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Abstract

In this article, we consider the one-dimensional stochastic wave and heat equations driven
by a linear multiplicative Gaussian noise which is white in time and behaves in space like a
fractional Brownian motion with Hurst index H € (§,1). We prove that the solution of each
of the above equations is continuous in terms of the index H, with respect to the convergence
in law in the space of continuous functions. The proof is based on a tightness criterion on
the plane and Malliavin calculus techniques in order to identify the limit law.
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1 Introduction

In this article, we consider the Hyperbolic Anderson Model

2, H 2, H )
%(t,m) - %(t,x} +uf (4, 0)WH (L 2), (tz) e Ry xR,
ut(0,2) =7, v € R, (SWE)
H
%(o,x) —0, z R,

and the Parabolic Anderson Model
outt (1) = 1 2ut

at T 9 a2
u(0,2) =n, z e R.

(t,z) +ul (t,2)WH(t,2), (t,2) e Ry xR, (SHE)

*Corresponding author



The initial condition 7 € R is assumed to be constant. The random perturbation W is a
Gaussian noise which is white in time and behaves in space like a fractional Brownian motion
with Hurst index H € (i, 1). More precisely, it is given by a family of centered Gaussian random
variables WH = {WH (), ¢ € C°(Ry xR)}, indexed in the space of C* functions with compact
support on Ry x R, with the following covariance structure:

E[WH (o)W ()] = /0 h /R Foolt, ) (O F G ) ©pa (de) e,

for any ¢, € C§°(R4 x R), where the measure pp is given by g (d€) = cp [€| 72 d¢, with

o I'(2H +217)Tsin(7rH). (1)

We denote by F the Fourier transform in the space variable, which is defined by
FI©) = [ s feL'®)
R

The solutions of (SWE) and (SHE) are understood in the mild It6 sense, as follows. We
fix a time horizon 7' > 0 and we denote by {F/, t > 0} the filtration generated by the noise
wH (conveniently completed). Then, we say that an adapted and jointly measurable random
field uff = {uf (t,2), (t,z) € [0,T] x R} solves (SWE) (resp. (SHE)) if it holds, for all (¢,z) €
[0,7T] x R:

t
ut(t,x) =1 —l—/ / Gi_s(z — y)ull (s,y)W! (ds,dy), P-as. (2)
0 JR
where G is the fundamental solution of the wave (resp. heat) equation in R. We recall that

1 (z) wave equation

2 H{|z|<t} ) q ’
T exp ( — —), heat equation.

(27t)2 2t

The stochastic integral appearing in (2) is understood in the It6 sense and will be described in
detail in Section 2.3.

In this paper, we are interested in studying the continuity in law, in the space of continuous
functions, of the solutions to (SWE) and (SHE) with respect to the Hurst index H. More
precisely, the main result of the paper is the following:

Theorem 1.1. LetT > 0. Let Hy € (i, 1) and {H,, n>1} C (i, 1) be any sequence converging
to Hy. Then, u™ converges to uf°, as n — oo, in law in the space C([0,T] x R)) of continuous
functions, endowed with the metric of uniform convergence on compact sets.

We point out that we restrict to Hurst indices greater than i. This is due to the fact that,

as proved in [4, Prop. 3.7], H > % is also a necessary condition in order to have a solution to
(SWE) and (SHE).

The above theorem can be considered a continuation of the results obtained by the authors
in [12] (see Theorem 4.2 therein), where the same kind of problem has been addressed for one-
dimensional quasi-linear stochastic wave and heat equations with an additive fractional noise as
the one described above. The proof of the latter result, which is indeed valid for any Hy € (0, 1),



is based on the fact that the solution of the underlying SPDE can be represented as the image
of the stochastic convolution through a continuous functional on the space C([0,7] x R)). In the
present paper, this technique cannot be applied anymore because of the structure of the linear
multiplicative noise. Instead, we consider the following strategy.

First, we prove that the sequence of probability measures induced by {uf», n > 1} is tight
in the space C([0,7] x R) (see Section 3). Here, we split the proof taking into account that the
sequence of Hurst indices is contained in (i, %] or [%7 1), for the definition and properties of the
stochastic integral in (2) differ significantly between those two cases. Indeed, the main diffi-
culty here is concentrated in the rough case, where we carefully extend some moment estimates
appearing in [4] in order to make them uniform with respect to H € (1, 1).

Secondly, in order to identify the limit law, we prove the convergence of the corresponding
finite dimensional distributions (see Section 4). The main problem here comes from the fact
that the solution u® is not a Gaussian process, and so identifying its covariance structure is
not enough to characterize its law. However, thanks to a spectral representation in law of our
noise W in terms of a complex-valued Gaussian measure (extending of some classical results in
[21]), we are able to define the whole family of noises {W, H € (0,1)} in a single probability
space and then check that, for any fixed (t,x) € [0,7] x R, ufl"(t,z) converges to u™o(t,z) in
L?(2). For this, we will use techniques of the Malliavin calculus, precisely the Wiener chaos
expansion of the mild Skorohod solutions of (SWE) and (SHE). In the process of applying this
methodology, we provide three preliminary results which have their own interest and turn out
to be crucial in our main result’s proof:

(i) For any H € (0,1), we prove that any multiple Wiener integral with respect to W
admits a representation as a multiple Wiener integral with respect to the above-mentioned
complex-valued Gaussian measure (see Theorem 2.7).

(ii) For any H € (i, 1), we prove an equivalence result between It6 and Skorohod stochastic
integrals with respect to WH (see Theorem 2.11). This result has already been proved in
[4, Thm. 4.2] for the case H < %, and we extend it to H > . We point out that the latter
case, in which the noise is more regular, entails some extra difficulties due to the fact that
the underlying Hilbert space associated to the noise’s covariance contains distributions.
An important consequence of Theorem 2.11 is that mild It6 and Skorohod solutions to
(SWE) (resp. (SHE)) coincide, and the corresponding Picard iteration scheme admits a
(finite) Wiener chaos decomposition.

(iii) In the setting H € (1, 1), we prove a Sobolev embedding-type result for the norms of the
Banach space on which we define our solutions (see Lemma 2.17). This result is similar
to classical embedding results, e.g. the ones appearing in [11], but takes into account the
different nature of the Sobolev norm in our setting.

The above strategy will be made clearer in Section 4 below, but let us remark at this point
that the main strategy in this part of the paper does not require a separate analysis for the cases
H < % and H > % Furthermore, the methodology used in both results on tightness and the
limit identification cover equations (SWE) and (SHE) at the same time.

In the case of the stochastic heat equation (SHE) with H > i, the result in Theorem 1.1
is a particular case of [6, Thm. 1], where the author considers a general non-linear coefficient
o(ufl(t,r)) in front of the noise. We believe that such diffusion coefficient could be also con-
sidered in the case of the wave equation with H > %, but we have chosen to stick to the linear
multiplicative noise in order to find a unified result that covers also the case H < %, which is
more mathematically demanding.



Concerning other related results, we point out the recent article [19], in which the authors
prove strong regularity properties in H € (0,1) of the Mandelbrot-van Ness representation of
the fractional Brownian motion. As a consequence, it is proved that the solution of a scalar
stochastic differential equation driven by the fractional Brownian motion is differentiable with
respect to the Hurst parameter.

Finally, we also mention that continuity in law with respect to the Hurst index has been
focused in other type of contexts beyond stochastic equations. For instance, in the series of
papers [16, 17, 18], the authors study weak continuity with respect to H for different types of
integrals with respect to fractional Brownian motion. In [15, 26], the same kind of continu-
ity property has been tackled for the local time of the fractional Brownian motion and other
Gaussian fields. Eventually, in the recent paper [1], the continuity property has been shown for
additive functionals of the sub-fractional Brownian motion.

The paper is organized as follows. In Section 2, we give some preliminary tools that will
be needed throughout the paper. Namely, we introduce the basic elements of the Malliavin
calculus, we provide a new integral representation for the multiple Wiener integral with respect
to WH, we recall the construction of the stochastic integral with respect to W and, finally,
we report about the existing well-posedness results for equations (SWE) and (SHE). Section
3 is devoted to prove the tightness property of the family of laws induced by the solution uf,
H e (i, 1). In Section 4, we deal with the limit identification, which allows us to conclude
the proof of Theorem 1.1. In the Appendix, we collect some technical results and a tightness
criterion that are used in the paper.

2 Preliminaries

2.1 Malliavin calculus

In this section, we recall some elements of Malliavin calculus and a useful result of [24]. We
refer the reader to [20] for more details. We will work in the Gaussian space determined by the
noise W which is defined as follows.

Let (o, ) := E [WH (o)W ()] and define Hy as the completion of C§°(R4+ x R) with
respect to the inner product (-, ). Then Hy defines a Hilbert space and it is well-known that,
if H< %, it is a space of functions, while for H > % it contains distributions (see [5, Thm. 4.3]
and [14, Prop. 4.2]). Then, {WH (), ¢ € C*(R1 xR)} can be extended to a family of Gaussian
random variables indexed on the space H, which we denote again by W = {W# (), o € Hy}.
This family defines an isonormal Gaussian process on the Hilbert space Hp: for any ¢ € Hp,
WH(p) is a centered Gaussian variable and

E [WH (), WH ()] = (o, 9)u, o0 € Har.

