
VARIATIONAL INEQUALITIES

FOR SINGULAR INTEGRAL OPERATORS

ALBERT MAS

Abstract. In these notes we survey some new results concerning the
ρ-variation for singular integral operators defined on Lipschitz graphs.
Moreover, we investigate the relationship between variational inequali-
ties for singular integrals on AD regular measures and geometric proper-
ties of such measures. An overview of the main results and applications,
as well as some ideas of the proofs, are given.

1. Introduction and main results

The topics covered in these notes belong to the area of geometric analysis,
which can be considered an interface between harmonic analysis and geomet-
ric measure theory. More precisely, they are concerned with the Cauchy and
Riesz transforms, two fundamental operators in harmonic analysis, PDE’s,
and geometric measure theory.

The results presented in these notes have been obtained in a joint work
with Xavier Tolsa (see [16], [17], [15]).

1.1. Singular integral operators. For the sequel, 1 ≤ n < d denote two
fixed integers. Given a positive Borel measure µ in Rd, one way to define the
n-dimensional Riesz transform of f ∈ L1(µ) is by Rµf(x) = limε↘0R

µ
ε f(x)

(whenever the limit exists), where x ∈ Rd and

Rµε f(x) =

∫
|x−y|>ε

x− y
|x− y|n+1

f(y) dµ(y)

denotes the truncation of the Riesz transform at level ε > 0. When d = 2
(i.e., µ is a Borel measure in C), one defines the Cauchy transform of f ∈
L1(µ) by Cµf(x) = limε↘0C

µ
ε f(x) (whenever the limit exists), where x ∈ C

and

Cµε f(x) =

∫
|x−y|>ε

f(y)

x− y
dµ(y)

(observe that x, y, and f(y) are complex numbers). Usually, to avoid the
problem of existence of the preceding limits, one considers the associated
maximal operatorsRµ∗f(x) = supε>0 |R

µ
ε f(x)| and Cµ∗ f(x) = supε>0 |C

µ
ε f(x)|.

Notice that the Cauchy transform coincides with the 1-dimensional Riesz
transform in the plane, modulo conjugation.
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The Cauchy and Riesz transforms are two very important examples of
singular integral operators with a Calderón-Zygmund kernel. Namely, given
a Borel measure µ in Rd, ε > 0, x ∈ Rd, and f ∈ L1(µ), one considers
operators of the form

(1) Tµε f(x) =

∫
|x−y|>ε

K(x− y) f(y) dµ(y),

where the kernel K : Rd \ {0} → R satisfies

|K(x)| ≤ C|x|−n,
|∂xiK(x)| ≤ C|x|−n−1,

|∂xi∂xjK(x)| ≤ C|x|−n−2,
(2)

for all 1 ≤ i, j ≤ d and x = (x1, . . . , xd) ∈ Rd \ {0}, where C > 0 is some
constant; and moreover K(−x) = −K(x) for all x 6= 0 (i.e. K is odd).
The estimate on the second derivatives of K is not a standard assumption
in Calderón-Zygmund theory, but it is a key fact in our results. Notice
that the n-dimensional Riesz transform corresponds to the vector kernel
(x1, . . . , xd)/|x|n+1, and the Cauchy transform to (x1,−x2)/|x|2 (so, one
may consider K to be any scalar component of these vector kernels).

1.2. Variation operator. The ρ-variation for martingales and some fam-
ilies of operators has been widely studied in many papers on probability,
ergodic theory, and harmonic analysis (see [14], [1], [9], [2], [10], and [25],
for example). In these notes we survey some new results concerning the
ρ-variation for families of singular integral operators defined on Lipschitz
graphs. By an n-dimensional Lipschitz graph Γ ⊂ Rd we mean any transla-
tion and rotation of a set of the type

{x ∈ Rd : x = (y,A(y)), y ∈ Rn},

where A : Rn → Rd−n is some Lipschitz function with Lipschitz constant
Lip(A). We say that Lip(A) is the slope of Γ.

