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SINGULAR INTEGRALS WITH ODD KERNEL

ON LIPSCHITZ GRAPHS
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Abstract. We prove that, for ρ > 2, the ρ-variation and oscillation for the smooth trunca-
tions of the Cauchy transform on Lipschitz graphs are bounded in Lp for 1 < p < ∞. The
analogous result holds for the n-dimensional Riesz transform on n-dimensional Lipschitz
graphs, as well as for other singular integral operators with odd kernel. In particular, our
results strengthen the classical theorem on the L2 boundedness of the Cauchy transform on
Lipschitz graphs by Coifman, McIntosh, and Meyer.

1. Introduction

The ρ-variation and oscillation for martingales and some families of operators have been
studied in many recent papers on probability, ergodic theory, and harmonic analysis (see [Lé],
[Bo], [JKRW], [CJRW1], and [JSW], for example). The purpose of this paper is to establish
some new results concerning the ρ-variation and oscillation for families of singular integral
operators defined on Lipschitz graphs. In particular, our results include the Lp boundedness
of the ρ-variation and the oscillation for the smooth truncations of the Cauchy transform
and the n-dimensional Riesz transform on Lipschitz graphs, for 1 < p <∞ and ρ > 2.

Given a Borel measure µ in Rd, one defines the n-dimensional Riesz transform of a function
f ∈ L1(µ) by Rµf(x) = limε↘0R

µ
ε f(x) (whenever the limit exists), where

Rµε f(x) =

∫
|x−y|>ε

x− y
|x− y|n+1

f(y) dµ(y), x ∈ Rd.

When d = 2 (i.e., µ is a Borel measure in C), one defines the Cauchy transform of f ∈ L1(µ)
by Cµf(x) = limε↘0C

µ
ε f(x) (whenever the limit exists), where

Cµε f(x) =

∫
|x−y|>ε

f(y)

x− y
dµ(y), x ∈ C.

To avoid the problem of existence of the preceding limits, it is useful to consider the maximal
operators Rµ∗f(x) = supε>0 |R

µ
ε f(x)| and Cµ∗ f(x) = supε>0 |C

µ
ε f(x)|.

The Cauchy and Riesz transforms are two very important examples of singular integral
operators with a Calderón-Zygmund kernel. The kernels K : Rd \ {0} → R that we consider
in this paper satisfy

(1.1) |K(x)| ≤ C

|x|n
, |∂xiK(x)| ≤ C

|x|n+1
and |∂xi∂xjK(x)| ≤ C

|x|n+2
,
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for all 1 ≤ i, j ≤ d and x = (x1, . . . , xd) ∈ Rd\{0}, where 0 < n < d is some integer and C > 0
is some constant; and moreover K(−x) = −K(x) for all x 6= 0 (i.e. K is odd). Notice that
the n-dimensional Riesz transform corresponds to the vector kernel (x1, . . . , xd)/|x|n+1, and
the Cauchy transform to (x1,−x2)/|x|2 (so, we may consider K to be any scalar component
of these vector kernels).

Given an odd kernel K satisfying (1.1) and a finite Borel measure µ in Rd, for each ε > 0,
we consider the ε-truncated operator

Tεµ(x) =

∫
|x−y|>ε

K(x− y) dµ(y), x ∈ Rd,

and then we set Tµ(x) = limε↘0 Tεµ(x) whenever the limit makes sense, and T∗µ(x) =
supε>0 |Tεµ(x)|. Finally, given f ∈ L1(µ), we define Tµε f(x) := Tε(fµ)(x), Tµf(x) :=
T (fµ)(x) and Tµ∗ f(x) := T∗(fµ)(x). Thus, for a suitable choice of K, the operator Tµ

coincides with the Cauchy or Riesz transforms.
Besides the operator Tε defined above, one can consider another ε-truncated variant that

we proceed to define. First we need some additional notation. Given x = (x1, . . . , xd) ∈ Rd,
we use the notation x̃ := (x1, . . . , xn) ∈ Rn. Let ϕR : [0,∞) → [0,∞) be a non decreasing
C2 function such that χ[3

√
n,∞) ≤ ϕR ≤ χ[2.1

√
n,∞) (the numbers 3

√
n and 2.1

√
n are chosen

just for definiteness and they are not important). Given ε > 0 and x ∈ Rd, we denote

ϕε(x) := ϕR(|x̃|/ε) and ϕ := {ϕε}ε>0.

Given K as above, x ∈ Rd, 0 < ε, and a finite Borel measure µ, we set

(Kϕε ∗ µ)(x) :=

∫
ϕε(x− y)K(x− y) dµ(y).

We also denote (Kϕ ∗ µ)(x) := {(Kϕε ∗ µ)(x)}ε>0. Finally, given f ∈ L1(µ), we define
Tµϕεf(x) := (Kϕε ∗ (fµ))(x), Tµϕf(x) := limε→0 T

µ
ϕεf(x) (whenever the limit makes sense),

Tµϕ∗f(x) := supε>0 |T
µ
ϕεf(x)|, and T µϕ f(x) := {Tµϕεf(x)}ε>0.

Let I be a subset of R (in this paper, we will always have I = (0,∞) or I = Z), and let
F := {Fε}ε∈I be a family of functions defined on Rd. Given ρ > 0, the ρ-variation of F at
x ∈ Rd is defined by

Vρ(F)(x) := sup
{εm}

(∑
m∈Z
|Fεm+1(x)− Fεm(x)|ρ

)1/ρ

,

where the pointwise supremum is taken over all decreasing sequences {εm}m∈Z ⊂ I. Fix a
decreasing sequence {rm}m∈Z ⊂ I. The oscillation of F at x ∈ Rd is defined by

O(F)(x) := sup
{εm},{δm}

(∑
m∈Z
|Fεm(x)− Fδm(x)|2

)1/2

,

where the pointwise supremum is taken over all sequences {εm}m∈Z ⊂ I and {δm}m∈Z ⊂ I
such that rm+1 ≤ εm ≤ δm ≤ rm for all m ∈ Z.

In this paper we are interested in studying the ρ-variation and oscillation for the family
T µϕ f . That is, we will deal with

(Vρ ◦ T µϕ )f(x) := Vρ(T µϕ f)(x) = Vρ(Kϕ ∗ (fµ))(x) and

(O ◦ T µϕ )f(x) := O(T µϕ f)(x) = O(Kϕ ∗ (fµ))(x),

for a Borel measure µ and f ∈ L1(µ). Although it is not clear from the definitions, these
operators are µ-measurable (see [CJRW1], [JSW]).
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Given E ⊂ Rd, we denote by HnE the n-dimensional Hausdorff measure restricted to E.

Let Γ := {x ∈ Rd : x = (x̃, A(x̃))} be the graph of a Lipschitz function A : Rn → Rd−n
with Lipschitz constant Lip(A). Let H1(HnΓ) and BMO(HnΓ) be the (atomic) Hardy space
and the space of functions with bounded mean oscillation, respectively, with respect to the
measure HnΓ. The following is our main result.

Theorem 1.1. Let ρ > 2, let K be a kernel satisfying (1.1), and set µ := HnΓ. The operators
Vρ ◦ T µϕ and O ◦ T µϕ are bounded

• in Lp(µ) for 1 < p <∞,
• from H1(µ) to L1(µ),
• from L1(µ) to L1,∞(µ), and
• from L∞(µ) to BMO(µ).

In all the cases above, the norm of O ◦ T µϕ is bounded independently of the sequence that
defines O.

Let us recall that the L2(H1
Γ) boundedness of the Cauchy transform on Lipschitz graphs

Γ ⊂ C with slope small enough was proved by A. P. Calderón in his celebrated paper [Ca].
The L2 boundedness on Lipschitz graphs in full generality was proved later on by R. Coifman,
A. McIntosh, and Y. Meyer [CMM].

Consider the Cauchy kernel K(z) = 1/z (z ∈ C), and set µ := H1
Γ, so Cµε = Tµε . By

standard Calderón-Zygmund theory (namely, Cotlar’s inequality), the L2(µ) boundedness of
the Cauchy transform Cµ is equivalent to the L2(µ) boundedness of the maximal operator
Cµ∗ . Let Mµ denote the Hardy-Littlewood maximal operator with respect to the measure
µ. It is easy to check that, for f ∈ L1(µ) with compact support, there exists some constant
C0 > 0 such that

Cµε f(x) ≤ Tµϕεf(x) + C0M
µf(x) ≤ (Vρ ◦ T µϕ )f(x) + C0M

µf(x)

for all ε > 0, thus (Vρ ◦ T µϕ ) + C0M
µ controls the maximal operator Cµ∗ and, in this sense,

Theorem 1.1 (together with the known Lp(µ) boundedness of Mµ) strengthens the results
of [Ca] and [CMM]. Analogous conclusions hold for the n-dimensional Riesz transform and
the maximal operator Rµ∗ .

The operator Vρ ◦ T µϕ is also related to an important open problem posed by G. David
and S. Semmes which actually is our main motivation to prove Theorem 1.1. We need some
definitions to state it.

Recall that a measure µ is said to be n-dimensional Ahlfors-David regular, or simply
AD regular, if there exists some constant C such that C−1rn ≤ µ(B(x, r)) ≤ Crn for all
x ∈ suppµ and 0 < r ≤ diam(suppµ). It is not difficult to see that such a measure µ must be
of the form µ = hHnsuppµ, where h is some positive function bounded above and away from

zero. A Borel set E ⊂ Rd is called AD regular if the measure HnE is AD regular. One says
that µ is uniformly n-rectifiable, or simply uniformly rectifiable, if there exist θ,M > 0 so
that, for each x ∈ suppµ and R > 0, there is a Lipschitz mapping g from the n-dimensional
ball Bn(0, R) ⊂ Rn into Rd such that Lip(g) ≤ M and µ

(
B(x,R) ∩ g(Bn(0, R))

)
≥ θRn,

where Lip(g) stands for the Lipschitz constant of g. In the language of [DS2], this means that
suppµ has big pieces of Lipschitz images of Rn. A Borel set E ⊂ Rd is called uniformly n-
rectifiable if HnE is n-uniformly rectifiable. Of course, the n-dimensional graph of a Lipschitz
function is uniformly n-rectifiable.

David and Semmes asked the following question, which is still open (see [Pa, Chapter 7]):

Problem 1.2. Is it true that an n-dimensional AD regular measure µ is n-uniformly recti-
fiable if and only if Rµ∗ is bounded in L2(µ)?
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It is proved in [DS1] that if µ is uniformly rectifiable, then Rµ∗ is bounded in L2(µ).
However, the converse implication has been proved only in the case n = 1 and d = 2, by
P. Mattila, M. Melnikov and J. Verdera [MMV], using the notion of curvature of measures
(which seems to be useful only in this case).

Set Rµ := {Rµε }ε>0. By combining some techniques from [DS2] and [To], in our forthcom-
ing paper [MT] we show that the L2(µ) boundedness of Vρ ◦ Rµ implies that µ is uniformly
n-rectifiable. Moreover, we also prove that Vρ ◦ Rµ is bounded in L2(µ) for all AD regular
uniformly n-rectifiable measures µ. So we obtain the following theorem, which might be
considered as a first approach to a possible solution of Problem 1.2:

Theorem 1.3. Let ρ > 2. An n-dimensional AD regular measure µ is uniformly n-rectifiable
if and only if Vρ ◦ Rµ is a bounded operator in L2(µ).

An essential ingredient for the proof of this result is Theorem 1.1 above. The arguments
and techniques used to derive the L2 boundedness of Vρ◦Rµ on uniformly rectifiable measures
from the L2 boundedness of Vρ ◦Rµϕ on Lipschitz graphs are quite delicate (Rµϕ is defined as
Rµ but using the family ϕ for the truncations). In particular, they involve the corona type
decomposition introduced in [DS1]. For this reason, the proof of the preceding theorem is
out of the scope of this paper and will appear in [MT].

Concerning the background on the ρ-variation and oscillation, a fundamental result is
Lépingle’s inequality [Lé], from which the Lp boundedness of the ρ-variation and oscillation
for martingales follows, for ρ > 2 and 1 < p <∞ (see Theorem 2.4 below for more details).
From this result on martingales, one deduces that the ρ-variation and oscillation are also
bounded in Lp for the averaging operators (also called differentiation operators, see [JKRW]):

(1.2) Dεf(x) =
1

|B(x, ε)|

∫
B(x,ε)

f(y) dy, x ∈ R.

As far as we know, the first work dealing with the ρ-variation and oscillation for singular in-
tegral operators is the one of J. Campbell, R. L. Jones, K. Reinhold and M. Wierdl [CJRW1],
where the Lp and weak L1 boundedness of the ρ-variation (for ρ > 2) and oscillation for the
Hilbert transform was proved. Recall that, for f ∈ Lp(R) and x ∈ R,

Hεf(x) =
1

π

∫
|x−y|>ε

1

x− y
f(y) dy,

and then the Hilbert transform of f is defined by Hf(x) = limε→0Hεf(x), whenever the
limit exists. Later on, there appeared other papers showing the Lp boundedness of the ρ-
variation and oscillation for singular integrals in Rd ([CJRW2]), with weights ([GT]), or for
other operators such as the spherical averaging operator or singular integral operators on
parabolas ([JSW]). Finally, we remark that, very recently, the case of the Carleson operator
has been considered too ([LT], [OSTTW]).

Notice that the Hilbert transform is one of the simplest examples where Theorem 1.1
applies (one sets Γ = R, i.e. A ≡ 0), and so one obtains a new proof of the Lp boundedness
of the ρ-variation and oscillation for the Hilbert transform. In the original proof in [CJRW1],
a key ingredient was the following classical identity, which follows via the Fourier transform:

(1.3) Qε = Pε ∗H,

where Pε is the Poisson kernel and Qε is the conjugated Poisson kernel. Using this identity
and the close relationship between the operators Qε and Hε, Campbell et al. derived the
Lp boundedness of the ρ-variation and oscillation for the Hilbert transform from the one of
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the family {Dε(Hf)}ε>0, where Dε is the averaging operator in (1.2) (notice that Pε can be
written as a convex combination of operators Dδ, δ > 0).

In most of the previous results concerning ρ-variation and oscillation of families of oper-
ators from harmonic analysis, the Fourier transform is a fundamental tool. However, this is
not useful in order to prove Theorem 1.1, since the graph Γ is not invariant under translations
in general. Moreover, even for the Cauchy transform, there is no formula like (1.3), which
relates the truncations of a singular integral operator with an averaging operator applied to
a singular integral operator, when Γ is a general Lipschitz graph.

The main ingredients of our proof of Theorem 1.1 are the known results on the ρ-variation
and oscillation for martingales (Lépingle’s inequality [Lé]) and a multiscale analysis which
stems from the geometric proof of the L2 boundedness of the Cauchy transform on Lipschitz
graphs by P. W. Jones [Jn1] and his celebrated work [Jn2] on quantitative rectifiability in
the plane, using the so called β coefficients. Some of the techniques in these papers were
further developed in higher dimensions by David and Semmes [DS1] for Ahlfors-David regular
sets. More recently, in [To] some coefficients denoted by α, in the spirit of the Jones’ β’s,
were introduced, and they were shown to be useful for the study of the Lp-boundedness of
Calderón-Zygmund operators on Lipschitz graphs and on uniformly rectifiable sets (see the
definition below Theorem 1.4). In our paper, the α and β coefficients play a fundamental
role.

Let us remark that Lépingle’s inequality, which asserts the Lp boundedness of the ρ-
variation of martingales, fails if one assumes ρ ≤ 2 (see [Qi] and [JW], for example). More-
over, this fact can be brought to the ρ-variation of averaging operators and singular integral
operators, thus it is essential to assume ρ > 2 in Theorem 1.1. Analogous conclusions hold
if one replaces the `2-norm by and `ρ-norm with ρ < 2 in the definition of O. See [CJRW1],
or [AJS] for the case of martingales.

Concerning the direct applications of Theorem 1.1, it is easily seen that the Lp bound-
edness of Vρ ◦ T µϕ yields a new proof of the existence of the principal values Tµϕf(x) :=
limε→0 T

µ
ϕεf(x) for all f ∈ Lp(µ) and almost all x ∈ Γ, without using a dense class of func-

tions in Lp(µ) as in the classical proof. Moreover, from Theorem 1.1 one also gets some
information on the speed of convergence. In fact, a classical result derived from variational
inequalities is the boundedness of the λ-jump operator Nλ ◦ T µϕ and the (a, b)-upcrossings
operator N b

a ◦ T
µ
ϕ . Given λ > 0, f ∈ L1

loc(µ) and x ∈ Rd, one defines (Nλ ◦ T µϕ )f(x) as the
supremmum of all integers N for which there exists 0 < ε1 < δ1 ≤ ε2 < δ2 ≤ · · · ≤ εN < δN
so that

|Tµϕεif(x)− Tµϕδif(x)| > λ

for each i = 1, . . . , N . Similarly, given a < b, one defines (N b
a◦T

µ
ϕ )f(x) to be the supremmum

of all integers N for which there exists 0 < ε1 < δ1 ≤ ε2 < δ2 ≤ · · · ≤ εN < δN so that
Tµϕεif(x) < a and Tµϕδif(x) > b for each i = 1, . . . , N . Using Theorem 1.1 one obtains (by

the same arguments as in [CJRW1, Theorem 1.3 and Corollary 7.1]) the following:

Theorem 1.4. Let ρ > 2, λ > 0, and let K, and µ be as in Theorem 1.1. For 1 < p < ∞,
there exist constants C1 and C2 depending on ρ, n, d, K, and Lip(A) (and on p for the case
of C1) such that

‖
(
(Nλ ◦ T µϕ )f

)1/ρ‖Lp(µ) ≤
C1

λ
‖f‖Lp(µ) and

µ({x ∈ Γ : (Nλ ◦ T µϕ )f(x) > m}) ≤ C2

λm1/ρ
‖f‖L1(µ).
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Trivially, (N b
a ◦ T

µ
ϕ )f ≤ (Nb−a ◦ T µϕ )f , thus Theorem 1.4 also holds replacing λ by b − a

and Nλ by N b
a. In [JSW] it is shown that the results of Theorem 1.4 still hold when ρ = 2

for the particular case of the Hilbert transform. In our paper we do not pursue this endpoint
result.

2. Preliminaries

Throughout all the paper, n and d are two fixed integers such that 0 < n < d. Given a
point x = (x1, . . . , xd) ∈ Rd, we use the notation x̃ := (x1, . . . , xn) ∈ Rn. Given a function
f : Rm → R, we denote by ∇f its gradient (when it makes sense), and by ∇2f the matrix of
second derivatives of f . If f depends on different points x1, x2, . . . ∈ Rm, then ∇xif denotes
the gradient of f with respect to the xi variable, and analogously for ∇2

xif .

For two sets F1, F2 ⊂ Rd, we denote by distH(F1, F2) the Hausdorff distance between F1

and F2. We denote by Ln the Lebesgue measure on Rn, and for the sake of simplicity, we
set ‖ · ‖p := ‖ · ‖Lp(Ln) for 1 ≤ p ≤ ∞, and dy := dLn(y) for y ∈ Rn.

In the paper, when we refer to the angle between two affine n-planes in Rd, we mean the
angle between the n-dimensional subspaces associated to the n-planes. As usual, the letter
‘C’ stands for some constant which may change its value at different occurrences, and which
quite often only depends on n and d. The notation A . B (A & B) means that there is some
fixed constant C such that A ≤ CB (A ≥ CB), with C as above. Also, A ≈ B is equivalent
to A . B . A.

2.1. More about the family ϕ. Given x ∈ Rd, 0 < ε ≤ δ, and a finite Borel measure µ,
we set ϕδε(x) := ϕε(x)− ϕδ(x) and we define

(Kϕδε ∗ µ)(x) :=

∫
ϕδε(x− y)K(x− y) dµ(y),

thus (Kϕδε ∗ µ)(x) = (Kϕε ∗ µ)(x)− (Kϕδ ∗ µ)(x).
For m ∈ N, x ∈ Rm, and R ≥ r > 0, we denote by Bm(x, r) the closed ball of Rm with

center x and radius r, and by Am(x, r,R) the closed annulus of Rm centered at x with inner
radius r and outer radius R. We also use the notation B(x, r) and A(x, r,R) when there is
no possible confusion about m.

Each function ϕδε is non negative, and suppϕδε ⊂ An(0, 2.1ε
√
n, 3δ

√
n) × Rd−n ⊂ Rd.

Moreover,
∑

j∈Z ϕ
2−j

2−j−1(x) = 1 for x̃ 6= 0, and there are at most two terms that do not

vanish in the previous sum for a given x ∈ Rd.

2.2. The α and β coefficients. Special dyadic lattice. Given m ∈ N, λ > 0, and a cube
Q ⊂ Rm (i.e. Q := [0, b)m + a with a ∈ Rm and b > 0), `(Q) denotes the side length of Q,
zQ denotes the center of Q and λQ denotes the cube with center zQ and side length λ`(Q).
Throughout the paper, we will only use cubes with sides parallel to the axes.

Let µ be a locally finite Borel measure on Rd. Given 1 ≤ p <∞ and a cube Q ⊂ Rd, one
sets (see [DS2])

(2.1) βp,µ(Q) = inf
L

{
1

`(Q)n

∫
2Q

(
dist(y, L)

`(Q)

)p
dµ(y)

}1/p

,

where the infimum is taken over all n-planes L in Rd. For p =∞ one replaces the Lp norm
by the supremum norm:

(2.2) β∞,µ(Q) = inf
L

{
sup

y∈suppµ∩2Q

dist(y, L)

`(Q)

}
,
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where the infimum is taken over all n-planes L in Rd again. These coefficients were introduced
by P. W. Jones in [Jn1] for p =∞ and by G. David and S. Semmes in [DS1] for 1 ≤ p <∞.

Let F ⊂ Rd be the closure of an open set. Given two finite Borel measures σ, ν on Rd,
one sets

(2.3) distF (σ, ν) := sup
{∣∣∣∫ f dσ − ∫ f dν∣∣∣ : Lip(f) ≤ 1, suppf ⊂ F

}
.

It is easy to check that this is a distance in the space of finite Borel measures σ such that
suppσ ⊂ F and σ(∂F ) = 0. Moreover, it turns out that this distance is a variant of the well
known Wasserstein distance W1 from optimal transportation (see [Vi, Chapter 1]). See [Ma,
Chapter 14] for other properties of distF .

Given a cube Q which intersects suppµ, consider the closed ball BQ := B(zQ, 6`(Q)).
Then one defines (see [To])

(2.4) αnµ(Q) :=
1

`(Q)n+1
inf
c≥0,L

distBQ(µ, cHnL),

where the infimum is taken over all constants c ≥ 0 and all n-planes L in Rd. For convenience,
if Q does not intersect suppµ, we set αnµ(Q) = 0. To simplify notation, sometimes we will
write αµ(Q) or α(Q) instead of αnµ(Q) (and analogously for the β’s).

The following result characterizes uniform rectifiability in terms of the α and β coefficients.

Theorem 2.1. Let µ be an n-dimensional AD regular measure on Rd, and consider any
p ∈ [1, 2]. Then, the following are equivalent:

(a) µ is uniformly n-rectifiable.
(b) For any cube R ⊂ Rd,

(2.5)
∑

Q∈DRd (R)

βp,µ(Q)2`(Q)n ≤ C`(R)n

with C independent of R, where DRd(R) stands for the collection of cubes of Rd
contained in R which are obtained by splitting R dyadically.

(c) There exists C > 0 such that, for any cube R ⊂ Rd,

(2.6)
∑

Q∈DRd (R)

αµ(Q)2`(Q)n ≤ C`(R)n.

The equivalence (a)⇐⇒(b) in Theorem 2.1 was proved by G. David and S. Semmes in
[DS1], and the equivalence (a)⇐⇒(c) was proved by X. Tolsa in [To].

In this paper we will use a slightly different definition of the α and β coefficients adapted
to the n-uniformly rectifiable measure µ = fHnΓ, where Γ := {x ∈ Rd : x = (x̃, A(x̃))} is

the n-dimensional graph of a given Lipschitz function A : Rn → Rd−n and f ∈ L∞(HnΓ)
satisfies f(x) ≈ 1 for almost all x ∈ Γ. To this end, we need to introduce a special dyadic

lattice of sets related to Γ. Given a cube Q̃ ⊂ Rn (i.e. Q̃ := [0, b)n + a with a ∈ Rn

and b > 0), we define Q := Q̃ × Rd−n. This type of set will be called v-cube (“vertical”

cube). We denote by `(Q) and z̃Q the side length and center of Q̃, respectively, and given

λ > 0 we set λQ := λQ̃ × Rd−n. Let D̃ denote the standard dyadic lattice of Rn, and set

D := {Q : Q̃ ∈ D̃}. It is easy to check that the v-cubes of D intersected with Γ provide a
dyadic lattice associated to the graph Γ in the sense of [Da, Appendix 1]. Finally, for m ∈ Z,
set Dm := {Q ∈ D : `(Q) = 2−m}.

Fix a constant CΓ > 10
√
n(1 + Lip(A)) (the precise value of CΓ will not be relevant in the

proofs given in the paper). Given 1 ≤ p ≤ ∞ and a v-cube Q ⊂ Rd, we define the coefficient
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βp,µ(Q) as in (2.1) and (2.2) but replacing 2Q by CΓQ. We also define αµ(Q) as in (2.4) but

taking BQ := B(z̃Q, CΓ`(Q)) × Rd−n ⊂ Rd. This new definition of the α and β coefficients
(adapted to the graph Γ) is the one that we will use in the whole paper.

Remark 2.2. It is an exercise to check that, with this new definition of the α’s and β’s,
inequalities (2.5) and (2.6) of Theorem 2.1 still hold. Moreover, the following is an easy
consequence of (2.5) and (2.6): Let Γ be an n-dimensional Lipschitz graph, f ∈ L∞(HnΓ)
such that f(x) ≈ 1 for almost all x ∈ Γ, and µ = fHnΓ. Let 1 ≤ p ≤ 2. Given C1, C2, C3 ≥ 1,
there exists a constant C4 > 0 such that, for any R ∈ D,∑

Q∈D:Q⊂C1R

(
βp,µ(C2Q)2 + αµ(C3Q)2

)
µ(Q) ≤ C4µ(R),

and the dependence of C4 with respect to Γ is only on Lip(A).

Remark 2.3. It is shown in [To, Lemma 3.2], that β1,µ(Q) . αµ(Q) for all Q ∈ D. Given
Q ∈ D, let LQ be a minimizing n-plane for αµ(Q). In general, β∞,µ(Q) can not be controlled
by β1,µ(Q), so given x ∈ suppµ ∩ CΓQ, we can not control dist(x, LQ) by means of αµ(Q).
But it is shown in [To, Lemma 5.2] that dist(x, LQ) .

∑
R∈D:x∈R⊂Q αµ(R)`(R), and in

particular, if P ∈ D is such that P ⊂ Q and x ∈ suppµ∩CΓP , and LP denotes a minimizing
n-plane for αµ(P ), one has (see [To, Remark 5.3])

dist(x, LQ) . dist(x, LP ) +
∑

R∈D:P⊂R⊂Q
αµ(R)`(R).(2.7)

2.3. Martingales. First of all, let us recall a particular case of Lépingle’s inequality (see
[JSW], or [Lé] and [JKRW, Theorem 6.4] for martingales in a probability space):

Theorem 2.4. Let (X,Σ, λ) be a σ-finite measure space and ρ > 2. Then, there exist
constants C1, C2 > 0 such that, for every martingale G := {Gm}m∈Z ∈ L2(λ),

‖Vρ(G)‖L2(λ) ≤ C1‖G‖L2(λ) and ‖O(G)‖L2(λ) ≤ C2‖G‖L2(λ),

where ‖G‖L2(λ) := supm∈Z ‖Gm‖L2(λ). The constants C1 and C2 do not depend on the mea-
sure λ, and C2 neither depends on the fixed sequence that defines O.

To prove Theorem 1.1, we need to introduce a particular martingale, and to review some
known results.

Lemma 2.5. Fix a cube P̃ ⊂ Rn (not necessarily dyadic) and a Lipschitz graph Γ := {x ∈
Rd : x = (x̃, A(x̃))} such that suppA ⊂ P̃ . Consider the measure µ := fHnΓ, where f(x) = 1

for all x̃ ∈ P̃ c and C−1
0 ≤ f(x) ≤ C0 for all x̃ ∈ P̃ , for some fixed constant C0 > 0. Also set

P := P̃ × Rd−n. Then, the following hold:

T∗µ ∈ L1
loc(µ), T∗(χEµ) ∈ L1

loc(µ) for every compact set E ⊂ Rd, and(2.8)

‖Tµ‖L2(µ) . µ(P )1/2.(2.9)

Remark 2.6. To avoid the problem of non-integrability near infinity, for this type of measures
µ we redefine Tεµ(x) := limM→∞

∫
χ(ε,M)(|x− y|)K(x− y) dµ(y), which exists because µ is

flat outside a compact set and K is odd. All the results in this paper remain valid with this
new definition and the adjustments that have to be done in the proofs are minimal.

In this paper, we will deal with other integrals which concern the kernel K and the measure
µ near infinity. The non-integrability problem can be avoided in the same manner.
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Proof of Lemma 2.5. It is known that the operator Tµ∗ is bounded in L2(µ), because Tµ∗ is the
maximal operator associated to a Calderón-Zygmund singular integral and µ is a uniformly
rectifiable measure (see [DS1]). Thus, T∗(χEµ) = Tµ∗ (χE) ∈ L1

loc(µ) for every compact set

E ⊂ Rd.
We are going to check that ‖T∗µ‖L2(µ) . µ(P )1/2. This will imply that T∗µ ∈ L1

loc(µ)
and, since Tµ exists (because µ is uniformly rectifiable) and |Tµ| ≤ T∗µ, we will also obtain

‖Tµ‖L2(µ) . µ(P )1/2; so the lemma will be proved.

Using that Tµ∗ is bounded in L2(µ), we have

‖T∗µ‖L2(µ) ≤ ‖T∗(χ3Pµ)‖L2(µ) + ‖T∗(χ(3P )cµ)‖L2(µ)

. µ(P )1/2 + ‖T∗(χ(3P )cµ)‖L2(µ).
(2.10)

Set L := Rn×{0}d−n ⊂ Rd; obviously χP cµ = HnL\P . Since L is an n-plane and K is odd,

T∗HnL(x) = 0 for all x ∈ L. Thus,

‖T∗HnL\3P ‖L2(HnL) ≤ ‖T∗HnL‖L2(HnL) + ‖T∗HnL∩3P ‖L2(HnL) . µ(P )1/2.(2.11)

Set zP := (z̃P , 0, . . . , 0) ∈ L (recall that z̃P denotes the center of P̃ ) and χε(x) :=
χ(ε,∞)(|x|). It is obvious that

∫
χε(zP − y)K(zP − y) dHnL\3P (y) = 0 for all ε > 0. Thus,

given x ∈ suppµ ∩ P ,

|(Kχε ∗ HnL\3P )(x)| ≤
∫
χε(x− y)|K(x− y)−K(zP − y)| dHnL\3P (y)

+

∫
|χε(x− y)− χε(zP − y)||K(zP − y)| dHnL\3P (y).

Since Γ is a Lipschitz graph, |x− zP | . `(P ). So, the first term on right hand side of the
previous inequality is easily bounded by an absolute constant independent of ε, by standard
arguments. For the second term, notice that supp(χε(x− ·)− χε(zP − ·)) ∩ (L \ 3P ) = ∅ for
all ε < `(P ), and HnL({y ∈ Rn : χε(x − y) − χε(zP − y) 6= 0}) . `(P )εn−1 for all ε ≥ `(P ).
Therefore, since |zP − y| ≈ ε for all y ∈ supp(χε(x− ·)− χε(zP − ·)) ∩ (L \ 3P ), the second
term can also be estimated by an absolute constant. Thus, we conclude T∗HnL\3P (x) =

supε>0 |(Kχε ∗ HnL\3P )(x)| . 1 for all x ∈ suppµ ∩ P .

Using the previous observations and (2.11), we have

‖T∗(χ(3P )cµ)‖2L2(µ) = ‖T∗HnL\3P ‖
2
L2(χPµ) + ‖T∗HnL\3P ‖

2
L2(χPcµ)

≤ ‖T∗HnL\3P ‖
2
L2(χPµ) + ‖T∗HnL\3P ‖

2
L2(HnL) . µ(P ),

which, combined with (2.10), gives ‖T∗µ‖L2(µ) . µ(P )1/2, as desired. �

We are ready to define the martingale. Let P and µ be as in Lemma 2.5. Given m ∈ Z
and a ∈ Rn, we set

D̃ a
m := a+ [0, 2−m)n ⊂ Rn and D a

m := D̃ a
m × Rd−n ⊂ Rd.

Set D a
m := {Da+2−mk

m ⊂ Rd : k ∈ Zn} (notice that D a
m coincides with Dm translated by

a parameter a ∈ Rn and, for a fixed a,
⋃
m∈ZD a

m is a translation of the standard dyadic
lattice). Notice that µ(D a

m) ≈ 2−mn for all m ∈ Z, a ∈ Rn. For D ∈ D a
m and x ∈ D, we set

EDµ(x) :=
1

µ(D)

∫
D

∫
Dc
K(z − y) dµ(y) dµ(z)

(take into account Remark 2.6 for the meaning of
∫
Dc K(z − y) dµ(y)). Finally, for x ∈ Rd,

we define the martingale E a
mµ(x) :=

∑
D∈D am χD(x)EDµ(x), m ∈ Z.
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Let us make some comments to understand better the nature of E a
mµ. First of all notice

that, since µ(∂D) = 0, for any D ∈ D a
m and µ-almost all z ∈ D we have

(2.12)

∫
Dc
K(z − y) dµ(y) = lim

ε→0

∫
Dc
χε(z − y)K(z − y) dµ(y),

and for any ε > 0, we have

(2.13)

∫
D

∫
D
χε(z − y)K(z − y) dµ(y) dµ(z) = 0

because of the antisymmetry of K. Therefore, by (2.12), (2.13), (2.8), and the dominated
convergence theorem,

∫
D

∣∣∫
Dc K(z − y) dµ(y)

∣∣ dµ(z) < ∞ (in particular, we have seen that
E a
mµ is well defined) and

∫
D T (χDµ) dµ = 0. Using this and (2.12), we finally have that

E a
mµ(x) =

1

µ(D)

∫
D
T (χDcµ) dµ =

1

µ(D)

∫
D
Tµdµ(2.14)

for x ∈ D ∈ D a
m, thus E a

mµ(x) is the average of the function Tµ on the v-cube D ∈ D a
m which

contains x. So, it is completely clear that, for a fixed a ∈ Rn, {E a
mµ}m∈Z is a martingale. In

[MV] it is shown that {E a
mµ}m∈Z is well defined and it is a martingale without the assumption

of the existence of Tµ (i.e., for more general measures µ).
Now, we can use (2.14), the L2 boundedness of the dyadic maximal operator and (2.9) to

deduce that

(2.15) ‖E a
mµ‖L2(µ) . ‖Tµ‖L2(µ) . µ(P )1/2

for all a ∈ Rn and m ∈ Z, where the constants that appear in the previous inequalities only
depend on C0, n, d and Lip(A).

Set E aµ := {E a
mµ}m∈Z. Then, the martingale E aµ belongs to L2(µ) by (2.15); thus by

Theorem 2.4, for all a ∈ Rn,

‖Vρ(E aµ)‖L2(µ) . ‖E aµ‖L2(µ) . µ(P )1/2 for ρ > 2,

‖O(E aµ)‖L2(µ) . ‖E aµ‖L2(µ) . µ(P )1/2,
(2.16)

where the constants in the previous inequalities only depend on C0, n, d, and Lip(A) (and
on ρ, in the case of Vρ).

Finally, for x ∈ Rd, we define

Emµ(x) := 2mn
∫
{a :x∈D a

m}
E a
mµ(x) da

(notice that Ln({a : x ∈ D a
m}) = 2−mn). Thus, Emµ is an average (of the m’th term) of

some martingales depending on a parameter a ∈ Rn.
Set Eµ := {Emµ}m∈Z. We want to obtain estimates like (2.16) for Vρ(Eµ) and O(Eµ).

We will only show the details for Vρ(Eµ), because the case of O(Eµ) follows by similar
arguments.

One can easily check that Emµ(x) = 2Mn
∫

[0,2−M ]n E
a
mµ(x) da for all m,M ∈ Z with

M ≤ m. Therefore, for all M, r, s ∈ Z with M ≤ r ≤ s, we have

(2.17) Erµ(x)− Esµ(x) = 2Mn

∫
[0,2−M ]n

(E a
r µ(x)− E a

s µ(x)) da.

Given M ∈ Z, we consider the auxiliary transformation

Vρ,M (Eµ)(x) := sup
{rm}

(∑
m∈Z
|Erm+1µ(x)− Ermµ(x)|ρ

)1/ρ

,
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where the pointwise supremum is taken over all decreasing sequences of integers {rm}m∈Z
such that rm ≥ M for all m ∈ Z. With this definition it is obvious that the sequence
{Vρ,M (Eµ)(x)}M∈Z is non increasing and Vρ(Eµ)(x) = limM→−∞ Vρ,M (Eµ)(x) for all x ∈
Rd. Minkowski’s integral inequality and (2.17) yield the pointwise estimate

Vρ,M (Eµ)(x) = sup
{rm} : rm≥M

(∑
m∈Z
|Erm+1µ(x)− Ermµ(x)|ρ

)1/ρ

≤ 2Mn

∫
[0,2−M ]n

sup
{rm}

(∑
m∈Z
|E a

rm+1
µ(x)− E a

rmµ(x))|ρ
)1/ρ

da

= 2Mn

∫
[0,2−M ]n

Vρ(E aµ)(x) da.

Therefore, by the previous estimate, Minkowski’s integral inequality and (2.16),

‖Vρ,M (Eµ)‖L2(µ) ≤ 2Mn

∫
[0,2−M ]n

‖Vρ(E aµ)‖L2(µ) da ≤ Cµ(P )1/2,

where C > 0 only depends on C0, n, d, Lip(A), and ρ. By the monotone convergence

theorem, we conclude that ‖Vρ(Eµ)‖L2(µ) . µ(P )1/2. Thus we have proved the following
theorem (which can be considered the starting point to prove Theorem 1.1):

Theorem 2.7. Fix a cube P̃ ⊂ Rn. Set Γ := {x ∈ Rd : x = (x̃, A(x̃))}, where A : Rn →
Rd−n is a Lipschitz function supported in P̃ , and set P := P̃ × Rd−n. Set µ := fHnΓ, where

f(x) = 1 for all x̃ ∈ P̃ c and C−1
0 ≤ f(x) ≤ C0 for all x̃ ∈ P̃ , for some constant C0 > 0.

Let ρ > 2. Then, there exist constants C1, C2 > 0 such that ‖Vρ(Eµ)‖L2(µ) ≤ C1µ(P )1/2

and ‖O(Eµ)‖L2(µ) ≤ C2µ(P )1/2, where C1 and C2 only depend on C0, n, d, and Lip(A) (and
on ρ in the case of C1).

We need to introduce additional notation in order to express Emµ in a more convenient
way for our purposes. Let µ1, . . . , µk be a finite collection of positive Borel measures such that
µl(D

a
m) > 0 for all a ∈ Rn, m ∈ Z and l = 1, . . . , k. Given m ∈ Z and x1, . . . , xi, y1, . . . , yj ∈

Rd, we define

Λµ1,...,µk
m (x1, . . . , xi ; y1, . . . , yj) := 2nm

∫
{a :x1,...,xi∈D a

m, y1,...,yj /∈D a
m}

da∏k
l=1 µl(D

a
m)
.

Then, by Fubini’s theorem,

Emµ(x) =

∫
{a :x∈D a

m}

2mn

µ(D a
m)

∫
D a
m

∫
(D a

m)c
K(z − y) dµ(y) dµ(z) da

=

∫∫ (
2mn

∫
{a :x,z∈D a

m, y /∈D a
m}

da

µ(D a
m)

)
K(z − y) dµ(z) dµ(y)

=

∫∫
Λµm(x, z ; y)K(z − y) dµ(z) dµ(y).

(2.18)

3. Sketch of the proof of Theorem 1.1

The proof relies on two basic facts: the known L2 boundedness of the ρ-variation and
oscillation of martingales explained in the previous section and the good geometric properties
of Lipschitz graphs from a measure-theoretic point of view.
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As we said above, the starting point of the proof is Theorem 2.7, where the L2 boundedness
of the ρ-variation and oscillation (of a convex combination) of some particular martingales
is stated. So, the first step consists in relating the results on martingales in Theorem 2.7
with the ρ-variation and oscillation of singular integrals on Lipschitz graphs, and this is the
aim of the following two theorems:

Theorem 3.1. Let Γ and µ be as in Theorem 2.7. For each x ∈ Γ, define

(3.1) Wµ(x)2 :=
∑
m∈Z
|(Kϕ2−m ∗ µ)(x)− Emµ(x)|2.

Then, ‖Wµ‖2L2(µ) ≤ C1
∑

Q∈D
(
αµ(C2Q)2 + β2,µ(Q)2

)
µ(Q), where C1, C2 > 0 depend only

on C0, n, d, K, and Lip(A).

Theorem 3.2. Let Γ and µ be as in Theorem 2.7. For each x ∈ Γ, define

(3.2) Sµ(x)2 := sup
{εm}

∑
j∈Z

∑
m∈Z: εm,εm+1∈Ij

|(Kϕ εmεm+1
∗ µ)(x)|2,

where Ij = [2−j−1, 2−j) and the supremum is taken over all decreasing sequences of positive

numbers {εm}m∈Z. Then, ‖Sµ‖2L2(µ) ≤ C
∑

Q∈D
(
αµ(Q)2 + β2,µ(Q)2

)
µ(Q), where C > 0

only depends on C0, n, d, K, and Lip(A).

Two fundamental tools to study Wµ and Sµ are the α and β coefficients, which will be
used to measure the flatness of Γ at different scales, in order to estimate the terms which
appear in the sums in (3.1) and (3.2). This will be done in sections 4 and 5. To use the α
coefficients to relate the ρ-variation of martingales with the ρ-variation of singular integrals,
it is a key fact that we are considering a “smooth” family like ϕ, because the α’s are defined
in terms of Lipschitz functions but Tε is defined by means of a rough truncation. Moreover,
we are taking a truncation only on the first n-coordinates because the average of martingales
that we are using is taken over the parameter a ∈ Rn, using the v-cubes D a

M (see subsection
2.3).

Combining Theorem 3.1 and Theorem 3.2 with the L2 estimates of the ρ-variation and
oscillation on the average of martingales Eµ in Theorem 2.7, we are able to obtain local

L2 estimates of Vρ ◦ T
HnΓ
ϕ and O ◦ T H

n
Γ

ϕ when Γ is any Lipschitz graph. More precisely, we

separate the sum in the definition of Vρ ◦ T
HnΓ
ϕ into two parts, which are classically called

short and long variation (and analogously for O ◦ T H
n
Γ

ϕ ). The short variation corresponds to
the sum Sµ in Theorem 3.2 (here µ is a suitable modification of HnΓ), where the indices run
over m ∈ Z such that both εm and εm+1 lie in the same dyadic interval, and can be handled
using the α’s and β’s. The long variation corresponds to the sum over the indices m ∈ Z
such that εm and εm+1 lie in different dyadic intervals, so one may assume that the εm’s are
dyadic numbers. It is handled by comparing Kϕ2−m ∗µ with Emµ, and then using Theorem
3.1 and the fact the ρ-variation and oscillation of Eµ are bounded in L2(µ), by Theorem 2.7.
This will be done in section 6 (see Theorem 6.1).

Using the local L2 estimates of Theorem 6.1, combined with rather standard techniques
in Calderón-Zygmund theory, in section 7 we obtain the H1(HnΓ)→ L1(HnΓ) and L∞(HnΓ)→
BMO(HnΓ) boundedness of Vρ ◦ T

HnΓ
ϕ and O ◦ T H

n
Γ

ϕ . Then, by interpolation, we obtain the
Lp boundedness of these operators in the whole range 1 < p <∞, and in particular the L2

boundedness (see Theorem 7.1). Moreover, [CJRW2, Theorem B] can be adapted to prove

that the L2(HnΓ) boundedness of Vρ ◦ T
HnΓ
ϕ and O◦T H

n
Γ

ϕ also yields the boundedness of these
operators from L1(HnΓ) to L1,∞(HnΓ).
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Let us stress that almost all the estimates in the proof of Theorem 1.1 (in particular, the
constants involved in the relationships ., & and ≈) depend either on n, d, K or Lip(A), and
possibly on other variables such as ρ or p.

4. Proof of Theorem 3.1

In order to study the difference (Kϕ2−m∗µ)(x)−Emµ(x), we are going to split Emµ(x) into
two parts, the one we will compare with (Kϕ2−m ∗µ)(x) (which corresponds to integrate, in
the definition of Emµ(x), over the points y ∈ Rd such that 2−m . |x̃− ỹ|), and the remaining
part. Then, we will estimate each part of (Kϕ2−m ∗ µ)(x) − Emµ(x) separately, using the
cancelation properties of the kernel K and the uniform rectifiability of µ.

Recall from (2.18) that Emµ(x) =
∫∫

Λµm(x, z ; y)K(z − y) dµ(z) dµ(y). Given ε > 0, we
set γε := 1− ϕε. Then,

Emµ(x) =

∫∫
ϕ2−m(x− y)Λµm(x, z ; y)K(z − y) dµ(z) dµ(y)

+

∫∫
γ2−m(x− y)Λµm(x, z ; y)K(z − y) dµ(z) dµ(y).

The first term in the previous sum is the one that we will compare with (Kϕ2−m∗µ)(x). For
all a ∈ Rn such that x ∈ D a

m, we have suppϕ2−m(x−·)∩D a
m = ∅, and thus (Kϕ2−m ∗µ)(x) =

(Kϕ2−m ∗ (χ(D a
m)cµ))(x). Hence, using Fubini’s theorem and the definition of Λµm(x, z ; y),

(Kϕ2−m ∗ µ)(x) = 2mn
∫
{a :x∈D a

m}
(Kϕ2−m ∗ (χ(D a

m)cµ))(x) da

= 2mn
∫
{a :x∈D a

m}
µ(D a

m)−1

∫
D a
m

(Kϕ2−m ∗ (χ(D a
m)cµ))(x) dµ(z) da

=

∫∫
ϕ2−m(x− y)Λµm(x, z ; y)K(x− y) dµ(z) dµ(y).

We can decompose (Kϕ2−m ∗ µ)(x)− Emµ(x) as

(Kϕ2−m ∗ µ)(x)− Emµ(x)

=

∫∫
ϕ2−m(x− y)Λµm(x, z ; y)(K(x− y)−K(z − y)) dµ(z) dµ(y)

−
∫∫

γ2−m(x− y)Λµm(x, z ; y)K(z − y) dµ(z) dµ(y)

=
∑
j<m

Fmj (x)−
∑
j∈Z

Gmj (x),

(4.1)

where

Fmj (x) :=

∫∫
ϕ 2−j

2−j−1(x− y)Λµm(x, z ; y)(K(x− y)−K(z − y)) dµ(z) dµ(y),(4.2)

Gmj (x) :=

∫∫
ϕ 2−j

2−j−1(z − y)γ2−m(x− y)Λµm(x, z ; y)K(z − y) dµ(z) dµ(y).(4.3)

Fix a v-cube D ∈ Dm, for some m ∈ Z. In subsection 4.1 (see (4.18)) we will prove that

(4.4)
∑
j<m

|Fmj (x)| . dist(x, LD)

`(D)
+

∑
Q∈D :D⊂Q

`(D)

`(Q)
α(Q)
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for all x ∈ D ∩ Γ, where LD denotes an n-plane that minimizes α(D), and in subsection 4.2
(see (4.37)) we will prove that there exists a constant Cb > 1 such that

(4.5)
∑
j∈Z
|Gmj (x)| . α(CbD) +

∑
Q∈D :Q⊂CbD

`(Q)n+1

`(D)n+1
α(Q)

for all x ∈ D ∩ Γ. Assuming that these estimates hold, by (4.1),

‖Wµ‖2L2(µ) =
∑
m∈Z

∑
D∈Dm

∫
D
|(Kϕ2−m ∗ µ)(x)− Emµ(x)|2 dµ(x)

.
∑
D∈D

∫
D

(
dist(x, LD)

`(D)

)2

dµ(x) +
∑
D∈D

( ∑
Q∈D:
D⊂Q

`(D)

`(Q)
α(Q)

)2

µ(D)

+
∑
D∈D

α(CbD)2µ(D) +
∑
D∈D

( ∑
Q∈D:
Q⊂CbD

`(Q)n+1

`(D)n+1
α(Q)

)2

µ(D)

=: W1µ+W2µ+W3µ+W4µ.

(4.6)

If L1
D and L2

D denote a minimizing n-plane for β1(D) and β2(D), respectively, one can show
that distH(LD∩CΓD,L

1
D∩CΓD) . α(D)`(D) and distH(L1

D∩CΓD,L
2
D∩CΓD) . β2(D)`(D).

This easily implies that, for x ∈ D ∩ Γ, dist(x, LD) . dist(x, L2
D) + β2(D)`(D) + α(D)`(D),

so W1µ .
∑

D∈D(α(D)2 + β2(D)2)µ(D).
By Cauchy-Schwarz inequality,

W2µ ≤
∑
D∈D

µ(D)

( ∑
Q∈D:D⊂Q

`(D)

`(Q)
α(Q)2

)( ∑
Q∈D:D⊂Q

`(D)

`(Q)

)

≈
∑
D∈D

∑
Q∈D:D⊂Q

`(D)n+1

`(Q)
α(Q)2 ≈

∑
Q∈D

α(Q)2µ(Q),

and also

W4µ ≤
∑
D∈D

µ(D)

( ∑
Q∈D:Q⊂CbD

`(Q)n+1

`(D)n+1
α(Q)2

)( ∑
Q∈D:Q⊂CbD

`(Q)n+1

`(D)n+1

)

≈
∑
D∈D

∑
Q∈D:Q⊂CbD

`(Q)n
`(Q)

`(D)
α(Q)2 .

∑
Q∈D

α(Q)2µ(Q).

Therefore, using (4.6) and that α(Q) . α(CbQ), we conclude that

‖Wµ‖2L2(µ) .
∑
Q∈D

(α(CbQ)2 + β2(Q)2)µ(Q),

and the theorem follows. It only remains to prove (4.4) and (4.5).

4.1. Estimate of
∑

j<m F
m
j (x) when x ∈ D ∩ Γ for some D ∈ Dm. Assume that x ∈

D ∩ Γ for some D ∈ Dm and j < m. Let LD be an n-plane that minimizes α(D) and let
σD := cDHnLD be a minimizing measure of α(D). Let LxD be the n-plane parallel to LD that
contains x and set σxD := cDHnLxD .
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Notice that, because of x ∈ LxD, the antisymmetry of ϕ 2−j

2−j−1K, and since j < m (so, if

x ∈ D a
m and y ∈ suppϕ 2−j

2−j−1(x− ·), then y /∈ D a
m), we have

0 =

∫
ϕ 2−j

2−j−1(x− y)K(x− y) dσxD(y)

=

∫
{a :x∈D a

m}

2mn

σxD(D a
m)

∫
D a
m

∫
(D a

m)c
ϕ 2−j

2−j−1(x− y)K(x− y) dσxD(y) dσxD(z) da

=

∫∫
ϕ 2−j

2−j−1(x− y)Λ
σxD
m (x, z ; y)K(x− y) dσxD(z) dσxD(y).

(4.7)

Given a ∈ Rn, let b := a + {2−m−1}n ∈ Rn be the center of D̃ a
m. For u ∈ Rn we denote

‖u‖∞ := maxi=1,...,n |ui|. Then, given t ∈ Rd, it is clear that t ∈ D a
m if and only if ‖t̃−b‖∞ ≤

2−m. Using that σxD is a Hausdorff measure on an n-plane, that K is antisymmetric and

that ϕ 2−j

2−j−1 is symmetric, one can show that

0 =

∫
‖x̃−b‖∞≤2−m

∫
‖z̃−b‖∞≤2−m

∫
‖ỹ−b‖∞>2−m

ϕ 2−j

2−j−1(x− y)K(z − y) dσxD(y) dσxD(z) db.

By the change of variable b = a+{2−m−1}n, it is easy to see that this triple integral is equal

to
∫
{a :x∈D a

m}
∫
D a
m

∫
(D a

m)c ϕ
2−j

2−j−1(x− y)K(z − y) dσxD(y) dσxD(z) da. Thus, since σxD(D a
m) does

not depend on a ∈ Rn because σxD is flat,

0 =

∫
{a :x∈D a

m}

2mn

σxD(D a
m)

∫
D a
m

∫
(D a

m)c
ϕ 2−j

2−j−1(x− y)K(z − y) dσxD(y) dσxD(z) da

=

∫∫
ϕ 2−j

2−j−1(x− y)Λ
σxD
m (x, z ; y)K(z − y) dσxD(z) dσxD(y).

(4.8)

By (4.7) and (4.8), we conclude that

(4.9) 0 =

∫∫
ϕ 2−j

2−j−1(x− y)Λ
σxD
m (x, z ; y)(K(x− y)−K(z − y)) dσxD(z) dσxD(y).

By definition, it is clear that Λ
σxD
m (x, z ; y) = ΛσDm (x, z ; y). Therefore, using (4.9), we can

decompose

(4.10) Fmj (x) = F1mj (x) + F2mj (x) + F3mj (x) + F4mj (x),

where

(4.11) F1mj (x) :=

∫∫
ϕ 2−j

2−j−1(x− y)Λµm(x, z ; y)

(K(x− y)−K(z − y)) d(µ− σD)(z) dµ(y),

(4.12) F2mj (x) :=

∫∫
ϕ 2−j

2−j−1(x− y)Λµm(x, z ; y)

(K(x− y)−K(z − y)) dσD(z) d(µ− σD)(y),

(4.13) F3mj (x) :=

∫∫
ϕ 2−j

2−j−1(x− y)(Λµm(x, z ; y)− ΛσDm (x, z ; y))

(K(x− y)−K(z − y)) dσD(z) dσD(y),

(4.14) F4mj (x) :=

∫∫
ϕ 2−j

2−j−1(x− y)Λ
σxD
m (x, z ; y)

(K(x− y)−K(z − y)) d(σD × σD − σxD × σxD)(z, y).
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In the next subsections we will prove the following estimates:

|F1mj (x)|+ |F3mj (x)| . 2j−mα(D),(4.15)

|F2mj (x)| . 2j−m
∑

Q∈D :D⊂Q, `(Q)≤2−j

α(Q),(4.16)

|F4mj (x)| . 2j−m
dist(x, LD)

`(D)
.(4.17)

Then, using (4.10), we will finally get that, for all D ∈ Dm and x ∈ D ∩ Γ,∑
j<m

|Fmj (x)| . dist(x, LD)

`(D)
+
∑
j≤m

2j−m
∑

Q∈D:D⊂Q, `(Q)≤2−j

α(Q)

.
dist(x, LD)

`(D)
+

∑
Q∈D :D⊂Q

`(D)

`(Q)
α(Q),

(4.18)

which gives (4.4).

4.1.1. Estimate of F1mj (x). Notice that, if |x̃− z̃| > 2−m
√
n, there is no a ∈ Rn such that

x, z ∈ Da
m, and this means that Λµm(x, z ; y) = 0. Thus, we can assume that |x̃−z̃| ≤ 2−m

√
n.

Therefore, if the constant CΓ (see the definition of the α’s in subsection 2.2) is big enough,
suppΛµm(x, · ; y) ⊂ BD.

For y, z ∈ Γ such that y ∈ suppϕ 2−j

2−j−1(x−·), j < m and |x̃−z̃| ≤ 2−m
√
n (so, in particular,

|x− z| . |x− y|), we have the following estimates:

|K(x− y)−K(z − y)| . |x− z||x− y|−n−1 . 2j(n+1)−m,

|∇z(K(x− y)−K(z − y))| = |∇zK(z − y)| . 2j(n+1).

Claim 4.1. We have |Λµm(x, z ; y)| . 2mn and |∇zΛµm(x, z ; y)| . 2m(n+1) for all x, y, z ∈ Rd.

Claim 4.1 and the subsequent ones 4.2,. . . ,4.7 will be proved in subsection 4.3 below.
Putting all these estimates together we obtain that∣∣∣∇z(Λµm(x, z ; y)(K(x− y)−K(z − y))

)∣∣∣ . 2j(n+1)+mn,

and, since suppΛµm(x, · ; y) ⊂ BD, recalling the definition of distBD in (2.3),∣∣∣∣∫ Λµm(x, z ; y)(K(x− y)−K(z − y)) d(µ− σD)(z)

∣∣∣∣ . 2j(n+1)+mndistBD(µ, σD).

We can use this last estimate in (4.11) to obtain

|F1mj (x)| . 2j(n+1)+mndistBD(µ, σD)

∫
ϕ 2−j

2−j−1(x− y) dµ(y)

. 2j+mndistBD(µ, σD) ≈ 2j−m `(D)−n−1distBD(µ, σD) . 2j−mα(D),

which, together with the estimate of |F3mj (x)| in subsection 4.1.3, gives (4.15).

4.1.2. Estimate of F2mj (x). Arguing as in subsection 4.1.1, we can obtain the following
estimates for x, y, z as above:

|ϕ 2−j

2−j−1(x− y)| ≤ 1 and |∇yϕ 2−j

2−j−1(x− y)| . 2j ,(4.19)

|K(x− y)−K(z − y)| . |x− z||x− y|−n−1 . 2j(n+1)−m,(4.20)

|∇y(K(x− y)−K(z − y))| . |x− z||x− y|−n−2 . 2j(n+2)−m.(4.21)
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Claim 4.2. For j < m, y ∈ suppϕ 2−j

2−j−1(x − ·), and |x̃ − z̃| ≤ 2−m
√
n, the following hold:

|Λµm(x, z ; y)| . 2mn and ∇yΛµm(x, z ; y) = 0.

Notice that the first estimate in Claim 4.2 is the same as the first one in Claim 4.1.
Let Dj ∈ Dj be the unique dyadic v-cube with `(Dj) = 2−j which contains D. Then,

suppϕ 2−j

2−j−1(x − ·) ⊂ BDj for CΓ big enough. Therefore, we can use the previous estimates
to see that the gradient of the term inside the integral with respect to y in (4.12) is bounded

by 2j(n+2)+m(n−1) and is supported in BDj , and then by (2.3) we derive that

|F2mj (x)| ≤
∫ ∣∣∣∣∫ ϕ 2−j

2−j−1(x− y)Λµm(x, z ; y)

(K(x− y)−K(z − y)) d(µ− σD)(y)

∣∣∣∣ dσD(z)

.
∫
|x̃−z̃|≤2−m

√
n

2j(n+2)+m(n−1)distBDj (µ, σD) dσD(z)

. 2j(n+2)−mdistBDj (µ, σD).

(4.22)

We shall estimate distBDj (µ, σD) in terms of the α coeficients. Consider the unique se-

quence of dyadic v-cubes D =: Dm ⊂ . . . ⊂ Di+1 ⊂ Di ⊂ . . . ⊂ Dj such that each Di belongs
to Di, for i = j, . . . ,m. Let LDi be an n-plane that gives the minimum in the definition of
α(Di) and let σDi := cDidHnLDi be a minimizing measure. We will prove that

(4.23) distBDj (µ, σD) . 2−j(n+1)
m−1∑
i=j

α(Di).

Combining (4.23) with (4.22), we will finally obtain that |F2mj (x)| . 2j−m
∑m−1

i=j α(Di),

which gives (4.16).
Let us prove (4.23). By the triangle inequality,

distBDj (µ, σD) ≤ distBDj (µ, σDj ) +
∑m−1

i=j distBDj (σDi , σDi+1)

. 2−j(n+1)α(Dj) +
∑m−1

i=j distBDj (σDi , σDi+1),

so we are reduced to prove that, for all i = j, . . . ,m− 1,

(4.24) distBDj (σDi , σDi+1) . 2−j(n+1)α(Di).

By definition, distBDj (σDi , σDi+1) = sup
∣∣ ∫ g d(cDiHnLDi−cDi+1HnLDi+1

)
∣∣, where the supre-

mum is taken over all Lipschitz functions g supported in BDj such that Lip(g) ≤ 1. Fix one
of such Lipschitz functions g. Then,∫

g d(cDiHnLDi − cDi+1HnLDi+1
) = (cDi − cDi+1)

∫
g dHnLDi

+ cDi+1

∫
g d(HnLDi −H

n
LDi+1

).

(4.25)

It is shown in [To, Lemma 3.4] that |cDi−cDi+1 | . α(Di), so the first term on the right hand

side of (4.25) is bounded in absolute value by C2−j(n+1)α(Di).
In order to estimate the second term of the right hand side of (4.25), set LDi+1 =

{(t̃, a(t̃)) ∈ Rd : t̃ ∈ Rn} (where a : Rn → Rd−n is an appropriate affine map), and let
p : LDi → LDi+1 be the projection defined by p(t) := (t̃, a(t̃)). Since Γ is a Lipschitz graph,
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a is well defined and p is a homeomorphism. Let p]HnLDi be the image measure of HnLDi by

p. It is easy to check that HnLDi+1
= τp]HnLDi , where τ is some positive constant such that

|τ − 1| . α(Di) and τ . 1. Therefore,∣∣∣∣ ∫ g d(HnLDi−H
n
LDi+1

)

∣∣∣∣ =

∣∣∣∣∫ (g(t)− τg(p(t)) ) dHnLDi (t)
∣∣∣∣

≤
∣∣∣∣∫ (1− τ)g(t) dHnLDi (t)

∣∣∣∣+

∣∣∣∣∫ τ(g(t)− g(p(t)) ) dHnLDi (t)
∣∣∣∣

. 2−j(n+1)α(Di) +

∫
|(g(t)− g(p(t))| dHnLDi (t).

(4.26)

Since g and g ◦ p are supported in BDj and g is 1-Lipschitz, by [To, Lemma 3.4],∫
|(g − g ◦ p)| dHnLDi .

∫
BDj

distH(LDi ∩BDj , LDi+1 ∩BDj ) dHnLDi

. 2−jndistH(LDi ∩BDj , LDi+1 ∩BDj )

. 2−jn2i−jdistH(LDi ∩BDi , LDi+1 ∩BDi) . 2−j(n+1)α(Di).

This last estimate together with (4.26) and the fact that |cDi+1 | . 1 implies that the second

term on the right hand side of (4.25) is also bounded in absolute value by C2−j(n+1)α(Di).
Therefore, to obtain (4.24) we only have to take the supremum in (4.25) over all admissible
functions g.

4.1.3. Estimate of F3mj (x). Notice that, by Fubini’s theorem,

Λµm(x, z ; y)− ΛσDm (x, z ; y) = 2mn
∫
{a :x,z∈D a

m, y /∈D a
m}

(
1

µ(D a
m)
− 1

σD(D a
m)

)
da

= 2mn
∫
{a :x,z∈D a

m, y /∈D a
m}

σD(D a
m)− µ(D a

m)

µ(D a
m)σD(D a

m)
da

= 2mn
∫
{a :x,z∈D a

m, y /∈D a
m}

(∫
t∈D a

m

d(σD − µ)(t)

)
µ(D a

m)−1σD(D a
m)−1 da

=

∫
Λµ,σDm (x, z, t ; y) d(σD − µ)(t).

Since Λµ,σDm (x, z, t ; y) = 0 if |x̃ − t̃| > 2−m
√
n, we may assume that suppΛµ,σDm (x, z, · ; y) ⊂

BD (by taking CΓ big enough).

Claim 4.3. We have |Λµ,σDm (x, z, t ; y)| . 22mn and |∇tΛµ,σDm (x, z, t ; y)| . 2m(2n+1) for all
x, y, z, t ∈ Rd.

Using Claim 4.3, we deduce that |Λµm(x, z ; y) − ΛσDm (x, z ; y)| . 2m(2n+1) distBD(µ, σD),
and then,

|F3mj (x)| .
∫
ϕ 2−j

2−j−1(x− y)

∫
|x̃−z̃|≤2−m

√
n

2m(2n+1) distBD(µ, σD)

|x− z||x− y|−n−1 dσD(z) dσD(y)

. 22mn+j(n+1) distBD(µ, σD)

∫∫
|x̃−ỹ|≤2−j3

√
n

|x̃−z̃|≤2−m
√
n

dσD(z) dσD(y)

. 2mn+j distBD(µ, σD) . 2j−mα(D),
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which, together with the estimate of |F1mj (x)| (see subsection 4.1.1), gives (4.15).

4.1.4. Estimate of F4mj (x). Set LD = {(ỹ, a(ỹ)) ∈ Rd : ỹ ∈ Rn}, where a : Rn → Rd−n is

an appropriate affine map, and let p : LxD → LD be the projection defined by p(y) := (ỹ, a(ỹ)).
Since Γ is a Lipschitz graph, a is well defined and p is a homeomorphism. If p]σ

x
D is the

image measure of σxD under p, we obviously have σD = p]σ
x
D because LD and LxD differ by a

translation. Therefore, since p̃(y) = ỹ, (4.14) becomes

F4mj (x) =

∫∫ (
K(x− p(y))−K(p(z)− p(y))− (K(x− y)−K(z − y))

)
ϕ 2−j

2−j−1(x− y)Λ
σxD
m (x, z ; y) dσxD(z) dσxD(y).

For y, z ∈ LxD such that ϕ 2−j

2−j−1(x−y)Λ
σxD
m (x, z ; y) 6= 0, we have K(p(z)−p(y))−K(z−y) = 0,

so we can estimate

|K(x− p(y))−K(p(z)− p(y))− (K(x− y)−K(z − y))| = |K(x− p(y))−K(x− y)|

.
|y − p(y)|
|x− y|n+1

. 2j(n+1)|y − p(y)| ≈ 2j(n+1)dist(x, LD).

By the same arguments as in the proof of Claim 4.1, one can easily see that |Λσ
x
D
m (x, z ; y)| .

2mn. Therefore,

|F4mj (x)| . 2j(n+1)dist(x, LD)2mn
∫∫
|x̃−ỹ|≤2−j3

√
n

|x̃−z̃|≤2−m
√
n

dσxD(z) dσxD(y)

. 2j dist(x, LD) ≈ 2j−m dist(x, LD)/`(D),

which gives (4.17).

4.2. Estimate of
∑

j∈ZG
m
j (x) when x ∈ D ∩ Γ for some D ∈ Dm. Assume that x ∈ D

for some D ∈ Dm. Recall from (4.3) that

Gmj (x) =

∫∫
ϕ 2−j

2−j−1(z − y)γ2−m(x− y)Λµm(x, z ; y)K(z − y) dµ(z) dµ(y),

where 0 ≤ γ2−m(x − y) ≤ 1, |∇yγ2−m(x − y)| . 2m for all x, y ∈ Rd, and γ2−m(x − y) = 0
whenever |x̃− ỹ| > 2−m3

√
n. Notice that Λµm(x, z ; y) = 0 if |x̃− z̃| > 2−m

√
n, thus we can

assume that |x̃ − z̃| ≤ 2−m
√
n and |z̃ − ỹ| ≤ 2−m+2√n in the integral that defines Gmj (x).

Hence, if j ≤ m−2, ϕ 2−j

2−j−1(z−y)Λµm(x, z ; y) = 0 for all z, y ∈ Rd, because ϕ 2−j

2−j−1(z−y) = 0

if |z̃−ỹ| ≤ 2−j−12.1
√
n, and 2−j−12.1

√
n ≥ 2−m+2√n when j ≤ m−2. Therefore, Gmj (x) = 0

for j ≤ m− 2, and then

(4.27)
∑
j∈Z

Gmj (x) =
∑

j≥m−1

Gmj (x);

so, from now on, we assume that j ≥ m− 1.
Let LD be an n-plane that minimizes α(D) and let σD := cDHnLD be a minimizing measure

of α(D). As we did in the beginning of subsection 4.1, given a ∈ Rn, let b := a+{2−m−1}n ∈
Rn be the center of D̃ a

m. Recall that, for t ∈ Rd, t ∈ D a
m if and only if ‖t̃−b‖∞ ≤ 2−m. Using

that σD is a Hausdorff measure on an n-plane, that K is antisymmetric and that ϕ 2−j

2−j−1 and
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γ2−m are symmetric, one can show that

0 =

∫
‖x̃−b‖∞≤2−m

∫
‖z̃−b‖∞≤2−m

∫
‖ỹ−b‖∞>2−m

ϕ 2−j

2−j−1(z − y)

γ2−m(x− y)K(z − y) dσD(y) dσD(z) db.

By the change of variable b = a+{2−m−1}n, it is easy to see that this triple integral is equal

to
∫
{a :x∈D a

m}
∫
D a
m

∫
(D a

m)c ϕ
2−j

2−j−1(z − y)γ2−m(x − y)K(z − y) dσD(y) dσD(z) da. Thus, since

σD(D a
m) does not depend on a ∈ Rn because σD is flat,

0 =

∫
{a :x∈D a

m}

2mn

σD(D a
m)

∫
D a
m

∫
(D a

m)c
ϕ 2−j

2−j−1(z − y)

γ2−m(x− y)K(z − y) dσD(y) dσD(z) da

=

∫∫
ϕ 2−j

2−j−1(z − y)γ2−m(x− y)ΛσDm (x, z ; y)K(z − y) dσD(z) dσD(y).

(4.28)

Let {ηQ}Q∈Dj be a partition of the unity with respect to the v-cubesQ ∈ Dj , i.e. ηQ : Rd →
R are C∞ functions such that: χ0.9Q ≤ ηQ ≤ χ1.1Q, |∇ηQ| . `(Q)−1 = 2j ,

∑
Q∈Dj ηQ = 1

and ηQ(y) = ηQ(ỹ, 0) for all y ∈ Rd. It is easy to check that, if j ≥ m − 1, Q ∈ Dj , and
suppηQ ∩ suppγ2−m(x− ·) 6= ∅, then Q ⊂ CeD for some absolute constant Ce > 1.

Given Q ∈ Dj , let LQ and σQ := cQHnLQ be a minimizing n-plane and measure for α(Q),

respectively, and consider the measure

λ :=
∑

Q∈Dj :Q⊂CeD
ηQσQ.

By (4.28) and the properties of the partition of the unity {ηQ}Q∈Dj , for j ≥ m − 1 we can
decompose Gmj (x) as

(4.29) Gmj (x) = G1mj (x) +G2mj (x) +G3mj (x) +G4mj (x) +G5mj (x),

where

G1mj (x) :=
∑

Q∈Dj :Q⊂CeD

∫∫
. . . d(µ− σQ)(z) dµ(y),(4.30)

G2mj (x) :=
∑

Q∈Dj :Q⊂CeD

∫∫
. . . dσQ(z) d(µ− σQ)(y),(4.31)

G3mj (x) :=
∑

Q∈Dj :Q⊂CeD

∫∫
. . . d(σQ × σQ − σD × σD)(z, y),(4.32)

where “. . .” stands for ϕ 2−j

2−j−1(z − y)γ2−m(x− y)ηQ(y)K(z − y)Λµm(x, z ; y), and

(4.33) G4mj (x) :=

∫∫
ϕ 2−j

2−j−1(z − y)γ2−m(x− y)K(z − y)

(Λµm(x, z ; y)− Λλm(x, z ; y)) dσD(z) dσD(y),

(4.34) G5mj (x) :=

∫∫
ϕ 2−j

2−j−1(z − y)γ2−m(x− y)K(z − y)

(Λλm(x, z ; y)− ΛσDm (x, z ; y)) dσD(z) dσD(y).
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In the next subsections we will prove the following estimates:

(4.35) |G1mj (x)|+ |G2mj (x)|+ |G4mj (x)| .
∑

Q∈Dj :Q⊂CeD
2(m−j)(n+1)α(Q),

(4.36) |G3mj (x)|+ |G5mj (x)| .
∑

Q∈Dj :Q⊂CeD
2(m−j)(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)
,

where Cb is some absolute constant bigger than Ce. Then, using (4.27) and (4.29), we will
finally obtain that, for all D ∈ Dm and x ∈ D ∩ Γ,∑

j∈Z
|Gmj (x)| .

∑
j≥m−1

∑
Q∈Dj :Q⊂CeD

2(m−j)(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)

.
∑

Q∈D :Q⊂CeD

`(Q)n+1

`(D)n+1

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)

. α(CbD) +
∑

R∈D :R⊂CbD

`(R)n+1

`(D)n+1
α(R),

(4.37)

which gives (4.5).

4.2.1. Estimate of G1mj (x). If ϕ 2−j

2−j−1(z − y) 6= 0 then 2−j−12.1
√
n ≤ |z̃ − ỹ| ≤ 2−j3

√
n, so

if we also have that y ∈ suppηQ, then z ∈ 8
√
nQ because Q ∈ Dj . Therefore, we can assume

that suppϕ 2−j

2−j−1(· − y)ηQ(y) ⊂ BQ if CΓ is big enough.

Claim 4.4. For z ∈ suppϕ 2−j

2−j−1(· − y), the following hold: |Λµm(x, z ; y)| . 2m(n+1)−j,

|∇zΛµm(x, z ; y)| . 2m(n+1), and |∇yΛµm(x, z ; y)| . 2m(n+1).

We have that |K(z − y)| . 2jn and |∇zK(z − y)| . 2j(n+1) for all z ∈ suppϕ 2−j

2−j−1(· − y).
Using (4.19) and the first two estimates in Claim 4.4, we get

|∇z
(
ϕ 2−j

2−j−1(z − y)K(z − y)Λµm(x, z ; y)
)
| . 2m(n+1)+jn.

Therefore, for y ∈ suppηQ,∣∣∣∣∫ ϕ 2−j

2−j−1(z − y)K(z − y)Λµm(x, z ; y) d(µ− σQ)(z)

∣∣∣∣ . 2m(n+1)+jndistBQ(µ, σQ)

. 2m(n+1)−jα(Q),

and then,

|G1mj (x)| .
∑

Q∈Dj :Q⊂CeD

∫
suppηQ

2m(n+1)−jα(Q) dµ(y) .
∑

Q∈Dj :Q⊂CeD
2(m−j)(n+1)α(Q).

4.2.2. Estimate of G2mj (x). It can be estimated using the arguments of subsection 4.2.1,

but now we also have to take into account that |∇yγ2−m(x− y)| . 2m . 2j , because we are
assuming j ≥ m− 1, and we have to use the last estimate in Claim 4.4.
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4.2.3. Estimate of G3mj (x). Given x ∈ D ∩ Γ and Q ∈ Dj , denote

HQ(y, z) := ϕ 2−j

2−j−1(z − y)γ2−m(x− y)ηQ(y)K(z − y)Λµm(x, z ; y).

Then, (4.32) becomes

G3mj (x) =
∑

Q∈Dj :Q⊂CeD

∫∫
HQ(y, z) d(σQ × σQ − σD × σD)(z, y)

=
∑

Q∈Dj :Q⊂CeD

∫∫
HQ(y, z) d(c2

QHnLQ ×H
n
LQ
− c2

DHnLD ×H
n
LD

)(z, y)

=
∑

Q∈Dj :Q⊂CeD

∫∫
HQ(y, z)(c2

Q − c2
D) dHnLQ(z) dHnLQ(y)

+
∑

Q∈Dj :Q⊂CeD
c2
D

∫∫
HQ(y, z) d(HnLQ ×H

n
LQ
−HnLD ×H

n
LD

)(z, y)

=: G3Amj (x) +G3Bm
j (x).

(4.38)

We are going to estimate the terms G3Amj (x) and G3Bm
j (x) separately. Recall that

`(D) = 2−m. Given a v-cube Q ∈ Dj such that Q ⊂ CeD, let Q =: Qj ⊂ . . . ⊂ Qi+1 ⊂
Qi ⊂ . . . ⊂ Qm−1 be the sequence of v-cubes such that Qi belongs to Di for i = m− 1, . . . , j.
Evidently, Qm−1 ⊂ CbD for some constant Cb big enough, because `(Qm−1) = 2`(D) and
Q ⊂ Qm−1 ∩ CeD. Let LQi be an n-plane that minimizes α(Qi) and let σQi := cQiHnLQi be

a minimizing measure of α(Qi). Also, let LCbD and σCbD := cCbDHnLCbD be a minimizing

n-plane and measure of α(CbD), respectively.
In order to estimate G3Amj (x), notice that, by [To, Lemma 3.4] and the triangle inequality,

|cQi | . 1 for all i = m− 1, . . . , j, and

|c2
Q − c2

D| = |cQ + cD| |cQ − cD| . |cQj − cD|

. |cQm−1 − cCbD|+ |cCbD − cD|+
j−1∑

i=m−1

|cQi+1 − cQi |

. α(CbD) +

j−1∑
i=m−1

α(Qi) . α(CbD) +
∑

R∈D:Q⊂R⊂CbD
α(R)

(4.39)

(in the case that j = m − 1, there are no intermediate scales between j and m − 1, so one
just obtains |c2

Q − c2
D| . α(CbD)).

Claim 4.5. For z ∈ suppϕ 2−j

2−j−1(· − y), we have |Λµm(x, z ; y)| . 2m(n+1)−j .

Notice that this last estimate is the same as the first one in Claim 4.4. Using Claim

4.5 and that |K(z − y)| . 2jn for all z ∈ suppϕ 2−j

2−j−1(· − y), we easily obtain |HQ(y, z)| .
2m(n+1)+j(n−1). Therefore, using (4.39),

|G3Amj (x)| .
∑

Q∈Dj :Q⊂CeD
|c2
Q − c2

D|
∫∫
|HQ(y, z)| dHnLQ(z) dHnLQ(y)

.
∑

Q∈Dj :Q⊂CeD
2(m−j)(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)
.

(4.40)
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To estimate G3Bm
j (x) in (4.38), we set

(4.41) G3Bm
j (x) =

∑
Q∈Dj :Q⊂CeD

c2
DG3B(Q)mj (x),

where G3B(Q)mj (x) :=
∫∫

HQ d(HnLQ × H
n
LQ
− HnLD × H

n
LD

). Given Q ∈ Dj such that

Q ⊂ CeD, we split G3B(Q)mj (x) as follows:

G3B(Q)mj (x) =

j−1∑
i=m−1

∫∫
HQ d(HnLQi+1

×HnLQi+1
−HnLQi ×H

n
LQi

)

+

∫∫
HQ d(HnLQm−1

×HnLQm−1
−HnLCbD ×H

n
LCbD

)

+

∫∫
HQ d(HnLCbD ×H

n
LCbD

−HnLD ×H
n
LD

)

(4.42)

(as before, in the case j = m − 1 the first term on the right hand side of (4.42) does not
exist).

Fix i ∈ Z such that m − 1 ≤ i < j. Set LQi+1 = {(ỹ, a(ỹ)) ∈ Rd : ỹ ∈ Rn}, where

a : Rn → Rd−n is an appropriate affine map, and let p : LQi → LQi+1 be the map defined by
p(y) := (ỹ, a(ỹ)). Let p]HnLQi be the image measure of HnLQi by p. It is easy to check that

HnLQi+1
= τp]HnLQi , where τ is some positive constant such that |τ − 1| . α(Qi) and τ . 1.

Therefore, ∫∫
HQ(y, z) d(HnLQi+1

×HnLQi+1
−HnLQi ×H

n
LQi

)(z, y)

=

∫∫ (
τ2HQ(p(y), p(z))−HQ(y, z)

)
dHnLQi (z) dH

n
LQi

(y)

=

∫∫
τ2
(
HQ(p(y), p(z))−HQ(y, z)

)
dHnLQi (z) dH

n
LQi

(y)

+

∫∫
(τ2 − 1)HQ(y, z) dHnLQi (z) dH

n
LQi

(y).

(4.43)

Since |τ2 − 1| . α(Qj) and we have seen that |HQ(y, z)| . 2m(n+1)+j(n−1) after Claim 4.5,

the second term on the right side of the last equality is bounded by C2(m−j)(n+1)α(Qi).

In order to estimate the first term on the right hand side of (4.43), notice that ϕ 2−j

2−j−1(z−
y), γ2−m(x−y), ηQ(y) and Λµm(x, z ; y) only depend on the first n coordinates of y and z (i.e.,
on ỹ and z̃), thus their values coincide on (y, z) and (p(y), p(z)). Then,∫∫

τ2
(
HQ(p(y), p(z))−HQ(y, z)

)
dHnLQi (z) dH

n
LQi

(y)

= τ2

∫∫
ϕ 2−j

2−j−1(z − y)γ2−m(x− y)ηQ(y)Λµm(x, z ; y)(
K(p(z)− p(y))−K(z − y)

)
dHnLQi (z) dH

n
LQi

(y).

Let θi be the angle between LQi and LQi+1 . One can easily see that, for y, z ∈ LQi , |(p(z)−
p(y))− (z − y)| . sin(θi)|z − y| . α(Qi)|z − y|. Thus, if also z ∈ suppϕ 2−j

2−j−1(· − y),

|K(p(z)− p(y))−K(z − y)| . 2j(n+1)|(p(z)− p(y))− (z − y)| . 2jnα(Qi).
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Together with Claim 4.5 and the fact that τ2 . 1, this gives∣∣∣∣ ∫∫ τ2
(
HQ(p(y), p(z))−HQ(y, z)

)
dHnLQi (z) dH

n
LQi

(y)

∣∣∣∣
.
∫∫

ϕ 2−j

2−j−1(z − y)ηQ(y)2m(n+1)+j(n−1)α(Qi) dHnLQi (z) dH
n
LQi

(y)

. 2(m−j)(n+1)α(Qi).

From the last estimates and (4.43), we get∣∣∣ ∫∫ HQ d(HnLQi+1
×HnLQi+1

−HnLQi ×H
n
LQi

)
∣∣∣ . 2(m−j)(n+1)α(Qi)

for i = m− 1, . . . , j − 1. With similar arguments, one also obtains∣∣∣ ∫∫ HQ d(HnLQm−1
×HnLQm−1

−HnLCbD ×H
n
LCbD

)
∣∣∣ . 2(m−j)(n+1)α(CbD),∣∣∣ ∫∫ HQ d(HnLCbD ×H

n
LCbD

−HnLD ×H
n
LD

)
∣∣∣ . 2(m−j)(n+1)α(CbD).

These last three inequalities together with (4.42), (4.41) and the fact that |cD| . 1 yield

|G3Bm
j (x)| .

∑
Q∈Dj :Q⊂CeD

2(m−j)(n+1)

(
α(CbD) +

j−1∑
i=m−1

α(Qi)

)

≤
∑

Q∈Dj :Q⊂CeD
2(m−j)(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)
.

(4.44)

Finally, (4.40) and (4.44) applied to (4.38) give half of (4.36).

4.2.4. Estimate of G4mj (x). By Fubini’s theorem and the definitions of λ, Λµm and Λλm,

Λµm(x, z ; y)− Λλm(x, z ; y) = 2mn
∫
{a:x,z∈D a

m, y /∈D a
m}

λ(D a
m)− µ(D a

m)

µ(D a
m)λ(D a

m)
da

= 2mn
∫
{a:x,z∈D a

m, y /∈D a
m}

(∫
t∈D a

m

∑
Q∈Dj :Q⊂CeD

ηQ(t) d(σQ − µ)(t)

)
da

µ(D a
m)λ(D a

m)

=
∑

Q∈Dj :Q⊂CeD

∫
ηQ(t)Λµ,λm (x, z, t ; y) d(σQ − µ)(t).

We also used in the second equality that 1 =
∑

Q∈Dj ηQ(t) =
∑

Q∈Dj :Q⊂CeD ηQ(t) for all

t ∈ D a
m if Ce is big enough, and this is because j ