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DISCONTINUOUS GALERKIN METHODS FOR THE
ONE-DIMENSIONAL VLASOV-POISSON SYSTEM

BLANCA AYUSO∗, J. A. CARRILLO† , AND CHI-WANG SHU‡

Abstract. We construct a new family of semi-discrete numerical schemes for the approximation
of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of
discontinuous Galerkin approximation to the Vlasov equation and several finite element (conform-
ing, non-conforming and mixed) approximations for the Poisson problem. We show optimal error
estimates for the all proposed methods in the case of smooth compactly supported initial data. The
issue of energy conservation is also analyzed for some of the methods.

Key words. Vlasov-Poisson system; Discontinuous Galerkin; mixed-finite elements; energy
conservation
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1. Introduction. The Vlasov-Poisson system is one of the basic and simplest
models in the mesoscopic description of large ensembles of interacting particles. In
one-space dimension and in dimensionless variables, the Vlasov equation reads

∂f

∂t
+ v

∂f

∂x
− Φx

∂f

∂v
= 0 (x, v, t) ∈ Ωx × R× [0,∞), (1.1)

where the electrostatic field, −Φx(x, t), derives from a potential Φ(x, t) that satisfies:

−Φxx = ρ(x, t)− 1 (x, t) ∈ Ωx × [0,∞), (1.2)

with ρ(x, t) being the charge density which is defined by

ρ(x, t) =
∫

R
f(x, v, t) dv for all (x, t) ∈ Ωx × [0,∞). (1.3)

The above system describes the evolution of a collisionless plasma of charged particles
(electrons and ions) in the case where the only interaction (between particles) con-
sidered relevant is the mean-field force created through electrostatic effects, hence
neglecting the electromagnetic effects. f(x, v, t) is the electron distribution, which is
a non-negative function depending on the position: x ∈ Ωx ⊂ R; the velocity: v ∈ R,
and the time: t ∈ R, with Ωx denoting the spatial domain where the plasma is con-
fined. As ions are much heavier than electrons, it is assumed that their distribution
is uniform and since the plasma should be neutral, one has∫

Ωx

ρ(x, t) dx =
∫

Ωx

∫
R
f(x, v, t) dv dx = 1 for all t ∈ [0,∞). (1.4)

We refer to the surveys [41, 12, 34] for good account on the state of the art in the
mathematical analysis and properties of the solutions of the Cauchy problem for the
Vlasov-Poisson system.

Many efforts have been dedicated to the numerical approximation of the Vlasov-
Poisson system with either probabilistic or deterministic solvers. Since the beginnings
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of numerical plasma simulations in the 60′s, Particle methods [11] have been often
preferred because of their lower computational complexity. For these methods, the
motion of the plasma is approximated by a finite number of macro-particles in the
physical space that follow backward the characteristics of the Vlasov equation. Several
works have also analyzed their convergence in one [30, 59] and higher dimensions [58].
However, a well known drawback of these methods is their inherent numerical noise
which prevents from getting an accurate description of the distribution function in the
phase space for many applications. To overcome this lack of precision, eulerian solvers,
methods discretizing the Vlasov equation on a mesh of the phase space, have been also
considered. Their design has been explored by many authors and with many different
techniques: finite volumes [36, 37]; Fourier-Fourier transform [44]; finite elements
[60, 61], splitting schemes [33, 17]; and semi-lagrangian methods [39, 31, 16]. All these
methods present different pros and cons and we refer to [38] and the references therein
for a discussion. Finite volumes are a simple and inexpensive option, but in general,
are low order. Fourier-Fourier transform schemes suffer from Gibbs phenomena if
other than periodic boundary conditions are imposed. Semi-lagrangian schemes can
achieve high order allowing also for time integration with larger time steps. However,
they require high order interpolation to compute the origin of the characteristics,
which in turn destroys the local character of the reconstruction. Standard Finite
Element methods suffer from numerical oscillations when approximating the Vlasov
equation. In contrast, Discontinuous Galerkin (DG) finite elements are particularly
well suited for hyperbolic problems and their application to non-linear conservation
laws has already shown their usefulness [26, 25, 28].

Based on a totally discontinuous finite element spaces, DG methods are ex-
tremely versatile and have numerous attractive features: local conservation proper-
ties; can easily handle irregularly refined meshes and variable approximation degrees
(hp-adaptivity), weak approximation of boundary conditions and built-in parallelism
which permits coarse-grain parallelization. In addition, DG mass matrices are block-
diagonal and can be inverted at a very low computational cost, giving rise to very
efficient time-stepping algorithms in the context of time-dependent problems, as it is
the case here. Pioneering research on discontinuous Galerkin methods was pursued
in [51, 47, 35, 56, 3]. We refer to [24, 4] for a detailed historical overview and for
more recent developments to [54, 49, 14, 5] and references therein. However, although
DG methods can deal robustly with partial differential equations of almost any kind,
their application in the realm of numerical approximation of kinetic models has been
considered only very recently. In [20] and [9] the authors study, respectively, the use
of DG for the Boltzmann-Poisson system in semiconductors and for water-bag ap-
proximations of the Vlasov-Poisson system. In [40], an L1-analysis is carried out in
for a simplified linear Vlasov-Boltzmann equation with a given confining force field.

Despite the numerical performance of all these eulerian solvers has been extens-
ively studied, to our knowledge, the issue of their convergence and error analysis for
the Vlasov-Poisson system, has not been tackled till very recently, and only for the
one-dimensional periodic case. The convergence and error analysis for a low order
finite volume scheme is contained in [37]. More recently, semi-lagrangian schemes
have been analyzed; of first order in [7] and high order is considered in [8, 10]. In
these works the authors have also proved a-priori error bounds in different norms for
both the distribution function and the electrostatic field. We also mention that for
other kinetic models, finite differences [52] and spectral methods [46, 45] have been
also considered and analyzed.
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The present paper is concerned with the design and analysis of discontinuous
Galerkin approximation for the one-dimensional periodic Vlasov-Poisson system. We
introduce a new whole family of eulerian schemes, based on the combination of DG
approximation to the Vlasov equation with various different finite element (conform-
ing and nonconforming) approximations to the electrostatic field. The first one is a
direct conforming approximation obtained by taking advantage of the explicit integ-
ration of the Poisson equation in one dimension. Such approximation is equivalent
to what most authors, if not all, have usually considered for this system. However,
in spite of its simplicity, it might not be the most appropriate scheme in view of the
possible extension/adaptation of the numerical scheme to higher dimensions and to
more complex kinetic models. For this reason, in the present paper we also examine
a different approach: since the coupling in the Vlasov-Poisson system is through the
electrostatic field, the main interest in the Poisson problem is the approximation to
Φx rather than to Φ, and therefore mixed finite element methods seem to be the right
choice. We explore Raviart-Thomas and several mixed DG approximations for the
Poisson problem.

We also deal with the convergence and error analysis for the proposed DG methods
for the case of smooth compactly supported solutions. We derive optimal error bounds
in the L2-norm for both the distribution function and the electrostatic field, for high
order methods, namely k ≥ 1, k being the polynomial degree of the DG approximation
for the distribution function. The analysis for piecewise constant approximation (k =
0) is different and will be carried out somewhere else. Although Vlasov equation
might be seen as a simple transport equation, its coupling with Poisson, brings into
play in such equation, a non-linear (quadratic) and non-local term. This generates
some difficulties in the error analysis, precluding a straightforward extension of other
works. A key ingredient is the construction of some projection operators, inspired
in those introduced in [47, 53, 23, 62], but specially designed for the Vlasov-Poisson
system. These special projections allow for avoiding the loose of half order, typical
of the standard error analyses of finite element methods for hyperbolic problems. We
have focused on semi-discrete schemes; discussion on suitable time integrators and
design and analysis of fully discretized schemes is outside the scope of this paper and
will be the subject of future research.

Finally, we wish to note that while developing the methods, we have taken special
care in ensuring that physical properties of the continuous system are preserved. The
DG approximation for the Vlasov equation ensures in an easy way that the total charge
of the system is preserved (1.4). We also discuss the conservation of the total energy
for the proposed schemes. In particular, we propose a full DG method (DG for Vlasov
equation and a particular Local discontinuous Galerkin (LDG) for Poisson problem),
that preserves the total discrete energy of the system. To the best of our knowledge
this is the first scheme proposed in literature for which energy conservation can be
shown. Our proof however requires a technical assumption on the polynomial degree
for the DG methods, namely k ≥ 2. Whether this restriction is really necessary or
not, will be the subject of future research. For many others full DG schemes presented
in the paper, we provide a bound on the energy dissipated by the system.

Extension to higher dimensions, numerical validation of the results presented
here and numerical performance of the presented numerical schemes in challenging
questions such as the Landau damping of Langmuir waves [63] or the Raman scattering
instability [9] will be carried out somewhere else.

The outline of the paper is as follows. In section 2 we describe the main properties
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of the continuous problem, we introduce the notations and revise some basic results
we need for the description and analysis of the numerical methods. In section 3 we
present the numerical methods proposed to approximate the one dimensional periodic
Vlasov-Poisson system. The error analysis for the presented method is detailed in
section 4. We discuss the energy conservation properties of the schemes in section
5. The paper is completed with two appendix, Appendix A and B, containing some
proofs of technical and auxiliary lemmas used in the convergence analysis.

2. Preliminaries, Notation and Auxiliary Results. Throughout this paper,
we use the standard notation for Sobolev spaces [1]. For a bounded domain B ⊂ R2,
we denote by Hm(B) the L2-Sobolev space of order m ≥ 0 and by ‖ · ‖m,B and
| · |m,B the usual Sobolev norm and seminorm, respectively. For m = 0, we write
L2(B) instead of H0(B). We shall denote by Hm(B)/R the quotient space consisting
of equivalence classes of elements of Hm(B) differing by constants; for m = 0 it is
denoted by L2(B)/R. We shall indicate by L2

0(B) the space of L2(B) functions having
zero average over B. This notation will also be used for periodic Sobolev spaces
without any other explicit reference to periodicity to avoid cumbersome notations.

2.1. Continuous Problem: The 1D periodic Vlasov-Poisson System. In
the rest of the paper we take Ωx = [0, 1] in (1.1)-(1.2)-(1.3)-(1.4). Let f0 denote a
given initial distribution f(x, v, 0) = f0(x, v) in (x, v) ∈ [0, 1]×R. We impose periodic
boundary conditions on x for the transport equation (1.1),

f(0, v, t) = f(1, v, t) for all (v, t) ∈ R× [0,∞).

and also for the Poisson equation (1.2),

Φ(0, t) = Φ(1, t) and Φx(0, t) = Φx(1, t) for all t ∈ [0,∞). (2.1)

Notice that (1.4) is coherent with the 1-periodicity of Φx. Let us also emphasize that
the correct way of including periodic boundary conditions is to assume that f and
Φ are the restriction to [0, 1] of periodic functions defined in R in the right spaces.
To guarantee the uniqueness of the solution Φ (otherwise is determined only up to a
constant), we fix the value of Φ at a point. We set

Φ(0, t) = 0 for all t ∈ [0,∞). (2.2)

However, notice that since the Poisson equation (1.2) is one-dimensional it could
be directly integrated. More precisely, by using twice the Fundamental Theorem of
Calculus, it follows that Φ is defined for all t ∈ [0,∞) as

Φ(x, t) = D + CEx+
x2

2
−
∫ x

0

∫ s

0

ρ(z, t) dz ds ∀x ∈ [0, 1] , (2.3)

where D and CE are integration constants determined from (2.2) and (2.1);

D = 0, CE =
∫ 1

0

∫ z

0

ρ(s, t) ds dz − 1
2

∀ t ∈ [0, T ]. (2.4)

Denoting then by E(x, t) = Φx(x, t), and differentiating (2.3) with respect to x, we
find

E(x, t) = Φx(x, t) = CE + x−
∫ x

0

ρ(s, t) ds ∀x ∈ [0, 1] , (2.5)



DG METHODS FOR ONE-DIMENSIONAL VLASOV-POISSON SYSTEM 5

with CE defined as in (2.4). Throughtout the paper, E will be referred as the elec-
trostatic field. Although the physical one is indeed −E, we shall use this abuse in the
notation to follow the standard notation for the Poisson solvers in the Discontinuous
Galerkin community. Observe that (2.1) implies that the electrostatic field has zero
average in agreement with the charge neutrality.

In order to perform our error analysis we restrict our attention to smooth com-
pactly supported solutions f in a fixed time interval [0, T ] for all T > 0. Given a
distribution function f(x, v, t), we will denote by

Q(t) = 1 + sup{|v| : ∃x ∈ [0, 1] and τ ∈ [0, t] such that f(x, v, τ) 6= 0},

for all t ∈ [0,∞) as a measure of the support of the distribution function. The
following result is essentially contained in [29, 57, 41].

Theorem 2.1 (Well-posedness Continuous 1DVP). Given f0 ∈ C1(Rx × Rx),
1-periodic in x and compactly supported in v, Q(0) ≤ Q0 with Q0 > 0. Then the
periodic Vlasov-Poisson system (1.1)-(1.2) has a unique classical solution (f,E), f ∈
C1(0, T ;C1(Rx × Rv)) and E ∈ C1(0, T ;C1(Rx)) that is 1-periodic in x for all time
t in [0, T ] for all T > 0, such that:

i) Regularity: If in addition f0 ∈ Cm(Rx × Rx), m ≥ 2, then, the distribu-
tion function f belongs to Cm(0, T ;Cm(Rx × Rv)) and the force field E ∈
Cm(0, T ;Cm(Rx)).

ii) Control of Support: There exists a constant C depending on Q0 and f0 such
that Q(T ) ≤ CT for all T > 0.

In the rest of this work, we will assume that the initial data f0 satisfies the
hypotheses in Theorem 2.1, and thus, the unique classical solution to the periodic
Vlasov-Poisson system (1.1)-(1.2) satisfies that there exists L > 0 depending on f0, T
and Q0 such that supp( f(t) ) ⊆ Ω for all t ∈ [0, T ], where we have defined Ω = I ×J ,
with I = [0, 1] and J = [−L,L]. The Vlasov transport equation (1.1) is regarded as a
transport equation in ΩT := Ω× [0, T ]. Taking into account the boundary conditions,
the weak formulation of the continuous problem (1.1) reads: find (f,E) such that∫∫

Ω

ftφdx dv −
∫∫

Ω

vfφx dx dv +
∫∫

Ω

Ef φv dx dv = 0 ∀φ ∈ C∞(Ω). (2.6)

It is well known [41, 12, 34] that the continuous solution of (1.1)-(1.2) satisfies four
important properties:

• Positivity: f(t, x, v) ≥ 0, for all (x, v, t) ∈ ΩT .
• Charge conservation: as given in (1.4).
• Lp-conservation:

‖f(t)‖Lp(Ω) = ‖f0‖Lp(Ω) 1 ≤ p ≤ ∞ , ∀ t ∈ [0, T ] . (2.7)

• Conservation of the total Energy:

d

dt

(∫
Ω

|v|2f(x, v, t) dx dv +
∫
I
|E(x, t)|2 dx

)
= 0 . (2.8)

In deriving numerical methods for (1.1)-(1.2), we will try to ensure that the resulting
schemes will be able to produce approximate solutions, enjoying some of these prop-
erties. As usual with high-order schemes for hyperbolic problems, we cannot expect
to preserve positivity of the scheme. However, we will be able to conserve the total
energy for particular method, see section 5.
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2.2. Discontinuous Galerkin Approximation: Basic Notations. Let {Th}
be a family of partitions of our computational/physical domain Ω = I × J = [0, 1]×
[−L,L], which we assume to be regular [21] and made of rectangles. Each cartesian
mesh Th is defined as Th := {Tij = Ii × Jj , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nv } where

Ii = [xi−1/2, xi+1/2] ∀ i = 1, . . . , Nx; Jj = [vj−1/2, vj+1/2] ∀ j = 1, . . . , Nv ,

and the mesh sizes hx and hv relative to the partition are defined as

0 < hx = max
1≤i≤Nx

hx
i := xi+1/2 − xi−1/2, 0 < hv = max

1≤j≤Nv

hv
j := vi+1/2 − vi−1/2 ,

being hx
i and hv

j the cell lengths of Ii and Jj , respectively. The mesh size of the
partition is defined as h = max (hx, hv). For simplicity in the exposition we also
assume that v = 0 corresponds to a node, vj−1/2 = 0 for some j, of the partition of
[−L,L]. The set of all vertical edges is denoted by Γx, and respectively, we will refer
to Γv as the set of all horizontal edges;

Γx :=
⋃
i,j

{xi−1/2} × Jj , Γv :=
⋃
i,j

Ii × {vj−1/2} , Γh = Γx ∪ Γv .

By {Ih} we shall denote the family of partitions of the interval I;

Ih := { Ii : 1 ≤ i ≤ Nx } γx :=
⋃
i

{xi−1/2} .

Next, for k ≥ 0, we define the discontinuous finite element spaces V k
h and Zk

h and a
conforming finite element space, W k+1

h ,

V k
h =

{
ψ ∈ L2(I) : ψ ∈ Pk(Ii), ∀x ∈ Ii i = 1, . . . Nx,

}
,

Zk
h :=

{
z ∈ L2(Ω) : z ∈ Qk(Tij), ∀ (x, v) ∈ Tij = Ii × Jj , ∀i , j

}
,

W k+1
h =

{
χ ∈ C0(I) : χ ∈ Pk+1(Ii), ∀x ∈ Ii i = 1, . . . Nx,

}
∩ L2(I)/R ,

where Pk(Ii) is the space of polynomials (in one dimension) of degree up to k, and
Qk(Tij) is the space of polynomials of degree at most k in each variable.

Trace Operators: We denote by (ϕh)+i+1/2,v and (ϕh)−i+1/2,v the values of ϕh at
(xi+1/2, v) from the right cell Ii+1 × Jj and from the left cell Ii × Jj , respectively;

(ϕh)±i+1/2,v = lim
ε↓0

ϕh(xi+1/2 ± ε, v) , (ϕh)±x,j+1/2 = lim
ε↓0

ϕh(x, vj+1/2 ± ε) ,

for all (x, v) ∈ I × J or in short-hand notation

(ϕh)±i+1/2,v = ϕh(x±i+1/2, v) , (ϕh)±x,j+1/2 = ϕh(x, v±j+1/2) , (2.9)

for all (x, v) ∈ Ii × Jj . The jump [[ · ]] and average {·} trace operators of ϕh at
(xi+1/2, v), ∀ v ∈ Jj are defined by

[[ϕh ]]i+1/2,v := (ϕh)+i+1/2,v − (ϕh)−i+1/2,v ∀ϕh ∈ Zk
h ,

{ϕh}i+1/2,v :=
1
2

[
(ϕh)+i+1/2,v + (ϕh)−i+1/2,v

]
∀ϕh ∈ Zk

h .
(2.10)
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2.3. Technical Tools. We start defining the space

Hm(Th) := {ϕ ∈ L2(Ω) : ϕ|Tij
∈ Hm(Tij) ∀Tij ∈ Th } m ≥ 0.

In our error analysis, since we consider a non-conforming approximation, we shall
employ the following seminorm and norms,

|ϕ|21,h =
∑
i,j

|ϕ|21,Tij
‖ϕ‖2m,Th

:=
∑
i,j

‖ϕ‖2m,Tij
∀ϕ ∈ Hm(Th),m ≥ 0

‖ϕ‖0,∞,Th
= sup

Tij∈Th

‖ϕ‖0,∞,Tij
‖ϕ‖p

Lp(Th) :=
∑
i,j

‖ϕ‖p
Lp(Tij)

∀ϕ ∈ Lp(Th) ,

for all 1 ≤ p < ∞. We also introduce the following norms over the skeleton of the
finite element partition,

‖ϕ‖20,Γx
:=
∑
i,j

∫
Jj

|(ϕ)i+1/2,v|2 dv , ‖ϕ‖20,Γv
=
∑
i,j

∫
Ii

|(ϕ)x,j+1/2|2 dx ∀ϕ ∈ H1(Th) .

Then, we define ‖ϕ‖20,Γh
= ‖ϕ‖20,Γx

+‖ϕ‖20,Γv
. We notice that all the above definitions

apply also for the partition Ih with the obvious changes in the notation.
Projection operators: For k ≥ 0, we denote by P k : L2(I) −→ V k

h the standard L2-
projection onto the finite element space V k

h defined locally, i.e., for each 1 ≤ i ≤ Nx,∫
Ii

(
P k(w)− w

)
qh dx = 0 ∀qh ∈ Pk(Ii) . (2.11)

This projection is stable in Lp(I) for all p [32], i.e.,

‖P k(w)‖Lp(Ih) ≤ C‖w‖Lp(I) ∀w ∈ Lp(I), 1 ≤ p ≤ ∞ . (2.12)

We next introduce two more refined projections (see [53]), which we denote by π±,
that can be defined only for more regular functions, say w ∈ H1/2+ε(Ii) for all i. The
projections π+(w) and π−(w) are the unique polynomials of degree at most k ≥ 1,
that satisfy for each 1 ≤ i ≤ Nx∫

Ii

(
π±(w)− w

)
qh dx = 0, ∀qh ∈ Pk−1

h (Ii), (2.13)

together with the matching conditions;

π+(w(x+
i−1/2)) = w(x+

i−1/2) ; π−(w(x−i+1/2)) = w(x−i+1/2) . (2.14)

Provided w enjoys enough regularity, say w ∈ Hk+1(Ii), the following error estimates
can be easily shown for all these projections:

‖w − P k(w)‖0,Ii

‖w − π±(w)‖0,Ii

}
≤ Chk+1|w|k+1,Ii ∀w ∈ Hk+1(Ii). (2.15)

where C is a constant depending only on the shape-regularity of the mesh and the
polynomial degree [21, 53]. For the standard L2-projection we will also need estimates
in the L∞-norm [55],

‖w − P k(w)‖0,∞,I ≤ Chk+1|w|k+1,∞,I . (2.16)
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Let k ≥ 0 and let Ph : L2(Ω) −→ Zk
h be the standard L2-projection (in the two-

dimensional case) defined by Ph(w) = (P k
x ⊗ P k

v )(w); i.e., for all i and j,∫
Ii

∫
Jj

(Ph(w(x, v))− w(x, v))ϕh(x, v) dv dx = 0 ∀ϕh ∈ Pk(Ii)⊗ Pk(Jj) . (2.17)

From its definition, it follows inmediately its L2-stability, but it can be shown to be
stable in Lp for all p [32],

‖Ph(w)‖Lp(Th) ≤ C‖w‖Lp(Ω) ∀w ∈ Lp(Ω), 1 ≤ p ≤ ∞ . (2.18)

3. The suggested numerical methods. In this section we formulate the nu-
merical schemes we propose to approximate the Vlasov-Poisson system. The first
one is a scheme where the DG approximation for the transport equation is coupled
with a simple conforming approximation of higher degree for the electrostatic field.
The second scheme results by combining mixed finite element approximation for the
Poisson problem together with DG approximation to the transport equation. Last ap-
proach is based on fully DG approximation for both variables the electron distribution
f and the electrostatic field.

Due to the special structure of the transport equation: v is independent of x and E
is independent of v; for all methods the DG approximation for the electron distribution
function is done exactly in the same way. Therefore we start by introducing the DG
method for the transport equation (1.1), and in what follows, we denote by Ei

h the
restriction to Ii of the finite element approximation Eh to be defined later on.

Let fh(0) = Ph(f0) be the approximation to the initial data. The numerical
method reads: find (Eh, fh) : [0, T ] −→ (Wh,Zk

h) such that

Nx∑
i=1

Nv∑
j=1

Bh
ij(Eh; fh, ϕh) = 0 ∀ϕh ∈ Zk

h , (3.1)

where the bilinear form Bh
ij(Eh; fh, ϕh) is defined for each i, j and ϕh ∈ Zk

h as:

Bij(Eh; fh, ϕh) =
∫

Tij

∂fh

∂t
ϕh dv dx−

∫
Tij

vfh
∂ϕh

∂x
dv dx+

∫
Tij

Ei
hfh

∂ϕh

∂v
dv dx

+
∫

Jj

[
((̂vfh)ϕ−h )i+1/2,v − ((̂vfh)ϕ+

h )i−1/2,v

]
dv (3.2)

−
∫

Ii

[(
̂(Ei

hfh

)
ϕ−h

)
x,j+1/2

−
(

̂(Ei
hfh

)
ϕ+

h

)
x,j−1/2

]
dx,

where we have used the short hand notation given in (2.9). Notice that the expression
Bh

ij(Eh; fh, ϕh) is in fact a bilinear form. Eh is used only to emphasise the nonlinear
dependence on it. Here, the boundary terms are the so-called numerical fluxes, which
are nothing but the approximation of the functions vf and Ef at the vertical and
horizontal boundaries Γx and Γv, respectively. By specifying them, the DG method is
completely determined. The design of these numerical fluxes is the key issue to ensure
the stability of the numerical scheme. We consider the following upwind choice:

v̂fh =
{
v f−h if v ≥ 0,
v f+

h if v < 0,
Êi

hfh =
{
Ei

h f
+
h if Ei

h ≥ 0,
Ei

h f
−
h if Ei

h < 0 .
(3.3)
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We define the numerical fluxes at the boundary ∂Ω by

(v̂fh)1/2,v = (v̂fh)Nx+1/2,v, (Êi
hfh)x,1/2 = (Êi

hfh)x,Nv+1/2 = 0, ∀ (x, v) ∈ I × J ,

so that the periodicity in x and the compactness in v are reflected. The discrete
density, denoted by ρh(x, t), is given by

ρh(x, t) =
∑

j

∫
Jj

fh(x, v, t) dv ∀ x ∈ I, ∀ t ∈ [0, T ]. (3.4)

Note that from the definitions (1.3) and (3.4) of ρ and ρh, respectively, and using
Cauchy-Schwartz’s inequality it is straightforward to see that

‖ρ(t)− ρh(t)‖20,I ≤ 2L‖fh(t)− f(t)‖20,Th
∀t ∈ [0, T ]. (3.5)

One of the nice features of the DG approximation for the transport is that charge
conservation is ensured by construction, as the following result shows:

Lemma 3.1. Particle or Mass Conservation: Let k ≥ 0 and let fh ∈
C1([0, T ];Zk

h) be the DG aproximation to f , satisfying (3.1)-(3.2). Then,∑
i,j

∫
Tij

fh(t) dv dx =
∑
i,j

∫
Tij

fh(0) dv dx =
∑
i,j

∫
Tij

f0 dv dx = 1 ∀ t ∈ [0, T ]. (3.6)

Proof. Note that since fh(0) = Ph(f0), from the definition of the L2-projection
(2.17) (with ϕh = 1) together with (1.4) we have∑

i,j

∫
Tij

fh(0) dv dx =
∑
i,j

∫
Tij

Ph(f0) dv dx =
∑
i,j

∫
Tij

f0 dv dx = 1. (3.7)

We now fix an arbitrary Tij and take in (3.2) the test function ϕh = 1 in Tij ; ϕh = 0
elsewhere. Noting that such a test function verifies (ϕh)−i+1/2,v = (ϕh)+i−1/2,v = 1, we
have

Bij(Eh : fh, 1) =
d

dt

∫
Tij

fh dv dx+
∫

Jj

[(̂vfh)i+1/2,v − (̂vfh)i−1/2,v] dv

−
∫

Ii

[ ̂(Ei
hfh)

x,j+1/2
− ̂(Ei

hfh)
x,j−1/2

] dx .

Moreover, note that since the choice of Tij was done arbitrarily, last identity holds
true for all i, j. By summing last identity over all i and j, the flux terms telescope and
there is no boundary term left because of the periodic (for i) and compactly supported
(for j) boundary conditions. Hence, taking into account (3.1) we have,

0 =
∑
i,j

Bij(Eh; fh, 1) =
d

dt

∑
i,j

∫
Tij

fh dv dx = 0,

and so integration in time together with (3.7) lead to (3.6).

We next deal with the approximation to the electrostatic field E(x, t) = Φx(x, t).
The discrete Poisson problem reads,

(Φh)xx = 1− ρh x ∈ [0, 1], Φh(1, t) = Φh(0, t). (3.8)
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The well posedness of the above discrete problem is guaranteed by (3.6) from Lemma
3.1 which in particular implies

(Φh)x(1, t) = (Φh)x(0, t). (3.9)

To ensure the uniqueness of the solution we set Φh(0, t) = 0. To get the solution of
the discrete Poisson problem at least two possible approaches arise:

i) Direct integration of the discrete Poisson problem (3.8),
ii) approximation of (1.2) with some mixed finite element method; possibly dis-

continous.
We next consider in detail these approaches.

3.1. Conforming approximation to the Electrostatic potential. Reason-
ing as in section 2.1, direct integration of the discrete Poisson problem (3.8) together
with Φh(0, t) = 0 gives

Φh(x, t) = Ch
Ex+

x2

2
−
∫ x

0

∫ s

0

ρh(z, t)dzds ∀x ∈ [0, 1] , (3.10)

where Ch
E is determined from the boundary conditions in (3.8),

Ch
E =

∫ 1

0

∫ z

0

ρh(s, t) ds dz − 1
2

∀ t ∈ [0, T ]. (3.11)

Then, differentiation w.r.t x in (3.10) leads to

Eh(x, t) = Ch
E + x−

∫ x

0

ρh(s, t) ds ∀x ∈ [0, 1]. (3.12)

Observe that since ρh ∈ V k
h , Eh turns out to be a continuous polynomial of degree

k + 1; so Eh is conforming. Its restriction to Ii is given by

Ei
h(x, t) = Ei−1

h (xi−1/2, t) + (x− xi−1/2)−
∫ x

xi−1/2

∫
J
fh(s, χ, t)dχds ∀x ∈ Ii, (3.13)

and Ei
h(x, t) = 0 for all x ∈ I r [xi−1/2, xi+1/2]. The boundary condition (3.9) reads

E0
h(x1/2, t) = ENx

h (xNx+1/2, t) ∀ t ∈ [0, T ]. (3.14)

To show that Eh indeed belongs to W k+1
h we have to verify that it has zero average.

From (3.11) it follows straightforwardly

∑
i

∫
Ii

Eh(x) dx = Eh(x1/2, t)
∑

i

hi+
∑

i

x2
i+1/2 − x2

i−1/2

2
−
∑

i

∫
Ii

∫ x

x1/2

ρh(x) dx = 0.

Finally, we state a Lemma that relates the error committed in the approximation to
E, with the error in accumulated in the approximation to f . This result will be used
in our subsequent analysis and its proof is given in Appendix A.

Lemma 3.2. Let k ≥ 0 and let (Eh, fh) ∈ C0([0, T ];W k+1
h ) × C1([0, T ];Zk

h) be
the conforming-DG approximation to the solution of Vlasov-Poisson system (E, f),
solution of (3.1)–(3.2)–(3.12). Then,

‖E(t)− Eh(t)‖0,I ≤ C1‖f(t)− fh(t)‖0,Th
∀ t ∈ [0, T ] , (3.15)
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where 2L =meas(J ) and C1 = (4L(1 + hx))1/2. Furthermore, if the force field E ∈
C0([0, T ];H1(I)), the following estimates also hold for all t ∈ [0, T ],

‖E(t)− Eh(t)‖0,∞,I ≤ C2‖f(t)− fh(t)‖0,Th
with C2 = ((2L)1/2 + C1), (3.16)

and

‖Eh(t)‖0,∞,I ≤ C2‖f(t)− fh(t)‖0,Th
+ ‖E(t)‖1,I . (3.17)

3.2. Mixed Finite Element Approximation for the Poisson problem.
We rewrite problem (3.8) as a first order system:

Eh =
∂Φh

∂x
x ∈ [0, 1]; −∂Eh

∂x
= ρh − 1 x ∈ [0, 1] (3.18)

with boundary condition Φh(0, t) = Φh(1, t) = 0. In this section, we consider a
mixed approximation to (3.18), with the one-dimensional version of Raviart-Thomas
elements, RTk k ≥ 0 [50, 15]. In 1D the mixed finite element spaces turn out to be
the (W k+1

h , V k
h )-finite element spaces. Note that in particular, d

dx (W k+1
h ) = V k

h . For
k ≥ 0 the scheme reads: find (Eh,Φh) ∈W k+1

h × V k
h such that for all i∫

I
Eh z dx+

∫
I

Φh zx dx = 0 ∀ z ∈W k+1
h , (3.19)

−
∫
I
(Eh)x p dx =

∫
I
(ρh − 1)p dx ∀ p ∈ V k

h . (3.20)

We refer to [50, 15] for the stability and error analysis of the method for linear second
order problems (see also [6] for the 1D-version of the scheme in the lowest order case
k = 0). However, in our case, the Poisson problem is “non linear” since the source
term in (1.2) depends on the solution through ρ. Therefore in the error analysis a
consistency error appears. We have the following result, whose proof can be found in
Appendix A.

Lemma 3.3. Let k ≥ 0 and let (Eh,Φh) ∈ C0([0, T ];W k+1
h × V k

h ) be the RTk

approximation to the Poisson problem (3.18). Then, the following estimates hold for
all t ∈ [0, T ]:

‖E(t)− Eh(t)‖0,I + |E(t)− Eh(t)|1,I≤Chk+1‖E(t)‖k+1,I +
√

2L‖f(t)− fh(t)‖0,Th
,

‖E(t)− Eh(t)‖0,∞,I ≤ Chk+1‖E(t)‖k+1,I + (2L)1/2‖f(t)− fh(t)‖0,Th
, (3.21)

‖Eh(t)‖0,∞,I ≤ |E(t)|1,I + (2L)1/2‖f(t)− fh(t)‖0,Th
+ Ch‖E(t)‖1,I , .

3.3. DG approximation for the Poisson problem. Consider the DG ap-
proximation to the first order system (3.18): find (Eh,Φh) ∈ Vr

h × Vr
h such that for

all i:∫
Ii

Ehz dx = −
∫

Ii

Φhzx dx+ [(Φ̂hz
−)i+1/2 − (Φ̂hz

+)i−1/2] ∀ z ∈ Vr
h, (3.22)∫

Ii

Ehpx dx−
[
(Êhp

−)i+1/2 − (Êhp
+)i−1/2

]
=
∫

Ii

(ρh − 1)p dx ∀ p ∈ Vr
h, (3.23)
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where (Φ̂h)i−1/2 and (Êh)i−1/2 are the numerical fluxes. In this work we focus on the
following family of DG-schemes (see however remark 3.5):{

(Φ̂h)i−1/2 = {Φh}i−1/2 − c12[[ Φh ]]i−1/2 + c22[[Eh ]]i−1/2 ,

(Êh)i−1/2 = {Eh}i−1/2 + c12[[Eh ]]i−1/2 + c11[[ Φh ]]i−1/2 ,
(3.24)

where the parameters c11, c12 and c22 depend solely on xi−1/2 ∀ i, and are still at our
disposal. At the boundary nodes due to periodicity in x we impose

(Φ̂h)1/2 = (Φ̂h)Nx+1/2, (Êh)1/2 = (Êh)Nx+1/2.

Following [18] we define

a(Eh, z) :=
∑

i

∫
Ii

Ehzdx+
∑

i

c22[[Eh ]]i−1/2[[ z ]]i−1/2 ,

b(Φh, z) :=
∑

i

∫
Ii

Φhzxdx+
∑

i

({Φh} − c12[[ Φh ]])[[ z ]]i−1/2 ,

c(Φh, p) :=
∑

i

c11[[ Φh ]]i−1/2[[ p ]]i−1/2 ,

and

A((Eh,Φh); (z, p)) = a(Eh, z) + b(Φh, z)− b(p,Eh) + c(Φh, p) .

Thus, problem (3.22)-(3.23) can be rewritten as: find (Eh,Φh) ∈ V r
h × V r

h such that

A((Eh,Φh); (z, p)) =
∑

i

∫
Ii

(ρh − 1)p dx ∀ (z, p) ∈ V r
h × V r

h . (3.25)

Note that A(·, ·) induces the following semi-norm ∀ (z, p) ∈ H1(Ih)×H1(Ih):

|(z, p)|2A := A((z, p); (z, p)) = ‖z‖20,Ih
+ ‖c22[[ z ]]‖20,γx

+ ‖c11[[ p ]]‖20,γx
. (3.26)

We also define the norm for all r ≥ 0

‖|(E,Φ)‖|2r+1,I := ‖E‖2r+1,I + ‖Φ‖2r+2,I ∀ (E,Φ) ∈ Hr+1(I)×Hr+2(I). (3.27)

We next describe the specific choices of the methods we consider (by specifying the
parameters in (3.24)). We restrict ourselves to k ≥ 1, k being the order of approxim-
ation used for fh.
(i) Local Discontinuous Galerkin (LDG) method: we take r = k + 1 so the
spaces are Vr

h = V k+1
h and we set c22 = 0 and c11 = ch−1 with c a strictly positive

constant. This method was first introduced in [27] for a time dependent convection
diffusion problem (with c11 = O(1)). In this paper we take c11 = ch−1 with c a
positive constant, and |c12| = 1/2; that is:{

(Êh)i−1/2 = {Eh}i−1/2 − c12[[Eh ]]i−1/2 + ch−1[[ Φh ]]i−1/2 ,

(Φ̂h)i−1/2 = {Φh}i−1/2 + c12[[ Φh ]]i−1/2

|c12| =
1
2
. (3.28)

For the approximation of linear problems, it has been proved (see [27],[18]) conver-
gence of order r + 1 and r for Φh and Eh, respectively.
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(ii) Minimal dissipation LDG and DG methods (MD-LDG and MD-DG):
we set r = k and the spaces are taken as Vr

h = V k
h . For the MD-LDG method, the

numerical fluxes are defined by taking in (3.24) c22 = 0, c12 = 1/2 and c11 = 0 except
at a boundary node, that is,{

(̂Φh)i−1/2 = (Φh)−i−1/2

(̂Eh)i−1/2 = (Eh)+i−1/2 + c11[[ Φh ]]i−1/2,
c11 =

{
0 i ≤ Nx − 1,
crh−1 i = Nx .

(3.29)

For the MD-DG method the same choice applies except for (̂Φh)i−1/2 = (Φh)−i−1/2 +
c22[[Eh ]]i−1/2 with c22 = ch/r. For the approximation of linear problems, the MD-
LDG method was first introduced for the 2D case in [23] but with c11 = O(1) rather
than O(h−1) at the boundary. The analysis in the one-dimensional case for both the
MD-LDG and the MD-DG can be found in [19], where the authors show that the
approximation to E, with both methods, superconverges with order r + 1.

(iii) General DG & Hybridized LDG method: we set r = k so that the spaces
are taken as Vr

h = V k
h , and we take the numerical fluxes as in (3.24) with:

c11 , c22 , > 0 |c12| bounded c11 ∼
1
c22

.

Superconvergence results are proved in [22] (for dimension d ≥ 2) for the approxim-
ation of linear problems. Another option which also provides superconvergence and
could be efficiently implemented, is the Hybridized LDG method (see [22]) in which
the numerical fluxes can be recast in the form (3.24) by setting: (Êh)i−1/2 =

(
τ−

τ++τ−

)
(Eh)+i−1/2 +

(
τ+

τ++τ−

)
(Eh)−i−1/2 +

(
τ−τ+

τ++τ−

)
[[ Φh ]]i−1/2 ,

(Φ̂h)i−1/2 =
(

τ+

τ++τ−

)
(Φh)+i−1/2 +

(
τ−

τ++τ−

)
(Φh)−i−1/2 +

(
1

τ++τ−

)
[[Eh ]]i−1/2 ,

where τ± are non-negative constants. To achieve superconvergence, it is enough to
take in each interval Ii one τ 6= 0 at one end and at the other end we set τ = 0.
Superconvergence can be shown by following the analysis in [22] but using the special
projections defined through (2.13)-(2.14).

As it happened with RTk approximation, our poisson problem is nonlinear and
therefore the estimates shown in [18],[19] and [22] are not directly applicable. However,
we have the following result, whose proof can be found in Appendix A.

Lemma 3.4. Let k ≥ 1 and let (Eh,Φh) ∈ C0([0, T ];V r
h × V r

h ) be the DG approx-
imation to the Poisson problem (3.18) solution of (3.22)-(3.23)-(3.24), with any of
the three choices (i), (ii) or (iii). Then, the following estimate hold for all t ∈ [0, T ],

‖E(t)− Eh(t)‖20,Ih
≤ Ch2(k+1)‖|(E(t),Φ(t))‖|2r+1,I + 2L‖f(t)− fh(t)‖20,Th

, (3.30)

where r is the order of polynomials of Vr
h as given in (i), (ii), (iii). Furthermore, it

also holds

|(E(t)−Eh(t),Φ(t)−Φh(t))|2A ≤ Ch2(k+1)‖|(E(t),Φ(t))‖|2r+1,I +2L‖f(t)−fh(t)‖20,Th
.

where r = k + 1 for (i) and r = k for (ii) and the H-LDG in (iii).
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Remark 3.5. Since k ≥ 1, one might consider any of the (consistent and stable)
DG methods that fit in the framework given in [4] for approximating the Poisson prob-
lem (1.2). Most of the results shown in this paper for the general LDG discretization
(with general c12), hold (with minor changes in the proofs) for any of the resulting
methods. For the sake of conciseness, the details are omitted.

4. Error Analysis. We start by showing a cell-entropy inequality [43] for the
proposed DG schemes (3.1), which guarantees their L2-stability. We then derive the
error equation and give some auxiliary results that are used in the proofs of the main
results, which are given at the end of the section.

4.1. Stability. Next Proposition shows that the above selection of the numerical
fluxes is enough to preserve the L2-stability of numerical solution of (3.1)-(3.2), for
all k ≥ 0.

Proposition 4.1 (L2-stability). Let k ≥ 0 and let fh ∈ Zk
h be the approximation

of problem (1.1), solution of (3.1)-(3.2), with the numerical fluxes as in (3.3). Then

‖fh(t)‖0,Th
≤ ‖fh(0)‖0,Th

∀ t ∈ [0, T ]. (4.1)

Proof. By setting ϕh = fh in (3.2) we have

Bh
i,j(Eh;fh, fh) =

1
2

∫
Ii

∫
Jj

∂(f2
h)

∂t
dv dx− 1

2

∫
Jj

∫
Ii

v
∂(f2

h)
∂x

dv dx

+
1
2

∫
Ii

∫
Jj

Ei
h

∂(f2
h)

∂v
dv dx+

∫
Jj

[
(v̂fhf

−
h )i+1/2,v − (v̂fhf

+
h )i−1/2,v

]
dv

−
∫

Ii

[(
Êi

hfhf
−
h

)
x,j+1/2

−
(
Êi

hfhf
+
h

)
x,j−1/2

]
dx .

Taking into account that Eh depends only on x (through fh) while v is independent
of x, integration of the second and third volume terms leads to

Bh
i,j(Eh; fh, fh) =

1
2
d

dt
‖fh‖20,Tij

+
[
F̂i+1/2,j − F̂i−1/2,j

]
+ ΘF

i−1/2,j

+
[
Ĝi,j+1/2 − Ĝi,j−1/2

]
+ ΘG

i,j−1/2 , (4.2)

where F̂i+1/2,j , Ĝi,j+1/2 are defined for all i, j, as

F̂i+1/2,j = −
∫

Jj

[v
2
(f2

h)− − v̂fhf
−
h

]
i+1/2,v

dv

Ĝi,j+1/2 =
∫

Ii

[
Ei

h

2
(f2

h)− − Êi
hfhf

−
h

]
x,j+1/2

dx,

and

ΘF
i−1/2,j = −

∫
Jj

[v
2
(f2

h)− − v̂fhf
−
h

]
i−1/2,v

dv +
∫

Jj

[v
2
(f2

h)+ − v̂fhf
+
h

]
i−1/2,v

dv,

ΘG
i,j−1/2 =

∫
Ii

[
Ei

h

2
(f2

h)− − Êi
hfhf

−
h

]
x,j−1/2

dx−
∫

Ii

[
Ei

h

2
(f2

h)+ − Êi
hfhf

+
h

]
x,j−1/2

dx.
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We next show that the choice (3.3) ensures that both ΘF
i−1/2,j and ΘG

i,j−1/2, for all i
and j, are non-negative. By rewriting our choice of the numerical fluxes (3.3) as:

(̂vfh) = v{fh} −
|v|
2

[[ fh ]], ̂[Ei
hfh

]
= Ei

h{fh}+
|Ei

h|
2

[[ fh ]], (4.3)

and using that [[ f2
h ]] = 2{fh}[[ fh ]], it can be easily seen that ΘF

i−1/2,j and ΘG
i,j−1/2

become

ΘF
i−1/2,j =

∫
Jj

[v
2
[[ f2

h ]]− v̂fh[[ fh ]]
]

i−1/2,v
dv =

∫
Jj

|v|
2

[[ fh ]]2i−1/2,vdv, (4.4)

ΘG
i,j−1/2 =

∫
Ii

[
Êi

hfh[[ fh ]]− Ei
h

2
[[ f2

h ]]
]

x,j−1/2

dx =
∫

Ii

|Ei
h|

2
[[ fh ]]2x,j−1/2dx. (4.5)

Therefore, ΘF
i−1/2,j ≥ 0 and ΘG

i,j−1/2 ≥ 0 for all i and j and so substitution in (4.2)
leads to

1
2
d

dt

∫
Ti,j

f2
h dv dx+

[
F̂i+1/2,j − F̂i−1/2,j

]
+
[
Ĝi,j+1/2 − Ĝi,j−1/2

]
≤ 0,

By summing in the above inequality over i and j, the flux terms telescope and there
is no boundary term left because of the periodic (for i) and compactly supported (for
j) boundary conditions. Hence,

1
2
d

dt

∑
i,j

∫
Ti,j

f2
h dv dx =

1
2
d

dt
‖fh‖20.Th

≤ 0, (4.6)

and therefore, integration in time of the above inequality yields to (4.1).

Remark 4.2. By carefully revising the proof one realise that in fact inequality
(4.6) is replaced by the identity

1
2

(
d

dt
‖fh‖20,Th

+ ‖ |v|1/2[[ fh ]]‖20,Γx
+ ‖ |Eh|1/2[[ fh ]]‖20,Γv

)
= 0. (4.7)

Therefore, by defining the norm

‖|fh(t)‖|2 := ‖fh(t)‖20,Th
+
∫ t

0

‖|v|1/2[[ fh(s) ]]‖20,Γx
ds+
∫ t

0

‖ |Eh|1/2[[ fh(s) ]]‖20,Γv
ds , (4.8)

the thesis of Proposition 4.1 can be reformulated as:

‖|fh(t)‖|2 = ‖fh(0)‖20,Th
≤ ‖|fh(0)|‖2 for all t ∈ [0, T ].

Finally, we note that for the convergence and error analysis of numerical schemes
for non-linear problems, one usually needs to assume/prove that some a-priori estim-
ate on the approximate solution holds for all time. In fact, what is generally done is
to assume that there exists some Cκ > 0 such that,

‖f − fh‖∗,Th
≤ Cκ, ∀ t ∈ [0, T ],
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where ‖·‖∗,Th
usually refer to a stronger norm than the one for which the error analysis

is carried out. For instance ‖ · ‖∗,Th
= ‖ · ‖0,∞,Th

if the error analysis is carried out in
the L2 or energy norm, see [48]. We wish to stress that in the present work, due to
the structure of the continuous problem, such type of assumption is not required. The
main reason is that although our L2-error analysis requires a bound on ‖Eh‖0,∞,I ,
such an estimate would depend ultimately on ρh (zero order moment of fh), which
in general in more regular than fh itself. In the end, this fact allows for getting a
bound for ‖Eh‖0,∞,I depending on the L2-error ‖f − fh‖0,Th

, for which we can easily
guarantee that there exists cκ > 0 such that,

‖f − fh‖0,Th
≤ cκ, ∀ t ∈ [0, T ]. (4.9)

Estimate (4.9) follows from the L2–conservation property of the continuous solution
(2.7) and the L2-stability of its approximation fh given in Proposition 4.1, together
with triangle inequality and the L2-stability of the standard L2–projection, (2.18)
with p = 2,

‖|f(t)− fh(t)‖|20,Th
≤ 2(‖f(t)‖20,Th

+ ‖|fh(t)‖|20,Th
) ≤ 2‖f0‖20,Ω + 2‖|Pk

h(f0)‖|20,Th
)

≤ 2(1 + C)‖f0‖20,Th
= cκ .

Let us point out that this result allows us to obtain error estimates that hold for every
h and not only in the asymptotic regime.

4.2. Error Equation and Special Projection. To derive the error equation
the weak formulation (2.6) is of little use, since we should take the test function in
Zh. Hence, by allowing the test function to be discontinuous we find that the true
solution satisfies the variational formulation:

Nx∑
i=1

Nv∑
j=1

Bi,j(E; f, ϕh) = 0 ∀ϕh ∈ Zk
h , (4.10)

where

Bi,j(E; f, ϕh) =
∫

Ti,j

∂f

∂t
φh dv dx−

∫
Ti,j

vf
∂φh

∂x
dv dx+

∫
Ti,j

Eif
∂φh

∂v
dv dx (4.11)

+
∫

Jj

[
(vfϕh)−i+1/2,v − (vfϕh)+i−1/2,v

]
dv−

∫
Ii

[(
Eifϕh

)−
x,j+1/2

−
(
Eifϕh

)+
x,j−1/2

]
dx,

Ei being the restriction of the electrostatic field E to Ii; i.e., Ei = E|Ii
. Subtracting

(3.1) from (4.10) we obtain the error equation,

0 =
∑
i,j

Bi,j(E; f, ϕh)− Bh
i,j(E

i
h; fh, ϕh) (4.12)

=
∑
i,j

ai,j(f − fh, ϕh) +
∑
i,j

Ni,j(E; f, ϕh)−N h
i,j(Eh; fh, ϕh) ∀ϕh ∈ Zh .

where the bilinear form a(·, ·) =
∑

i,j ai,j(·, ·) gathers all linear terms:

ai,j(fh, ϕh) =
∫

Jj

∫
Ii

[
∂fh

∂t
ϕh − vfh

∂ϕh

∂x

]
dv dx

+
∫

Jj

[
(v̂fhϕ

−
h )i+1/2,v − (v̂fhϕ

+
h )i−1/2,v

]
dv
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and N h
i,j(Eh; ·, ·) (resp. Ni,j(E; ·, ·)) carries the nonlinear part;

N h
i,j(E

i
h; fh, ϕh) =

∫
Ii

∫
Jj

Ei
hfh

∂ϕh

∂v
dv dx

−
∫

Ii

[(
Êi

hfhϕ
−
h

)
x,j+1/2

−
(
Êi

hfhϕ
+
h

)
x,j−1/2

]
dx.

Notice that due to the nonlinearity, the true solution f does not satisfy the equa-
tions defining the numerical scheme (3.1)–(3.2). In fact we have a consistency error:
N h(E; f, ϕh)−N (E; f, ϕh) for all ϕh ∈ Zh, which is ”hidden” in the nonlinear error
N (E; f, ϕh)−N h(Eh; fh, ϕh).
Special Projection: We next introduce the 2-dimensional projection operator Πh :
C0(Ω) −→ Zk

h which is defined in the following way. Let Ti,j = Ii×Jj be an arbitrary
element of Th and let w ∈ C0(Ti,j). The restriction of Πh(w) to Ti,j is defined by

Πh(w) =
{

π̃x ⊗ π̃v(w), if sign(Ei) = constant,
P k ⊗ π̃v(w), if sign(Ei) 6= constant, (4.13)

where P k
x denotes the standard L2-projection onto Pk(Ii) defined in (2.11) and π̃x , π̃v

are defined by

π̃x(w) =
{
π+

x (w) if Ei > 0,
π−x (w) if Ei < 0, π̃v(w) =

{
π−v (w) if v > 0,
π+

v (w) if v < 0, (4.14)

with π±x : C0(Ii) −→ V k
h and π±v : C0(Jj) −→ V k

h being the special projection oper-
ators in the x and v direction respectively, defined as in (2.13)-(2.14). The definition
of projection Πh is inspired in those considered in [47, 23] and that introduced in [62]
for the analysis of Runge-Kutta methods for conservation laws, see Remark 4.4. Note
that taking into account (4.13)-(4.14) together with (2.13)-(2.14), it is straightforward
to see that Πh(w) is uniquely defined. Next Lemma although elementary provides the
several approximation results needed for our analysis.

Lemma 4.3. Let w ∈ Hs+2(Ti,j), s ≥ 0 and let Πh be the projection operator
defined through (4.13)-(4.14). Then,

‖w −Πh(w)‖0,Tij ≤ Chmin (s+2,k+1)‖w‖s+1,Tij ,

‖w −Πh(w)‖0,e ≤ Chmin (s+ 3
2 ,k+ 1

2 )‖w‖s+1,Tij
, ∀ e = Ii , Jj ⊂ ∂Tij .

(4.15)

Proof. From the definition (4.13) we distinguish two cases. If Tij is an element
such that sign(Ei(x)) is constant ∀x ∈ Tij , the proof is the same as [18, Lemma
3.2]. If on the contrary, Tij is such that ∃x ∈ Tij for which Ei(x) = 0, we have
Πh(w) = P k ⊗ π̃v(w). But still, since Πh is a polynomial preserving and linear op-
erator, estimates (4.15) follow also in this case from Bramble-Hilbert lemma, trace
Theorem and standard scaling arguments. Details are omitted for the sake of con-
ciseness.

Summing estimates (4.15) from Lemma 4.3, over elements of the partition Th,

‖w−Πh(w)‖0,Ω+h−1/2‖w−Πh(w)‖0,Γ ≤ Chk+1‖w‖k+1,Ω ∀w ∈ Hk+1(Ω). (4.16)

Now, denoting by

ωh = Πh(f)− fh, ωe = Πh(f)− f, (4.17)
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we can write

f − fh = [Πh(f)− fh]− [Πh(f)− f ] = ωh − ωe. (4.18)

Then, by taking as test function ϕh = ωh ∈ Zk
h , the error equation (4.12) becomes∑

i,j

[
a(ωh − ωe, ωh) +Ni,j(Ei; f, ωh)−N h

i,j(E
i
h; fh, ω

h)
]

= 0. (4.19)

We next define

K1(v, f, ωh) =
∑
i,j

K1
i,j(v, ω

e, ωh) , K2(Eh, f, ω
h) =

∑
i,j

K2
i,j(Eh, f, ω

h) , (4.20)

where

K1
i,j(v, f, ω

h) =
∫

Ti,j

vωeωh
x dv dx

−
∫

Jj

[
(v̂ωe(ωh)−)i+1/2,v − (v̂ωe(ωh)+)i−1/2,v

]
dv , (4.21)

K2
i,j(Eh, f, ω

h) =
∫

Ti,j

Ehω
eωh

v dv dx

−
∫

Ii

[
(Êhωe(ωh)−)x,j+1/2 − (Êhωe(ωh)+)x,j−1/2

]
dx . (4.22)

Next two Lemmas provide estimates for the terms defined in (4.20). Both lemmas
extend and generalize [23, Lemma 3.6] to the case of variable coefficients and nonlinear
problems, respectively. To keep the readability flow of the paper, the proofs of these
thecnical Lemmas are postponed till Appendix B.

Remark 4.4. We wish to note that the definition (4.13) of Πh is done in terms
of E (and v), while the definition of the numerical fluxes is done in terms of Eh (and
v). This is due to the non-linearity of the problem and it is inspired in the ideas used
in [62]. By defining Πh in terms of E rather than Eh and using the regularity of the
solution, we will be able to estimate optimally the expression K2 without any further
assumption on the mesh partition Th.

Lemma 4.5. Let Th be a cartesian mesh of Ω, k ≥ 1 and let fh ∈ Zk
h be the

approximate distribution function satisfying (3.1)-(3.2). Let f ∈ C0([0, T ];Hk+2(Ω))
and let K1 be defined as in (4.20). Assume that the partition Th is constructed so that
v = 0 corresponds to a node of the partition. Then, the following estimate holds true

|K1(v, f, ωh)| ≤ Chk+1(‖f‖k+1,Ω + CL‖f‖k+2,Ω)‖ωh‖0,Th
. (4.23)

Lemma 4.6. Let Th be a cartesian mesh of Ω, k ≥ 1 and let (Eh, fh) ∈
Wh × Zk

h be the solution to (3.1)-(3.2) with Wh a finite element space, conform-
ing or non-conforming, of at least first order (Wh = W k+1

h or Wh = V r
h ). Let

(E, f) ∈ C0([0, T ];W 1,∞(I)×Hk+2(Ω)) and let K2 be defined as in (4.20). Then, the
following estimate holds

|K2(Eh, f, ω
h)| ≤Chk‖E − Eh‖0,∞,I‖f‖k+1,Ω‖ωh‖0,Th

(4.24)

+ Chk+1(‖f‖k+2,Ω‖E‖0,∞ + ‖f‖k+1,Ω|E|1,∞,I)‖ωh‖0,Th
.
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4.3. Auxiliary Results. We next prove two Lemmas that are needed for the
proofs of the main Theorems 4.9, 4.13, and 4.11. The first one reduces the expression
for the linear part of the error equation (4.19):

Lemma 4.7. Let f ∈ C0(Ω) and let fh ∈ Zk
h with k ≥ 1. Then, the following

equality holds

a(f − fh, ω
h) =

∑
i,j

∫
Ti,j

(
ωh

t − ωe
t

)
ωhdxdv +

∑
i,j

∫
Jj

|v|
2

[[ωh ]]2i−1/2,vdv +K1(v, f, ωh).

Proof. From (4.18) we get a(f − fh, ω
h) = a(ωh, ωh)− a(ωe, ωh). Arguing as for

(4.4) in the proof of Proposition 4.1 (note that ωh ∈ Zh), we have for the first term

a(ωh, ωh) =
∑
i,j

∫
Ii

∫
Jj

ωh
t ω

hdxdv +
∑
i,j

∫
Jj

|v|
2

[[ωh ]]2i−1/2,vdv. (4.25)

The definition (4.21) of K1, the continuity of f and the numerical fluxes (3.3) imply

a(ωe, ωh) =
∑
i,j

∫
Ii

∫
Jj

ωe
tω

hdxdv −
∫

Jj

∫
Ii

vωeωh
xdxdv −

∑
i,j

∫
Jj

[
v̂ωe[[ωh ]]

]
i−1/2,v

dv

=
∑
i,j

∫
Ii

∫
Jj

ωe
tω

hdxdv −K1(v, f, ωh).

which together with (4.25) completes the proof.

The other auxiliary Lemma deals with the error coming from the nonlinear term:

Lemma 4.8. Let E ∈ C0(I), f ∈ C0(Ω) and fh ∈ Zk
h with k ≥ 1. Then, the

following identity holds∑
i,j

[Ni,j(E; f ;ωh)−N h
i,j(Eh; fh, ω

h)] = (4.26)

=
∑
i,j

∫
Ii

|Ei
h|

2
[[ωh ]]2x,j−1/2 dx−

∑
i,j

∫
Ti,j

[Ei − Ei
h]
∂f

∂v
ωh dv dx−K2(Eh, f, ω

h).

Proof. Subtracting the nonlinear terms in (4.11) and (3.2) we have

Ni,j(E; f ;ωh)−N h
i,j(Eh; fh, ω

h) = −
∫

Ii

∫
Jj

[Eif − Ei
hfh]

∂ωh

∂v
dv dx

−
∫

Ii

[
([Eif − Êi

hfh]ωh)−x,j−1/2 − ([Eif − Êi
hfh]ωh)+x,j−1/2

]
dx. (4.27)

Notice that the integrand of the volume part above, can be decomposed as[
Eif − Ei

hfh

]
± Ei

hf = [Ei − Ei
h]f + Ei

h(f − fh), (4.28)

and so substituting into (4.27) we find

Ni,j(E; f ;ωh)−N h
i,j(Eh; fh, ω

h) = T1 + T2 + T3, (4.29)
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where

T1 =
∫

Ii

∫
Jj

[Ei − Ei
h]fωh

v dv dx, T2 =
∫

Ii

∫
Jj

Ei
h[f − fh]ωh

v dv dx,

T3 =
∫

Ii

[
([(Eif)+ − Êi

hfh](ωh)+)x,j−1/2 − ([(Eif)− − Êi
hfh](ωh)−)x,j+1/2

]
dx.

Since neither E nor Eh depend on v, integration by parts of T1 gives T1 = T1a + T1b:

T1 = −
∫

Ii

∫
Jj

[Ei − Ei
h]
∂f

∂v
ωh dv dx+

∫
Ii

(Ei − Ei
h)[(fωh)−x,j+1/2 − (fωh)+x,j−1/2]dx .

Summing now over j and taking into account the continuity of f we find for T1b,∑
j

T1b = −
∑

j

∫
Ii

(Ei − Ei
h)(f [[ωh ]])x,j−1/2dx. (4.30)

We next deal with T2. From the splitting (4.18) we have

T2 =
∫

Ii

Ei
h

∫
Jj

ωhωh
v dv dx−

∫
Ii

Ei
h

∫
Jj

ωeωh
v dv dx = T2a + T2b ,

and so, integrating the first term and summing over j we easily get

∑
j

T2a =
∑

j

1
2

∫
Ii

Ei
h

∫
Jj

∂(ωh)2

∂v
dv dx = −

∑
j

∫
Ii

Ei
h

2
[[ (ωh)2 ]]x,j−1/2 dx. (4.31)

We finally deal with the boundary terms collected in T3. Summation over j and the
continuity of E and f gives∑

j

T3 =
∑

j

∫
Ii

[Eif − Êi
hfh]x,j−1/2[[ωh

h ]]x,j−1/2dx .

Then, reasoning as in (4.28), we deduce for all i that(
Eif − Êi

hfh

)
±Ei

hf = (Ei−Ei
h)f+

(
Ei

hf − Êi
hfh

)
= (Ei−Ei

h)f+Êi
h(ωh)−Êi

h(ωe) ,

where in the last step we have used the continuity of f together with the consistency
of the numerical flux Êi

hfh. Thus, substituting back into T3, we infer

∑
j

T3 =
∑

j

∫
Ii

(
(Ei − Ei

h)f [[ωh ]] + Êi
hω

h[[ωh ]]− Êi
hω

e[[ωh ]]
)

x,j−1/2
dx

=
∑

j

T3a +
∑

j

T3b +
∑

j

T3c .

Then, for the first term, T3a, recalling the expression (4.30), we get∑
j

[T1b + T3a] = 0. (4.32)
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Next, summing T3b and T2a from (4.31) and arguing as for (4.5) in the proof of
Proposition 4.1, we find

∑
j

[T2a + T3b] =
∑

j

|Ei
h|

2
[[ωh ]]2x,j−1/2dx . (4.33)

Finally, recalling the definition (4.22) of K2 and adding up T3c with T2b we get∑
j

[T2b + T3c] = −K2(Eh, f, ω
h).

Thus, substituting the above identity together (4.33) and the expression for T1a into
the equation (4.29) we reach (4.26) and so the proof is complete.

4.4. Approximation. We next show the main convergence results of this work
proving a-priori error estimates for the electron distribution f , for all the proposed
methods. In each case, as a byproduct result, we also get the corresponding conver-
gence results for the electrostatic field E. The section is closed with some remarks
about the comparison with the convergence of other methods. We start with the
result for the Conforming-DG method:

Theorem 4.9 (Conforming-DG method). Let k ≥ 1 and consider the unique
compactly supported solution of the Vlasov-Poisson system (1.1)-(1.2) given by The-
orem 2.1 with f ∈ C1([0, T ];Hk+2(Ω)) and E ∈ C0([0, T ];W 1,∞(I)). Let (Eh, fh) ∈
C0([0, T ];W k+1

h ) × C1([0, T ];Zk
h) be the conforming-DG approximation, solution of

(3.1), (3.2) and (3.12). Then,

‖f(t)− fh(t)‖0,Th
≤ C0h

k+1 ∀ t ∈ [0, T ],

where C0 depends on the time t, the polynomial degree k, the shape regularity of the
partition and depends also on f and on E through the norms

C0 = C0(‖f(t)‖k+2,Ω, ‖ft(t)‖k+1,Ω, L, ‖E(t)‖1,∞,I) .

Proof. Recalling the error equation (4.19)

a(ωh − ωe, ωh) +N (Ei; f, ωh)−N h(Ei
h; fh, ω

h) = 0,

and using Lemmas 4.7 and 4.8, we have

∑
i,j

∫
Ti,j

ωh
t ω

h dv dx+
∑
i,j

∫
Jj

|v|
2

[[ωh ]]2i+1/2,v dv +
∑
i,j

∫
Ii

|Ei
h|

2
[[ωh ]]2x,j+1/2 dx

=
∑
i,j

∫
Ti,j

ωe
tω

h dv dx+
∑
i,j

∫
Ti,j

[Ei − Ei
h]
∂f

∂v
ωh dv dx−K1(v, f, ωh) +K2(Eh, f, ω

h)

= T1 + T2 −K1 +K2 . (4.34)

Notice that the left hand side of the above equation, is exactly what results after
summation over i and j in (4.2) from Proposition (4.1), see also (4.7). Then, it is
enough to estimate the terms on the right hand side of the above equation. The first
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term is directly estimated by using Cauchy-Schwarz and the arithmetic-geometric
inequalities together with the interpolation property (4.16)

|T1| ≤
C

2
(‖ωe

t ‖20,Th
+ ‖ωh‖20,Th

) ≤ Ch2k+2‖ft‖Hk+1(Ω) + C‖ωh‖20,Th
. (4.35)

The second term on the rhs of (4.34), is readily estimated by using Hölder inequality
together with estimate (3.16) from Lemma 3.2, the splitting (4.18), the arithmetic-
geometric inequality and the interpolation estimate (4.16),

|T2| ≤ C‖E − Eh‖0,∞,I‖fv‖0,Ω‖ωh‖0,Th
≤ CC2‖f − fh‖0,Th

‖fv‖0,Ω‖ωh‖0,Th

≤ CC2(‖ωe‖0,Th
+ ‖ωh‖0,Th

)‖fv‖0,Ω‖ωh‖0,Th

≤ CC2h
2k+2‖f‖2k+1,Ω‖fv‖0,Ω + C2‖fv‖0,Ω‖ωh‖20,Ω , (4.36)

where C2 ≈ L1/2 is the constant in Lemma 3.2. Estimate (4.23) from Lemma 4.5 and
the arithmetic-geometric inequality give for the third term,

|K1| ≤ Ch2k+2L2‖f‖2k+2,Ω + C‖ωh‖20,Th
. (4.37)

Last term is bounded by using estimate (4.24) from Lemma 4.6 and arguing similarly
as for T2; using estimate (3.16) from Lemma 3.2, the splitting (4.18), the arithmetic-
geometric inequality and the interpolation estimate (4.16),

|K2|≤Chk‖f‖k+1,Ω(‖ωe‖0,Th
+‖ωh‖0,Th

)‖ωh‖0,Th
+ Chk+1‖f‖k+2,Ω‖E‖1,∞,I‖ωh‖0,Th

≤ Ch2k+2(‖f‖2k+2,Ω‖E‖21,∞,I + C2h
k‖f‖3k+1,Ω) + C(1 + hk‖f‖k+1,Ω)‖ωh‖20,Th

.

Then, by substituting the above estimate together with (4.35), (4.36) and (4.37) into
the error equation (4.34), we conclude

d

dt
‖ωh(t)‖20,Th

≤ A(t) ‖ωh(t)‖20,Th
+ h2k+2B(t)

with A(t) = (C + L1/2‖fv‖0,Ω + CL1/2hk‖f‖k+1,Ω) and

B(t)= C‖f‖2k+2,Ω(L2+‖E‖21,∞,I)+‖ft‖2k+1,Ω+CL1/2‖f‖2k+1,Ω(‖fv‖20,Ω+hk‖f‖k+1,Ω) .

Therefore, integration in time of the above inequality and a standard application of
Gronwall’s inequality gives the error estimate,

‖ωh(t)‖20,Th
≤ C2

0h
2k+2, (4.38)

where C0 is as stated in the claim. Hence, Theorem 4.9 follows from the triangle
inequality and the interpolation property (4.16).

As a direct consequence of Theorem 4.9 together with estimates (3.15) and (3.16)
of Lemma 3.2, we obtain the following result on the error of the electrostatic field.

Corollary 4.10. Under the hypothesis of Theorem 4.9, the following error
estimates hold

‖E(t)− Eh(t)‖0,I ≤ C0C1h
k+1 ∀ t ∈ [0, T ],

‖E(t)− Eh(t)‖∞,I ≤ C0C2h
k+1 ∀ t ∈ [0, T ],
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where C1 and C2 are given in (3.15) and (3.16), respectively and C0 in Theorem 4.9.

Next result establishes the convergence for the RTk-DG method:

Theorem 4.11 (RTk-DG method). Let k ≥ 1 and consider the unique com-
pactly supported solution of the Vlasov-Poisson system (1.1)-(1.2) given by Theorem
2.1 with f ∈ C1([0, T ];Hk+2(Ω)) and E ∈ C0([0, T ];Hk+1(I)). Let ((Eh,Φh), fh) ∈
C0([0, T ]; (W k+1

h × V k
h )) × C1([0, T ];Zk

h) be the RTk-DG approximation solution of
(3.1), (3.2), (3.19), and (3.20). Then,

‖f(t)− fh(t)‖0,Ω ≤ C4h
k+1 ∀ t ∈ [0, T ],

where C4 depends on the time t, the polynomial degree k, the shape regularity of the
partition and depends also on f and on E through the norms

C4 = C4(‖f(t)‖k+2,Ω, ‖ft(t)‖k+1,Ω, L, ‖E(t)‖k+1,I) ,

Proof. The proof follows exactly the same lines as the proof of Theorem 4.9. In
this case, to bound the error ‖E −Eh‖0,∞,I that appears in the estimates for T2 and
K2 one has to use estimate (3.21) from Lemma 3.3. We omit the details for the sake
of conciseness.

Corollary 4.12. Under the hypothesis of Theorem 4.11, the following error
estimates hold

‖E(t)− Eh(t)‖0,I + |E(t)− Eh(t)|1,I ≤ 2C4L
1/2hk+1 + Chk+1‖E‖k+1,I

‖E(t)− Eh(t)‖0,∞,I ≤ C4L
1/2hk+1 + Chk+1‖E‖k+1,I

for all t ∈ [0, T ], where C4 is the constant of Theorem 4.11.

Finally, we show the convergence for the full DG approximation:

Theorem 4.13 (DG-DG method). Let r ≥ k ≥ 1 and consider the unique com-
pactly supported solution of the Vlasov-Poisson system (1.1)-(1.2) given by Theorem
2.1 with f ∈ C1([0, T ];Hk+2(Ω)) and E ∈ C0([0, T ];Hr+1(I)). Let ((Eh,Φh), fh) ∈
C0([0, T ];Vr

h × Vr
h) × C1([0, T ];Zk

h) be the DG-DG approximation that satisfies (3.1),
(3.2), (3.22), and (3.23) with any of the three choices (i), (ii) or (iii). Then,

‖f(t)− fh(t)‖0,Ω ≤ C4h
k+1 ∀ t ∈ [0, T ],

where C5 depends on time t, the polynomials degrees k and r, the shape regularity of
the partition and depends also on f and on (E,Φ) through the norms

C5 = C5(‖f(t)‖k+2,Ω, ‖ft(t)‖k+1,Ω, L, ‖|(E,Φ)‖|r+1,I) .

Proof. The proof follows essentially the same lines as the proof of Theorems 4.9
and 4.11, but dealing with T2 we use estimate (3.30) from Lemma 3.4;

|T2| ≤C‖E − Eh‖0,I‖fv‖0,∞,Ω‖ωh‖0,Th

≤
[
Chk+1‖|(E,Φ)|‖r+1,I + (2L)1/2‖f − fh‖0,Th

]
‖fv‖0,∞,Ω‖ωh‖0,Th

≤Ch2k+2(‖|(E,Φ)|‖2r+1,I + 2L‖f‖2k+1,Ω)‖fv‖0,∞,Ω

+ (C + (2L)1/2‖fv‖0,∞,Ω)‖ωh‖20,Ω. (4.39)
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Also, to bound for K2 we first note that Eh = P k+1(Eh) since Eh ∈ V r
h (and r = k+1

or r = k), so that inverse inequality, estimate (2.16) and the L∞-stability of the L2-
projection give

‖E − Eh‖0,∞,Ih
≤ ‖E − P k+1(E)‖0,∞,Ih

+ Ch−1/2‖P k+1(E)− Eh‖0,Ih

≤ Chk+1‖E‖k+1,∞,I + Ch−1/2‖E − Eh‖0,Ih
. (4.40)

Then, using estimate (4.24) from Lemma 4.6 together with the above estimate and
the L2-bound for the error E − Eh given in Lemma 3.4, we get

|K2| ≤ C(1 + L1/2hk−1/2‖f‖k+1,Ω)‖ωh‖20,Th

+ Ch2k+2(‖E‖21,∞,I‖f‖2k+2,Ω + ‖|(E,Φ)‖|2r+1,I‖f‖2k+1,Ω + hk−1/2‖f‖3k+1,Ω) ,

where we have neglected high order terms of order O(h4k−1/4). Noting that k ≥ 1,
the proof can now be completed by arguing as in the proof of Theorem 4.9. We omit
the details for the sake of brevity.

Remark 4.14. Taking into account the definition (4.8) of the norm ‖| · ‖| (see
Remark 4.2), observe that in the proof of Theorems 4.9, 4.11 and 4.13, similarly as
how it is obtained the error estimate (4.38), we also get

‖|ωh(t)‖|2 ≤ C2
sh

2k+2 s = 0, 4, 5. (4.41)

As a direct consequence of Theorem 4.13 and Lemma 3.4 we have the following
Corollary whose proof is omitted.

Corollary 4.15. Under the hypothesis of Theorem 4.13, the following error
estimates hold for all t ∈ [0, T ]

‖E(t)− Eh(t)‖20,I ≤ Ch2k+2‖|(E(t),Φ(t))|‖2r+1,I + C2
5Lh

2k+2

where C5 is the constant of Theorem 4.13, and

‖E(t)− Eh(t)‖20,I + c11‖[[ Φh(t) ]]‖20,γx
+ c22‖[[Eh(t) ]]‖20,γx

≤ C6h
2k+2 ,

with C6 = C2
5L + C‖|(E(t),Φ(t))|‖2r+1,I where r = k + 1 for (i) and r = k for (ii)

and the H-LDG in (iii).

Remark 4.16 (Order of convergence attained by other methods). As noted in the
introduction, there are very few works dealing with the convergence and error analysis
of eulerian solvers for the (periodic) Vlasov-Poisson system. High order schemes have
been only analyzed in the context of semi-lagrangian methods [7, 8, 10]. Although, it is
difficult to compare their results with ours, since these analysis deal with fully discrete
schemes, we just mention briefly what one can expect to achieve with these methods
in the case of a constant Courant-Friederichs-Levy CFL (ν = dt/h =constant) and in
the case where the time step dt were taken the largest possible. In [7], error estimates
in L∞ of first order (for CFL=constant) and slightly better than first order (at most of
order 4/3 for the largest possible time step), are shown assuming the initial data is of
class C2. High order schemes, by using polynomials of degree k in the reconstruction,
are considered in [8, 10]. There, the authors prove error bounds for the distribution
function and the electrostatic field in L2 and L∞, respectively, of at most order k (if
CFL=constant) and of order 2(k + 1)/3 if the largest possible time step wants to be
used. These works typically require the technical assumption f ∈W k+1,∞(Ω).
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5. Energy conservation. In this section we discuss the issue of energy con-
servation (2.8) for the proposed numerical schemes. We start by showing that for a
particular choice of the LDG approximation to the Poisson-problem (1.2), the result-
ing LDG-DG method for the Vlasov system possess such conservation property, under
a technical restriction the on the degree of the polynomial spaces; namely we require
k ≥ 2. However, we wish to note that such restriction is rather natural since we want
to use v2 as test function, as it is done in the proof of (2.8) for the continuous prob-
lem. We close the section with two results that provide (under the same restriction)
an energy inequality for others full DG methods considered in this paper.

Theorem 5.1 (Energy conservation). Let k ≥ 2 and let ((Eh,Φh), fh) be the
LDG-DG approximation belonging to C1([0, T ]; (V k

h ×V k
h )×Zk

h) of the Vlasov-Poisson
system (1.1)-(1.2), solution of (3.1), (3.2), (3.22), and (3.23), with the numerical
fluxes (3.3) for the approximate electron distribution. Let (Eh,Φh) ∈ V k

h × V k
h be

the corresponding LDG approximation to the associated Poisson problem, solution of
(3.22)-(3.23) with numerical fluxes: (Êh)i−1/2 = {Eh}i−1/2 −

sign(v)
2 [[Eh ]]i−1/2 + c11[[ Φh ]]i−1/2 ,

(Φ̂h)i−1/2 = {Φh}i−1/2 + sign(v)
2 [[ Φh ]]i−1/2 ,

(5.1)

where c11 > 0 and c22 = 0 at all nodes. Then, the following identity holds true

d

dt

∑
i,j

∫
Tij

v2 fh(t) dv dz +
∑

i

∫
Ii

Eh(t)2 dx+ c11
∑

i

[[ Φh(t) ]]2i−1/2

 = 0 . (5.2)

Remark 5.2. Prior to give the proof of the above Proposition, we wish to point
out that we are making an abuse of notation by saying that (Eh,Φh) ∈ V k

h × V k
h is

the solution with numerical fluxes (5.1). Actually, we should talk about two solutions,
one for each sign of v. Such two solutions (one for v > 0 the other for v < 0) enter
in the Vlasov equation, when it comes to evaluate the fluxes in the v-direction (i.e.,
̂(Ei

hfh)).

Proof. To simplify the notation, throughout the proof, we drop the sub/super
indexes h from the finite element functions. The proof is carried out in several steps.

First step:
We start by noting that since f ∈ Zk

h , for each fixed v ∈ J , f(·, v) ∈ V k
h (as a

polynomial in x). Hence, we can set z = f in (3.22)∫
Ii

Efdx = −
∫

Ii

Φfx dx+ [(Φ̂f−)i+1/2 − (Φ̂f+)i−1/2].

Then, multiplying the above equation by v and integrating over J , we find∫
J

∫
Ii

vEf dv dx = −
∫
J

∫
Ii

vΦfx dv dx+
∫
J
v[(Φ̂f−)i+1/2 − (Φ̂f+)i−1/2] dv .

Integration by parts of the volume term on the right hand side above, gives∫
J

∫
Ii

vEf dv dx=
∫
J

∫
Ii

vfΦx dv dx+
∫
J
v[(Φ̂f −fΦ)−i+1/2− (Φ̂f −fΦ)+i−1/2] dv. (5.3)
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Next, we set ϕh = Φ ∈ V k
h ⊂ Zk

h in (3.2) (Φ as a polynomial in Zk
h is constant in v)∑

i,j

∫
Tij

ftΦ dv dx−
∫

Tij

vf(Φ)x dv dx+
∫

Jj

[
((̂vf)Φ−)i+1/2,v − ((̂vf)Φ+)i−1/2,v

]
dv

+
∫

Tij

Ef(Φ)v dv dx−
∫

Ii

Φ
[
(Êi

hf)x,j+1/2 − (Êi
hf)x,j−1/2

]
dx = 0.

Then, note that last two terms in the above equation vanish; the volume part cancels
since Φ does not depend on v, and the sum of the boundary terms telescope, due to
the consistency of the numerical flux Êi

hf , and no boundary term is left due to the
zero boundary conditions in v. Thus we have,∑

i,j

∫
Tij

ftΦ dv dx=
∑
i,j

∫
Tij

vfΦx dv dx−
∫

Jj

[
(v̂fΦ−)i+1/2,v − (v̂fΦ+)i−1/2,v

]
dv. (5.4)

Combining then the above equation with (5.3) and using the periodicity of the bound-
ary conditions in x we get,∑

i,j

∫
Tij

ftΦ dv dx=
∑
i,j

[∫
Jj

(
v̂f [[ Φ ]] + v(Φ̂[[ f ]]− [[ fΦ ]])

)
i−1/2,v

dv+
∫

Tij

vEf dv dx

]
. (5.5)

Second step:
Now, we differentiate with respect to time the first order system (3.18) and consider
its DG approximation. The second equation (3.23) reads,∫

Ii

Etpxdx−
[
(Êtp

−)i+1/2 − (Êtp
+)i−1/2

]
=
∫

Ii

ρtp dx ∀ p ∈ V k
h ,

where the definition for Êt corresponds to that chosen for Ê but with (E,Φ) replaced
by (Et,Φt). By setting p = Φ and replacing ρt by its definition (3.4), we have∫

Ii

EtΦxdx−
[
(ÊtΦ−)i+1/2 − (ÊtΦ+)i−1/2

]
=
∫

Ii

∫
J
ftΦ dv dx ∀ p ∈ V k

h . (5.6)

Now, taking z = Et in (3.22) and integrating by parts the volume term on the right
hand side of that equation, we find∫

Ii

EEt dx=
∫

Ii

ΦxEt dx− [(ΦEt)−i+1/2−(ΦEt)+i−1/2]+ [(Φ̂(Et)−)i+1/2− (Φ̂(Et)+)i−1/2].

Then, combining (5.6) with the above equation, summing over i, and using the peri-
odic boundary conditions for the Poisson problem, we get∑

i

∫
Ii

EEtdx =
∑

i

∫
Ii

∫
J
ftΦ dv dx+

∑
i

[[[ ΦEt ]]− (Φ̂[[Et ]] + Êt[[ Φ ]])]i−1/2. (5.7)

Third step:
We now proceed as in the proof for the continuous case, for instance see [34], and we
take ϕ = v2

2 in (3.1)-(3.2),∑
i,j

(∫
Tij

ft
v2

2
dv dx−

∫
Tij

vf(
v2

2
)x dv dx+

∫
Jj

v2

2

[
(v̂f)i+1/2,v − (v̂f)i−1/2,v

]
dv

)

+
∑
i,j

(∫
Tij

Efv dv dx−
∫

Ii

v2

2

[
(Êi

hf)x,j+1/2 − (Êi
hf)x,j−1/2

]
dx

)
= 0.
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Then, using the consistency of the numerical fluxes (̂vf) and (̂Ei
hf), the boundary

terms telescope and no boundary term is left due to the periodic in x and zero in v
boundary conditions. Hence, we simply get∑

i,j

(∫
Tij

ft
v2

2
dv dx+

∫
Tij

Efv dv dx

)
= 0. (5.8)

Next, we use equation (5.5) to substitute the last term in (5.8),

0 =
∑
i,j

(∫
Tij

ft
v2

2
dv dx+

∫
Tij

ftΦ dv dx−
∫

Jj

(
v̂f [[ Φ ]]− v[[ Φf ]] + vΦ̂[[ f ]]

)
i−1/2,v

dv

)
.

Finally, we substitute the second volume term above by means of (5.7),

0 =
∑
i,j

∫
Tij

ft
v2

2
dv dx +

∑
i

∫
Ii

EEtdx−
∑

i

[
[[ ΦEt ]]− (Φ̂[[Et ]] + Êt[[ Φ ]])

]
i−1/2

−
∑
i,j

∫
Jj

(
v̂f [[ Φ ]]− v[[ Φf ]] + vΦ̂[[ f ]]

)
i−1/2,v

dv. (5.9)

We next define for all i,

ΘH
i−1/2 = Φ̂[[Et ]]− [[ ΦEt ]] + Êt[[ Φ ]] ,

ΘF
i−1/2,v = −v̂f [[ Φ ]] + v[[ Φf ]]− vΦ̂[[ f ]] ,

(5.10)

so that (5.9) can be rewritten as∑
i,j

∫
Tij

ft
v2

2
dv dx+

∑
i

∫
Ii

EEtdx+
∑

i

ΘH
i−1/2 +

∑
i,j

∫
Jj

ΘF
i−1/2,vdv = 0 . (5.11)

Thus, we only need to show that ΘH
i−1/2 and ΘF

i−1/2,v are, for all i, either zero or
the time derivative of a non-negative function. From the definition of the numerical
fluxes (5.1), and using that

[[ ab ]] = a+b+ − a−b− = {a}[[ b ]] + [[ a ]]{b}, ∀ a, b ∈ V k
h , (5.12)

we find

ΘH
i−1/2 = {Et}[[ Φ ]] + {Φ}[[Et ]] + c11[[ Φt ]][[ Φ ]]− [[ ΦEt ]] = c11[[ Φt ]][[ Φ ]] .

Therefore since (E,Φ) is C1 in time,

ΘH
i−1/2 = c11[[ Φt ]][[ Φ ]] =

1
2
d

dt

(
c11[[ Φ ]]2

)
. (5.13)

Similarly from (3.3) and (5.12), we get

ΘF
i−1/2,v = −v{f}[[ Φ ]]− v{Φ}[[ f ]] +

|v|
2

[[ f ]][[ Φ ]] + v · c12[[ f ]][[ Φ ]] + v[[ Φf ]]

=
|v|
2

[[ f ]][[ Φ ]] + v · c12[[ f ]][[ Φ ]] .

Now, recalling that c12 = −sign(v)/2 and noting that v · sign(v) = |v|, we also have
that ΘF

i−1/2,v = 0 for all i and so substituting the above result together with (5.13)
into (5.11) we reach (5.2).
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5.1. Energy inequalities. The energy conservation property given in last The-
orem heavily relies on the choice of the approximation for the Poisson problem and
more precisely on the definition of the numerical fluxes, which somehow accounts for
the coupling of the transport equation with the Poisson problem. Nevertheless, for
full DG approximation of the Vlasov-Poisson system with other choices of numerical
fluxes as given in Section 3.3, we can prove some energy inequality measuring the
error in energy committed in terms of h at time t. For all t ∈ [0, T ], we define the
discrete energy as

Eh(t) :=
∑
i,j

∫
Tij

fh(t)v2 dv dx +
∑

i

∫
Ii

|Eh(t)|2 dx

+
∑

i

(
c11[[ Φh(t) ]]2i+1/2 + c22[[Eh(t) ]]2i+1/2

)
. (5.14)

We next state two results: the former, Proposition 5.3, requires smoothness of the
solution; the latter, Proposition 5.4, establishes a decay of order O(h) for the energy,
provided h < L, without any further regularity assumption on the solution. The proof
of both Propositions can be found in Appendix C.

Proposition 5.3. Let m ≥ k ≥ 2 and consider the unique compactly supported
solution of the Vlasov-Poisson system (1.1)-(1.2) given by Theorem 2.1 with f ∈
C1([0, T ];Hk+1(Ω)) and E ∈ C0([0, T ];Hm+1(I)). Let the DG-DG approximation of
the Vlasov-Poisson problem (1.1)-(1.2) be ((Eh,Φh), fh) ∈ C1([0, T ]; (V k

h ×V k
h )×Zk

h),
solution of (3.1), (3.2), (3.22), and (3.23), with the numerical fluxes (3.3) for the
approximate density and (3.24) for the DG approximation of the Poisson problem.
Then,

|Eh(t)− Eh(0)| ≤ h2 min (k+1,m)K0 + hmin (2k+1,2m)(c22 + c−1
11 )K1 ,

where m = k for any LDG (3.28) and the general DG (3.24); and m = k + 1 for the
Hybridized LDG method (iii). The constants K0 and K1 depend on

K0 = K0(
∫ t

0

(‖Eh(s)‖m+1,I + ‖Φh(s)‖m+2,I)2ds, C5),

K1 = K1(L
∫ t

0

‖f(s)‖2k+1,Ωds, C5).

Proposition 5.4. Let m ≥ k ≥ 2 and consider the unique compactly suppor-
ted solution of the Vlasov-Poisson system (1.1)-(1.2) given by Theorem 2.1 with f ∈
C1([0, T ];Hk+1(Ω)) and E ∈ C0([0, T ];Hm+1(I)). Let the LDG-DG approximation of
the Vlasov-Poisson problem (1.1)-(1.2) be ((Eh,Φh), fh) ∈ C1([0, T ]; (V k

h ×V k
h )×Zk

h),
solution of (3.1), (3.2), (3.22), and (3.23), with the numerical fluxes (3.3) for the ap-
proximate density and (3.24), with c11 = ch−1 and c22 = 0 for the LDG approximation
of the Poisson problem. Then, for h < 1/L,

|Eh(t)− Eh(0)| ≤ chL

[∑
i

c11[[ Φh(t) ]]2i+1/2 + chLtF0

]
,

where F0 is defined as

F0 := ‖[Ph(f0)]1/2|v|‖20,Th
+ ‖Ph(f0)‖20,Th

+ ‖Ei
0‖20,Th

+ ‖c1/2
11 [[ Φ0 ]]‖20,Γx

.
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Appendix A. Proofs of the Error Estimates of the Electrostatic field.
In this appendix we provide the proofs of all the Lemmas stated in section 3 related
to the consistency error in the approximation to the Electrostatic field.

A.1. Conforming approximation to the Electrostatic Potential.
Proof of Lemma 3.2. We first show (3.15). Since both E and Eh have zero average
over I, we deduce ‖E−Eh‖L2

0(I) = ‖E−Eh‖0,I . From the definitions (2.5) and (3.13)
of the electric field E and its approximation Eh, we find for all x ∈ Ii

|E(x)− Ei
h(x)|2 ≤ 2|E(x1/2)− E0

h(x1/2)|2 + 2

∣∣∣∣∣
∫ x

x1/2

[ρh(s)− ρ(s)]ds

∣∣∣∣∣
2

= 2(T0 + T1) .

The term T0 can be readily estimated from (2.4) and (3.11) and Hölder inequality

T0 = |E(x1/2)−E0
h(x1/2)|2 = |CE−Ch

E |2 =
∣∣∣∣∫ 1

0

∫ z

0

[ρh(s)− ρ(s)] ds dz
∣∣∣∣2≤ ‖ρh−ρ‖20,I .

Holder’s inequality yields T1 ≤ ‖ρh−ρ‖20,I . Hence, integration over Ii and summation
over i and Cauchy-Schwarz inequality, gives ‖E − Eh‖20,I ≤ 4‖ρh − ρ‖20,I , and so by
using (3.5), estimate (3.15) follows.

To prove (3.16), from the conformity of the approximation (Eh ∈W k+1
h ), Sobolev

imbeddings together with triangle inequality, we find

‖E − Eh‖0,∞,I ≤ ‖E − Eh‖1,I ≤
√

2(‖Eh − E‖0,I + |Eh − E|1,I).

The first term above has been already estimated. For the second, note that

∂

∂x
[E − Eh] = ρh(x, t)− ρ(x, t), ∀x ∈ (xi−1/2, xi+1/2) ∀ i ,

and so,

|Eh−E|21,I =
∑

i

∫
Ii

∣∣∣∣ ∂∂x [E − Eh]
∣∣∣∣2 dx =

∑
i

∫
Ii

|ρh(x, t)−ρ(x, t)|2 dx = ‖ρ−ρh‖20,Ih
.

Hence, from (3.5) and (3.15) and substituting above we reach (3.17). The proof for
the uniform estimate (3.17) follows immediately.

A.2. Mixed Finite Element Approximation for the Poisson Problem.
Proof of Lemma 3.3. The proof of estimate (3.21) would follow from the a-priori
estimate for linear problems together with an “aplication ” of a version of Strang’s
Lemma for mixed methods. We briefly sketch it for the sake of completeness. In one
dimension, we only need to show (3.21) due to Sobolev’s imbbeding H1(I) ⊂ L∞(I).
Using (3.19)-(3.20), we get

−
∫

I

(E − Eh)z dx+
∫

I

(Φ− Φh)zx dx = 0 ∀ z ∈W k+1
h , (A.1)∫

I

(E − Eh)xp dx =
∫

I

(ρ− ρh)p dx ∀ p ∈ V k
h . (A.2)
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being (E,Φ) the continous solution to the Poisson problem. The term on the right
hand side of equation (A.2) is the consistency error. Next, let Rh : H1(I) −→W k+1

h

be the projection operator defined by:
∫

Ii

(z −Rh(z))q dx = 0, ∀ q ∈ Pk−1(Ii) ,

Rh(z)(xi−1/2) = z(xi−1/2), Rh(z)(xi+1/2) = z(xi+1/2),
∀ i.

For k = 0 the definition of Rh reduces to that of the standard conforming interpolant.
It is easy to verify that Rh corresponds to the one-dimensional Raviart-Thomas pro-
jection. In particular it satisfies the approximation property

‖z −Rh(z)‖0,I ≤ Chk+1‖z‖k+1,I ∀ z ∈ Hk+1(I). (A.3)

From the definition of Rh it is straightforward to verify that∫
I
z −Rh(z))xp dx = 0, ∀ z ∈ H1(I), ∀ p ∈ V k

h , (A.4)

which express the the commuting property of the projectionRh: d
dx (Rh(z)) = P k(zx),

for all z ∈W k+1
h , P k being the L2-standard projection. Combining (A.4) with z = E

and equation (A.2), this last equation becomes∫
I

[Rh(E)− Eh]xp dx =
∫

I

(ρ− ρh)p dx ∀ p ∈ V k
h , (A.5)

and so, by setting in p = (Rh(E)− Eh)x ∈ d
dxW

k+1
h = V k

h , we have∫
I

|(Rh(E)− Eh)x|2 dx =
∫

I

(ρ− ρh)[Rh(E)− Eh]x dx . (A.6)

Hence, denoting by ηE = Rh(E)− Eh, Cauchy Schwarz gives

|ηE |1,I = |Rh(E)− Eh|1,I ≤ C‖ρ− ρh‖0,I . (A.7)

We next get the L2-error estimate. We take z = ηE in (A.1) and decompose Φ−Φh =
[Φ−P k(Φ)] + [P k(Φ)−Φh] and E −Eh = [E −Rh(E)] + [Rh(E)−Eh]. Then, from
the definition of the standard L2-projection P k, we find

‖ηE‖20,I =
∫

I

|Rh(E)− Eh|2 dx = −
∫

I

[E −Rh(E)]ηE dx+
∫

I

[P k(Φ)− Φh][ηE ]x dx .

Note that from (A.1) and the definition of the L2-projection, we have∫
I

(Φh − P k(Φ))zx dx = −
∫

I

(E − Eh)z dx ∀ z ∈W k+1
h ,

and thus, we can apply this to z = ηE . By setting p = (P k(Φ) − Φh) in (A.5) and
substituting the result above we get,∫

I

|ηE |2 dx =
∫

I

[Rh(E)− E]ηE dx+
∫

I

(ρh − ρ)(P k(Φ)− Φh) dx . (A.8)
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Then, summing (A.6) to the above equation and using Cauchy-Schwarz together with
the intepolation estimate (A.3), we find

‖ηE‖20,I+|ηE |21,I≤‖E −Rh(E)‖0,I‖ηE‖0,I+‖ρ− ρh‖0,I(|ηE |1,I+‖P k(Φ)− Φh‖0,I)

≤Chk+1‖E‖k+1,I‖ηE‖0,I+‖ρ− ρh‖0,I(|ηE |1,I+‖P k(Φ)− Φh‖0,I) .

To conclude we need a bound for ‖P k(Φ)−Φh‖0,I . Now, taking z ∈W k+1
h such that

zx = Φh − P k(Φ) we obtain

‖P k(Φ)− Φh‖20,I ≤ C‖E − Eh‖0,I‖P k(Φ)− Φh‖0,I

where in the last step we have used Poincarè’s inequality (‖z‖0,I ≤ C‖zx‖0,I). Hence,
plugging it into the previous estimate, we get

‖ηE‖20,I + |ηE |21,I ≤ (Chk+1‖E‖k+1,I + ‖ρ− ρh‖0,I)‖ηE‖0,I

+ ‖ρ− ρh‖0,I(Chk+1‖E‖k+1,I + |ηE |1,I)

≤Ch2k+2‖E‖2k+1,I + C ′‖ρ− ρh‖20,I +
1
4
(‖ηE‖20,I + |ηE |21,I)

+ C‖ρ− ρh‖0,Ih
k+1‖E‖k+1,I ,

from which by a “kick-back” argument we get,

‖ηE‖20,I + |ηE |21,I ≤
4
3
(Chk+1‖E‖k+1,I + C ′‖ρ− ρh‖0,I)2 ,

that together with the interpolation estimate (A.3) and estimate (3.5) yields (3.21).

A.3. DG approximation for the Poisson problem.
Proof of Lemma 3.4. The result follows by adapting the proofs in [18, 23] and [19, 22]
for the cases (i); (ii); (iii), respectively, so that they account for the consistency
error. Notice also that for (i),(ii) estimate (3.30) follows from (3.4). Hence, for
the sake of completeness, we sketch the proof of this last estimate in some detail for
the LDG method (i) and the general DG (iii). Using (3.25) and that (E, f) is the
continuous solution, we get the following error equation:

A((E − Eh,Φ− Φh); (z, p)) =
∑

i

∫
Ii

(ρ− ρh)p dx, ∀ (z, p) ∈ V r
h × V r

h . (A.9)

The term on the right hand side is the consistency error, which is the only novelty in
the proof w.r.t those in the above-mentioned works. We decompose E−Eh = ηh−ηe

where ηe = P r(E) − E and ηh = P r(E) − Eh, and analogously Φ − Φh = ξh − ξe

where ξe = P r(Φ)− Φ and ξh = P r(Φ)− Φh. Then, [18, Lemma 3.3] gives

|(E − Eh,Φ− Φh)|A ≤ |(η
e, ξe)|A + |(ηh, ξh)|A

≤Ka0h
r+1/2‖|(E,Φ)‖|r,I + |(ηh, ξh)|A , (A.10)

where ‖| · ‖|A is the semi-norm defined in (3.26) and K2
a0 ≈ C(h + c22 + c11). To

estimate the second term by setting (z, p) = (ηh, ξh) in the error equation (A.9) and
using the definition of A(·, ·), that of the semi-norm (3.26) and the approximation
properties of the standard L2-projection (2.15), we find

|(ηh, ξh)|2A =A((ηh, ξh), (ηh, ξh)) ≤ ‖ρ− ρh‖0,Ih
‖ξh‖0,Ih

+
∣∣A((ηe, ξe), (ηh, ξh))

∣∣
≤‖ρ− ρh‖0,Ih

(‖ξe‖0,Ih
+ ‖Φ− Φh‖0,Ih

) +
∣∣A((−ηh, ξh), (−ηe, ξe))

∣∣
≤‖ρ− ρh‖0,Ih

(Chr+1‖Φ‖r+1,I + ‖Φ− Φh‖0,Ih
)

+
∣∣(ηh, ξh)

∣∣
A CKb0h

r+1/2|‖(E,Φ)‖|r,I , (A.11)
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where in the last step we have used [18, Lemma 3.6] together with [18, assumption
(2.21)] andK2

b0 ≈ C(c−1
11 +c22+c11). To conclude we need an estimate for ‖Φ−Φh‖0,Ih

that will be obtained by duality. Let u ∈ H2(I) be the solution of the dual problem,
−uxx = Φ−Φh in I with u(0) = u(1) = 0, and let q = ux. Then, it is easy to verify

A((q, u); (z, p)) = (Φ− Φh, p), ∀ (z, p) ∈ H1(Ih)×H1(Ih). (A.12)

Thus by setting (z, p) = (Eh −E,Φ−Φh) in the above equation, using the definition
of A(·, ·) together with (A.9), the H1-stability of the standard L2-projection [13] and
denoting by θq := q = P r(q) and θu := u− P r(u) we get

‖Φ− Φh‖20,Ih
=A((−q, u); (Eh − E,Φ− Φh)) = A((E − Eh,Φ− Φh); (q, u))

=A((E − Eh,Φ− Φh); (q − P r(q), u− P r(u))) +
∫
I
(ρ− ρh)P r(u) dx

≤
∣∣A((ηh, ξh); (θq, θu))

∣∣+|A((ηe, ξe); (θq, θu))|+‖ρ− ρh‖−1,Ih
|P r(u)|1,Ih

≤Ch1/2‖|(q, u)‖|0,I +Kb1

(
|(ηh, ξh)|A +Ka1h

r+1/2‖|(E,Φ)‖|r,I

)
+ C‖ρ− ρh‖−1,Ih

|u|1,I .

where the first two terms have been estimated by using Lemmas 3.6 and 3.3 from [18],
respectively, and the constants are defined by:

K2
b1 ≈ C(c−1

11 + c22 + h2c11), K2
a1 ≈ C(c22 + h+ c11h

2)(1 + h+ c22 + c11)

Appealing now to the a-priori estimates for the dual problem (A.12)

‖u‖m+2,I + ‖q‖m+1,I ≤ C‖Φ− Φh‖m,I m = −1, 0,

together with the inclusion L2(I) ⊂ H−1(I), we finally get

‖Φ− Φh‖0,Ih
≤ Ch1/2

[
Kb1|(ηh, ξh)|A + hr+1/2Ka1‖|(E,Φ)‖|r,I

]
+ ‖ρ− ρh‖0,Ih

.

Substituting the above estimate in (A.11) and using the Young’s inequality,

|(ηh, ξh)|2A ≤ ‖ρ− ρh‖20,Ih
(1 + 4K2

b1h) +
1
2

∣∣(ηh, ξh)
∣∣2
A + Ch2r+2‖Φ‖2r+1,I

+ Ch2r+1|‖(E,Φ)‖|2r,I(K2
b0 +K2

a1h),

and so by a “kick-back argument” and taking square roots we get

1
2
|(ηh, ξh)|A ≤ C‖ρ−ρh‖0,Ih

+(K2
b0 +K2

a1h)
1/2hr+1/2‖|(E,Φ)‖|r,I+Chr+1‖Φ‖r+1,I .

Substituting this estimate in (A.10), and taking into account the values of the para-
meters c11 and c22 selected, we reach (3.4) which in particular implies (3.30).

For the MD-LDG (ii) one adapts easily this proof taking into account the values
for c11 and c22 and replaces the L2-projection by the special projection defined through
(2.13)-(2.14). For the H-LDG (considered in (iii), the easiest way to prove (3.30) is
to introduce an auxiliary approximation, say (E∗

h,Φ
∗
h), to the continuous Poisson

problem. The error estimates in the L2 norm for E − Eh are decomposed in two
parts: the error E − E∗

h estimated in [22] and the consistency error E∗
h − Eh dealt

with the ideas in this proof. We omit the details for the sake of conciseness.

Appendix B. Proofs of Lemmas 4.5 and 4.6.
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Proof of Lemma 4.5. We shall first estimate each term K1
i,j(v, f, ω

h) for fixed i, j and
then sum over i, j. So let i, j be fixed and denote T = Ti,j , I = Ii and J = Jj .
The boundary of the element T consist of two vertical and two horizontal edges;
∂T = J i−1/2∪J i−1/2∪Ij−1/2∪Ij+1/2 where we have denoted by J i+1/2 := {xi+1/2}×J
and Ij+1/2 := I × {vj+1/2}. Notice that the definitions of both, the numerical fluxes
(3.3) and the projection Πh, depend on the sign of v. However, since v = 0 is a node
of the partition, v as a function does not change sign inside any element Ti,j ∈ Th.
Hence, denoting by v± = max{±v, 0} the positive and negative parts of v, the term
K1 can be rewritten as K1(v, f, ωh) = K1,+(v, f, ωh)−K1,−(v, f, ωh) with

K1,±(v, f, ωh) =
∑
i,j

K1
i,j(v±, f, ω

h) .

We can reduce ourselves to show the result for the case of v+ since in the case v−
is treated analogously. Since v > 0 on T , from the definition of the numerical fluxes
(3.3), the definition of Πh (4.13) and noting that Πh

∣∣
J

= π̃v, this term reads

K1,+
i,j (v, f, ωh) =

∫
T

vωe(ωh)xdxdv −
∫

Ji+1/2
v(f − π−v f)−(ωh)−dv

+
∫

Ji−1/2
v(f − π−v f)−(ωh)+dv . (B.1)

Observe (B.1) is independent of the sign(v). Let v̄ := P 0(v) denote the local projection
of v onto the constants on J . Then, summing and substracting v̄ in K1,+

i,j , we have

K1,+
i,j (v, f, ωh) = K1,+

i,j (v − v̄, f, ωh) +K1,+
i,j (v̄, f, ωh) .

The last term is estimated exactly as in [18, Lemma 3.6] (see also [47]), giving

|K1,+
i,j (v̄, f, ωh)| ≤ Chk+1

T |v|‖f‖k+2,Ti,j
‖ωh‖0,Ti,j

(B.2)

where we have also used the stability of the L2-projection (2.12). We wish to stress
that the properties of the special projections Πh and π±v are essential for the proof of
the above estimate. We next estimate the remaining term in the expression for K1,+.
From the definition in (B.1), using Hölder inequality, trace inequality [2] and inverse
inequality [21] together with with the error estimates (2.16) and (4.15), we find

|Ki,j
1,+(v − v̄, f, ωh)|≤

∣∣∣∣∫
T

(v − v̄)
∫

I

ωeωh
x dv dx

∣∣∣∣+∣∣∣∣∫
Ji±1/2

[v − v̄](f − π−v f)−(ωh)∓dv
∣∣∣∣

≤ C‖v − v̄‖0,∞,J‖ωe‖0,T ‖(ωh)x‖0,T + C
∑

m=i±1/2

‖v − v̄‖0,∞,Jm‖ωe‖0,Jm‖ωh‖0,Jm

≤ Chvh
k+1
T ‖f‖k+1,Th

−1
v ‖ωh‖0,T + Chvh

k+1/2
T ‖f‖k+1,Th

−1/2
v ‖ωh‖0,T

≤ Chk+1‖f‖k+1,T ‖ωh‖0,T .

Then, using the above estimate together with (B.2) and summing over i and j we get

|K1,+(v, f, ωh)| ≤ Chk+1‖ωh‖0,T (‖f‖k+1,T + L‖f‖k+2,T ) ,

giving the desired estimate (4.23).
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Proof of Lemma 4.6. We follow the notation of the previous proof. We start by noting
that we cannot directly argue as in the proof of Lemma 4.5 since now the definition
of the numerical fluxes depend on the sign of Eh while the definition of the projection
depend on the sign of E. We first write

K2
i,j(E

i
h, f, ω

h) = K2a
i,j(E

i
h, f, ω

h) +K2b
i,j(E

i
h, f, ω

h) (B.3)

with

K2a
i,j(Eh, f, ω

h) =
∫

Ti,j

Ehω
eωh

v dv dx

K2b
i,j(Eh, f, ω

h) = −
∫

Ii

[
(Êhωe(ωh)−)x,j+1/2 − (Êhωe(ωh)+)x,j−1/2

]
dx ,

and we shall consider a further splitting of each of the above expressions. For the first
one, we set

K2a
i,j(Eh, f, ω

h) = K2a
i,j(Eh − E, f, ωh) +K2a

i,j(E, f, ω
h) . (B.4)

Then, Hölder inequality together with inverse inequality and estimate (4.15) give∣∣K2a
i,j(Eh − E, f, ωh)

∣∣ ≤ ‖Eh − E‖0,∞,Ii‖f −Πh(f)‖0,Ti,j‖(ωh)v‖0,Ti,j

≤ Chk+1h−1
v ‖Eh − E‖0,∞,Ii

‖f‖k+1,Ti,j
‖ωh‖0,Ti,j

. (B.5)

Now, we deal with the boundary term K2b
i,j in (B.3). Since the definition of the

numerical flux (3.3) on Γv depends on the sign of Eh at (x, vj±1/2),

̂(Ei
hω

e)
x,j−1/2

= (Ei
h(x))+[f−Πh(f)]+x,j−1/2− (Ei

h(x))−[f−Πh(f)]−x,j−1/2 , ∀x ∈ Ii

where (Ei
h(x))± = max (±Ei

h(x), 0) denotes respectively, the positive and negative
parts of Ei

h(x). Hence, the above splitting induces a further decomposition of K2b:

K2b
i,j(Eh, f, ω

h) = A+
i,j((Eh)i

+, f, ω
h) +A−i,j((E

i
h)−, f, ωh) ,

where ± in A± refers to the side (from the left or from the right in the v-direction)
from which the term f −Πh(f) is evaluated, that is:

A±i,j((E
i
h)±, f, ωh) = −

∫
Ii∩{x:±Ei

h>0}
Ei

h

{(
[f −Πh(f)]±(ωh)−

)
x,j+1/2

−
(
[f −Πh(f)]±(ωh)+

)
x,j−1/2

}
dx .

Notice now that Πh(f)
∣∣
Ij±1/2 is a projection on the x-direction, and so independent

on v. Thus, this observation together the continuity of f implies that,

[f−Πh(f)]−x,j+1/2 = [f−Πh(f)]−∣∣
Ij+1/2

= [f−Πh(f)]+∣∣
Ij+1/2

= [f−Πh(f)]+x,j+1/2 , ∀x ∈ Ii , ∀ j.

Hence, K2b
i,j(Eh, f, ω

h) can be rewritten as

K2b
i,j = −

∫
Ii

Ei
h

{(
[f −Πh(f)]∗(ωh)−

)
x,j+1/2

−
(
[f −Πh(f)]∗(ωh)+

)
x,j−1/2

}
dx ,
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where ∗ can be taken either as + or −, without changing the final result. Note that
the above expression does not depend any more on the sign of Ei

h. Hence, adding and
substracting Ei to the above expressions, K2b

i,j(Eh, f, ω
h) becomes,

K2b
i,j(Eh, f, ω

h) = K2b
i,j(Eh − E, f, ωh) +K2b

i,j(E, f, ω
h) . (B.6)

The first term is easily bounded by using Hölder inequality together with trace and
inverse inequalities and the approximation result (4.15),∣∣K2b

i,j(Eh − E, f, ωh)
∣∣ ≤ ∑

m=j±1/2

‖Ei
h − Ei‖0,∞,Im‖f −Πh(f)‖0,Im‖ωh‖0,Im

≤ Chk‖Ei
h − Ei‖0,∞,Ii

‖f‖k+1,Ti,j
‖ωh‖0,Ti,j

. (B.7)

To estimate the last term in (B.6), recalling the splitting in (B.4), we define

K3(Ei, f, ωh) =
∑
i,j

(
K2a

i,j(E
i, f, ωh) +K2b

i,j(E, f, ω
h)
)
. (B.8)

Observe now that K3
i,j(E

i, f, ωh) is a term “similar” to K1 from (4.21), in the sense
that the definition of the projection Πh depends of the sign of Ei on each Ii. Therefore,
we argue similarly as in Lemma 4.5 to rewrite the term K3 as

K3(Ei, f, ωh) =
∑
i,j

K3,+
i,j (Ei, f, ωh) +K3,−

i,j (Ei, f, ωh) +K3,0
i,j (Ei, f, ωh) (B.9)

where K3,±
i,j (Ei, f, ωh) are the contributions coming from those elements where Ei is

either positive or negative in the whole Ii and the term K3,0(Ei, f, ωh) corresponds to
the contribution of those elements where E restricted to Ii changes sign. Therefore,
the estimates for K3,±

i,j (Ei, f, ωh) are done similarly as for K1,±(v, f, ωh), so we just
sketch the procedure. Adding and subtracting P 0(E) we have

K3,±
i,j (Ei, f, ωh) = K3,±

i,j (Ei − P 0(Ei), f, ωh) +K3,±
i,j (P 0(Ei), f, ωh) .

The last term is bounded as in [18, Lemma 3.6]. As for estimate (B.2), the special
properties of the projections Πh and π±x are heavily used in this proof. Using the
stability of the L2-projection (2.12),

|K3,±
i,j (P 0(E), f, ωh)| ≤ Chk+1

T ‖Ei‖0,∞,Ii
‖f‖k+2,Ti,j

‖ωh‖0,Ti,j
. (B.10)

To estimate the first term K3,+
i,j := K3,+

i,j (E − P 0(E), f, ωh) notice that Πh

∣∣
Ii

= π+
x

∣∣
Ii

and since f is continuous [π+
x (f)]+ = [π+

x (f)]−. Then, using the L∞-estimate for the
L2-projection (2.16), Hölder inequality, trace and inverse inequalities together with
the approximation estimate (4.15), we deduce

|K3,+
i,j | ≤

∣∣∣∣∫
T

[Eh − P 0(E)]ωe(ωh)vdxdv

∣∣∣∣+ ∑
m=j±1/2

∣∣∣∣∫
Im

[E − P 0(E)](f − π+
x f)(ωh)∓dx

∣∣∣∣
≤ C‖E − P 0(E)‖0,∞,Ii

‖ωe‖0,Tij
h−1

x ‖ωh‖0,Tij
+
∑

m=j±1/2

‖ωe‖0,Imh−1/2
x ‖ωh‖0,Tij


≤ Chk+1‖E‖1,∞,Ii‖f‖k+1,Tij‖ωh‖0,Tij . (B.11)
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We finally estimate the term K3,0
i,j := K3,0

i,j (E, f, ωh). Note that now Πh

∣∣
Ii

= P k
∣∣
Ii

.
Then, Hölder inequality, estimates (4.15) together with inverse and trace inequalities
gives

|K3,0
i,j | ≤ ‖Ei‖0,∞,Ii

(
‖f −Πh(f)‖0,Ti,j‖(ωh)v‖0,Ti,j + ‖f − P k(f)‖0,Im‖ωh‖0,Im

)
≤ C‖Ei‖0,∞,Ii

hk‖f‖k+1,Ti,j
‖ωh‖0,Ti,j

. (B.12)

Thus, to conclude we only need to provide an estimate for ‖Ei‖0,∞,Ii
. Note that since

E changes sign inside Ii there exists some x∗ ∈ Ii such that E(x∗) = 0. Using mean
value theorem together with the regularity of E we have

‖Ei‖0,∞,Ii
= sup

x∈Ii

|E(x)− E(x∗)| = sup
x∈Ii

∣∣∣∣∫ x

x∗
Ex(s)ds

∣∣∣∣ ≤ Chx|E|1,∞,Ii
. (B.13)

Substituting it into the bound for K3,0
i,j and summing over elements, we finally get

|K3,0(E, f, ωh)| ≤ Chk+1|E|1,∞,I‖f‖k+1,Ω‖ωh‖0,Th
,

Then, summing over all the elements of the partition estimates (B.5), (B.7), (B.10)
and (B.11) concludes the proof of the Lemma.

Appendix C. Proofs of the Energy inequalities.
Proof of Proposition 5.3. The first part of the proof follows exactly the same steps as
the proof of Proposition 5.1, till one reaches equation (5.11), which we can write as

1
2
d

dt

∑
i,j

∫
Tij

fhv
2dvdx+

∑
i

∫
Ii

(Eh)2dx

+
∑

i

ΘH
i−1/2 +

∑
i,j

∫
Jj

ΘF
i−1/2,vdv = 0,

(C.1)
with ΘH

i−1/2 and ΘF
i−1/2,v as defined in (5.10):

ΘH
i−1/2 = Φ̂[[ (Eh)t ]]− [[ Φh(Eh)t ]] + Êt[[ Φh ]] ,

ΘF
i−1/2,v = −v̂f [[ Φh ]] + v[[ Φhfh ]]− vΦ̂[[ fh ]] .

Then, using (5.12) and the definition of the numerical fluxes (3.24), we get for ΘH
i−1/2

ΘH
i−1/2 = {(Eh)t}[[ Φh ]] + {Φh}[[ (Eh)t ]] + c11[[ (Φh)t ]][[ Φh ]]

+ c22[[Eh ]][[ (Eh)t ]]− [[ Φh(Eh)t ]]=c11[[ (Φh)t ]][[ Φh ]] + c22[[Eh ]][[ (Eh)t ]]

=
1
2
d

dt

(
c11[[ Φh ]]2 + c22[[Eh ]]2

)
,

where in last step we have used that (Eh,Φh) is C1 in time. Arguing similarly, and
one easily gets for ΘF

i−1/2,v ;

ΘF
i−1/2,v = −v{fh}[[ Φh ]] +

|v|
2

[[ fh ]][[ Φh ]]− v{Φh}[[ fh ]] + vc12[[ fh ]][[ Φh ]]

− vc22[[ fh ]][[Eh ]] + v[[ Φhfh ]]

=
(
|v|
2

+ vc12

)
[[ fh ]][[ Φh ]]−vc22[[ fh ]][[Eh ]]= ṽ[[ fh ]][[ Φh ]]−vc22[[ fh ]][[Eh ]] ,
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where we have denoted by ṽ = (|v|/2 + vc12). Then, substituting into (C.1) we have

1
2
d

dt

∑
i,j

(∫
Ti,j

fh
v2

2
dvdx+

∫
Ii

(Eh)2dx+ c22[[Eh ]]2i−1/2 + c11[[ Φh ]]2i−1/2

)
=

=
∑
i,j

c22[[Eh ]]i−1/2

∫
Jj

v[[ fh ]]i−1/2,vdv −
∑
i,j

[[ Φh ]]i−1/2

∫
Jj

ṽ[[ fh ]]i−1/2,vdv ,

and therefore integrating in time from 0 up to time t both sides, taking the absolute
value and using triangle inequality, we get

1
2

∣∣∣∣∣∣
∫ t

0

d

dt

∑
i,j

(∫
Ti,j

fh
v2

2
dvdx+

∫
Ii

(Eh)2dx+ c22[[Eh ]]2i−1/2 + c11[[ Φh ]]2i−1/2

)
ds

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∫ t

0

∑
i,j

c22[[Eh ]]i−1/2

∫
Jj

v[[ fh ]]i−1/2,vdvds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

0

∑
i,j

[[ Φh ]]i−1/2

∫
Jj

ṽ[[ fh ]]i−1/2,vdvds

∣∣∣∣∣∣ . (C.2)

We next bound the last two terms. For the first term, from the arithmetic-geometric
inequality we get

2

∣∣∣∣∣∣
∫ t

0

∑
i,j

c22[[Eh ]]i−1/2

∫
Jj

v[[ f ]]i−1/2,vdvds

∣∣∣∣∣∣ ≤
≤ L

∫ t

0

∥∥∥c1/2
22 [[Eh(s) ]]

∥∥∥2

0,γx

ds+
∫ t

0

c22

∥∥∥|v|1/2[[ fh(s) ]]
∥∥∥2

0,Γx

ds .

For the other term, using that c12 is bounded (|c12| ≤ c) we can simply use the bound
|ṽ| ≤ c|v|. Then, from the arithmetic-geometric inequality, we have

2

∣∣∣∣∣∣
∑
i,j

[[ Φh ]]i−1/2

∫
Jj

ṽ[[ fh ]]i−1/2,vdv

∣∣∣∣∣∣ ≤
≤ cL

∫ t

0

∥∥∥c1/2
11 [[ Φh(s) ]]

∥∥∥2

0,γx

ds+ Cc−1
11

∫ t

0

∥∥∥|v|1/2[[ fh(s) ]]
∥∥∥2

0,Γx

ds .

Therefore, substituting back into (C.2) and taking into account the definition (5.14)
of the discrete energy we have

|Eh(t)− Eh(0)| ≤ L

∫ t

0

(∥∥∥c1/2
11 [[ Φh(s) ]]

∥∥∥2

0,γx

+
∥∥∥c1/2

22 [[Eh(s) ]]
∥∥∥2

0,γx

)
ds

+ C(c22 + c−1
11 )

∫ t

0

∥∥∥|v|1/2[[ fh(s) ]]
∥∥∥2

0,Γx

ds .

(C.3)

Now we observe that the first sum on the right hand side is part of the energy norm of
the DG approximation (Eh,Φh). Thus, from Corollary 4.15 and taking into account
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the regularity of the continuous solution we have∫ t

0

∑
i

(
c11[[ Φh(s) ]]2i−1/2 + c22[[Eh(s) ]]2i−1/2

)
ds ≤

≤ h2 min (k+1,m)

(
C5 +

∫ t

0

‖|(Eh(s),Φh(s))|‖2k,Ids

)
.

(C.4)

We next bound the second term in (C.3). Observe that since f ∈ C0(Ω),

[[ fh ]] = [[ fh − f ]] = [[ fh −Πh(f) ]] + [[ Πh(f)− f ]].

Thus, in view of the definition of the norm (4.8) and remark 4.14 we have for the first
term above∫ t

0

‖|v|[[ fh(s)−Πh(f(s)) ]]‖2Γx
ds ≤ ‖|fh(t)−Πh(f(t))‖|2 ≤ C2

5h
2(min (k+1,m)) . (C.5)

For the other term, using the interpolation estimate (4.16) together with a trace
inequality [2], we get∫ t

0

‖|v|[[ Πh(f(s))− f(s) ]]‖2Γx
ds ≤ CLh2k+1

∫ t

0

‖f(s)‖2k+1,Ωds .

Hence, this estimate together with (C.5) finally give∫ t

0

∥∥∥|v|1/2[[ fh(s) ]]
∥∥∥2

0,Γx

ds ≤ (C5h
2(min (k+1,m)) + CLh2k+1

∫ t

0

‖f(s)‖2k+1,Ωds)

and so by substituting the above estimate and estimate (C.4) into (C.3), the proof is
complete.
Proof of Proposition 5.4. The first part of the proof follows exactly the same steps as
the proof of Proposition 5.1, till one reaches equation (5.11),

(5.11)
∑
i,j

∫
Ti,j

ft
v2

2
dvdx+

∑
i

∫
Ii

EEtdx+
∑

i

ΘH
i−1/2 +

∑
i,j

∫
Jj

ΘF
i−1/2,vdv = 0,

with ΘH
i−1/2 and ΘF

i−1/2,v as defined in (5.10):

ΘH
i−1/2 = Φ̂[[Et ]]− [[ ΦEt ]] + Êt[[ Φ ]] ,

ΘF
i−1/2,v = −v̂f [[ Φ ]] + v[[ Φf ]]− vΦ̂[[ f ]] .

Then, using the definition of the numerical fluxes and (5.12) it is easy to verify that
while ΘH

i−1/2 is still given by (5.13), for ΘF
i−1/2,v one gets a term for that might change

sing

ΘF
i−1/2,v = −v{f}[[ Φ ]]−v{Φ}[[ f ]]+

|v|
2

[[ f ]][[ Φ ]]− v

2
[[ f ]][[ Φ ]]+v[[ Φf ]] = −v−[[ Φ ]][[ f ]] .

(C.6)
Then, substituting the above result together with (5.13) into (5.11) we have

1
2
d

dt

∑
i,j

(∫
Ti,j

f
v2

2
dvdx+

∫
Ii

(E)2dx+ c22[[E ]]2i−1/2 + c11[[ Φ ]]2i−1/2

)

−
∑
i,j

[[ Φ ]]i−1/2

∫
Jj

v−[[ f ]]i−1/2,vdv = 0.
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Next, we add equation (4.7) (resulting from the L2-stability; Proposition 4.1) to the
above equation, to get

1
2
d

dt

∑
i,j

(∫
Ti,j

fv2dvdx+
∫

Ti,j

f2dxdv

)
+
∑

i

∫
Ii

(E)2dx+
∑

i

c11[[ Φ ]]2i−1/2


+
∑
i,j

∫
Ii

|E|
2

[[ f ]]2x,j−1/2dx+
∑
i,j

∫
Jj

|v|
2

[[ f ]]2i−1/2,vdv (C.7)

−
∑
i,j

[[ Φ ]]i−1/2

∫
Jj

v−[[ f ]]i−1/2,vdv = 0. (C.8)

Then, from the obvious inequality ab ≥ −|ab| and the arithmetic-geometric inequality,
we have∑

i,j

[[ Φ ]]i−1/2

∫
Jj

v+[[ f ]]i−1/2,vdv ≥ −L
2

∑
i

[[ Φ ]]2i−1/2 −
1
2

∑
i,j

∫
Jj

|v|[[ f ]]2i−1/2,vdv

and so substituting back into (C.8) and neglecting the strictly non-negative terms, we
find

d

dt

∑
i,j

(∫
Ti,j

[fv2 + f2]dxdv+
∫

Ii

(E)2dx+
∑

i

c11[[ Φ ]]2i−1/2

)−L∑
i

[[ Φ ]]2i−1/2 ≤ 0 .

or equivalently

1
2
d

dt

∑
i,j

(∫
Ti,j

[fv2 + f2]dxdv +
∫

Ii

(E)2dx+ c11[[ Φ ]]2i−1/2

)
≤ L

2

∑
i

[[ Φ ]]2i−1/2 ,

(C.9)
Now, let us define

F0 :=
∑
i,j

(∫
Ti,j

[Ph(f0)v2 + (Ph(f0))2]dxdv +
∫

Ii

(E0)2 + c11[[ Φ0 ]]2i−1/2

)
= ‖[Ph(f0)]1/2|v|‖20,Th

+ ‖Ph(f0)‖20,Th
+ ‖E0‖20,Th

+ ‖c1/2
11 [[ Φ0 ]]‖20,Γx

. (C.10)

Then integration in time from time 0 up to time t in (C.9), yields to∑
i,j

(∫
Ti,j

[f(t)v2 + f2(t)]dxdv +
∫

Ii

(E(t))2dx+ c11[[ Φ(t) ]]2i−1/2

)

≤ F0 +
L

2

∫ t

0

∑
i

[[ Φ(z) ]]2i−1/2dz,

which in particular implies,

0 ≤
∑

i

c11[[ Φ(t) ]]2i−1/2 ≤ F0 +
Lc−1

11

2

∫ t

0

∑
i

c11[[ Φ(z) ]]2i−1/2dz ,

and therefore, standard application of Gronwall’s inequality (see [42]) gives,

d

dt

[∑
i

c11[[ Φ(t) ]]2i−1/2

]
≤ F0e

L
2c11

t .
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which implies the a-priori estimate∑
i

c11[[ Φ(t) ]]2i−1/2 ≤

[∑
i

c11[[ Φ(0) ]]2i−1/2

]
+ F0

(
e

L
2c11

t − 1
)
.

Then, substitution of the above estimate into (C.9), leads to the thesis of the Propos-
ition.
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discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal., 38(5):1676–
1706 (electronic), 2000.

[19] F. Celiker and B. Cockburn. Superconvergence of the numerical traces of discontinuous Galerkin
and hybridized methods for convection-diffusion problems in one space dimension. Math.
Comp., 76(257):67–96 (electronic), 2007.

[20] Y. Cheng, I. Gamba, A. Majorana, and C.-W. Shu. A discontinuous galerkin solver for
boltzmann poisson systems in nano devices. Comput. Methods Appl. Mech. Engrg., 198(34-
40):3130–3150, 2009.

[21] P. G. Ciarlet. Basic error estimates for elliptic problems. In Handbook of numerical analysis,
Vol. II, Handb. Numer. Anal., II, pages 17–351. North-Holland, Amsterdam, 1991.

[22] B. Cockburn, J. Guzmán, and H. Wang. Superconvergent discontinuous Galerkin methods for
second-order elliptic problems. Math. Comp., To appear.

[23] B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau. Superconvergence of the local discon-
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