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Abstract

We introduce a size structured pde model for a susceptible and a resistant bacteria
populations that grow as they feed from a resource that is added at a constant rate. Bacteria
populations evolve in the presence of a phage population that is adsorbed by the susceptible
bacteria but also by a bulk population of phage free receptors on cell debris and on infected
cells. Assuming that the individual cell growth is non negative, we compute an age function
that allow us to change variables and to obtain an equivalent system with structure by the
cell age and where the cell volume becomes a state variable. We characterize the steady
states of these models.

1 Introduction
Bacteriophage viruses, also known as bacteriophages or simply phages, where discovered in 1915
by the English bacteriologist Frederick William Twort (1877-1950) and the French-Canadian
microbiologist Félix d’Herelle (1873-1949). In a few words they are bacterial infection agents
that can cause a bacterial population to be infected or to get an illness. The class of phages that
we will regard in this paper are the lytic ones that, contrary to the lisogenic kind, definitively
kill the host cell in a lysis process. We can think of lytic phages as bacteria predators.

One amazing fact is that phages seem to keep an around ten to one relation with bacteria in
all ecosystems, pointing at them as the most abundant biological entities on the planet [8].

After their discovery and until 1940, phage therapy produced satisfactory results in the United
States and other countries when used to control bacterial infections in humans. Later, almost
everywhere phage therapy was abandoned and replaced by antibiotics like penicillin that was used
in large scale during the Second World War. Bacteriophage use and experimentation continued
only in some Europe eastern countries.

As a reference on the history and general information on phages we recommend the work of
S. Matsukazi, et. al. [3], and as a critic point of view of phage therapy the article by B. Levin
and J. Bull [2].

Nowadays, it is a well known fact that bacteria have been evolving by several means like mu-
tations, selection and even the incorporation of external genetic material. A direct consequence
of this evolution is that antibiotics effectiveness do not last forever and some bacterial species
dangerous to human beings become resistant or even immune to specific antibiotics that initially
worked very well. There is an accepted idea that microbes develop ‘resistance to medicine’ and
there are ‘antibiotics generations’. Bacteriophage therapy has been proposed as an alternative to
antibiotics with some important advantages (small doses can suffice and the high phage concen-
trations will be found near the maximum bacterial concentrations, for instance) but with similar
problems (being the outcome of resistant strains the most important one).
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In the following section we explain the biological facts that serve us to design our models.
In §3 we present a cell size structured model with two pde’s that correspond to the bacterial
populations or concentrations, together with three integro differential equations for the bacterial
debris, the available resources and the phage count, this last one with a time delay term. The-
orem (15) in this section states that if we extend the system with a previously computed age
distribution function, which is possible if we assume that the cell growth is always positive, the
resulting system is equivalent to a similar one structured by the cell age. In §4 we characterize
the steady states of the second system of §3. In the last section we present some conclusions and
remarks.

2 Description of the biological process
The lytic phages carry out a Lytic Cycle, that for our purposes is decomposed in the following

steps:

Step 1. Approach. It refers to the way in which the phage and its future host, the bacteria,
come close enough to make contact.

Step 2. Attachment. It is the moment when the phage docks onto a target cell receptor and
remains in such position.

Step 3. Penetration or DNA-RNA absorption. Consists of the injection of the viral dna or
rna to the interior of the bacteria.

Step 4. Replication. It is the process by which the virions1 are assembled inside the prokaryote.

Step 5. Lysis. It refers to the rupture of the cell envelope and liberation of virions to the outside
environment.

It is important to notice that there are various theories regarding the approach and contact
steps. It may be possible that some kind of attraction force of an electrostatic kind is what brings
the virus near their host surface and makes it stay nearby [5]. In this line, the chemical compo-
sition of the surrounding environment and its physical conditions, in particular the temperature,
play a crucial role. In [5] is concluded that “The rate of interaction of several viruses and their
host cells in chemically defined media can be adjusted to any desired value between zero and the
maximum theoretically possible rate, by control of the ionic constitution of the medium alone.”

Another belief regarding the way in which the phage finds a docking point, that is somehow
natural when modeling, is pure chance, i.e. to consider that all virus move freely in the envi-
ronment and occasionally find and touch a receptor. In this sense it is clear that all conditions
that are external to the prokaryotes and the viruses, aside of their respective concentrations, will
impact the speed at which the contact step is completed and so its frequency.

For our purposes it is not very important if the virus is attracted or if it finds its way to the
bacterial cell by chance, nor is if it ‘walks’ over the surface or bounces among many cells. What
is essential is to determine and measure the speed at which the bacteriophages get attached to
receptors in a given medium as a function of the phage and bacteria concentrations.

Once the phage is irreversibly and permanently attached its dna is injected into the bacteria
quickly reaching its cytoplasm.

This dna-rna absorption automatically triggers a radical change in the metabolic functions
of the prokaryote [6], in fact, it ceases to be a bacteria and becomes a virus replication facility,

1Complete and infective virus particles.

2



whose only purpose is to assemble virions using all available resources from the interior of the
cell. Notice that the cell envelope is essentially unaffected in this process even when the cell
stops feeding itself among all other usual metabolic functions. Related to this phenomenon are
the papers by Abedon et. al. [1] and Weld et. al. [9] where it is mentioned that phage infected
bacterial cells do not grow.

The cycle ends with the expulsion of all existent virions to the outside by breaking the cell
envelope. The number of liberated virus particles is known as the “burst size” and it can range
from 1 or 2 up to one hundred, or even more.

Besides all things related with this Lytic Cycle there are many other factors that may impact
the life or death of a bacteria and a phage. For the sake of clarity we consider a phage dead
when it has completely and irreversibly lost its capacity to carry out the Lytic Cycle, i.e. when
it is not capable of entering a cell to get offspring anymore.

Regarding the phages, some of the following things can happen at any time:

• In what we shall call Super Infections, phages can attach themselves to lipopolysaccharide
receptors of an infected bacteria and also inject their genetic information. Nevertheless this
extra dna-rna injection will not increase nor decrease the burst size, the virus is simply lost.

• Lipopolysaccharide attachments followed by expulsion of the dna-rna outside of the virus, can
occur even if the host cell is dead. It doesn’t matter if the prokaryotic cell remains entire or the
cell envelope is broken after the lysis explosion, the lipopolysaccharide molecules can adsorb
phages at any time, as long as the bond of attachment is present on the lipopolysaccharide
protein. These cell envelope fragments together with the membranes from cells that remain
entire, is what we shall refer as “bacterial debris” or simply “debris”. We give this debris a very
important role and impact in our models. In [6] we find arguments that support this great
impact of bacterial debris, even conceiving it as the mechanism for bacteria-phage coexistence.

