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DENSITY OF CERTAIN POLYNOMIAL MODULES

A. D. BARANOV, J. J. CARMONA, K. YU. FEDOROVSKIY

Abstract. In this paper the problem of density in the space C(X), for a
compact set X ⊂ C, of polynomial modules of the type {p+zdq : p, q ∈ C[z]}
for integer d > 1, as well as several related problems are studied. We obtain
approximability criteria for Carathéodory compact sets using the concept
of a d-Nevanlinna domain, which is a new special analytic characteristic of
planar simply connected domains. In connection with this concept we study
the problem of taking roots in the model spaces, that is, in the subspaces of
the Hardy space H2 which are invariant under the backward shift operator.

1. Introduction

Through this paper let X be a compact set in the complex plane C. Denote
by P be the space of all polynomials in the complex variable z, by R(X) the
space of all rational functions in the complex variable having their poles outside
X, as well as by C(X) the space of all continuous complex-valued functions on
X endowed with the uniform norm ‖f‖X = maxz∈X |f(z)|.

Take an integer d > 1 and define the following spaces of functions

P(zd) =
{
p0 + zdp1 : p0, p1 ∈ P

}
;

R(X, zd) =
{
g0 + zdg1 : g0, g1 ∈ R(X)

}
,

where z(z) = z. These spaces are modules over the rings P and R(X) respec-
tively, generated by the function zd. This function is called the generator of
P(zd) and R(X, zd). For instance, if d = 1, then these spaces consist, respec-
tively, of all bianalytic polynomials and bianalytic rational functions with poles
lying outside X (note that bianalytic rational functions are not quotients of
bianalytic polynomials).

We are interested in questions about density in the space C(X) of the modules
P(zd) and R(Y, zd) for some specially chosen compact set Y ⊇ X in the case,
when d > 1 as well as in questions about density in C(X) of polynomial and
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rational modules generated by multiple degrees of the function z:

P(zk1 , . . . , zkm) =
{
p0 + zk1p1 + · · ·+ zkmpm : p0, p1, . . . , pm ∈ P

}
;

R(Y, zk1 , . . . , zkm) =
{
g0 + zk1g1 + · · ·+ zkmgm : g0, g1, . . . , gm ∈ R(Y )

}
,

where k1, . . . , km are integers such that 0 < k1 < · · · < km.
Of course, if any of the modules under consideration is dense in the space

C(X), then, clearly, the interior of X is empty. Thus, speaking about density of
modules under consideration we will always mean their density in the respective
appropriately defined subspaces of the space C(X).

The roots of these questions can be traced back to 1970s–1980s when prob-
lems about density of rational modules R(Y, z, z2, . . . , zn) for integer n > 1,
were studied by O’Farrell [1], Verdera [2], Carmona [3, 4], Wang [5], Trent and
Wang [6, 7].

Systematical studies of the question about density of polynomial modules
P(z, z2, . . . , zn), n > 1, started in mid-1990s and this question turned out fairly
different from the corresponding question about rational approximation, see [8]
and references therein. In particular, the approximability conditions in this
case cannot be expressed only in terms of topological, metrical or capacitary
properties of X. Moreover, several new phenomena related with special analytic
properties of planar domains and with special properties of function belonging
to model spaces (that is, subspaces of the Hardy space H2 that are invariant
under the backward shift operator) arose in connection with this question.

One ought to notice that in the present paper we allow the situation when the
sequence of degrees of generators of our modules has gaps. In this situation new
interesting connections of problems under consideration with theory of model
spaces arise in addition to the initial polyanalytic case.

Structure and notation. The structure of the paper is as follows. In section 2
we state the approximation problems under consideration for modules with
one generator explicitly and discuss the state-of-the-art of these problems. In
section 3 we study the problem of uniform approximation by the module P(zd),
d > 1, for Carathéodory compact sets. The respective approximability criterion
(Theorem 1 below) is formulated in terms of a new analytic characteristic of
planar sets. This characteristic is the concept of a d-Nevanlinna domain, which
will be studied in section 4. We give description of d-Nevanlinna domains
in terms of conformal mappings from the unit disk onto the domain under
consideration and explore useful relations of this concept with several interesting
problems in the theory of model spaces. In section 5 we are dealing with modules
generated by multiple degrees of the function z.

In what follows we will use the following notation. By a contour we mean
a simple closed curve in C (not necessarily rectifiable). If Γ is a contour, then
D(Γ ) is the (Jordan) domain, bounded by it. Let, as usual, T = {ξ ∈ C :
|ξ| = 1} be the unit circle and let D = {z ∈ C : |z| < 1} be the unit disk.
Let, moreover, z(z) = z be the identity function. Also for a set E let E◦ be its
interior, E be its closure and ∂E be its boundary.
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Compact sets X possessing the property ∂X = ∂X̂, where X̂ stands for the
union of X and all bounded connected components of C \X, are traditionally
called Carathéodory compact sets.