If µ denotes the n-dimensional Hausdorff measure on an n-dimensional
Lipschitz graph in Rd, the ρ-variation (ρ > 2) for the family of operators
T µ = {Tµε }ε>0 given in (1) is defined by

(Vρ ◦ T µ)f(x) = sup
{εm}

(∑
m∈Z
|Tµεm+1

f(x)− Tµεmf(x)|ρ
)1/ρ

for f ∈ L1
loc(µ) and x ∈ Rd, where the pointwise supremum is taken over

all decreasing sequences {εm}m∈Z ⊂ (0,∞). We are also interested in the
ρ-variation for the family T µϕ = {Tµϕε}ε>0, where

Tµϕεf(x) =

∫
ϕ(|x− y|/ε)K(x− y) f(y) dµ(y), x ∈ Rd,

and ϕ : [0,∞) → R is a non decreasing function of class C2 such that
χ[2,∞) ≤ ϕ ≤ χ[1,∞) (the precise value of the constants is not important

for our purposes). We usually refer to Tµε and Tµϕε as a rough and smooth
truncation, respectively, of the singular integral with respect to the kernel
K and the measure µ.
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Our first main result is summarized in the following theorem (see [16],
[15]).

Theorem 1.1. Let ρ > 2. Let µ be the n-dimensional Hausdorff measure
restricted to an n-dimensional Lipschitz graph in Rd with slope strictly less
than 1. Then, the operator Vρ ◦T µ is bounded in Lp(µ) for 1 < p <∞, from
L1(µ) to L1,∞(µ), and from L∞(µ) to BMO(µ). The same holds without
any restriction on the slope of the Lipschitz graph if one replaces T µ by T µϕ .

The assumption on the slope of the Lipschitz graph is just a technical
obstruction due to the methods we use in the proof of the theorem. As we
will see, Vρ ◦ T µ is actually bounded at least in L2 for any Lipschitz graph,
and even for more general measures (see Theorem 1.5).

Theorem 1.1 applies to the particular cases of the Cauchy and Riesz trans-
forms on Lipschitz graphs. Moreover, it is easy to see that, for some C > 0,
Tµ∗ f ≤ C(Vρ ◦ T µ)f for every compactly supported function f . Thus Theo-
rem 1.1 strengthens the celebrated result of R. Coifman, A. McIntosh, and
Y. Meyer about the L2 boundedness of the Cauchy transform on Lipschitz
graphs (the assumption on the slope of the graph can be avoided for this
purpose). It is also easily checked that the Lp boundedness of Vρ ◦T µ yields
a new proof of the existence of the principal value Tµf(x) = limε↘0 T

µ
ε f(x)

for all f ∈ Lp(µ) and µ-almost all x ∈ Rd, without using a dense class of
functions in Lp(µ).

Furthermore, from Theorem 1.1 one also gets information on the speed of
convergence of the principal value. In fact, the boundedness of the λ-jump
operator Nλ ◦ T µ and the (a, b)-upcrossings operator N b

a ◦ T µ is classically
derived from variational inequalities. Given λ > 0, f ∈ L1

loc(µ) and x ∈ Rd,
one defines (Nλ ◦T µ)f(x) as the supremum of all integers N for which there
exist 0 < ε1 < δ1 ≤ ε2 < δ2 ≤ · · · ≤ εN < δN so that |Tµεif(x)− Tµδif(x)| > λ

for each i = 1, . . . , N . Similarly, given a < b, one defines (N b
a ◦ T µ)f(x)

to be the supremum of all integers N for which there exist 0 < ε1 < δ1 ≤
ε2 < δ2 ≤ · · · ≤ εN < δN so that Tµεif(x) < a and Tµδif(x) > b for each

i = 1, . . . , N . Using Theorem 1.1 one obtains the following theorem (see
[16], [2]).

Theorem 1.2. Let µ be as in Theorem 1.1, ρ > 2, and λ > 0. For 1 < p <
∞, there exist constants Cp, C1 > 0 such that

λ‖
(
(Nλ ◦ T µ)f

)1/ρ‖Lp(µ) ≤ Cp‖f‖Lp(µ) and

λm1/ρµ({x ∈ Rd : (Nλ ◦ T µ)f(x) > m}) ≤ C1‖f‖L1(µ)

for all m ∈ N. The same holds replacing λ by b − a and Nλ by N b
a, where

a < b are two given real numbers.

These results also hold for the family of smooth truncations T µϕ .
Concerning the background on the ρ-variation, a fundamental result is

Lépingle’s inequality [14], from which the Lp boundedness of the ρ-variation
for martingales follows, for ρ > 2 and 1 < p < ∞. From this result on
martingales, one deduces that the ρ-variation for averaging operators (also
called differentiation operators) is bounded in Lp, and similar conclusions
hold in the setting of dynamical systems (see [9]). As far as we know, the
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first work dealing with the ρ-variation for singular integral operators is the
one of J. Campbell, R. L. Jones, K. Reinhold and M. Wierdl ([2]), where the
Lp and weak L1 boundedness of the ρ-variation (for ρ > 2) for the Hilbert
transform was proved. Later on, there appeared other papers showing the Lp

boundedness of the ρ-variation for singular integrals in Rn ([3]), with weights
([7]), and for other operators such as the spherical averaging operator or
singular integral operators on parabolas ([10]). Recently, the case of the
Carleson operator has been considered too ([12], [25]).