• Bacteriophages may also attach to inorganic particles [5].

• Viral dna-rna can not penetrate a bacteria by itself in normal conditions, the only possible
way for this to occur is by completing its corresponding step of the Lytic Cycle. So, if occa-
sionally the dna-rna is expelled from the virus to the environment, it will not penetrate a
bacterium in a successful manner.

3 The models
We will regard the bacterial cell size to influence the viral adsorption by assuming that the

phage adsorption speed is proportional to the individual cell envelope surface. We consider
that the phage receptors are uniformly distributed on the cell membrane as if they were part of
building blocks of fixed size.

To begin with, we let U(v, t) to be a bacteria population structured by the individual cell
volume or cell size v that evolves on a time variable t. In fact we can think indistinctively of a
population or a bacterial concentration per volume unit. We will also consider W (v, t) to be the
concentration of “mutant” or resistant bacteria depending on the same variables that U does.

We will suppose that susceptible bacteria will die at a constant rate µ1 > 0 while mutants will
do so at some other constant rate µ2 > 0 and we will assume the existence of a maximum volume
at which cells must divide into two new bacteria of identical size. Normalizing this maximum
volume it will happen that all cells will divide when they reach v = 1 and that the division
will be sharp resulting into two daughter cells of volume v = 1

2 each one of them. In this way
v ∈

[ 1
2 , 1
]
.
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All bacteria will feed from a resource R(t) that promotes cell growth and diminishes accord-
ingly. The resource consumption and cell growth will depend on the actual cell size and existing
resources and will be controlled by a positive function f(v,R(t)). The cell growth will be pro-
portional to the resource consumption with proportion constant γ > 0. The resource R(t) will
be externally increased by a fixed quantity d ≥ 0 by time unit and will decay at a constant rate
λ ≥ 0.

The phage concentration at time t will be given by P (t) and their interaction with all bacteria
will take place according to the mass action law with an adsorption function k1v

2
3 with k1 > 0,

i.e. the number of infections for a phage concentration P (t) and a bacterial density U(v, t) will
be equal to k1v

2
3P (t)U(v, t), thus the specific adsorption rate will be proportional to the number

of membrane phage receptors and so to the cell surface. The number of receptors on the surface
of a cell of the maximum size will be a positive fixed integer r. The constant k1 will represent
the usual adsorption constant for full grown cells of volume v = 1. In the absence of bacteria,
P (t) will decay at a constant rate m ≥ 0.

After a latency period L > 0 the surviving infected cells will lyse and each one will release bv
new virions with b > 0. We suppose that once a cell is infected the growth process is completely
stopped and then the production of virions will result proportional to the available material inside
the bacterium. So, b will stand for the burst size of the infected cells that have the maximum
volume.

Viral adsorption will also take place on receptors of infected and dead cells, we will treat all
these receptors as docking points aside of its origin and thus define D(t) to represent the bulk
concentration of free docking points. The adsorption will occur obeying the mass action law with
constant k2 > 0, i.e. the number of adsorptions for a phage concentration P (t) and free docking
points D(t) will be equal to k2P (t)D(t). The receptors on dead and infected cells will degrade
at a constant rate δ > 0.

It is important to notice that in real situations where r is typically above one hundred, while
k1 is the adsorption constant for a whole cell with r receptors, k2 is the adsorption constant for
one receptor alone, then k2 will be comparable to k1/r but not to k1.

At the start, i.e. t = 0, since we are modeling an ongoing process and we are assuming
that µ1 > 0, then, in the presence of bacterial cells, there must always be some dead cells
too allowing us to consider D(0) = D0 > 0. Also, if d > 0 there will be no chance for the
resources to extinguish completely and we can assume that R(0) = R0 > 0 whenever d > 0 and
R(0) = R0 ≥ 0 if d = 0.

In this way given an initial state U(v, 0) = U0(v) ≥ 0, W (v, 0) = W0(v) ≥ 0 for all v ∈
[ 1

2 , 1
]
,
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P (0) = P0 ≥ 0, D(0) = D0 > 0, R(0) = R0 ≥ 0, it will evolve obeying

Ut(v, t) + γ
∂

∂v
[f(v,R(t))U(v, t)] = −

(
µ1 + k1v

2
3P (t)

)
U(v, t),

Wt(v, t) + γ
∂

∂v
[f(v,R(t))W (v, t)] = −µ2W (v, t),

Ṗ (t) = −
(
m+ k1

∫ 1

1
2

v
2
3U(v, t)dv + k2D(t)

)
P (t)

+ χ[L,∞)(t)k1be
−µLP (t− L)

∫ 1

1
2

v
5
3U(v, t− L)dv,

Ḋ(t) = −(δ + k2P (t))D(t) + µ1r

∫ 1

1
2

v
2
3U(v, t)dv

+ k1P (t)
∫ 1

1
2

v
2
3

(
rv

2
3 − 1

)
U(v, t)dv,

Ṙ(t) = d− λR(t)−
∫ 1

1
2

f(v,R(t)) (U(v, t) +W (v, t)) dv,

(1)

with f
( 1

2 , R(t)
)
U
( 1

2 , t
)

= 2f(1, R(t))U(1, t) and f
( 1

2 , R(t)
)
W
( 1

2 , t
)

= 2f(1, R(t))W (1, t) as
the boundary conditions.

We consider the resource consumption function f = f(x, y) ∈ C1 ([ 1
2 , 1]× [0,∞)

)
, bounded

by some positive constant k > 0 and such that:

1. f(x, y) > 0 if and only if y > 0.

2. fx(x, y) < 0.

3. fy(x, y) > 0.

Assumption 1 implies that the existence of resources leads to cell growth which is impossible
otherwise.

The second assumption is related to an experimentally observed property that points an
inverse relation between the size and the growth speed. The size of cells a few minutes after
partitioning is not very far from the maximum feasible size, so we can assume fast growth for
small cells and slow growth for bigger ones.

The last assumption just represents a direct relation between the amount of available resources
and the growth speed, i.e. there can not be less growth when there are more available resources
for the same bacterial concentration and cell size.

Typically we can think for example of

f(x, y) = k

x

(
y

j + y

)

that, for each fixed x ∈ [ 1
2 , 1], is a Michaelis-Menten function of y bounded by k/x, like the ones

used to describe the rate of enzymatic reactions.
Although system (1) has all components needed to entirely determine the bacterial distri-

butions behavior in time, once defined the resource consumption function and given the initial
state and parameter values, moreover it posses intrinsically sufficient information to compute a
bacterial age distribution function A(v, t), whenever we provide the corresponding initial state
A0(v) = A(v, 0), i.e. the age distribution of the initial concentrations U0(v) and W0(v).
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Figure 1: Computation of the age function A(v, t).

