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Abstract

We look at procedures for making a collective choice through
approval-preferential voting. A new procedure of this kind is pro-
posed that is in the spirit of Condorcet’s last ideas on elections, namely
making sure that a good choice is made rather than aiming at the
best choice but not being so sure about it.

Le mieux est le mortal ennemi du bien
(Montesquieu, 1720/1755)

1 The problem: How to make a collective choice by means of
approval-preferential voting?

Approval-preferential ballots give two kinds of information. On the one hand,
the voter can approve or disapprove options by themselves; on the other
hand, he can also express preferences between pairs of options. Naturally,
both kinds of information are required to be consistent with each other.

1.1 The Swiss procedure

An interesting example of approval-preferential voting is provided by
multiple-choice referenda as they are conducted in the Swiss Confederation
and its cantons. More specifically, approval-preferential voting arises in two
cases: (a) popular initiatives, in which case the government can put forward
a counter-proposal; and (b) the so-called ‘constructive’ referenda —in use in
only a few cantons— where a proposal from the government can be followed
by one or more counter-proposals from groups of voters. In these cases, the
voters are asked two sets of questions. The main set is about every proposal
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by itself to see whether the voter approves it or not. For a proposal to be
adopted it must be approved by a majority of voters. In the event of more
than one proposal being approved by a majority, a choice is made on the
basis of the answers to the second set of questions, where the voter is asked
to express his preferences between the different proposals.

In the more frequent case of two proposals, the second part reduces to a
single question, namely which of the two proposals is preferred to the other.
This information determines which option is chosen when both proposals
satisfy the condition of being approved by a majority. This procedure was
put forward in 1976 by Christoph Haab [20], and was adopted at the federal
level in 1987 (see [24, p. 165]).

This procedure is quite reasonable. However, it may well happen that only
one proposal is approved by a majority but at the same time a majority of
the voters prefer the collectively disapproved one (sic). Imagine, for instance,
that the votes are as follows:

25 : a | b , 35 : b>a | , 40 : | b>a , (1)

where the numbers mean quantities of voters, x>y means that x is preferred
to y , and a bar indicates that the options at its left are approved and those at
its right are disapproved. One easily checks that proposal a is approved by a
majority of 60%, whereas b is disapproved by a majority of 65%. Therefore,
the specified procedure results in proposal a being carried through.

However, one can also check that a majority of 75% expressed that they
prefer b to a , which conflicts with the decision that has been adopted.
The situation is very much that of a Condorcet cycle [31, ch. 9]. In fact,
in the present context, approving a proposal amounts to preferring it to the
status quo, i.e. leaving things as they are. From now on, we will denote such
a default option by 0. So in the preceding example there are three options
—a, b, 0— and the collective preferences form a cycle, namely a> 0>b>a.
Quite interestingly, such cycles are not just an academic possibility, but they
have occurred in practice, as in the referendum that was held on the 28th
November 2004 in the canton of Bern [3].

In the following we will refer to this procedure as the Swiss Procedure.

In the constructive referenda one can have more than two proposals be-
sides the status quo. In this case, it could happen that three (or more) of the
proposals were approved by a majority but the collective preferences about
them formed a Condorcet cycle. In the cantons of Bern and Nidwalden such
situations are regulated by applying first the Copeland rule [31, p. 206–209]
restricted to the set of approved options, and then, if necessary, some tie-
breaking rule ([2, Art. 139.7], [27, Art. 44.3]).
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1.2 The ranking approach: rank all options, including the default
one, then choose

Another interesting real case of approval-preferential voting is the voting
procedure used by the Debian Project [16] (see also [32]). Since 1998, the
votes of this organization systematically include a default option usually
described as “further discussion” or “none of the above”. In this connection,
it is explicitly stated that “Options which the voters rank above the default
option are options they find acceptable. Options ranked below the default
options are options they find unacceptable” [16, v 1.1, §A.6].

The procedure for making a choice is described in [16, Appendix A] and
is sometimes called Schwartz Sequential Dropping . According to [29], it is
closely related to making use of another procedure that actually ranks all the
options and then choosing the top-ranked one.

This ranking procedure, that we call the method of Path Scores, will be
dealt with in detail in Section 2. For the moment, it will suffice to say that
it complies with the Condorcet principle, i.e. it ranks first the Condorcet
winner whenever it exists. Recall that a Condorcet winner means an option
that beats every other in the sense that a majority of voters prefers the former
to the latter [26].

Instead of the method of path scores, one can consider any other ranking
method, such as the Borda count, the method of Condorcet-Kemény-Young ,
or the method of Ranked Pairs. As a general reference for these and other
methods, we refer the reader to [31].

The last two mentioned methods comply also with the Condorcet princi-
ple, as the method of path scores. For three options, all of them amount to
resolving any Condorcet cycle by dropping the weakest, i.e. less supported,
of the three majoritarian views in conflict. In the case of example (1), this
means dropping the view of approving a , which leads to adopting the default
option 0.

So these methods allow strongly supported preferences to overturn the
approval information, which seems reasonable enough.

1.3 Should a small preference differential prevail over a large ap-
proval differential?

However, we might be giving too much importance to preferences. Con-
sider, for instance, the following example (from [9, eq. (109)]):

1/2 + ε : a>b | , 1/2− ε : b | a , (2)

where the numbers of voters are normalized to add up to one and ε is a
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small positive quantity (for instance, 2ε could correspond to a single voter
and the total number of voters could be one million and one). As one can see,
both a and b are approved —i.e. preferred to 0— by a majority of voters;
besides, a is preferred to b also by a majority. So a is a Condorcet winner,
and therefore it will be chosen by the above Condorcet-compliant methods.
However, the majorities in favour of a are quite slight, whereas b is approved
by a whole unanimity. So, we are allowing a tiny preference differential to
overcome a huge approval differential.

As one can easily check, the Swiss procedure also chooses a .

Examples like this suggest that one should perhaps completely forget
about preferences and take into account only the approval information. How-
ever, it still seems that there should be a reasonable way to take into account
the preferential information in order to make a better choice.

For later reference, the Approval Choice procedure will mean simply
throwing away the preferential information and choosing the most approved
option. More precisely, since later on we will allow for votes where some op-
tions are neither approved nor disapproved, we understand that the approval
choice procedure chooses the option that maximizes the number of approvals
minus the number of disapprovals, as it is advocated in [19].

1.4 Condorcet’s last ideas

The point that we are leading to was formulated by Condorcet in the
following way ([11, §XIII, p. 307], [25, p. 177–178], emphasis is ours):

It is generally more important to be sure of electing men who
are worthy of holding office than to have a small probability of
electing the worthiest man.

The latest works of Condorcet on voting and elections, from 1788 to his death
in 1794, are indeed dominated by this idea and by the aim of being able to
deal with a large number of candidates, in which case paired comparisons
become rather cumbersome [14, 25].

Concerning the meaning of ‘being sure’ and ‘probability’ in the above
quotation, in another place Condorcet says simply the following ([10, §XIII,
p. 193], [25, p. 139]):

We consider a proposition asserted by 15 people, say, more prob-
able than its contradictory asserted by only 10.

In the same spirit as example (2), he gives the following one ([14, p. 34–35],
[25, p. 241]):

5 : a>c>... | ..., 4 : b>c>... | ..., (3)
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where he assumes a large number of candidates and, although he does not
use approval bars, he explicitly says that all voters consider c worthy of the
place. So the Condorcet winner a is considered the worthiest candidate by
a slight majority, but c is considered worthy by unanimity. By the way, this
and other examples show that Condorcet was accepting the possibility of
making a choice different from the Condorcet winner.

1.5 Condorcet’s practical methods

The methods that Condorcet proposed in connection with the preceding
ideas are often referred to as Condorcet’s “practical” methods. In general
terms, his proposals are essentially two. In both of them, the voter is required
to produce an ordered list of approved candidates. Unlike proper approval
voting, however, the length of this list is fixed: “It should not be too short, to
give a good chance that one of the candidates will obtain a majority, [...] nor
should it be too long, [so that] the voters can still complete the list without
having to nominate candidates they consider unworthy” ([10, p. 203], [25,
p. 143]).

In his first practical proposal, formulated in 1788 [10, Article 5, p. 193–
211] (translated in [25, p. 141–147]), Condorcet chooses the most approved
candidate, conditioned to having obtained a majority, and the preferential
information is used only in the event of ties. If no candidate has a majority
of approvals, then he simply proposes to run a secod round after having
asked the voters to extend their lists with a certain number of additional
candidates. So this proposal was very much in the spirit of approval voting.

In his second and final practical proposal, formulated in 1789 [11] and
yet in 1793 [12], Condorcet makes a more substantial use of the preferential
information ([14, p. 41–42], [25, p. 249–250]): “If one candidate has the ab-
solute majority of first votes, he will be elected. If one candidate has the
absolute majority of first votes and second votes together, he will be elected.
If several candidates obtain this majority, the one with the most votes will
be preferred. If one candidate has the absolute majority of the three votes
together, he will be elected, and if several candidates obtain this majority,
the one with the most votes will be preferred.”

Except for superficial variations, this idea spread and/or was rediscovered
several times. Shortly after Condorcet’s proposal, it was adopted in Geneva,
where it was analyzed in 1794 by Simon Lhuilier [23]. Later on, in the
beginning of the twentieth century it was adopted by several American in-
stitutions, starting from the city of Grand Junction (Colorado, USA), where
this method was introduced by James W. Bucklin (see [21, § 278] and [31,
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p. 203–206]). Another example of its use are ballroom dancing competitions,
where this idea is used since 1947/48 under the name of Skating System in
order to combine the rankings given by the adjudicators [15]. More recently,
it was proposed again by Murat R. Sertel in 1986 under the name of Majori-
tarian Compromise (see [28]). On account of its origins, we will refer to this
procedure as the Condorcet-Bucklin method (credit to Condorcet is already
acknowledged in [21, p. 490]).

The last two of the implementations that we mentioned in the preced-
ing paragraph are not, properly speaking, about approval-preferential voting,
since they assume that every voter ranks all the options and no default op-
tion is considered. By the way, in this case the Condorcet-Bucklin procedure
amounts to use as main comparison criterion the median rank of each can-
didate, i.e. the median value of the ranks assigned to him by the different
voters, and to choose the candidate that has the lowest median rank and
that is ranked in this position or better by the largest number of voters.