1.3. Relationship with uniform rectifiability. For a given measure µ
in Rd, the relationship between the L2(µ) boundedness of singular integrals
and the geometric properties of µ (such as rectifiability) is an area of research
that has attracted much attention in the last years. There are influential
contributions, for example, by G. David, P. Jones, P. Mattila, M. Melnikov,
T. Murai, S. Semmes, X. Tolsa, J. Verdera, A. Volberg, etc. See [26], for
example, for further names and references.

We recall some definitions on geometric measure theory. A Borel mea-
sure µ in Rd is said to be n-dimensional Ahlfors-David regular, or sim-
ply AD regular, if there exists some constant C > 0 such that C−1rn ≤
µ(B(x, r)) ≤ Crn for all x ∈ suppµ and 0 < r ≤ diam(suppµ). One says
that µ is n-rectifiable if there exists a countable family of n-dimensional
C1 manifolds {Mi}i∈N such that µ(Rd \

⋃
i∈NMi) = 0. One also says

that µ is uniformly n-rectifiable if there exist θ,M > 0 so that, for each
x ∈ suppµ and 0 < r ≤ diam(suppµ), there is a Lipschitz mapping g from
the n-dimensional ball Bn(0, r) ⊂ Rn into Rd such that Lip(g) ≤ M and
µ
(
B(x, r) ∩ g(Bn(0, r))

)
≥ θrn. The uniform rectifiability is a quantita-

tive stronger version of rectifiability. Thus, in particular, any AD regular
uniformly rectifiable measure is actually rectifiable. Notice also that the
n-dimensional Hausdorff measure restricted to an n-dimensional Lipschitz
graph is a uniformly n-rectifiable measure.

G. David and S. Semmes asked more than twenty years ago the still open
question that follows (see, for example, [26, Chapter 7]):

Question 1.3. Is it true that an n-dimensional AD regular measure µ in
Rd is uniformly n-rectifiable if and only if Rµ∗ is bounded in L2(µ)?

In [4], G. David and S. Semmes proved the “only if” implication of the
question above. Moreover, they gave a positive answer if one replaces, in the
question, the L2 boundedness of Rµ∗ by the L2 boundedness of Tµ∗ for a wide
class of odd kernels K. In this direction, P. Mattila and D. Preiss proved
in [22] the following result: let µ be an n-dimensional AD regular measure
in Rd. Assume that, for any C∞ radial function h : Rd \ {0} → R such
that |h(x)| ≤ C and |∇h(x)| ≤ C|x|−1 for some fixed constant C > 0, the
operators Tµε defined by (1) with kernel K(x) = h(x)|x|−n−1x are bounded
in L2(µ) uniformly in ε > 0. Then, µ is n-rectifiable.

The “if” implication in the question above was proved by P. Mattila, M.
Melnikov and J. Verdera in [21] for the case of the Cauchy transform, that
is n = 1 and d = 2. Later on, G. David and J. C. Léger proved in [13]
that the L2 boundedness Cµ∗ implies that µ is rectifiable, i.e., they obtained
the corresponding “if” implication without the AD regularity assumption
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(for n = 1 and d = 2). Very recently, Question 1.3 has been answered
affirmatively by F. Nazarov, X. Tolsa, and A. Volberg for codimension 1,
that is, for n = d− 1 ([24]).

When µ is the n-dimensional Hausdorff measure restricted to a set E ⊂ Rd
such that µ(E) < ∞, the rectifiability of µ is also related to the existence
of the principal value of the Riesz transform of µ for µ-a.e. x ∈ E. For
example, P. Mattila and M. Melnikov showed in [20] that, if µ is rectifiable,
for all finite Borel measures ν there exists Rν1(x) for µ-a.e. x ∈ Rd. In
[22], P. Mattila and D. Preiss proved that, under the additional assumption
that lim infr→0 r

−nµ(B(x, r)) > 0 for µ-a.e. x ∈ E, the rectifiability of E
is equivalent to the existence of Rµ1(x) µ-a.e. x ∈ E. Later on, in [31],
X. Tolsa removed the assumption on the lower density of µ, i.e., he proved
that µ is rectifiable if and only if the principal value Rµ1 exists µ almost
everywhere. Let us mention that, for the Cauchy transform, the same results
were obtained in [19] with some density assumptions, and in [29] by using
the notion of curvature of measures. For other results dealing with principal
values, Hausdorff measures, rectifiability, and related questions, see also [8],
[23], [6], [33], [27], and [28], for example.