For 1 6 p 6∞ we will denote by Hp = Hp(D) the standard Hardy spaces in
D (see [9, chap. IV]), as well as by H∞(U), for an open set U ⊂ C, the space
of all bounded holomorphic functions in U . By the classical Fatou theorem, for
each function f ∈ Hp and for almost all points ξ ∈ T the angular boundary
values f(ξ) exist; these values define the function from the space Lp = Lp(T)
(with respect to the normalized Lebesgue measure on T), which is called the
boundary function for f . The map mapping each f ∈ Hp to its boundary
function is an isometric isomorphism from Hp to the image space Hp(T). The
set of points ξ ∈ T where f(ξ) exists is traditionally called the Fatou set of f
and denoted by F(f). By [10, prop. 6.5], the set F(f) is a Borel set.

We recall that a function Θ ∈ H∞ is called an inner function, if |Θ(ξ)| = 1
for almost all ξ ∈ T. Finally, let I denotes the class of all inner functions.

2. Approximation problems for modules with one generator

We need to introduce several new spaces of functions. For a compact set X
in C let us denote by A(X, zd) the space consisting of all functions f ∈ C(X)
such that their restrictions to X◦ has the form

(1) f0 + zdf1,

where f0 and f1 are holomorphic functions in X◦.
Let ∂ = ∂/∂z be the standard Cauchy–Riemann operator in C. It is worth-

while to notice, that for an open set U ⊂ C with 0 /∈ U any continuous function
f on U satisfying the following second order elliptic partial differential equation

(2) ∂

(
∂f

∂zd

)
= 0,

has the form (1), where f0 and f1 are holomorphic functions in U .
Furthermore, let P (X, zd) be the C(X)-closure of the subspace

{
p|X : p ∈ P(zd)

}

and, for a compact set Y ⊂ C with X ⊆ Y , let R(X, Y, zd) be the closure in
C(X) of the subspace {

g|X : g ∈ R(Y, zd)
}
.

For brevity let R(X, zd) := R(X,X, zd). It is clear, that

P (X, zd) ⊂ R(X, zd) ⊂ A(X, zd)

for any compact set X. Thus the following problems arise naturally:

Problem 1. To find necessary and sufficient conditions on X in order that

(3) A(X, zd) = P (X, zd).

Problem 2. To find necessary and sufficient conditions on X in order that

(4) A(X, zd) = R(X, zd).
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Let us briefly discuss several basic results obtained in Problem 2 which are
relevant for our further considerations. Firstly, it was proved in [3] that the
equality (4) takes place for suchX that the set C\X has finitely many connected
components. Moreover, the latter condition can be replaced by the following
condition stated in terms of standard analytic capacity γ:

γ
(
{w ∈ C : |w − z| < r} \X

)
> Cr,

for some positive constant C, for all z ∈ ∂X and for any sufficiently small r > 0
(see [4], as well as [11] for the definition of γ). In particular, the equality (4)
holds for any Carathéodory compact set X.

At the same time one ought to notice that the description of compact sets
for which the equality (4) holds is unknown, except for the case d = 1. In this
case Problem 2 was recently solved by Mazalov in [12], where it is proved that
the equality R(X, z) = A(X, z) holds for any compact set X ⊂ C. In fact this
very deep and difficult theorem may be regarded as an analogue of the classical
Vitushkin’s approximation theorem for rational functions [11, chap. V, sect. 3,
th. 1].

In connection with Problem 2 we mention one more result due to Mazalov.
Let L be an elliptic partial differential operator in C with constant complex
coefficients and locally bounded fundamental solution. In [13] it is proved that
for any compact set X each function f ∈ C(X) such that Lf = 0 on X◦ can
be uniformly on X approximated by functions satisfying the equation LF = 0
on some (depending on F ) neighborhood of X.

The operator (2) is, clearly, not a constant coefficient operator. But our
understanding of main ideas and technical lemmas of Mazalov’s papers [12,
13] allow us to state the following result which we consider as ‘almost’ direct
corollary of the aforesaid Mazalov’s results:

Approximation criterion for rational modules with one generator. Let
X be an arbitrary compact set in C. Then R(X, zd) = A(X, zd).

From now on we are going to study Problem 1, which is the main aim of
the present paper. In the case when d = 1 this problem is the well-known
problem of uniform approximability of functions by bianalytic polynomials.
Let us mention now several references concerning this problem. The specific
analytic nature of approximability conditions in this problem was discovered in
[14]. In [15] the approximability criterion for Carathéodory compact sets was
obtained as well as in [16] and [17] several necessary and sufficient conditions
on a general compact set X in order that the equality A(X, z) = P (X, z) holds
were established (see also [8] and references therein). This paper is the first,
when Problem 1 in the case d > 1 is considered.

3. Approximation by polynomial modules on Carathéodory
compact sets and the concept of a d-Nevanlinna domain

In this section we study Problem 1 for Carathéodory compact sets X. We
need to recall, that a bounded domain Ω is called a Carathéodory domain if
∂Ω = ∂Ω∞, where Ω∞ is the unbounded connected component of the set C\Ω.
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If fact any Carathéodory domain is simply connected and has the property that
Ω = (Ω)◦.

In order to state the results of the paper we introduce, for an integer d > 1,
the concept of a d-Nevanlinna domain. For d = 1 this concept coincides with
the concept of a Nevanlinna domain which was introduced in [14, def. 3] and
[15, def. 2.1] and which was fruitfully employed in studies of problem about
approximation by bianalytic polynomials.

