
P
re

p
u

b
lic

ac
ió
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COHOMOLOGICAL UNIQUENESS, MASSEY PRODUCTS AND THE
MODULAR ISOMORPHISM PROBLEM FOR 2-GROUPS OF MAXIMAL

NILPOTENCY CLASS

ALBERT RUIZ AND ANTONIO VIRUEL

Abstract. Let G be a finite 2-group of maximal nilpotency class, and let BG be its clas-

sifying space. We prove that iterated Massey products in H∗(BG;F2) do characterize the

homotopy type of BG among 2-complete spaces with the same cohomological structure. As

a consequence we get an alternative proof of the modular isomorphism problem for 2-groups

of maximal nilpotency class.

1. Introduction

Let G be a finite p-group, and let BG be its classifying space. In this work we consider the

cohomological uniqueness of BG: choose some mod-p cohomological invariants and consider

X a p-complete space such that BG and X agree on these cohomological invariants, does it

mean that X is homotopy equivalent to BG? As one may expect, the answer to this question

depends on the mod-p cohomological invariants chosen.

In [7], C. Broto and R. Levi initiated the study of the cohomological uniqueness of BG in

terms of Steenrod operations and Bockstein spectral sequences. In this setting, they proved

the cohomological uniqueness of the classifying space of every dihedral 2-groups [7], and every

quaternion group [8]. Unfortunately, the available techniques seem not to be strong enough

to decide the cohomological uniqueness of the classifying space of semidihedral 2-groups in

terms of Steenrod operations and Bockstein spectral sequences.

In order to give a unified approach to the cohomological uniqueness of BG, when G is

a finite 2-group of maximal nilpotency class (i.e. dihedral, quaternion and semidihedral 2-

groups), we propose a different set of mod-p cohomology invariants: the algebra structure of

H∗(BG;Fp) (not taking into account Steenrod operations), and iterated Massey products in

this algebra (see Section 2 for precise definitions). In this setting we prove:

Theorem 1.1. Let G be a finite 2-group of maximal nilpotency class. Let X be a 2-

complete topological space having the homotopy type of a CW -complex such that H∗(X ;F2) ∼=
H∗(BG;F2) as algebras with iterated Massey products. Then X ' BG.

Proof. We first describe H∗(BG;F2) as algebra with iterated Massey products in Section 4.

This structure is used to construct a homotopy equivalence X → BG whenever G is dihedral

(Theorem 5.2), quaternion (Theorem 5.4) or semidihedral (Theorem 5.7). �
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Besides of its own topological interest, the study of the cohomological uniqueness of clas-

sifying spaces may have implications in a long standing algebraic problem: the modular

isomorphism problem.

The modular isomorphism problem asks whether a p-group G is determined by Fp[G], its

group algebra over the field of p-elements. That is, given another finite p-group H such that

Fp[G] ∼= Fp[H] as rings, does it mean that G ∼= H as groups? The general question still

remains open, a positive answer to this question is known for a few families of p-groups (see

[2, Introduction] for an up to date list of results).

Then the interplay between cohomological uniqueness of classifying spaces and the modular

isomorphism problem is clear: let G be a finite p-group such that BG is cohomology unique

when considered a set of mod-p cohomological invariants that can be deduced from the group

algebra Fp[G], then the modular isomorphism problem has a positive answer for G.

So we obtain a positive answer to the modular isomorphism problem for finite 2-groups of

maximal nilpotency class (see [9], and [1] for other approaches to this result):

Corollary 1.2. Let G be a finite 2-group of maximal nilpotency class, and let H be a finite

2-group such that F2[G] ∼= F2[H] as rings, then G ∼= H as groups.

Proof. Given any finite p-group K, the algebra structure with iterated Massey products of

H∗(BK;Fp) can be obtained from the ring structure of Fp[G] by means of the Yoneda co-

complex (e.g. see [5, Theorem 2.3 and Lemma 2.4]). Hence, if F2[G] ∼= F2[H] as rings, then

H∗(BH;F2) ∼= H∗(BG;F2) as algebras with iterated Massey products. Then, according to

Theorem 1.1, BG ' BH (recall that the classifying space of a finite p-group is a p-complete

space), and G ∼= H as groups. �
We finish this introduction recalling that iterated Massey products of degree one classes

have been previously used by I.C. Borge in [5] and [4] to provide a cohomological classification

of finite p-groups. Unfortunately, her results cannot be applied in our topological framework:

in Remark 5.5, we give an example showing that iterated Massey products of degree one

classes cannot isolate the homotopy type of the classifying space of quaternion groups.

Organization of the paper: In Section 2, we briefly review the definition, main properties and

tools needed in the computation of iterated Massey products. Section 3 is devoted to give

representations of maximal nilpotency class 2-groups in GL(F2). In Section 4, we compute

iterated Massey products in the cohomology of these groups and finally, in Section 5, we use

this structure to prove Theorem 1.1 case by case.

Notation: In general the following notations will be used in the rest of the paper: group

elements are denoted with lower case letters (x,y, . . . ), while roman capital letters (X, Y ,

. . . ) and calligraphic capital letters (X and Y) are used to denote cohomology generators,

and topological spaces respectively.

Unless otherwise stated, cohomology means cohomology with trivial coefficients over the

field F2, so H∗(X ) = H∗(X ;F2).

2. Iterated Massey products: definition and properties

In this section we quickly review the theory of iterated Massey products. A more detailed

description can be found in [12], or [13].
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Let R be a ring with unit. Consider C∗(G,R) the cochain algebra of the group G with

coefficients in R, and d the coboundary operator in C∗(G,R).

Definition 2.1. Let {Xi}1≤i≤n be homogeneous elements in H∗(G,R). A defining system

for the nth order iterated Massey product 〈X1, . . . , Xn〉, is an upper triangular matrix

M = {mi,j | 1 ≤ i ≤ n+ 1, i < j ≤ n+ 1, (i, j) 6= (1, n+ 1)}
with coefficients in C∗(G,R) such that:

(i) mi,i+1 is a representative for Xi and

(ii) dmi,j =

j−1∑

k=i+1

mi,k ∪mk,j (j 6= i+ 1).

Definition 2.2. Given M a defining system for 〈X1, . . . , Xn〉, the value of the product relative

to this defining system, denoted 〈X1, . . . , Xn〉M , is the element in H∗(G;R) represented by

the cocycle:
n∑

k=2

m1,k ∪mk,n+1 .

The nth order iterated Massey product 〈X1, . . . , Xn〉 is defined as the set of elements which can

be written as 〈X1, . . . , Xn〉M for some defining system M . The indeterminacy in the iterated

Massey product 〈X1, . . . , Xn〉 is defined as the set of elements Z which can be expressed as

Z = Y1 − Y2 for Y1 and Y2 in 〈X1, . . . , Xn〉.

We now enumerate some of the properties which are used later:

(i) The iterated Massey product 〈X1, . . . , Xn〉 is not defined for all X1, . . . , Xn in H∗(G;R).

For example, 〈X1, X2, X3〉 is defined if and only if X1 ∪X2 = X2 ∪X3 = 0.

(ii) The degree of an element in 〈X1, . . . , Xn〉 is
∑

deg(Xi)− n+ 2.

(iii) If f : X → Y is a continuous map of topological spaces, and Y1, . . . , Yr are cohomology

classes in H∗(Y ;R) such that 〈Y1, . . . , Yr〉 is defined, then so is 〈f ∗(Y1), . . . , f ∗(Yr)〉 and

f ∗(〈Y1, . . . , Yr〉) ⊂ 〈f ∗(Y1), . . . , f ∗(Yr)〉.
Moreover, if f ∗ is an isomorphism, equality holds.

The next result follows from May’s proof of [13, Theorem 1.5]:

Lemma 2.3. Let f : X → Y be a continuous map such that fk : Hk(Y ;R)→ Hk(X ;R) is an

isomorphism for k ≤ n. Let Y1, . . . , Yr be elements in H∗(Y ;R) such that
∑

deg(Yi)−r+2 ≤
n. Then:

(a) 〈Y1, . . . , Yr〉 is defined if and only if 〈f ∗(Y1), . . . , f ∗(Yr)〉 is so.

(b) f ∗(〈Y1, . . . , Yr〉) = 〈f ∗(Y1), . . . , f ∗(Yr)〉.

Let p be a fixed prime. In this work, we compare the mod-p cohomology algebras (with

iterated Massey products) of spaces. This is done by considering a special kind of morphisms:

Definition 2.4. Let ϕ : H∗(Y ;Fp)→ H∗(X ;Fp) be a morphism (not necessarily induced by

a continuous map of topological spaces). We say that ϕ is an M-isomorphism if

(1) ϕ is an Fp-algebras isomorphism and
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(2) for all r ≥ 1 and Y1, . . . , Yr elements in H∗(Y ;Fp) such that 〈Y1, . . . , Yr〉 is defined,

then 〈ϕ(Y1), . . . ϕ(Yr)〉 is defined and

ϕ(〈Y1, . . . , Yr〉) = 〈ϕ(Y1), . . . ϕ(Yr)〉
Definition 2.5. Let X and Y be topological spaces. We say that X and Y areM-comparable

if there exists an M-isomorphism ϕ : H∗(Y ;Fp)→ H∗(X ;Fp). We say that X is determined

by its M-cohomology if for any p-complete space Y having the homotopy type of a CW -

complex and such that it is M-comparable to X we have that X ' Y .

The easiest examples of spaces determined by itsM-cohomology are provided by classifying

spaces of some particular families of p-groups:

Proposition 2.6. Let E be an elementary abelian p-group, then BE is determined by its

M-cohomology.

Proof. Let E be a rank r elementary abelian p-group. First we prove the algebra structure

of H∗(BE;Fp) with iterated Massey products determines the Steenrod operations and the

Bockstein spectral sequence. We consider two cases:

• If p = 2, then H∗(BE;F2) = F2[x1, . . . , xr] where every xi has degree 1. Therefore,

the unstability axiom forces Sq1 xi = x2i , and this determines completely the Steenrod

operations and the Bockstein spectral sequence.

• If p > 2, then H∗(BE;F2) = Λ(u1, . . . , ur)⊗F2[v1, . . . , vr] where every ui has degree 1,

and every vi has degree 2. Again, the unstability axiom forces P1ui = 0 and P1vi = v2i ,

and this determines completely the Steenrod operations. Moreover, according to [12,

Theorem 19], β1(ui) = 〈ui, p). . ., ui〉 = vi, what completely determines the Bockstein

spectral sequence.

Finally, BE is determined by its cohomology with Steenrod operations and Bockstein

spectral sequence [7, Proposition 1.5], thus the result follows. �

2.1. Iterated Massey products of degree one elements. In this subsection we recall

the work of W.G. Dwyer [11, Section 2], that relates iterated Massey products of degree

one elements in the cohomology of a group and representations of this group in the upper

triangular matrices.

Let U(R, n) be the multiplicative group of all upper triangular n×n matrices over R which

agree with the identity matrix along the diagonal. The subgroup Z(R, n) of U(R, n) consists

of matrices which are identically zero except along the diagonal and at position (1, n). We get

that Z(R, n) ∼= R and it is contained in the center of U(R, n), so it gives rise to the central

extension:

(1) Z(R, n)→ U(R, n)→ U(R, n)
def
= U(R, n)/Z(R, n) .

Given a group homomorphism φ : G → U(R, n), the image of g ∈ G is a matrix with coeffi-

cients φi,j(g) ∈ R. Remark that the elements φi,i+1(g) satisfy the equation:

φi,i+1(g1g2) = φi,i+1(g1) + φi,i+1(g2) .

So φi,i+1 are group morphisms from G to R, and thus represent cohomology classes in

H1(G;R). These elements are called near diagonal elements of φ.
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Theorem 2.7 ([11]). Let X1, . . . , Xn be elements in H1(G;R). There is a one-one corre-

spondence M ↔ φM between defining systems M for 〈X1, . . . , Xn〉 and group homomorphisms

φM : G → U(R, n + 1) which have −X1, . . . ,−Xn as near-diagonal components. Moreover,

given φM , we can pull back the extension in Equation (1), getting an extension of G by R.

Then 〈X1, . . . , Xn〉M is exactly the characteristic class of this extension.

2.2. Iterated Massey products in higher degrees. In order to compute iterated Massey

products of higher degree elements we use the Yoneda cocomplex [4, Section 2.5]:

Fix G a p-group and P• → Fp a Fp[G]-free resolution with differentials ∂i : Pi+1 → Pi.

Definition 2.8. The Yoneda cocomplex Hom
(•)
Fp[G](P•, P•) is defined as:

• In degree i we have the Fp[G]-module:

Homi
Fp[G](P•, P•) =

∏

n∈Z
HomFp[G](Pn+i, Pn), i ≥ 0

and 0 otherwise.

• The differential of φi = {φin : Pn+i → Pn}n∈Z ∈ Homi
Fp[G](P•, P•), is defined as:

δi(φin) = ∂n−1φ
i
n − (−1)iφin−1∂n+i−1 .

• The algebra structure in the cohomology of Hom
(•)
Fp[G](P•, P•) is induced by the com-

position of elements as a cochain morphisms.

The following result tells us that we can use this tool to work with the cohomology of a

group:

Theorem 2.9 ([4]). H i(Hom
(•)
Fp[G](P•, P•), δ

•) ' ExtiFp[G](Fp,Fp) for all i ≥ 0.

3. Representations of maximal nilpotency class 2-groups

The maximal nilpotency class finite 2-groups are precisely the dihedral, quaternion and

semidihedral groups. In this section we deal with these three families of 2-groups, obtaining

a representation of these groups on U(F2, n) which will allow us to compute iterated Massey

products of some degree one elements.

3.1. Notation. Consider the following finite presentations of the dihedral, quaternion and

semidihedral groups:

(2)

D2n = 〈x, y | x2n−1
= 1, y2 = 1, yxy−1 = x−1〉,

Q2n = 〈x, z | x2n−1
= 1, z2 = x2

n−2
, zxz−1 = x−1〉 and

SD2n = 〈x, t | x2n−1
= 1, t2 = 1, txt−1 = x2

n−2−1〉 .
And also the following cohomology rings with coefficients in F2:

(3)

H∗(BD4) ∼= F2[X, Y ],

H∗(BD2n) ∼= F2[X, Y,W ]/(X2 +XY ) for n ≥ 3,

H∗(BQ8) ∼= F2[X, Y, V ]/(X2 +XY + Y 2, X2Y +XY 2),

H∗(BQ2n) ∼= F2[X, Y, V ]/(X2 +XY, Y 3) for n ≥ 4 and

H∗(BSD2n) ∼= F2[X, Y, U, V ]/(X2+XY,XU,X3, U2 + (X2 + Y 2)V )

for n ≥ 4.
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where deg(X) = deg(Y ) = 1, deg(W ) = 2, deg(U) = 3 and deg(V ) = 4 in all the cases.

The results in this paper will not require to keep the structure of algebra over the Steenrod

Algebra, but in some proofs we will use that such a structure exists. More precisely we will

use that it is unstable and that it is known that Sq1(W ) = WY in H∗(BD2n) (n ≥ 3).

There is also a tower of principal fibrations:

(4) · · · πn→ BD2n
πn−1→ BD2n−1

πn−2→ · · · π3→ BD8
π2→ BD4

where π2 is classified by the class X2 +XY ∈ H2(BD4) and πn by W ∈ H2(BDn) for n ≥ 3.

The quaternion and semidihedral groups fit in the following central extensions:

(5) Z/2→ Q2n → D2n−1 and Z/2→ SD2n → D2n−1

classified by the following classes in H2(BD2n−1): X2 +XY + Y 2 in the case Q8, W + Y 2 in

the case Q2n (n ≥ 4) and W +X2 in the case SD2n (n ≥ 4).

3.2. Representations of maximal nilpotency class 2-groups. In this subsection we will

give a explicit minimal degree faithful representation over F2 of the maximal nilpotency class

2-groups. The definition of the images of the generators of each group is defined using the

matrices described below:

Consider An the 2n × 2n matrix defined inductively:

(6) A0 = (1) , An =

(
An−1 An−1

0 An−1

)
,

where 0 means a matrix with all the entries equal zero.

Consider also the 2n × 2n-matrix Bn with entries bi,j:

(7) bi,j
def
=

{
1 if i = j or j = i+ 1,

0 otherwise.

Finally consider the 2n × 2n-matrix Cn with entries ci,j:

(8) ci,j
def
=





1 if i = j,

1 if i = 1 and j = 2n,

0 otherwise.

The following calculation gives the property needed to compute the iterated Massey products:

Lemma 3.1. Let B be a matrix in GLm(F2) as defined in Equation (7) (now m is not

necessarily of the form 2n). Then:

(a) The order of B is 2n, where 2n−1 < m ≤ 2n.

(b) If l is a positive integer such that 2l < Order(B), then the coefficients in positions (i, i+2l)

in B2l are equal to 1 for i from 1 to m− 2l.

Proof. B is the sum of the identity Id and a nilpotent matrix N . Now we can compute

(Id +N)l using the Newton coefficients formula and both (a) and (b) follow. �

Lemma 3.2. Fix n ≥ 1. The matrices An, Bn and Cn defined in Equations (6), (7) and (8)

have the following properties:

(a) A2
n = Id,
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(b) Cn is in the center of the invertible upper triangular matrices, so, in particular, commute

with An and Bn, and

(c) AnBnAn has all the entries over the diagonal equal 1.

Proof. (a) Use induction on n and the fact that all coefficient are taken in F2.