The Condorcet-Bucklin procedure is clearly aimed at making sure that
the chosen option is approved by a majority. To this effect, it is essential that
every vote be confined to options that the voter really approves of. Therefore,
the voter should be allowed to rank as few options as he wishes, which will
easily come up in practice anyway. Of course, it may happen that no option
is approved by a majority, in which case it would be appropriate to choose
the default option or to declare a void choice.

If the votes contain any preferential information below approval, then
the Condorcet-Bucklin procedure is bound to leave this information out of
consideration.

As one can easily check, in the case of example (1), this procedure chooses
the most approved option, namely a (which is the only one that is approved
by a majority). In contrast, in example (2) it does not choose the unani-
mously approved option b , but option a , which is approved only by a slight
majority.

1.6 Approval-preferential procedures in parliamentary elections

A real example where truncated rankings are used and where they can be
interpreted as ordered lists of approved options are the elections to the Leg-
islative Assemblies of Queensland and New South Wales (Australia), where
every constituency elects a single representative on the basis of the (possi-
bly) truncated rankings that are expressed by the electors [18]. Long ago,
starting from 1892 in Queensland, the choice was made according to the so-
called Contingent Vote system, that amounts to a instant runoff between
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the two candidates that obtained the most first-choice votes. At present,
starting from 1980 in New South Wales, the choice is made by means of the
Alternative Vote system [31, p.193–195].

As it is well-known, a major flaw of these systems is their lack of mono-
tonicity [31, p.194].

1.7 Taking into account the preferences between non-approved
options

The methods of the preceding sections 1.5 and 1.6 do not take into account
the preferences that a voter could have between his non-approved options.
This is unfair towards the voters who do not approve at all the chosen option
and would rather prefer some other non-approved option.

In order to take into account all preferences one could certainly use the
methods of Section 1.2 after having introduced a default option. By the way,
one could include among them the Condorcet-Bucklin method for complete
rankings (which in the case of (1) chooses neither a nor 0, but b !). However,
as we argued in Sections 1.3 and 1.4, this approach is too preference-oriented.
Instead, one should give some sort of priority to the approval information.

The existing proposals in this direction are essentially some more elabo-
rated versions of the Swiss procedure that we presented in Section 1.1.

One of them is the Preference Approval Voting procedure that was put
forward in 2009 by Steven Brams and Remzi Sanver [4]. When more than two
options are approved by a majority, this procedure restricts the attention to
these options and the preferential information about them is used to single
out, if possible, their Condorcet winner; if this is not possible, then other
rules are applied that make further use of the approval scores.

A simpler possibility is the Approval Voting with a Runoff , considered in
2010 by Remzi Sanver [28]. Here, the preferences are used only to compare
between the two most approved options.

Anyway, in the case of (2) both these procedures keep choosing a , like the
Swiss procedure, against the point made in Section 1.5 that an overwhelming
approval for an option should prevail over a slightly majoritarian preference
for another.

1.8 Upper semicontinuity

In this section we consider the effect of small variations in the profile,
i.e. the amount of voters who sustain each opinion. In real votes and elections
the amounts of voters are certainly discrete quantities. However, when the
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total number of voters is very large, the corresponding relative amounts admit
of really small variations, so that it becomes reasonable to consider that the
profile can change in a continuous way.

Let us consider such a continuous change and let us assume that this
leads to our choice switching suddenly from a certain option x to another
one y . We postulate that this should entail that at the boundary one has
a tie between x and y (and possibly some other option). More generally,
the dependence of the choice set on the profile should have the following
property: for every fixed profile ū , if u is another profile close enough to
ū then the choice set for u is contained in that for ū . In the established
terminology about set functions [22], we are requiring the choice set to be an
upper semicontinuous function of the profile.

This property is easily violated by the methods that successively apply
different criteria. For instance, in the case of example (2) both the Swiss
procedure and the Condorcet-Bucklin one choose a for ε > 0 and b for
ε ≤ 0. In order to get {a, b} for ε = 0 one can consider modifying these rules
by replacing proper majority requirements by weak majority ones (greater
than or equal to 50%). This achieves the desired result in the particular case
of (2), but the problem persists in other examples. Consider, for instance,
the following one:

2 + ε : a>e>b>c>d, 2− ε : b>c>a>d>e,

1 : a>b>c>d>e, 1 : b>d>c>a>e, 2 : c>d>a>b>e.
(4)

One can check that the Condorcet-Bucklin procedure chooses a for small
positive ε and b for negative ε ; at the boundary ε = 0 it chooses a or b
depending on whether proper majority or weak majority is considered, but
neither of both variants chooses {a, b} .

1.9 Dealing with ties and with incomplete information

In practice, voters often do not have an opinion on some options. Besides,
they may also rank equally some that they know. In order to properly deal
with such possibilities, one must begin by distinguishing between them when
interpreting the ballots.

For instance, the Debian voting rules state that “Unranked options are
considered to be ranked equally with one another” [16, §A.6.1]. However,
this is really questionable. In Condorcet’s words, “When someone votes for
one particular candidate, he simply asserts that he considers that candidate
better than the others, and makes no assertion whatsoever about the respec-
tive merits of these other candidates. His judgement is therefore incomplete”
([10, p. 194], [25, p. 139]).
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A vote where two options x and y are really ranked equally with each
other can be assimilated to half a vote where x is preferred to y together
with half another vote with the reverse preference. In contrast, a vote that
expresses neither a preference nor a tie between x and y should contribute
neither to the number of voters who prefer x to y nor to the number of those
who prefer y to x .

In this connection, it is quite standard to take the view that “Ranked
options are considered preferred to all unranked options” [16, §A.6.1]. How-
ever, in some contexts it could be more appropriate to interpret that no
comparison is made between a ranked option and an unranked one.

One should also be aware that not approving an option is not the same
as really disapproving it.

On account of all these considerations, it is certainly desirable that the
ballots be designed so as to make as clear as possible what does the voter
really mean. Besides, it is most important to clearly specify how will the
ballots be interpreted.

Once the information has been properly interpreted and collected, the
problem remains of how should one deal with it. In fact, many existing
methods assume that complete information is given, and quite often it is not
clear at all how should they be extended to the general incomplete case.

1.10 A new proposal

As we will see, the Revised Approval Choice procedure that is proposed in
this paper satisfactorily solves most of the preceding issues. More specifically,
it has the following properties:

• It deals with the general case of possibly incomplete information.

• It takes into account the preferences between non-approved options.

• It is monotonic with respect to an option being raised in the votes.

• Its set of choices is an upper semicontinuous function of the profile.

And, most outstandingly:

• It fulfils in a precise sense the idea of making sure that a good choice
is made rather than aiming at the best choice but not being so sure
about it.

The revised approval choice procedure is based upon the path scores, a
collection of numbers that can also be used for collectively ranking all the
options. Even so, however, the revised approval choice need not be the same
as the top-ranked option.
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2 Ranking all the options

2.1 We are dealing with a finite set of options A . For the moment, our
goal will be to rank all of these options, without any special consideration
for a possible default option.

We will be based upon the numbers of voters who expressed a preference
for x over y , where x and y vary over all ordered pairs of different options.
These numbers will be denoted by Vxy . Instead of them, most of the time we
will be dealing with the fractions vxy = Vxy/V , where V denotes the total
number of votes. We will refer to Vxy and vxy respectively as the absolute
and relative preference scores associated with the ordered pair xy, and
the whole collection of these scores will be called the (absolute or relative)
Llull matrix of the vote.

Notice that v is a continuous function of the profile u that we were
considering in Section 1.8. Therefore, the upper semicontinuity of a set of
choices as a function of u reduces to the analogous property as a function
of v .

The preference scores are bound to satisfy the inequality vxy + vyx ≤ 1.
The equality sign corresponds to the case where the preferential information
about x and y is complete.

2.2 We think of the relative preference score vxy as a degree of collective
belief in the proposition

pxy : x is preferable to y . (5)

We take the view that pxy can be identified with pyx (see the discussion in
[7, §3]). We assume also that preferences are transitive, that is

pxy ∧ pyz → pxz, for any pairwise different x, y, z ∈ A . (6)

Such an implication provides a flow of belief from the premises to the conclu-
sion. More specifically, we adhere to the classical principle that the conclusion
can be believed at least in the same degree as the minimum of the premises,
i.e. in the degree min(vxy, vyz). If vxz is larger than this number, nothing
changes. But if vxz is smaller than it, then we can take that minimum as a
revised degree of belief in the proposition pxz .

By proceeding in this way along all implications of the form (6), and
by iterating this procedure, one eventually reaches —in a finite number of
steps— an invariant system of values (v∗xy) that can be viewed as revised
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degrees of belief in pxy , or revised preference scores. We call them path
scores since they are given by the formula

v∗xy = Max min
(
vx0x1 , vx1x2 , . . . , vxm−1xm

)
, (7)

where the Max operator considers all paths x0x1 . . . xm of length m ≥ 1
from x0 = x to xm = y with all xi pairwise different. There is a standard way
to compute them, namely the Floyd-Warshall algorithm [13, §25.2], whose
computing time grows only as N3 , where N stands for the number of options.

2.3 Being a revised degree of belief, the path score v∗xy measures how strong
is the evidence, either direct or indirect, in favour of pxy . Analogously, v∗yx
measures the evidence in favour of pyx, i.e. against pxy . In contrast to the
original preference scores, here one can have v∗xy+v∗yx > 1, which corresponds
to the case where there is evidence both in favour of pxy and against it.
Anyway, it makes sense to accept pxy whenever the balance is in its favour,
i.e. whenever v∗xy > v∗yx . Besides, the larger the margin v∗xy − v∗yx , the more
convinced can be this decision of accepting pxy . The main idea can be
compared to that of the adversarial system of justice.

As a result of this methodology, it turns out that these decisions are
guaranteed to be always in agreement with the transitivity implications (6)
(unlike the analogous decisions associated with the original scores):

Theorem 2.1 (Schulze, 1998). If v∗xy > v∗yx and v∗yz > v∗zy then v∗xz > v∗zx .