Let Ω be a bounded simply connected domain in C, let ϕ be a (fixed) con-
formal mapping from D onto Ω, and let d > 1 be a (fixed) integer.

Definition 1. A bounded simply connected domain Ω is called a d-Nevanlinna
domain, if there exist two functions u, v ∈ H∞(Ω) such that the equality

(5) zd =
u(z)

v(z)

holds almost everywhere on ∂Ω in the sense of conformal mappings. It means
that the following equality of angular boundary values

(6) ϕ(ξ)
d

=
(u ◦ ϕ)(ξ)

(v ◦ ϕ)(ξ)

holds for almost all points ξ ∈ T.

This is a consistent definition not depending on one’s choice of ϕ. More-
over, in view of the Luzin–Privalov boundary uniqueness theorem (see, e.g., [9,
chap. III]), the quotient u/v is uniquely determined in (a d-Nevanlinna domain)
Ω. If Ω is a Jordan domain with rectifiable boundary, then the equality (5) can
be understood directly as the equality of angular boundary values for almost
all (with respect to the length on ∂Ω) points z ∈ ∂Ω.

Denote by NDd the set of all (bounded simply connected) d-Nevanlinna do-
mains. We also put ND = ND1. Is as clear that ND ⊂ NDd for each positive
integer d. But the inverse inclusion fails also for any integer d > 1. The
correcponding examples will be constructed and discussed in Section 4.

We are going now to prove the following result:

Theorem 1. Let X be a Carathéodory compact set in C and let d > 2 be
an integer. Then A(X, zd) = P (X, zd) if and only if each bounded connected
component of the set C \X is not a d-Nevanlinna domain.

First of all let us formulate and prove two propositions having an independent
interest.

Proposition 1. If Ω ∈ NDd, then C(∂Ω) 6= R(∂Ω,Ω, zd).

Proof. Let ϕ be some conformal mapping from D onto Ω. Since Ω ∈ NDd, then
there exist bounded holomorphic functions u and v 6≡ 0 in Ω such that the
equality (6) holds.

We choose z0 ∈ Ω such that 0 < |u(z0)− zd0v(z0)| and we claim that

zd − z0
d

z − z0

∣∣∣∣
∂Ω

/∈ R(∂Ω,Ω, zd).
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Otherwise for each δ > 0 one can find rational functions f1 and f2 with poles
outside Ω such that

∣∣∣∣f1(ζ) + ζ
d
f2(ζ)− ζ

d − zd0
ζ − z0

∣∣∣∣ < δ

for ζ ∈ ∂Ω. Let U := u ◦ ϕ, V := v ◦ ϕ, and Fj := fj ◦ ϕ for j = 1, 2. Then, for
almost all ξ ∈ T such that (6) holds, we have

∣∣∣∣F1(ξ) + F2(ξ)
U(ξ)

V (ξ)
− U(ξ)− zd0V (ξ)

V (ξ)
(
ϕ(ξ)− z0

)
∣∣∣∣ < δ.

Hence

(7)
∣∣(F1(ξ)V (ξ) + F2(ξ)U(ξ)

)(
ϕ(ξ)− z0

)
− U(ξ) + zd0V (ξ)

∣∣ 6 δM,

for almost all ξ ∈ T, where M is the essential supremum of the function
(ϕ − z0)V . Note that the functions under the signs of absolute value on the
right-hand side of inequality (7) are the boundary values of the correspond-
ing functions in H∞, therefore, by the maximum modulus principle, we can
substitute ϕ−1(z0) for ξ in (7):

∣∣u(z0)− zd0v(z0)
∣∣ 6 δM,

which leads to a contradiction for sufficiently small value of δ. �

Proposition 2. Let Ω be a Carathéodory domain in C and d > 2 be an integer.
If C(∂Ω) 6= R(∂Ω,Ω, zd), then Ω ∈ NDd.

Proof. Let ϕ be a conformal mapping from D onto Ω and let ψ be the respective
inverse mapping. Let ∂aΩ be the accessible part of ∂Ω, that is, the set of all
points in ∂Ω which are accessible from Ω by some curve. By virtue of [10,
prop. 2.14, 2.17] one concludes that ∂aΩ = {ϕ(ξ) : ξ ∈ F(ϕ)}. As it was
shown in [17], ∂aΩ is a Borel set. In view of [17, cor. 1] the functions ϕ and
ψ can be extended to Borel measurable functions (denoted also by ϕ and ψ)
on D ∪ F(ϕ) and Ω ∪ ∂aΩ respectively in such a way, that ϕ(ψ(ζ)) = ζ for all
ζ ∈ ∂aΩ and ψ(ϕ(ξ)) = ξ for all ξ ∈ F(ϕ).

Let ω be the measure on ∂Ω defined by ω := ϕ(dξ) (see [17, sect. 3]). In fact
ω is a measure on ∂aΩ and has no atoms. Moreover, |ω(·)| = 2πω(ϕ(0), ·,Ω),
where ω(ϕ(0), ·,Ω) is the harmonic measure on ∂Ω evaluated with respect to
ϕ(0) and Ω.

If C(∂Ω) 6= R(∂Ω,Ω, zd), then there exists a non-zero measure µ on ∂Ω such
that µ ⊥ R(Ω) and zdµ ⊥ R(Ω). In view of [17, th. 2] there exists two functions
h1, h2 ∈ H1 such that h1 6≡ 0 and

µ = (h1 ◦ ψ)ω, zdµ = (h2 ◦ ψ)ω.

Therefore, for almost all ξ ∈ T one has ϕ(ξ)
d
h1(ξ) = h2(ξ). Going further

and replacing the quotient h2/h1 by f2/f1 with f1, f2 ∈ H∞ and defining the
functions u and v in Ω as follows u(z) = f2(ψ(z)), v(z) = f1(ψ(z)) one ob-
tains that zd = u(z)/v(z) almost everywhere on ∂Ω in the sense of conformal
mappings, as it is demanded. �
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Proof of Theorem 1. In view of the classical Mergelyan’s theorem [18] about
uniform approximation by polynomials in the complex variable, we have that
A(X, zd) = P (X, zd) whenever the set C \ X is connected. So, proving this
theorem we are dealing with compact sets with disconnected complement.

Assume now that there exists a bounded component Ω of the set C \ X
such that Ω ∈ NDd. Then, in view of proposition 1, there exists a nontrivial
measure µ on ∂Ω such that µ ⊥ R(Ω). Therefore, µ ⊥ P and there exists
a point z0 ∈ Ω such that µ̂(z0) 6= 0 (here and in the sequel ν̂ stands for the
Cauchy transform of a measure ν). It means that µ 6⊥ (z − z0)−1 ∈ A(X, zd),
that is A(X, zd) 6= P (X, zd) and the first part of the theorem is established.

Let us prove the converse assertion. Assume that µ is nontrivial measure
on X such that µ ⊥ P(zd). Since µ ⊥ P and X is a Carathéodory compact
set, then µ has no atoms due to [17, th. 2]. Our first aim is to prove that
µ ⊥ R(X, zd).

Let Ω be a bounded component of the set C \X, let U := (X̂)◦ \ Ω, and let
Ω′∞ be the unbounded connected component of the set C \X.

If U 6= ∅, take a sequence {qj}∞j=1 ∈ P of polynomials such that qj → 1
locally uniformly on Ω, qj → 0 locally uniformly on U and ‖qj‖X̂ 6 C, where
C is some absolute constant. The existence of such sequence is the direct
consequence of [19, lem. 7] and Runge’s classical theorem. In the case, when
U = ∅, let qj ≡ 1 for j = 1, . . . ,∞.

Let now µΩ be some limit point of the sequence of measures {µj}∞j=1, µj = qjµ,
in the weak-∗ topology in the space of measures on X. We recall, that it means
that there exists some partial sequence {jt}∞t=1 such that jt →∞ and µjt

∗
⇀ µΩ

as t→∞. It is clear, that Supp(µΩ) ⊂ ∂X.
Take z0 /∈ Supp(µ). For s = 0 and s = d one has

ẑsµΩ(z0) =
1

2πi

∫
zs dµΩ(z)

z − z0

= lim
t→∞

1

2πi

∫
zsqjt(z) dµ(z)

z − z0

=

= lim
t→∞

(
1

2πi

∫
(qjt(z)− qjt(z0))zm dµ(z)

z − z0

+
qjt(z0)

2πi

∫
zs dµ(z)

z − z0

)
=

= lim
t→∞

qjt(z0)

2πi

∫
zs dµ(z)

z − z0

=

{
ẑsµ(z0) for z0 ∈ Ω,
0 for z0 ∈ (U \ Supp(µ)) ∪ Ω′∞,

It now follows that µΩ ⊥ P(zd). Take another sequence {qj}∞j=1 as it was
mentioned above and let ν be some limit point of the sequence {qjµΩ}∞j=1 in

the weak-∗ topology in the space of measures on X. Then ν ⊥ P(zd) and,
moreover, for s = 0 and s = d,

ẑsν(z0) =

{
ẑsµ(z0) for z0 ∈ Ω,
0 for z0 ∈ U ∪ Ω′∞,

since Supp(µΩ) ⊂ ∂X. Since µ has no atoms, then µΩ and ν have no atoms
too. Taking into account the fact that the kernel (zd−wd)/(z−w) is bounded
we conclude, that the function

fΩ(w) =
1

π

∫
(zd − wd) dν(z)

z − w
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is continuous is C and vanishes on U ∪ Ω′∞, so that fΩ(w) = 0 outside Ω.
Furthermore, in view of [4, lem. 1] and [3, lem. 2], it is true that on the open
set W = C \ {0} one has

∂

(
∂fΩ

∂zd

)
= ν|W

in the sense of distributions, which yields Supp(ν) ⊂ ∂Ω ∪ {0}. Since the
measure ν has not atoms, then Supp(ν) ⊂ ∂Ω and therefore the measures ν
and zdν are orthogonal to R(Ω). Since Ω /∈ NDd, it follows from proposition 2
that ν = 0 and the required result is established.