Let G be the o-algebra generated by {W# (), ¢ € Hy}. Then, any G”-measurable random
variable F' € L?(f)) admits the representation

F=> JIF, (4)

n>0

where JT?F is the projection of F' on the n-th Wiener chaos space Hy y, for n > 1, and J({IF =
We denote by I the multiple Wiener integral of order n with respect to W, which defines
a linear and continuous operator from ’H%" onto Hy,,. We briefly recall the construction of I,? ,
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since we will use some of its steps in the sequel. Let {ex, k > 1} be an orthonormal basis of Hpy
and consider an elementary element of 7—[%" of the form

@:eil®...®ein7 (5)

where ® denotes the symmetrized tensor product, for some i1, ...,i, > 1. Recall that the set
of finite linear combinations of elementary elements is dense in 7-[%". An elementary element of
the form (5) can be more conveniently written as

_Oks & Okm

where all ji,...J, > 1 are different and k1 4+ --- 4+ k;, = n. The n-th order multiple Wiener
integral of ¢ is defined as follows:

L (0) = Py (W (e1,)) -+ Pr (W (e5,0)), (7)

where we denote by Py the normalized k-th Hermite polynomial. The multiple Wiener integral
is then extended by linearity to all finite linear combinations of elementary elements, and finally
extended to the whole space Hy by density.

We also remind that any element in the n-th chaos Hp , can be represented as IZ(f), for
some f € H5". Hence, representation (4) can be written as follows:

F=E[F]+Y L(fn),

n>1

where f, € H5", for all n > 1. We recall that, for any f € H5",
E (L (D) = E (I (F)P] = n 17100

where f stands for the symmetrization of f. We also remind that, for a general element f of
HE™, the norm ||f||H%n is given by

Here, we still denoted by F the Fourier transform on the space of tempered distributions in R™.

Let A € B([0,00)). We define, for every f € H5", the element f19" € H$" in the following
way: if f is a function, we define it obviously as the function f 1%”. If f is a general element
of H5", we take any sequence {fy, k > 1} of functions in H$" such that f — f in HE", as
k — 00, and we set

19" == lim fp19".

f A klﬁoo fk A

This limit exists; indeed, we have that {fx, k¥ > 1} is Cauchy in 7—[%" and
1 fe15" — fel?inﬂygn <N fw = fellygn,

which implies that {fx1%", k > 1} is also a Cauchy sequence in H’;". The limit clearly does not
depend on the chosen approximating sequence. On the other hand, we define the o-field

Fil =o{WH(1py), D€ By(Ry), D C A, p € CC(R)} VN,

where N are the null sets of F and By(R;) are the bounded Borel sets of R .
We have the following result:



Lemma 2.1. Let F € L*(Q) with Wiener chaos expansion given by F = E[F] + > st 1o 25,
where fn, € H3" are symmetric, and let A € B([0,00)). Then, it holds

E[FIFY] =Y 17 (f.157).

n>0

Proof. The proof follows exactly as that of [4, Lem. A.1]. We only need to observe that, if
h € H%" is symmetric, it can be written as the limit of a sequence of symmetric functions,

which in turn can be written as the limit of finite linear combinations of functions of the type
", where f € Hy and || f|jw, = 1. O

Let us now introduce the Malliavin derivative operator and the Skorohod integral. Let S be
the class of random variables F' of the form

F=fW(e),....W(en)),

where f € C;°(R"™) and ¢; € Hpy, for every j =1,...,n. For any F € S, we define the Malliavin
derivative of F' as the Hp-valued random variable DF' given by

DF = Z@x] (W (1), -, W (on)) 05

1 1
If we endow S with the norm || F|[p1z2 := E [|[F|?| 2+ E |:||DFH%-[H?| ? it turns out that the operator

D can be extended to the completion of S with respect to || - ||p1.2, which we will denote by D2,
We define now the divergence operator 8, which is the adjoint of D. The divergence operator
is defined on its domain Dom(¢), which is the space of Hg-valued random variables such that
u € L?(;Hy) and
1
|E[(DF,u)y]| < cE[|F|*]?, forall F € D"?

where the constant ¢ depends on u. Being the adjoint of D, the divergence operator 6(u) is
defined for any u € Dom(§) by the duality relation, holding for every F € D2:

E[<DF, u)H} = E[F5(u)].

From the duality relation one can deduce that E[§(u)] = 0, for every v € Dom(d). For any
u € Dom(d), d(u) is called the Skorohod integral of w and is denoted by

/OOO/R“(tvx)WH(ét,dx) = §(u).

We will need the following two results involving the Skorohod integral (cf. Propositions 1.3.3
and 1.3.6 in [20]).

Lemma 2.2. Let F € D2 and u € Dom(§) such that Fu € L*(Q;Hy). Then, Fu € Dom(6)
and it holds
0(Fu) = Fé(u) — (DF,u) g



Lemma 2.3. Let u € L*(Q;Hy) and {uy,, n > 1} C Dom(§) such that
. 2
'n,h—>Holo]E [Hun — uHHH] =0.
Suppose that there exists a random variable G € L*(Q) such that, for all F € S,
E [6(u,)F] — E[GF].

Then u € Dom(d) and §(u) = G.

We now define the contraction ®;. For h € H%" and any element e; ®- - -®e,, of the canonical
basis of H%", we define

(e1®--®ep) @1 h:=(e1Q - ®@ep1)(en, h)H,

and we extend it to a generic f € H5" by linearity and density. The following lemma can be
found in [24, Thm. 4.3.8]:

Lemma 2.4. Let F € L*(Q) with Wiener chaos expansion F = E[F] + D>t IH(f,), where
fn € HE is symmetric, for alln > 1. Then F € DY2 if and only if

S nnllfullg < .

n>1

In this case, for every h € Hpy, we have

(DF, by =Y nIf (f, @1 h).

n>1

2.2 Spectral representation of W#

This section is devoted to prove that any multiple Wiener integral with respect to the noise
WH admits a representation as a multiple Wiener integral with respect to a complex-valued
Gaussian measure. For this, we will provide a suitable spectral representation of W in terms
of such a complex-valued Gaussian measure. We point out that the results in the present section
will only be used in Section 4 in order to identify the underlying limit law.

Recall that {W# (), ¢ € Hy} denotes the underlying isonormal Gaussian process associated
to our noise WH . Using an approximation argument, one proves that, for any t > 0 and = € R,
Ljo,x[0,2] € Hu- Then, we can define the random field (making an abuse of notation)

WH(t,.’L') = WH (1[O,t]><[0,$}) 3 (ta l‘) € ]R-‘r X ]Ra (8)
which is Gaussian, centered and satisfies, for all s, > 0 and x,y € R:
1
B [WH (6, 0)WH(s,)] = 55 A 0) (|2 + [y — |0 — yl2H).
The latter equality is a consequence of the representation in law of the fractional Brownian

motion as a Wiener type integral with respect to a complex Brownian motion (see, for instance,
[21, p. 257]).



Let W : By(R4 x R) — C be a complex-valued Gaussian measure which can be written as
W =W, + ZWQ, where W, and W, are independent real-valued centered Gaussian measures
such that, for any A, B € B(R; x R),

B (W, (4)v(8)] = 402

where |A N B| is the Lebesgue measure of A N B. In particular, ]E[|V~V(A)\2] = |4], for all
A € By(R4 x R). Note that W, and Ws are essentially white noises in the sense of [9, Page
6, Example 3.13]. One can define the integral of any deterministic function f € L?(R, x R;C)
with respect to W, as follows:

/R/ftx (dt,dx) /R/fthldtdx /R/fta:Wthdx)

and, for j = 1,2,

//ftx i(dt, dz) //Re 1(t, x)W. dtdx—i—z/ /Im 1(t, )W (dtdm)
R, R, R,

The latter integrals can be interpreted, e.g., as integrals with respect to a martingale measure
(see [25]). It holds that, for any f,g € L?(R; x R;C),

[/R /ft:v dtd:J:/R/ (t,z)W dtda:} /R/fta: (t,z) dxdt.

This yields, for all f € L?(R, x R;C), the isometry property

/ﬂ{a+/ft )W (dt, d) 1 _A+[R|f(t,x)|2dxdt.

We have the following result, whose proof follows immediately.

J=12,

Proposition 2.5. Set, for any (t,z) € Ry x R,

WH(t,z) == Jem /O /R Fl1jo.1) () €12V (ds, de). (9)

Then, W is a Gaussian process which has the same distribution as the random field WH defined
in (8).
At this point, we aim to extend the random field W defined in (9) to an isonormal Gaussian

process in Hp. We need the following corollary of [5, Thm. 4.3]:

Proposition 2.6. The space of finite linear combinations of functions of the form

f(ra Z) = l(s,t]x(x,y] (T7 Z)v
with 0 < s <t and x < vy, is dense in the Hilbert space Hps.