This fundamental fact was pointed out in 1998 by Markus Schulze, who gave
a proof of it in a mailing list about election methods. The proof can be found
also in [29, 30, 6].

If one has v∗xy 6= v∗yx for any x and y , this procedure determines a total
ordering of all the options. Generally speaking, however, the binary relation
formed by the pairs xy such that v∗xy > v∗yx is only a partial order. If two
options x and y satisfy v∗xy = v∗yx , then both xy and yx are excluded from
this relation, and x and y should be ranked equally. Therefore, in order to
rank all the options one is led to consider the non-strict inequality v∗xy ≥ v∗yx
and the binary relation formed by the pairs xy that satisfy it. However, this
latter relation need not be transitive, which calls for considering its transitive
closure in order to properly rank all the options. From now on we will refer
to this transitive closure as the ranking relation, and we will denote it by
the symbol � . So, x � y if and only if there exists a path x0x1 . . . xm from
x0 = x to xm = y such that v∗xixi+1

≥ v∗xi+1xi
for all i < m.
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Having obtained a whole ranking, if a choice is required it is quite natural
to go for the top-ranked options, that is, those options x that satisfy x � y
for any y 6= x . In the following we will refer to them as top-ranked choices,
and the set that contains all of them will be denoted by T .

The next statement characterizes the set of top-ranked choices directly in
terms of the relation defined by the inequality v∗xy > v∗yx. In this connection,
we will use the following terminology: A set X of options is a dominant
set for v∗ if and only if it is not empty and it satisfies

v∗xy > v∗yx, for all x ∈ X and y 6∈ X . (8)

Besides, X is a minimal dominant set for v∗ if and only if it is a dominant
set for v∗ and no proper subset of X has this property.

Theorem 2.2. The set T of top-ranked choices is the only minimal domi-
nant set.

Proof. Let us begin by checking that property (8) holds for X = T . To this
effect, it suffices to show that having x ∈ T and the opposite inequality
v∗yx ≥ v∗xy for some y implies y ∈ T . In fact, this opposite inequality entails
that y � x, whereas x ∈ T means that x � z for all z 6= x. By transitivity,
it follows that y � z for all z 6= y, which means that y ∈ T.

In order to complete the proof, it suffices to show that any dominant set
X contains the whole of T . In other words, the existence of x ∈ X and
y ∈ T \X implies some violation of (8). In fact, the assumption that y ∈ T
entails y � x . This means that there exists a path y0y1 . . . ym from y0 = y
to ym = x such that v∗yiyi+1

≥ v∗yi+1yi
for all i < m . Since y 6∈ X and x ∈ X,

there exists some i such that yi 6∈ X and yi+1 ∈ X . For this i the preceding
inequality is a violation of (8).

Corollary 2.3. An option x is the only top-ranked choice if and only if it
satisfies v∗xy > v∗yx for all y 6= x.

If a Condorcet winner exists, then it is the only top-ranked choice. For this
and other results we refer to [29, 30, 31, 6, 8]. In particular, in [6, 8] it was
shown that this ranking method can be extended to a rating procedure that
allows to sense how close are options to each other.

2.4 The top-ranked choices are well behaved in connection with upper semi-
continuity:
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Proposition 2.4. The set of top-ranked choices is an upper semicontinuous
function of the preference scores.

Proof. Let T (v) denote the set of top-ranked choices as a function of the Llull
matrix v . For every x ∈ A we will denote by Σ(x) the set of Llull matrices
for which x is a top-ranked choice. In order to show that T is upper semi-
continuous it suffices to show that Σ(x) is closed for any x ∈ A [22, §7.1.4].
Let us assume that Σ(x) 3 vn → v. We want to see that v ∈ Σ(x), that
is, x �v y for any y 6= x (where the subindex indicates which Llull ma-
trix are we talking about). We know that x �vn y . This means that for
every n there exists a path x0x1 . . . xm from x0 = x to xm = y such that
(vn)∗xixi+1

≥ (vn)∗xi+1xi
for all i . The path in question may depend on n .

However, since the possible paths from x to y are finite in number, we can
assume —by extracting a subsequence— that we are dealing with the same
path for all n . Now, since the path scores are continuous functions of the
original preference scores, the preceding non-strict inequalities remain true
in the limit n→∞ , which ensures that x �v y as we wanted to show.

2.5 Let us consider now the issue of monotonicity. More specifically, we
assume that a particular option a is raised to a more preferred status in the
ballots without any change in the preferences about the other options. This
results in the preference scores vxy being modified into new values ṽxy such
that

ṽay ≥ vay, ṽxa ≤ vxa, ṽxy = vxy, ∀x, y 6= a. (9)

One would expect that if a is a top-ranked choice for v then it is also a
top-ranked choice for ṽ. This is true when a is the only top-ranked choice.
In fact, according to Proposition 2.3, this amounts to say that v∗ay > v∗ya for
any y 6= a , and [6, Theorem 12.1] ensures that these inequalities continue
to hold for ṽ. However, if a is not the only top-ranked choice for v then it
may cease to be top-ranked for ṽ . An example of this phenomenon is given
in § 4.4.