Thus it is proved that for each connected component Ω of the complement

C \X we have ẑsµ(z) = 0 for z ∈ Ω and s = 0, d, that is, µ ⊥ R(X, zd).
In order to finish the proof of the theorem we need to use the fact that

A(X, zd) = R(X, zd) for Carathéodory compact set X, which was proved im-
plicitly in [4] (we need to use [4, th. 1] in the case 0 /∈ X, as well as [4, th. 3] in
the case 0 ∈ X). �

Dealing with Problem 1 in the case of non-Carathéodory compact sets we
can observe, that the following result takes place

Theorem 2. The equality A(X, zd) = P (X, zd) holds if and only if the equality
A(X ∩ Ω, zd) = R(X ∩ Ω,Ω, zd) is satisfied for any connected component Ω of

(X̂)◦ that is not contained in X.

This theorem can be considered as a refinement of the result of [16, th. 3],
where the respective approximability criterion was proved in the case d = 1.
The proof of [16, th. 3] contains two main steps. At the first step it was
proved that any measure on X which is orthogonal to P(z) is also orthogonal
to R(X, z). In our case one can prove that any measure on X which is orthog-
onal to P(zd) is also orthogonal to R(X, zd) following essentially the respective
arguments given in the proof of Theorem 1 with minor clear modifications
(see the proof of [16, th. 3] for details). At the last step it was proved that
A(X, z) = R(X, z). The proof of the respective fact that A(X, zd) = R(X, zd)
may be obtained following the scheme used in the proof of [16, th. 3] (the
special version of the Vitushkin localization scheme), where all necessary facts
concerning Vitushkin’s localization operator for solutions of differential opera-
tor (2) should be taken from [3] and [4].

The assertion of Theorem 2 can be said to be of a local nature, though
the problem of the equality (3) is certainly non-local in the standard sense. We
note also that the conclusion of Theorem 2 is reductive in nature, since in it the
problem of possibility of approximation on a given compact set X is reduced to
the problem of possibility of approximation on specially chosen compact subsets
of X, which may have a simpler structure than the original compact set.

4. Some properties and examples of d-Nevanlinna domains

In what follows in this section let d > 1 be an integer. We start constructing
for d > 1 a class of examples of d-Nevanlinna domains which are not Nevanlinna
domains. For this sake we take a real a > 1 and consider the function ϕa,d(w) =
d
√
a− w where the d-root means the principal branch of the multivalued function
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d
√
a− w defined outside the ray [a,+∞). It is clear that ϕa,d is univalent in D.

Put Dd
a := ϕa,d(D). Since for all points ζ ∈ ∂Dd

a one has

ζ = d

√
a2 − aζd − 1

a− ζd ,

and since the function in the right-hand side of this equality has branch points
in the domain Dd

a, then Dd
a is not a Nevanlinna domain. At the same time Dd

a

is a d-Nevanlinna domain because for all points ζ ∈ ∂Dd
a one has

ζ
d

=
a2 − aζd − 1

a− ζd .

Moreover, Dd
a ∈ NDk for any k ∈ dZ, but Dd

a /∈ NDk whenever k /∈ dZ.
We now present one example of a domain which does not belong to the set

NDk for any integer k > 1. Let Γa,b be the ellipse defined by the equation
x2/a2 + y2/b2 = 1, where a > b > 0 are real numbers. Define c > 0 by
a2 − b2 = c2. It can be easily verified that for all ζ ∈ Γa,b one has

(8) ζ =
a2 + b2

c2
ζ − 2ab

c2

√
ζ2 − c2,

where we consider the holomorphic branch of the respective square root func-
tion defined outside some the segment [−c, c] and satisfying the condition√
a2 − c2 = b. It follows from (8), that for any integer k > 1 and for any

ζ ∈ Γa,b one has

ζ
k

= Pk(ζ) +Qk(ζ)
√
ζ2 − c2,

where Pk, Qk ∈ P and hence (by virtue of the Luzin–Privalov boundary unique-
ness theorem) the function zk cannot coincide with the quotient of two bounded
holomorphic in D(Γa,b) functions. Hence D(Γa,b) /∈ NDk for any integer k > 1.

Furthermore, one ought to notice that NDk ∩ NDk′ ⊂ NDd, where d is the
greatest common divisor of k and k′.

For our further studies of d-Nevanlinna domains we need to recall the concept
of a (Nevanlinna type) pseudocontinuation of H∞-functions. Let us put De :=
C \ D and bring in the following definition (see [20, def. 2.1.2]):

Definition 2. A function f ∈ H∞ admits a pseudocontinuation (or, more
precisely, a Nevanlinna type pseudocontinuation), if there exists two functions
f1, f2 ∈ H∞(De) such that f2 6≡ 0 and for almost all points ξ ∈ T the equality
f(ξ) = f1(ξ)/f2(ξ) is satisfied, where f1(ξ) and f2(ξ) are angular boundary
values of functions f1 and f2 being taken from the domain De.

We need now to invite the concept of a model space. Let Θ ∈ I, and

KΘ := (ΘH2)⊥ = H2 	ΘH2.

