (L) with the given
x′, x, and also k = 2 and ε = 1

2 , we obtain y ∈ S such that

2y ≤ x, and
1

2
x̂′ ≤ 2ŷ.

The latter condition implies that x̂′ ≤ 4ŷ, and hence x′ ≤ ∞y (using, for example,
[APRT22, Lemma 6.6]). This shows that S is (2, ω)-divisible.

To verify (L’), let x′ � x in S, let k ∈ N with k ≥ 1, and ε > 0. Pick δ ∈ (0, 1)
such that (1 − δ)−1 = 1 + ε. Applying (L) with the given x′, x and k, and also δ,
we obtain y ∈ S such that

ky ≤ x, and (1− δ)x̂′ ≤ kŷ.
Using that ky ≤ x, we get

x̂′ ≤ (1− δ)−1kŷ = (1 + ε)kŷ ≤ kŷ + εx̂,

as desired.

To show the backward implication, assume that S is (2, ω)-divisible and satis-
fies (L’). We verify condition (ii) of Proposition 4.5. Let x′ � x in S, and let k ∈ N.
We need to find y ∈ S such that

ky ≤ x, and x̂′ ≤ (k + 1)ŷ.

For k = 0 and k = 1 use y := x. Thus, from now on we may assume that k ≥ 2.
Using the methods from [TV21, Section 5], we find a countably based, (2, ω)-

divisible sub-Cu-semigroup H ⊆ S that satisfies (O5)-(O7) and contains x′, x.
Choose x′′ ∈ H and n ∈ N with n ≥ 1 such that

x′ � x′′ � x, k + 1 ≤ n, and
k(k + 1) + n

n
≤ 1 +

1

k
.

Since H is (2, ω)-divisible, it is also (n, ω)-divisible by the arguments in [TV23,
Lemma 3.4]. Applied to x′′ � x and n, we obtain c ∈ H such that

nc ≤ x, and x′′ �∞c.
Using that x′′ �∞c, we can choose c′ ∈ H such that

x′′ �∞c′, and c′ � c.

We have (k + 1)c ≤ nc ≤ x. Using Lemma 2.1, we obtain d ∈ H such that

kc′ + d ≤ x ≤ kc+ d, and x ≤ (k + 1)d.
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Thus, one has

nx′′ ≤ nx ≤ nkc+ nd ≤ kx+ nd ≤ (k(k + 1) + n)d.

Since H is countably based and satisfies (O5)-(O7), we may apply Theorem 2.2.
Hence, for every s ∈ H the infimum s∧∞c′ exists (in H), and the map s 7→ s∧∞c′
is additive. Set e := d ∧∞c′. Since x′′ �∞c′, we have

nx′ � nx′′ = (nx′′) ∧ (∞c′) ≤ (k(k + 1) + n)d ∧ (∞c′)
=
(
k(k + 1) + n

)(
d ∧ (∞c′)

)
= (k(k + 1) + n)e.

This allows us to find e′ ∈ H satisfying

nx′ ≤ (k(k + 1) + n)e′, and e′ � e.

Let us further choose e′′ ∈ H such that e′ � e′′ � e.
Since e ≤ ∞c′ and e′ � e, we may pick N ∈ N with N ≥ 1 such that e′′ ≤ Nc′.

Then choose ε > 0 small enough such that(
1 +

1

k

)
ε ≤ 1

N
.

Now, working again in S, and applying (L’) to e′ � e′′, k and ε, we obtain f ∈ S
such that

kf ≤ e′′, and ê′ ≤ kf̂ + εê′′.

Set y := c′ + f . We have kf ≤ e ≤ d and therefore

ky = kc′ + kf ≤ kc′ + d ≤ x.
Further, we have

x̂′ ≤ k(k + 1) + n

n
ê′ ≤

(
1 +

1

k

)
ê′ ≤

(
1 +

1

k

)(
kf̂ + εê′′

)

≤ (k + 1)f̂ +
1

N
ê′′ ≤ (k + 1)f̂ + ĉ′ ≤ (k + 1)

(
f̂ + ĉ′

)
= (k + 1)ŷ,

as desired. �
The next result shows that if a compact element satisfies condition (L’) in

Lemma 4.7, then it also satisfies condition (U) in Definition 4.3.

Lemma 4.8. Let S be a Cu-semigroup satisfying (O5), and let x ∈ S be a compact
element such that for every k ∈ N with k ≥ 1, and every ε > 0, there exists y ∈ S
such that

ky ≤ x, and x̂ ≤ kŷ + εx̂.

Then, for every k ∈ N with k ≥ 1, and every δ > 0, there exists z ∈ S such that

z ≤ x, (1− δ)kẑ ≤ x̂, and x ≤ kz.
Proof. Given k ∈ N with k ≥ 1 and δ > 0, pick ε > 0 such that

1 + 2(k − 1)ε ≤ (1− δ)−1.
Applying the assumption for k and ε, we obtain y ∈ S such that

ky ≤ x, and x̂ ≤ kŷ + εx̂.

Now, using that x� x, it follows from Proposition 2.3(i) that

(1− ε)x̂� x̂ ≤ kŷ + εx̂.

This allows us to choose y′ ∈ S such that y′ � y and

(1− ε)x̂ ≤ kŷ′ + εx̂.

Applying Lemma 2.1 for ky ≤ x and y′ � y, we get z ∈ S such that

(k − 1)y′ + z ≤ x ≤ kz.
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We now show that z has the claimed properties. It is clear that z ≤ x and x ≤ kz.
It remains to verify that (1 − δ)kλ(z) ≤ λ(x) for every λ ∈ F (S). This is clear if

λ(x) =∞. Let λ ∈ F (S) with λ(x) <∞. From the fact that (1− ε)x̂ ≤ kŷ′ + εx̂,
as shown above, we deduce that

(1− 2ε)λ(x) ≤ kλ(y′).

