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A realistic and mechanistic model
for the population interaction of bacteria

and their bacteriophage viruses
À. Calsina1 ,2, J.J. Rivaud1,3

Abstract
After an analysis of some actual models for bacteria-phage interaction we present a new

differential equations system where the susceptible cell population is physiologically struc-
tured by the number of viral receptors on which an attach-detach mechanism is regarded.
The interaction takes place in a limited resources environment, modeled via the logistic
equation, and in company of a phage resistant bacterial strain. In a first formulation we
consider finite attach and detach rates over bacterial phage receptors. A second and simpler
model is obtained when neglecting viral detachments. Both formulations are first presented
in a discrete manner and converted to their corresponding continuous fashions.

1 Introduction
Bacteriophage viruses, frequently referred as phages, where discovered in 1915 by the English
bacteriologist Frederick William Twort (1877-1950) and the French-Canadian microbiologist Félix
d’Herelle (1873-1949).

As in [7] the class of phages that we will regard in this paper are the lytic ones that, contrary
to the lisogenic kind, definitively kill the host cell at the end of their replication process. We can
think of lytic phages as bacteria predators.

As a reference on the history and general information on phages we recommend the work of
S. Matsukazi, et. al. [13], and as a critic point of view of phage therapy the article by B. Levin
and J. Bull [12].

In the following section we explain the biological aspects of bacteria-phage interaction that
must be regarded in any model for such dynamics. In §3 we recall and discuss some actual math-
ematical models related to this paper in three subsections. The first deals with the asumption of
an average mass action law adsorption constant for susceptible cells, while the next subsection
focuses the attention on physiologically structured bacterial populations. In the last subsection
of §3 we discuss models where the viral attach-detach mechanism is included. In §4 we briefly
explain some key modeling considerations. Section 5 is where we explain the main assumptions
in our approach. In §6 and §7 we present our models in a discrete and in a continuos version,
respectively. In §8 we include some concluding remarks.

2 Description of the biological process
The phages we study carry out a Lytic Cycle, that for our purposes in this paper will be decom-
posed in the following steps:
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Step 1. Approach. It refers to the way in which the phage and its future host, the bacteria,
come close enough to make contact.

Step 2. Contact or adsorption. The moment when the virus touches the bacterial surface
and remains close to it.

Step 3. Attachment. It is the moment when the phage docks onto a target cell receptor. We
may refer to this step also as “phage adsorption”.

Step 4. Penetration or DNA-RNA absorption. Consists of the injection of the viral dna or
rna to the interior of the bacteria.

Step 5. Replication. It is the process by which the virions1 are assembled inside the prokaryote.

Step 6. Lysis. It refers to the rupture of the cell envelope and liberation of virions to the outside
environment.

It is important to notice that there are various theories regarding the approach and contact
steps. It may be possible that some kind of attraction force of an electrostatic kind is what brings
the virus near their host surface and makes it stay nearby [17]. In this line, the chemical compo-
sition of the surrounding environment and its physical conditions, in particular the temperature,
play a crucial role. In [17] is concluded that “The rate of interaction of several viruses and their
host cells in chemically defined media can be adjusted to any desired value between zero and the
maximum theoretically possible rate, by control of the ionic constitution of the medium alone.”

Regarding the contact step, it is also believed that after approaching its target, phages remain
on the surface performing a “random walk” until the receptor where to bind is found [15].

Another belief regarding the way in which the phage finds a docking point, that is somehow
natural when modeling, is pure chance, i.e. to consider that all virus move freely in the environ-
ment and occasionally find and touch a receptor [20]. In this sense it is clear that all conditions
that are external to the prokaryotes and the viruses, aside of their respective concentrations, will
impact the speed at which the contact step is completed and so its frequency.

For our purposes it is not very important if the virus is attracted or if it finds its way to the
bacterial cell by chance, nor is if it ‘walks’ over the surface or bounces among many cells. What
is essential is to determine and measure the speed at which the bacteriophages get attached to
receptors in a given medium as a function of the phage and bacteria concentrations as we will
discuss later on.

The attachment step presents an issue of great relevance and decisive importance in choosing
the modeling approach. What happens when a virus binds to a receptor, in our case a particular
bond of a lipopolysaccharide molecule located on the cell surface, is that the process can end
in an irreversible binding, yielding to penetration, or it can be reversible, liberating the phage
from the lipopolysaccharide protein back to the environment [9]. Although it is possible that the
environmental circumstances allow to suppose that all phage attachments result irreversible, and
so the penetration is a direct consequence of the attachment, in other words: adsorption implies
dna-rna absorption. In this work we study both possible attachment mechanisms2.

In order to grasp this attach detach phenomenon we can think of a typical key-lock opening
operation [15] or equivalently from a consequence point of view, we can imagine that the virus
travels through a small but long tube going forward and backwards randomly before getting

1Complete and infective virus particles.
2In [17] it is mentioned that it is also possible that the bacterial cell have receptors of the ‘second kind’, i.e.

receptors that hold the virus while they really are not channels for the dna-rna absorption. In this work such
possibility is not considered.

2



irreversibly attached. The probabilities for a forward and backward movement are not necessarily
equal.

Once the phage is irreversibly attached its dna is injected into the bacteria quickly reaching
its cytoplasm.

This dna-rna absorption automatically triggers a radical change in the metabolic functions
of the prokaryote [18], in fact, it ceases to be a bacteria and becomes a virus replication facility,
whose only purpose is to assemble virions using all available resources from the interior of the
cell. Notice that the cell envelope is essentially unaffected in this process even when the cell
stops feeding itself among all other usual metabolic functions. Related to this phenomenon are
the papers by Abedon et. al. [1] and Weld et. al. [23] where it is mentioned that phage infected
bacterial cells do not grow.

The cycle ends with the expulsion of all existent virions to the outside by breaking the cell
envelope. The number of liberated virus particles is known as the “burst size” and it can range
from 1 or 2 up to one hundred, or even more.

Besides all things related with this Lytic Cycle there are many other factors that may impact
the life or death of a bacteria and a phage. For the sake of clarity we consider a phage dead
when it has completely and irreversibly lost its capacity to carry out the Lytic Cycle, i.e. when
it is not capable of entering a cell to get offspring anymore.

Regarding the phages, some of the following things can happen at any time:

• In what we shall call Super Infections, phages can attach themselves, reversibly or irreversibly,
to lipopolysaccharide receptors of an infected bacteria and also inject their genetic information.
Nevertheless this extra dna-rna injection will not increase nor decrease the burst size, the
virus is simply lost.

• Lipopolysaccharide attachments, reversible or irreversible followed by expulsion of the dna-
rna outside of the virus, can occur even if the host cell is dead. It doesn’t matter if the
prokaryotic cell remains entire or the cell envelope is broken after the lysis explosion, the
lipopolysaccharide molecules can adsorb phages at any time, as long as the bond of attachment
is present on the lipopolysaccharide protein. These cell envelope fragments together with the
membranes from cells that remain entire, is what we shall refer as “bacterial debris” or simply
“debris”. We give this debris a very important role and impact in our models. In [18] we
find arguments that support this great impact of bacterial debris, even conceiving it as the
mechanism for bacteria-phage coexistence.

• Bacteriophages may also attach to inorganic particles [17]. The attachment can be of the two
kinds we are considering.

