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IDEALS, QUOTIENTS, AND CONTINUITY OF THE CUNTZ
SEMIGROUP FOR RINGS

RAMON ANTOINE, PERE ARA, JOAN BOSA, FRANCESC PERERA,
AND EDUARD VILALTA

Abstract. In this paper we explore which part of the ideal lattice of a general
ring is parametrized by its Cuntz semigroup S(R) and its ambient semigroup
Λ(R). We identify these classes of ideals as the quasipure ideals (a generalization
of pure ideals) in the case of S(R), and what we term decomposable ideals in the
case of Λ(R). For an (s-)unital ring R, the latter class exhausts all ideals of the
ring. We prove that these constructions behave well with respect to quotients.
In order to study the passage to inductive limits, we introduce the classes of
dense and left normal rings. We show that S(R) is an abstract Cu-semigroup
whenever R is left normal and, for such rings, the assignment R 7→ S(R) is
continuous. We prove a parallel result for Λ(R) whenever R is a dense ring.

1. Introduction

The Cuntz semigroup of a not necessarily unital ring R, denoted by S(R), was
introduced and studied in [1]. In the unital case, the main idea behind its definition
consists of equipping the class of countably generated projective modules with
an equivalence relation, generally weaker than isomorphism. This semigroup is
undoubtedly related to V∗(R), the monoid of isomorphism classes of such modules,
and may be thought of as a quotient of the latter that needs to be handled more
delicately. A significant difference between these objects is, however, their order
structure. Whilst V∗(R) is algebraically ordered (that is, x ≤ y if there is z such
that x+ z = y), this is not the case for S(R) except in some particular cases (for
example, if R is a unit-regular ring).
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The study of countably generated projective modules over a ring has already a
long tradition. On the one hand, as the monoid V∗(R) is an isomorphism invariant,
it is interesting to investigate its structure and how it may help distinguish rings
in a prescribed class. For example, a complete description of countably generated
projective modules over semilocal noetherian rings was given in [19] (see also
[21] and [20]); for other classes of rings, such as von Neumann regular rings, an
analysis of their countably generated projective modules was carried out in [8] (see
also the references therein). On the other hand, there is also a close connection
between projective modules and the class of pure ideals of the ring via the trace
ideal construction, in the sense that any pure right ideal arises in this way and,
if the ring is commutative, then the trace of any projective module yields a pure
ideal. The situation is different in the noncommutative setting (see, e.g. [22]). A
much deeper study of idempotent ideals arising as traces of countably generated
projective modules was carried out in [21], where a characterization of when an
ideal is the trace ideal of a countably generated projective module was given. (See
also Section 4.)

The definition of S(R) given in [1] was partly inspired by the construction carried
out in [12] for the class of countably generated Hilbert modules over a C*-algebra
A (that is, a norm-closed, self-adjoint subalgebra of the algebra of bounded lin-
ear operators on a complex Hilbert space), which yields the Cuntz semigroup
Cu(A). This semigroup encodes a great deal of information of the algebra. For
example, as proved in [11], all closed two-sided ideals and quotients are witnessed
by Cu(A) in the sense that, for any such ideal I of A, one has that Cu(I) is an
ideal of Cu(A) and Cu(A/I) ∼= Cu(A)/Cu(I) (with suitable notions of ideal and
quotients for these semigroups). This is in stark contrast with the situation for
the semigroup V(A) of isomorphism classes of finitely generated projective mod-
ules, where the isomorphism V(A/I) ∼= V(A)/V(I) holds only for special classes
of C*-algebras. In a different direction, it also bears recalling that, for the very
large class of so-called classifiable algebras, a suitable interpretation of the Cuntz
semigroup defines a functor equivalent to the Elliott invariant, and thus it contains
the same information as (topological) K-theory and traces; see [2].

The Cuntz semigroup of a C*-algebra belongs to an abstract category of semi-
groups called Cu, in such a way that the assignment A 7→ Cu(A) is continuous
(see [12, 3]), a particularly relevant fact since models for the class of classifiable
algebras come in the form of an inductive limit decomposition.

Besides the picture of S(R) involving countably generated projective modules,
we also provide in [1] a description of this semigroup based on (sequences of)
elements in arbitrary matrices over the ring. More explicitly, for elements x, y ∈ R,
one writes x ≾1 y provided x = rys, for some r, s ∈ R. Then, the semigroup S(R)
may be seen as a subsemigroup of a larger object, termed Λ(R), which is a quotient
of the set of all increasing sequences of elements in matrices over R with respect
to the antisymmetrization of ≾1. In this picture, the semigroup S(R) is then built
out of the latter using a particular type of sequences very closely related to a
description of countably generated projective modules as inductive limits of free
modules; see [28], Section 2, and also [1, Proposition 2.13] for more details.
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This paper has two main goals. First, for any ring R, we explore the structure
of the semigroups S(R) and Λ(R) and their relation with the ideal lattice of R
and also to its quotients. (See Sections 3, 4, 5 and 6). Secondly, we study when
S(R) and Λ(R) are in Cu, and the continuity of S(–) and Λ(–) as functors, with
applications to the functor SCu(–) introduced in [1], where SCu(R) = (Λ(R), S(R))
for a weakly s-unital ring R. (See Sections 7, 8 and 9.)

When analysing the ideal lattice of Λ(R) and S(R), we are led to introduce the
notions of decomposable and quasipure ideals, respectively. In short, an ideal I of
a ring R is decomposable if, for any x ∈M∞(I), there is y ∈M∞(I) with x ≾1 y;
see Paragraph 3.3. This is a notion very much devised for general rings, as any
two-sided ideal in a unital (or even weakly s-unital) ring is automatically decom-
posable. Quasipure ideals, on the other hand, are decomposable ideals where the
comparison relation above satisfies an additional requirement; see Paragraph 4.2.
As it turns out, an ideal of a unital ring is quasipure precisely when it is the
trace ideal of a projective right module; see Lemma 4.5. We show that the lattice
Lat(Λ(R)) of order-ideals of Λ(R) captures all decomposable ideals of R, and that
the lattice of order-ideals Lat(S(R)) of the smaller semigroup S(R) is still large
enough to witness the two-sided quasipure ideals of R. More precisely, denot-
ing by Latd(R) the lattice of decomposable ideals and by Latqp(R) the lattice of
quasipure ideals, we prove:

Theorem A (cf. 3.7, 4.10, 4.12 and 5.3). Let R be any ring. Then

(i) There are lattice isomorphisms

Latd(R) ∼= Lat(Λ(R)) and Latqp(R) ∼= Lat(S(R)).

(ii) The lattice Latqp(R) is a complete sublattice (and, as a partially ordered set,
a retract of Latd(R)).

(iii) Given a decomposable ideal I of R, we have Λ(R)/ΛR(I) ∼= Λ(R/I). If,
furthermore, I is quasipure, then S(R)/S(I) ∼= S(R/I).

As the structures of these two semigroups are intimately related we consider,
for any ring R, the pair SQ(R) := (Λ(R), S(R)) as a more general version of the
pair SCu(R) defined in [1] for weakly s-unital rings. We also define an abstract
category SQ in which each pair SQ(R) lies. Furthermore, it turns out that the
assignment Rings → SQ is functorial and the study of this functor is key in order
to understand the invariant SQ. In the language of ideals in SQ(R) (studied and
developed in Section 6) we show:

Theorem B (6.7). Let R be any ring. Then, the map

Latd(R) // Lat (SQ(R)))

I � // (ΛR(I), S(I))

is a lattice isomorphism, and I is quasipure if and only if S(I) is cofinal in ΛR(I).

It was shown in [1, Proposition 2.13] that Λ(R) is an object in the category Cu
alluded to above whenever R is a weakly s-unital ring. However, the question of
whether this remained true for more general classes of rings or even whether S(R)
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was an object of Cu in general was left unanswered. We partly clarify the situa-
tion here by introducing the classes of dense rings and left normal rings. Loosely
speaking, the first ones are those for which the relation ≾1 is dense, whilst the
second ones are modelled after the condition of normality for topological spaces.
Notably, any idempotent ring is dense (hence also any weakly s-unital ring). The
class of left normal rings is also pleasantly large, including all (weakly) semihered-
itary rings (hence all von Neumann regular rings), all SAW*-algebras closed under
the passage to matrix rings, and all ultramatricial algebras. As a byproduct, these
definitions turn out to be sufficient to show continuity. We prove:

Theorem C (cf. 7.8 and 8.2). Let R be any ring.

(i) If R is dense, then Λ(R) is an object of Cu, and the assignment R 7→ Λ(R)
is continuous when restricted to the class of dense rings.

(ii) If R is left normal, then S(R) is an object of Cu, and the assignment R 7→
S(R) is continuous when restricted to the class of left normal rings.

The functor SCu(–) (or the more general version SQ(–)) is not continuous in
general; see Example 9.2. However, as proved in Theorem 9.1, the abstract cate-
gory SCu admits general inductive limits, and we have:

Theorem D (9.4). Let ((Rλ)λ∈Ω, (ϕµ,λ)µ≥λ) be a direct system of dense, left nor-
mal rings. Then limSCu(Rλ) ∼= SCu(limRλ).

The class of weakly semihereditary rings is closed under direct limits, as observed
in [10]. In particular we obtain from Theorems C and D that the assignments
R 7→ S(R) and R 7→ SCu(R) define continuous functors from the category of
(unital) weakly semihereditary rings to the categories Cu and SCu, respectively.

2. Preliminaries

In this section we recall the basic notions that will be needed throughout the
paper, many of them already discussed or introduced in [1].

Given a ring R, we denote by M∞(R) the ring of infinite matrices with only
a finite number of nonzero entries. Given x = (xi,j)i,j ∈ M∞(R), we say that
y ∈ Mn(R) is a finite representative of x if y = (xi,j)i,j≤n and xi,j = 0 whenever
i > n or j > n; see [1, Section 2]. There are three semigroups that play an
important role in the theory of Cuntz semigroups for rings. We define them below:

2.1 (The semigroups W(R), S(R), and Λ(R)). Let PoM denote the category of
positively ordered monoids. Morphisms in this category are those monoid maps
that preserve addition, order, and the zero element. We denote by PoM(M,N) the
set of PoM-morphisms between M and N . Recall that a monoid is a semigroup
with a neutral element.

Let R be a ring. Recall from [1, Paragraph 2.4] that R is said to be weakly
s-unital if for every n ≥ 1 and x ∈Mn(R) there exist elements s, t ∈Mn(R) such
that x = sxt.

Given two elements x, y in any ring R, we write x ≾1 y whenever x = syt
for some s, t ∈ R. Note that, if R is weakly s-unital, then x ≾1 x for every
x ∈M∞(R). We also write x ∼1 y provided x ≾1 y and y ≾1 x.
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Set W(R) =M∞(R)/∼1, and denote by [x] the class of x ∈M∞(R) with respect
to the relation ∼1. It is proved in [1, Lemma 2.6] that, if R is weakly s-unital,
then W(R) is a positively ordered abelian semigroup with order induced by ≾1,
addition given by [x] + [y] = [x ⊕ y], and neutral element [0]. Here, x ⊕ y is the
infinite matrix represented by the rectangular matrix

(
x 0
0 y

)
as in the comments

previous to this paragraph.
Now, for any ring R, denote by T (R) and S(R) the following sets

T (R) = {(xn) | xn ∈M∞(R) and xn ≾1 xn+1 for all n}, and

S(R) = {(xn) ∈ T (R) | xn = yn+1xn+1xn for some yn+1 for all n}.
Note that S(R) ⊆ T (R).

Given (xn), (yn) ∈ T (R), we write (xn) ≾ (yn) if for every n there exists m such
that xn ≾1 ym. We say that (xn) is equivalent to (yn), in symbols (xn) ∼ (yn), if
(xn) ≾ (yn) and (yn) ≾ (xn).

We define

Λ(R) := T (R)/∼, and S(R) := S(R)/∼,
and view S(R) ⊆ Λ(R).

It is proved in [1, Lemma 2.6, Paragraph 4.1] that S(R) and Λ(R) are positively
ordered semigroups, when equipped with the order induced by ≾ and the addition
induced by the componentwise diagonal sum, that is, [(xn)] + [(yn)] = [(xn⊕ yn)].

If the ring R is weakly s-unital, the semigroup W(R) determines Λ(R), in the
sense that Λ(R) ∼= Λσ(W(R)), the semigroup of countably generated intervals in
W(R) (see [1, Proposition 2.17], and also Paragraph 8.3).

The following notions will play an important role in the sequel.

2.2 (Auxiliary relations). Let (P,≤) be a partially ordered set. An auxiliary
relation on P is a binary relation ≺ stronger than ≤ (i.e. x ≺ y =⇒ x ≤ y for
x, y ∈ P ) such that, for any x′, x, y, y′ ∈ P with x′ ≤ x ≺ y ≤ y′, one has x′ ≺ y′.
If, further, P is also a monoid, the auxiliary relation is termed additive if 0 ≺ x
for any x ∈ P and if, whenever x1, x2, y1, y2 ∈ P satisfy x1 ≺ y1 and x2 ≺ y2, we
have x1 + x2 ≺ y1 + y2.

2.3 (The categories Cu and Q). Given a partially ordered set P where suprema of
increasing sequences exist, we write x≪ y whenever for every increasing sequence
(zn) in P such that y ≤ supn zn, there exists m such that x ≤ zm; see [18]. This
is an example of an auxiliary relation as defined above.

As introduced in [12], a positively ordered monoid S is an abstract Cu-semigroup
if it satisfies the following four conditions:

(O1) Every increasing sequence (xn) in S has a supremum supn xn ∈ S.
(O2) Every element x ∈ S is the supremum of a sequence (xn) such that xn ≪

xn+1 for all n. We say that (xn) is a rapidly increasing sequence.
(O3) If x′, x, y′, y ∈ S satisfy x′ ≪ x and y′ ≪ y then x′ + y′ ≪ x+ y.
(O4) If (xn) and (yn) are increasing sequences in S, then supn(xn + yn) =

supn xn + supn yn.
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The morphisms in this category, termed Cu-morphisms, are those semigroup maps
that preserve all the structure, that is, addition, the zero element, order, the
relation ≪, and suprema of increasing sequences. We denote by Cu(S, T ) the set
of Cu-morphisms between S and T .