2.6 Remark. Instead of the top-ranked choices, i.e. the minimal dominant
set of v∗ , one could consider its so-called minimal undominated set, also
known as Schwartz set, or other choice sets that are introduced in the lit-
erature (see for instance [17, 1]). In particular, it would be interesting to
know whether any of them enjoys both properties of upper semicontinuity
and monotonicity.
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2.7 In the next section we will make use of the two following facts about
the path scores. The first one follows easily from formula (7) and the second
one is an immediate consequence of the first.

Lemma 2.5. v∗xz ≥ min (v∗xy, v
∗
yz) for any pairwise different x, y, z .

Lemma 2.6. If v∗yz > v∗xz , then v∗xz ≥ v∗xy . If v∗xy > v∗xz , then v∗xz ≥ v∗yz .

3 Making a good choice. The revised approval choice

3.1 In this section our goal is to make sure that the option that we choose
is preferable to another one that has been previously fixed as default option.

One can certainly think of the default option as the one that will be
adopted if none of the others is considered preferable to it. Alternatively, one
can simply identify it with the bar that we have been using in the Introduction
to mark the boundary between approved and disapproved options in the
ballots. In the following we will denote the default option by 0.

Anyway, we will adopt the view that an option x being preferred to the
default option is equivalent to x being approved; and similarly, the default
option being preferred to x is equivalent to x being disapproved. Con-
sequently, the preference scores of the form vx0 and v0x can be identified
respectively with the approval and disapproval scores.

Now, in the case of approval-preferential voting one can improve upon
this information by means of the path scores v∗x0 and v∗0x. In fact, these
numbers can be viewed as revised approval and disapproval scores that take
into account the preference scores between non-default options.

As we said in Section 2.3, it makes sense to accept px0 , i.e. to approve x,
whenever the difference v∗x0− v∗0x is positive. Besides, the larger this margin,
the more convinced will be this decision. Therefore, it makes sense to choose
an option x that maximizes this margin, i.e. that satisfies

v∗x0 − v∗0x ≥ v∗y0 − v∗0y, for any y ∈ A \ {x}. (10)

In the following we will refer to such an option as a revised approval
choice, and the set formed by all of them will be denoted by C(v).

Although v∗xy is defined only for x 6= y , in the expression v∗x0 − v∗0x we
will allow for x = 0, in which case we define this expression to be equal to
zero. So 0 will be included in C(v) if and only if v∗x0− v∗0x ≤ 0 for all x ∈ A.
In this case, the options contained in C(v) are not properly approved, but
they belong to the boundary between approval and disapproval.
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3.2 In [9, §7] we considered a slightly different approach, where the transi-
tivity clauses (6) were cut down to only those with y = 0. Besides that, we
were using also a different notation: instead of px0 and p0x we were writing
respectively gx and gx, and instead of vxy we were writing v(pxy), v(gx) or
v(gy) depending on the case. Anyway, it turns out that the values that are
obtained for v∗x0 and v∗0x are exactly the same in both approaches:

Proposition 3.1. The values of v∗x0 and v∗0x do not change when the tran-
sitivity implications (6) are reduced to only those that involve 0.

Proof. It suffices to check that formulas (106) and (107) of [9] coincide
with the present formula (7) when these changes of notation are taken into
account.

This fact allows to transfer here the following monotonicity result:

Theorem 3.2 (Camps, Mora and Saumell, 2014 [9, Thm. 7.1]). If x is a
revised approval choice and some votes are modified by raising x to a better
position (with no other change) then x remains a revised approval choice.

The next result is concerned with the dependence of the revised approval
choices on the preference scores.

Theorem 3.3. The set of revised approval choices is an upper semicontin-
uous function of the preference scores.

Proof. Let Ω(x) denote the set of Llull matrices for which x is a revised
approval choice. In order to show that C is upper semicontinuous, it suffices
to show that Ω(x) is closed for any x ∈ A [22, §7.1.4]. This is easily checked
by considering the inequalities (vn)∗x0−(vn)∗0x ≥ (vn)∗y0−(vn)∗0y and using the
fact that the path scores are continuous functions of the original preference
scores.

Remark. It is not difficult to show also that for any x ∈ C(v) there exists
a sequence vn → v with vn 6= v such that x ∈ C(vn) for all n . In other
words, the set Ω(x) contains no isolated points. Together with the preceding
theorem, this allows to write the following equality, where B(v, r) stands for
the ball or radius r centered at v :

C(v) =
⋂

r>0

⋃

w∈B(v,r)\{v}
C(w). (11)
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Like in standard approval voting, and in contrast to plurality voting, the
revised approval choice has a good behaviour when adding or deleting similar
options.

The concept of similar options is suitably modelled by considering a set
C ⊂ A\{0} of non-default options such that, for every voter and each y 6∈ C,
therefore including y = 0, the preference of that voter between an x ∈ C
and that y is the same for all x ∈ C . Such a set C is often called a set of
clones .

In plurality voting, replacing a single option x by a set of clones C that
includes x , may easily change the choice from x to some option outside C .
In contrast, in approval voting all members of C will get exactly the same
approval and disapproval scores, so x ∈ C being an approval choice implies
that any other element of C is also an approval choice. The following result
establishes exactly the same property for the revised approval choice.