• Viral dna-rna can not penetrate a bacteria by itself in normal conditions, the only possible
way for this to occur is by completing its corresponding step of the Lytic Cycle. So, if occa-
sionally the dna-rna is expelled from the virus to the environment, it will not penetrate a
bacterium in a successful manner.

3 Some actual models related to this paper
3.1 Models based on average mass action law adsorption constants
A common and well intended strategy to model bacteria-phage dynamics it to consider that
the viral attachment on bacteria is irreversible and the interaction between these two biological
entities occurs according to the mass action law, being proportional to the product of their count
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numbers, such as the total population count or the concentration by volume unit. It seems
realistic to think that the number of interactions per time unit is the same for p phages and q
bacteria that for q phages and p bacteria.

This assumption, that always holds for the initial instant, will be completely valid along time
if one of the following two things happens:

1. Each bacterium has only one phage receptor, then the interaction becomes one to one as
in a chemical reaction.

2. The number of receptors on each cell is infinite and we consider that infected cells continue
adsorbing phages as susceptible cells do, i.e. if we consider super infections that do not
diminish the bacterial count once an adsorption takes place and that all cells preserve their
adsorption potential unaltered.

Being none of these assumptions completely correct we may use the mass action law carefully.
In the same line of ideas, associated to the bacteria-phage interaction we may find the concept

of moi (Multiplicity of Infection) ratio, defined as the number of free phages per susceptible
bacterium. So, as long as the moi is low, of order 10−2 or 10−1, the mass action law will give us
good approximations to the real phenomena because super infections will rarely occur.

As a departure point we shall consider the work by D. Bascompte [3] that stands as the first
mathematical model done specifically for the microbiology experiments by M. Llagostera [20]
where the following m+ n delay ode system is proposed.

Ṡj(t) =
(
αj −

n∑

i=1
kijPi(t)

)
Sj(t),

Ṗi(t) = di −miPi(t)−




m∑

j=1
kijSj(t)


Pi(t) +

m∑

j=1
kijbije

−µjTijSj(t− Tij)Pi(t− Tij),
(1)

for j = 1, 2, . . . ,m and i = 1, 2, . . . , n.
System (1) considers m bacterial strain concentrations Sj that increase in time with Malthu-

sian growth rates αj ≥ 0 and interact with n concentrations of phages of kind Pi. The irreversible
adsorption of phages into bacterial cells occurs according to the mass action law with adsorption
constants kij ≥ 0. Once adsorptions occur, a fixed average delay time T is elapsed and then
an average burst size b ≥ 0 number of new virions are released from each infected cell. The
initial condition involved due to the delay is considered to be an arbitrary time parametrized
m + n-dimensional curve whose components belong to the Banach space C([−T, 0],R) of real
continuous functions defined over the real interval [−T, 0] with the supreme norm. However, in
this model the viral adsorption on infected cells or over bacterial debris is not considered.

The article by E. Beretta and Y. Kuang [2] that models a marine bacteriophage infection
with latency period, happens to share the same hypothesis and similar conditions that [3] but
considering m = n = 1. Nevertheless, a new state variable I(t), standing for the concentration of
infected cells, is added to the system together with a logistic growth rate depending on a medium
or carrying capacity C to produce system (1.11) in [2] as follows.

Ṡ(t) = αS(t)
(

1− S(t) + I(t)
C

)
−KS(t)P (t),

İ(t) = −µiI(t) +KS(t)P (t)− e−µiTKS(t− T )P (t− T ),
Ṗ (t) = β − µpP (t)−KS(t)P (t) + be−µiTKS(t− T )P (t− T ).

(2)
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where all the sub indexes from (1) disappear since m = n = 1 and β, µp,K replace d,m, k in
(1). We notice that the logistic growth rate term includes the fraction (S(t) + I(t))/C, thus the
infected bacteria are assumed to feed from the available resources. In fact, not as we could wish,
the infected bacteria play a part only as resource consumers but they do not adsorb phages.

System (2) looked for an improvement of the following equations that were proposed in [8],

Ṡ(t) = αS(t)
(

1− S(t)
C

)
−KS(t)P (t),

Ṗ (t) = bKS(t− T )P (t− T )− µpP (t)−KS(t)P (t),

with I(t) =
∫ t

t−T
KS(θ)P (θ)dθ,

(3)

but also of the following more simple ones3 in [4],

Ṡ(t) = αS(t)
(

1− S(t)
C

)
−KS(t)P (t),

İ(t) = KS(t)P (t)− λI(t),
Ṗ (t) = bλI(t)− µP (t).

(4)

In [11], a later work by one of the authors of [2], the resource consumption by infected cells is
neglected and a phage density dependent mortality term is added obtaining the following system.

Ṡ(t) = αS(t)
(

1− S(t)
γ

)
−KS(t)P (t),

Ṗ (t) = −µpP (t)−mP 2(t)−KS(t)P (t) + bKe−µiTS(t− T )P (t− T ),
(5)

Neglecting the resource consumption by infected cells seems to be a good idea, because we
believe, as we mentioned before, that once infected, a bacterium is no other thing that a virus
replication machine that stops all its normal metabolic functions. Regarding the inclusion of a
density dependent mortality term on phages, we think that it may be more convenient to allow
super infections and/or phage adsorption on debris. The impact of such measure will be similar
because as a consequence of the dynamics we may expect large concentration of phages to be
close to large concentration of bacterial cells and debris.

Although, being (4) a somewhat simple system, it contains an interesting ingredient regarding
the existence of a degradation rate for the infected bacteria. Even when we do not relate the
infected cells with the phage reproduction, as it is done by adding the bλI(t) term to Ṗ (t) in
(4), because we think it is not a good idea to eliminate the latency period, we consider that the
receptors on infected cells and debris do degrade at a constant rate over time and that during
their active life they may adsorb phages, all this in the line of [18] and also as a conclusion of
the interdisciplinary work in [19].

In this line is that the authors of [10] present as a start of their mathematical modeling the
following system.

Ṡ(t) = (Λ− γP (t))S(t),
İ(t) = γP (t)S(t)− εI(t),
Ṗ (t) = mγP (t− τ)S(t− τ)− γP (t) (S(t) + I(t)) ,

(6)

3Mainly because there is no time delay.
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where Λ, γ, τ,m stand for α, k, T, be−µT in (1) with m = n = 1 and without indexes, i.e. in a one
bacterial strain versus one phage dynamics these four parameters represent the bacterial Malthu-
sian growth rate, the mass action law adsorption constant, the latency period and the burst size
once affected by the mortality rate of bacteria4, respectively. The infected cells degradation rate
is denoted by ε.

We notice that in system (6) it is considered that infected cells degrade at a constant rate
but that they also adsorb phages with the same average constant that susceptible cells do.

Another interesting work that applies the mass action law, is the one by R. Payne and V.
Jansen [16], that presents a phage therapy model including a host for the bacteria, given by the
following equations.

ẋ = ax− bvx−H(t)x,
ẏ = ay + bvx− ky −H(t)y,
v̇ = kLy − bvx−mv − h(t)v,

(7)

where x and y stand for the susceptible and phage infected bacteria concentrations over time,
while v represents the free phage concentration, depending also on the time variable. Here
a, b, L,m stand for α, k, b,m in (1), for m = n = 1 and without indexes. All lysis occur at a
constant rate k over infected cells, similarly to (4). The main addition of this system, is that the
host responses against the bacteria or against the phage are incorporated via the time dependent
functions H(t) and h(t).