The category Cu was introduced to establish a natural abstract framework to
study the Cuntz semigroup of C*-algebras. In fact, it was shown in [12] that,
for any C*-algebra A, the so-called Cuntz semigroup Cu(A) of A is an object of
Cu. This category has since then been analysed extensively; see [9, 3, 17] among
others.

The category Q was introduced in [4, Definition 4.1], and has as objects those
positively ordered semigroups S equipped with an additive auxiliary relation ≺
that satisfy axioms (O1) and (O4). We call these objects Q-semigroups. A mor-
phism between Q-semigroups is a monoid morphism that preserves the auxiliary
relation and suprema of increasing sequences. We refer to such morphisms as Q-
morphisms. One naturally sees the category Cu as a full subcategory of Q (with
≺=≪).

Remark 2.4. Given any ring R, the semigroups Λ(R) and S(R) are objects in
the category Q, with the auxiliary relation defined as follows: Given [(xn)], [(ym)]
in either Λ(R) or S(R), we write [(xn)] ≺ [(ym)] provided there is m such that
xn ≾1 ym for all n.

Further, using the construction of suprema in both Λ(R) and S(R) (see [1,
Proposition 2.13, Lemma 4.3]), it is easy to verify that the relation ≺ just defined
is in general stronger than the compact containment relation.

Note that, in case R is weakly s-unital, ≺ agrees with ≪ for the semigroup Λ(R)
and, in fact, Λ(R) is an abstract Cuntz semigroup. This fact will be subsumed in
Section 8. However, in general it is unclear whether the relations ≺ and ≪ coa-
lesce, and whether Λ(R) or S(R) are Cu-semigroups. The more exact relationship
between Λ(R) and S(R) will be explored in Section 6.

3. Decomposable ideals

In this section we introduce the notion of decomposable ideal in an arbitrary
ring; see Paragraph 3.3. In the case of unital or weakly s-unital rings, all ideals
are decomposable. We show in Theorem 3.7 that decomposable ideals form a
lattice, isomorphic to the lattice of ideals of the semigroup Λ(R).

3.1 (Ideals in semigroups). Let (P,≤) be a partially ordered set and X ⊆ P .
Recall that X is downward hereditary if, whenever x ≤ y in P with y ∈ X, one
has x ∈ X.

If S is a Q-semigroup, we say that an ideal of S is a downward hereditary
subsemigroup I which is closed under suprema of increasing sequences. This is in
line with the already existing notion of ideal for a Cu-semigroup; see [11] and also
[3, Section 5.1].

The set of ideals of a Q-semigroup S forms a lattice, which we denote by Lat(S).
Note that, for ideals I, J in S, we have I ∧ J = I ∩ J , whereas I ∨ J = ∩{K ∈
Lat(S) | K ⊃ I, J}. In the case that S is, furthermore, a Cu-semigroup, then one
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may describe I ∨ J as

I ∨ J = {sup an | an ≪ an+1 for all n, and an ≤ yn + zn, yn ∈ I, zn ∈ J},
as shown in [3, Paragraph 5.1.6].

We now study the relationship between the ideals of any ring R and the ideals
of the Q-semigroup Λ(R).

Lemma 3.2. Let R be a ring and let I be a two-sided ideal of R. Then

ΛR(I) := {[(xn)] ∈ Λ(R) | xn ∈M∞(I) ∀n ≥ 1}
is an ideal in Λ(R).

Moreover, if I is a weakly s-unital ring, then we may identify ΛR(I) with Λ(I).

Proof. Take (xn), (yn) ∈ T (R) such that (xn) ≾ (yn). Thus, for each n, there is
m such that xn ≾1 ym, and this implies that xn ∈ M∞(I) for every n such that
ym ∈M∞(I). Therefore, the set

ΛR(I) := {[(xn)] ∈ Λ(R) | xn ∈M∞(I) ∀n ≥ 1}
is downward hereditary. Observe that ΛR(I) is also a submonoid of Λ(R). Further-
more, taking into account (the proof) that Λ(R) satisfies (O1) (see, [1, Proposition
2.13]), we see that ΛR(I) is also closed under suprema of increasing sequences, and
therefore it is an ideal of Λ(R).

Suppose now that I is a weakly s-unital ring. Notice that, if x, y ∈ M∞(I),
then x ≾1 y in M∞(R) if and only if x ≾1 y in M∞(I). Indeed, if x = syt, for
s, t ∈M∞(R), then using that I is weakly s-unital we find a, b ∈M∞(I) such that
y = ayb and thus x = (sa)y(bt) with sa, bt ∈ M∞(I). Therefore ΛR(I) can be
identified with Λ(I). □

Let R be a ring. Denote by Lat(R) the lattice of two-sided ideals of R and by
Lat(Λ(R)) the lattice of ideals of Λ(R). By Lemma 3.2, we may define

Lat(R)
ψΛ
// Lat(Λ(R))

I � // ΛR(I)

which is an ordered morphism. We will now define the class of ideals needed so
that ψΛ is a lattice isomorphism.

3.3 (Decomposable ideals). Let R be a ring. We say that an ideal I of R is
decomposable if, for any x ∈ M∞(I), there is y ∈ M∞(I) such that x ≾1 y in
M∞(R). This is a notion very much intended for non-unital rings, in the sense
that if R is weakly s-unital, then any ideal is already decomposable. Any ideal
that is weakly s-unital as a ring is also decomposable.

We use Latd(R) to denote the subset of Lat(R) consisting of the decomposable
ideals of R. Notice that Latd(R) is also a lattice. To see this, let I, J be decompos-
able ideals, and let x ∈ I, y ∈ J . Then there are x̃ ∈M∞(I), ỹ ∈M∞(J) such that
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x ≾1 x̃ and y ≾1 ỹ. Using that x = rx̃r′ and y = sỹs′ for some r, r′, s, s′ ∈M∞(R),
we get

x+y=

(
x+ y 0
0 0

)
=

(
r s
0 0

)(
x̃ 0
0 ỹ

)(
r′ 0
s′ 0

)
≾1

(
x̃ 0
0 ỹ

)
∈M∞(I+J),

and therefore the supremum of I and J is I + J . The infimum of I and J is the
ideal

I ∧ J := {x ∈ R | x ≾1 y for some y ∈M∞(I ∩ J)}.
Note that I ∧ J is an ideal since for x, y ∈ I ∧ J we have x ≾1 x̃, y ≾1 ỹ, for
x̃, ỹ ∈ M∞(I ∩ J), and therefore x + y ≾1 x̃ ⊕ ỹ, where the latter belongs to
M∞(I ∩ J). If we also write x = ax̃b and r ∈ R, we have rx = (ra)x̃b, where ra
is the matrix whose entries are the entries of a multiplied by r on the left. Thus
rx ≾1 x̃, whence rx ∈ I ∧ J . Likewise xr ∈ I ∧ J .

It is now easy to verify that any decomposable ideal K contained in both I, J
must already be contained in I ∧ J . We have, by construction, that IJ ⊆ I ∧ J ⊆
I ∩ J .
Remark 3.4. (i) It is easy to check that every idempotent ideal is decompos-

able.
(ii) We also note that every closed two-sided ideal I in a C*-algebra A is au-

tomatically decomposable. Indeed, given x ∈ I, choose 0 < α, β such that
α + β < 1/2. Then, by [23, Proposition 1.4.5], there is u ∈ A such that
x = u(x∗x)α+β. Now, just note that x = u(x∗x)α(x∗x)β ≾1 (x∗x)α and
(x∗x)α ∈ I since I is closed.

(iii) Non-closed ideals of C*-algebras have raised interest as of late, and they also
provide with some examples of decomposable ideals. As shown in [16], any
semiprime ideal of a C*-algebra is idempotent, and so decomposable by (i).

We will need the following lemma. In what follows, denote by R+ = Z⊕R the
Dorroh extension of R, and view R as a two-sided ideal of R+.

Lemma 3.5. Let R be any ring, and let a = (aij) ∈Mn(R).

(i) Suppose that a ≾1 b, where b ∈ M∞(R). Then, for each i, j, we have that
aij ≾1 b.

(ii) Suppose that, for each i, j, we have aij ≾1 bij, for some bij ∈M∞(R). Then,

there is b̃ ∈ M∞(R) such that a ≾1 b̃. Moreover, if I is an ideal of R such

that bij ∈M∞(I), then we can choose b̃ ∈M∞(I).

Proof. (i): Let us denote by Ei,j the elementary matrix with 1 ∈ R+ in the (i, j)-
position and 0 elsewhere. These matrices need not belong to M∞(R), but Ei,jx
and xEi,j are in M∞(R) for all x ∈M∞(R).

Now if a ≾1 b, we have a = rbs with r, s ∈M∞(R). Hence,

ai,j =

(
aij 0
0 0

)
= E1,iaEj,1 = E1,i(rbs)Ej,1 = (E1,ir)b(sEj,1).

Seting r′ = (E1,ir) and s
′ = (sEj,1) we get ai,j ≾1 b.
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(ii): Assume that a, b, c, d ∈ R satisfy a ≾1 ã, b ≾1 b̃, c ≾1 c̃, and d ≾1 d̃, for

ã, b̃, c̃, d̃ ∈M∞(R).

Write suitable matrix decompositions a = xãy, b = zb̃t, c = rc̃s, and d = ud̃v.
A routine matrix multiplication shows that

(
a b
c d

)
=

(
x z 0 0
0 0 r u

)



ã 0 0 0

0 b̃ 0 0
0 0 c̃ 0

0 0 0 d̃







y 0
0 t
s 0
0 v


 .

Now by induction this settles the result for any matrix in M2k(R), and since any
matrix in M∞(R) is identified with a matrix of size 2k for some k (adding zeros
if necessary), the result holds for all matrices in Mn(R). The last part of the
statement is clear. □
Lemma 3.6. Let R be a ring and let J ⊆ Λ(R) be an ideal. Then, the set

Idl(J) := {x ∈ R | x = x1 for some [(xn)] ∈ J}
is a decomposable two-sided ideal of R.

Proof. Let x, y ∈ Idl(J). By definition, there exist [(xn)], [(yn)] ∈ J such that x1 =
x and y1 = y. Using that x1 ≾1 x2 and y1 ≾1 y2 we get, as in Paragraph 3.3, that
x+ y ≾1 x2 ⊕ y2.

Thus, we have (x+ y, x2 ⊕ y2, x3 ⊕ y3, . . .) ≾ (xn ⊕ yn) in T (R). Since [(xn)] +
[(yn)] ∈ J and J is downward hereditary, it follows that x+ y ∈ Idl(J).

Next, let x ∈ Idl(J) and r ∈ R. Then there is [(xn)] ∈ J with x = x1, and thus
x ≾1 x2. It follows from similar arguments as in Paragraph 3.3 that rx, xr ≾1 x2,
and thus rx, xr ∈ Idl(J). Hence Idl(J) is a two-sided ideal of R.
It remains to show that Idl(J) is decomposable. Let x = (xij) ∈ Mn(Idl(J)).

For each i, j there is by definition a sequence x̃
(n)
ij ∈ M∞(R) such that xij = x̃

(1)
ij

and [(x̃
(n)
ij )] ∈ J . Put x̃ij = x̃

(2)
ij . Since x̃ij ≾1 x̃

(3)
ij ≾1 · · · , we may apply Lemma 3.5

(i) to conclude that all entries in x̃ij also belong to Idl(J), and thus by condition
(ii) in Lemma 3.5, we have that x ≾1 x̃ for some x̃ ∈M∞(Idl(J)). □
Theorem 3.7. Let R be any ring. Then, Latd(R) ∼= Lat(Λ(R)) as lattices.

Proof. Let ϕΛ denote the map

Lat(Λ(R))
ϕΛ
// Latd(R)

J � // Idl(J)

which is well-defined by Lemma 3.6. It is trivial that ϕΛ is inclusion-preserving,
and so ϕΛ is an ordered morphism.

Since any ordered isomorphism between ordered lattices is a lattice isomor-
phism, it suffices to show that the map ψΛ defined prior to Paragraph 3.3 is, when
restricted to decomposable ideals, the inverse for ϕΛ. That is, we have to show
that Idl(ΛR(I)) = I for any decomposable ideal I of R and ΛR(Idl(J)) = J for
any ideal J of Λ(R).
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Now, given a two-sided ideal I ⊆ R (decomposable or not), it is easy to check
that Idl(ΛR(I)) ⊆ I. For the converse inclusion, let x ∈ I. Applying repeatedly
that I is decomposable we find a ≾1-increasing sequence xn ∈ M∞(I) such that
x = x1. By definition, [(xn)] ∈ ΛR(I) and x is the first term in the sequence, hence
x ∈ Idl(ΛR(I)).

Let J be an ideal of Λ(R), and let [(xn)] ∈ J . For each k, we have [(xn)n≥k] =
[(xn)n≥1] and thus [(xn)n≥k] ∈ J . Since xk ≾1 xk+1, it follows from Lemma 3.5 (i)
that all the entries (xk)ij of xk satisfy (xk)ij ≾1 xk+1, and thus they all belong to
Idl(J). Therefore [(xn)n≥1] ∈ ΛR(Idl(J)).

For the converse inequality, given an element [(xn)] ∈ ΛR(Idl(J)), choose for
each n a sequence [(yn,m)m] ∈ J such that yn,1 = xn. Note, in particular, that one
has

xn = yn,1 ≾1 y1,2 ⊕ y2,2 ⊕ . . .⊕ yn,2.

Since J is closed under suprema of increasing sequences we have that

s := sup
n
([(y1,m)m] + . . .+ [(yn,m)m]) ∈ J.

By construction, we have that [(xn)] ≤ s and, as J is downward hereditary, it
follows that [(xn)] ∈ J . This shows that ΛR(Idl(J)) = J for each J ∈ Lat(Λ(R)),
as desired. □
Corollary 3.8. Let R be a weakly s-unital ring. Then Lat(R) ∼= Lat(Λ(R)).

4. Pure and quasipure ideals

In this section we focus on describing what part of the ideal structure of a
ring R is captured by the semigroup S(R). In light of our previous results, one
might suspect that the ideals of S(R) also distinguish all decomposable ideals of
R. However, as showcased in Example 4.1 below, this is not always the case. The
right notion in this case will be that of quasipure ideal; see Paragraph 4.2 and
Theorem 4.10. We also show in Theorem 4.12 that the lattice of quasipure ideals
is a retract of the lattice of decomposable ideals.

Example 4.1. There exists a unital ring R with different ideals I, J such that
S(I) = S(J).

Proof. Let R be a commutative principal ideal domain which is not a field. If I
is a proper ideal of R and S(I) ̸= 0, then taking a nonzero element (an) in S(I),
we see that ai ∈ ∩n≥1I

n for all i, which implies that ∩n≥1I
n ̸= 0, a contradiction.

Hence S(I) = 0 = S(0) for all proper ideal I of R. □
4.2 (Pure and quasipure ideals). Recall that a right ideal I of a unital ring R is
pure as a right submodule of R if for every y ∈ I there exists s ∈ I such that
sy = y. Of course, this notion does not need the unit of the ring and we will use
it in the more general context of not necessarily unital rings. By the arguments
in, for example, [5, Lemma 2.2], we see that if I is pure then so is Mn(I) for all n.

More generally, we say that a right ideal I of a ring R is quasipure if for every
x ∈M∞(I) there exist s, y ∈M∞(I) with

sy = y, and x ≾1 y
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in M∞(R). Note that if I is pure and x ∈M∞(I), then by choosing s, t ∈M∞(I)
such that ts = s and x = sx, we have x = ssx, that is, x ≾1 s. Therefore, I is
quasipure.

We will be interested in (two-sided) ideals which are quasipure as right ideals.
The following easy lemma contains some equivalent variants in the definition of
quasipureness for ideals.

Lemma 4.3. Let I be an ideal of a ring R. Then the following conditions are
equivalent:

(i) I is a quasipure right ideal of R.
(ii) For each x ∈ M∞(I) there exists r ∈ M∞(R+) and y, s ∈ M∞(I) such that

x = ry and sy = y.
(iii) For each x ∈ M∞(I) there exists r, s, y ∈ M∞(I) such that x = ry and

sy = y.

Proof. (i) =⇒ (ii): Suppose that I is a quasipure ideal of R and take any x ∈
M∞(I). There are a, b ∈M∞(R) and y, s ∈M∞(I) such that

x = ayb, y = sy.

Then x = a(yb) and yb = s(yb), showing (ii).
(ii) =⇒ (iii): Let x ∈ M∞(I). By (ii) there is r ∈ M∞(R+) and y, s ∈ M∞(I)

such that x = ry and y = sy. Write x = ry = (rs)y = r′y where r′ := rs ∈M∞(I).
(iii) =⇒ (i): Let r, s, y ∈ M∞(I) such that x = ry and y = sy. Now take

r′, s′, t′ ∈ M∞(I) such that r = r′s′ and s′ = t′s′. Then x = ry = r′s′y so that
x ≾1 s

′, as desired. □
4.4 (Quasipure and trace ideals). Let us denote by Latqp(R) the subset of Latd(R)
consisting of quasipure right ideals that are also two-sided ideals. As in Para-
graph 3.3, Latqp(R) forms a lattice. Indeed, the supremum is just given by the
sum, and the infimum of two quasipure ideals I, J is the quasipure ideal

{x ∈ R | x ≾1 y and sy = y, for some s, y ∈M∞(I ∩ J)},
since any element x of any quasipure ideal T contained in I ∩ J satisfies x ≾1 y
with sy = y and s, y ∈ T ⊆ I ∩ J .

Pure ideals have been considered in the literature, among other things, in con-
nection with the notion of trace ideal. For commutative rings, Vasconcelos ([27,
Theorem 3.1]) showed that all pure ideals are generated by idempotents if, and
only if, any projective ideal is the direct sum of finitely generated projective ideals.
In fact, in a commutative unital ring an ideal is pure precisely when it is the trace
ideal of a projective module (see [22, Proposition 1.1] and also [21, Corollary 2.13]
for an alternative proof of this result). In the noncommutative setting, Jøndrup
and Trosborg in [22] proved that a pure ideal is always the trace ideal of a pro-
jective right module, but not conversely ([22, Example 1.2]). Other examples are
also given in [21, Remark 2.10 (3)].

Trace ideals are usually considered in the unital seting, but it is straightforward
to consider the corresponding notion for non-unital rings. In [1, Paragraph 4.11],
the authors define the semigroup CP(R) out of equivalence classes of countably
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generated projective R-modules P , which by definition are projective R+-modules
such that P = PR. Moreover, it is shown in [1, Theorem 4.13] that there is an
isomorphism of ordered monoids CP(R) ∼= S(R) for any ring R.
The trace ideal of a projective R-module P is defined as the trace ideal of P as

an R+-module, namely tr(P ) =
∑
f(P ), where f ranges on all homomorphisms

f : P → R+. Note however that since P = PR we have tr(P ) ⊆ R. Hence tr(P )
is always an idempotent ideal of R for any projective R-module P .

The exact relationship between the trace ideals of projective right modules and
two-sided ideals is captured by the notion of quasipureness, as shown below. The
main ingredient in this characterization is [21, Proposition 2.6].

Lemma 4.5. Let R be a unital ring and let I ⊆ R be a two-sided ideal. Then, the
following are equivalent:

(i) I is quasipure.
(ii) Given any finite subset X ⊆ I, there exist finitely generated left ideals J1 ≤

J2 ≤ I such that X ⊆ J1 and J2J1 = J1.
(iii) I is the trace ideal of a projective right R-module.

Proof. That (ii) and (iii) are equivalent is proved in [21, Proposition 2.6]. Thus,
we only need to show that (i) is equivalent to (ii). Let us first show that (i) implies
(ii).

Suppose X = {x1, x2, . . . , xn}. Let x =

( x1
... 0
xn

)
∈ M∞(I). By Lemma 4.3,

there exists r, y, s ∈M∞(I) such that x = ry and sy = y. Hence we obtain

xi = ri,1y1 + . . .+ ri,mym,

where y1, . . . , ym ∈ I are the nonzero coefficients of the first column of y.
Let J1 be the left ideal generated by y1, . . . , ym, and let J2 be the left ideal

generated by y1, . . . , ym and all the non-zero entries in s. It follows by construction
that we have X ⊆ J1, J1 ≤ J2 and J2J1 = J1.

We now prove that (ii) implies (i). Thus, let x ∈M∞(I) and let m ≥ 1 be such
that the entries xi,j of x are zero whenever i > m or j > m. By assumption, there
exist finitely generated left ideals J1 ≤ J2 such that xi,j ∈ J1 whenever i, j ≤ m
and J2J1 = J1. Let y1, . . . , yn be the generators of J1, and let r1, . . . , rm be m× n
matrices such that




x1,j
...

xm,j


 = rj




y1
...
yn




for every j.
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Let y denote the n× 1 column vector (yi)i. Then, the matrices

r =
(
r1 r2 . . . rn

)
, and y =




y 0 . . . 0 0 . . .
0 y 0 0
...

. . .
n) ...

0 0 y 0
0 0 . . . 0 0
...

. . .




satisfy x = ry.
Further, since J2 ≤ I satisfies J2J1 = J1, there exists s0 ∈ Mn,n(I) such that

s0y = y. Letting s = diag(s0, s0, . . . , s0) one gets sy = y, as required. □
Corollary 4.6. Let R be a ring. Then every idempotent ideal that is finitely
generated as a left ideal is quasipure.

Proof. By [28, Corollary 2.7], such an ideal is the trace of a countably generated
projective right R+-module P . Observing that tr(P ) is the ideal of R+ gener-
ated by the entries of any column-finite idempotent matrix E representing P , we
conclude that all entries of E belong to R, and hence P = PR is a projective
R-module. Hence the result follows from Lemma 4.5. □

We will now see that the lattice of two-sided quasipure ideals of a ring R is
isomorphic to the ideal lattice of S(R). This extends [15, Theorem 2.1], where it is
shown that the lattice of trace ideals of finitely generated projective R-modules is
isomorphic to the lattice of order-ideals of the monoid V (R), for each unital ring
R. We first need the following two lemmas.

Lemma 4.7. Let I be a two-sided ideal of a ring R, and let (xn) be a sequence of
elements in M∞(I). Then, (xn) ∈ S(R) if and only if (xn) ∈ S(I). In particular,
one has S(I) = S(R) ∩ ΛR(I).

Proof. If (xn) is in S(I), then it is trivially in S(R).
Conversely, if (xn) ∈ S(R) with xn ∈ M∞(I) for every n, we know that xn =

yn+1xn+1xn with yn+1 possibly not in M∞(I). However, one has

xn = yn+1xn+1xn = (yn+1yn+2xn+2)xn+1xn

and, since yn+1yn+2xn+2 ∈M∞(I), it follows that (xn) ∈ S(I). □
Lemma 4.8. Let I be a two-sided quasipure ideal of a ring R. Then, for every
x ∈M∞(I), there exists (xn) ∈ S(I) such that x ≾1 x1.

Proof. Given x ∈ M∞(I), we know from Lemma 4.3 that there exist elements
r ∈M∞(R) and x1, s1 ∈M∞(I) such that

x = rx1, and s1x1 = x1.

Using once again that I is quasipure for s1, we find elements y2 ∈ M∞(R) and
x2, s2 ∈M∞(I) such that

s1 = y2x2, and s2x2 = x2.
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In particular, one gets that y2x2x1 = s1x1 = x1. Proceeding by induction,
we obtain a sequence (xn) ∈ S(R) with xn ∈ M∞(I) for all n. It follows from
Lemma 4.7 that (xn) ∈ S(I). □

In view of [21, Proposition 1.4] and [28, Theorem 2.4], it is natural to define the
ideal of R associated to an ideal J of S(R) as the two-sided ideal of R generated
by all the entries of matrices appearing in the representatives of the elements of
J . This is indeed the procedure that we follow here. For an ideal J of S(R) define

IdlS(R)(J) := {x ∈ R | x is an entry of x1 ∈M∞(R) such that [(xn)] ∈ J}.
Note that since [(xn)] = [(xn)n≥k] for each k ≥ 1, IdlS(R)(J) is indeed the set of

all entries of matrices in M∞(R) appearing in some representative (xn) of some
element of [(xn)] ∈ J .

Lemma 4.9. Let R be a ring, and let J ⊆ S(R) be an ideal. Then the following
hold:

(i) IdlS(R)(J) is a right ideal of R.
(ii) The left ideal of R generated by IdlS(R)(J) is a two-sided ideal of R, which is

a quasipure left ideal.

Proof. (i): Set I := IdlS(R)(J). We first show that I is additive. To see this, let
x, y ∈ IdlS(R)(J) and choose [(xn)], [(yn)] ∈ J such that x is the (i, j) entry of
x1 and y the (k, l) entry of y1, for some i, j, k, l, and with x1, y1 matrices of the
same size (after adding zeros if necessary). We observe next that we can assume
without loss of generality that (i, j) = (1, 1) = (k, l). Let σ, τ ∈ M∞(Z)+ ⊆
M∞(R+)+ suitable permutation matrices so that (σx1τ)1,1 = (x1)i,j = x. Then
(σx1τ, x2σ

−1, x3, . . . ) ∈ S(R) and [(σx1τ, x2σ
−1, x3, . . . )] = [(xn)]. Since a similar

operation can be done with (yn), we have shown our claim.
Now, write x1 = z2x2x1, and y1 = t2y2y1, and let P ∈ M∞(R+) be given by

P = ( 1 1
0 1 ) (where 1 denotes the identity matrix of suitable size). Now

(
x1 + y1 0
y1 0

)
= P

(
x1 0
y1 0

)
= P

(
z2 0
0 t2

)(
x2 0
0 y2

)
P−1P

(
x1 0
y1 0

)
,

which implies that, setting w̃2 = P
(
z2 0
0 t2

)
, ũ1 =

(
x1+y1 0
y1 0

)
, and ũ2 =

(
x2 0
0 y2

)
P−1,

we have
(
x1+y1 0
y1 0

)
= w̃2ũ2

(
x1+y1 0
y1 0

)
. Also, ũ2 = (z3 ⊕ t3)(x3 ⊕ y3)ũ2. This implies

that the sequence (ũ1, ũ2, x3 ⊕ y3, . . . ) is equivalent to (xn ⊕ yn) and therefore
x+ y ∈ I.

Now we show that I is closed under right multiplication. To this end, let x ∈
IdlS(R)(J) and r ∈ R. Then there is [(xn)] ∈ J such that x is an entry of x1. Note
that, since there is a sequence (yn) ∈M∞(R) such that yn+1xn+1xn = xn, we have
in particular that y2x2(x1r) = x1r. This implies that in fact [(x1r, x2, x3, . . . )] =
[(xn)], and xr is of course an entry of x1r. Thus xr ∈ I.

(ii): Since I is a right ideal, the left ideal K := R+I generated by I is a two-
sided ideal of R. To see that K is quasipure, let x ∈ Mn(K), and let xij ∈ K
denote its entries. Suppose that for each i, j there are bij, sij ∈M∞(K) such that
aij ≾1 bij in M∞(R) and sijbij = bij. By (the proof of) Lemma 3.5(ii) we have
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that
x = (xij) ≾1 ⊕i,jbij

inM∞(R). Since in addition⊕i,jbij = (⊕i,jsij)(⊕i,jbij), we conclude that x satisfies
the definition of quasipurity. Hence we may reduce to consider the case where
x ∈ K. Since K is the left ideal generated by I = IdlS(R)(J), we can write

x =
∑k

i=1 riai, where ri ∈ R+ and ai ∈ I. Again, since x ≾1 ⊕k
i=1ai in M∞(R+),

we can assume that x ∈ I. Assuming that x ∈ I, there is (xn) with [(xn)] ∈ J
such that x is an entry of x1. Then x1 ≾1 x2 in M∞(R) and (b3x3)x2 = x2 for
some b3 ∈ M∞(R). By Lemma 3.5(i), x ≾1 x2. Moreover x2, b3x3 ∈ M∞(K) and
(b3x3)x2 = x2. Hence the condition of quasipurity is satisfied by x, as desired. □

The construction in Lemma 4.9 serves as motivation to consider, for any ideal
J of S(R), the two-sided ideal TrR(J) := R+IdlS(R)(J). We will refer to TrR(J)
as the trace ideal associated to J . Observe that TrR(J) is the trace ideal of some
projective R-module, by virtue of Lemma 4.5.

Theorem 4.10. Let R be any ring. Then, the lattices Latqp(R) and Lat(S(R))
are isomorphic.

Proof. Similar to the proof of Theorem 3.7, we define the maps

Latqp(R)
ψS
// Lat(S(R))

I � // S(I)

and Lat(S(R))
ϕS
// Latqp(R)

J � // TrR(J).

First, let us see that ϕSψS(I) = I whenever I is quasipure, that is,

TrR(S(I)) = I.

Since by definition IdlS(R)(S(I)) ⊆ I, the inclusion (⊆) is clear. Thus, let x ∈ I.
We know from Lemma 4.8 that there exists x1 ∈ IdlS(R)(S(I)) such that x ≾1 x1.
By definition, this implies that x ∈ TrR(S(I)).

We now prove that ψSϕS(J) = J for any ideal J ⊆ S(R), that is,

S(TrR(J)) = J.

Let [(xn)] ∈ J . Then all entries of each xn belong to TrR(J), and using Lemma 4.7
we conclude that [(xn)] ∈ S(TrR(J)).
Next, let [(xn)] ∈ S(TrR(J)). By definition, for each n, the (i, j) entry of the

matrix xn ∈Msn(R) has the form (xn)ij =
∑li,j,n

k=1 r
(k)
i,j,na

(k)
i,j,n, where r

(k)
i,j,n ∈ R+ and

a
(k)
i,j,n ∈ IdlS(R)(J). Thus, each a

(k)
i,j,n is an entry of a matrix y

(k)
i,j,n,1 which is part

of a sequence [(y
(k)
i,j,n,m)m] ∈ J , for k = 1, . . . , li,j,n. Thus, for each i, j, n, k we

have, using Lemma 3.5 (i), that a
(k)
i,j,n ≾1 y

(k)
i,j,n,2 and therefore (xn)ij ≾1 ⊕ky

(k)
i,j,n,2.

Now, the argument in Lemma 3.5 (ii) implies that xn ≾1 ⊕sn
i,j=1 ⊕

li,j,n
k=1 y

(k)
i,j,n,2 ≾1

⊕r≤n ⊕sr
i,j=1 ⊕

li,j,r
k y

(k)
i,j,r,2. Therefore

[(xn)] ≤ sup
n

∑

r≤n

sr∑

i,j=1

li,j,r∑

k=1

[(y
(k)
i,j,r,m)m] ∈ J.
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Since J is downward hereditary, we have [(xn)] ∈ J , as desired. □

Remark 4.11. Let R be a unital ring. Let (xn)n ∈ S(R), and identify (xn)n with
a countably generated projective R-module P . A combination of the isomorphism
CP(R) ∼= S(R) ([1, Theorem 4.13]) with [28, Theorem 2.4] shows that the map
ϕS defined in the proof of Theorem 4.10 sends the ideal generated by [P ], that
is, the set {[(yn)n] : [(yn)n] ≤ supk k[(xm)m]} to its trace ideal, that is, tr(P ) =
TrR(⟨[(xn)]⟩).

Theorem 4.12. Let R be any ring. Then there are order preserving maps

φ : Latqp(R) → Latd(R) and ψ : Latd(R) → Latqp(R)

such that

(i) ψ ◦ φ = id and φ ◦ ψ ≤ id.
(ii) φ preserves suprema.
(iii) ψ preserves infima.

In particular, as a partially ordered set, Latqp(R) is a retract of Latd(R).

Proof. By Theorems 3.7 and 4.10, it suffices to show the conclusions of the state-
ment replacing Latqp(R) by Lat(S(R)) and Latd(R) by Lat(Λ(R)).

Upon these identifications, define φ : Lat(S(R)) → Lat(Λ(R)) by

φ(J) = {z ∈ Λ(R) | z ≤ y for some y ∈ J},

which is easily verified to be downward hereditary and closed under addition. If
(zn) is an increasing sequence in φ(J), then find yn ∈ J such that zn ≤ yn for
each n. Then the sequence (wn) given by wn =

∑n
i=1 yi is increasing in J , and if

w = supwn, clearly zn ≤ w for all n, whence sup zn ≤ w. This shows that φ(J) is
an ideal of Λ(R). It is clear that φ is order-preserving.

Define ψ : Lat(Λ(R)) → Lat(S(R)) by ψ(K) = K ∩ S(R). It is clear that this
is a downward hereditary submonoid, also closed under suprema of increasing
sequences. Therefore, it is an ideal of S(R).

Let us verify that (i) holds. Once this is shown, (ii) and (iii) follow easily. Thus,
let J be an ideal of S(R) and let x ∈ S(R) ∩ {z ∈ Λ(R) | z ≤ y for y ∈ J}. Since
J is an ideal and x ∈ S(R), we have x ∈ J , whence S(R)∩φ(J) ⊆ J . As the other
inclusion is trivial, we have ψ ◦ φ = id.

For the second part of (i), just note that φ(ψ(K)) = {z ∈ Λ(R) | z ≤ y for y ∈
K ∩ S(R)} ⊆ K, whenever K is an ideal of Λ(R). □

Remark 4.13. Let I be a decomposable two-sided ideal of a ring R. (Recall
that, if R is weakly s-unital, then I can be any ideal.) By Theorem 4.12, in
combination with Theorem 4.10, there is a unique quasipure ideal J ⊆ I such
that S(I) = ΛR(I) ∩ S(R) = S(J). (Note that, in the notation of Theorem 4.12,
J = ψ(I), and its uniqueness is given by the fact that φ is injective.) The ideal
J = TrR(S(I)) is the largest trace ideal of R contained in I.
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5. Quotients by decomposable and quasipure ideals

In this section we analyse how the semigroup constructions developed in Sections
3 and 4 behave with respect to quotients by decomposable and quasipure ideals,
respectively; see Theorem 5.3.

5.1 (Quotients in ordered semigroups). Let S be a Q-semigroup, and let J be an
ideal of S. For x, y ∈ S, we define

x ≤J y :⇐⇒ x ≤ y + z, z ∈ J,

x ∼J y :⇐⇒ x ≤J y and y ≤J x.

We denote the quotient S/∼J by S/J and its elements by xJ , for x ∈ S, and
we equip S/J with the addition and order induced by the addition in S and
≤J , respectively. Using the techniques from [3, Lemma 5.1.2], one sees that the
quotient S/J is a partially ordered monoid that also satisfies axioms (O1) and
(O4). In fact, if S is already a Cu-semigroup, then [3, Lemma 5.1.2] shows that
S/J as defined above is also a Cu-semigroup.

We define the relation

xJ ≺J yJ :⇐⇒ x ≤ y′ + z and y′ ≺ y + w for some y′ ∈ S, z, w ∈ J.

One can routinely check that this is well defined and is an additive auxiliary
relation on S/J .

The natural quotient map πJ : S → S/J , given by πJ(x) = xJ , is then a semi-
group morphism that preserves suprema of increasing sequences and the auxiliary
relation.

Lemma 5.2. Let R be any ring, and let I be a decomposable two-sided ideal of
R. Let π : R → R/I denote the quotient map (and any of its amplifications to
matrices). If, for x, y ∈ M∞(R), we have π(x) ≾1 π(y), then there is z ∈ M∞(I)
such that x ≾1 y ⊕ z.

Proof. By assumption, there are a, b ∈ M∞(R) and z′ ∈ M∞(I) such that x =
ayb+z′. Since I is decomposable, there is z ∈M∞(I) such that z′ ≾1 z. Therefore,
we have that x ≾1 y ⊕ z, as desired. □
Theorem 5.3. Let R be any ring, and let I be a decomposable two-sided ideal of
R. Then

(i) Λ(R)/ΛR(I) ∼= Λ(R/I).
(ii) If, furthermore, I is quasipure, then S(R)/S(I) ∼= S(R/I).

Proof. Throughout the proof, let us denote by π : R → R/I the quotient map.
(i): The map π induces a map πI := Λ(π) : Λ(R) → Λ(R/I) by πI([(xn)]) =

[(π(xn))], which in turn we use to define

π̄I : Λ(R)/ΛR(I) → Λ(R/I) by π̄I([(xn)]ΛR(I)) = [(π(xn))],

which is easily seen to be a well defined semigroup homomorphism.
Let us prove that π̄I is surjective. Let [(π(xn))] ∈ Λ(R/I). Set z1 = 0. By

Lemma 5.2 applied to π(x1) ≾1 π(x2), there is z2 ∈ M∞(I) such that x1 ≾1

x2 ⊕ z2. Another application of Lemma 5.2 to π(x2 ⊕ z2) = π(x2) ≾1 π(x3) yields
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z3 ∈M∞(I) with x2 ⊕ z2 ≾1 x3 ⊕ z3. Continuing in this way we find zn ∈M∞(I)
such that [(xn ⊕ zn)] ∈ Λ(R). Now π̄I([(xn ⊕ zn)]) = [(π(xn ⊕ zn))] = [(π(xn))].
We now prove that π̄I is an order-embedding. Let [(xn)], [(yn)] ∈ Λ(R) be

such that π̄I([(xn)]ΛR(I)) = [(π(xn))] ≤ [(π(yn))] = π̄I([(yn)]ΛR(I)). After removing
certain elements from (yn) if necessary (withouth changing its class), we may
assume that π(xn) ≾1 π(yn) for each n. Using Lemma 5.2 and the fact that I is
decomposable, choose zn,m ∈M∞(I) such that xn ≾1 yn⊕ zn,1 and zn,m ≾1 zn,m+1

for each n,m.
We have x1 ≾1 y1 ⊕ z1,1 and also x2 ≾1 y2 ⊕ z2,1 ≾1 y3 ⊕ z2,2 ⊕ z1,2, and

note that z1,1 ≾1 z2,2 ⊕ z1,2. Similarly, x3 ≾1 y3 ⊕ z3,1 ≾1 y4 ⊕ z3,3 ⊕ z2,3 ⊕ z1,3
with z2,2 ⊕ z1,2 ≾1 z3,3 ⊕ z2,3 ⊕ z1,3. Thus, set w1 = z1,1, w2 = z1,2 ⊕ z2,2 and
in general wn = z1,n ⊕ z2,n ⊕ · · · ⊕ zn,n. By construction, wn ∈ M∞(I) and
wn ≾1 wn+1. Moreover, for each n ≥ 2 we have that xn ≾1 yn+1 ⊕ wn. Therefore
[(xn)] ≤ [(yn)] + [(wn)] in Λ(R), whence [(xn)]ΛR(I) ≤ [(yn)]ΛR(I).
(ii): Let S(π) be the induced morphism by the quotient map π : R → R/I.

Given (xn) ∈ S(R/I), we know that for each n there exist yn ∈ M∞(R) and
zn ∈M∞(I) such that

yn+1xn+1xn + zn = xn.

Further, since I is quasipure, the proof of Lemma 4.8 gives that there exist
elements rn ∈ M∞(R) and sequences (sm,n)m ∈ S(I) such that zn = rns1,n for
each n.

Define the matrices

Sn =




sn,1 0 . . . 0

0 sn−1,2
...

...
. . . 0

0 . . . 0 s2,n−1


 and Xn =




xn 0
0 Sn
s1,n 0


 .

Note that

Xn+1Xn =




xn+1xn 0 0 . . . 0
0 sn+1,1sn,1 0 . . . 0

0 0 sn,2sn−1,2
...

...
...

. . .
...

0 0 . . . 0 s3,n−1s2,n−1

s2,ns1,n 0 . . . 0 0
s1,n+1xn 0 . . . 0 0




.

Thus, given ym,n such that ym+1,nsm+1,nsm,n = sm,n, the matrix

Yn+1 =




yn+1 0 0 . . . 0 rny2,n 0
0 yn+1,1 0 . . . 0 0 0

0 0 yn,2
...

...
...

...
...

. . . 0 0 0
0 0 . . . 0 y3,n−1 0 0
0 0 . . . 0 0 y2,n 0
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satisfies

Yn+1Xn+1Xn = Xn

for every n.
We have (Xn) ∈ S(R) and S(π)[(Xn)] = [(xn)] as required.
Let us now prove that S(π) is an order-embedding, that is, S(π)([(xn)]) ≤

S(π)([(ym)]) if and only if [(xn)]S(I) ≤ [(ym)]S(I). Since S(π) is a morphism, we
only need to show that S(π)([(xn)]) ≤ S(π)([(ym)]) implies [(xn)]S(I) ≤ [(ym)]S(I).
Take (xn), (ym) ∈ S(R) such that [(π(xn))] ≤ [(π(ym))]. Upon possibly remov-

ing certain elements from (π(ym)), we may assume that there exist rn, sn ∈M∞(R)
and zn ∈M∞(I) such that

xn − rnynsn = zn

for every n.
Since I is quasipure, Lemma 4.8 implies that zn ≾1 s1,n, with (sm,n)m ∈ S(I)

for every n. Thus, we get

xn = rnynsn + zn ≾1 yn ⊕ s1,n ≾1 yn+1 ⊕ s2,n,

and thus xn ≾1 yn+1 ⊕ (⊕r≤ns2,r). This implies

[(xn)] ≤ [(yn)] + sup
n
([(sm,1)] + . . .+ [(sm,n)])

and, consequently, one gets [(xn)]S(I) ≤ [(yn)]S(I). □
Remark 5.4. Let R be a ring, I a two-sided ideal, and denote by π : R → R/I the
quotient map. Under the isomorphism S(R) ∼= CP(R) established in [1, Theorem
4.13], the map S(π) : S(R) → S(R/I) may be identified with the map CP(R) →
CP(R/I) given by [P ] 7→ [P/PI].

It was proved in [21, Theorem 3.1] that countably generated projective R-
modules can always be lifted modulo the trace ideal of a projective module. That
is, if I is the trace ideal of a countably generated projective right R-module and
P ′ is a countably generated projective right R/I-module, then there is a count-
ably generated projective R-module P such that P/PI ∼= P ′. Therefore, if I is
quasipure, Lemma 4.5 shows that I is the trace of a countably generated projective
module, and thus by our considerations above, this implies that S(π) is surjective.