By virtue of the classical Beurling theorem (see [21, lect. I]) the spaces KΘ (for
all Θ ∈ I), and only these spaces, are invariant subspaces for the backward shift
operator f 7→ (f(z) − f(0))

/
z in H2. These spaces are usually called model

spaces, or ∗-invariant subspaces. We refer to [21] and [22] for the systematic
exposition of the theory of model spaces.
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The following description of d-Nevanlinna domains in terms of conformal
mappings takes place:

Theorem 3. Let Ω be a bounded simply connected domain in C, and ϕ be a
conformal mapping from D onto Ω. Then Ω ∈ NDd if and only if ϕd admits a
pseudocontinuation.

Moreover, if Ω ∈ NDd, then there exists a function Θ ∈ I such that ϕd ∈ KΘ.
Conversely, let Θ ∈ I. Then ϕ(D) ∈ NDd for any ϕ which is bounded and
conformal in D, and such that ϕd ∈ KΘ.

Sketch of the proof. The proof of the fact that Ω ∈ NDd if and only if ϕd admits
a pseudocontinuation is absolutely similar to the proof of [15, prop. 3.1]. The
aforesaid Beurling theorem together with [20, th. 2.2.1] give that a function
g ∈ H∞ admits a pseudocontinuation if and only if there exists a function
Θ ∈ I such that g ∈ KΘ (see [21, lect. II] for details). Applying this fact to the
function g = ϕd we verify the remaining part of Theorem 3. �

We remark that the question whether bounded univalent functions belonging
to KΘ exist as well as the boundary behavior of such functions were studied in
[23] and [24].

It follows from examples given at the beginning of this section that there
exist bounded conformal mapping ϕ in D such that ϕd ∈ KΘ for some d > 2
and Θ ∈ I, but ϕ /∈ KΘ for any Θ ∈ I. In view of this observation it seems
interesting and important to consider the problem of d-root extraction in the
space KΘ in more detail.

We need to recall several facts about bounded analytic functions in the unit
disk, which can be found in [9, chap. IV]. Given a function f ∈ H∞, than f
can be uniquely factorized in the following way:

f = eicBSF,

where B is a Blaschke product, S is a singular inner function, F is an outer
function and c ∈ R. The function Θ = eicBS is called the inner factor of f
as well as F is its outer factor. This decomposition is traditionally called an
inner–outer factorization of f . Recall that a Blaschke product is a function of
the form

B(z) =
∞∏

n=1

an
|an|

z − an
anz − 1

,

where (an)∞n=1 is some Blaschke sequence in D (that is, an ∈ D for n ∈ N and∑∞
n=1(1− |an|) <∞), while a singular inner function is a function of the form

S(z) = exp

(
−
∫

T

ζ + z

ζ − z dµS(ζ)

)
,

where µS is a finite positive singular measure on T and an outer function is

F (z) = exp

(
1

2π

∫ 2π

0

eit + z

eit − z log |f(eit)| dt
)
.

Furthermore, we need several basic facts about model spaces KΘ (see, for
example, [21, lect. II]):

(1) f ∈ KΘ if and only if there exists a function g ∈ H2 such that f = zΘg.
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(2) For Θ ∈ I let us define the operator, acting in L2 as follows

f 7→ f̃Θ := zΘf.

This operator is an antilinear isometric involution, and it commutes
with the orthogonal projection from L2 to KΘ. Thus, for any function
f ∈ KΘ, one has zΘf ∈ KΘ.

Now we are going to prove the following result.

Theorem 4. Let k > 1 be an integer, let f ∈ H∞ and let Θ ∈ I. Suppose that
h = fk ∈ KΘ. The following two assertions are equivalent:

(1) the function f admits a pseudocontinuation;
(2) there exists Θ1 ∈ I such that (zJ)k−1Θ = Θk

1 , where J is the inner

factor of the function h̃Θ.

Moreover, if f admits a pseudocontinuation, then f ∈ KI1 for some function
I1 ∈ I such that I1 divides Θ and Θ1 in I (so that f ∈ KΘ ∩ KΘ1), and Ik1
divides zk−1Θ in I.

Proof. Let the function f admit a pseudocontinuation. Then there exists Θ∗ ∈
I such that f ∈ KΘ∗ . Let J1 be the inner factor of the function f̃Θ∗ and Ff be
the outer factor of f . Then we have

zΘ∗f = FfJ1,

where this equality, as well as all forthcoming equalities in this proof, mean the
respective equality of functions in the space L∞. Raising this equality to the
power k and taking into account the fact that Fh = F k

f (where Fh is the outer

factor of the function h = fk) we obtain

(9) zkΘk
∗f

k
= Jk1Fh.

Since h = fk ∈ KΘ, then, considering the inner–outer decomposition of the

function h̃Θ we have

(10) zΘf
k

= zΘh = JFh.

Dividing (9) and (10) by their common factors we conclude that

zJk1Θ = zkJΘk
∗ .

Therefore, multiplying the last equality by zkJk−1 we obtain

Jk1Θ(zJ)k−1 = JkΘk
∗ ,

which implies

(zJ)k−1Θ =
JkΘk

∗
Jk1

= Θk
1 ,

where Θ1 = JΘ∗/J1 ∈ I in view of the boundary uniqueness theorem for Hp-
functions (see [9, chap. III]).