Since ky ≤ x, it follows that λ(y′) <∞ and, consequently, using our choice of ε
in the last step,

kλ(z) ≤ kλ(x)− k(k − 1)λ(y′) ≤ kλ(x)− (1− 2ε)(k − 1)λ(x)

= (1 + 2(k − 1)ε)λ(x) ≤ (1− δ)−1λ(x),

as desired. �

Proposition 4.9. If a C∗-algebra is n-almost divisible for some n ∈ N, then it is
functionally divisible.

Proof. Let n ∈ N, and let A be a C∗-algebra that is n-almost divisible. It is easy
to deduce that Cu(A) is (2, ω)-divisible. Therefore, by Lemma 4.7, to show that
Cu(A) is functionally divisible it suffices to verify condition (L’) in Lemma 4.7 and
condition (U) in Definition 4.3.

Let x′ � x in Cu(A), let k ∈ N with k ≥ 1, and let ε > 0. We may assume that
ε = 1

N for some integer N ≥ 1, and we need to find y ∈ Cu(A) such that

ky ≤ x, and Nx̂′ ≤ Nkŷ + x̂,

and z ∈ Cu(A) such that

z ≤ x, (N − 1)kẑ ≤ Nx̂, and x′ ≤ kz.
Without loss of generality, we may assume that A is stable, which allows us to pick
a ∈ A+ with x = [a].

Let U be a free ultrafilter on N. Denote by AU the free ultrapower of A. Set
C = {a}′∩AU and I = {a}⊥∩AU . Then, it follows from [RT17, Theorem 6.1] that
the class of the unit [1] in Cu(C/I) satisfies condition (L’) in Lemma 4.7, that is,
for every l ∈ N with l ≥ 1, and every δ > 0, there exists v ∈ Cu(C/I) such that

lv ≤ [1], and [̂1] ≤ lv̂ + δ[̂1].

Applied for l = k and δ = 1
2N , we obtain v ∈ Cu(C/I) such that

kv ≤ [1], and [̂1] ≤ kv̂ +
1

2N
[̂1].

Adding 1
2N [̂1] and multiplying by N , we get

(1 +
1

2N
)N [̂1] ≤ Nkv̂ + [̂1].

Now we apply Proposition 2.3(ii) to find a positive integer s such that

sN [1] ≤ (s+ 1)N [1] ≤ s(Nkv + [1]).

Since sN [1] is compact, we can pick v′ ∈ Cu(C/I) such that

v′ � v, and sN [1] ≤ s(Nkv′ + [1]).

Using also that v ≤ [1] (since kv ≤ [1]), we can apply [RR13, Lemma 2.3 (ii)] to
find e ∈ (C/I)+ such that v′ ≤ [e] ≤ v, and so

k[e] ≤ [1], and sN [1] ≤ s(Nk[e] + [1]).
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Separately, and using again that [1] ∈ Cu(C/I) satisfies condition (L’), we apply
Lemma 4.8 to the compact element [1] in Cu(C/I) and for the given k and 1

2N to
obtain w ∈ Cu(C/I) such that

w ≤ [1], (1− 1
2N )kŵ ≤ [̂1], and [1] ≤ kw.

Multiplying by N , we get

(N − 1
2 )kŵ ≤ N [̂1].

Using that [1] is compact and [1] ≤ kw, we find w′′, w′ ∈ Cu(C/I) such that

w′′ � w′ � w, and [1] ≤ kw′′.
First, applying Proposition 2.3(ii), we find a positive integer t such that

t(N − 1)kw′ ≤ (t+ 1)(N − 1)kw′ ≤ tN [1].

Then, arguing as above, we find f ∈ (C/I)+ with w′′ ≤ [f ] ≤ w′, and thus

[f ] ≤ [1], t(N − 1)k[f ] ≤ tN [1], and [1] ≤ k[f ].

Let ē, f̄ ∈ C+ be lifts of e, f respectively. Then, there exists z ∈ Cu(I) such that

k[ē] ≤ [1] + z, sN [1] ≤ s(Nk[ē] + [1]) + z,

and

[f̄ ] ≤ [1] + z, t(N − 1)k[f̄ ] ≤ tN [1] + z, [1] ≤ k[f̄ ] + z

in Cu(C).
Set b = aē and c = af̄ in AU . Using that every element in C commutes with a

(in particular, those elements applying the Cuntz subequivalences above) and that
every element in I is orthogonal to a, one obtains

k[b] ≤ [a], sN [a] ≤ s(Nk[b] + [a]),

and

[c] ≤ [a], t(N − 1)k[c] ≤ tN [a], [a] ≤ k[c]

in Cu(AU ).
A finite collection of Cuntz subequivalences in AU can be ‘lifted’ to A simulta-

neously up to a cut-down (see, for example, the proof of [APRT24, Theorem 10.5]).
Thus, using that x′ � x = [a], we find y, z ∈ Cu(A) such that

ky ≤ x, sNx′ ≤ s(Nky + x),

and

z ≤ x, t(N − 1)kz ≤ tNx, x′ ≤ kz
in Cu(A). Passing to functionals, we can remove the multiplication by s and t, and

we obtain Nx̂′ ≤ Nkŷ + x̂ and (N − 1)kẑ ≤ Nx̂, which shows that y and z have
the desired properties. �

It was proved in [APRT22, Theorem 3.8] that, if A is a separable C∗-algebra of
stable rank one, then Cu(A) is an inf-semilattice ordered semigroup. That is, for
each x, y ∈ Cu(A) their greatest lower bound x∧ y exists in Cu(A) and addition is
distributive over the meet operation:

(x ∧ y) + z = (x+ z) ∧ (y + z)

for all x, y, z ∈ Cu(A). This will be used below.