Proof. The result is a direct consequence of [5, Thm. 4.3]. Indeed, in the latter paper it is proved
that any predictable process { X (¢, z), (t,2) € Ry x R} belonging to L?(2; Hz) can be approx-
imated by finite linear combinations of processes of the form (r,z,w) = 1g(wW)1 (54 (7) 12y (2),
for some G € F. To prove our result, it suffices to observe that, if we choose a deterministic
element ¢ in their proof, also its approximating sequence ¢, is deterministic, and the norm in
the space L?(€2; H ) coincides with the norm in Hy for deterministic elements. O



Let us now define, for any (¢,z) € Ry x R,
wH (1[07t]><[07$]) = WH(t,l’)

(again making an abuse of notation). This definition can be extended by linearity to any simple
function on Ry x R. Then, thanks to Proposition 2.6 and using an approximation argument,
one constructs an isonormal Gaussian process {W# (), ¢ € Hy} which has exactly the same
law as {WH (), ¢ € Hy}.

For the remainder of the paper, we will assume, without any loss of generality, that our
Gaussian setting is the one determined by the isonormal Gaussian process W7 = {WH (), p €
Hp}. For the sake of simplicity, we will use again the notation W instead of WH. So, the
main implications of this setting are that, first, we have the representation

t ) _
WH (Lo io)) = v/eir /0 / Fl1 o) (€)[€1E VW (ds, de) (10)

and, secondly, the whole family of processes {W#, H € (0,1)} are defined in a single probability
space, which is the one where the Gaussian measure W is defined. This last fact will be crucial
in Section 4.

The main result of the section is the following:

Theorem 2.7. Letn>1, f € ’H?}" and ITH (f) be the multiple Wiener integral of f with respect
to WH. Let f be the function defined by

~ n 1 1
f(tla x1,t2,T2,. .., tn7$n) = (CH)jf[f(tly 2,y tn, ')](1‘17 s l‘n) |x1‘§_H e |xn|§_H
where we recall that the constant cy is given in (1) Then, it holds that
I??(f) = jn(f), P-G.S., (11)

where I, is the n-th order Wiener integral with respect to the compler Gaussian measure W.

Proof. We first check that the result is true for the first-order Wiener integral I{1. We aim to
prove that, for any ¢ € Hp,

() = (en)? Iy (Folt, ) (@) Jol 27 (12)

which means that

/ / (t,x)WH (dt,dz) = (cg %/ /.7-7,0 |CL‘|2 By (dt, dx).
Ry Ry

By (10) and the linearity of the Wiener integral, the latter equality clearly holds in the case
where (t,z) = 1(5x(y,2(t; ), for 0 < 7 < s and y < z. Moreover, owing to Proposition
2.6, it can also be extended to the whole space Hr, hence proving the theorem’s statement for
first-order Wiener integrals.

Let us now prove (11) for n > 1. We first consider the case where f € H5" is an elementary
element of the form (6). In this case, we use the definition of the multiple Wiener integral (see
(7)) and the validity of the case n =1 (see (12)), as follows:

LY(f) = Pey (WH(ej))) -+ Pr,, (W (e5,.))
P, (fl(éjl)) -+ P, (fl(éjm))
n (ég”“l ® - ® A®""I)

w(f).

§

I
Nz



The extension to any element of 7—[%” can be proved by recalling that the set of finite linear
combinations of elementary elements of the form (6) is dense in H%". O

2.3 It6 and Skorohod stochastic integrals

This section is devoted to recall the definition of stochastic integrals with respect to W, both
in the case H < % and H > %, and to prove that the Skorohod integral with respect to WH
of an adapted process coincides with the corresponding It6 integral (see Theorem 2.11 below).
This result will allow us to express any Picard iteration associated to our underlying SDPEs as
a finite sum of multiple Wiener integrals, and this fact will be used in the proof of Theorem 4.1
in Section 4.

Recall that we have a complete probability space (2, F,P) in which we have our complex-
valued Gaussian measure W (see Section 2.2). Recall that our isonormal Gaussian process
WH = {WH(p), ¢ € Hy} has been defined in such a way that we may assume that W# is
defined in (€2, F,P), for all H € (0, 1). Regarding adaptability, we consider the natural filtration

generated by W, which we denote by {F;, t > 0} and can be defined as F; = o(W (s, z), (s,z) €
[0,¢] x R), where

W(S,l’) :_/]R /Rl[(),s]X[O,m}(ra z)W(dr,dz)
+

Fix a time horizon T' > 0. We denote by & the space of simple processes on [0,T] x R, that
is the space of finite linear combinations of processes of the form

g(t,x,o.;) = Y(w)]-(r,s]x(y,z}(t7m)> (13)
for some 0 <7 < s < T and y < z, and for some F,-measurable random variable Y. The (1t0)
stochastic integral of g with respect to W is defined as follows: for any ¢ € [0, 7], set

/t/g(T,m)WH(dﬂd:r) ::Y(WH(t/\s,z)—WH(tAS,y)—WH(tAT,Z)—i—WH(t/\r,y)).
0o Jr

This definition can be extended to all elements of £ by linearity. Following [8] and [2], we endow

£ with the norm )
T 2

— ) 2| ¢|1—2H
lgllo := <E [CH /O /R Folt, )(©)Ple] dfdtD ,

and we define Pl as the completion of £ with respect to the norm || - |lo. It turns out that
PL is the space of predictable processes g for which ||g||o < oc. The stochastic integral can be
extended to the whole space P{ .

The following result is a particular case of [10, Prop. 2.9]:

Theorem 2.8. Suppose that H € [%, 1). Let T : [0,T] x R — R be such that, for all t € (0,T],
the function T'(t,-) defines non-negative distribution with rapid decrease and

T
| [1Fre©rieagan < o.
0 R

Moreover, we assume that, for allt € [0, T], T'(t,dz) := T'(t,z)dx defines a non-negative measure
on R such that

sup T'(¢,R) < co.
t€[0,7

10



Let Z ={Z(t,x), (t,z) € [0,T] x R} be a predictable stochastic process satisfying

sup  E[|Z(t,2)]*] < 0.
(t,x)€[0,T]xR

Then, the process {S(t,x) = Z(t,z)T'(t,z), (t,z) € [0,T] x R} belongs to PL. Furthermore, if
Z satisfies, for some p > 2, that

sup  E[|Z(t,2)["] < oo,
(t,x)€[0,T]xR

then we have the following Burkholder-Davis-Gundy’s inequality:
]E l

where the constant z, is the one in the classical Burkholder-Davis-Gundy inequality for contin-
uous martingales, and vr g is given by

T P
/ S(s, x)WH (ds,dx)
R

< zp(v )S—l/T EllZ P FI(s.- 2|¢|1-2H ge g
< zp(vrm | S 12 (s, 2)["] ]RCH| (s,)(E)7l¢] £ds,

zeR

T
Vi = cn /0 /R FT(s, ) ()[2le) 2 deds.

As far as the case H < % is concerned, we have the following result (see [2, Thm. 2.9]).

Theorem 2.9. Suppose that H € (0,3). Let {S(t,z), (t,z) € [0,T] x R} be a predictable
process such that, for every (w,t), S(w,t,-) defines a tempered function whose Fourier transform
FS(w,t,-) is a locally integrable function satisfying

[/ /|f5 1€ ZHdgdt} < oo.

Then, S € Pg and we have the isometry
U / | FS(t,)(E)|Pen €] QHdgdt}

Moreover, we have the Burkholder-Davis-Gundy inequality: for any p > 2,

p- :U
< i E U / \FS(t, ) (©P1E] Qdedt} ,  (15)

where the constant z, is the constant appearing in the classical Burkholder-Davis-Gundy inequal-
ity for continuous martingales.

/St:v dtdm)

T
/ S(t, z)WH (dt,dx)
R

Remark 2.10. Owing to [2, Prop. 2.8], the isometry property in the above Theorem 2.9 can be
equivalently written as

|1

where ¢y =

|1

2
S(t,z)WH (dy, dx)

i _
_E [eH / 1St x) — S(t,y) 2l — y[2H2dyddt
0 R2 J

& Hence, (15) becomes

<zc t,x) — S(t,y 2 — ““dydxdt
»CHE S y|*" 2dydrd

[NIS]

S(t,z)WH( dy,dm)

11



The following result is an extension of [4, Thm. 4.2] to the case H > % Note that, in this
latter case, though the noise is more regular in space than a white noise, the corresponding
Hilbert space Hy may be rather big, and indeed contains genuine distributions. This makes
our proof different compared to the one of [4, Thm. 4.2], in which Hp is a space of functions
(because H < 1).