A detailed inspection of [21, Theorem 3.1] and its proof shows that the argu-
ments can be adapted to show surjectivity of S(π) in the general setting, which is
part of the argument carried out in (ii) of Theorem 5.3. Indeed our construction in
the proof of Theorem 5.3(ii) of a sequence (Xn) lifting (xn) gives an actual lifting
of the countably generated projective module represented by (xn).

Corollary 5.5. Let R be any ring, and let J ⊆ Λ(R) be an ideal. Then, there
exist two-sided ideals Ĩ ⊆ I of R with Ĩ quasipure such that

Λ(R)/J ∼= Λ(R/I) and S(R)/(J ∩ S(R)) ∼= S(R/Ĩ).

Proof. Given an ideal J ⊆ Λ(R), we know from Theorem 3.7 that J = ΛR(I) for
some two-sided decomposable ideal I ⊆ R. Consider the ideal ΛR(I) ∩ S(R) of
S(R). By Theorem 4.10, there exists a quasipure ideal Ĩ such that S(Ĩ) = ΛR(I)∩
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S(R). In particular, it follows from Lemma 4.8 that Ĩ ⊆ I. The isomorphisms
now follow from Theorem 5.3. □

6. Ideals and quotients in the category SQ
In this section we introduce the category SQ and study its relationship with the

category SCu, already considered in [1, Section 5]. Whilst SCu naturally defines
a functor with domain the class of weakly s-unital rings, with SQ we remove this
assumption and determine a functor whose domain is the class of arbitrary rings.

We also introduce the notions of ideal and quotients in these categories. To this
end we will make use of Theorems 3.7 and 4.10 to show that the lattice of two-
sided decomposable (respectively, quasipure) ideals of R is encoded in the lattice
of ideals of SQ(R); see Theorem 6.7.

6.1 (Weakly increasing sequences). Let S be a Q-semigroup. We say that a
sequence (xn) in S is weakly increasing if there exists an increasing sequence (ym)
in S such that

(i) For every m there exists n(m) such that ym ≤ xn for every n ≥ n(m).
(ii) xn ≤ supm ym for every n.

Of course, increasing sequences are examples of weakly increasing sequences. In
particular, constant sequences are examples of weakly increasing sequences. Ob-
serve that this definition does not use anything else other than the existence of
suprema of increasing sequences (axiom (O1)) in the given semigroup. Note that
necessarily, for a weakly increasing sequence (xn) as above, we have supn xn =
supm ym, hence suprema of weakly increasing sequences always exist.

The set of weakly increasing sequences forms a monoid under componentwise
addition, with suprema being compatible with addition. If φ : S → T is a Q-
morphism and (xn) is a weakly increasing sequence, then (φ(xn)) is also weakly
increasing with φ(supn xn) = supn φ(xn). Indeed, let (xn), (zn) be weakly increas-
ing sequences, and let x, z be their respective suprema, which we have just noticed
exist. It is easy to verify that, by definition, (xn + zn) is also a weakly increasing
sequence with x+ z = supn(xn + zn).
In the context of Cu-semigroups, weakly increasing sequences were introduced

in [1, Paragraph 5.1]: We say that a sequence (xn) in a Cu-semigroup S is weakly
increasing if, whenever x≪ xn for some n and x, there existsm0 such that x≪ xm
for every m ≥ m0. We prove below that these two notions agree.

The proof of the following lemma is implicit in [1, Lemma 5.2]. We offer a
few details. For a Cu-semigroup, let us temporarily refer to a weakly increasing
sequence as just defined above as a Cu-weakly increasing sequence.

Lemma 6.2. Let S be a Cu-semigroup. A sequence (xn) is Cu-weakly increasing
in S if, and only if, (xn) is weakly increasing viewing S as a Q-semigroup.

Proof. We first note that standard arguments in the theory of abstract Cuntz
semigroups allow us to replace the order relation ≤ by the relation of compact
containment ≪ in the definition of a weakly increasing sequence, as follows. A
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sequence (xn) in S is weakly increasing if, and only if, there exists a ≪-increasing
sequence (yk) in S such that

(i)’ For every k there exists nk such that yk ≪ xn whenever n ≥ nk.
(ii)’ xn ≤ supk yk for every n.

Now, the argument in the proof of [1, Lemma 5.2] shows that, if (xn) is a Cu-
weakly increasing sequence, then after expressing each element xn as the supremum

of a ≪-increasing sequence (x
(m)
n ) and a re-indexing process, one finds a strictly

increasing sequence (mk) in N such that x
(mk)
k ≪ x

(mk)
k+1 ≪ x

(mk+1)
k+1 . With this, set

yk = x
(mk)
k and one checks that supk yk = supn xn. Also, by construction, for each

k, we have that yk ≪ xk, and thus since (xn) is Cu-weakly increasing there is nk
such that (i)’ holds. That (ii)’ holds is clear.

It is also clear, on the other hand, that a sequence (xn) satisfying conditions
(i)’ and (ii)’ above is necessarily Cu-weakly increasing. □

The category SCu was introduced in [1, Section 5] with the purpose of balancing
out that S(R) might not be a Cu-semigroup for a weakly s-unital ring R, providing
an ambient semigroup that does belong to Cu. We define here a category that
may be useful for general rings, requiring instead to work with Q-semigroups.

6.3 (The categories SQ and SCu). Adapting the notation in [1, Paragraph 5.4],
we let SQ be the category whose objects are pairs (S,W ) with S a Q-semigroup,
and W a submonoid of S closed under suprema of weakly increasing sequences
(as defined in Paragraph 6.1). This means that, if (xn) is a sequence in W
that is weakly increasing in S, then supxn ∈ W . An SQ-morphism between
(S1,W1), (S2,W2) ∈ SQ is a Q-morphism f : S1 → S2 such that f(W1) ⊆ W2. For
brevity, we shall denote an SQ-morphism by f : (S1,W1) → (S2,W2).
The category SCu is the full subcategory of SQ consisting of pairs (S,W ), where

S is a Cu-semigroup, the auxiliary relation≺ coincides with the way-below relation
≪ on S, and W is a submonoid of S as above, that is, closed under suprema of
weakly increasing sequences.

Theorem 6.4. Let R be any ring. Then:

(i) The pair SQ(R) = (Λ(R), S(R)) is an object of SQ.
(ii) The assignment R 7→ SQ(R) defines a functor SQ : Rings → SQ.

Proof. (i): Part of the argument is inspired by the argument carried out in [1,
Proposition 5.6 (i)]. We include full details for convenience.

We need to verify that S(R) is a submonoid of Λ(R) closed under suprema of
weakly increasing sequences. To do so, let ([xn]) be a weakly increasing sequence

in Λ(R) such that [xn] ∈ S(R) for each n. Write xn = (x
(n)
k )k, and we know there

are elements y
(n)
k such that y

(n)
k+1x

(n)
k+1x

(n)
k = x

(n)
k for each k and n.

There is by definition a sequence ([zm]) in Λ(R) satisfying conditions (i) and

(ii) in Paragraph 6.1. Write zm = (z
(m)
k )k. Using the description of suprema in

Λ(R) (see the proof of [1, Proposition 2.13]), and after a reindexing process, we

may assume that supn[xn] = supm[zm] = [(z
(m)
m )].
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Since ([xn]) is by assumption weakly increasing, for m = 1, there is n1 such that

[z1] ≤ [xn] whenever n ≥ n1. Therefore there is l1 such that z
(1)
1 ≾1 x

(n1)
l1

. We also

have that [xn] ≤ [(z
(m)
m )] for each n. Therefore, for each k, n, there is pn,k such

that x
(n)
k ≾1 z

(pn,k)
pn,k . Therefore we have p1 := pn1,l1+1 for which x

(n1)
l1+1 ≾1 z

(p1)
p1 .

Now, arguing as above, we find n2 > n1 and l2 > l1 such that z
(p1)
p1 ≾1 x

(n2)
l2

.
Thus in particular we obtain

z
(1)
1 ≾1 x

(n1)
l1

≾1 x
(n1)
l1+1 ≾1 z

(p1)
p1

≾1 x
(n2)
l2

.

Continuing in this way we find increasing sequences nm, lm, pm of positive integers

such that the corresponding sequences (x
(nm)
lm

) and (z
(pm)
pm ) satisfy

z(pm−1)
pm−1

≾1 x
(nm)
lm

≾1 x
(nm)
lm+1 ≾1 z

(pm)
pm ≾1 x

(nm+1)
lm+1

.

In particular, it follows that sup[xn] = sup[x
(nm)
lm

].

Write x
(nm)
lm+1 = cmx

(nm+1)
lm+1

dm for some cm, dm. Now we have

x
(nm)
lm

= y
(nm)
lm+1x

(nm)
lm+1x

(nm)
lm

= y
(nm)
lm+1cmx

(nm+1)
lm+1

dmx
(nm)
lm

,

and therefore

x
(nm)
lm

dm−1 = (y
(nm)
lm+1cm)(x

(nm+1)
lm+1

dm)(x
(nm)
lm

dm−1).

This implies that the sequence [(x
(nm)
lm

dm−1)] belongs to S(R). From the above

observations we also see that x
(nm)
lm

dm−1 ≾1 x
(nm+1)
lm+1

≾1 x
(nm+2)
lm+2

dm+1. Therefore,

sup[xn] ∈ S(R), as was to be shown.
(ii): If f : R → R′ is a ring homomorphism, then f extends to a homomorphism

f : M∞(R) →M∞(R′) in a way compatible with ≾1 and ⊕. Thus, if [(xn)] belongs
to Λ(R) or S(R), respectively, we have that [(f(xn))] belongs to Λ(R′) or S(R′).
Thus the map Λ(f) : Λ(R) → Λ(R′) given by [(xn)] 7→ [(f(xn))] is well defined
and maps S(R) to S(R′). Also, if [(xn)] ≺ [(ym)], there is by definition m such
that xn ≾1 ym for all n, and thus f(xn) ≾1 f(ym) for all n. This implies that
[(f(xn))] ≺ [(f(ym))].

Finally, let [xn] be an increasing sequence in Λ(R). Inspection of the proof
of [1, Proposition 2.13] on how the supremum of [xn] is constructed shows that
sup[f(xn)] = Λ(f)(sup[xn]). □
6.5 (Ideals in SQ). Given an object (S,W ) in SQ, an ideal of (S,W ) will be by
definition a pair of the form (I, I ∩W ), where I is an ideal of S as a Q-semigroup;
see Paragraph 3.1. Analogously, one defines the concept of ideal for an object in
SCu. We show in Lemma 6.6 that any ideal of a pair (S,W ) in SQ (respectively,
in SCu) is again an object in SQ (respectively, in SCu).

The ideals of an object (S,W ) ∈ SQ form a lattice with the partial order
given by inclusion of both components. Indeed, given two ideals (I, I ∩W ) and
(J, J ∩W ), their infimum is (I ∩ J, I ∩ J ∩W ), which is clearly an ideal. Further,
the supremum of (I, I ∩W ) and (J, J ∩W ) is (I ∨ J, (I ∨ J)∩W ), where I ∨ J is
the supremum of two ideals in Q. Similarly, the ideals of an object (S,W ) ∈ SCu
form a lattice. (See Paragraph 3.1.)
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Given a ring R, we denote by Lat(SQ(R)) the lattice of ideals of SQ(R). Notice
that, in case R is weakly s-unital, we have that SQ(R) = SCu(R) and then
Lat(SQ(R)) = Lat(SCu(R)).

Lemma 6.6. Let (S,W ) be an object in SQ and let (I, I ∩ W ) be an ideal of
(S,W ). Then, (I, I ∩W ) is also an object in SQ.

Proof. Note that, by definition, (I, I∩W ) is a pair such that I is an ideal of S and
thus in particular I ∈ Q. Also, I ∩W ⊆ I is a submonoid closed under suprema
of increasing sequences. Thus, we only need to check that I ∩W ⊆ I is closed
under suprema of weakly increasing sequences.

Let (xn) be a weakly increasing sequence in I with elements in I ∩W . Since
I ∈ Q, we have that the supremum of (xn) belongs to I. We have to check that
it also belongs to W , and to do so we observe that (xn) is also weakly increasing
as a sequence in S and apply that (S,W ) ∈ SQ. Indeed, since (xn) is weakly
increasing in I, there exists an increasing sequence (ym) in I such that for every
m there is nm with ym ≤ xn whenever n ≥ nm, and such that xn ≤ supm ym for
every n. By considering the same sequence (ym) in S, we see that supm ym also
belongs to S and satisfies the conditions for (xn) to be weakly increasing in S.
The case where (S,W ) ∈ SCu is similar. □
Recall that a subset X of a partially ordered set P is said to be cofinal if for

every p ∈ P there exists x ∈ X such that p ≤ x.

Theorem 6.7. Let R be any ring. Then, the map

Latd(R)
ψ
// Lat(SQ(R))

I � // (ΛR(I), S(I))

is a lattice isomorphism. Further, I is quasipure if and only if I is decomposable
and S(I) is cofinal in ΛR(I).

If moreover R is weakly s-unital, the same map defines a lattice isomorphism
Lat(R) ∼= Lat(SCu(R)).

Proof. First note that, since S(I) = ΛR(I) ∩ S(R) by Lemma 4.7, we obtain
that ψ is well defined and respects inclusion. Also, by Theorem 3.7, the map
ψΛ : Latd(R) → Lat(Λ(R)) given by ψΛ(I) = ΛR(I) is a lattice isomorphism.
Therefore, if we define ϕ : Lat(SQ(R)) → Latd(R), by ϕ(J, J ∩ S(R)) = ψ−1

Λ (J),
we see that ϕ is the inverse of ψ and thus ψ is a lattice isomorphism.

Now, let I be a quasipure ideal. By definition, I is in particular decomposable.
Let [(xn)] ∈ ΛR(I). Using Lemma 4.8, we find for each n ≥ 1 a sequence (yn,m)m ∈
S(I) such that xn ≾1 yn,1, and thus xn ≾1 y1,1 ⊕ · · · ⊕ yn,1. This implies that
[(xn)] ≤ supn([(y1,m)m] + . . . + [(yn,m)m]). Since S(I) is a submonoid of ΛR(I)
closed under suprema of (weakly) increasing sequences and [(yn,m)m] ∈ S(I) for
each n, the above supremum is in S(I). Thus, S(I) is cofinal in ΛR(I).