The characteristic curves for (1) on the (v, t) plane will be the solutions of the planar system
determined by the vector field (γf(v,R(t)), 1) for (v, t) ∈

[ 1
2 , 1
]
×[0,∞) that can also be presented

as either of the following ordinary differential equations

dv

dt
= γf(v,R(t)) =: g(v, t) or dt

dv
= 1
γf(v,R(t)) =: h(v, t) (2)

also with (v, t) ∈
[ 1

2 , 1
]
× [0,∞). We notice that h is well defined because f is strictly positive

since R(t) is strictly positive too, as we will show later.
We will denote V (T ; t, v) and T (V ; v, t) the respective solutions to (2) passing through the

point (v, t), where T (V ; v, t) = V −1(T ; t, v), i.e. T and V are the inverse functions of each other.
As shown in figure 1, there is a special solution by

( 1
2 , 0
)
namely

T
(
V ; 1

2 , 0
)

= V −1 (T ; 0, 1
2
)

that divides the domain of (2) into two regions. Above this curve we will find trajectories of (2)
that intersect the line v = 1

2 while below it all solutions will intersect the v-axis. The first of
these intersection points determines the time of birth while the other determines the volume at
time zero. This allow us to define the age distribution function

A(v, t) :=





t− T
( 1

2 ; v, t
)

if T
( 1

2 ; v, t
)
≥ 0,

A0(V (0; t, v)) + t otherwise.
(3)

remembering that A0(v) = A(v, 0) is the age distribution for the initial population U0(v) =
U(v, 0). Because of its biological meaning A0

( 1
2
)

= 0 and A0(v) > 0 for all v > 0.
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Putting together (1) and (3) we can state the following result.

Lemma 3.1. If A0(v1) < A0(v2) for all v1, v2 ∈
[ 1

2 , 1
]
such that v1 < v2 then A(v1, t) < A(v2, t)

for all (v1, t), (v2, t) ∈
[ 1

2 , 1
]
× [0,∞) such that v1 < v2, i.e. if the age distribution function is

strictly increasing at time zero then it will remain strictly increasing for all positive time values.

Proof. By reductio ad absurdum, we suppose that there exist (v1, t), (v2, t) ∈
[ 1

2 , 1
]
× [0,∞) such

that v1 < v2 and A(v1, t) ≥ A(v2, t). This situation leads to three possible cases:

i) T
( 1

2 ; v1, t
)
, T
( 1

2 ; v2, t
)
≥ 0 (both points not below T (V ; 1

2 , 0)),

ii) T
( 1

2 ; v1, t
)
≥ 0 but T

( 1
2 ; v2, t

)
< 0 (one point above or in T (V ; 1

2 , 0) and the other below),
and

iii) T
( 1

2 ; v1, t
)
, T
( 1

2 ; v2, t
)
< 0 (both points below T (V ; 1

2 , 0)).

In case i), from (3) A(v1, t) ≥ A(v2, t) implies that T
( 1

2 ; v1, t
)
≤ T

( 1
2 ; v2, t

)
which means that

these two trajectories of (2) intersect at some point, contrary to the existence and uniqueness
theorem for ordinary differential equations.

In case ii), also from (3), A(v2, t) ≥ t, while A(v1, t) ≤ t, forcing A(v1, t) = A(v2, t), which
again is contrary to the existence and uniqueness theorem for ordinary differential equations.

For the last case, we use the second line of (3) from where A(v1, t) ≥ A(v2, t) will im-
ply A0(V (0; t, v1)) ≥ A0(V (0; t, v2)), since A0 is strictly increasing it will force V (0; t, v1) ≥
V (0; t, v2), which again means that two trajectories of (2) intersect at some point, contrary to
the existence and uniqueness theorem for ordinary differential equations. �

This result points that if A(v, 0) is strictly increasing as a function of v it will remain strictly
increasing and thus invertible as a function of v for all t ≥ 0. This will mean that at any time the
volume of a cell will provide its age and vice versa. There exists a function V (a, t), the inverse
of A(v, t) for a fixed t, such that V (A(v, t), t) = v for every t ≥ 0.

Lemma 3.2. If A′0(v) > 0 for all v ∈
[ 1

2 , 1
]
then Av(v, t) > 0 for all (v, t) ∈

[ 1
2 , 1
]
× [0,∞).

Proof. First let us assume T
( 1

2 ; v, t
)
≥ 0 in (3). Recalling that T (V ; v, t) is the solution of the

right side of (2) passing through (v, t), we take the partial derivative with respect to v of the
whole equation

TV (V ; v, t) = h(V, T (V ; v, t)),

together with the initial condition T (v; v, t) = t, and get

(TV (V ; v, t))v = (Tv(V ; v, t))V = hT (V, T (V ; v, t))Tv(V ; v, t) (4)

and, for the initial condition,

TV (v; v, t) + Tv(v; v, t) = 0
if and only if Tv(v; v, t) = −TV (v; v, t) = −h(v, T (v; v, t)) = h(v, t).

Then, from (3) we have that
Av(v, t) = −Tv

( 1
2 ; v, t

)

and, being Tv the solution of the linear ordinary differential equation (4) with an initial condition
Tv(v; v, t), we can write

Tv(V ; v, t) = −h(v, t)e
∫ V
v
hT (s,T (s))ds

7



and then
Av(v, t) = h(v, t)e

∫ 1
2
v
hT (s,T (s))ds

> 0, (5)

whenever T
( 1

2 ; v, t
)
≥ 0 in (3).

Similarly, for the case when T
( 1

2 ; v, t
)
< 0 in (3), recalling that V (T ; t, v) is the solution of

the left side of (2) passing through (v, t), we take the derivative with respect to v of the whole
equation

VT (T ; t; v) = g(V (T ; t, v), T )

together with the initial condition V (t; t, v) = v, and get

(VT (T ; t, v))v = (Vv(T ; t, v))T = gV (V (T ; t, v), T )Vv(T ; t, v) (6)

and, for the initial condition,
Vv(t; t, v) = 1.

Then, from (3) we have that

Av(v, t) = A′0(V (0; t, v))Vv(0; t, v), (7)

and being Vv the solution of the linear ordinary differential equation (6) with an initial condition
Vv(t; t, v) = 1 we can write

Vv(T ; t, v) = e

∫ T
t
gV (V (s),s)ds

and then
Av(v, t) = A′0(v)e

∫ T
t
gV (V (s),s)ds

> 0, (8)

whenever T
( 1

2 ; v, t
)
< 0 in (3), because A′0(v) > 0 for all v ∈ [ 1

2 , 1] by hypothesis. �

Related to A(v, t) there is another important function that we will call the “age of division”
ad(t) and measures, for each time t, the age value at which bacteria will divide, corresponding
to the moment at which the volume reaches the maximum value equal to 1, i.e. V (ad(t), t) = 1,
or equivalently ad(t) = A(1, t), for all t ≥ 0.