Theorem 2.11. Let H € [3,1) and u = {u(t,z), (t,z) € [0,00) x R} be a stochastic process
such that, restricted to t € [0,T), belongs to ’Pg. Then, for any t > 0, uljy, € Dom(d) and its

Skorohod integral coincides with the Ité integral, that s

/ /u(s,x)l[o’ﬂ( H(ss, o) / / s,2)WH (ds,dz), P-a.s.
o Jr

Proof. The proof is an adaptation of that of [4, Thm. 4.2]. The only difference is that, here, a
general element of Hp is not necessarily a function. It is enough to prove the statement in the
case where u is an elementary process of the form (13). The extension to any arbitrary element
of P{" can be done exactly as in Case 2 of the proof of [4, Thm. 4.2].

Let g be an elementary process of the form g(7,7,w) = Y (w)1(. (7)1, (®), with 0 <r <
s < T and y < z, where we assume that Y is F,-measurable, bounded and belongs to D'2. We
have to check that gljp4 € Dom(d) and it holds

5 (g1p,) // 7, 2)WH (dr, dx).

First, we note that gl g = Y1 snex[y,2]- Since Y € D2 and Lipat,sngx[y,z] € Dom(d), we can
apply Lemma 2.2 to conclude that g1}y ) € Dom(d) and

5(91[0,15]) = Y(S(l[r/\ts/\t]x[y,z}) - <DY7 1[7"/\t,s/\t]><[y,z]>H

if the right-hand side above belongs to L?(£2). We clearly have that YO(1pnt,snx[y,2]) € L3(9),
and we will show that (DY, 1ja¢ saf)x[y,z]) 1 = 0, which will allow us to conclude the proof.
Let h:= 1 n¢ sat)x[y,2]- Since Y is Fr-measurable, we have, by Lemma 2.1,

®
Y =E[Y|F] =Y LT (gn15h),
n>0

for some symmetric g, € H5", n > 1. By Lemma 2.4 we have that

(DY, ) =y ndLy (9a150 @1 h).

n>1

We claim that g1%"

] ®1 h =0, for all g € ’H®n Indeed, if g = ®" for some function e € Hpy,
we have

[0,

€®n 1®n

on @1 h =PI o1y g by,

(0,7]

and we observe that
(elpo,, / / Fe(s,)(€) L0, (8)F Ly, (€)1 prar,sn (8)dEds = 0.

This can be extended to a generic element in H%" by linearity and density (using Lemma
2.3). O
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2.4 Existence and uniqueness of solution

This section is devoted to recall the well-posedness results for equations (SWE) and (SHE) and
prove that the corresponding Picard iterations admit a suitable finite Wiener chaos expansion.

First, we recall that the solution to our equations is understood in the mild sense. Namely, an
adapted and jointly measurable random field uff = {uf (t,z), (t,2) € [0,T] x R} solves (SWE)
(resp. (SHE)) if it holds, for all (¢,2) € [0,7] x R:

ufl(t,2) = t —s(z — y)ull (s, H(ds, dy),
(t,) 77+/0/RG o — yyul (s, )W (ds, dy) (16)

where G is the fundamental solution of the wave (resp. heat) equation in R (see (3)).

The following result is a particular case of [10, Thm. 4.3], which covers the case H > %

Theorem 2.12. Let H € [3,1). There ezists a unique mild solution ul to equation (16).

Moreover, the solution u® is L?(Q)-continuous and satisfies, for every p > 1,

sup E UuH(t,x)P”] < 0.
(t,z)€0,T]xR

Remark 2.13. The case H = % corresponds to the space-time white noise, while in the case
He (%, 1) the noise’s spatial correlation is given by a Riesz kernel of order 2 — 2H.

The case H € (1, 1) has been considered in [2, Thm. 1.1]. In the latter reference, the authors
proved that condition H > % is necessary and sufficient in order to have a solution (see [2, Prop.

3.7)).

Theorem 2.14. Let H € (%, %) There exists a unique mild solution u! to (16). Moreover, the
solution uf is L?(Q)-continuous and satisfies, for every p > 2,

sup E UuH(t,x)V’} < o0 (17)
(t,2)€[0,T]xR
and )
g E [[u(s,y) —u(s,2)[P]*
sup / G’Q_S T —y — dydzds < 0. 18
(t,)€[0,T]xRJO JR2 sl ) ly — z[>72H (18)

Remark 2.15. In the case H € (1, %), the solution u® satisfies, in addition to (17), the further
constraint (18). This comes from the fact that, in [2], the solution of (16) was proved to exist in
the space of L*(Q)-continuous, adapted and jointly measurable processes endowed with a Sobolev’s
type norm which included a term of the form (18).

In the case H € (4, 3), the solution uf of (SWE) (and (SHE)) has been found in [2] as a
limit of the Picard iteration scheme, which is defined by

ug! (t,2) =1
t
ug-‘rl(tv .I') =10 + / / Gt_5<33' - y)“z(sa y)WH(ds7 dy)? m Z 07
0 JR

where (t,z) € [0,T]xR. The limit is found in the Banach space x%;, for p > 2, which is defined as
the space of L?(2)-continuous, adapted and jointly measurable processes Y = {Y (t,2), (t,z) €
[0,T] x R} such that

||Y||X%{ = ||Y||X§’ + ||Y||XII){,2 < o0,

13



where,

1
Y[l = sup  E[Y(t2)[]"
(t,2)€[0,T] xR
and
ENY(s.0) = Y(s. 2P :
S,y — S,Z P
Y|,» = sup cH/ G? (x—y dydzds | .
Wl = s ( Z, S

We recall that the constant ¢y has been defined in Remark 2.10. Notice that the LP-part || -
of the norm || -

[
I X does not depend on H, as it is also pointed out by the notation itself, while

the Gagliardo-type part || - HX%Q does depend on H.

Remark 2.16. In [2], the norm || - Hxi’”
the two definitions give rise to equivalefzt norms, the results about existence and uniqueness of
solution for equation (16) when H € (1, 3) still hold true. On the other hand, we will see how
adding this normalizing constant helps us proving some uniform (in H ) results that will be needed
in the sequel.

H(1—-2H)
2

is defined without the constant ¢y = . Since

Before stating the main result of the section, we consider the following Sobolev-type embed-
ding for the space X%, which could be of independent interest.

Lemma 2.17. Let p > 2 and % <a<p< % Then, it holds:
Xh = X5

This means that there exists a constant C such that, for every adapted, jointly measurable and
L?(2)-continuous process Y , we have

IV lls < CIY - (19)
B

Moreover, it holds the following stronger property for the Gagliardo-type seminorm || - ng S

sup [Vl , < ClIY g
BeEl,3)

where the constant C only depends on p and T.

Proof. We follow the same lines as in the proof of [11, Prop. 2.1]. It suffices to prove (19) for
the || - HX%Q-part of the norm. It holds:

ot ) E Y (s,y) — Y (s, 2)|P]) 7 2
(cﬁ/o /R? Gi_s(z —y) ly — P27 dydzds)

Y(s,y) —Y(s,y —2)|P ; >
( // 2 (o ) EIYC y>|z|2<wy ) dym)

<O + 1), (20)

—
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where we label I; the term where we integrate in the variable Z in the region |Z| > 1, and I the
term where we integrate in the region |z|] < 1. First, we have

e [ 2 oy B () Yy =D
h= < B/o /]R |z|21Gt75( v) [2|2-26 ddyd )

3
<C, sup (E[|Y(t,x)]) % 05/ / G? (x—y) = 535 dzdyds
(t,2)€[0,T] xR 1 1z \

Note that le>1 i e dZ = 1 _—ﬁ. Hence,

G? (z— dzdyds
// o O Y ==

<ﬂ//Gt s@—y dyds<ﬁCT<%

1
2

Thus, we can conclude that

1
Il S CVp,T sup (E [‘Y(t,xﬂp})p .
(t,x)€[0,T)xR

Regarding I5, we observe that

(s [ 2 o ENV(y) = Yy—2P)r
= ( I e Y B ! dyd)
o [ 2 ) ENY(sy) = Y(sy=2)PDr
= (Ca/o /]R iy Y 222 dedyd )
e VW) =Yy =2

S (CQA /]I%/RGts(x y) |§|2_20‘ d dyd )

2
_ S|P
< sw ///G [|Y(S,y)72Y7(287y z)[P])» dzdyds
(t,2)€[0,T) xR |z|2—2

=¥l ,.

=

=N
(NI

2

Notice that both the estimate for I; and I are independent of (¢,z) € [0,7] x R and 8 € [, 1).
Therefore, we can take the supremum with respect to (¢,z) € [0,7] x R and 3 € [a, 1) in the
left-hand side of (20) and we conclude

sup [Vl , < CprlYllye + 1Yl , < ClIY e,
BeEle,3)

which obviously implies
Yl < (Cor +DIY e +[Yllz, < ClY [l

for some constant C. O
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The path Holder-continuity of the solution to (16) has been proved in [3] in the case
H € (%,%), while the case H € [4,1) follows from the results in [25, 22, 23]. For the sake
of completeness, we state a result which unifies both cases, and whose proof follows, indeed, as
an immediate consequence of the stronger results Proposition 3.1 and Proposition 3.8 proven in

Section 3.