Conversely, assume that I is decomposable and that S(I) is cofinal in ΛR(I).
Take any x ∈ M∞(I), and by applying decomposability of I choose a sequence
(xn) ∈M∞(I) such that x = x1 and xn ≾1 xn+1 for all n. Since [(xn)] ∈ ΛR(I) and
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S(I) is cofinal, there is [(yn)] ∈ S(I) such that [(x1, x2, . . .)] ≤ [(yn)]. Therefore
there is n with x ≾1 yn and since yn ∈ S(I) there is zn+1 ∈ M∞(R) such that
yn = zn+1yn+1yn. Thus, with y := yn ∈ M∞(I) and s := zn+1yn+1 ∈ M∞(I), we
have that x ≾1 y and sy = y. This proves that I is quasipure.

The last part of the statement follows using that any ideal in a weakly s-unital
ring is decomposable. □

If I is a decomposable ideal of a ring R, we set

SQR(I) := (ΛR(I), S(I)),

which is an ideal of SQ(R) by Theorem 6.7.

Remark 6.8. The results in this and the previous sections apply, in particular,
to C*-algebras. The structure of the non-closed ideals of those has been studied
throughout the years (see, for example, [14, 25]), but many fundamental questions
still remain open. For example, it is not known whether every maximal ideal is
closed. This is true in the unital case, but it remains an open problem in general.
In the same vein, one can ask what are the trace ideals of projective modules over
a C*-algebra A. In view of Theorem 4.10, this amounts to asking what are the
ideals of S(A). In this direction, it is shown in [16, Theorem A] that an ideal in a
C*-algebra is idempotent if and only if it is semiprime. Since all trace ideals are
idempotent, this implies that all trace ideals over a C*-algebra are semiprime. It
is not hard to show that all Pedersen ideals of closed ideals of A are quasipure
and thus they are trace ideals of some projective module. Moreover, the converse
holds for commutative C∗-algebras.

We now explore quotients and exactness in the categories SQ and SCu.

Lemma 6.9. Let (S,W ) ∈ SQ and let (I, I ∩ W ) be an ideal of (S,W ). If
I ∩W ⊆ I is cofinal, then (S/I,W/I ∩W ) is an object in SQ.

Proof. Let x, z ∈ W be such that x ≤I z in S. Since W ∩ I is cofinal in I, it
follows that x ≤ z + y for some y ∈ W ∩ I. Therefore, x ≤W∩I z. This implies
that W/I ∩W order-embeds into S/I.

To see that W/I ∩W is closed under weakly increasing sequences, let ([xn])n be
a weakly increasing sequence in S/I with xn ∈ W . By definition, there exists an
increasing sequence ([zk])k in S/I satisfying:

(i) For every k there exists nk such that [zk] ≤ [xn] for every n ≥ nk.
(ii) [xn] ≤ supk[zk] for every n.

Without loss of generality, we may assume that (zk)k is increasing in S. Let z
be its supremum. Since W ∩ I is cofinal in I, one gets an increasing sequence (nk)
of positive integers such that:

(i)’ For every k there exists yk ∈ I ∩W such that zk ≤ xnk
+ yk.

(ii)’ For every n, there exists ỹn ∈ I ∩W such that xn ≤ z + ỹn.

Consider the following elements in W ∩ I:

Sk :=
k∑

i=1

yi, and S̃k :=
k∑

i=1

ỹi.
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Note that

zk + Sk−1 + S̃k−1 ≤ xnk
+ Sk + S̃k−1 ≤ z + Sk + S̃nk

for each k ≥ 1.
Denote by S∞ and S̃∞ the suprema of Sk and S̃k respectively. The sequence

(xnk
+Sk+ S̃k−1)k satisfies (i) and (ii) in Paragraph 6.1 with respect to the increas-

ing sequence (zk + Sk−1 + S̃k−1)k, and thus it is weakly increasing in S. Indeed,
for l ≥ k we have

zk + Sk−1 + S̃k−1 ≤ zl + Sk−1 + S̃k−1 ≤ xnl
+ Sl + S̃l−1,

and for all k ≥ 1 we have

xnk
+ Sk + S̃k−1 ≤ z + Sk + S̃nk

≤ z + S∞ + S̃∞ = sup(zk + Sk−1 + S̃k−1).

Moreover, since the elements of the sequence are in W and W ⊆ S is closed
under suprema of weakly increasing sequences, we have

z + S∞ + S̃∞ = sup
n
(xn + S∞ + S̃∞) ∈ W.

This implies that [z] ∈ W/W ∩ I as required. □
6.10 (Exact sequences in the categories SQ and SCu). Let φ : M → N be a
morphism of positively ordered monoids. As in [11], we define

Im(φ) = {(h1, h2) ∈ N ×N | h1 ≤ φ(s) + h2 for some s ∈M},
ker(φ) = {(s1, s2) ∈M ×M | φ(s1) ≤ φ(s2)},

and we say that a sequence

0 → (I, J) → (S,W ) → (Z, T ) → 0

in SQ (respectively, in SCu) is exact if

0 → I → S → Z → 0, and 0 → J → W → T → 0

are exact in the standard sense using the above definitions of image and kernel.

Proposition 6.11. Let (S,W ) ∈ SQ and let (I, I ∩ W ) be an ideal of (S,W ).
Assume that I ∩W ⊆ I is cofinal. Then, the sequence

0 → (I, I ∩W ) → (S,W ) → (S/I,W/I ∩W ) → 0

is exact.

Proof. The first component is exact by the same argument as in [11, Theorem 4.1].
To see that 0 → I ∩W → W → W/I ∩W → 0 is exact, note that

ker(W → W/I ∩W ) = ker(S → S/I) ∩ (W ×W )

and

Im(I ∩W → W ) ⊆ Im(I → S).

Thus, using that ker(S → S/I) = Im(I → S), one gets

Im(I ∩W → W ) ⊆ ker(W → W/I ∩W ).
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To see the converse inclusion, take (r1, r2) ∈ W ×W such that [r1] ≤ [r2] in
W/I ∩W . Then, there exists s ∈ I ∩W such that r1 ≤ r2 + s. This shows that
(r1, r2) ∈ Im(I ∩W → W ), as desired. □
Theorem 6.12. Let I be a two-sided, quasipure ideal of a ring R. Then, the
sequence

0 → SQR(I) → SQ(R) → SQ(R/I) → 0

is exact.

Proof. This follows immediately from Theorem 5.3 and Proposition 6.11. □
Remark 6.13. The results in this section apply almost verbatim to the category
SCu except for this last result, for which we will need to restrict to a particular
class of rings; see Remark 7.11.

7. Dense and left normal rings

In this section we introduce the notions of dense and left normal rings. We
show that they constitute a large class for which the functors Λ(–) and S(–) are
well-behaved; see Theorem 7.8.

7.1 (Dense rings). Recall that a relation ≺ on a set X is termed dense (or also
idempotent) if for any x, y ∈ X with x ≺ y, there exists z ∈ X with x ≺ z ≺ y.

We say that a ring R is dense provided the relation ≾1 is dense on M∞(R). If
R is a weakly s-unital ring (in particular, if it is unital) then the relation ≾1 on
M∞(R) is dense, simply because it is reflexive. This also holds more generally, for
example, when R is idempotent. Indeed, if x ≾1 y in M∞(R), write x = ayb and
use that R is idempotent to decompose a = a′1a2 and b = b2b

′
1 in M∞(R). Let

z = a2yb2, and then we have x = a′1(a2yb2)b
′
1 ≾1 z ≾1 y.

7.2 (Left normal rings). Let R be a ring. We say that R is left normal if, for
every a, b, c ∈M∞(R) such that

a = ba, and b = cb,

there exist d, e ∈M∞(R) such that

a = da, d = ed, and e = ce.

We give below some examples of left normal rings.

Recall that a unital ring R is weakly semihereditary if for any R-linear maps
f : A→ B and g : B → C between finitely generated projective modules such that
g ◦ f = 0, there is a decomposition B = B′ ⊕ B′′ such that im(f) ⊆ B′ ⊆ ker(g).
This is a right-left symmetric notion introduced by G. M. Bergman and satisfied by
every right hereditary ring; see for example [13, Part 1.11]. Right semihereditary
rings are also weakly semihereditary, and thus this class contains in particular all
von Neumann regular rings as well as the path K-algebra of a quiver (where K is
a field).

Lemma 7.3. Any weakly semihereditary ring is left normal.
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Proof. Let R be as in the statement, and let a, b, c ∈M∞(R) be such that a = ba
and b = cb. By passing to matrices over R, we may assume that the elements are
in R.

Consider the R-linear maps f : R → R and g : R → R given by f(x) = ax and
g(y) = (1 − b)y. Clearly g ◦ f = 0, hence by assumption there is an idempotent
e ∈ R such that R = eR ⊕ (1 − e)R and a = ea, while (1 − b)e = 0. Let d = e,
and note that e = be = cbe = ce. Thus R is left normal. □

The definition and terminology of left normality is motivated from topology.

Lemma 7.4. Let R = C(X,K) with X a normal space and K = R or C. Let
f, g, h ∈ R be such that f = gf and g = hg. Then, there exist f ′, g′ ∈ R such that
f = f ′f , f ′ = g′f ′ and g′ = hg′.

Proof. Let f, g, h ∈ C(X,K) be as in the statement. Consider the closed set
C = supp(f) and the open set V = coz(g), where coz(g) denotes the cozero set of
g and supp(f) denotes the closure of coz(f).

Put D = {t ∈ X : g(t) > 1/2}, which is an open subset of X. We have C ⊆ D
and D ⊆ V .

By Urysohn’s Lemma, there are f ′, g′ ∈ C(X,K) such that 0 ≤ f ′, g′ ≤ 1, f ′ is
1 on C and 0 out of D, and g′ is 1 on D and 0 out of V . Then f ′, g′ satisfy the
desired conditions. □
Remark 7.5. It is plausible that Lemma 7.4 can be improved to show that C(X)
is, at least in the complex case, a left normal ring. However a proof has not come
around yet.

Another instance of left normality comes from C*-algebra theory. Recall that
a C*-algebra A is a complex Banach algebra with involution such that ∥aa∗∥ =
∥a∥2 for any a ∈ A. Important elements in C*-algebras are the so-called positive
elements, that is, those of the form x∗x.

The subclass of SAW*-algebras, introduced by Pedersen in [24], plays an impor-
tant role in the study of multiplier and corona algebras. We recall the definition
here for convenience. A C*-algebra A is an SAW*-algebra if for any given posi-
tive elements x, y ∈ A such that xy = 0, there is a positive element e ∈ A such
that ex = x and ey = 0. (Because of the involution, note that this also implies
xe = x and ye = 0.) It was proved in [24, Theorem 13] that the corona algebra
of any σ-unital (in particular, of any separable) C*-algebra is an SAW*-algebra.
It is an open problem to decide whether SAW*-algebras are closed under the pas-
sage to matrices, alghough this is known in some significant cases. For example,
if A is a σ-unital C*-algebra, M(A) is its multiplier algebra, and M(A)/A is
the corona algebra, then Mn(M(A)) ∼= M(Mn(A)) for all n ≥ 1, and therefore
Mn(M(A)/A) ∼= M(Mn(A))/Mn(A). Another example is constituted by the class
of Rickart C*-algebras, which are also SAW*-algebras and that were shown to be
matrix stable in [6, Theorem 3.4].

Proposition 7.6. Let A be a C∗-algebra such that Mn(A) is an SAW*-algebra for
all n ≥ 1. Then A is a left normal ring.
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Proof. Let a, b, c ∈ M∞(A) such that a = ba and b = cb. We may assume that
a, b, c ∈ Mn(A) for some n, which by assumption is an SAW*-algebra, hence
without loss of generality a, b, c ∈ A.

Then aa∗ = baa∗ and bb∗ = cbb∗. From the first equality we get (1− b)aa∗ = 0,
whence also (1 − b)∗(1 − b)aa∗ = 0. Thus there exists a positive element d ∈ A
such that daa∗ = aa∗ and (1− b)∗(1− b)d = 0.
Using the first equality we get

0 = ∥(d− 1)aa∗(d− 1)∗∥ = ∥(d− 1)a∥2,
whence a = da. Similarly, the second equality yields bd = d.

Now, since (1 − c)bb∗ = 0, we have (1 − c)∗(1 − c)bb∗ = 0, hence there exists
a positive element e ∈ A such that ebb∗ = bb∗ and (1 − c)∗(1 − c)e = 0. Thus,
arguing as before, we get eb = b and (1− c)e = 0, that is, e = ce.

Finally, ed = ebd = bd = d, as required. □

The relevance of considering dense and left normal rings is reflected in Theo-
rem 7.8 below. First we need the following lemma.

Lemma 7.7. Let R be a left normal ring, and let a, b, c ∈M∞(R) be such that

a = ba, and b = cb.

Then, there exists a sequence (dn) in M∞(R) such that

a = d1a, dn = dn+1dn, and dn = cdn

for all n.

Proof. It follows from the definition of left normal ring that there are d1, e1 ∈
M∞(R) such that

a = d1a, d1 = e1d1, and e1 = ce1.

Hence d1 = e1d1 = ce1d1 = cd1.
Now, proceeding by induction, let n ≥ 1 and assume that we have found ele-

ments d1, . . . , dn, en in M∞(R) such that

a = d1a, dn = endn, en = cen, and di = di+1di

for i = 1, . . . , n− 1.
Note that these conditions imply that cdi = di for all i = 1, . . . , n. Indeed, we

have

cdn = cendn = endn = dn

and, using that di = di+1di, one also gets cdi = di for each i.
Using that R is left normal once again with dn, en, c we get dn+1, en+1 ∈M∞(R)

such that

dn = dn+1dn, dn+1 = en+1dn+1, and en+1 = cen+1,

thus completing the inductive argument, and the proof. □
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Recall that the semigroups Λ(R) and S(R) are equipped with an auxiliary re-
lation ≺ defined as [(xn)] ≺ [(yn)] if there is m such that xn ≾1 ym for all m; see
Remark 2.4. As we show below, this is identified with the way-below relation in
relevant cases.

Theorem 7.8. Let R be a ring.