The following theorem is our second main result, which might be con-
sidered as a partial answer to the question above, and it is proved using
Theorem 1.1 (see [17]).

Theorem 1.4. Let ρ > 2. An n-dimensional AD regular measure µ is
uniformly n-rectifiable if and only if Vρ ◦ Rµ is bounded in L2(µ), where
Rµ = {Rµε }ε>0.

Therefore, Vρ ◦ Rµ completely characterizes the n-AD regular measures
µ which are uniformly rectifiable. Recall that the boundedness of Vρ ◦ Rµ
implies the existence of the principal value Rµ1, which in turn implies rectifi-
ability. Thus our theorem yields stronger conclusions with, a priori, stronger
hypotheses. Theorem 1.4 is a direct consequence of the following one (see
[17]).

Theorem 1.5. Let µ be an n-dimensional AD regular Borel measure in Rd.
Then, the following are equivalent:

(a) µ is uniformly n-rectifiable,
(b) for any ρ > 2 and any Tµε as in (1), the operator Vρ ◦ T µ is bounded

in L2(µ),
(c) for some ρ > 2, the operator Vρ ◦ Rµ is bounded in L2(µ).

1.4. Further results. Denote by M(Rd) the space of finite complex Radon
measures on Rd equipped with the norm given by the variation of measures.
The following theorem strengthens the first endpoint estimate of Theorem
1.1 (see [15], [17]).

Theorem 1.6. Let ρ > 2, and let µ be n-dimensional Hausdorff measure
restricted to an n-dimensional Lipschitz graph with slope strictly less than
1. Then, Vρ ◦ T is a bounded operator from M(Rd) to L1,∞(µ), i.e., there

exist a constant C > 0 such that, for all λ > 0 and all ν ∈M(Rd),

λµ({x ∈ Rd : (Vρ ◦ T )ν(x) > λ}) ≤ C‖ν‖,



6 A. MAS

where T = {Tε}ε>0 and

(3) Tεν(x) =

∫
|x−y|>ε

K(x− y) dν(y).

In particular, Vρ ◦ T µ is of weak type (1, 1). The same holds without the
assumption on the slope of the Lipschitz graph if one replaces Vρ ◦ T by
Vρ ◦ Tϕ.

Denote by Hn the n-dimensional Hausdorff measure in Rd. The following
corollary is a direct consequence of Theorem 1.6 (see [15]).

Corollary 1.7. Let E be an Hn measurable subset of Rd with Hn(E) <∞
and such that Hn restricted to E is n-rectifiable, and let K be an odd kernel
satisfying (2). If ν ∈ M(Rd), then the principal value limε↘0 Tεν(x) exists
for Hn almost all x ∈ E.

Given a set E ⊂ Rd as in Corollary 1.7, as far as we know, the existence
Hn a.e. x ∈ E of limε↘0 Tεν(x) for ν ∈ M(Rd) was already known for odd

kernels K ∈ C∞(Rd \ {0}) satisfying

(4) |∇jK(x)| ≤ Cj |x|−n−j

for all j = 0, 1, 2, 3, . . ., or maybe assuming (4) only for a finite but big
number of j’s (see [18, Theorems 20.15 and 20.27, Remarks 20.16 and 20.19]
and the references therein). However, the result is new if one asks (4) only
for j = 0, 1, 2, and so Corollary 1.7 improves on previous results.

Similarly to the ρ-variation, one may also consider the so-called oscillation
operator. Given a decreasing sequence {rm}m∈Z ⊂ (0,∞), the oscillation
(with respect to {rm}m∈Z) for T µ is defined by

(O ◦ T µ)f(x) = sup
{εm},{δm}

(∑
m∈Z
|Tµεmf(x)− Tµδmf(x)|2

)1/2

for f ∈ L1
loc(µ) and x ∈ Rd, where the pointwise supremum is taken over all

sequences {εm}m∈Z and {δm}m∈Z such that rm+1 ≤ εm ≤ δm ≤ rm for all
m ∈ Z. All the results in these notes also hold replacing Vρ by O. Moreover,
the norm of the corresponding operators is bounded independently of the
sequence that defines O.