By (3) it will also occur that A
( 1

2 , t
)

= 0 for all t ≥ 0, biologically meaning that just born
cells have age zero. Also, The maximum age of bacteria at time t will be precisely ad(t).

In this way, we may be able to construct a system equivalent to (1) where the cell age replaces
the cell volume as an independent variable. For this purpose we will regard a, the age, and t, the
time, as independent variables and consider the functions S(a, t) to be the susceptible bacterial
concentration and M(a, t) the phage resistant concentration, both of age a at time t, whose
volume distribution function is V (a, t) with P (t) being the free phage concentration, D(t) the
docking points concentration and R(t) the available amount of resources, all three at time t.

If we calculate the total susceptible bacterial concentration of (1) for U(v, t) at a given time
t (recalling A and V are the inverse function of each other at a fixed time) and change variables
we get ∫ 1

1
2

U(v, t)dv =
∫ A(1,t)

A( 1
2 ,t)

U(V (a, t), t)Va(a, t)da =
∫ ad(t)

0
S(a, t)da (9)

which means that for any value t ≥ 0 we must write

S(a, t) = U(V (a, t), t)Va(a, t) = U(V (a, t), t)
Av(V (a, t), t) (10)

8



or
U(v, t) = S(A(v, t), t)Av(v, t) = S(A(v, t), t)

Va(A(v, t), t) . (11)

Based on the same reasoning, for the mutant bacterial concentration we have
∫ ad(t)

0
M(a, t)da =

∫ 1

1
2

W (V (a, t), t)Va(a, t)da, (12)

so we notice that for any t ≥ 0

M(a, t) = W (V (a, t), t)Va(a, t) = W (V (a, t), t)
Av(V (a, t), t) (13)

or
W (v, t) = M(A(v, t), t)Av(v, t) = M(A(v, t), t)

Va(A(v, t), t) . (14)

Theorem 3.3. Let us assume a solution of system (1), together with its initial and boundary con-
ditions and with a given strictly increasing initial age distribution A0(v)2. Then, (S,M, V, P,D,R),
where S and M are defined by (10) and (13), V is the inverse of A (given in (3)) with respect
to a, V0(a) = A−1

0 (a), S0(a) = U0(V0(a))V ′0(a) and M0(a) = W0(V0(a))V ′0(a) is a solution to the
system

St(a, t) + Sa(a, t) = −
(
µ1 + k1V

2
3 (a, t)P (t)

)
S(a, t)

Mt(a, t) +Ma(a, t) = −µ2M(a, t)
Vt(a, t) + Va(a, t) = γf(V (a, t), R(t))

Ṗ = −
(
m+ k1

∫ ad(t)

0
V

2
3 (a, t)S(a, t)da+ k2D(t)

)
P (t)

+ χ[L,∞)(t)k1be
−µ1LP (t− L)

∫ ad(t−L)

0
V

5
3 (a, t− L)S(a, t− L)da,

Ḋ = −(δ + k2P (t))D(t) + µ1r

∫ ad(t)

0
V

2
3 (a, t)S(a, t)da

+ k1P (t)
∫ ad(t)

0
V

2
3 (a, t)

(
rV

2
3 (a, t)− 1

)
S(a, t)da,

Ṙ = d− λR(t)−
∫ ad(t)

0
f(V (a, t), R(t)) (S(a, t) +M(a, t)) da

(15)

with f(v,R(t)) as for (1), γ > 0, λ, d ≥ 0 and

• Initial conditions: S(a, 0) = S0(a), M(a, 0) = M0(a), V (a, 0) = V0(a), P (0) = P0 ≥ 0,
D(0) = D0 > 0 and R(0) = R0 ≥ 0.

2Regarding the fact that the initial volume distribution function is a picture of an ongoing process and that in
the proof of the previous result it is possible to see that Va(A(v, t), t) = 1

Av(v,t) > 0 after all existing cells related
to the initial state have divided, it is natural to assume that older cells have bigger size at the beginning of the
dynamics.

9



• Boundary conditions: V (0, t) = 1
2 , S(0, t) = 2S(ad(t), t)[1−a′d(t)] andM(0, t) = 2M(ad(t), t)[1−

a′d(t)], where ad(t) is such that V (ad(t), t) = 1, holding for all t ≥ 0 which includes the
initial conditions.

Conversely, given a solution of (15), together with its initial and boundary conditions, then
(U,W, V, P,D,R) where U and W are defined by (11) and (14), with A(v, t) being the inverse
function of V (a, t) for a fixed t, is a solution of (1).

Proof. We prove that a solution of (15) solves (1). By the first equation in (15) and (10) we
have

−
(
µ1 + k1V

2
3 (a, t)P (t)

)
U(V (a, t), t)Va(a, t) = −

(
µ1 + k1V

2
3 (a, t)P (t)

)
S(a, t)

= St(a, t) + Sa(a, t).
(16)

Now (10) implies that

St(a, t) = ∂

∂t
[U(V (a, t), t)Va(a, t)]

= [(Uv(V (a, t), t), Ut(V (a, t), t)) · (Vt(a, t), 1)]Va(a, t) + U(V (a, t), t)Vat(a, t)
= [Uv(V (a, t), t)Vt(a, t) + Ut(V (a, t), t))]Va(a, t) + U(V (a, t), t)Vat(a, t)

and also

Sa(a, t) = ∂

∂a
[U(V (a, t), t)Va(a, t)]

= [(Uv(V (a, t), t), Ut(V (a, t), t)) · (Va(a, t), 0)]Va(a, t) + U(V (a, t), t)Vaa(a, t)
= Uv(V (a, t), t)V 2

a (a, t) + U(V (a, t), t)Vaa(a, t).

In short notation we will have that

−
(
µ1 + k1V

2
3P (t)

)
UVa = [UvVt + Ut]Va + UVat + UvV

2
a + UVaa

= [Uv(Vt + Va) + Ut]Va + U
∂

∂a
(Vt + Va).

Moreover, differentiating Vt + Va in (15) we have that

∂

∂a
(Vt(a, t) + Va(a, t)) = γ

∂

∂a
f(V (a, t), R(t)) = γfv(V (a, t), R(t))Va(a, t).