(b) If U is an invertible upper triangular 2n×2n-matrix, the matrix UCn has the same entries

as U but the last element of the first row, which changes by +1. Multiplying CnU then

we have to add 1 to the first element of the last column, getting the same result.

(c) This is a direct computation using induction on n.

�
Now we will use the matrices An, Bn and Cn to construct the following (2n + 1)× (2n + 1)

matrices:

xn
def
=




1 1 1 0 · · · 0

0
...

0

Bn




, yn
def
=




1 0 · · · 0

0
...

0

An




,

zn
def
=




1 0 · · · 0 0 · · · 0 1 0

0
...

0

An−1 An−1Cn−1

0
...

0

0 An−1




and

tn
def
=




1 0 · · · 0 0 · · · 0

0
...

0

An−1 An−1Cn−1

0
...

0

0 An−1




.

Lemma 3.3. The (2n + 1) × (2n + 1) matrices xn, yn, zn and tn defined above have the

following properties:

(a) xn has order 2n+1,

(b) yn has order 2,

(c) ynxnyn = x−1n ,

(d) z2n = x2
n

n , in particular zn has order 4,

(e) znxnz
−1
n = x−1n ,

(f) tn has order 2 and

(g) tnxnt
−1
n = x2

n−1.

So xn and yn generate a subgroup isomorphic to D2n+2; xn and zn a subgroup isomorphic to

Q2n+2, and xn and tn a subgroup isomorphic to SD2n+2.
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Proof. All can be checked again by induction and using Lemma 3.2. �
Now we want to check that the previous representations of the dihedral, quaternion and

semidihedral groups are the smaller rank ones. To check this we will compute the exponent

of a Sylow 2-subgroup of a general linear group over F2.

Lemma 3.4. Let M be an element of order 2n in GLm(F2). Then 2n−1 < m. Moreover,

there exists an element of order 2n in the linear group GL2n−1+1(F2).

Proof. Let M be an element of order 2n, then M satisfies the polynomial X2n − 1. As we

are in characteristic 2 we get X2n − 1 = (X − 1)2
n
. The minimal polynomial of M must be

of the form (X − 1)r, and the characteristic polynomial must be (X − 1)m, with r ≤ m. If

2n−1 ≥ r, then M would satisfy the polynomial (X − 1)2
n−1

= (X2n−1 − 1), so the order of M

would be at most 2n−1. So we get 2n−1 < r ≤ m.

Finally, the element xn−1 in Lemma 3.3 is of order 2n in GL2n−1+1(F2). �

4. Iterated Massey products in the cohomology of maximal nilpotency

class 2-groups

This section is devoted to the computation of the iterated Massey products in the cohomol-

ogy of dihedral, quaternion and semidihedral groups. The results presented here as Lemmas

4.2, 4.3, 4.4 and 4.5 can be summarized in the following theorem:

Theorem 4.1. Consider D2n (n ≥ 2), Q2n (n ≥ 3) and SD2n (n ≥ 4) the dihedral, quaternion

and semidihedral groups of order 2n, and the generators of their cohomology as denoted in

Equation (3). Then:

(a) Neither W , W + Y 2 nor W + X2 is contained in an iterated Massey product of degree

one elements in the cohomology of D2n of order less than 2n−1.
(b) The 2n−1th order iterated Massey product in the cohomology of D2n defined as 〈X,X +

Y, . . . , X,X + Y 〉 contains W , W + Y 2 and W +X2.

(c) The 2n−1th order iterated Massey product in the cohomologies of D2n, Q2n and SD2n

defined as 〈X,X + Y, . . . , X,X + Y 〉 does not contain the zero element.

(d) The mth order iterated Massey product 〈X,X + Y,X,X + Y, . . .〉 is not defined for m >

2n−1 in any of the cohomologies of D2n, Q2n and SD2n.

(e) 〈Y, Y 2, Y, Y 2〉 = {V } in the cohomology of Q2n.

(f) 〈X,X2, Y 〉 = {U,U+Y 3} and 〈X,X2, X,X2〉 = {V, V +Y U} in the cohomology of SD2n.

The proof of this theorem will be done in the next two subsections: the first one is devoted

to the computations of iterated Massey products of degree one elements while the second will

use the Yoneda cocomplex to prove last two statements in the theorem.

4.1. Iterated Massey products of degree one elements. The representations described

in Section 3 allows us to compute some iterated Massey products in the cohomology of the

dihedral, quaternion and semidihedral groups:

Lemma 4.2. Consider the cohomology of D2n, n ≥ 3 as denoted in Equation (3). Then:

(a) Neither W , W + Y 2 nor W + X2 is contained in an iterated Massey product of degree

one elements of order less than 2n−1.
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(b) The 2n−1th order iterated Massey product 〈X,X+Y, . . . , X,X+Y 〉 contains W , W +Y 2

and W +X2.

Proof. Assume first that an iterated Massey product of length m contains either W , W + Y 2

or W +X2. Then we would have the following diagram:

Z/2

��

Z/2

��

K // G

��

// U(2,m+ 1)

��

K // D2n
// U(2,m+ 1)

where the bottom right square is a pull-back, K is defined as the kernel of the horizontal

arrows and the vertical lines are central extensions.

As either W , W + Y 2 or W + X2 classifies the extension, then G is isomorphic to either

D2n+1 , Q2n+1 or SD2n+1 . The center of G is exactly Z/2. If K is non trivial, as it is a normal

subgroup in G, then K intersects non-trivially the center of G, so it contains the center of G.

But this implies that the center of G maps injectively to D2n , and it contradicts the exactness

of the vertical line. This implies that K is trivial, so, there is an injection of G in U(2,m+1),

so by Lemma 3.4, m ≥ 2n−1.
The representations in Lemma 3.3 and Theorem 2.7 tell us that the 2n−1th order iterated

Massey product 〈X,X + Y, . . . , X,X + Y 〉 contains W , W + Y 2 and W +X2. �

The following Lemma will use the same notation for the generators of H1(G) for different

G, as noted in Equation (3) and the result applies to all of them:

Lemma 4.3. Consider the cohomology of the dihedral, quaternion and semidihedral groups

of order 2n as denoted in Equation (3). Then, for all these groups:

(a) The 2n−1th order iterated Massey product defined as 〈X,X + Y, . . . , X,X + Y 〉 does not

contain the zero element.