Theorem 2.18. Let H € (i, 1). Then, the solution u' to (16) satisfies the following: for any
p > 2, there exists a constant Cp, > 0 (which indeed does not depend on H) such that, for all
t,t' €10,T] and z,z’' € R, it holds

suEE HuH(t',a?) —ufl(t, z)|P] < Cplt' —t?
S

and
sup E HuH(t,x') - uH(t,m)|p] < Cp|x' - x|Hp,
t€[0,T

where v = H for the wave equation and v = % for the heat equation. Thus, the process u'l has
a modification whose trajectories are almost surely v'-Hélder continuous in time, for all v < 7,
and H'-Holder continuous in space for all H < H.

Proof. As already mentioned, the result follows from Propositions 3.1 and 3.8 in Section 3, where
the same kind of estimates have obtained uniformly with respect to H. O

The above Theorems 2.14 and 2.12, together with Theorem 2.11 on the equivalence between
Ité6 and Skorohod integrals, allow us to prove that equations (SWE) and (SHE) admit a unique
Skorohod mild solution. By definition, it is a square integrable random field {uf (t,z), (t,z) €
R4+ x R} such that, for all (¢,z) € Ry x R,

t
ut(t,x) =n +/ / Gi_s(z — y)ull (s,5)WT (s, 6y), P-as., (21)
o JR
that is, the process v(t%) := {10,4(8)Gi—s(x — y)ufl (s,y), (s,y) € Ry x R} belongs to Dom(9)
and ufl (t,2) = n+ 8 (v).

Theorem 2.19. Let H € (i, 1) and T > 0. Equation (21) admits a unique adapted solution in
[0,7T] x R.

Proof. This result has already been proved in [4, Thm. 4.3] for the wave equation in the case
H e (1, 1), In[13, p. 49], the authors notice that it is also true for the heat equation, still under

12
the constraint H € (i, %) The statement’s validity in the case H € [%, 1) follows combining

Theorems 2.11 and 2.12. O
Finally, the following result will be crucial in order to identify the limit law in Theorem 4.1.

Theorem 2.20. Let H € (1,1) and u! be the solution to (16). Recall that the corresponding
Picard iteration scheme is defined as follows: for any m >0, set

uf! (t,x) ==,

t
W () =+ /0 /R Gl — yyull (s, y) W (ds, dy),
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where (t,x) € [0,T] x R. Then, for any m > 0, it holds
n=0

where I,If is the n-th multiple Wiener integral with respect to WH and the kernel gn(- t, ) is
given by

gn(tl, 1,82, 22,5 tn, T, t, (E) = Gt—tn (.’L’ - .I'n) e Gtz—tl (xZ - .1'1) 771{0<t1<~~<tn<t}' (22)

Proof. The case of the wave equation with H < % has already been proved in [4, Thm. 4.3].
Owing to Theorem 2.11, the arguments in the proof of the former theorem can be carried out
to easily extend the result to the case H > % as well as to the heat equation. O

3 Tightness

Recall that our main result (see Theorem 1.1) states that, if Hy € (%, 1)and {H,, n € N} C (%, 1)
is any sequence converging to Ho, then uff» — w0 in law in the space C([0,T] x R) of continuous
functions. The first step in order to prove the above result consists in checking that the laws of
{ufln n € N} define a tight family of probability measures on C([0, 7] x R).

We split the computations in the case Hy € (%, %}, which has more involved calculations,
and the case Hy € [%, 1), in which the calculations are more straightforward. We explain briefly
why: in the rough case, the Burkholder-Davis-Gundy inequality (15) forces us to consider the
Fourier transform of the whole integrand process, while in the case H € [%, 1), when we use the
Burkholder-Davis-Gundy inequality (14), we only have to compute the Fourier transform of the
deterministic part of the integrand process, which will be explicit in our case.

3.1 Tightness in the case (1,1)

We suppose that the limiting Hurst exponent Hy € (%, %] If Hy € (%, %), we can assume without

loss of generality that the whole sequence {H,,, n € N} C [n,n2] C (%, %) If Hy = %, we can
assume at most that {H,, n € N} C [n1,3) C (£, 3). From now on we will denote both type of
sets as K, meaning that K = [y, 1] if Hy € (%, %) and K = [n, %) if Hy = % Clearly, if the
limiting exponent Hy = %, we cannot suppose that H, — Hp always from below. In Section
3.2, we will also handle families of Hurst exponents with K = (%, 2], so that our result will be
complete (because the union of a finite number of tight families is a tight family itself).

We are ready to state the main result of the present section.

Proposition 3.1. Let Uy = {u'?, H € K} be the family of solutions of (16), where K is either
of the form [n1,n2], with 1,2 € (%, %) andm < ng, or K = [m, %), where 11 € (i, %) Then, the
family Uk is tight in C([0,T] x R), endowed with the metric of uniform convergence on compact
sets.

We postpone the proof of this result, since we need some preliminar results. We aim to apply
the tightness criterion Theorem A.5. Indeed, we will check that conditions (i) and (ii) in the
latter result are satisfied by the Picard iterations ug , uniformly with respect to H, and then we
will pass to the limit as m — oc.

First of all, we show that the the Picard iterations {u’l, m > 0} are well-defined and satisfy
some estimates uniformly with respect to H. The proof is very similar to that of [2, Thm. 3.7].
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In fact, we will follow the same steps in its proof and take care of the fact that we need all
estimates uniformly in H. Only the most significant parts of the proof will be written explicitly.

Proposition 3.2. Let p > 2 and H € (4, 2) For any m > 0, we have that
(i) ull(t,z) is well-defined, for any H € K and (t,x) € [0,T] x R.
(ii) It holds
sup sup  E [jul(t,2)]P] < 0.

HeK (t,xz)€0,T]xR

(#ii) It holds

hSHIN]

t E P
sup sup EH/ G? (x —y)( [ (5, y) o 21({3 .2)P)) dydzds < 0.
HEeK (t,x)€[0,T] xR 0 JRr2 ly — 2|

Proof. Condition (i) is a direct consequence of [2, Thm. 3.7]. In order to prove (ii) and (iii), we

use an induction argument. First, note that these two Conditions clearly hold for m = 0.
Assume that conditions (ii) and (iii) are satisfied by ul. We prove that they are also fulfilled

by um+1. Precisely, arguing as in Step 2 in the proof of [27 Thm. 3.7] (see p. 18 therein), we

have
P
|SH (s,9) — SH(s, 2)|? 2
cH/ /]RZ |y—z|2H 5 dydzds ,

where we have used the notation S (s,y) := Gy_s(z—y)ukl(s,y) and C is some positive constant.
The expectation on the right hand-side above can be bounded, up to some constant independent
of H, by Il + I where

B [l 1 (6 0)"] < c{nma

[SIS]

2
T E [|ufl(s,y) —ull(s,2)[P])?
= éH/ Gtz_s(x—y)( [ (s,9) 2722 )]) dydzds
0 JRr2 ly — 2|

and

[SS]

i = (e [ [ © o3 Gt Gle 28 4y,

ly — z

By the induction hypothesis, the term IlH is uniformly bounded in H and (¢, z). Regarding 12H ,
using again the induction hypothesis and applying [2, Prop. 2.8], we get

o) _ 2
12}1 < sup sup [|U t T |p <CH/ / |Gt s l' ) it;;(x Z)| dded$>
HEeK (t,x)€[0,T]xR R2 — 2|

T 5
sc(cH /0 /]R |fGt_s(5)|2|5|”deds> ,

where we recall that the constant cy is given by

p
2

I'(1+2H)sin(rH)

CH =
2T
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Notice that cg < %, for any H € (%, %) Moreover, by Lemma A.1, it holds that

22HC, oy lJr12HT1+2H wave equation,

T
/0 /R FGr ()Pl 2  dgds < (23)

%F(l — H)TH heat equation.

As explained in Step 1 of the proof of [12, Thm. 2.8], all constants appearing in (23) can be
bounded uniformly in H € K. This let us conclude that ufl ; satisfies condition (i).

It remains to prove that ug 41 verifies (iii). The computations follow exactly as in Step 3 of
the proof of [2, Thm. 3.7], in such a way that we apply the induction hypothesis, [2, Prop. 2.8]
and Lemmas A.1 and A.4. We omit the details. Nevertheless, we point out why the presence of
the constant ép in condition (iii) is crucial in order to get uniform estimates with respect to H.
Precisely, one of the terms appearing in the treatment of the expression in (iii) for ug 41 can be
bounded by

Gts — e~z 1-2H
_CHC//RQ S dds//|1 SR\ FG, (€)1 dedr.

By Lemma A.4, we have

/ 11— —Z€Z|2 & — 2T (2H + l)sin(wH)lﬂl_QH
ez H(1—2H) ‘

Hence,

~ 2F<2H+ )Sll’l 2(1 2H)
< —
A<ég H{ = 2H) C/ /Gt S(x dyds/ /|]-'G5 - )| €] dédr. (24)

Note that, by definition of ¢y (see Remark 2.10), it holds

2I'(2H + 1) sin(nH)
H(1-2H)

ey =T(2H 4 1)sin(rH),

and the latter is uniformly bounded for H € K, since it is a continuous function of H. Regarding
the integrals in (24), they can be estimated using the explicit expressions of the fundamental
solutions of the wave and heat equations and applying Lemma A.1. O

We need to extend condition (ii) in the above proposition to a uniform estimate with respect
to m > 1. For this, we follow the arguments of [2, Section 3.3], so we first need the following
result, whose proof follows the same steps of [2, Thm. 3.8] and uses analogous arguments as
those in Proposition 3.2.