Proposition 4.10. Every nowhere scattered C∗-algebra with stable rank one is
functionally divisible.
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Proof. Let us first assume that every separable, nowhere scattered C∗-algebra with
stable rank one is functionally divisible, and let A be an arbitrary nowhere scattered
C∗-algebra with stable rank one. To show that A is functionally divisible, let x′ � x
in Cu(A), let k ∈ N with k ≥ 1 and let ε ∈ (0, 1) be given. We need to find
y, z ∈ Cu(A) such that

ky ≤ x, (1− ε)x̂′ ≤ kŷ, z ≤ x, (1− ε)kẑ ≤ x̂, and x′ ≤ kz.
Using that stable rank one and nowhere scatteredness satisfy the Löwenheim-
Skolem condition ([TV24a, Proposition 4.11]) and applying [TV21, Proposition 6.1],
we can find a separable sub-C∗-algebra B ⊆ A such that B is nowhere scattered, has
stable rank one, and such that the inclusion B → A induces an order-embedding
Cu(B)→ Cu(A) whose image contains x′ and x. Viewing x′ and x as elements in
Cu(B), and using that B is functionally divisible, we find y and z with the desired
properties in Cu(B), and thus in Cu(A). (See also [APRT22, Lemma 9.2].)

By the argument above, we may assume that A is a separable, nowhere scattered
C∗-algebra A with stable rank one, and we need to show that A is functionally
divisible. We first verify condition (iii) in Proposition 4.5, which then implies that
Cu(A) satisfies condition (L).

Let x′ � x in Cu(A), and let ε > 0. We need to find y ∈ Cu(A) such that

2y ≤ x, and (1− ε)x̂′ ≤ 2ŷ.

Using the solution to the rank problem (see Theorem 2.4) we can find u ∈ Cu(A)
such that û = 1

2 x̂. Set v := u ∧ x, which exists by the comments preceding this
proposition. Using [APRT22, Theorem 6.12] at the second step, we have

v̂ = û ∧ x = û ∧ x̂ =
1

2
x̂.

Using that Cu(A) is (2, ω)-divisible by the results in [APRT22, Section 5] (see also
Theorem 7.1 and Proposition 7.3 in [TV23]), we can apply [AVTV23, Theorem 5.10]
to find a soft element w ∈ Cu(A) such that

w ≤ v, and ŵ = v̂.

By Proposition 2.3(i), we have

(1− ε)1

2
x̂′ � 1

2
x̂ = ŵ,

which allows us to choose w′′, w′ ∈ Cu(A) such that

w′′ � w′ � w, and (1− ε)1

2
x̂′ ≤ ŵ′′.

Since w is soft, there exists by [TV24b, Proposition 4.6] some t ∈ Cu(A) such that

w′ + t� w, and w′ �∞t.
In particular, w′ + t ≤ v ≤ x.

Choose t′ ∈ Cu(A) such that

t′ � t, and w′ �∞t′.
Applying (O5) for w′ + t ≤ x and w′′ � w′ and t′ � t, we obtain c ∈ Cu(A)

such that

w′′ + c ≤ x ≤ w′ + c, and t′ � c.

Let us show that 1
2 x̂ ≤ ĉ. Since w′ � ∞t′, there is m ≥ 1 such that w′ ≤ mt′,

and thus x ≤ w′ + c ≤ mt′ + t′ = (m + 1)t′. Therefore, if λ ∈ F (Cu(A)) satisfies
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λ(x) = ∞, then λ(c) = ∞ ≥ 1
2λ(x). On the other hand, if λ ∈ F (Cu(A)) satisfies

λ(x) <∞, then using that w′ ≤ w and ŵ = 1
2 x̂, we get

λ(c) ≥ λ(x)− λ(w′) ≥ λ(x)− 1

2
λ(x) =

1

2
λ(x).

Set y := w′′ ∧ c. Using that (1 − ε) 1
2 x̂
′ ≤ ŵ′′ and 1

2 x̂ ≤ ĉ, and using [APRT22,
Theorem 6.12] at the second step, we have

(1− ε) 1
2 x̂
′ ≤ ŵ′′ ∧ ĉ = ŵ′′ ∧ c = ŷ,

and thus
2y ≤ w′′ + c ≤ x, and (1− ε)x̂′ ≤ 2ŷ,

as desired.

Next, to verify condition (U) from Definition 4.3, let x′ � x in Cu(A), let k ∈ N
with k ≥ 1, and let ε ∈ (0, 1). We need to find z ∈ S such that

z ≤ x, (1− ε)kẑ ≤ x̂, and x′ ≤ kz.
Set s := (1 − ε)−1 1

k . If s ≥ 1 (that is, if (1 − ε)k ≤ 1), then we can use z := x.
Thus, we may assume that s < 1. For f ∈ L(F (Cu(A))), let α(f) ∈ Cu(A) be as

in Theorem 2.4, hence α̂(f) = f . Set

z := x ∧ α (sx̂) .

Then z ≤ x. Further, using that s < 1, and using [APRT22, Theorem 6.12], we
have

ẑ = x̂ ∧ sx̂ = sx̂ =
(1− ε)−1

k
x̂

and thus (1− ε)kẑ = x̂.
Finally, let us verify that x′ ≤ kz. In fact we will see that x ≤ kz. Since Cu(A)

is inf-semilattice ordered, we have

kz = k
(
x ∧ α(sx̂)

)
=

k∧

i=0

(
ix+ (k − i)α(sx̂)

)
.