So, considering also that Vt + Va = γf , we have

−
(
µ1 + k1V

2
3P (t)

)
UVa = [Uvγf + Ut]Va + UγfvVa

= Va

[
Ut + γ

∂

∂v
(fU)

]
,

that divided by Va and in full notation can be written as

Ut(V (a, t), t) + γ
∂

∂v
(f(V (a, t), R(t))U(V (a, t), t)) = −

(
µ1 + k1V

2
3P (t)

)
U(V (a, t), t), (17)

which is the first equation of system (1) with v = V (a, t).
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Since this calculation is reversible, we have shown that S(a, t) and V (a, t) are solutions of
(15) if and only if U(v, t) is a solution of (1).

It is possible to reproduce this first step of the proof, i.e. from (16) to (17), to show that
M(a, t) and V (a, t) are solutions of (15) if and only if W (v, t) is a solution of (1), we only need
to replace −

(
µ1 + k1V

2
3P (t)

)
with µ2, U with W and S with M .

The equivalence of the equations for P (t), D(t), and R(t) in both systems is a consequence
of (9) and (12) because we can reduce the equality of the involved integrals to be a particular
case of the following change of variables

∫ 1

1
2

g(v,R(t)) [αU(v, t) + βW (v, t)] dv

=
∫ A(1,t)

A( 1
2 ,t)

g(V (a, t), R(t)) [αU(V (a, t), t) + βW (V (a, t), t)]Va(a, t)da

=
∫ ad(t)

0
g(V (a, t), R(t)) [αU(V (a, t), t)Va(a, t) + βW (V (a, t), t)Va(a, t)] da

=
∫ ad(t)

0
g(V (a, t), R(t)) [αS((a, t) + βM(a, t)] da

(18)

The function A(v, t) is directly calculated as pointed in (3).

For what has to do with the initial conditions, we notice that given U0(v) and V0(a) := A−1
0 (a)

taking t = 0 in (11) and v = V (a, t) we can use (10) to calculate

S0(a) = S(a, 0) = U(V (a, 0), 0)
Av(V (a, 0), 0) = U0(V0(a))V ′0(a).

Conversely, given S0(a) and V0(a), using (11), we can compute

U0(v) = U(v, 0) = S(A(v, 0), 0)
Va(A(v, 0), 0) = S0(V −1

0 (v))
V ′0(V −1

0 (v))

where V −1
0 is the inverse function of V0.

The same P0 = P (0), D0 = D(0) and R0 = R(0) work for both systems.

Regarding the boundary conditions, from (11), f
( 1

2 , R(t)
)
U
( 1

2 , t
)

= 2f(1, R(t))U(1, t) holds
if and only if

f
( 1

2 , R(t)
) S(0, t)
Va(0, t) = 2 S(ad(t), t)

Va(ad(t), t)
f(1, R(t))

if and only if S(0, t) = 2S(ad(t), t)
Va(0, t)

Va(ad(t), t)
f(1, R(t))
f
( 1

2 , R(t)
) .

(19)

On the other hand, V (0, t) = 1
2 is a constant, then Vt(0, t) = 0 and so, from (15),

Va(0, t) = γf(V (0, t), R(t)) = γf
( 1

2 , R(t)
)

and differentiating V (ad(t), t) = 1 with respect to t we have that Va(ad(t), t)a′d(t)+Vt(ad(t), t) = 0
and from the equation for V in (15) we know that Vt = γf − Va allowing us to write

Va(ad(t), t)a′d(t) + γf(V (ad(t), t), R(t))− Va(ad(t), t) = 0

11



if and only if Va(ad(t), t) = γf(V (ad(t), t), R(t))
1− a′d(t)

= γf(1, R(t))
1− a′d(t)

(20)

which means that
S(0, t) = 2S(ad(t), t)[1− a′d(t)].

Replacing U withW and S withM in this last procedure we will prove that f
( 1

2 , R(t)
)
W
( 1

2 , t
)

=
2f(1, R(t))W (1, t) if and only if M(0, t) = 2M(ad(t), t)[1− a′d(t)]. �
Corollary 3.4. For all t,

a′d(t) < 1. (21)
Proof. From (20) we notice that

1− a′d(t) = γf(1, R(t))
Va(ad(t), t)

> 0

from where the result follows. �

4 Equilibria
The global existence, uniqueness and non negativity of solutions of (15) is proved in [7]. For a
wide survey on related topics, we suggest the classical books [10] and [4].

We now look for steady states of system (15) that may occur once the latency period has
expired, this is when t ≥ L. Since this situation implies no changes along time we assume all
time values and all time derivatives to be zero, what causes all the state variables to become
time independent, yielding the following equations

Ṡ(a) = −
(
µ1 + k1PV

2
3 (a)

)
S(a),

Ṁ(a) = −µ2M(a),
V̇ (a) = γf(V (a), R),

0 = −
(
m+ k1

∫ ad

0
V

2
3 (a)S(a)da+ k2D

)
P

+ k1be
−µ1LP

∫ ad

0
V

5
3 (a)S(a)da,

0 = −(δ + k2P )D + µ1r

∫ ad

0
V

2
3 (a)S(a)da

+ k1P

∫ ad

0
V

2
3 (a)

(
rV

2
3 (a)− 1

)
S(a)da,

0 = d− λR−
∫ ad

0
f(V (a), R) (S(a) +M(a)) da,

(22)

where all parameter values are given as for (15), ad, D and R are positive unknown constants,
P is a non negative fixed unknown value and the boundary conditions, being time independent
are now simple restrictions for the functions S,M, V expressed by

S(0) = 2S(ad),
M(0) = 2M(ad),
V (0) = 1

2 ,

V (ad) = 1.

(23)

12



We now focus on the third equation of (22) and for a given fixed R, we define fR(x) = γf(x,R)
together with

FR(x) =
∫ x

1
2

ds

fR(s) , (24)

a primitive of 1
fR(x) . In this way we have that the solution of this third equation of (22) is

V (a) = VR(a) = F−1
R (a), (25)

setting the stationary volume distribution whenever R is determined.
From (25), the age of division ad defined as the solution of V (ad) = 1 will be given by

ad = ad(R) = FR(1). (26)

To follow, in order to determine R, we will obtain general solutions by integration of the
separated variables for the first two equations of (22) that setup four different scenarios that we
will analyze separately in order to find some new unknown values when it is required.

From the second equation of (22) we have that

M(a) = M0e
−µ2a (27)

and, according to (23) the boundary condition M0 = 2M(ad) must hold, implying that M0 =
2M0e

−µ2ad . So, either

M(a) = M0 = 0, for all a ∈ [0, ad], or
(
M0 > 0 and ad = ln 2

µ2

)
, (28)

setting up a scenario “M”, in case M0 = 0, and scenario “M”, in case M0 > 0. In the latter M0
is the new unknown that allows to find M(a) using equation (27).

Similarly, from the first equation of (22) we can write

S(a) = S0e
−µ1a−k1P

∫ a
0
V

2
3 (s)ds (29)

and apply the boundary condition to obtain either

S(a) = 0, for all a ∈ [0, ad], or
(
S0 > 0 and ad =

ln 2− k1P
∫ ad

0 V
2
3 (s)ds

µ1

)
, (30)

where we obtain scenario “S”, in case S0 = 0, and scenario “S”, in case S0 > 0. In the second,
S0 is the new incognita that allow us to compute S(a) using (29).

So all possible outcomes are determined by the mixed scenarios MS, MS, MS and MS.

In scenario MS, S0 = S(a) = M0 = M(a) = 0, so there are no susceptible nor resistant
bacteria and system (22) becomes almost trivial taking the form

V̇ (a) = γf(V (a), R),
0 = − (m+ k2D)P,
0 = −(δ + k2P )D,
0 = d− λR,

(31)

with V0 = 1
2 . In such case we have a steady state for the volume function determined by (25)

for a resource level R = d
λ together with P = 0 and D = 0, i.e. no phages nor debris, because

13



the other alternative, i.e. (P,D) = (−δ/k2,−m/k2), has no biological meaning. We relate this
equilibrium to state #1 in Theorem 4.1.

In scenario MS there are no susceptible bacteria but the resistant bacteria concentration is
assumed to be positive, i.e. S0 = S(a) = 0 and M0 > 0, so (22) is reduced to

Ṁ(a) = −µ2M(a)
V̇ (a) = γf(V (a), R)

0 = − (m+ k2D)P,
0 = −(δ + k2P )D,

0 = d− λR−
∫ ad

0
f(V (a), R)M(a)da

(32)

with M0 = 2M(ad), and V (0) = 1
2 . In this case, as before, P = D = 0, because the other

alternative is not biologically feasible. In the other hand, from (28) and (26),

ad = ln 2
µ2

=
∫ 1

1
2

ds

fR(s) = FR(1) (33)

is a function of R (see figure 2) such that:

• FR(1) −−−−→
R→0+

∞, because f(x, 0) = 0 for all x,

• it is monotone decreasing, because the partial derivative of f with respect to the second
variable is positive, i.e. fy(x, y) > 0, and so

• FR(1) −−−−→
R→∞

ζ1, for some ζ1 > 0, because FR(1) is lower bounded as a consequence of the
existence of some k > 0 such that f(x, y) < k (see the characterization of f(x, y) just after
system (1)).

In this situation, (33) will determine a unique value of R whenever

ζ1 := lim
R→∞

FR(1) < ln 2
µ2

. (34)

Assuming (34) to hold and provided a fixed value for R, considering (27) and the last equation
of (32) we notice that we can determine a positive density of just born resistant cells

M0 = d− λR∫ ad

0
e−µ2af(V (a), R)da

, only when R <
d

λ
. (35)

Instead of (34) we can guarantee the existence of the steady state (see figure 2) when

ln 2
µ2

> F( dλ )(1) = ζ? :=
∫ 1

1
2

ds

γf(s, d/λ) , i. e., when 2e−µ2ζ
?

> 1. (36)

We will recall this equilibrium as state #2 in Theorem 4.1.

In scenario MS we have the susceptible and resistant bacteria concentrations both positive,
i.e. S0 > 0 andM0 > 0, thus (22) can not be reduced. Under these circumstances we can proceed
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  d
λ

ζ1

R0

FR(1)=ad (R)

ζ2

R*

ln2

µ2

Figure 2: The age of division as a function R. R∗ stands for the actual steady state value.

as in scenario MS up to (33) and assume it to hold and provide us a fixed value for R so that
we can compute V (a) and ad based on (25) and (26), respectively.

At this point we have determined V (a) (thus ad) and R and we notice that (28) and (30)
imply that

ad = ln 2
µ2

=
ln 2− k1P

∫ ad
0 V

2
3 (s)ds

µ1
, forcing µ1 ≤ µ2, (37)

and determining

P = ln 2(µ2 − µ1)

k1µ2
∫ ad

0
[
F−1
R (s)

] 2
3 ds

= ad(µ2 − µ1)

k1
∫ ad

0
[
F−1
R (s)

] 2
3 ds

= µ2 − µ1

k̄1
, (38)

where

k̄1 =
k1
∫ ad

0
[
F−1
R (s)

] 2
3 ds

ad
(39)

is the average of the adsorption capacity (cell surface times adsorption constant) taken over all
possible normalized cell sizes between one half and one.

To continue let us define

I (p/q) :=
∫ ad

0
V
p
q (a)e−µ1a−k1P

∫ a
0
V

2
3 (s)ds

da

and I? :=
∫ ad

0
V

2
3 (a)

(
rV

2
3 (a)− 1

)
e
−µ1a−k1P

∫ a
0
V

2
3 ds

da

(40)
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allowing us to abbreviate
∫ ad

0
V
p
q (a)S(a)da = S0I(p/q)

and
∫ ad

0
V

2
3 (a)

(
rV

2
3 (a)− 1

)
S(a)da = S0I

?.

Profiting from this notation and being P determined, in order to obtain S0 and D, we
simultaneously solve the fourth and fifth equations of (22) that are rewritten as

k1S0
[
be−µ1LI (5/3)− I (2/3)

]
−m− k2D = 0,

−(δ + k2P )D + S0 [µ1rI (2/3) + k1PI
?] = 0,

(41)

setting

D = m (µ1rI (2/3) + k1PI
?)

k1(δ + k2P ) [be−µ1LI (5/3)− I (2/3)]− k2 (µ1rI (2/3) + k1PI?)
and (42)

S0 = m(δ + k2P )
k1(δ + k2P ) [be−µ1LI (5/3)− I (2/3)]− k2 (µ1rI (2/3) + k1PI?)

, (43)

whenever m > 0 and the common denominator is positive.
Actually we have that

S0 = D
δ + k2P

µ1rI (2/3) + k1PI?
. (44)

We notice that the common denominator of (42) and (43) is positive whenever the subtracting
terms are less than the positive terms, i.e. when

b > eµ1L
(k1δ + k2µ1r)I (2/3) + k1k2rPI (4/3)

k1(δ + k2P )I (5/3) , (45)

making S0 and D both positive.
With the density of just born cells S0 known and positive we can obtain S(a) from (29) and

compute, similarly to (35), a positive density of just born resistant cells

M0 =
d− λR−

∫ ad

0
f(V (a), R)S(a)da

∫ ad

0
e−µ2af(V (a), R)da

,

whenever R <
1
λ

(
d−

∫ ad

0
f(V (a), R)S(a)da

)
.

(46)

This equilibrium, for P > 0, will correspond to state #4 in Theorem 4.1.
Before going further, it is mandatory to point that if the mortality rates of susceptible and

resistant bacteria happen to coincide, we will write µ = µ1 = µ2 and enter a new ‘sub-scenario’
where P = 0 and (22) reduces to

Ṡ(a) = −µS(a),
Ṁ(a) = −µM(a),
V̇ (a) = γf(V (a), R),

0 = −δD + µr

∫ ad

0
V

2
3 (a)S(a)da

0 = d− λR−
∫ ad

0
f(V (a), R) (S(a) +M(a)) da,

(47)
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where we can also proceed as in scenario MS up to (34) and assume it to hold and provide us a
fixed value for R by which we can compute V (a) and ad based on (25) and (26), respectively.

From the second and third equations in (47) we have that

S(a) = S0e
−µa and M(a) = M0e

−µa. (48)

We remain to determine the values of S0,M0 and D from the last two equations of (47) which
naturally present one degree of freedom. From the fourth line in (47)

D = µrS0I (2/3)
δ

(49)

and from the last equation in (47)

S0 +M0 = d− λR∫ ad

0
e−µaf(V (a), R)da

=: B whenever d

λ
> R, (50)

establishing a linear relation between S0 and M0.
In this case, (49) points that D is computed directly from S0, though (50) determines an

equilibria continuum, i.e. the susceptible and resistant bacterial concentrations can keep any
arbitrary positive ratio as long as the sum of the just born cells equals the fraction in (50). This
locus is geometrically represented by the open segment that joins the point (0, B) with (B, 0) in
the M0S0-plane.

This case will be referred as state C in Theorem 4.1.

For the last scenario, namely MS, M0 = 0 and S0 > 0, so (22) becomes

Ṡ(a) = −
(
µ1 + k1PV

2
3 (a)

)
S(a),

V̇ (a) = γf(V (a), R),

0 = −
(
m+ k1

∫ ad

0
V

2
3 (a)S(a)da+ k2D

)
P

+ k1be
−µ1LP

∫ ad

0
V

5
3 (a)S(a)da,

0 = −(δ + k2P )D + µ1r

∫ ad

0
V

2
3 (a)S(a)da

+ k1P

∫ ad

0
V

2
3 (a)

(
rV

2
3 (a)− 1

)
S(a)da,

0 = d− λR−
∫ ad

0
f(V (a), R)S(a)da,

(51)

and, similarly to (33) but in this occasion from the right hand side of (30), we will have that

ad = 1
µ1

(
ln 2− k1P

∫ ad

0
V

2
3 (s)ds

)

= 1
µ1

(
ln 2− k1P

∫ FR(1)

0

[
F−1
R (s)

] 2
3 ds

)
=
∫ 1

1
2

ds

fR(s) = FR(1)

determining, in terms of R,
P = ln 2− µ1FR(1)

k1
∫ FR(1)

0
[
F−1
R (s)

] 2
3 ds

, (52)

17



that will be non negative for all R ≥ R? > 0, where R? is such that FR?(1) = ln 2
µ1

, because
FR(1) is strictly decreasing with respect to R. In fact, P itself is a monotone increasing function
of R, for all R ≥ R?, because in (52) the denominator decreases (since by a change of variable,
∫ FR(1)

0
[
F−1
R (s)

] 2
3 ds =

∫ 1
1
2

V
2
3

fR(V )dV ) while the numerator increases with respect to R.
Since the case P = 0 has already been characterized and it will appear in Theorem 4.1 as

state #3 we shall assume P > 0 and thus R > R?.
We can write S(a) in terms of S0 by means of (29) and from the third and fourth equations

in (51) and recalling (40) we find non negative values

D =S0 (k1PI
? + µ1rI(2/3))
δ + k2P

,

S0 = m(δ + k2P )
k1k2P (be−µ1LI(5/3)− rI(4/3)) + δk1be−µ1LI(5/3)− (δk1 + k2µ1r)I(2/3)

(53)

whenever
(k1k2P + δk1)be−µ1LI(5/3) > k1k2PrI(4/3) + (δk1 + k2µ1r)I(2/3) (54)

From the last equation in (51), the unknown positive value of R will be the solution of the
equation

λR = H(R) := d− S0

∫ FR(1)

0
e

−µ1a−
(ln 2−µ1FR(1))

∫ a
0

[F−1
R

(s)]
2
3 ds∫ FR(1)

0
[F−1
R

(s)]
2
3 ds

f(F−1
R (a), R)da. (55)

with d
λ > R > R?. This last condition is needed to guarantee P,R > 0.

The existence of a value of R satisfying (55) can be concluded easily from the continuity of
H(R) (see figure 3), which is guaranteed if (54) holds for allR ∈

[
R?, dλ

]
, wheneverH(R?) > λR?.

Under such assumptions, since H(R) is upper bounded by d there is no other chance for its graph
that to intersect the line λR that happens to reach the value d precisely when R = d

λ .
To assure that (54) holds for all R ∈

[
R?, dλ

]
, we will look for a burst size b big enough to

simultaneously verify

be−µ1LI(5/3) > rI(4/3) and be−µ1LI(5/3) >
(

1 + k2µ1r

δk1

)
I(2/3) (56)

aside from the implicitly involved value of R.
We notice that for arbitrary values R,α, β > 0 and h1 > h2 > 0, we have that

αI(h1)− βI(h2) =
∫ FR(1)

0
e
−µ1a−k1P

∫ a
0

[F−1(s)]
2
3 ds (

α[F−1(a)]h1 − β[F−1(a)]h2
)
da

=
∫ FR(1)

0
e
−µ1a−k1P

∫ a
0

[F−1(s)]
2
3 ds[F−1(a)]h2

(
α[F−1(a)]h1−h2 − β

)
da

will be positive if α[F−1(a)]h1−h2 > β. Then [F−1(a)]h1−h2 >
( 1

2
)h1−h2 , for all R (and a > 0).

So,
α

2h1−h2 > β imply αI(h1) > βI(h2). (57)

Applying (57) to (56) we obtain

b > eµ1L max
{

2 1
3 r, 2

(
1 + k2µ1r

δk1

)}
(58)
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Figure 3: Existence of the steady state.

as a restriction for the existence of the steady state.
This restriction is not optimal in the sense that the steady state may exist under more relaxed

conditions. What have presented for this scenario is only an existence argument not related to
uniqueness nor to the necessary conditions for its existence.

This case is presented as state #5 in Theorem 4.1.

The calculations made in this subsection have proved the following result.
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Theorem 4.1. System (15) has from one up to five steady states whenever the conditions on the
set of non negative parameters hold according to the following table. In the special case µ1 = µ2
the states 2 and 3 are the start and end points of the equilibria continuum state “C”.

# State Conditions on the parameters

1 S0 = M0 = P = D = 0, R = d/λ none

2 S0 = P = D = 0,

R such that
∫ 1

1
2

ds
γf(s,R) = ln 2

µ2
,

M0 = d−λR∫ ad
0

e−µ2af(V (s),R)ds

2e−µ2ζ
?

> 1

3 M0 = P = 0,

R such that
∫ 1

1
2

ds
γf(s,R) = ln 2

µ1
,

S0 = d−λR∫ ad
0

e−µ1af(V (s),R)ds
, D = µ1rS0I(2/3)

δ

2e−µ1ζ
?

> 1

4 R such that
∫ 1

1
2

ds
γf(s,R) = ln 2

µ2
,

P = ln 2(µ2−µ1)
k1µ2

∫ ad
0

V
2
3 (s)ds

,

S0 = m(δ+k2P )
k1(δ+k2P )Q−k2(µ1rI(2/3)+k1PI?) ,

D = S0
µ1rI(2/3)+k1PI

?

δ+k2P
,

M0 =
d−λR−

∫ ad
0

f(V (a),R)S(a)da∫ ad
0

e−µ2af(V (a),R)da

µ1 < µ2, 2e−µ2ζ
?

> 1,

b > eµ1L (k1δ+k2µ1r)I(2/3)+k1k2rPI(4/3)
k1(δ+k2P )I(5/3) ,

d−
∫ ad

0
f(V (a),R)S(a)da

λ > R

5 M0 = 0,

R such that λR = H(R),

with P = ln 2− µ1FR(1)

k1
∫ FR(1)

0
[
F−1
R (s)

] 2
3 ds

,

D and S0 given by (53)

2e−µ1ζ
?

> 1,

b > eµ1L max
{

2 1
3 r, 2

(
1 + k2µ1r

δk1

)}
,

H(R?) > λR?

C P = 0, R such that
∫ 1

1
2

ds
γf(s,R) = ln 2

µ ,

S0 +M0 = d−λR∫ ad
0

e−µaf(V (a),R)da
,

S0,M0 > 0, D = S0
µrI(2/3)

δ

µ = µ1 = µ2, 2e−µζ? > 1

Notation and remarks (to Theorem 4.1).

• State #5 may not be unique and may exist under more relaxed conditions on the parame-
ters.

• In all cases, or for all states, the age structured volume distribution function is determined
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as pointed by (24) and (25), i.e.

V (a) = VR(a) = F−1
R (a) with FR(x) =

∫ x

1
2

ds

fR(s) and fR(x) = γf(x,R),

thus setting the age of division ad = FR(1) in concordance with (26), and the susceptible
and resistant bacterial concentrations, S(a),M(a), are computed from its just born cell
concentrations, S0,M0 respectively, by means of (29) and (27), i.e.

S(a) = S(0)e−µ1a−k1P
∫ a

0 [F−1
R

(s)] 2
3 ds and M(a) = M0e

−µ2a.

• We abbreviate ∫ ad

0
V
p
q (a)S(a)da = S0I(p/q),

∫ ad

0
V

2
3 (a)

(
rV

2
3 (a)− 1

)
S(a)da = S0I

?,

and we define
Q := be−µ1LI(5/3)− I(2/3),

ζ? :=
∫ 1

1
2

ds

γf(s, d/λ) ,

H(R) := d− S0

∫ FR(1)

0
e

−µ1a−
(ln 2−µ1FR(1))

∫ a
0

[F−1
R

(s)]
2
3 ds∫ FR(1)

0
[F−1
R

(s)]
2
3 ds

f(F−1
R (a), R)da.

• It is important to notice that, except for state #1, the conditions on the set of parameters
can not be written without referring to the state variables because all calculations depend
on the amount of available resources in equilibrium R that is implicitly determined by
the resource consumption function f(x, y) or even in a more complicated way in state #5.
Also, since the state variables are fixed values computed based on the parameters and the
resource consumption function f , we use the formers to abbreviate the conditions on the
rightmost column.

Regarding Theorem 4.1, if we denote Ii the set of instances of system (15) that comply with
restrictions for state i, we can easily see that I1 is the set of all possible instances and that
I1 ) I2 ) I4 and I1 ) I3 ) I4, I5 with I4 ∩ I5 6= ∅ 6= I2 ∩ I3, i.e.

• All instances present the trivial steady state # 1 with no bacteria and no phages at all.

• Some instances will have both phage free steady states # 2 (only mutants) and #3 (only
susceptible cells).

• In a similar way some instances will have both steady states # 4 (coexistence of susceptible
and resistant bacteria in the presence of phages) and #5 (coexistence of susceptible bacteria
and phages with no resistant cells).

• The instances possessing state # 4 will have also steady states # 2 and #3.

• The instances possessing state # 5 will have also the steady state # 3.

Any instance of system (15) possessing the special state C, that represents the very particular
case µ1 = µ2, is excluded from I4 ∪ I5, i.e. if the mortality rates of resistant and susceptible
bacteria are equal there can not be phages at all.
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5 Conclusions
By means of Theorem 3.3 we have transformed system (1), that consists on two pdes, plus def-
inition (3) and plus three scalar integro differential equations, into (15) that happens to have
gained one more pde. The main advantage of this transformation is that the resulting charac-
teristic curves for all three functions S,A, V in (15) are simple straight lines of slope 1, making
easier some calculations but mainly the numerical simulation algorithms. The corresponding
disadvantage is that we must deal with a shifting boundary condition ad(t) that is determined
by the evolution of the system.

All instances of system (15), thus of system (1), will have a trivial steady state that lacks
phages, susceptible and resistant bacteria.

When the bacterial basic reproduction number of either susceptible or resistant bacteria,
that is computed from the resource consumption function f , the proportion constant γ > 0,
the resource input speed d, the resource degradation ratio λ and the bacterial mortality rate
according to (36), is greater than one, the systems will have other equilibria. This condition (36)
by itself guarantees the existence of steady states with no phage presence but with susceptible
or resistant bacteria alone.

More restrictive conditions, involving the viral reproduction efficiency, allow the coexistence
in equilibrium of susceptible and resistant bacteria together with phages whenever the mortality
rate of susceptible bacteria is less than the corresponding for resistant cells.

If the phage pressure does not revert the susceptible bacteria competitive advantage µ1 < µ2
(i.e. the natural death rate of resistant bacteria is bigger), then a susceptible bacteria and phages
coexistence steady state will exist.

In the very special case when the mortality rate of susceptible and resistant bacteria are
equal there will be a degenerate continuum of steady states that allow any given proportion of
susceptible and resistant bacteria without phages.
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