Proposition 3.3. Define, for any m >0 and t € [0,T],

2
Vin(t) = sup sup (E [Jum (t;2) = ug 1 (£, 2)P]) 7

and

Wi (t) := sup supCH/ / G y)ly — 2?2
HeK zeR

2
X (E |:|um(s’ y) - ug—l(& y) - ’LLZ(S, Z) + uTHn—l(sa Z)|p:|)p ddedS
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Then,
t
Vi (t) < / Vin(8) 1 (¢ — )ds + CWin(2)
0

and
Wint1(t) < /0 Vin(8)J2(t — s)ds +/0 Wi (s)J1(t — s)ds,

where J1 and Jo are non-negative integrable functions on [0,T).

Next, we have the following result on the convergence of the underlying Picard iteration
scheme, which extends [2, Thm. 3.9]:

Theorem 3.4. Let H € (%, %) and p > 2. The sequence {ufl, m > 0} of Picard iterations
converges in the space X% to a process ul which is the unique mild solution of (16). Moreover,
it holds:

lim sup sup E [|ug(t,m) —ufl(t, z)P] =o. (25)

M= HeK (t,2)€[0,T]xR

Proof. As in the proof of [2, Thm. 3.9], we have to check that the modified definitions of V,
and W, still work to show that the Picard iterations converge to the solution ', uniformly
with respect to H € K. There is no need to check that the solution is the same as the one found

in [2], since for any fixed value of H the norm || - ||, = is equivalent to the one defined in [2, Def.
3.6, as we noticed in Remark 2.16.
Set

Mm(t) = Vm(t) + Wm(t)

and
J(t) = C(J1(t) + JQ(t)).

Then, by Proposition 3.3, we have

t
Mopr (1) < / (Mo (5) + Mip_1(5)) T (t — 5)ds.
0
The Gronwall type lemma [2, Lem. 3.10]) yields

H H
Z sup Hum - um—l”x% < 00.
mleEK

This implies that {u,Hn}mzo is a Cauchy sequence in x%;, uniformly with respect to H € K,
and so it converges, uniformly in H, to the limit v, which we already know that exists and is
unique. O

Corollary 3.5. Let H € (i %) and p > 2. Let K be of the form described in Proposition 3.1.
Then, it holds that

sup sup sup E [|ug(t,x)|p] < 0.

HeK m>0 (t,z)€[0,T] xR

This corollary, together with the lemmas in the Appendix, allow us to prove the following
result, which is an adaptation of [3, Prop. 2.2]. Indeed, as in the preceding result, one just needs
to keep track on the constants depending on H.
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Proposition 3.6. Let hg € (0,1) and p > 2. Then, for all |h| < hyg,

sup  sup B [[ufi(t,x + h) — ult(t,2)[P] < Conl |
HeK (t,z)€0,T]xR

and
sup sup E [|ug(t + h,z) — ug(t,xﬂp] < C'm|h|ﬁ1p7
HeK (t,x)€[0,TA(T—h)]xR

where N1 = 11 for the wave equation 1, = %1 for the heat equation. The constant Cy, satisfies
Cm < C(e(hg) +¢(ho)Crn-1),

where the functions c,¢: R =+ R are non-negative and hlimoé(ho) = 0. We define C_1 =0.
0—

Putting together (25) and Proposition 3.6, and taking into account that the sequence {C,,, m >
0} in the latter result is bounded (see [3, Thm 1.1]), we finally have the following:

Proposition 3.7. Let p > 2. There exists hg > 0 such that, for every |h| < hg, it holds:

sup  sup  E[juf(t,x+h) —u(t,2)P] < ClhMP
HEK (t,2)€[0,T]xR

and

sup  sup B[l (t+he) - o (t2)] < OB,

HeK (t,z)€l0,TA(T—h)|xR
where C'is a constant depending only on p, 7y = m1 for the wave equation and iy = " for the
heat equation.

Now, we have all needed ingredients to prove our tightness result Proposition 3.1.

Proof of Proposition 8.1. We will apply Theorem A.5. First, we notice that condition (i) in this
criterion is clearly satisfied, since u'?(0,0) is deterministic and independent of H.

In order to check (ii) in Theorem A.5, we apply Proposition 3.7 and we deduce that, for any
t,t' €[0,7] and z,2" € R such that |t — ¢| < hg and |2’ — x| < hg, it holds:

E [Juf (t,2") — uf (t,2)P] < CO(|t' — t|P™ + |2/ — z[P™). (26)

One can easily deduce that estimate (26) holds for any ¢,¢ € [0,7] and any x, 2’ in a compact
set. O

3.2 Tightness in the case [3,1)

We aim to prove an analogous tightness result as Proposition 3.1 for the case H > % We state
it in Proposition 3.8 below.

Now, we suppose that the limiting exponent Hy € [%, 1), so whenever H, — Hy we can
suppose without loss of generality that H,, € K, where K is of the form [, 2], with 01,72 €
[%7 1) and 1 < n2. As we already observed at the beginning of Section 3.1, if we prove the
tightness of the family of laws of {uff, H € K} also for K of the form considered here, this will
include also the case in which Hy = % and H,, — Hj either from above or from below.

The following tightness result will be proved directly, i.e. without going through the corre-
sponding Picard iteration scheme. This is because the Burkholder-Davies-Gundy type inequality
(14) is more practical than its rough counterpart (15).
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Proposition 3.8. Let Uy := {ufl, H € K} be the family of solutions of (16), where K is of
the form [n1,n2], with n1,m2 € [%, 1) and m < ma. Then, the family Uk is tight in C([0,T] x R),
endowed with the metric of uniform convergence on compact sets.

Proof. We will apply again Theorem A.5. We split the proof in three steps.

Step 1: We show the uniform estimate

sup sup  E[ju(t,2)]P] < 0. (27)
Heni,m2] (t,x)€[0,T]xR
]

By Theorem 2.8, we obtain that the expectation in the right hand-side above can be bounded,
up to some positive constant, by

We have

(o (or] <0 (148 || [ [ Gisto - . s,

t
CH(Vt,H)g_l/ sup SUP]EUUH(&%')l”]/leGt—s(w')(£)|2§|1_2Hd£d87 (28)

0 HeEni,n2] zeR

where v g is defined by

t
v = cu /0 /R FGL ()22 deds.

We recall that cy = w, which is bounded by %, for all H. Moreover, by Lemma
A.1, it holds that
sup sup v g < oo.
Heln,m2) t€[0,T]
Note that this holds for both wave and heat equations. On the other hand, regarding the integral
in d¢ in (28), we can argue as follows. In the case of the wave equation, we have
00 (inn2
[ 157G Pl =2 [ I g

=2(t — 8)2H22H710172H
<T*HPHC oy,

where the constant Cy_ oy is the same one appearing in Lemma A.1. As showed in the proof
of [12, Thm. 2.8], C1_2y defines a continuous function with respect to H € (0, 1), so it can be
bounded by a constant when H € [n1,12]. Thus, for the wave equation we can conclude that

¢
sup supE [|uH(t,x)|p] <C|1 +/ sup supE [|uH(s,:r)|p] ds | .
Heln 2] z€R 0 Heln,m] z€R

Hence, Gronwall lemma implies (27).
In the case of the heat equation, we have

[ 17— @RI = [ et
R



Observe that, for all H € [11,72], it holds T'(1 — H)(t — )= < g(t — s), where

7"771_1, r<l
1, r> 1.

g(r) =T(1—n2) {

Therefore,

t
sup supE [|uH(t,at)|p] <C|[1 —I—/ sup supE [|uH(3,x)|p] g(t —s)ds | .
Helny,nz) z€R 0 HE[ni,n2] z€R

The Gronwall type lemma proved in [8, Lem. 15] let us conclude that (27) is also fulfilled in the
case of the heat equation.

Step 2: In this part of the proof, we deal with the moments of the space increments of the
solution u®. Precisely, owing to Theorem 2.8, the estimate (27) and Lemma A.2, we can infer
that, for all p > 2 and |h| < 1,

E [[u (t.2 + h) —u”(t, )"

I3

P 2
2

<o ([ Gt =)+ Gt + h= ) @ i deds )

=Cc (/Ot /R(1 — cos(h))|FGs (&) 21124 d{ds)g

< OGP,

[S]

The constant Cy is the same appearing in [2, Lem. 3.4], and it is given by

~ 1 1
— 1— —1-2H Lt
Cu /R( cos(8)) |6 2Ha0 < -+ 1 < C,
provided that H € [n, n2]. Thus, we have proved that
sup sup E [|uH(t,1; +h)— uH(t,m)|p] < C|h|™P.