(b) The mth order iterated Massey product 〈X,X + Y,X,X + Y, . . .〉 is not defined for m >

2n−1.

Proof. Assume that the zero element is in a 2n−1th order iterated Massey product of type

〈X,X+Y, . . . , X,X+Y 〉 of the cohomology of G, where G is either D2n , Q2n or SD2n . Then

there would be a group morphism from G to U(F2, 2
n−1 + 1) which lifts to a group morphism

from G to U(F2, 2
n−1 + 1) such that the image of x is a matrix with all the entries in position

(i, i + 1) equals 1. The order of such an element is 2n, bigger than the order of x, getting a

contradiction.

(b) can be deduced from (a): if a mth order iterated Massey product 〈X,X + Y,X,X +

Y, . . .〉 with m > 2n−1 is defined, then the zero element must be in all the strictly shorter

subproducts, in particular in the 2n−1th order product of this type. �
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4.2. Iterated Massey products in higher degrees. This subsection is devoted to the

computation of some iterated Massey products involving powers of degree one cohomology

generators and having as a result the higher degree generators.

We start with the quaternion groups.

Lemma 4.4. Consider the notation in Equation (3) for the cohomology of Q2n, the quaternion

group of order 2n with n ≥ 3. Then

〈Y, Y 2, Y, Y 2〉 = {V } .

Proof. To compute this iterated Massey product we must consider a projective resolution

of these groups and find a representative of each element in the Yoneda cocomplex for the

generator Y .

We can find a projective resolution of Q2n in [10, pp. 253], but before giving it we need some

notation: consider x and z the generators of Q2n as given in Equation (2), and consider the

following elements in F2[Q2n ]: I = 1+x, J = 1+z, K = 1+xz, L = 1+x+x2+ · · ·+x2
n−2−1,

Nx = 1 + x+ x2 + · · ·+ x2
n−1−1 and N =

∑
g∈Q2n

g.

These elements satisfy the following relations: L = I2
n−2−1, Nx = I2

n−1−1, I2
n−2

= J2 = K2,

I2
n−1

= J4 = K4 = 0, KI = IJ , K = I + J + IJ and N = JNx = NxJ = KNx = NxK.

A projective resolution of F2 as F2[Q2n ] module is given by the following periodic data:

F2 P0
εoo P1

∂1oo P2
∂2oo P3

∂3oo P4
∂4oo P5 · · ·

∂5oo

where P4i
∼= P4i+3

∼= F2[Q2n ] and P4i+1
∼= P4i+2

∼= F2[Q2n ]2 and the differentials: ∂4i+1 =

(I J), ∂4i+2 = ( L K
J I ), ∂4i+3 = ( I

K ) and ∂4i = (N).

The element X in H1(BQ2n) is represented in the Yoneda cocomplex by a cochain map

Xi : Pi+1 → Pi defined as follows (to cover the case Q8 here we are using the convention

I0 = 1):

X4i = (1 0), X4i+1 =

(
I2

n−2−2 1

0 1 + I

)
, X4i+2 =

(
1

1

)
and X4i+3 = (I2

n−1−2J) .

The element Y in H1(BQ2n) is represented in the Yoneda cocomplex by a cochain map

Yi : Pi+1 → Pi defined as follows: Y4i = (0 1), Y4i+1 = ( 0 1
1 0 ), Y4i+2 = ( 0

1 ) and Y4i+3 = (Nx).

Finally the element V in H4(BQ2n) is represented by a cochain map Vi : Pi+4 → Pi which

is the identity.

With all this data, compute products in these generators corresponds to compose these

cochain maps, so we can easily find cochain maps representing Y 2 and Y 3.

Now we sketch here how to compute these iterated Massey product 〈Y, Y 2, Y, Y 2〉:
(i) We must find the following coefficients in a defining system:




1 Y α β

0 1 Y 2 α γ

0 0 1 Y α

0 0 0 1 Y 2

0 0 0 0 1
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such that δα = Y 3, δβ = Y α + αY , δγ = Y 2α + αY 2: remark that we just need to

compute the maps in low degrees, just enough to compose them and get the product.

αi : Pi+2 → Pi can be taken as α0 = (1 0), α1 = ( 1
0 ), α2 = ( JL ) and α3 = (K L+Nx).

βi : Pi+2 → Pi can be taken as: β0 = (0 0), β1 = ( 0
0 ), β2 =

(
1+J+J2

L(1+J)

)
and β3 =

(K L + Nx). Finally, γi : Pi+3 → Pi can be taken as: γ0 = (0), γ1 = ( 0
1 ), γ2 = ( 0 1

1 0 )

and γ3 = (0 1).

(ii) Consider now the cochain Y γ + α2 + βY composing the maps described above and we

obtain that it is equivalent to V .

This procedure gives us an element in 〈Y, Y 2, Y, Y 2〉, but we have done several choices. Let

us see now that if we choose other elements we get again V : by [12, Theorem 3] we can fix

the representatives of Y and Y 2 to construct any defining system. Assume we change all

coefficients α by (possibly) α′, α′′, α′′′, β by β′, and finally γ by γ′ getting a new defining

system. Then we get, by direct computation, that the result of this defining system differs

from V by an element which can be written as α(a′′X2+b′′Y 2)+(aX2+bY 2)α, for a, a′′, b, b′′ ∈
F2. We use again the Yoneda cocomplex for all this generators to compute it, and this always

give the zero element in cohomology, so

〈Y, Y 2, Y, Y 2〉 = {V }.
�

Lemma 4.5. Let SD2n be a semidihedral group of order 2n, with n ≥ 4. Fix X, Y , U and

V the generators in H∗(SD2n) as in Equation (3). Then

〈X,X2, Y 〉 = {U,U + Y 3} and 〈X,X2, X,X2〉 = {V, V + Y U}.