Now we going to prove the converse assertion. It follows from our hypothesis
and from (10) that

f
k
Θk

1 = f
k
zk−1ΘJk−1 = zkFhJ

k = (zFfJ)k,
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which in their own turn implies that the equality

f(ξ)Θ1(ξ) = ωkξFf (ξ)J(ξ)

holds for all ξ ∈ E, where E ⊂ T is a set of positive measure and ωk is some
k-root of the unity. Applying again the boundary uniqueness theorem one
concludes that

f = zΘ1(ωkFfJ) ∈ KΘ1 .

Therefore, f admits a pseudocontinuation, which is demanded.
To complete the proof we assume that f admits a pseudocontinuation. It is

already shown that f ∈ KΘ1 in such a case. Let Θ0 be the greatest common
divisor of Θ1 and J in the class I, so that there exist two relatively prime
functions I1, I2 ∈ I such that Θ1 = I1Θ0 and J = I2Θ0. We claim that I1 is an
inner divisor of Θ. Indeed, since Θk

1 = (zJ)k−1Θ, then

Ik1Θ
k
0 = zk−1Ik−1

2 Θk−1
0 Θ,

which gives that Ik1Θ0 = zk−1Ik−1
2 Θ. Assume that z does not divide I1. Then,

since I1 and I2 are relatively prime, I1 divides Θ. Let now I1 = zmI3 for some
integer m > 1 and I3 ∈ I such that z and I3 are relatively prime. Then
zmkIk3Θ0 = zk−1Ik−1

2 Θ, which gives

z(m−1)(k−1)I1I
k−1
3 Θ0 = Ik−1

2 Θ,

so that I1 divides Θ in I in the last case too. Finally, the equality zΘ1f = ωkJFf
gives that f = zI1ωkI2Ff . Hence f ∈ KI1 , but KI1 ⊂ KΘ (since I1 divides Θ in
I). �

In connection with Theorem 4 we notice that the possibility of taking k-root
of the function (zJ)k−1Θ is essentially depends on orders of its zeros, because
for any singular inner function its k-root is always well defined.

At the beginning of this section some examples of domains Ω ∈ NDd \ ND
were given. Let us revert to these examples and analyze them from the point
of view of Theorem 4. Let, for integer k > 1, f(w) = ϕa,k(w) = k

√
a− w, a > 1,

and let h(w) = f(w)k = a−w. It is clear that h ∈ Kz2 . Since h̃z2(w) = aw− 1,
then J(w) = (aw − 1)/(w − a). Thus, in order to have a pseudocontinuation
property for f one needs that (zJ)k−1z2 = zk+1Jk−1 = Θk

1 for some Θ1 ∈ I,
which is clearly impossible.

5. Modules with multiple generators

Let m > 1 and k1, . . . , km be positive integers such that k1 < · · · < km. In
what follows let d be the greatest common divisor of k1, . . . , km and `j = kj/d
for j = 1, . . . ,m.

For a compact set X ⊂ C let us define the following spaces of functions:
P (X, zk1 , . . . , zkm) to be the uniform closure on X of the subspace {p|X : p ∈
P(zk1 , . . . , zkm)} and A(X, zk1 , . . . , zkm) to be the space consisting of all function
f ∈ C(X) such that their restrictions to X◦ has the form f0+zk1f1+· · ·+zkmfm,
where f0, . . . , fm are holomorphic functions on X◦. Furthermore, for compact
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sets X and Y ⊇ X we define the space R(X, Y, zk1 , . . . , zkm) to be the closure
in C(X) of the subspace {g|X : g ∈ R(Y, zk1 , . . . , zkm}. One has

P (X, zk1 , . . . , zkm) ⊂ R(X, zk1 , . . . , zkm) ⊂ A(X, zk1 , . . . , zkm),

where R(X, zk1 , . . . , zkm) = R(X,X, zk1 , . . . , zkm) and the following question
arises quite naturally: to describe such compact sets X ⊂ C, for which

P (X, zk1 , . . . , zkm) = A(X, zk1 , . . . , zkm).

Let now X be a Carathéodory compact set. If there exists an integer s > 1
such that kj = js for j = 1, . . . ,m, then the answer for the question under
consideration is the same as in Theorem 1: P (X, zs, . . . , zms) = A(X, zs, . . . , zms)
if and only if any bounded connected component Ω of the set C \ X is not a
s-Nevanlinna domain. The proof of this result is word-by-word repetition of
the proof of Theorem 1 with minor clear modifications (see also the proof of
[15, th. 2.2]).

In the case of general exponents (of z) the following result is satisfied.

Theorem 5. For a bounded simply connected domain Ω let us consider the
following assertions:

(1) R(∂Ω,Ω, zk1 , . . . , zkm) = C(∂Ω);
(2) R(∂Ω,Ω, zd) = C(∂Ω);
(3) Ω 6∈ NDd.

Then (1) ⇒ (3) and (2) ⇒ (3). If Ω is a Carathéodory domain, all these
assertions are equivalent.

Moreover, let X be a Carathéodory compact set in C. If there exists some
bounded connected component Ω of the set C \X such that Ω ∈ NDd, then

A(X, zk1 , . . . , zkm) 6= P (X, zk1 , . . . , zkm).

Conversely, if Ω /∈ NDd for any bounded connected component Ω of the set
C \X, then

P (X, zk1 , . . . , zkm) = R(X, zk1 , . . . , zkm).