2. On the proof of the main results

For the sake of shortness, and because of its possible applications in
boundary value problems on non smooth domains, we mainly focus our
attention only on the proof of Theorem 1.1. Theorem 1.2 follows from The-
orem 1.1 by standard arguments (see [2], for example). At the end of these
notes we make some comments concerning Theorems 1.5 and 1.6.

2.1. The α and β coefficients. For the proof of Theorem 1.1, it is a key
fact to develop a multiscale analysis on the underlying measure using the
so-called α and β coefficients.

Given m ∈ N, λ > 0, and a cube Q ⊂ Rm (i.e. Q = [0, b)m + a with
a ∈ Rm and b > 0), let `(Q) denote the side length of Q, let zQ denote the
center of Q and let λQ be the cube with center zQ and side length λ`(Q).
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Let µ be a locally finite Borel measure in Rd. Given 1 ≤ p < ∞ and a
cube Q ⊂ Rd, one sets (see [5])

(5) βp,µ(Q) = inf
L

{
1

`(Q)n

∫
2Q

(
dist(y, L)

`(Q)

)p
dµ(y)

}1/p

,

where the infimum is taken over all n-planes L in Rd. For p =∞ one replaces
the Lp norm by the supremum norm, that is,

(6) β∞,µ(Q) = inf
L

{
sup

y∈suppµ∩2Q

dist(y, L)

`(Q)

}
,

where the infimum is taken over all n-planes L in Rd again. These coefficients
were introduced by P. W. Jones in [11] for p = ∞ and by G. David and S.
Semmes in [4] for 1 ≤ p <∞.

Let F ⊂ Rd be the closure of an open set. Given two finite Borel measures
σ, ν in Rd, one sets

(7) distF (σ, ν) = sup
{∣∣∣∫ f dσ − ∫ f dν∣∣∣ : Lip(f) ≤ 1, suppf ⊂ F

}
.

It is easy to check that this is a distance in the space of finite Borel mea-
sures σ such that suppσ ⊂ F and σ(∂F ) = 0. Moreover, it turns out that
this distance is a variant of the well known Wasserstein distance W1 from
optimal transportation (see [34, Chapter 1]). See [18, Chapter 14] for other
properties of distF .

Given a cube Q ⊂ Rd which intersects suppµ, consider the closed ball
BQ = B(zQ, 6

√
d`(Q)). Then one defines (see [32])

(8) αµ(Q) =
1

`(Q)n+1
inf
c≥0,L

distBQ(µ, cHnL),

where the infimum is taken over all constants c ≥ 0 and all n-planes L in
Rd, and where HnL denotes the n-dimensional Hausdorff measure restricted
to L. For convenience, if Q does not intersect suppµ, one sets αµ(Q) = 0.

The following result characterizes uniform rectifiability in terms of the α
and β coefficients.

Theorem 2.1. Let µ be an n-dimensional AD regular measure in Rd, and
consider any p ∈ [1, 2]. Then, the following are equivalent:

(a) µ is uniformly n-rectifiable.
(b) There exists C > 0 such that, for any cube R ⊂ Rd,∑

Q∈D(R)

βp,µ(Q)2µ(Q) ≤ Cµ(R),

where D(R) stands for the collection of cubes in Rd contained in R
which are obtained by splitting R dyadically.

(c) There exists C > 0 such that, for any cube R ⊂ Rd,∑
Q∈D(R)

αµ(Q)2µ(Q) ≤ Cµ(R).

The equivalence (a)⇐⇒(b) in Theorem 2.1 was proved by G. David and
S. Semmes in [4], and the equivalence (a)⇐⇒(c) was proved by X. Tolsa in
[32].
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2.2. Martingales. The first step in the proof of Theorem 1.1 is to relate
the variation for singular integral operators to the variation for martingales,
and to use the known results on the variation for martingales. Recall a
particular case of Lépingle’s inequality (see [14] or [10]):

Theorem 2.2. Let (X,Σ, λ) be a σ-finite measure space and ρ > 2. There
exists C > 0 such that ‖Vρ(G)‖L2(λ) ≤ C‖G‖L2(λ) for every martingale G =

{Gm}m∈Z ∈ L2(λ), where ‖G‖L2(λ) = supm∈Z ‖Gm‖L2(λ),

Vρ(G)(x) = sup
{εm}

(∑
m∈Z
|Gεm+1(x)−Gεm(x)|ρ

)1/ρ

and the supremum is taken over all increasing sequences {εm}m∈Z ⊂ Z.

We are going to introduce a suitable martingale for our purposes. For the
rest of this section, let µ be as in Theorem 1.1, and assume that Γ = {x ∈
Rd : x = (y,A(y)), y ∈ Rn} is the corresponding Lipschitz graph. We may
also assume that A has compact support. Given m ∈ Z and a ∈ Rn, we set

D̃ a
m = a+ [0, 2−m)n ⊂ Rn and D a

m = D̃ a
m × Rd−n ⊂ Rd.

Set D a
m = {Da+2−mk

m ⊂ Rd : k ∈ Zn} (for a fixed a, the projection of⋃
m∈ZD a

m onto Rn is a translation of the standard dyadic lattice in Rn).
Notice that, since Γ is an n-dimensional Lipschitz graph, µ(D a

m) is com-
parable to 2−mn for all m ∈ Z, a ∈ Rn. For D ∈ D a

m and x ∈ D, we
set

EDµ(x) =
1

µ(D)

∫
D

∫
Dc
K(z − y) dµ(y) dµ(z).

Finally, given a ∈ Rn, we define the martingale

E a
mµ(x) =

∑
D∈D am

χD(x)EDµ(x)

for x ∈ Rd and m ∈ Z, where χD denotes the characteristic function of D.
Let us make some comments to understand better the nature of E a

mµ.
Roughly speaking, if we forget the truncations, we have∫

D

∫
D
K(z − y) dµ(y) dµ(z) = 0

because of the antisymmetry of K (use Fubini’s theorem). Hence, if we set
Tµf(z) =

∫
K(z − y)f(y) dµ(y) for f ∈ L1(µ), then

∫
D T

µχD dµ = 0 and

E a
mµ(x) =

1

µ(D)

∫
D
TµχDc dµ =

1

µ(D)

∫
D
Tµ1 dµ

for x ∈ D ∈ D a
m. Therefore, E a

mµ(x) is the average of the function Tµ1 on
the set D ∈ D a

m which contains x. So, it is clear that, for a fixed a ∈ Rn,
{E a

mµ}m∈Z is a martingale. In [23] it is shown that {E a
mµ}m∈Z is actually

well defined and a martingale. Finally, for x ∈ Rd, we define

Emµ(x) = 2mn
∫
{a∈Rn :x∈D a

m}
E a
mµ(x) dLna

where Ln denotes the Lebesgue measure in Rn (notice that Ln({a : x ∈
D a
m}) = 2−mn). Thus, Emµ is an average (of the m’th term) of some



VARIATIONAL INEQUALITIES FOR SINGULAR INTEGRAL OPERATORS 9

martingales depending on a parameter a ∈ Rn. Set Eµ = {Emµ}m∈Z.
Using Theorem 2.2, in [16] we prove the following theorem, which can be
considered the starting point to prove Theorem 1.1.

Theorem 2.3. Fix a dyadic cube P̃ ⊂ Rn, set P = P̃ × Rd−n, and assume

that A is supported in P̃ . Let ρ > 2. There exists C > 0 independent of P
such that ‖Vρ(Eµ)‖2L2(µ) ≤ Cµ(P ).

2.3. Sketch of the proof of Theorem 1.1. As pointed out above, the
proof relies on two basic facts: the known L2 boundedness of the ρ-variation
for martingales explained in section 2.2 and the good geometric properties
of Lipschitz graphs from a measure theoretic point of view.

The starting point of the proof is Theorem 2.3, where the L2 boundedness
of the ρ-variation (of a convex combination) of some particular martingales
is stated. So, the next step consists in relating the results on martingales of
Theorem 2.3 with the ρ-variation for singular integrals on Lipschitz graphs,
and this is the aim of the following proposition (see [16]). We denote by D
the standard dyadic lattice in Rd.

Proposition 2.4. Let A and µ be as in Theorem 2.3. For each x ∈ suppµ,
define

Wµ(x)2 =
∑
j∈Z
|Tµϕ

2−j
1(x)− Ejµ(x)|2,

Sµ(x)2 = sup
{εm}

∑
j∈Z

∑
m∈Z: εm,εm+1∈[2−j−1,2−j)

|Tµϕεm+1
1(x)− Tµϕεm1(x)|2,

where the supremum is taken over all decreasing sequences of positive num-
bers {εm}m∈Z. Then, there exist C1, C2 > 0 such that

‖Wµ‖2L2(µ) + ‖Sµ‖2L2(µ) ≤ C1

∑
Q∈D

(
αµ(Q)2 + β2,µ(Q)2

)
µ(Q) ≤ C2µ(P ).

The last inequality in Proposition 2.4 can be easily derived from the
packing condition that the α’s and β’s satisfy (i.e., Theorem 2.1(b) and (c)).