Clearly x ≤ ix + (k − i)α(sx̂) when i > 0. For i = 0, first note that ks − 1 > 0
and therefore x̂ ≤ ∞(ks− 1)x̂, which allows us to apply the partial additivity of α
stated in Theorem 2.4. Hence, we get

x ≤ x+ α
(
(ks− 1)x̂

)
= α

(
x̂+ (ks− 1)x̂

)
= α(ksx̂) = kα(sx̂),

and thus x ≤ kz, as desired. �

Proposition 4.11. Let A be a simple, unital, non-elementary C∗-algebra with a
unique normalized quasitrace. Then Cu(A) is functionally divisible.

Proof. By assumption, there exists a unique functional λ : Cu(A)→ [0,∞] satisfy-
ing λ([1]) = 1. Note that any two elements x, y ∈ Cu(A) satisfy x̂ ≤ ŷ if and only
if λ(x) ≤ λ(y).

We first verify condition (iii) in Proposition 4.5, which then implies that Cu(A)
satisfies condition (L) in Definition 4.3. Let x′ � x in Cu(A), and let ε ∈ (0, 1).
We need to find y ∈ Cu(A) such that

2y ≤ x, and (1− ε)λ(x′) ≤ 2λ(y).

If x′ = 0, then we can use y = 0. Therefore, we may from now on assume that
x′ 6= 0. Then λ(x′) ∈ (0,∞). Since A is non-elementary, we can pick v ∈ Cu(A)
such that λ(v) = 1

2λ(x′). We have

(1− ε)1

2
λ(x′) <

1

2
λ(x′) ≤ λ(x), λ(v).
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Using that Cu(A) satisfies Edwards’ condition for λ (see Theorem 4.7 and Re-
mark 4.2(3) in [Thi20], and [APRT21]), we obtain w ∈ Cu(A) such that

(1− ε)1

2
λ(x′) < λ(w), and w ≤ v, x.

Choose w′′, w′ ∈ Cu(A) such that

(1− ε)1

2
λ(x′) < λ(w′′), and w′′ � w′ � w.

Applying (O5) for w′′ � w′ ≤ x, we obtain c ∈ Cu(A) such that

w′′ + c ≤ x ≤ w′ + c.

Using that λ(x′) ≤ λ(x) and λ(w′) ≤ λ(w) ≤ λ(v) = 1
2λ(x′), we get

1

2
λ(x′) = λ(x′)− 1

2
λ(x′) ≤ λ(x)− λ(w′) ≤ λ(c).

Then

(1− ε)1

2
λ(x′) < λ(w′′), and (1− ε)1

2
λ(x′) <

1

2
λ(x′) ≤ λ(c).

Applying Edwards’ condition again, we obtain y ∈ Cu(A) such that

(1− ε)1

2
λ(x′) < λ(y), and y ≤ w′′, c.

Then 2y ≤ w′′ + c ≤ x. Thus y has the desired properties.

Next, to verify condition (U) of Definition 4.3, let x′ � x in Cu(A), let k ∈ N
with k ≥ 1, and let ε ∈ (0, 1). We need to find z ∈ Cu(A) such that

z ≤ x, (1− ε)kλ(z) ≤ λ(x), and x′ ≤ kz.
Choose δ > 0 such that

1 + (2k − 1)δ ≤ (1− ε)−1.
Then pick v′′, v′, v ∈ Cu(A) such that

x′ � v′′ � v′ � v � x, and λ(v) ≤ (1 + δ)λ(v′′).

We have already verified condition (L) of Definition 4.3. Applied for v′ � v, for k
and for δ

2 , we obtain y ∈ Cu(A) such that

ky ≤ v, and

(
1− δ

2

)
λ(v′) ≤ kλ(y).

By Proposition 2.3(i), we have (1 − δ)v̂′′ � (1 − δ
2 )v̂′ in Lsc(F (Cu(A))), which

allows us to choose y′ ∈ Cu(A) such that

y′ � y, and (1− δ)λ(v′′) ≤ kλ(y′).

Applying Lemma 2.1 for ky ≤ v and y′ � y, we obtain z ∈ Cu(A) such that

(k − 1)y′ + z ≤ v ≤ (k − 1)y + z, and v ≤ kz.
Using that λ(y′) is finite, we get

kλ(z) ≤ kλ(v)− (k − 1)kλ(y′)

≤ k(1 + δ)λ(v′′)− (k − 1)(1− δ)λ(v′′)

= (1 + (2k − 1)δ)λ(v′′) ≤ (1− ε)−1λ(v′′),

and thus
(1− ε)kλ(z) ≤ λ(v′′) ≤ λ(x).

We further have
z ≤ v ≤ x, and x′ ≤ v ≤ kz,

which shows that z has the claimed properties. �
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5. Pure C*-algebras

This section is devoted to proving Theorems A and B. We actually show that a
C∗-algebra is pure if, and only if, it has controlled comparison and is functionally
divisible; if, and only if, it is (m,n)-pure for some m and n. Building on the results
from Section 4 concerning automatic functional divisibility, we show that a C∗-
algebra with controlled comparison is pure if it is either nowhere scattered with
real rank zero or stable rank one, or also if it is simple, unital, non-elementary with
a unique normalized quasitrace.

Definition 5.1. Given m,n ∈ N, we say that a Cu-semigroup is (m,n)-pure if it
has m-comparison and is n-almost divisible. We say that a Cu-semigroup is pure
if it is (0, 0)-pure.

A C∗-algebra is (m,n)-pure if its Cuntz semigroup is. Similarly, a C∗-algebra is
pure if it is (0, 0)-pure.

Proposition 5.2. Every Z-stable C∗-algebra is pure. Every pure C∗-algebra has
the Global Glimm Property and strict comparison (of positive elements by qua-
sitraces).

Proof. Let A be a Z-stable C∗-algebra. Then the (classical, uncomplete) Cuntz
semigroup W (A) is almost unperforated by [Rør04, Theorem 4.5]. Further, by
[APT11, Theorem 5.35], for every x ∈W (A) and every k ≥ 1 there exists y ∈W (A)
such that ky ≤ x ≤ (k+1)y. Using that W (A) is order-dense in Cu(A) (see [APT18,
Theorem 3.2.8]), it follows that Cu(A) is almost unperforated and almost divisible
(see also Paragraph 4.2), and thus pure.

By definition, every pure C∗-algebra is almost divisible, and therefore (2, ω)-
divisible, which by [TV23, Theorem 3.6] is equivalent to the Global Glimm Property.
Further, every pure C∗-algebra has 0-comparison, and thus enjoys strict comparison
as noted in Paragraph 3.4. �

One can ask whether, for Cu-semigroups, (0, 0)-pureness agrees with some sort
of tensorial absorption. This was explored in [APT18], together with an extensive
analysis of the tensor product in the category Cu.

Theorem 5.3 ([APT18, Theorem 7.3.11]). A Cu-semigroup S is pure if and only
if S ∼= Cu(Z)⊗ S.

If the Cuntz semigroup of a C∗-algebra A is isomorphic to that of Z⊗A, then A
is clearly pure. In the proof of [Tom11, Theorem 1.2], Toms shows that the converse
holds for simple C∗-algebras. (See also [APP18, Section 7].) The following question
is thus pertinent:

Question 5.4. Let A be a pure C∗-algebra. Is Cu(A) ∼= Cu(Z ⊗A)?

We start with an important technical result, which generalizes some of the Cu-
semigroup techniques underlying Proposition 6.4 and Theorem 10.5 in [APRT24].

Proposition 5.5. Let (S,Σ) be a scaled Cu-semigroup satisfying (O5). Assume
that (S,Σ) has controlled comparison and is functionally divisible. Then S is pure.

Proof. We first prove that S is almost unperforated. Let x, y ∈ S, n ∈ N, and
assume that (n + 1)x ≤ ny. We must show that x ≤ y. This is equivalent to
showing that x′ ≤ y for any x′ ∈ S such that x′ � x.

Therefore, let x′ ∈ S with x′ � x, and pick x′′ ∈ S such that x′ � x′′ � x.
Since we have x̂ ≤ n

n+1 ŷ, we may choose γ, γ′ such that n
n+1 < γ < γ′ < 1. Using

Proposition 2.3(i) one gets x̂′′ � γŷ, which allows us to pick y′ ∈ S such that

x̂′′ � γŷ′, and y′ � y.
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Take y′′ such that y′ � y′′ � y, and choose d ∈ N such that x′′, y′′ ∈ Σ(d). Since
(S,Σ) has controlled comparison, we obtain N = N(γ′, d) ∈ N such that

v̂ ≤ γ′ŵ implies v ≤N w, for all v, w ∈ Σ(d).

Pick ε > 0 such that γ ≤ (1 − ε)2γ′. Applying condition (U) in Definition 4.3
for x′ � x′′ and N , we obtain v ∈ S satisfying

v ≤ x′′, (1− ε)Nv̂ ≤ x̂′′, and x′ ≤ Nv.
Similarly, applying condition (L) in Definition 4.3 for y′ � y′′ and N , one gets
w ∈ S such that

Nw ≤ y′′, and (1− ε)ŷ′ ≤ Nŵ.
Combining the functional inequalities for v̂, ŵ and using that x̂′′ ≤ γŷ′ at the

second step, we have

(1− ε)2Nv̂ ≤ (1− ε)x̂′′ ≤ (1− ε)γŷ′ ≤ γNŵ ≤ (1− ε)2Nγ′ŵ,
which implies that v̂ ≤ γ′ŵ.

Note that both v and w belong to Σ(d), since v ≤ x′′, Nw ≤ y′′, and x′′, y′′ ∈ Σ(d).
It follows that v ≤N w, and thus

x′ ≤ Nv ≤ Nw ≤ y′′ ≤ y,
as desired.

To show that S is almost divisible, let x′ � x in S, and let k ∈ N. Pick ε ∈ (0, 1)
such that (1− ε)−1k < k+ 1. Applying condition (L) in Definition 4.3 for x′′ � x,
and for k and ε, we obtain y ∈ S such that

ky ≤ x, and (1− ε)x̂′ ≤ kŷ.
It follows that x′ ≤ ∞y; see, for example, [APRT22, Lemma 6.6(iii)]. Since
(1 − ε)−1k < k + 1, we also have that λ(x′) < λ((k + 1)y) for every functional
normalized at y. Since S is almost unperforated, we obtain x′ ≤ (k + 1)y by
[ERS11, Proposition 6.2]. �

Remark 5.6. It is possible to adapt the proof of Proposition 5.5 so that instead
of (U) it suffices to assume the condition (U2m) from Remark 4.6 for all m. Namely,
the following stronger form of Proposition 5.5 is available: If a scaled Cu-semigroup
(S,Σ) satisfies (O5) and has controlled comparison, and for every x′ � x in S and
every ε ∈ (0, 1) there exist y, z ∈ S such that

2y ≤ x, (1− ε)x̂′ ≤ 2ŷ, z ≤ x, (1− ε)2ẑ ≤ x̂, and x′ ≤ 2z,

then S is pure.

Theorem 5.7. Given a C∗-algebra A, the following statements are equivalent:

(i) A is pure, that is, A has strict comparison and is almost divisible.
(ii) A is (m,n)-pure for some m,n ∈ N.

(iii) A has controlled comparison and is functionally divisible.

Proof. It is clear that (i) implies (ii). Further, (ii) implies (iii) since m-comparison
implies controlled comparison by Proposition 3.7, and n-almost divisibility implies
functional divisibility by Proposition 4.9. Finally, (iii) implies (i) by Proposition 5.5
since the Cuntz semigroup of every C∗-algebra satisfies (O5). �

Remark 5.8. If follows from Theorem 5.7 (see also Paragraph 4.2) that A is (m,n)-
pure if, and only if, Cu(A) has m-comparison and is n-almost divisible in the sense
of [Win12, Definition 3.5], that is, given x ∈ Cu(A) and k ≥ 1 , there is y ∈ Cu(A)
such that ky ≤ x ≤ (n+ 1)(k + 1)y.
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Remark 5.9. Theorem 5.7 shows that the combination of weak forms of comparison
and divisibility implies strong forms of comparison and divisibility. One may wonder
if this already holds individually for comparison and divisibility.

For the comparison properties, this is not the case. Indeed, there exist C∗-
algebras that have controlled comparison (or even m-comparison for some m ≥ 1)
that do not have 0-comparison. For example, if X = [0, 1]5 is the five-dimensional
cube, then C(X) has nuclear dimension at most five, and therefore has 5-comparison
by [Rob11, Theorem 1.3], but it does not have 0-comparison since the radius of
comparison is at least one by [EN13, Theorem 1.1].

Similarly, we expect that the answer to the following question is positive.

Question 5.10. Does there exist a C∗-algebra that is functionally divisible (or even
n-almost divisible for some n) but not almost divisible?

Proposition 5.11. Let A be a functionally divisible C∗-algebra. Then the following
statements are equivalent:

(i) A is pure.
(ii) A has strict comparison (of positive elements by quasitraces).
(iii) A has m-comparison for some m.
(iv) A has controlled comparison.

Proof. By definition, pureness implies 0-comparison, which is equivalent to strict
comparison by Paragraph 3.4. This shows that (i) implies (ii), which in turn im-
plies (iii). Further, (iii) implies (iv) by Proposition 3.7. Finally, (iv) implies (i) by
Theorem 5.7. �

Combining Proposition 5.11 with the results proving functional divisibility from
Section 4, we can now verify pureness in various settings:

Theorem 5.12. Let A be a nowhere scattered C∗-algebra that has real rank zero
or stable rank one. Assume that A has controlled comparison (for example, m-
comparison for some m). Then A is pure.

Proof. If A is nowhere scattered and has real rank zero, then A is almost divisible
as noted in Paragraph 4.2. If A is nowhere scattered and has stable rank one,
then A is functionally divisible by Proposition 4.10. Now, in both cases the result
follows from Proposition 5.11. �

Theorem 5.13. Let A be a simple, unital, non-elementary C∗-algebra with a
unique normalized quasitrace. Assume that A has controlled comparison (for ex-
ample, m-comparison for some m). Then A is pure.

Proof. By Proposition 4.11, Cu(A) is functionally divisible. Now, the result follows
from Proposition 5.11. �

Example 5.14. Let G be an infinite, discrete group such that the reduced group
C∗-algebra C∗red(G) is simple. Then C∗red(G) is simple, unital, non-elementary and
has a unique trace by [BKKO17, Corollary 4.3]. If G is exact, then quasitraces on
C∗red(G) are traces by Haagerup’s theorem ([Haa14]), and it follows that C∗red(G)
has a unique normalized quasitrace. In this case, Theorem 5.13 applies, and it
follows that C∗red(G) is pure if, and only if, it has controlled comparison.

It is a major open problem to determine if for F2, the free group on two genera-
tors, the reduced group C∗-algebra C∗red(F2) has strict comparison (equivalently, if
it is pure). Since C∗red(F2) is exact and simple, by Theorem 5.13 it suffices to show
that C∗red(F2) has controlled comparison (for example, m-comparison for some m).

For non-exact groups, we ask the following question:
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Question 5.15. Do simple reduced group C∗-algebras have a unique normalized
quasitrace?

Example 5.16. In his groundbreaking work on regularity properties for simple, nu-
clear C∗-algebras, Villadsen constructed examples of such algebras that fail strict
comparison, and consequently are not pure. The algebras of ‘first type’ from [Vil98]
have stable rank one (but possibly a complicated trace simplex), while the algebras
of ‘second type’ from [Vil99] have higher stable rank but a unique tracial state (and
consequently also a unique quasitracial state). Applying Propositions 4.10 and 4.11,
we see that both types of Villadsen algebras are automatically functionally divisible.

We deduce that Villadsen algebras that fail strict comparison also fail the much
weaker property of controlled comparison (and in particular, they do not have m-
comparison for any m).

6. C*-algebras with the Global Glimm Property and finite nuclear
dimension

In this section, we prove Theorem D. For this, we use that a C∗-algebra has
the Global Glimm Property precisely when its Cuntz semigroup is (2, ω)-divisible;
see [TV23, Theorem 3.6]. We then verify a particular statement of the non-simple
Toms-Winter conjecture for separable, locally subhomogeneous C∗-algebras with
stable rank one and topological dimension zero, which yields Theorem E.

The next result is a variation of [RT17, Proposition 3.2(ii)] for nowhere scat-
tered C∗-algebras. This has essentially appeared in the argument of [Vil23, Propo-
sition 4.1]. We use dimnuc(A) to denote the nuclear dimension of A.