Theorem 3.4. If C ⊂ A \ {0} is a set of clones and x ∈ C is a revised
approval choice, then any other element of C is also a revised approval choice.

Proof. It suffices to check that the values of v∗x0 and v∗0x are the same for all
x ∈ C. This is guaranteed by the proofs of [6, Lem. 11.2] and [6, Prop. 11.3],
which remain valid in the general, possibly incomplete, case.

Remark. Notice that the revised approval choice is insensitive to the pref-
erences of the voters between the members of C . Even if one of them is
unanimously preferred to any other, all of them get exactly the same revised
scores v∗x0 and v∗0x.

By the way, this suggests that the case of multiple revised approval choices
could be dealt with by means of some tie-breaking rule that takes into ac-
count the existing preferences between these options. However, it is not clear
whether this can be done without losing the properties of monotonicity or
upper semicontinuity (see §1.8, 2.5, 2.6).

3.3 Finally, we will see that the revised approval choice fulfils, in a certain
sense, Condorcet’s idea of making sure that a good choice is made rather
than aiming at the best choice but not being so sure about it.

Let us assume that x is a revised approval choice and y is not. This
does not exclude the possibility of having v∗yx > v∗xy, which corresponds to
considering y preferable to x . In particular, this will be the case whenever
x is not a top-ranked choice. However, for proper revised approval choices,
i.e. satisfying the strict inequality v∗x0 − v∗0x > 0, the next theorem ensures
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that the confidence that x is preferable to the default option is greater than
the confidence that y is preferable to x .

Theorem 3.5. If v∗x0− v∗0x > 0 and v∗x0− v∗0x > v∗y0− v∗0y , then v∗x0− v∗0x >
v∗yx − v∗xy .

Proof. We will argue by contradiction. More specifically, we will arrive at
contradiction from the following inequalities

v∗x0 > v∗0x, (12)

v∗x0 + v∗0y > v∗0x + v∗y0, (13)

v∗0x + v∗yx ≥ v∗x0 + v∗xy, (14)

where (13) and (14) are equivalent respectively to the first inequality of the
hypothesis and to the negation of the conclusion. We will distinguish two
cases: (a) v∗x0 ≥ v∗yx ; (b) v∗yx > v∗x0 .

Case (a). Here we are assuming that

v∗x0 ≥ v∗yx. (15)

This implies that min(v∗yx, v
∗
x0) = v∗yx . Therefore, by Lemma 2.5,

v∗y0 ≥ v∗yx. (16)

Now, by concatenating (13), (16) and (14), we get

v∗x0 + v∗0y > v∗0x + v∗y0 ≥ v∗0x + v∗yx ≥ v∗x0 + v∗xy. (17)

Therefore,
v∗0y > v∗xy, (18)

and, by Lemma 2.6,
v∗xy ≥ v∗x0. (19)

Finally, by concatenating (15), (14) and (19), we get

v∗0x + v∗x0 ≥ v∗0x + v∗yx ≥ v∗x0 + v∗xy ≥ 2v∗x0, (20)

that is v∗0x ≥ v∗x0 , in contradiction with (12).

Case (b). Here we are assuming that

v∗yx > v∗x0. (21)

This implies that min(v∗yx, v
∗
x0) = v∗x0 . Therefore, by Lemma 2.5,

v∗y0 ≥ v∗x0. (22)
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Now, by concatenating (13) and (22), we get

v∗x0 + v∗0y > v∗0x + v∗y0 ≥ v∗0x + v∗x0. (23)

Therefore,
v∗0y > v∗0x, (24)

and, by Lemma 2.6,
v∗0x ≥ v∗yx. (25)

However, by combining this inequality with (21) we get a contradiction
with (12).

4 Examples

Let us finish by looking at some illustrative examples.

4.1 Let us start by example (1). As we have been saying, a proposal x
being approved amounts to its being preferred to the default option 0. By
taking this into account, the ballots (1) result in the absolute preference
scores and margins that are shown below in (26). Since we are interested
only in pairs xy with x 6= y , we use the diagonal cells for specifying the
simultaneous labelling of rows and columns by the existing options; so the
cell located in row x and column y gives information about the preference
of x over y .

(Vxy) =

a 25 60

75 b 35

40 65 0

, (Vxy−Vyx) =

a -50 20

50 b -30

-20 30 0

. (26)

The numbers Vx0 and Vx0 − V0x that appear in the last columns of these
matrices are nothing else than the approval scores and the corresponding
margins. According to their values, the approval choice is a .

In order to work out the revised approval choice as well as the top-ranked
one, we must compute the path scores and their corresponding margins.
Having only three options, this is easily done by hand. For instance, V ∗ab =
max (Vab,min(Va0, V0b)) = max (25,min(60, 65)) = 60. By proceeding in this
way for all pairs of options, we get

(V ∗xy) =

a 60 60

75 b 60

65 65 0

, (V ∗xy−V ∗yx) =

a -15 -5

15 b -5

5 5 0

. (27)
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As one can see, these path scores result in their margins being positive only
in the lower triangle. So, we get the ranking is 0 � b � a, with the default
option 0 at the top. In accordance with the convention that was made at
the end of § 3.1, the revised approval choice is also 0.