He[ny,m2] (t,2)€l0,TIxR
Step 3. Here, we aim to prove that, for any p > 2 and |h| < 1,
C|h|™P  wave equation,

Clh| 3P heat equation.
(29)

sup sup E [|uH(t + h,z) —ut(t, z)|P] <
Hen,me] (t,x)€[0V(—h),TA(T—h)]xR

Assume that h > 0 (the case h < 0 is completely analogous). Then,
E[|uH(t +ha) — uH(t,x)V?} < C(By + By),

where
Bl =K [

1

/0 /R (Crinos(r — ) — Goos(z — y)Ju (s,)W (ds, dy)

1

t+h
By :=E l / / Grin—s(x —y)u (s,y)WH (ds, dy)
t R
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Theorem 2.8, (27) and Lemma A.3 yield

[SI]

P

mzod( Gt = Gete = ) ©F el agas

( / 176,46 - Fou(e)? |£|”deds)2

o {|th, wave equation,

w\‘ﬁ

<C

IN

30
|h\%”, heat equation. (30)

Regarding the term By, we can argue as before but we apply Lemma A.1. Indeed, we have

that
t+h b
( [ 17— -><£>|2|£|1—2Hd5ds)

_ccH/ /|}'G )2 1E 2 dgds

s

BQSCC

wave equation,
<C ’

31
n {|h12{p, heat equation. (81)

Putting together (30) and (31), and taking into account that H € [n, n2], we end up with (29).

Finally, the results in Steps 2 and 3 let us conclude that, for any ¢, € [0,7] and z,2 in a
compact of R, we have

t — t|mp ! qp|mp ti
E [|uH(t',x’) . uH(t,x)P”] <c | |7]1 + |at x| , wave equa .10n,

[t/ —t| 2P + |2’ — x|™P,  heat equation
Thus, it suffices to take p > % for the heat equation and p > 7721 for the wave equation to be
able to apply the tightness criterion Theorem A.5. O

The following result extends Corollary 3.5 to the case H > % Its proof is very similar to
that of [8, Thm. 13], and the terms that need to be estimated uniformly with respect to H are
completely analogous as those appearing in Step 1 of the proof of the above Proposition 3.8.

Lemma 3.9. Let H > % and {ull, m > 0} be the sequence of Picard iterations corresponding
to the mild formulation (16). Then, for any p > 2, ul converges in LP(Y) to the solution u™
uniformly with respect to H € K, i.e.

lim sup sup E [|ug(t,x) (2 z)lP] =0
M= HeK (t,2)€[0,T]xR

4 Identification of the limit

Let Hy € (i,l) and {H,, n > 1} be any sequence such that H,, — Hj, as n — oco. We may
assume that there exists a compact set K C (%, 1) such that H,, € K, for all n > 1. The tightness
results proved in Propositions 3.1 and 3.8 imply that there exists a subsequence {H,,, k > 1}
such that {uf"x, k > 1} converges in law in the space C([0, T] x R) of contiuous functions. This
section is devoted to prove that the limit law is the distribution of w7
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Our strategy can be summarized as follows. We will verify that the finite dimensional
distributions of uf» converge to those of u® (see [7, Thm. 2.6]). For this, it suffices to prove
that, for any fixed (¢,2) € [0,T] x R, uff»(t,x) converges to ufo(t,x) in L?(Q). This can be
done thanks to the fact that the whole family of noises {W, H € (0,1)} can be defined on a
single probability space (see Section 2.2). In order to prove the above L?(£2)-convergence, we
will check the same convergence for any of the corresponding Picard iterates, that is, for any
m > 1, we show that ufln(t,x) — ullo(t,z) in L?(2), as n — oo, and we will take into account
that the Picard iteration scheme converges to the soution uniformly with respect to the Hurst
index H. At this point, we recall (invoking Theorem 2.20) that any Picard iterate admits the
following Wiener chaos expansion:

ug”(t,x) = ZIJHH(QJ("LZ')),

=0

where the latter is a finite sum of multiple Wiener integrals of order up to m and the kernels
g; are given by (22). Therefore, it will be sufficient to prove the L?({2)-convergence, as n — oo,
of any of the above multiple Wiener integrals, for which we will make use of the representation
result given in Theorem 2.7.

Here is the main result of the section:

Theorem 4.1. Let Hy € (%,1) and {Hp, n > 1} be any sequence such that H, — Hp, as
n — oo. Let ull" and w0 be the solutions of (16) corresponding the Hurst parameters H, and
Hy, respectively. Then, the finite dimensional distributions of uf" converge to those of uf, as
n — o0.

Proof. We split the proof in three steps.

Step 1: To start with, we recall that, owing to Corollary 3.5 and Lemma 3.9 in the particular
case p = 2, we have:

lim sup sup E [|uﬁ(t,m) —ufl(t, x)m =0, (32)
M= geK (t,x)el0,T]xR

where ull denotes the associated mth Picard iterate.
As we already explained, in order to assure the statement’s validity it is sufficient to show
the following pointwise convergence in L?(Q2): for any fixed (¢,z) € [0,7] x R, it holds

lim E [Ju'™(t,z) — u™(t,2)*] = 0.

n—oo

Note that

E Uan (tv x) - uHo(t,I)F]
< O (E [Ju(t,2) — ullr(t,2)?] + E [Jull"(t,2) — ullo (t,2)*] + E [Julle(t,z) — w0 (¢, 2)|?])
=: 1(m,n) + Ia(m,n) + I3(m).

By (32), we can infer that, for any € > 0, we can choose my big enough such that, for every

m > mg, we have

sg;i {Ii(n,m) + I3(m)} < e.

Thus, we are left to show that Iz(mg,n) tends to zero as n — oo. This means, in particular,
that the mo-th Picard iterate is continuous in L?(f2), with respect to H.
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Theorem 2.20 implies that, for any H € (% 1), ty,, has the Wiener chaos expansion

where the functions g; are defined by (22). Hence, in order to check that I3(mg,n) tends to

zero, it is enough to show that, for any j = 1,...,mo, I] "(g;(-,t,x)) converges to IH (gi(-,t,x))

in L2(Q2), as n — oo. Indeed, by Theorem 2.7 we have that
I (g; (- t,2)) = I (g; (-, t, )

— / | (gﬁn\gﬂ%*ffn . |§j|%*Hn _ c7]'{0|§1|%*H0 . |§j|%*H0>
{[0,T]xR}J
X‘ng(tla'v" j» y 7 )(51776!1) (dt17d§1) (dt],d{])

Hence
2
E |:‘IH ( ( ,t,ﬂ?)) _I]HU(gj(-,t,x))‘ :|
] 3 1 j 1_ 12
:/ v CJHn|§1‘2 Hn,..|§j|2 Hn_C]H0|§1|2 HO"'|§]’|2 Hy
{[0,T]xR}J

X|ng(tla'7" j» 7 )(é-lvvé-n)‘Zdé-ldé_jdtldtj

We show that the last integral converges to 0 when n — oco. To do this, we have to compute
explicitly the Fourier transform appearing in the above expression. Precisely, as detailed in [4,
p. 10], we have

fg]<t17 Ty 7tja 'at7x)(£17 cee 75])
= ne TG FGy, 4 (6) FGra—ty (61 + &) -+ FGiroy, (&1 + - + &) Lio<ty <-<tj<t}

Therefore, making the change of variables ny :=&; + -+ &, for £ =1,..., 7, we end up with
E [/ (95(,t,2)) = [ (g, t,2) 2]

/ /]R77H|]:Gt(+1 t[nﬂ?’cj |2~ gy — g [37H gy = g |2
J

(=1

07H0|771\TH°\772 - 771|THO ey — 77]'—1\7H° d&y -+ - d&; dty - - - dt,

where T(t) := {(t1,...,tj), 0 < t; < --- <t; <t}. We wish to prove that the latter integral
converges to 0 as n — oco. For this, we will apply the Dominated convergence theorem. Note
that the integrand clearly converges to 0 pointwise on 7T}(t) x R/. Indeed, the constant cy (see
(1)) defines a continuous function of H € (0,1). Now, we proceed to bound the integrand by
an integrable function. First, we note that the integrand can be bounded, up to some positive
constant, by

j .

117G, (o) (C?ﬁnImIHH”IW — [Py — g [P

(=1

‘1—2H0|772 _ 771‘1—2H0 .

27 _
Citylm Jnj = njal! 2H°> ~
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The two resulting terms in the above sum are of the same type, except the fact that the first
one depends on n while the second does not, and they are equivalent to the integrands studied
in [4, p. 11-13] (only in the case of wave equation with H € (4, 3)). From now on, we will only
consider the term of the integrand function that depends on n; the integrability of the other
term will be an immediate consequence of the treatment of the first one.