Lemma 6.1. Let m ∈ N, and let A be a nowhere scattered C∗-algebra satisfying
dimnuc(A) ≤ m. Then for every x′ � x in Cu(A) and every k ∈ N with k ≥ 1,
there exists y ∈ Cu(A) such that

y � x, and x′ � ky � 2(m+ 1)x.

Proof. By [TV24a, Proposition 4.12] and [WZ10, Proposition 2.3], A⊗K is nowhere
scattered and of nuclear dimension at mostm. We may thus assume that A is stable.

Choose a ∈ A+ and ε > 0 such that

x′ � [(a− ε)+], and [a]� x.

Since A is nowhere scattered, the hereditary sub-C∗-algebra aAa has no finite-
dimensional representations, by [TV24a, Theorem 3.1]. It also has nuclear di-
mension at most m (by [WZ10, Proposition 2.5]), whence we can apply [RT17,
Proposition 3.2(ii)] for k (and for aAa, a and ε) to obtain b ∈ aAa+ such that

[(a− ε)+] ≤ k[b] ≤ 2(m+ 1)[a].

Then y := [b] ∈ Cu(A) has the desired properties. �
The next two results are inspired by [RT17, Lemma 3.4].

Lemma 6.2. Let m ∈ N, and let A be a C∗-algebra with the Global Glimm Property
and with dimnuc(A) ≤ m. Set L := 14m2 + 6. Then for every x′ � x in Cu(A),
there exist y0, y1 ∈ Cu(A) such that

y0 + y1 ≤ x, and x′ � Ly0, Ly1.

Proof. Let x′ � x in Cu(A). We claim that there exists a separable sub-C∗-algebra
B ⊆ A such that

(i) B has the Global Glimm Property and dimnuc(B) ≤ m;
(ii) the induced inclusion Cu(ι) : Cu(B)→ Cu(A) is an order-embedding;
(iii) x′ and x are in the image of Cu(ι).
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Indeed, we know from Proposition 2.3(iii) and 2.6 in [WZ10] that the property
‘dimnuc( ) ≤ m’ is separably inheritable. Using the same methods from [TV21,
Section 5], one can also see that the Global Glimm Property satisfies the same
condition. Now [TV21, Proposition 6.1] allows us to choose a sub-C∗-algebra B
with the required conditions.

Identifying Cu(B) with its image in Cu(A), we view x′, x as elements in Cu(B),
and it suffices to find y0, y1 ∈ Cu(B) with y0+y1 ≤ x and x′ � Ly0, Ly1. Therefore
we may assume that A is separable.

Choose x′′ ∈ Cu(A) such that x′ � x′′ � x. Since A has the Global Glimm
Property, Cu(A) is (2, ω)-divisible by [TV23, Theorem 3.6]. Applied for x′′ and x,
we obtain c ∈ Cu(A) such that

2c ≤ x, and x′′ �∞c.
Choose c′ ∈ Cu(A) such that x′′ ≤ ∞c′ and c′ � c. Using Lemma 2.1 with

c′ � c and 2c ≤ x, we find d ∈ Cu(A) such that

c′ + d ≤ x ≤ 2d.

Set e := d ∧∞c′, which is possible by Theorem 2.2. Using at the first step that
x′′ ≤ ∞c′ and x′′ ≤ x ≤ 2d, we get

x′′ ≤ (2d) ∧∞c′ = 2(d ∧∞c′) = 2e.

Choose e′′, e′ ∈ Cu(A) such that

x′ � 2e′′, and e′′ � e′ � e.

Applying Lemma 6.1 for k = 2m + 3 and e′′ � e′, we obtain f ∈ Cu(A) such
that

(1) f � e′, and e′′ � (2m+ 3)f � 2(m+ 1)e′.

Choose f ′ ∈ Cu(A) such that

e′′ � (2m+ 3)f ′, and f ′ � f.

Applying (O5) for f ′ � f ≤ e′, we obtain g ∈ Cu(A) such that

(2) f ′ + g ≤ e′ ≤ f + g.

Set y0 := f ′ and y1 := g + c′. Then

y0 + y1 = f ′ + g + c′ ≤ e′ + c′ ≤ d+ c′ ≤ x.
Further,

x′ � 2e′′ � 2(2m+ 3)f ′ = (4m+ 6)y0 ≤ (14m2 + 6)y0 = Ly0.

Multiplying (2) by 2m+ 3 at the first step, and using (1) at the second step, we
deduce

(3) (2m+ 3)e′ ≤ (2m+ 3)f + (2m+ 3)g ≤ (2m+ 1)e′ + (2m+ 3)g.

We claim that ê′ ≤ (2m+ 3)ŷ1. To show this, let λ ∈ F (S). We distinguish two
cases:

First, assume that λ(c′) <∞. Using that e′ � e ≤ ∞c′, it follows that λ(e′) <∞
which allows, in (3), to cancel after applying λ to get

λ(e′) ≤ 2λ(e′) ≤ (2m+ 3)λ(g) ≤ (2m+ 3)λ(y1).

On the other hand, if λ(c′) =∞, then

λ(e′) ≤ ∞ = (2m+ 3)λ(c′) ≤ (2m+ 3)λ(y1).

Since Cu(A) has m-comparison (see Remarks 3.2), we get

e′ ≤ (m+ 1)(2m+ 3)y1.
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Using that x′ � 2e′, one has

x′ � 2e′ ≤ 2(m+ 1)(2m+ 3)y1 = 2(2m2 + 5m+ 3)y1 ≤ (14m2 + 6)y1 = Ly1.

This shows that y0 and y1 have the desired properties. �

Lemma 6.3. Given m, l ∈ N, set L := (14m2 + 6)l. Then, for every C∗-algebra A
with the Global Glimm Property and with dimnuc(A) ≤ m, and for every x′ � x in
Cu(A), there exist y0, . . . , yl ∈ Cu(A) such that

y0 + . . .+ yl ≤ x, and x′ � Lyj

for j = 0, . . . , l.

Proof. Fix some m ∈ N, and let A be a C∗-algebra that has the Global Glimm
Property and with dimnuc(A) ≤ m. Write L(m, l) := (14m2 + 6)l for l ≥ 0.

By induction over l, we verify that the following statement holds:

(Dl) For every x′ � x in Cu(A) there exist y0, . . . , yl ∈ Cu(A) such that

y0 + . . .+ yl ≤ x, and x′ � L(m, l)yj

for j = 0, . . . , l.

To verify (D0), given x′ � x in Cu(A) we simply use y0 = x. Further, (D1)
was shown in Lemma 6.2. Now let l ∈ N with l ≥ 2, and assume that we have
proved (Dl−1). To verify (Dl), let x′ � x in Cu(A). Applying (Dl−1) for x′ � x,
we get z0, . . . , zl−1 ∈ Cu(A) such that

z0 + . . .+ zl−1 ≤ x, and x′ � L(m, l − 1)zj

for j = 0, . . . , l − 1.
Set yj := zj for j = 0, . . . , l − 2, and take z′l−1 ∈ Cu(A) such that

z′l−1 � zl−1, and x′ � L(m, l − 1)z′l−1.

Applying (D1) for z′l−1 � zl−1, we find yl−1, yl ∈ Cu(A) satisfying

yl−1 + yl ≤ zl−1, and z′l−1 � L(m, 1)yl−1, L(m, 1)yl.

Then y0 + . . .+ yl ≤ x, and

x′ � L(m, l − 1)zj ≤ L(m, l)zj = L(m, l)yj

for j = 0, . . . , l − 2 and

x′ � L(m, l − 1)z′l−1 � L(m, l − 1)L(m, 1)yj = L(m, l)yj

for j = l − 1, l. This shows that y0, . . . , yl have the desired properties. �

Proposition 6.4. Given m ∈ N, there exists N = N(m) with the following prop-
erty: For every C∗-algebra A with the Global Glimm Property and dimnuc(A) ≤ m,
the Cuntz semigroup Cu(A) is N -almost divisible.

Proof. The proof is inspired by that of [RT17, Lemma 3.6]. Let L = L(m,m) be the
constant obtained from Lemma 6.3. We verify the statement for N := 3L(m+ 1).

Let A be a C∗-algebra with the Global Glimm Property and dimnuc(A) ≤ m.
To show that Cu(A) is N -almost divisible, let x′ � x in Cu(A), and let k ≥ 1. We
need to find y ∈ Cu(A) such that

ky ≤ x, and x′ ≤ (k + 1)(N + 1)y.

Applying Lemma 6.1 for 3kL(m+1) and x′ � x, we obtain c ∈ Cu(A) such that

c� x, and x′ � 3kL(m+ 1)c� 2(m+ 1)x.

Choose c′ ∈ Cu(A) such that

x′ � 3kL(m+ 1)c′, and c′ � c.
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Now choose x′′ ∈ Cu(A) such that

3kL(m+ 1)c′ � 2(m+ 1)x′′, and x′′ � x.

Applying Lemma 6.3 for x′′ � x, we obtain y0, . . . , ym such that

y0 + . . .+ ym ≤ x, and x′′ � Lyj for j = 0, . . . ,m.

For each j, we obtain

3kL(m+ 1)c′ � 2(m+ 1)x′′ � 2L(m+ 1)yj .

and thus kc′ <s yj .
As noted in Remarks 3.2, A has m-comparison, and we get

kc′ ≤ y0 + . . .+ ym ≤ x.
Further,

x′ � 3kL(m+ 1)c′ ≤ 3(k + 1)L(m+ 1)c′ = (k + 1)Nc′ ≤ (k + 1)(N + 1)c′,

which shows that y = c′ has the desired properties. �
Theorem 6.5. Every C∗-algebra with the Global Glimm Property and finite nuclear
dimension is pure.

Proof. Let m ∈ N, and let A be a C∗-algebra with the Global Glimm Property and
dimnuc(A) ≤ m. Then A has m-comparison, as noted in Remarks 3.2. Further,
by Proposition 6.4, we know that A is n-almost divisible for some n. Hence, A is
(m,n)-pure, and the result now follows from Theorem 5.7. �
Theorem 6.6. Let A be a separable, locally subhomogeneous C∗-algebra that has
stable rank one and topological dimension zero. Then the following statements are
equivalent:

(1) A has the Global Glimm Property and finite nuclear dimension.
(2) A is Z-stable.

(3a) A is pure.
(3b) A is nowhere scattered and has strict comparison of positive elements.

Proof. By Theorem 6.5, (1) implies (3a). By Proposition 5.2, (2) implies (3a),
and (3a) implies (3b). By Theorem 5.12, (3b) implies (3a).

Every locally subhomogeneous C∗-algebra has locally finite nuclear dimension by
[NW06]. Since locally subhomogeneous C∗-algebras have no simple, purely infinite
ideal-quotients, it follows from [RT17, Theorem 7.10] that (3a) implies (2).

Finally, by [ENST20, Theorem A], every Z-stable, locally subhomogeneous C∗-
algebra has decomposition rank at most two, and therefore finite nuclear dimension.
Further, by Proposition 5.2, Z-stability implies the Global Glimm Property. This
shows that (2) implies (1). �
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