Proof. We begin fixing a basis of the cohomology as graded vector space in low degrees:

{X, Y } in degree one, {X2, Y 2} in degree 2, {U, Y 3} in degree 3 and {Y 4, Y U, V } in degree

4.

We also consider the projective resolution of F2 as F2[SD2n ] module given in [14], using

the generators x and t of SD2n as in Equation (2): define I = 1 + x, J = 1 + t, L =

1 + x+ x2 + · · ·+ x2
n−2−2 and Nx = 1 + x+ x2 + · · ·+ x2

n−1−1.
These elements satisfy the following relations, which are useful to do all the computations:

L = I2
n−2−1 +x2

n−2−1, I2
n−1

= J2 = 0, IJ = (1 + tL)I, (1 + tLn)I = I(1 + tLn−1), tNx = Nxt,

tI2
n−1−2 = I2

n−1−2t, I2
n−2−2t = tI2

n−2−2x2
n−2−2, (1 + tL2i)2 = 0, (1 + tL2i+1)2 = Nx and

L2n−1
= 1.

Then a projective resolution is given by:

F2 P0
εoo P1

∂1oo P2
∂2oo P3

∂3oo P4
∂4oo P5 · · ·

∂5oo

where Pi ∼= F2[SD2n ]i+1 and the differentials defined inductively: ∂1 = (I J),

∂2i =




Nx 1 + tLi 0 · · · 0

0

∂2i−1...

0


 and
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∂2i+1 =




I 1 + tLi i 0 · · · 0

0

∂2i...

0


 .

We proceed now giving cochain maps representing the generators. This free resolutions does

not allow us to give inductive formulas, but as we are just interested in 4th order iterated

Massey products of elements in degrees 1 and 2 we just need to give the first 4 steps of the

maps.

The element X ∈ H1(BSD2n) is represented in the Yoneda cocomplex by a cochain map

Xi : Pi+1 → Pi with

X0 = (1 0), X1 =

(
I2

n−1−2 t(L+ I2
n−2−2) 0

0 X0

)
,

X2 =




1 t(L+ I2
n−2−2) 1 0

0
X10


 and

X3 =




I2
n−1−2 0 0 0 0

0

X20

0


 .

The element Y ∈ H1(BSD2n) is represented in the Yoneda cocomplex by a cochain map

Yi : Pi+1 → Pi with Yi = (0| Idi+1) where Idi+1 is the (i+ 1)× (i+ 1) identity matrix.

The elements in H3(BSD2n) are determined by maps P3 → F2 which can be lifted to

cochain maps, and we can write them as matrices 1× 4. Using the previous representatives

Y 3 is determined by (0 0 0 1), X3 = X2Y = XY 2 (which is a coboundary) is represented by

(0 0 1 0) and (0 1 0 0) cannot be lifted. As (1 0 0 0) can be lifted and, taking into account the

dimension of the cohomology in degree 3, it can be considered as a representative for U or

U+Y 3. The important fact is that checking that U or U+Y 2 are in 〈X,X2, Y 〉 will reduce to

see that the first coordinate in the result of a defining system of this iterated Massey product

is non zero.

The same arguments work for detecting which can be V as a map from P4 → F2: (0 0 0 0 1)

determines Y 4, (0 0 0 1 0) is a coboundary, (0 0 1 0 0) cannot be lifted, (0 1 0 0 0) determines

Y U , so V (or V + Y U) can be taken as (1 0 0 0 0). Again, the computations will focus on the

information which tell us that either V or V + Y U belongs to this iterated Massey product:

that is, there is an element of the form (1 ∗ ∗ ∗ 0) in 〈X,X2, X,X2〉, seen as a map from P4

to F2.

With all this data we can sketch the computations which tell us that either U or U + Y 3

belongs to 〈X,X2, Y 〉:
(i) We must find α and β in a defining system, so that δα = X3 and δβ = X2Y . By the

previous identification of the cohomology classes in the Yoneda cocomplex, X3 = X2Y ,

so we can take α = β. A direct computation gives us that we can take αi : Pi+2 → Pi
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as:

α0 = (1 0 0) and α1 =

(
1 + I2

n−1−3 t(L+ I2
n−2−2) x2I2

n−1−5 0

0 1 0 0

)
.

(ii) Consider now the cochain Xα+αY = Xα+βY . We just need to compute the evaluation

of the morphism at level 0:

ε(α0X2 + Y0α1) = (1 0 1 0) ,

as a map from P3 to F2. This element corresponds either to U + Y 3 or U .

To see that V ∈ 〈X,X2, X,X2〉 we can use the same procedure as in the proof of Lemma

4.4, using the matrices Xi described above. We need α, β and γ in a defining system such

that δα = X3, δβ = Xα + αX and δγ = X2α + αX2.

By definition, α may be taken the same α considered in the computation of 〈X,X2, Y 〉.
Moreover, as Xα+αX gives the same representative as X3 in the Yoneda cocomplex, we can

take also β = α. Finally, this election of α makes X2α + αX2 to be the zero element, so we

can take γ = 0.

Now we can proceed in the computation of the first coordinate of Xγ + α2 + βX2:

ε(0 + α0α2 +X0X1α2) .

We just need the first and last columns of α2, which we can see that have (1, 0, 0) and (0, 0, 0)

as coefficients respectively. As the result of the computations is the sum of the first two rows,

we get that the result is of the form (1 ∗ ∗ ∗ 0) as a map from P4 to F2, obtaining either V

or V + Y U .

Finally we must deal with the indeterminacy in these iterated Massey products to get the

final result.

Applying [13, Proposition 2.3], in a triple Massey product, two elements in 〈X,X2, Y 〉
differ by an element of the form 〈Z, Y 〉 + 〈X,Z ′〉, for Z,Z ′ elements in H2(BSD2n). As Y 3

is the only element which can be constructed in this way we get

〈X,X2, Y 〉 = {U,U + Y 3}.
As in the proof of Lemma 4.4, two elements in 〈X,X2, X,X2〉 differ by an element which can

be expressed as α(a′′X2 + b′′Y 2) + (aX2 + bY 2)α, with α a cochain such that δα = X3 and

a, a′′, b, b′′ ∈ F2. Any element of this form gives a map F2[G]5 → F2[G] → F2 with zeros in

the first and last coordinates and the coefficient a in the second. So just the element Y U is

in the indeterminacy, getting that:

〈X,X2, X,X2〉 = {V, V + Y U}.
�

5. Cohomological uniqueness

In this section we will work with topological spaces of the homotopy type of CW-complexes.

We will use the cohomology over F2, so we have to consider 2-complete spaces in the sense

of A.K. Bousfield and D. Kan [6].
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5.1. Dihedral groups. Consider D2n the dihedral group of order 2n, and its cohomology for

n ≥ 3 as defined in Equations (2) and (3).

The following lemma uses the fact that, for any topological space X , H∗(X ) is an unstable

algebra over the Steenrod algebra, but it does not require that this structure must be the

same as the one in H∗(BD2n):

Lemma 5.1. Let X be an space such that H∗(X ) ∼= H∗(BD2n) as algebras. Let φ : X → BD2n

be a map inducing the identity in degree one cohomology. Then either φ∗ is an isomorphism

or φ∗(W ) = 0.

Proof. According to the hypothesis, φ∗ is an isomorphism if and only if W is in the image of

φ∗. In other words φ∗ is not an isomorphism if and only if φ∗(W ) = aX2 + bY 2 for a, b ∈ F2.

Assume then that φ∗(W ) = aX2 + bY 2. Applying Sq1 in both sides we get Sq1(W ) = WY

and Sq1(aX2 + bY 2) = 0. So 0 = Sq1(φ∗(W )) = φ∗(Sq1(W )) = (aX2 + bY 2)Y which implies

a = b = 0. �

Theorem 5.2. BD2n is determined by its M-cohomology.

Proof. Fix X a 2-complete topological space having the homotopy type of a CW-complex

and M-comparable to BD2n .

For n = 2, D4
∼= Z/2×BZ/2 and the result follows from Proposition 2.6.

Assume that n ≥ 3. Then we should give a map φn : X → BD2n inducing an isomorphism

in cohomology up to degree 2. Consider the tower of principal fibrations in Equation (4),

where each πk corresponds to the central extension:

1→ Z/2→ D2k+1 → D2k → 1

classified either by X2 +XY if k = 2 or by W when k > 2.

Consider φ2 : X → BD4 a map classifying the classes X and Y . The composite

X φ2−→ BD4
X2+XY−→ K(Z/2, 2)

is nullhomotopic, so φ2 factors as a composition π2 ◦ φ3, with φ3 : X → BD8.

Now, if we assume that φk : X → BD2k inducing the identity in H1 is defined, this map

will extend to a map φk+1 : X → BD2k+1 if and only if φ∗k(W ) = 0. Using Lemmas 3.4, 5.1

and the fact that

φ∗k(〈X,X + Y,X,X + Y,
2k−2· · · 〉H∗(BD

2k
)) ⊂ 〈X,X + Y,X,X + Y,

2k−2· · · 〉H∗(X )

we get that φk(W ) = 0 for all k < n (the subscripts in the formula indicate the algebra where

the iterated Massey products are considered). So, the map φk extends to φk+1 : X → BD2k+1

for k < n.

It remains to check the last step: if φn(W ) = 0, then it extends to φn+1. Such a map

φn+1 : X → BD2n+1 inducing the identity in H1 cannot exist because 〈X,X+Y,X,X+Y,
2n+1

· · · 〉
is defined in H∗(BD2n+1) and it is not defined in H∗(X ) by Lemma 3.4.

So φn(W ) 6= 0, and by Lemma 5.1, φn is an isomorphism in cohomology and X ' BD2n . �
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5.2. Quaternion groups.

Lemma 5.3. Consider the notation in Equation (3) for the cohomology of the dihedral and

quaternion groups. Let X be an space M-comparable to BQ2n, and φ : X → BD2r be a map

such that φ∗(X) = X and φ∗(Y ) = Y . Then φ∗(W ) = 0 or φ∗(W ) = Y 2.

Proof. Recall {X2, Y 2} is a basis of H2(X ). Then there are a, b ∈ F2 such that φ∗(W ) =

aX2 + bY 2. If we apply Sq1 to both sides of the identity we get aX2Y = 0 (notice Y 3 = 0 in

H∗(X )), getting the desired result. �

Theorem 5.4. BQ2n is determined by its M-cohomology.

Proof. Let X be a 2-complete space having the homotopy type of a CW-complex and M-

comparable to BQ2n .

We must consider the cases n = 3 and n 6= 3 separately.

Consider Q8 and its cohomology as in Equations (2) and (3). Let φ2 : X → B(Z/2× Z/2)

be the map classifying the elements X and Y in cohomology. Such a map factorizes through

φ3 : X → Q8 because φ∗2(X
2 + XY + Y 2) = 0, so we have a map φ3 inducing the identity in

H1. Use now Lemma 4.4 to get that it must be an isomorphism in cohomology, so a homotopy

equivalence.

Assume now n ≥ 4 and that X is a F2-complete space M-comparable to BQ2n . Let

φ2 : X → B(Z/2×Z/2) be the map classifying the elements X and Y in cohomology. Consider

the tower of principal fibrations

· · · → BD2k
πk−1→ BD2k−1

πn−2→ · · · π3→ BD8
π2→ B(Z/2× Z/2).

Recall that the map π2 is classified by the class X2 + XY and each πi for i ≥ 3 is classified

by W .