3.2 Physiologically structured population dynamics
Given that the mass action law with a fixed adsorption constant is really appropriate only
for small moi values and that the real bacteria-phage interaction that we are interested in is
characterized by having, in general, burst size values with at least two figures, that rapidly
produce high phage concentration levels, thus big moi values too, it is important to look for
some other alternatives to model the manner in which the actual interaction occurs.

H. Smith [22], with whom we completely agree in this point, sustains that the mass action
kinetics, i.e. the one determined by a mass action law constant multiplied by the product of the
bacterial and viral concentrations, used to estimate the phage attack, but also considering it
to be equal to the phage loss, is not correct. He mentions an experimentally based recent work
where a wide variation of these values is found. In [22], in order to calculate the number of phage
adsorptions on bacterial cells the mass action law adsorption constant is divided by an increasing
function that depends on the phage concentration. For low concentration values the adsorption
occurs according to the mass action law but it diminishes as the viral count increases.

Another alternative is, for example, to characterize the problem via the study of an average
adsorption function that changes over time similarly to what is done in [10]. Other options are
to physiologically structure the bacterial populations or concentrations. In this line we recall the
works by Calsina and Saldaña [6] together with the book edited by Metz and Dieckmann [14].

In [7] we regard a bacterial structure by the cell size assuming that the receptor density
per cell surface unit is constant, while the burst size is proportional to the cell volume. The
assumption we made about a uniform distribution of phage receptors on the cells membrane
happens to be a bit unrealistic, in order to improve this approach is that we move on and profit
from more realistic and elaborated considerations that are discussed in the remaining of this
subsection and the following one.

4Actually this is our interpretation because the authors of [10] assume it to be the burst size itself.

6



In [9] and [10] the regarded key aspect is the natural division of bacterial populations into
sub populations according to the number of receptors on the surface of each individual. In this
way, in [10] system (6) is modified into the following 2NMAX + 3 system of equations

Ṡn(t) = (Λ− γnP (t))Sn(t) +
NMAX∑

m=0
′ αnmSm −

(
NMAX∑

m=0
′ αmn

)
Sn,

İn(t) = γn+1(Sn+1(t) + In+1(t))P (t)− γnIn(t)P (t)− εIn(t),

Ṗ (t) = mP (t− τ)
NMAX∑

n=0
γnSn(t− τ)− P (t)

NMAX∑

n=0
γn(Sn(t) + In(t)),

(8)

where NMAX is the maximum number of receptors on a single bacterium, n = 0, . . . , NMAX. The
′ sign indicates that when m = n the corresponding term is not added. The coefficients αnm
measure the rate at which the individuals from sub population m shift to sub population n, i.e.
the rate at which individuals gain or lose receptors. In [10] is also said that Λ can be replaced
by Λn in order to allow different growth rates for each sub population.

An essential ingredient of (8) is the term γn+1(Sn+1(t) + In+1(t))P (t) in the equation for the
infected cells derivative İn(t), because it implies that there is a receptor loss when an adsorption
takes place, modeling super infections in an appropriate way.

In [9] and [10] it is considered that the number of active receptors on each cell is a phenotype
(i.e. the actual expression or instance of the bacterial genes that is influenced by environmen-
tal and interaction factors), and so it is related to the structure or division into bacterial sub
populations, each one grouping cells with the same number of receptors on its membrane. The
authors point that they “would like to show based on several lines of evidence that phenotype
switching between sub populations must exist, and that it plays a subtle but important role for
bacterium/phage population dynamics”.

3.3 Reversible bindings
In [15] R. Moldovan, et. al., revisit the phage rate of adsorption on E. Coli by conducting
experiments along with theoretical analysis that show that the population of unbound λ phages
decreases with time and, in general, obeys a double-exponential function characterized by a fast
and a slow decay times. They present a kinetic model that describes the interaction between the
phage and the receptor as an on-and-off process followed by an irreversible binding and claim
that their model successfully predicts the double exponential behavior seen in the experiment
for small moi values and allows the corresponding rate constants to be extracted from single
measurements.

The proposed equations of the kinetic model in [15] are the following:

dNBP
dt

= kNBNP − (k′ + k′′)NBP,

dNP
dt

= k′NBP − kNBNP,

dNB
dt

= k′NBP − kNBNP,

dN∗BP
dt

= k′′NBP,

(9)

where NB, NP, NBP and N∗BP, respectively, represent the susceptible bacteria, the free phages,
the transient bacteria-phage complexes and the infected bacteria populations depending on the
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time variable. In our usual notation:

NBP(t) = C(t), NB(t) = S(t), NP(t) = P (t), N∗BP(t) = I(t).

The non negative constant k measures the speed at which free phages bind to susceptible bacteria
obeying the mass action law and creating the so called transient bacteria-phage complexes. The
susceptible bacteria and free phages count is decreased in kPS units per time unit while the
transient complexes count increases in the same amount.

Nevertheless, this phage adsorption over susceptible bacteria is considered to be non perma-
nent but reversible instead, and, from it, detachments will occur at a non negative constant rate
k′ over the complexes count, i.e. the susceptible bacteria and free phages count will increase in
k′C units per time unit while this quantity will be instantaneously subtracted from the transient
bacteria-phage complexes.

Finally a non negative constant k′′ measures the rate at which a temporary attachment on
bacterium-phage complex becomes a permanent binding, i.e. an infected cell. There may be
more than one attached virus on a bacterium, so complexes are not necessarily one to one.

As the authors point, the double exponential function that results from solving this model
is a good approximation only for small moi and will not be valid in general. Despite this last
inconvenient, we believe that the main assumption, namely the described attach-detach mecha-
nism, is an excellent idea that may be applied to construct realistic bacteria-phage interaction
models.

4 Key aspects to consider
In this paper we take special care of the following points and try to include them in the best
way.

1. Delay. Due to the existence of a latency period that is comparable to the duplication
time for a Malthusian growing bacterial population, the delay must be considered in any
modeling attempt. Experimental evidence in [20] together with the work of Calsina, Pal-
mada and Ripoll [5] show that the average latency period of a bacterial population that
interacts with one phage kind is highly representative and thus can be regarded as a good
approximation to the real phenomena.

2. Resistant bacteria. The experimental evidence pointing the existence of the so called
“mutant” or resistant bacteria that will be found in any culture, even if it is seeded only
with a single susceptible cell, calls for the inclusion of a state variable to represent this kind
of bacteria itself. We mention here, because we consider it to be a key aspect, that, in the
case of physiologically structured bacterial models, the resistant bacteria and the bacteria
with zero adsorption potential (i.e. with zero phage free receptors) are not the same nor
are comparable. This is because they have genetic differences that cause the formers and
their descendants to lack the physiological component that allow us to structure the others.

3. Super infections and phage adsorption on debris. It is well known that phages do not
detect if a cell is susceptible or already infected and super infections occur whenever there
are phages surrounding an infected cell. In the same way, as mentioned in [18] these viruses
may also bind to the free receptors on dead bacteria corpses or membrane fragments known
as debris. They are even adsorbed by inorganic particles such as glass filters according to
[17]. It is very important to consider that viruses get adsorbed on susceptible and infected
cells, but also on debris. It may be that the adsorption rates over receptors that do not
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belong to a healthy living organism are not as high as usual (see the conclusion of the
interdisciplinary work in [19]), but the number of receptors on infected cells and debris can
be some orders of magnitude above the bacterial count and they can not be ignored.