(i) If R is dense, then Λ(R) is a Cu-semigroup, and ≺=≪ on Λ(R).
(ii) If R is left normal, then S(R) is a Cu-semigroup, and ≺=≪ on S(R).

Proof. In both (i) and (ii) we already know, irrespective of other assumptions,
that Λ(R) and S(R) are Q-semigroups, and thus satisfy axioms (O1) and (O4).

(i): Let [(xn)] ∈ Λ(R), and let z
(n)
1 = xn. Since ≾1 is dense, there is a sequence

z
(n)
k such that xn ≾1 z

(n)
k ≾1 z

(n)
k+1 ≾1 xn+1 for all n and k ≥ 2. Define zn = [(z

(n)
k )k]

and note that by construction zm ≺ zm+1 ≺ [(xn)] for each m.
We now claim that [(xn)] = supm zm. To verify this, let us briefly recall the

details on how suprema are constructed in Λ(R) (see [1, Proposition 2.13] and
also [3, Proposition 3.1.6]). By an inductive process, one may choose an increasing

sequence (mk) such that z
(i)
mi+j

≾1 z
(k)
mk whenever i + j ≤ k. Then the sequence

(z
(k)
mk)k defines an element in Λ(R) and sup zm = [(z

(k)
mk)]. Now, for each n, we have

that xn = z
(n)
1 ≾1 z

(n)
mn , and thus [(xn)] ≤ [(z

(k)
mk)]. Conversely, for each k, we have

that z
(k)
mk ≾1 xk+1, thus establishing the claim.

Since ≺ is compatible with addition, it only remains to show that ≺ agrees with
the compact containment relation. As observed in Paragraph 2.3, ≺ is always
stronger than ≪. Hence, assume that [(xn)] ≪ [(yn)]. By the first part of the

proof, [(yn)] = supwm, where wm = [(w
(m)
k )k] satisfying w

(m)
1 = ym and w

(m)
k ≾1

ym+1 for all k. Then, there is m such that [(xn)] ≤ wm and therefore, for each n,

there is k with xn ≾1 w
(m)
k ≾1 ym+1. This implies that [(xn)] ≺ [(ym)].

(ii): Given [(xn)] ∈ S(R), we first use [1, Corollary 4.11] to assume without loss
of generality that xn+1xn = xn for all n. (Note that we still have xn ≾1 xn+1, since
xn = xn+1xn = xn+2xn+1xn.)
Since for each n we have xn = xn+1xn and xn+1 = xn+2xn+1 we may apply

Lemma 7.7 to find a sequence (z
(n)
k )k such that xn = z

(n)
1 xn, z

(n)
k = z

(n)
k+1z

(n)
k , and

z
(n)
k = xn+2z

(n)
k for each k. Using that xn+2 = xn+3xn+2 we have

xn ≾1 z
(n)
k ≾1 z

(n)
k+1 ≾1 xn+2

for each k, n. We may assume, after reindexing, that xn ≾1 z
(n)
k ≾1 z

(n)
k+1 ≾1 xn+1.

Therefore zn := [(z
(n)
k )k] ∈ S(R) and zm ≺ zm+1 ≺ [(xn)] for each m. By (the

proof of) [1, Lemma 4.3], the supremum of an increasing sequence in S(R) agrees
with the supremum of the same sequence computed in Λ(R). Therefore, we may
proceed as in the proof of (i) to conclude that [(xn)] = supm zm.

Now the same argument used in (i) shows that ≺ agrees with the relation ≪
on S(R). This finishes the proof. □
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Remark 7.9. Observe that the notion of left normality provides the appropriate
density condition for the semigroup S(R) to be in Cu, but that there is in general
no apparent connection between density and left normality.

Let us denote by Ringsdense the full subcategory of Rings whose objects are
dense rings.

Corollary 7.10. Let R be a dense ring, then SCu(R) = (Λ(R), S(R)) is an object
in SCu. Further, the assignment R 7→ SCu(R) defines a functor SCu: Ringsdense →
SCu, and we have a commutative diagram

Rings
SQ

// SQ

Ringsdense
?�
ι

OO

SCu
// SCu
?�

ι

OO

where ι stands for the respective inclusion functors.

Proof. The first part of the statement follows from Theorem 7.8, while the second
part is clear from Theorem 6.4, and by construction. □
Remark 7.11. Note that, if I is a decomposable ideal of a dense ring R, then
SCuR(I) = (ΛR(I), S(I)) is an ideal of SCu(R); see Paragraph 6.5. Further,
restricting to the subcategory of dense rings, we have have by Theorem 6.12 that
the sequence

0 → SCuR(I) → SCu(R) → SCu(R/I) → 0

is exact.

8. Inductive limits and continuity

In this section we show that, for the class of dense rings, the assignment R 7→
Λ(R) defines a continous functor. Similarly, for the class of left normal rings, the
assignment R 7→ S(R) defines a continuous functor. We start by recalling how
limits in the category Cu are constructed.

8.1 (Limits in Cu). Let ((Sλ)λ∈Ω, (fµ,λ)µ≥λ) be a direct system of Cu-semigroups,
that is, each Sλ is a Cu-semigroup for each λ and, for every pair λ, µ with µ ≥ λ,
there exists a Cu-morphism fµ,λ : Sλ → Sµ such that fλ,λ = id and fµ,λ◦fλ,ν = fµ,ν
whenever ν ≤ λ ≤ µ in Ω.

By [3, Corollary 3.1.11] (see also [12, Theorem 2]), the system has a direct limit
limλ Sλ in the category Cu. We will denote by fλ the canonical maps fλ : Sλ →
limλ Sλ given by the induced limit in Cu.

As shown in [26, Lemma 3.8] (see also [12]), a Cu-semigroup S together with
maps fλ : Sλ → S is the limit of the system above if and only if the following
conditions hold:

(a) fµ ◦ fµ,λ = fλ whenever µ ≥ λ;
(b) for any pair x′ ≪ x in Sλ and an element y ∈ Sµ such that fλ(x) ≤ fµ(y),

there exists ν ≥ µ, λ such that fν,λ(x
′) ≪ fν,µ(y);

(c) for every pair x′ ≪ x in S there exists y ∈ Sλ such that x′ ≤ fλ(y) ≤ x.
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Theorem 8.2. Let ((Rλ)λ∈Ω, (ϕµ,λ)µ≥λ) be a direct system in Rings.

(i) If all Rλ are dense (this is the case, for example, if R2
λ = Rλ for all λ), then

lim−→Rλ is also dense and

Λ(lim−→Rλ) = lim−→
Cu

Λ(Rλ).

(ii) If all Rλ are left normal, then lim−→Rλ is also left normal and

S(lim−→Rλ) = lim−→
Cu

S(Rλ).

Proof. Write R = lim−→Rλ and denote by ϕλ : Rλ → R the limit maps. Suppose
that x ≾1 y in M∞(R). Then there is λ ∈ Ω such that x, y ∈M∞(Rλ) and x ≾1 y
in M∞(Rλ). This shows that ≾1 is dense in M∞(R). It is also easily checked that,
if each Rλ is left normal, so is R.

(i): For each µ ≥ λ in Ω, denote fµ,λ = Λ(ϕµ,λ) and fλ = Λ(ϕλ). To check
that Λ(R) is the limit of the system (Λ(Rλ)λ, (fµ,λ)µ≥λ), we note that Λ(Rλ) and
Λ(R) are all Cu-semigroups by (i) in Theorem 7.8 and thus we may use the char-
acterization given in Paragraph 8.1. Note also that, by the proof of said theorem,
the relations ≺ and ≪ in Λ(R) and in any of the Λ(Rλ) agree. Condition (a) is
already satisfied by definition of the maps fλ and fµ,λ.
To check condition (b), let [(xn)], [(zn)] ∈ Λ(Rλ) with [(zn)] ≺ [(xn)], and let

[(yn)] ∈ Λ(Rµ). Assume that fλ([(xn)]) = [(ϕλ(xn))] ≤ [(ϕµ(yn))] = fµ([(yn)]). We
know from the first assumption that there is m such that zn ≾1 xm for all n. Thus,
for m as above there is l such that ϕλ(xm) ≾1 ϕµ(yl) in M∞(R). This means that
there is ν ≥ λ, µ for which ϕν,λ(xm) ≾1 ϕν,µ(yl) inM∞(Rν). Therefore, ϕν,λ(zn) ≾1

ϕν,λ(xm) ≾1 ϕν,µ(yl) for all n, and this implies that fν,λ([(zn)]) ≺ fν,µ([(yn)]).
Finally, let us check condition (c). Take [(xn)] ≺ [(yn)] in Λ(R). This implies

that there is m such that xn ≾1 ym ≾1 ym+1. We may assume that there is λ
such that ym = ϕλ(y

′
m), ym+1 = ϕλ(y

′
m+1) with y

′
m ≾1 y

′
m+1 in M∞(Rλ). Since the

relation ≾1 inM∞(Rλ) is dense by assumption, there is a sequence (zk) inM∞(Rλ)
such that y′m ≾1 zk ≾1 zk+1 ≾1 y

′
m+1 for all k. Now [(xn)] ≤ fλ[(zn)] ≤ [(yn)], as

desired.
(ii): In analogy with (i), for each µ ≥ λ in Ω, denote gµ,λ = S(ϕµ,λ) and

gλ = S(ϕλ). To check that S(R) is the limit of the system (S(Rλ)λ, (gµ,λ)µ≥λ),
again we use the characterization given in Paragraph 8.1:

First note that S(Rλ) and S(R) are all Cu-semigroups by (ii) in Theorem 7.8.
It is automatic that the maps gµ,λ, gλ satisfy condition (a).

Recall from the proof of Theorem 7.8 that the relations ≺ and ≪ coalesce in
S(Rλ) and S(R) since by assumption they are left normal rings. Then, the proof
for (b) follows verbatim as in (i) above.

Finally, for (c), assume that [(xn)] ≺ [(yn)] in S(R), where we may assume
by [1, Corollary 4.11] that yn+1yn = yn for all n. This implies that there is m
such that xn ≾1 ym for all n. We may also assume that there is λ such that
ym = ϕλ(y

′
m), ym+1 = ϕλ(y

′
m+1), ym+2 = ϕλ(y

′
m+2), and ym+3 = ϕλ(y

′
m+3) with

y′m = y′m+1y
′
m, y

′
m+1 = y′m+2y

′
m+1, and y

′
m+2 = y′m+3y

′
m+2 in M∞(Rλ).
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Since Rλ is a left normal ring by assumption, we may apply Lemma 7.7 and find

a sequence (z
(m)
k ) such that y′m = z

(m)
1 y′m, z

(m)
k = z

(m)
k+1z

(m)
k , and z

(m)
k = ym+2z

(m)
k for

each k. Hence [(z
(m
k ))] ∈ S(Rλ) and we have that [(xn)] ≤ gλ([z

(m)
k ]) ≤ [(ym)]. □

When considering weakly s-unital rings, the result in Theorem 8.2 (i) may be
expressed in terms of the semigroup W(R); see the discussion in Paragraph 2.1.

8.3 (Intervals and algebraic Cu-semigroups). Recall that a countably generated
interval I in a positively ordered semigroup M is an upward directed, order-
hereditary subset I of M that has a countable cofinal subset. We denote by
Λσ(M) the collection of countably generated intervals. This is also a positively
ordered semigroup with order induced by set inclusion and addition defined as
I + J = {x ∈ M : x ≤ y + z where y ∈ I, z ∈ J}; see e.g. [3, Section 5.5]. As
already mentioned in Paragraph 2.1, if R is a weakly s-unital ring, then Λσ(W(R))
may be identified with Λ(R).

Recall that an element x in an ordered semigroup S satisfying (O1) is termed
compact provided that x≪ x. The submonoid of compact elements of S is denoted
by Sc. For a Cu-semigroup of the form Cu(A) of a C*-algebra A, the natural
compact elements (and very often the only ones) have the form x = [p] where
p is a self-adjoint idempotent (a projection). We say that a Cu-semigroup S is
algebraic provided every element in S is the supremum of an increasing sequence of
compact elements. Examples, coming from C*-theory, of algebraic Cu-semigroups
include, for example, the Cuntz semigroup of any C*-algebra which, as a ring, is
an exchange ring; see [3, Remark 5.5.2(2)] and [7, Theorem 7.2]. In connection
with the discussion above, ifM is any positively ordered monoid, then the monoid
Λσ(M) is an algebraic Cu-semigroup, with Λσ(M)c ∼= M (see [1, Lemma 2.15]). In
fact, each interval I generated by a countable cofinal increasing sequence (xn) may
be written as I = sup[0, xn], where clearly [0, xn] ≪ [0, xn] for each n.

8.4 (Limits in the category PoM). Given a direct system ((Mλ)λ∈Ω, (fµ,λ)µ≥λ) in
PoM over a directed set Ω, recall that its direct limit in PoM may be constructed
as the algebraic limit (M, (fλ)λ∈Ω) of the system, where fλ : Mλ → M , equipped
with the usual addition and ‘asymptotic’ order, that is, fλ(x) ≤ fµ(y) in M for
x ∈Mλ and y ∈Mµ if there exists δ ≥ λ, µ such that fδ,λ(x) ≤ fδ,µ(y) in Mδ. We
write lim

PoM
(Mλ, fµ,λ), or just lim

PoM
Mλ. In the following, we denote by Ringsws the

category of weakly s-unital rings and ring homomorphisms.

Proposition 8.5. Let ((Mλ)λ∈Ω, (fµ,λ)µ≥λ) be a direct system in PoM and let
((Rλ)λ∈Ω, (ϕµ,λ)µ≥λ) be a direct system in Ringsws. Then,

Λσ(lim
PoM

Mλ) ∼= lim
Cu

Λσ(Mλ) and W(limRλ) ∼= lim
PoM

W(Rλ).