The α and β coefficients are two fundamental tools in the study of Wµ
and Sµ, which are used to measure the flatness of the graph Γ at different
scales in order to estimate the terms which appear in the sums defining Wµ
and Sµ. To use the α coefficients to relate the ρ-variation for martingales
with the ρ-variation for singular integrals, it is a key fact that we consider a
family of smooth truncations and an average of martingales instead of rough
truncations and a fixed martingale, because the α’s are defined in terms
of Lipschitz functions (see section 2.4 for more details, where a concrete
example is shown).

Combining Proposition 2.4 with the L2 estimates for the ρ-variation on
the average of martingales Eµ in Theorem 2.3, we obtain local L2 estimates
of Vρ ◦ T µϕ when Γ is any Lipschitz graph (the restriction Lip(A) < 1 is
not necessary). More precisely, we separate the sum in the definition of
Vρ ◦ T µϕ into two parts, which are classically called short and long variation.
The short variation corresponds to the sum Sµ in Proposition 2.4, where
the indices run over those m ∈ Z such that both εm and εm+1 lie in the
same dyadic interval, and can be handled using the α’s and β’s. The long
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variation corresponds to the sum over the indices m ∈ Z such that εm and
εm+1 lie in different dyadic intervals, so one may assume that the εm’s are
dyadic numbers, i.e., εm = 2−j for some j ∈ Z. It is handled by comparing
Tµϕ

2−j
1 with Ejµ, and then using Theorem 2.4 and the fact the ρ-variation

for Eµ is bounded in L2(µ), by Theorem 2.3.
Using the local L2 estimates for Vρ ◦ T µϕ , combined with rather standard

techniques in Calderón-Zygmund theory, we obtain the endpoint estimates
of Theorem 1.1 for Vρ◦T µϕ . Then, by interpolation, we obtain the Lp bound-
edness of this operator in the whole range 1 < p <∞, and in particular the
L2 boundedness.

The next step is to replace the family of smooth truncations ϕ by the
rough one. We obtain the L2 boundedness of Vρ ◦ T µ by comparing this
operator with Vρ◦T µϕ , and by estimating the difference in terms of the α and
β coefficients, decomposing a function f ∈ L2(µ) using a suitable wavelet
basis. It is in this step where we need the assumption Lip(A) < 1. Roughly
speaking, when dealing with rough truncations, we need the estimate

(9) µ(A(x, a, b)) ≤ C(b− a)bn−1 for all x ∈ suppµ,

where A(x, a, b) = {y ∈ Rd : a ≤ |y − x| ≤ b} (that is the case if, for
example, A is affine), but this estimate may fail if Lip(A) ≥ 1.

Finally, by adapting the proof of [3, Theorem B] to our setting and us-
ing standard techniques in Calderón-Zygmund theory, we show that the L2

boundedness of Vρ◦T µ yields the endpoint estimates of Theorem 1.1, and we
obtain the Lp boundedness in the whole range 1 < p < ∞ by interpolation
again. This finishes the proof.

2.4. How the α and β coefficients come into play. This section is
devoted to illustrate how the α and β coefficients appear when studying
variational inequalities for singular integral operators. We only present an
example for the α’s because for the β’s the arguments are similar.

We intend to estimate one term of the sum defining Sµ in Proposition
2.4 (say |Tµϕεm+1

1(x)− Tµϕεm1(x)|, for some εm and εm+1) by means of the α
coefficients. To simplify and facilitate the exposition, we may assume that
we are in the most favorable situation. That is, assume that x ∈ Q∩ suppµ
for some cube Q ∈ D with `(Q) = 2−j for some j ∈ Z, that εm = 9

102−j

and εm+1 = 2−j−1, that x belongs to the n-plane L which minimizes αµ(Q),
and that the constant c which minimizes αµ(Q) is equal to 1. We want to
estimate∣∣Tµϕ

2−j−1
1(x)− Tµϕ

2−j9/10
1(x)

∣∣
=

∣∣∣∣ ∫ (ϕ(|x− y|2j+1)− ϕ(|x− y|2j10/9)
)
K(x− y) dµ(y)

∣∣∣∣.
Set ψ(y) = ϕ(|x− y|2j+1)− ϕ(|x− y|2j10/9), so ψ is supported in BQ and
0 ≤ ψ ≤ 1. Moreover, |x−y| is comparable to 2−j = `(Q) for all y ∈ suppψ.
Since ϕ is smooth, it is easy to check that there exists C > 0 depending
only on ϕ such that |∇ψ| ≤ C`(Q)−1. Combining these estimates with (2)
we deduce that Ψ(y) = ψ(y)K(x−y) is supported in BQ, and that for some
fixed C > 0 we have |∇Ψ| ≤ C`(Q)−n−1.
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Finally, since ψ is a radial function (with center x), K is odd, and L is
a plane which contains x, we obviously have