4. Average adsorption constant and low adsorption on bacteria. As we already men-
tioned, the mass action law with a fixed average adsorption constant is really appropriate
only for small moi values, but in actual bacteria-phage interactions the high phage concen-
tration levels are rapidly reached. The main reason why the use of an average adsorption
constant can fail has to do with the fact that the heterogeneity of the individual phage
adsorption potential in a bacterial population will cause different infection and thus death
rates. In a few words, the groups of cells that adsorb phages faster will die sooner. There
is undeniable evidence that this heterogeneity exists, in fact, in [9] this heterogeneity is
experimentally demonstrated by means of a fluorescent tagging method used on phages.

5. Limited resources. In a closed in vitro culture or in a natural environment we will always
deal with limited resources that impact in a considerable way the dynamics of the species
that feed from them. It is also true that regarding an unlimited resource scenario helps to
simplify the modeling and calculation work in a significant manner, but again, it is a good
approximation only for small concentration or population count values.

5 Main assumptions in our approach
The outer membrane’s outer leaflet of the cell envelope in Gram-Negative bacteria, such as
Salmonella enterica, is formed mainly by lipopolysaccharide molecules (lps). These lps are
synthesized on the interior membrane’s interior leaflet of the cell, as part of the metabolic normal
functions, and then flipped to their final location[21].

The lps synthesis process can produce molecules that contain a particular phage receptor,
if the specific bond that is recognized by the virus is present, otherwise, if the synthesized lps
piece lacks this specific bond, it will not be a receptor but a simple cell envelope building block.
It is important to point that the lps conformation or molecule length is genetically determined
and so by the lps synthesis process the bacterial cell will intend to produce lps molecules of the
length that its dna determines. Nevertheless it can happen that a lps molecule result shorter
than that genetically determined and so it can lack the specific phage recognition bond. As a
consequence of this a bacterial population can present individuals with different number of phage
receptors or, in other words, as stated in [9], a stochastic gene expression or stochastic phenotype
having impact on a particular phage receptor. In [9] it is experimentally concluded that within
an Escherichia Coli population under a high concentration attack of λ-phage it is possible to find
individual cells that absorb viral dna in a very smaller proportion than other bacteria of similar
size in the same medium. This article presents an estimated maximum bound for the number
of receptors on a single cell envelope and also a receptor distribution graphic of an experimental
population sample.

In [10], as we already mentioned, a heterogeneous population dynamics model based on
bacterial sub populations of individuals of the same number of receptors is proposed (see (8)).
The corresponding equations include phenotype switching coefficients αmn. Based on [9, 10] we
now assume that phenotype switching is not stochastic but strongly influenced and guided by
two factors:

• Bacterial division.

• Cell growth.
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The bacterial division, also called binary fission, will produce that the cell envelope or at least
its outer membrane gets divided into two remaining pieces that will stand for the cell envelopes
of the daughter cells. Some building blocks may be lost, but in essence the two new cells will
inherit the mother’s envelope. In this way the mother cell’s receptors will be divided between
the daughters. For this we make two assumptions:

• The quantity of receptors of each sister is not necessarily the same, one can have more than
the other.

• There may be some small receptors loss due to the fission, i.e. the sum of the number of
receptors on the daughter cells will be equal or less than the mother’s.

In the other hand, during the cell growth and before the next fission, each individual bacterium
will develop new receptors at some speed that will be different depending on the environment
conditions but mainly on the number of receptors that the cell itself already has.

As mentioned before, but not considered up to this point, the attach detach mechanism
related to reversible bindings (see subsection 3.3) may be assumed to occur. We will suppose
that any virus can complete step 3 of the lythic cycle over any available receptor it is able to
find, after that the phage can be absorbed or return back to the environment. In this sense, we
will assume that it is possible that the receptors of susceptible bacteria adsorb phages faster or
easier than those of infected, dead or lysed cells. Although the probabilities for a virus to be
irreversibly attached or released will not vary depending on the status of the receptor’s cell.

6 Discrete model
In order to construct the equations that model the above assumptions and considerations, we will
assume that there are only two kinds of bacteria, namely susceptible and resistant (often called
‘mutants’), sharing the environment with one phage strain. An individual susceptible bacterium
can have in principle any number of phage receptors on its membrane varying from zero up to a
maximum possible value. We will define the following state variables, regarding m ∈ N as the
maximum number of possible receptors on a single bacterium.

• Sj(t) that will represent the susceptible bacterial sub population concentration at time t
characterized by having j receptors, all of them phage free.

• Cj,f (t) standing for the count per volume unit at time t of transient or temporary suscepti-
ble bacteria and phage complexes. Each complex will have one bacterial cell with a total of
j receptors of which f will be phage free, thus it will have j− f attached virus, all of them
at step 3 of the lythic cycle, i.e. before injecting their dna and having still the possibility
to leave the cell. Notice that Sj(t) ≡ Cj,j(t).

• M(t), the virus resistant or ‘mutant’ bacteria concentration that will vary depending on
time.

• P (t), the phage concentration at time t.

• R(t) that will represent the bulk concentration, at a given time t, of free phage receptors
that remain after the dna absorption step of the lythic cycle. This will be the sum of all
the receptors of infected, dead and lysed bacteria. We may refer to this state variable as
the free docking points concentration.
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• V (t) that will stand for the one to one transient virus-receptor complexes concentration
at time t. Here we refer only to the case when a single virus is attached to one individual
receptor that belonged to the concentration represented by R(t).

Related to the attach detach mechanism we will consider the following non negative constants:

• k1, the average adsorption constant according to the mass action law between free phages
and free receptors of susceptible bacteria. This will imply that the adsorption rate for a
phage concentration P (t) that interacts with a bacterial sub population of those cells that
have f free receptors out of j at time t, that is Cj,f (t), will be k1fP (t)Cj,f (t).

• k2, the average mass action law adsorption constant for the interaction of free phages and
free receptors on debris and infected cells. This will imply that the adsorption rate for a
phage concentration P (t) that interacts with a bulk receptors concentration R(t) will be
given by k2P (t)R(t).

• k′, the average rate at which the adsorbed phages are released from the receptors, being
the same aside from the receptor nature.

• k′′, the average rate at which the adsorbed phages are permanently attached to their
receptors and inject their dna, also being the same aside from the receptor status.

In principle we restrict k1 ≥ k2, which allows the susceptible bacteria receptors adsorption
to be faster than the rest of receptors, but not the contrary.

We let T be the latency period corresponding to the mean time between infection and lysis.
We assume that in the absence of phages the total bacterial concentration count will exhibit

a logistic growth based on a growth factor α = β−µ, where β represents the increase due to cell
division and µ the mortality. A real constant U ∈ (0,∞] will stand for the medium capacity or
the quantity of available resources that are shared among susceptible and resistant bacteria all
together. We assume that bacteria, once infected, do not feed anymore.