Since φ∗2(X
2 + XY ) = 0, φ2 lifts to φ3 : X → BD8, a map such that φ∗3(X) = X and

φ∗3(Y ) = Y .

Assume now that k ≥ 3 and φk : X → BD2k such that φ∗k(X) = X, φ∗k(Y ) = Y . We see

that φ∗k(W ) = 0 when k < n− 1, which implies that φk lifts to φn−1 : X → BD2n−1 such that

φ∗n−1(X) = X, φ∗n−1(Y ) = Y .

If φ∗k(W ) 6= 0, then φ∗k(W ) = Y 2 Lemma 5.3. This implies φ∗k(Y
2 + W ) = 0 and there

would be a map φ̃k+1 : X → BQ2k+1 which is an isomorphism in cohomology till degree 3.

This implies, by Lemma 2.3, that both X and BQ2k+1 have the same iterated Massey products

involving degree one elements. But by Lemma 4.3, as k + 1 < n there are iterated Massey

products in H∗(X ) which are not defined in H∗(BQ2k+1), getting a contradiction from the

assumption φ∗k(W ) 6= 0.

It remains to see that φn−1 lifts to φn : X → BQ2n , i.e. that φn−1(W ) = Y 2: if φn−1(W ) 6=
Y 2 then φn−1(W ) = 0 by Lemma 2.3, and we would get a map φ̃n : X → D2n . If such a

φ̃n exists, using again by Lemma 2.3, there would exist either a map φ̃n+1 : X → D2n+1 or a

map φ̃′n+1 : X → Q2n+1 , but neither φ̃n+1 nor φ̃′n+1 could exist because in the cohomology of

both targets there are products of type 〈X,X + Y,X, . . . , X + Y 〉 of length 2n which are not

defined in H∗(X ) by Lemma 4.3, getting a contradiction.
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This implies that we have a map φn : X → BQ2n which is the identity in cohomology till

degree 3, and by Lemma 4.4, φ∗n(V ) = V . Then φ∗n is an isomorphism and φn is a homotopy

equivalence. �

Remark 5.5. Observe that iterated Massey products involving elements in degree greater

than one cannot be avoided. Consider, as in [3], X = S3/Q2n ×BS3 where the action of Q2n

is by left multiplication on S3 when one considers Q2n as a discrete subgroup of the Lie group

S3.

X is a 2-good space, and using [3], we have that H∗(X ) ∼= H∗(BQ2n) as F2-algebras.

Moreover, the iterated products of degree one elements are the same: all the information

about the iterated Massey products of elements in degree one can be read in the three first

steps of a minimal projective resolution of F2[Q2n ], and the three steps agree with the minimal

projective resolution of C∗(X ,F2). Finally, these are not homotopy equivalent spaces up to

2 completion because, for example, they have different homotopy groups.

5.3. Semidihedral groups. Consider SD2n a semidihedral group of order 2n and its coho-

mology with the notation in Equations (2) and (3).

Lemma 5.6. Let X be a topological space M-comparable to BSD2n, and φ : X → BD2r

(r ≥ 3) be a map such that φ∗(X) = X and φ∗(Y ) = Y . Then φ∗(W ) = 0 or φ∗(W ) = X2.

Proof. Consider {X2, Y 2} as basis of H2(X ) as F2 vector space. Then there are a and b in F2

such that φ∗(W ) = aX2 + bY 2. If we apply Sq1 to both sides of the identity we get bY 3 = 0,

getting the desired result. �

Theorem 5.7. BSD2n is determined by its M-cohomology.

Proof. Fix X a 2-complete space having the homotopy type of a CW -complex and M-

comparable to BSD2n (n ≥ 4).

Consider φ2 : X → BD4 a map classifying X and Y . As φ∗2(X
2 + XY ) = 0 this map will

factorize with a map φ3 : X → BD8 such that φ1
3 : H1(BD8)→ H1(X ) is the identity.

Assume now that we have a map φk : X → BD2k which induces the identity in H1 and

with k < n− 1. Then, by Lemma 5.6, φ∗k(W ) = X2 or φ∗k(W ) = 0.

In the first case, φ∗k(W +X2) = 0, so there would be a map φ̃k+1 : X → BSD2k+1 which is

the identity in cohomology in degrees one and two. So, by Lemma 2.3, they must have the

same iterated Massey products of degree one elements. But Lemma 4.3 tells that if k+ 1 < n

there are 2n−1th order iterated Massey products which are defined in the cohomology of X ,

but not in H∗(BSD2b+1), and this contradicts Lemma 2.3.

So we are in the second case and we have a map φk+1 : X → BD2k+1 inducing the identity

in H1. This procedure can be done till φn−1 : X → BD2n−1 inducing the identity in H1.

Again, by Lemma 5.6, φ∗n−1(W ) = 0 or φ∗n−1(W ) = X2.

In the first case, we would obtain a map φ̃n : X → BD2n inducing the identity in H1.

By the previous arguments such a map would induce a map either φ̃n+1 : X → BD2n+1 or

φ̃n+1 : X → BSD2n+1 inducing the identity in H1, and this cannot happen because Lemmas

4.2 and 4.3 imply that there are iterated Massey products of degree one elements defined in

H∗(BD2n+1) and H∗(BSD2n+1) which are not defined in H∗(X ).
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So φ∗n−1(W ) = X2 and we have a map φn : X → BSD2n inducing the identity in H1. Now

we use now Lemma 4.5 to see that it must be an isomorphism in cohomology, and therefore

a homotopy equivalence: as φ∗n({U,U + Y 3}) = φ∗n(〈X,X2, Y 〉) ⊂ 〈X,X2, Y 〉 = {U,U + Y 3}
we get that either φ∗n(U) = U or φ∗n(U +Y 3) = U , so U is in the image of φ∗n. Using the same

argument applied to 〈X,X2, X,X2〉 = {V, V +Y U} we get that V is in the image of φ∗n. This

implies that all generators are in the image, and, up to degree 4 all are finite dimensional

vector spaces, so an epimorphism is an isomorphism. �
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