∫
Ψ dHnL = 0. Therefore, for

some C > 0 depending only on ϕ, we conclude∣∣Tµϕ
2−j−1

1(x)− Tµϕ
2−j9/10

1(x)
∣∣ =

∣∣∣∣ ∫ Ψ dµ

∣∣∣∣ =

∣∣∣∣ ∫ Ψ dµ−
∫

Ψ dHnL
∣∣∣∣

≤ C

`(Q)n+1
distBQ(µ, cHnL) = C αµ(Q),

and we are done.

2.5. Further comments. In this section we only give an overview of the
main ingredients for proving Theorems 1.5 and 1.6 (see [17] and [15] for the
details).

Concerning Theorem 1.5, the implication (b) =⇒ (c) is obvious. The
proof of (a) =⇒ (c) can be separated in three main steps. For the first
one, we assume that µ is the n-dimensional Hausdorff measure restricted
to an n-dimensional Lipschitz graph. Then, an application of Theorem 1.1
gives that Vρ ◦ T µϕ is bounded in L2(µ). For the second step, we use a good
λ inequality to derive, from the L2 boundedness of Vρ ◦ T µϕ when µ is the
Hausdorff measure on a Lipschitz graph, the L2 boundedness of Vρ◦T µϕ when
µ is a more general measure whose support contains big pieces of Lipschitz
graphs. Applying that method once again we obtain the L2 boundedness of
Vρ ◦T µϕ when µ is a measure whose support contains big pieces of sets which
contain big pieces of Lipschitz graphs, which in turn is equivalent to say that
µ is uniformly rectifiable (see [5] for the precise definitions). In order to run
the good λ method, we need the following estimate:∣∣(Vρ ◦ T µϕ )fχ(2B)c(x)− (Vρ ◦ T µϕ )fχ(2B)c(z)

∣∣ ≤ CMµf(x)

for x, z ∈ B, where B is any ball, f ∈ L1(µ), and Mµ denotes the Hardy-
Littlewood maximal operator with respect to µ. The estimate may fail for
rough truncations, i.e., for Vρ ◦ T µ, so we need to use smooth truncations.
The third and last step consists on obtaining the L2 boundedness of Vρ ◦T µ
on uniformly rectifiable measures µ, and this is a combination of two ingre-
dients: a decomposition of the support of µ using a corona decomposition
in the sense of [5], which organizes the good geometric/measure theoretic
information of µ, and the comparison of Vρ ◦ T µ with the smooth version
Vρ ◦ T µϕ , which we already know that is bounded in L2(µ), using a suitable
Haar basis adapted to the corona decomposition of µ.

For the proof of (c) =⇒ (a), one first notices that the L2 boundedness of
Vρ ◦ Rµ implies the L2 boundedness of its smooth version, say Vρ ◦ Rµϕ. In
[32] it is shown that if∑

j∈Z

∥∥Rµϕ
2−j−1

χQ −Rµϕ
2−j

χQ
∥∥2
L2(µ)

≤ Cµ(Q)

for all Q ∈ D then µ is uniformly rectifiable, which in turn is a consequence
of the fact that∑

P∈D(Q)

β2,µ(P )2µ(P ) ≤ C
∑
j∈Z

∥∥Rµϕ
2−j−1

χ3Q −Rµϕ
2−j

χ3Q

∥∥2
L2(µ)

+ Cµ(Q)
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and Theorem 2.1. Notice that∑
j∈Z

∥∥Rµϕ
2−j−1

χQ −Rµϕ
2−j

χQ
∥∥2
L2(µ)

≤
∥∥(V2 ◦ Rµϕ)χQ

∥∥2
L2(µ)

,

thus if V2 ◦ Rµϕ is bounded in L2(µ), we are done. However, the 2-variation
operator is unbounded in general (even for the case of martingales). For
ρ > 2, we use these ideas combined with a deep result in [5] called the weak
geometric lemma and a stopping time argument.

The proof of Theorem 1.6 is based on a nontrivial modification of the proof
of [3, Theorem B] using a Calderón-Zygmund decomposition for general
measures developed in [30]. The estimate (9) is necessary in our arguments,
so we must require Lip(A) < 1 in the statement of the theorem.
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