Hence, we will find a suitable estimate for the term

J
2 g — |2y — [ T IF Gy~ (o) (33)
=1

Notice that we have bounded cp, by a constant, since we may assume that all H,, are included
in a compact set of (%, 1). We distinguish the cases H,, < 1 and Hy, > 1
Step 2: In the case H,, < 2, we use the following fact: Whenever He (O ) we have

HW—W T H|W|ae

a€D; l=1

where Dj is a set with cardinality 2/~! and its elements are multi-indices o = (e, ..., ;) whose
component’s sum equals to (j — 1)(1 — 2H) and satisfy

a1 € {0,1—2H}, and oy € {0,1 —2H,2(1 —2H)}, for £ =2,...,7].

When H = H,, the corresponding o, will be denoted by ay . Thus, the integrand (33) may be
bounded by

J J
a2 Y T el (H |]:Gte—tf.1(77€)|2> (34)
OzED]' /=1 /=1

Let § := min,>; H,, > 1/4 and define the functions fo, f1, fo : Ry — Ry as follows: fo(r) =1

and
1-26 >1
/r. ) T — )
T) =
filr) {1, r<l,
2(1-2p) > 1
r ) r — )
T)=
fa(r) {1, r< 1.
We also set, for every oy,
07 Qpn = O>

N(alm«) = 1) Qygn = 1- 2Hn7
2, g, =2(1—2H,).

Then, we have the following estimate for the term (34):

i i
I B | R <H|]:Gtg—te1(77£)‘2>

aeD; =1 -1
J J )
< fi(lml) Z HfN(a/gn) |1) (H | FGytyy (m0)| ) .
OLGDJ‘ /=1 /=1

27



We have to prove that this function is integrable. To check this last fact, it is sufficient to show
it for a single integrand of the form

i ) j
LT |7 Gty ()| T TT el
(=1 (=1

where, now, a; does not take values in a discrete set, but they satisfy the weaker constraints:
a1 € K1 C[0,1/2), and oy € Ko C [0,1), for £ =2,...,7,

where Ky = [0,1 — 2min,>; Hy] and Ky = [0,2(1 — 2min,>; H,)] (we are assuming implicitly
that min, > Hy, < %; if this is not the case, then the entire sequence falls in the case H, > %,
which will be studied afterwards). It is important to notice that the sets K7, K2 do not depend
on n. The fact that 1 —2min, > H, < % and 2(1 —2min,>; H,) < 1 turns out to be crucial for
our estimates.

Thus, we want to prove that

J
/ ( / fGtz—tl(771)|2|771|B+°“dm)H( / fGtz+1—te(77£)|2W|a‘d77z> dty - dt; < 0. (35)
Tj(t) R =2 R

At this point, we have to consider separately the case of the wave equation case from that of
the heat equation. It holds that, for any v € (—1,1) (see the proof of Proposition 3.8):

C! (2 —~)t'™7, wave equation,

/]R IfGt(OQIf”dSS{ AL

Cf;%t 2,  heat equation.

We recall that the constants C’ and CJ are continuous with respect to v € (—1,1). We will
apply the above estimate with v = 1 — 2H and v = 2(1 — 2H), and still we can bound them
uniformly with respect to H € K C (i %], with K compact. Hence, for the heat equation, the
integral in (35) can be estimated by

j
—B—« —ap—1
/ (to—t1) =2 [[(tess —t) =2 dty---dt;,
Ty(t)

=2

which is finite because all exponents are strictly greater than —1. For the wave equation, we
end up with

J

/ (ta — t1) 770 [ [ (ter — to)'~dity - - dt;,
T;(2) =2

which is also finite since all exponents are even greater than 0. This concludes the proof in the

case H € (%, %}

Step 8: Let us now go back to expression (33), where we resettle the variables £, by means of

the change of variables & = 1y — ny_1. That is, we aim to bound the following term:

}
_ _ 2
[P T T | F Gl e (1 + -+ &0 (36)
/=1
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where we assume that H,, € [%, 1). Here, the fact that 1 — 2H,, < 0 helps us. Indeed, we can
define the bounding function in a quite straightforward way:

o ]_’ r > ]-a
g(r) == pl=2(maxy>y Hn) g o1

Clearly, the integrand function in (36) is bounded, for any n > 1, by

g(&l) - 90D T 1FCrprr—rel&r + - + €0

=1
We check that this upper bound function is integrable, namely

/ (t;) /RJ 1H’]:Gt“1 (Gt &0 gl

x(/t

j—1
We have that

t
L[£4V@w@+~+@Wa&WQm

/ |]:Gt t £1+ +£] | g |fj déjdt > d§1 dgj 1dty -+ 'dtj_l < 0. (37)

t
= / / |FGrosy (&1 + - + &) dejdt;
tj—1 J§[>1

t
+/ / [FGrgy (€14 + &) I |72zt gy,
i1 <1

We do the computations separately for the wave and heat equations. To start with, in the case
of the wave equation, it clearly holds that

sin(t[¢])

‘<t,

for all (¢,z) € [0,7] x R. Thus, we have

/ / [FGios, (&1 + -+ + &) g2zt Hrdg
tj—1 51<1

t
S / / |t—tj|2|£j|1_2mlnn21 Hndé-]dtj
tj—1 J|§;]<1
cT3

S —————— <X
1 — min,>1 H, ’

and

t
2 —2min
/ / ‘]:Gt*tj(§1++€J)| |§J‘1 2 n21Hn
tj—1 J|€;[>1

sin? [(t — ;) §1+~~~+€j|]d s
/t/ R

<O | (t—tjdt; < oo,

tj—1
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51n t|x|)

since fR dx = 7t. Therefore, we have got rid of the integral with respect to d§;dt; in

(37). Iteratmg this procedure one proves that the whole integral (37) is finite.
It remains to prove the analogous result for the heat equation. Here, we have

Fao) = <1,

for all (¢,z) € [0,T] x R. Thus,

/ / " |.7:Gt t; (& +-- +§j)|2|fj\1_2min"21H"d€jdtj
t]

S / / ‘€j|1—2minn21 Hndgjdt]
t; J1651<1
T

= —— < X0
1 — min,>1 Hy, ’

and

t
/ / [ FGiog, (€1 + -+ + &) g2 Hrdg it
tj J1&1>1
t
S/ /eXp (=t = tj)|&r + -+ &%) dg;dt;
t; R
t
—C | Ji—tdt; < o,
2

which, again by iterating this computation, shows that the integral in (37) is bounded also in
the heat equation case. This completes the proof. O

A Auxiliary results

In this section, we state some results that have been applied throughout the paper. We start
with four technical lemmas, proved in [2], which provide explicit estimates, depending on H, for
the norm in the space L?(R; u'!) of terms involving the Fourier transforms of the fundamental
solutions of the wave and heat equations. Finally, we will also state a tightness criterion which
will be applied in Section 3.

We recall that, for the wave and heat equations, we have, respectively:

sin(t|¢]) —t€”
iy 2

In the following three lemmas, we will denote either one of these two functions by FG:(£). We
recall that the spatial spectral measure is given by pf?(d¢) = cy|¢|'—2Hd¢ .

FGy(€) = and ]:Gt(§):exp< ) t>0, R

Lemma A.1 ([2], Lemma 3.1). Let T > 0. Then, the integral

T
Ar(a) = / /R FGi(€) €[ de dt
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converges if and only if o € (—1,1). In this case, it holds:

1
21"XCO¢27T2’“ for the wave equation,
-«

Ar(a) =
2
l—«o

1
F(a; )T(l A2 for the heat equation,

where the constant C,, is given by

fgo‘l sin(ra/2), e (—1,1)\ {0},
=
5 a=0.

Lemma A.2 ([2], Lemma 3.4). Let T > 0 and o € (—1,1). Then, for any h > 0, it holds:

C|h|'*=®  for the heat equation,
CTI|h|'=%  for the wave equation,

[ [0~ eostemy 7o Pier s < {
where C = [ (1 — cosn)|n|*~2dn.

Lemma A.3 (2], Lemma 3.5). Let T > 0 and o € (—1,1). Then, for any h > 0, it holds:

T Co|h|1=/2  for the heat equation
FaG — FG(&)PI¢|* dgdt < S 7 ° ’
/0 /R een(8) (OFleN" de d < {CaT|h|1a for the wave equation,

where
(L—e )
Co :/ de for the heat equation, and
R
min(1,|n|?) ‘
Co=4 | —————=dn for the wave equation.

‘20(

Lemma A.4 ([2], Lemma D.2). For any H € (0,3) and for any & € R, we have:

/ 11— e—lfﬂ? e 2T'(2H + 1) sin(wH)
B2 H(1—-2H)

The following tightness criterion on the plane was proved in [27, Prop. 2.3].

Theorem A.5. Let {X)}xea be a family of random functions indexed on the set A and taking
values in the space C([0,T] x R), in which we consider the metric of uniform convergence over
compact sets. Then, the family {Xx}rea is tight if, for any compact set J C R, there exist
p,p >0, > 2, and a constant C such that the following holds for any t',t € [0,T] and

e J:
(i) supyep E [|X>\(0,0)\p,} < 00,

(i1) supren B[ Xa(t',2') = Xa(t,2)|P) < C (|t = 1] + |2/ — x])’.
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