Proof. It was proved in [3, Proposition 5.5.5 and Remark 5.5.6] that the correspon-
dence M 7→ Λσ(M) extends to a functor PoM → Cualg that yields an equivalence
between these categories (via the functor Cualg → PoM given by S 7→ Sc). One
furthermore gets a bijection between the morphism sets

Cu(Λσ(M),Λσ(N)) ∼= PoM(M,N).
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With this at hand, in combination with [3, Proposition 3.1.6 and Theorem 3.1.8]
(which provides us with a bijection Cu(Λσ(M), S) ∼= PoM(M,Sc) for any Cu-se-
migroup S), one gets Λσ(lim

PoM
Mλ) ∼= lim

Cu
Λσ(Mλ), thus establishing the leftmost

isomorphism.
For the rightmost isomorphism, we first apply the functor W(–) to the system

((Rλ)λ∈Ω, (ϕµ,λ)µ≥λ) and its limit (limRλ, (ϕλ)λ∈Ω) to obtain a direct system in the
category PoM and a PoM-morphism φ : lim

POM
W(Rλ) → W(limRλ) such that the

following diagram commutes:

W(Rλ) //

W(ϕλ) %%

lim
PoM

W(Rλ)

φ

��

W(limRλ)

We claim that φ is an isomorphism. To see that it is an order-embedding, let
a, b ∈ limPoM W(Rλ) be such that φ(a) ≤ φ(b) in W(limRλ). Let λ ∈ Ω and
x, y ∈ M∞(Rλ) be such that a = [ϕλ(x)] and b = [ϕλ(y)]. By the commutativity
of the diagram above, we get

W(ϕλ)([x]) ≤ W(ϕλ)([y])

and, therefore, ϕλ(x) ≾1 ϕλ(y) in M∞(limRλ).
By the equational nature of ≾1 and the construction of the inductive limit

in Ringsws, there exists µ ≥ λ such that ϕµ,λ(x) ≾1 ϕµ,λ(y). This implies that
[ϕµ,λ(x)] ≤ [ϕµ,λ(y)] in W(Rµ). Thus, one has

a = [ϕλ(x)] = [ϕµ(ϕµ,λ(x))] ≤ [ϕµ(ϕµ,λ(y))] = [ϕλ(y)] = b,

as desired.
To check that φ is also surjective, note that an element of W(limRλ) is of the

form [ϕλ(x)] for some λ and x ∈M∞(Rλ). Therefore, one has

[ϕλ(x)] = W(ϕλ)([x]) ∈ φ
(
lim
PoM

W(Rλ)
)
,

as required. □

We thus obtain a different proof of Theorem 8.2 in the case of weakly s-unital
rings.

Corollary 8.6. The functor Λ: Ringsws → Cu, R 7→ Λ(R), is continuous.

Proof. Let ((Rλ)λ∈Ω, (ϕµ,λ)µ≥λ) be a direct system in Ringsws. By [1, Proposition
2.17], we have that Λ(R) ∼= Λσ(W(R)) for any weakly s-unital ring. Using this
at the first and the last step, and the isomorphisms from Proposition 8.5 at the
second and third step, we obtain

Λ(limRλ)∼= Λσ(W(limRλ))∼= Λσ( lim
POM

W(Rλ))∼= lim
Cu

Λσ(W(Rλ))∼= lim
Cu

Λ(Rλ). □
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9. Continuity of the functor SCu

In this final section we study the continuity of the functor SCu(–). To this end,
we first prove that the category SCu admits direct limits. Although, as shown
in Theorem 8.2 the first component Λ(–) is continuous for dense rings, SCu(–)
may not always be continuous in this case, as described in Example 9.2. This is
remedied by restricting to the class of dense left normal rings; see Theorem 9.4.

Theorem 9.1. Direct systems ((Sλ,Wλ)λ∈Ω, (ϕµ,λ)µ≥λ) in SCu have a limit.

Proof. Let ((Sλ,Wλ)λ∈Ω, (ϕµ,λ)µ≥λ) be a direct system in SCu. By definition, we
have a family (Sλ,Wλ)λ∈Ω of objects in SCu indexed by a directed set Ω such that,
for every pair µ ≥ λ there exists a morphism ϕµ,λ : (Sλ,Wλ) → (Sµ,Wµ) in SCu
such that ϕλ,λ = id and ϕµ,λϕλ,ν = ϕµ,ν .

Then, the induced system ((Sλ)λ∈Ω, (ϕµ,λ)µ≥λ) is a direct system in Cu which,
as mentioned in Paragraph 8.1, has a direct limit S := limλ Sλ. Denote by ϕλ the
canonical maps ϕλ : Sλ → limλ Sλ given by the induced limit in Cu.

Let W0 denote the union ∪λϕλ(Wλ) in S. Note that, since Wλ is a submonoid
of Sλ and each ϕµ,λ maps Wλ to Wµ, it follows that W0 is a submonoid of S.

By Lemma 6.2 (and the comments in Paragraph 6.1), we know that every weakly
increasing sequence in S has a supremum. Now consider the set

W =

{
w = sup

n
wn : (wn) ⊆ W0 is a weakly increasing sequence in S

}
.

Given any v ∈ Wλ, it follows that ϕλ(v) ∈ W by simply considering the constant
sequence (ϕλ(v))λ. This shows that ϕλ(Wλ) ⊆ W for every λ, and thus also
W0 ⊆ W .

We claim that (S,W ) is the limit of the system ((Sλ,Wλ), ϕµ,λ). To see this, let
us first show that (S,W ) ∈ SCu. In other words, we need to prove that W is a
submonoid of S closed under suprema of weakly increasing sequences.

First, given u,w ∈ W , it follows from Paragraph 6.1 that u+w ∈ W , and thus
W is a submonoid of S. Next, let (wn) ⊆ W be a weakly increasing sequence in
S, and let w ∈ S be its supremum. The proof of Lemma 6.2 yields a ≪-increasing
sequence (uk) in S satisfying (i)’ and (ii)’ as stated in said proof. In particular,
by (ii)’ we have that wn ≤ supk uk for all n.

By (i)’, for each k there is nk such that uk ≪ wn whenever n ≥ nk. We may also
assume without loss of generality that the sequence (nk)k is strictly increasing.
Now, for n < n1, we set vn = 0. Given n such that nk ≤ n < nk+1, use that
uk ≪ wn for any such n and the fact that wn ∈ W , hence is the supremum of a
weakly increasing sequence of elements in W0 to find vn ∈ W0 such that

uk ≪ vn ≤ wn.

By construction (and using also that uk is ≪-increasing), for every k we have
that uk ≪ vn whenever n ≥ nk. Further, vn ≤ wn ≤ supk uk for every n.
Thus, again using the proof of Lemma 6.2, we have that (vn) ⊆ W0 is a weakly

increasing sequence. Moreover, it is clear from our construction that

sup
k
uk = sup

n
vn = supwn = w.
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Therefore w ∈ W and thus (S,W ) ∈ SCu.
Finally, let us check that (S,W ) is the limit of ((Sλ,Wλ)λ∈Ω, (ϕµ,λ)µ≥λ). To

this end, let (T, Z) be an object of SCu and let {ψλ} be a compatible family of
morphisms ψλ : (Sλ,Wλ) → (T, Z) in SCu. Since (S, {ϕλ}) is the direct limit of
((Sλ)λ∈Ω, (ϕµ,λ)µ≥λ) in Cu, it follows that there is a unique Cu-morphism ψ : S → T
such that ψλ = ψ ◦ ϕλ for all λ ∈ Ω.
Now, let w ∈ W , and let (wn) ⊆ W0 be a weakly increasing sequence in S

with w = supnwn. Then, by Paragraph 6.1, (ψ(wn)) is also a weakly increasing
sequence in T with ψ(w) = supn ψ(wn). Furthermore

(ψ(wn)) ⊆ ψ(W0) = ψ(
⋃

(ϕλ(Wλ))) ⊆
⋃

ψ(ϕλ(Wλ)) =
⋃

ψλ(Wλ) ⊆ Z.

Since Z is closed under suprema of weakly increasing sequences, we conclude that
ψ(w) ∈ Z. This implies that ψ is a morphism in SCu, as desired. □

We now proceed to show that SCu(–) is in general not continuous. In the
construction below note that, albeit similar, the ring R is not the one used in [1,
Remark 4.8].

Example 9.2. There exists a sequence of (unital commutative) rings (Rn) and
ring homomorphisms fn : Rn → Rn+1 such that SCu(limRn) ̸∼= lim

SCu
SCu(Rn).

Proof. Let K be a field. Let Rn be the ring K[x1, x2, . . . , xn] with commuting
variables x1, x2, . . . , xn subject to the relations xi+1xi = xi for i = 1, . . . , n−1. Let
R := K[x1, . . .] be the polynomial algebra in infinitely many commuting variables
subject to the relations xi+1xi = xi for each i ≥ 1. Clearly, one has R = limnRn,
where the connecting maps and limit maps are given by the natural inclusions
ιn+1,n : Rn → Rn+1 and ιn : Rn → R respectively.

Let n ∈ N. Observe that each element a of Rn can be uniquely written in the
form

a = a0 + x1p1(x1) + · · ·+ xnpn(xn),

where a0 ∈ K, and pi(xi) ∈ K[xi]. For each 1 ≤ j ≤ n, we let Ij the ideal (xr)
of Rn generated by x1, . . . , xj, and clearly {0} ⊆ I1 ⊆ I2 ⊆ . . . ⊆ In. Note that,
with respect to the above normal form of the elements of Rn, we have that a ∈ Ij
if and only if a0 = pj+1 = · · · = pn = 0.

We claim that, if w = (wi)i ∈ S(Rn) with each wi in M∞(In), then w = 0. To
see this suppose, by way of contradiction, that w ̸= 0.

For each 1 ≤ r ≤ n, let πr : Rn → K[xr] be the homomorphism defined by

πr(xi) =





0, if 1 ≤ i < r

xr, if i = r

1, if r + 1 ≤ i ≤ n.

Now, choose r to be the smallest integer such that each wi belongs to M∞(Ir).
Therefore πr(w) = (πr(w1), πr(w2), . . .) is a nonzero element in S(K[xr]). Indeed
there is an entry a of wi for some i ∈ N such that

a = x1p1(x1) + · · ·+ xrpr(xr) ∈ Ir \ Ir−1,
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which implies that pr ̸= 0. Hence πr(a) = xrpr(xr) ̸= 0, showing that πr(wi) ̸= 0.
Hence πr(w) ̸= 0. Note that all the entries in each matrix πr(wi) belong to the ideal
of K[xr] generated by xr. Hence by Lemma 4.7 πr(w) ∈ S((xr)) and we observed
in Example 4.1 that S((xr)) = 0, hence we get a contradiction. Therefore our
claim is proved.

Now write (S,W ) = lim
SCu

SCu(Rn) (this limit exists by Theorem 9.1). We want

to show that the natural map Φ: (S,W ) → SCu(R) = (Λ(R), S(R)) is not an
isomorphism. By the universal property of the inductive limit, if φn : SCu(Rn) →
(S,W ) denote the limit maps, then Φ satisfies Φ ◦ φn = SCu(ιn) for each n.

Let (xn) ∈ S(R) be the sequence given by the commuting variables of R. To
finish the proof, it is enough to show that z := [(xn)] ∈ S(R) \ Φ(W ).

Denote by π : R → K the homomorphism that sends all variables xn to 0, and
let πn : Rn → K be given by πn = π ◦ ιn.

Suppose that z ∈ Φ(W ). Then, by the proof of Theorem 9.1 there is a sequence
(wn) ⊆ ∪mΛ(ιm)(S(Rm)), weakly increasing in Λ(R), such that z = supwn. In
particular Λ(π)(wn) ≤ Λ(π)(z) = 0 for all n, and thus

Λ(π)(wn) = 0 for all n.

For each n, choose m = m(n) such that wn = Λ(ιm)(w̃m) for w̃m ∈ S(Rm).
Therefore, for all such m, we have

Λ(πm)(w̃m) = Λ(π ◦ ιm)(w̃m) = Λ(π)(wn) = 0.

This means that, if we write w̃m = [(wmi )i] with (wmi )i ∈ S(Rm), then wmi ∈
M∞(⟨x1, . . . , xm⟩) ⊆ M∞(Rm) for all i. But by the claim proved above we have
w̃m = 0, whence also wn = 0 for all n. Thus, z = supwn = 0, which is a
contradiction, because z ̸= 0. Hence z ∈ S(R) \ Φ(W ), as desired. □
Lemma 9.3. Let ((Sλ,Wλ)λ∈Ω, (ϕµ,λ)µ≥λ) be a direct system in SCu withWλ ∈ Cu
for all λ. Then,

lim−→
SCu

(Sλ,Wλ) = (lim−→
Cu

Sλ, lim−→
Cu

Wλ).

Proof. Let S = lim−→
Cu

Sλ andW = lim−→
Cu

Wλ. Let (S, W̃ ) be the limit in SCu of the sys-

tem in the statement. By construction (see Theorem 9.1) we have that S = lim−→
Cu

Sλ.

Denote by fλ : (Sλ,Wλ) → (S,W ) the natural maps, and by θλ : (Sλ,Wλ) →
(S, W̃ ) the limit maps. Then, there is a (unique) SCu-morphism Φ: (S, W̃ ) →
(S,W ) such that Φ ◦ θλ = fλ. Note that Φ|S = idS.

By definition we already have that Φ(W̃ ) ⊆ W , hence it remains to show that
W ⊆ Φ(W̃ ). Let w ∈ W , and choose wn such that wn ≪ wn+1 ≪ w in W , which
is possible since W is by assumption a Cu-semigroup. Using that W = lim−→

Cu

Wλ

(see Paragraph 8.1) we may find λn and yn ∈ Wλn such that wn ≤ fλn(yn) ≤ wn+1.
This implies that w = supn fλn(yn) and thus w ∈ Φ(W̃ ). □
Theorem 9.4. Let ((Rλ)λ∈Ω, (ϕµ,λ)µ≥λ) be a direct system of dense, left normal
rings. Then lim SCu(Rλ) ∼= SCu(limRλ).



IDEALS, QUOTIENTS, AND CONTINUITY 37

Proof. Write R = limλRλ, and denote by ϕλ : Rλ → R the limit maps. We already
know that R is dense and left normal.

By Theorem 7.8 we know that Λ(Rλ) and S(Rλ) are objects in Cu, and by The-
orem 8.2, we have that Λ(R) = lim−→

Cu

Λ(Rλ) as well as S(R) = lim−→
Cu

S(Rλ). Therefore

we may apply Lemma 9.3 to conclude that lim−→
SCu

(Λ(Rλ), S(Rλ)) = (Λ(R), S(R)), as

desired. □
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