Proof. We already have proved that (2) ⇒ (3) and (2) ⇔ (3) in the case of
Carathéodory domains (see Propositions 1 and 2).

If Ω ∈ NDd it can be shown by the same way as it was done in the proof of
Proposition 1, that

zd − z0
d

z − z0

∣∣∣∣
∂Ω

/∈ R(∂Ω,Ω, zk1 , . . . , zkm),

where z0 ∈ Ω is such point that |u(z0) − z0
dv(z0)| > 0 and v(z0) 6= 0 (here

u, v ∈ H∞(Ω) are taken from Definition 1). Therefore, (1)⇒ (3).
In order to prove the implication (3) ⇒ (1) for Carathéodory domain Ω we

observe that if R(∂Ω,Ω, zk1 , . . . , zkm) 6= C(∂Ω), then R(∂Ω,Ω, zkj) 6= C(∂Ω)
for each j = 1, . . . ,m. Applying Proposition 2 we conclude that there exist
m couples of functions uj, vj ∈ H∞(Ω) such that the equalities zkj = uj/vj
are satisfied almost everywhere on ∂Ω in the sense of conformal mappings. By
the well-known property of greater common divisor (Bezout’s identity) there
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exists the set {t1, . . . , tm} of integers such that
∑m

j=1 kjtj = d. Therefore almost
everywhere on ∂Ω in the sense of conformal mappings we have

zd =
u

v
:=

m∏

j=1

u
tj
j

v
tj
j

,

which exactly means that Ω ∈ NDd.
The proof of the first assertion in the second part of the theorem can be

obtained similarly as the respective assertion in Theorem 1.
Let us give a sketch of the proof of the remaining assertion. As in the proof

of Theorem 1 we take a measure µ on X which is orthogonal to P(zk1 , . . . , zkm)
and we need to show that µ ⊥ R(X, zk1 , . . . , zkm). Let Ω be any bounded
component of the set C \X. Starting with this measure µ we construct, as it
was done in the proof of Theorem 1, new measure ν possessing the properties

Supp(ν) ⊂ ∂Ω and ν ⊥ R(Ω, zk1 , . . . , zkm), and such that ẑsν(z) = ẑsµ(z) for
all z ∈ Ω and s = k1, . . . , km. Since Ω /∈ NDd and (1) ⇔ (3), then ν = 0 and,
hence, µ ⊥ R(X, zk1 , . . . , zkm). �

Let us give several remarks concerning Theorem 5. If Ω is a Carathéodory
domain such that the set C \ Ω is connected (for instance, if Ω is a Jordan
domain), then the spaces R(∂Ω,Ω, zk1 , . . . , zkn) and R(∂Ω,Ω, zd) in Theorem 5
can be replaced by the spaces P (∂Ω, zk1 , . . . , zkn) and P (∂Ω, zd) respectively.

Actually it is an open question should the equality

A(X, zk1 , . . . , zkm) = R(X, zk1 , . . . , zkm)

be true for any compact set or not. One ought to notice that the equality
A(X, zk1 , . . . , zkm) = R(X, zk1 , . . . , zkm) holds for any nowhere dense compact
sets. It follows from the fact, that A(X, zd) = C(X) = R(X, zd) for such
compact sets, which was proved in [3]

The affirmative answer to the above question in the case of Carathéodory
compact sets (which seems rather plausible) will give the criterion for coinci-
dence of modules A(X, zk1 , . . . , zkm) and P (X, zk1 , . . . , zkm) for such X.

The next result shows that in the case when Ω ∈ NDd is a Carathéodory
domain, the modules R(∂Ω,Ω, zk1 , . . . , zkm) and R(∂Ω,Ω, zd) are different.

Proposition 3. Let Ω ∈ NDd be a Carathéodory domain such that there exists
at least one point z0 ∈ Ω such that for the functions u and v being taken from
(5) we have v(z0) = 0 and u(z0) 6= 0. Then

R(∂Ω,Ω, zk1 , . . . , zkm) 6= R(∂Ω,Ω, zd).

Proof. In order to prove the proposition we show that zkm /∈ R(Ω,Ω, zd). As-
sume that it is not true, then for any ε > 0 there exist two rational functions
f1, f2 ∈ R(Ω) such that

‖f1 + zdf2 − zkm‖∂Ω < ε.

Notice that `m = km/d > 1. Taking a conformal mapping ϕ from D onto Ω
and letting u1 = u ◦ ϕ and v1 = v ◦ ϕ, we obtain that, for almost all ξ ∈ T, the
following inequality is satisfied∣∣f1(ϕ(ξ))v1(ξ)`m + f2(ϕ(ξ))u1(ξ)v1(ξ)`m−1 − u1(ξ)`m

∣∣ < εM,
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where M is the essential supremum of the function v`m1 on T. It follows from the
maximum modulus principle forH∞ functions that in the previous inequality we
can put ϕ−1(z0) instead of ξ. Then |u(z0)|`m < εM which gives a contradiction
for sufficiently small ε. �

We remark that the condition on v in Proposition 3 is of a technical nature.
This condition is fulfilled in all known examples of d-Nevanlinna domains and
it is fairly plausible that it holds for any such domains.
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