4.2 Let us look now at the Bern 2004 referendum mentioned in § 1.1. The
data, taken from [3, Table 1], are as follows, where a, b, 0 stand respectively
for the amendment of the parliament, the people’s amendment, and the status
quo:

(Vxy)=

a 101 586 109 812

106 863 b 104 144

102 796 106 832 0

, (Vxy−Vyx)=

a -5 277 7 016

5 277 b -2 688

-7 016 2 688 0

. (28)

The total number of voters was 225 758, which is larger than any of the
numbers Vxy + Vyx . This is due to the fact that some voters did not answer
all the questions. Anyway, the approval choice is again a . Besides, it is the
only proposal that is approved by a majority, which entails that it is also the
choice of the Swiss procedure.

In this case, the path scores and their margins are as follows:

(V ∗xy)=

a 106 832 109 812

106 863 b 106 863

106 832 106 832 0

, (V ∗xy−V ∗yx)=

a -31 2 980

31 b 31

-2 980 -31 0

. (29)

According to the signs of these margins, we get the ranking b � a � 0. The
top-ranked option is therefore b . However, the revised approval choice is a ,
which realises the maximum value for the revised margin over 0, namely
2 980. In agreement with Theorem 3.5, this revised margin for a being pre-
ferred to the default option is greater than the one for b being preferred to
a, which is equal to 31.

4.3 Next we give an example where the revised approval choice is neither
the approval choice nor the top-ranked one. In this example we assume
that the votes have the form of truncated rankings. Specifically, they are as
follows:

9 : a>b>c>d>0 , 1 : b>a>c>d>0 ,

1 : d>0 , 5 : a>d>0>b>c , 9 : c .
(30)

Like in Debian elections (see §1.9), we will interpret that any unranked
option is less preferred than any ranked one. However, we will not infer
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anything about the preference between two unranked options. By applying
these rules, we get the absolute preference scores and margins that are shown
next.

(Vxy)=

a 14 15 15 15

1 b 15 10 10

9 9 c 19 19

1 6 6 d 16

1 6 6 0 0

, (Vxy−Vyx)=

a 13 6 14 14

-13 b 6 4 4

-6 -6 c 13 13

-14 -4 -13 d 16

-14 -4 -13 -16 0

. (31)

By looking at the preference scores, we see that Vax > V/2 = 25/2 for
every x 6= a . So a is a Condorcet winner. However, by inspecting the
margins we see that the approval choice is d, since this option realises the
maximum value of the margin over 0, namely 16.

In order to work out the revised approval choice(s) and the top-ranked
one(s), we compute the path scores (using the Floyd-Warshall algorithm
mentioned in §2.2) and their corresponding margins. The resulting values
are as follows:

(V ∗xy)=

a 14 15 15 15

9 b 15 15 15

9 9 c 19 19

6 6 6 d 16

6 6 6 6 0

, (V ∗xy−V ∗yx)=

a 5 6 9 9

-5 b 6 9 9

-6 -6 c 13 13

-9 -9 -13 d 10

-9 -9 -13 -10 0

. (32)

The only top-ranked choice is a (by Corollary 2.3), which we already
knew since the method of path scores is guaranteed to choose the Condorcet
winner whenever it exists. However, the revised approval choice is c , which
realises the maximum value for the revised margin over 0, namely 13.

Again these results agree with Theorem 3.5 in that the revised margin for
c being preferred to the default option is greater than the one for a being
preferred to c, which is equal to 6 (and similarly for b or d instead of a).

4.4 Finally, we give an example (already referred to in [6, §12]) that exhibits
a lack of monotonicity of the property of being a top-ranked option. Consider,
for instance, the following votes:

1 : a>d>b>e>c, 1 : b>a>c>e>d, 1 : b>c>a>d>e,

1 : b>c>d>e>a, 1 : b>e>c>a>d, 1 : d>a>b>c>e,

2 : e>a>c>d>b, 1 : e>c>a>d>b, 1 : b>d>c>a>e,

(33)
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The resulting preference scores and path scores together and their corre-
sponding margins are as follows:

(Vxy)=

a 5 5 7 5

5 b 7 5 7

5 3 c 7 5

3 5 3 d 5

5 3 5 5 e

, (Vxy−Vyx)=

a 0 0 4 0

0 b 4 0 4

0 -4 c 4 0

-4 0 -4 d 0

0 -4 0 0 e

, (34)

(V ∗xy)=

a 5 5 7 5

5 b 7 7 7

5 5 c 7 5

5 5 5 d 5

5 5 5 5 e

, (V ∗xy−V ∗yx)=

a 0 0 2 0

0 b 2 2 2

0 -2 c 2 0

-2 -2 -2 d 0

0 -2 0 0 e

. (35)

As one can see, there are quite a few pairs xy such that v∗xy = v∗yx . As
a consequence, it turns out that the ranking relation � that we defined in
§ 2.3 is a whole tie. The set of top-ranked choices is therefore the whole of A.

Assume now that the last ballot in (33) is modified by replacing b > d
by d > b. The monotonicity property would require d to continue being
a top-ranked option. However, it is not so. In fact, one gets the ranking
a>b>c>d>e, where the only top-ranked choice is a .
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