For this purpose we define the logistic birth rate functions

β1(t) = α1 − α1
M(t) +

∑m
i=0

[
Si(t) +

∑i−1
g=0 Ci,g(t)

]

U
+ µ,

β2(t) = α2 − α1
M(t) +

∑m
i=0

[
Si(t) +

∑i−1
g=0 Ci,g(t)

]

U
+ µ,

(10)

related to the susceptible and mutant bacteria respectively, with 0 < α2 ≤ α1.
In (10) the constants α1, α2 correspond to the Malthusian rates at which the susceptible and

mutant populations could grow with no resources restriction of any kind, being this possible if
U = ∞, i.e. considering an infinite medium capacity. Thus for a finite medium capacity U > 0
we assume that the growth rate diminishes in

α1
M(t) +

∑m
i=0

[
Si(t) +

∑i−1
g=0 Ci,g(t)

]

U

for both kinds of bacteria. We add the mortality rate µ because we are interested, not in the
growth rate, but in the birth rate5.

5Bacteria are not actually born from a mother cell, they divide into two sister cells. For our purposes, to think
of a birth rate, it will be necessary to consider that one of the cells is the mother and the other is the daughter,
but who is who is not important at all.

11



Notice that for a given t ∈ R if α1 > α2 then β1(t)− β2(t) = α1 − α2 > 0, meaning that the
susceptible bacteria will posses at any time a competitive advantage over the mutant strain.

As we referred in the previous section, we assume a “phenotype switching” between sub
populations [10], modeling the receptor development and the change of receptors count due to
the cell division by means of constant coefficients ρij that measure the conversion rate from sub
population number i to subpopulation number j. We consider that a susceptible cell that gains
a new receptor will switch at a constant rate ρj,j+1 ≥ 0 from sub population Sj to Sj+1 or from
Cj,f to Cj+1,f+1, whenever j < m. Also, a cell of the Sj sub population that divides produces
two sister cells that will belong to some sub populations Si and Sk where i+ k ≤ j. Similarly, if
the susceptible cell has some phages already attached, it belongs to a sub population Cj,f and
the binary fission will produce two daughter cells that will belong to some sub populations Ci,g
and Ck,h where i + k ≤ j but also g

i u f
j u h

k , i.e. the attached phages will place each sister
cell in the sub population that keeps a similar proportion of total-free receptors to that of the
mother. This proportion has to be similar instead of sharp because we use natural numbers as
indexes. We associate constants ρj,i, for i = 1, 2, . . . , j, to measure the rates at which a mother
cells with j receptors produces a daughter cell with i receptors.

We accomplish to include these two “phenotype switching” phenomena by means of a non
negative ρ coefficients matrix of the form




ρ0,0 ρ0,1 0 0 . . . 0

ρ1,0 ρ1,1 ρ1,2 0 . . . 0

...
... . . . . . . . . . ...

ρj,0 ρj,1 . . . ρj,j ρj,j+1 . . . 0

...
... . . . . . . ...

ρm−1,0 ρm−1,1 . . . ρm−1,m−1 ρm−1,m

ρm,0 ρm,1 . . . ρm,m−1 ρm,m




(11)

where
∑j
i=0 ρj,i = 1 and ρj,i = 0 whenever i > j + 1 for j = 1, 2, . . . ,m.

Each row of this matrix must fulfill another requirement related to the assumption that when
a cell division takes place, the envelope of the mother is broken and used by the sister-daughters
with a small or null waste of receptors. So we will ask that the coefficients ρj,i for a fixed j be
such that ρj,0 u ρj,j , ρj,1 u ρj,j−1, · · · .

Using all the elements mentioned in this subsection we write our proposed model, which will
be fully explained in the following pages.
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Ṡj(t) = 2β1(t)
m∑

i=j
ρi,jSi(t) +′ ρj−1,jSj−1(t)

− [β1(t) + µ+ jk1P (t) +′ ρj,j+1]Sj(t) + k′Cj,j−1,

Ċj,f (t) = 2β1(t)
m∑

i=j
ρi,j




g≤min{(f+ 1
2 ) i

j ,i}∑

g>max{(f− 1
2 ) i

j ,−1}
Ci,g(t)


+′ ρj−1,jCj−1,f−1(t)

− [β1(t) + µ+ fk1P (t) +′ ρj,j+1]Cj,f (t) + (j − f + 1)k′Cj,f−1(t)
− (j − f)(k′ + k′′)Cj,f (t) +′ (f + 1)k1P (t)Cj,f+1(t),

V̇ (t) = −(m+ δ + k′)V (t) + k2R(t)P (t)

+
m∑

i=0

[
i∑

g=0
(i− g)[(i− g − ι)k′′ + µ]Ci,g(t)

]
,

Ṙ(t) = − (δ + k2P (t))R(t) + k′V (t)

+
m∑

i=0

[
i∑

g=0
g((i− g)k′′ + µ)Ci,g(t)

]
,

Ṗ (t) = d−mP (t)−
(
k1

m∑

i=0

[
i∑

g=0
gCi,g(t)

]
+ k2R(t)

)
P (t)

+ k′
(
V (t) +

m∑

i=0

[
i∑

g=0
(i− g)Ci,g(t)

])

+ be−µT k′′χ [T,∞) (t)
m∑

i=0

[
i∑

g=0
(i− g)Ci,g(t− T )

]
,

Ṁ(t) = (β2(t)− µ)M(t).

(12)

We use the symbol +′ to indicate an addition that is performed whenever it makes sense.
The initial conditions of (12) are Sj(0) ≡ Cj,j(0) = Sj,0 ≥ 0, P (0) = P0 ≥ 0, R(0) = R0 ≥ 0,

Cj,f (0) = V (0) = V0 = 0, 0 ≤ j ≤ m, 0 ≤ f < j.

Important note: The Greek letter ι in (12) represents one unit and corresponds exactly to
one receptor. In order to reduce the number of equations, it is possible to change the measure
units by grouping the sub populations into conglomerates of receptor ranges. This can be easily
accomplished only by adjusting the actual value of ι.

To follow, we explain as clearly as possible, all the equations in (12).
The simplest equation is the last one which trivially sets the mutant bacteria population

concentration derivative Ṁ(t) to be the product of the concentration and the difference of the
‘birth’ minus the mortality rates over time. In this way the resistant bacteria concentration will
grow at a time depending rate

α2 − α1
M(t) +

∑m
i=0

[∑i
g=0 Ci,g(t)

]

U
.
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Sj Cj,j– 1
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k'Cj,j– 1

2k'Cj,j– 2

(j– 1)k''Cj,j– 1

R

P

R

2(j– 2)k''Cj,j– 2

Cj,j– 3

V

2k''Cj,j– 2

P

Conversion Diagram
(first cases)

(j– 2)k1PCj,j– 2

3k'Cj,j– 3

Figure 1: Interaction diagram for the first adsorptions.

Notice that if α1 > α2 then, for high population concentrations near to the medium capacity U
we can have Ṁ(t) < 0.

Given that this state variable M(t) only interacts with the rest via the resource consumption
we will explain the remaining equations separately based on the previous discussion and the
interaction diagrams on figures 1 and 2.

Beginning with the susceptible bacteria carrying j receptors, all of them phage free, repre-
sented by Sj , we notice that its concentration will be instantaneously:

S.a) Increased in

2β1(t)
m∑

i=j
ρi,jSi(t)

that is the sum of the new born individuals proceeding from all sub populations with more
or equal number of receptors that are born with j receptors. In each sub population Si
there will be 2β1(t)Si(t) new born cells per time unit that will be distributed among the
sub populations Sk at constant rates ρi,k, k = 0, 1, 2, . . . , i. All new born cells participate
in this distribution because

∑i
k=0 ρi,k = 1.

S.b) Increased in ρj−1,jSj−1 units because the individuals Sj−1 gain one receptor at a constant
rate ρj−1,j . This will not apply when j = 0, so the +′ sign is included.

S.c) Decreased at a variable birth rate β1(t), because the just divided cells will not belong to
Sj , unless they are added on item S.a).

S.d) Decreased at a constant mortality rate µ.

S.e) Decreased by jk1PSj due to its interaction with the free phages concentration P and
because each cell has j free receptors that adsorb phages according to the mass action law
with constant k1 (see figure 1).
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Cj,f+1 Cj,f
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(f+1)k1PCj,f+1 Cj,f– 1
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fk1PCj,f

(j– f )k'Cj,f (j– f+1)k'Cj,f– 1

f (j– f )k''Cj,f

R

P

R

(f– 1)(j– f+1)k''Cj,f– 1

Cj,f– 2

V

P

V

(f– 1)k1PCj,f– 1

(j– f– 1)(j– f )k''Cj,f (j– f )(j– f– 1)k''Cj,f– 1

P

k2RP

k'V

Conversion Diagram
(general case)

(j– f+2)k'Cj,f– 2
(j– f )k''Cj,f

Figure 2: Interaction diagram around the (j − f)th adsorption.

S.f) Decreased at a constant rate ρj,j+1 because the cells that gain a receptor will abandon the
sub population. This will not apply when j = m, so the +′ sign is included.

S.g) Increased when the process of item S.e) is reverted, that is when a transient complex of
one virus and a cell Cj,j−1 is separated. This separation occurs at a constant rate k′, so it
increases Sj in k′Cj,j−1 per time unit.

Regarding the transient complex of j-receptors bacteria with f free receptors denoted by
Cj,f , its concentration will be instantaneously:

C.a) Increased in

2β1(t)
m∑

i=j
ρi,j




g≤min{(f+ 1
2 ) i

j ,i}∑

g>max{(f− 1
2 ) i

j ,−1}
Ci,g(t)




offspring from all sub populations with more or equal number of receptors. Being this
item similar to S.a), this time, as we already said, it is also necessary that g

i u f
j . For

this last condition we group the sub populations Ci,g for a fixed i by means of a round
function that joins all values of g ∈

(
(f − 1

2 ) ij , (f + 1
2 ) ij
]
∩N, if j > 0, or g ∈ {0, 1, . . . , i},

if j = 0, and relates them to f . One easy way to interpret this grouping is to think that
the population of a complex Cj,f (j total receptors and f free receptors) will incorporate
the offspring of a complex Ci,g with i ≥ j > 0 whenever

∣∣∣ gi −
f
j

∣∣∣ is small as possible, this
is when f − 1

2 <
gj
i ≤ f + 1

2 . For j = 0 as a special case, C0,0 will accept new born cells of
a complex Ci,g for any g.

C.b) Increased in ρj−1,jCj−1,f−1 units because the individuals Cj−1,f−1 gain one (phage free)
receptor at a constant rate ρj−1,j . This will not apply when j = 0, so the +′ sign is present.
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C.c) Decreased at a variable birth rate β1(t), because the just divided cells will not belong to
Cj,f , unless they are added on item C.a).

C.d) Decreased at a constant mortality rate µ.

C.e) Decreased by fk1PCj,f due to its interaction with the free phages concentration P and
because each cell has f free receptors that adsorb phages according to the mass action law
with constant k1.

C.f) Decreased at a constant rate ρj,j+1 because of the cells that gain a (free phage) receptor.
This will not apply when j = m, so we include the sign +′.

C.g) Increased when the process of item C.e) is reverted for Cj,f−1, that is when a virus gets
separated from a transient complex Cj,f−1. This separation (see figure 2) occurs at a
constant rate k′ over each of the j − f + 1 occupied receptors, so it increases Cj,f in
(j − f + 1)k′Cj,f−1 per time unit.

C.h) Increased by (f + 1)k1PCj,f+1, as the counterpart of C.e), due to the cells with one more
free receptor Cj,f+1 that acquire another phage from the concentration P and because
each cell has f + 1 free receptors that adsorb phages according to the mass action law with
constant k1 (see figure 2). The sign +′ is present because of the case when j = m.

C.i) Decreased when the process of item C.e) is reverted for this same class, that is when a
virus gets separated from a transient complex Cj,f . This separation (see figure 2) occurs
at a constant rate k′ over each of the j − f occupied receptors, so it decreases Cj,f in
(j − f)k′Cj,f−1 per time unit.

C.j) Decreased by (j − f)k′′Cj,f (see figure 2) because of a viral dna adsorption that occurs at
a fixed rate k′′ over j − f receptors over each cell.

The concentration in time of the one to one transient virus-receptor complex represented by
V (t) will be instantaneously:

V .a) Decreased at a constant rate m + δ because the phages degrade at a rate m while the
receptors do so at rate δ.

V .b) Decreased because of the released virus at a constant rate k′ (see figure 2).

V .c) Increased as a consequence of the interaction between the bulk receptors concentration R
and the free phages concentration P according to the mass action law with adsorption
constant k2 (see figure 2).

V .d) Increased in (j − f − ι)(j − f)k′′Cj,f when the event described in item C.j) takes place
and for all possible values of j and f . This number is obtained because a cell with f free
receptors out of j will end with j − f − ι one to one transient complexes after one of the
viruses inject its dna (see figure 2).

V .e) Increased in the sum of (j − f)µCj,f over all bacterial concentration indexes because of
the natural death of all bacteria, where each class Cj,f contributes with its j − f occupied
receptors.

The bulk concentration in time of the receptors on debris and on infected bacteria R(t) will
be instantaneously:

16



R.a) Decreased at a constant degradation rate δ.

R.b) Decreased as a consequence of its interaction with the free phages concentration P according
to the mass action law with adsorption constant k2 (see figure 2).

R.c) Increased in k′V units because of the receptors that become free when the detachments
over the one to one transient complexes V take place at a constant rate k′.

R.d) Increased in f(j − f)k′′Cj,f when the event described in item C.j) takes place and for all
possible values of j and f . This number is obtained because the cells have f free receptors
(see figure 2).

R.e) Increased in the sum of fµCj,f over all bacterial concentration indexes because of the nat-
ural death of all bacteria, where each class Cj,f contributes with its f phage free receptors.

Finally, the phage concentration P (t) will be instantaneously:

P .a) Increased by a fixed dose supply d.

P .b) Decreased at a constant degradation rate m.

P .c) Decreased as a consequence of its interaction with the total count of free receptors over the
susceptible cell membranes given by

m∑

i=0

i∑

g=0
gCi,g

that occurs according to the mass action law with adsorption constant k1.

P .d) Decreased as a consequence of its interaction with the bulk concentration of docking points
R, according to the mass action law with adsorption constant k2 (see figure 2). This is the
counterpart of item R.b).

P .e) Increased in k′V units because of the phages that become free when the detachments over
the one to one transient complexes V take place at a constant rate k′.

P .f) Increased when the events of items S.e) and C.e) are reverted in a fraction k′ of the total
count of occupied receptors over the total bacterial population that can be computed as

m∑

i=0

i∑

g=0
(i− g)Ci,g.

P .g) Increased as a consequence of the lysis that produces be−µT virions for each cell that was
infected at time t− T . The count of these cells correspond to the product of the constant
k′′ multiplied by the total count of occupied receptors over susceptible cells given by

m∑

i=0

i∑

g=0
(i− g)Ci,g(t− T ).
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Once a virus is permanently attached we only consider the bulk concentrations of free recep-
tors R(t) and the one to one transient receptor-phage complexes V (t) at time t, the bacterial
cells themselves abandon the system.

In (12), the equation for Ṡj is included for the sake of clarity, because Sj(t) ≡ Cj,j(t), but it
can be omitted if we redefine the logistic growth rate functions of (10) as

β1(t) = α1 − α1
M(t) +

∑m
i=0

[∑i
g=0 Ci,g(t)

]

U
+ µ,

β2(t) = α2 − α1
M(t) +

∑m
i=0

[∑i
g=0 Ci,g(t)

]

U
+ µ.

(13)

Direct viral attach with no detach

In this case the viruses will bind to the bacteria receptors directly and inject their dna with
no detach possibility, so every viral adsorption will be followed by an absorption. We consider
this process to occur according to the mass action law with constants k1 and k2 for susceptible
bacteria and for the bulk concentration of receptors respectively. The transient complexes are
no longer regarded and so the logistic growth rate functions change to

β1(t) = α1 − α1
M(t) +

∑m
i=0 Si(t)

U
+ µ,

β2(t) = α2 − α1
M(t) +

∑m
i=0 Si(t)

U
+ µ,

(14)

with 0 < α2 ≤ α1, producing the following system

Ṡj(t) = 2β1(t)
m∑

i=j
ρi,jSi(t) +′ ρj−1,jSj−1(t)− [β1(t) + µ+ jk1P (t) +′ ρj,j+1]Sj(t),

Ṗ (t) = d−
(
m+ k1

m∑

i=0
iSi(t) + k2R(t)

)
P (t)

+ be−µT k1P (t− T )χ[T,∞)(t)
m∑

i=0
iSi(t− T ),

Ṙ(t) = − (δ + k2P (t))R(t) + k1P (t)
m∑

i=0
i(i− ι)Si(t) + µ

m∑

i=0
iSi(t),

Ṁ(t) = (β2(t)− µ)M(t).

(15)

As in (12) we use the symbol +′ to indicate an addition that is performed whenever it makes
sense and ι stands for one unit and corresponds exactly to one receptor.

The initial conditions of (15) are Sj(0) = Sj,0 ≥ 0, P (0) = P0 ≥ 0, R(0) = R0 ≥ 0,
0 ≤ j ≤ m.

Also as in (12) the simplest equation is the last one which sets Ṁ(t) to be the product of the
concentration and the difference of the increase minus the mortality rates over time. In this way
the resistant bacteria concentration will grow at a time depending rate

α2 − α1
M(t) +

∑m
i=0 Si(t)

U
.

18



As before we explain the remaining equations of (15) separately. Beginning with the suscep-
tible bacteria carrying j phage free receptors, we notice that its concentration will be instanta-
neously:

S′.a) Increased in

2β1(t)
m∑

i=j
ρi,jSi(t)

that is the sum of the new born individuals proceeding from all sub populations with more
or equal number of receptors that are born with j receptors (see item S.a)).

S′.b) Increased in ρj−1,jSj−1 units because the individuals Sj−1 gain one receptor at a constant
rate ρj−1,j . This will not apply when j = 0, so the +′ sign is included.

S′.c) Decreased at a variable birth rate β1(t), because the just divided cells will not belong to
Sj , unless they are added on item S′.a).

S′.d) Decreased at a constant mortality rate µ.

S′.e) Decreased by jk1PSj due to its interaction with the free phage concentration P and because
each cell has j free receptors that adsorb phages according to the mass action law with
constant k1.

S′.f) Decreased at a constant rate ρj,j+1 because the cells that gain a receptor will shift to sub
population Sj+1. This will not apply when j = m, so the +′ sign is included.

The phage concentration P (t) will be instantaneously:

P ′.a) Increased by a fixed dose supply d.

P ′.b) Decreased at a constant degradation rate m.

P ′.c) Decreased as a consequence of its interaction with the total count of free receptors over
the susceptible cell membranes given by

m∑

i=0
iSi,

that occurs according to the mass action law with adsorption constant k1.

P ′.d) Decreased as a consequence of its interaction with the bulk concentration of free receptors
R according to the mass action law with adsorption constant k2.

P ′.e) Increased as a consequence of the lysis that produces be−µT virions for each cell that was
infected at time t−T . The count of these cells correspond to the product of constant rate
k1, P (t− t) and the total count of free receptors over susceptible cells given by

m∑

i=0
iSi(t− T ).

Since the lysis takes place only after T time units we multiply by χ[T,∞)(t).

Finally, the bulk concentration in time of the receptors on debris and on infected bacteria
R(t) will be instantaneously:

19



R′.a) Decreased at a constant degradation rate δ.

R′.b) Decreased as a consequence of its interaction with the free phages concentration P accord-
ing to the mass action law with adsorption constant k2.

R′.c) Increased as a consequence of the adsorption event referred in items S′.e) and P ′.c) that
involve

k1P
m∑

i=0
iSi

cells that end with one less free receptor, so each cells of a sub population Si will contribute
to add (i− ι) receptors to the bulk concentration R.

R′.d) Increased as a consequence of the natural death event in items S′.d) that involve

µ
m∑

i=0
iSi

receptors, because each sub population Si contributes to add i phage free receptors per
cell to the bulk concentration R.

7 Continuous model
In order to get a continuous version for system (12) we may assume that the receptor synthesis
process is related to the receptor’s adsorption capability in the sense that a completely finished
and properly placed receptor will present its maximum and final adsorption potential and during
the previous moments the receptor will possess a fraction of this final adsorption capability
proportional to the advance in its placement process. In this way for all practical matters a
receptor that is a fraction placed will be a fraction of a receptor.

Under the above consideration we will replace the discrete number of receptors j ∈ N by
a continuous real variable x ∈ R. In the same manner the free receptors number f ∈ N will
change to the real number y ∈ R. In this way Cj,f (t) becomes the density function C(x, y, t) for
(x, y) ∈ {(x, y) ∈ R2|0 ≤ x ≤ m, 0 ≤ y ≤ x}.

Since the total susceptible bacterial population is now given by

S(t) =
∫ m

0

∫ x

0
C(x, y, t)dydx

we redefine the logistic birth functions to

β1(t) = α1 − α1
M(t) + S(t)

U
+ µ,

β2(t) = α2 − α1
M(t) + S(t)

U
+ µ,

and let ρ = ρ(u, v) be the division transition function from a bacteria that has u receptors to
a one having v receptors. The condition

∑j
i=0 ρj,i = 1, for all j = 1, 2, . . . ,m, imposed on the

coefficients matrix (11) for the discrete system has to be modified into
∫ u

0
ρ(u, v)dv = 1, (16)
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for all u ∈ [0,m].
The elements ρj,j+1 of the coefficients matrix (11) are transformed into a continuous function

ν(x) : [0,m] → R, that represent the velocity at which a bacteria with x receptors develops or
gains a new receptor. Due to its biological nature, this function must satisfy ν(x) > 0, whenever
x ∈ [0,m), and ν(m) = 0 in order to allow all cells to eventually reach the maximum number of
receptors m and to avoid that cells with m receptors to develop new ones.

Considering all this elements we introduce the following system

Ct(x, y, t) = 2β1(t)
∫ m

x

ρ(u, x)C
(
u,
uy

x
, t
)
du− [β1(t) + µ+ k′′(x− y)]C(x, y, t)

− ν(x) (Cx(x, y, t) + Cy(x, y, t))− ν′(x)C(x, y, t)
+ k1P (t) [C(x, y, t) + yCy(x, y, t)]
+ k′ [(y − x)Cy(x, y, t) + C(x, y, t)]

V̇ (t) = −(m+ δ + k′ + k′′)V (t) + k2R(t)P (t)

+
∫ m

0

∫ u

0
(u− v)[(u− v − ι)k′′ + µ]C(u, v, t)dvdu

Ṙ(t) = − (δ + P (t))R(t) + k′V (t) +
∫ m

0

∫ u

0
v((u− v)k′′ + µ)C(u, v, t)

Ṗ (t) = d−mP (t)−
(∫ m

0

∫ u

0
vk1C(u, v, t)dvdu+ k2R(t)

)
P (t)

+ k′
[
V (t) +

∫ m

0

∫ u

0
(u− v)vC(u, v, t)dvdu

]

+ be−µT k′′χ [T,∞) (t)
∫ m

0

∫ u

0
(u− v)C(u, v, t− T )dvdu

Ṁ(t) = (β2(t)− µ)M(t)

(17)

where ν′(x) = d
dxν(x) and, as in system (12), ι stands for one unit and corresponds exactly to

one receptor.

What follows is an explanation, intended to be as clear as possible, of how system (17) is
obtained from (12) by means of a limit process, and/or, in the opposite direction, why is that
the latter is a discretization or a discrete approximation of the former.

For the first equation in (17), we notice that after grouping some terms we can rewrite the
equation for Ċj,f (t) in (12) as

Ċj,f (t) = 2β1(t)
m∑

i=j
ρi,j




g≤min{(f+ 1
2 ) i

j ,i}∑

g>max{(f− 1
2 ) i

j ,−1}
Ci,g(t)




− (β1(t) + µ+ k′′(j − f))Cj,f (t)
+′ ρj−1,jCj−1,f−1(t)−′ ρj,j+1Cj,f (t)
+′ k1P (t) ((f + 1)Cj,f+1(t)− fCj,f (t))
+ k′ ((j − (f − 1))Cj,f−1(t)− (j − f)Cj,f (t)) .

(18)

21



The term

2β1(t)
m∑

i=j
ρi,j




g≤min{(f+ 1
2 ) i

j ,i}∑

g>max{(f− 1
2 ) i

j ,−1}
Ci,g(t)


 , (19)

as we pointed out in item C.a, represents the increment of the bacteria-phage complexes, with
j receptors of which f are phage free, due to the division of all complexes with greater or equal
number of total receptors, but such that the total/free receptors proportion of the divided cell
is similar (as near as possible) to j

f . We have to do this because in the discrete version we can
not consider fractions of receptor and we have to place the divided cells somewhere, but in the
continuum version we do not have restrictions of this kind. Instead of (19) we can write

2β1(t)
∫ m

x

ρ(u, x)C
(
u,
uy

x
, t
)
du (20)

in the equation for Ct(x, y, t), and this time

u
uy
x

≡ x

y
,

which means that a just divided cell of a transient complex will increase the density of complexes
possessing exactly the same proportion of total and free receptors that it actually has. The
rounding process of the inner sum in (19) is no longer necessary.

The next line in (18) explains itself.
We notice that if ~u = (1, 1, 0) then the directional derivative

∇~u (ν(x)C(x, y, t)) = lim
∆→0

ν(x)C(x, y, t)− ν(x−∆)C(x−∆, y −∆, t)
∆

≈ − ν(x−∆)C(x−∆, y −∆, t)− ν(x)C(x, y, t)
∆

≈ −ν(x− 1)C(x− 1, y − 1, t)− ν(x)C(x, y, t)
= ρj−1,jCj−1,f−1(t)− ρj,j+1Cj,f (t).

(21)

Similarly, the partial derivative

∂

∂y
(k1P (t)yC(x, y, t)) = k1P (t) lim

∆→0

(y + ∆)C(x, y + ∆, t)− yC(x, y, t)
∆

≈ k1P (t) (y + ∆)C(x, y + ∆, t)− yC(x, y, t)
∆

≈ k1P (t) ((y + 1)C(x, y + 1, t)− yC(x, y, t))
= k1P (t) ((f + 1)Cj,f+1(t)− fCj,f (t)) ,

(22)

and also

∂

∂y
(k′(y − x)C(x, y, t)) = k′ lim

∆→0

(y − x)C(x, y, t)− (y − x−∆)C(x, y −∆, t)
∆

≈ k′ (y − x)C(x, y, t)− (y − x−∆)C(x, y −∆, t)
∆

≈ k′ ((y − x)C(x, y, t)− (y − x− 1)C(x, y − 1, t))
= k′ ((j − (f − 1))Cj,f−1(t)− (j − f)Cj,f (t)) .

(23)
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Notice that in (21) and (23) we are taking the left hand derivative and in (22) the right hand
derivative.

The equations of the remaining state variables in (17) are direct translations to the continuous
case of (12) that do not involve any complicated details.

The corresponding continuous version for an attach with no detach process would be the
following

St(x, t) + ∂

∂x
(ν(x)S(x, t)) = 2β1(t)

∫ m

x

ρ(u, x)S (u, t) du− [β1(t) + µ+ k1xP (t)]S(x, t)

Ṗ (t) = d−
(
m+ k1

∫ m

0
uS(u, t)du+ k2R(t)

)
P (t)

+ be−µT k1P (t− T )χ [T,∞) (t)
∫ m

0
uS(u, t− T )du

Ṙ(t) = − (δ + P (t))R(t) + k1P (t)
∫ m

x

u(u− ι+ µ)S (u, t) du

Ṁ(t) = (β2(t)− µ)M(t)

where ν′(x) = d
dxν(x) and, as in system (12), ι stands for one unit and corresponds exactly to

one receptor.

8 Concluding remarks
We have introduced realistic models for the bacteria-phage population interaction which takes
into account in a mechanistic manner all the relevant facts that, as far as we know, impact
the growth and decay rates of both populations: presence of phage resistant bacteria, latency
period, phage adsorption on each individual phage receptor on dead or alive bacterial membranes,
attach-detach phenomena and limited resources.

Although in an actual biological situation the discrete versions of our models could have
several thousands of equations becoming unbearable in its complexity, either analytically or
numerically, we can choose one of the following alternatives:

• Work on the pde continuous versions.

• Change the measure units and adjust the actual value of an individual receptor ι by group-
ing the sub populations into conglomerates of receptor ranges.

Moreover, system (12) by itself should improve our understanding of a complex dynamics
and all involved mechanisms of actual bacteria-phage interaction and could serve as a departure
point for further work.
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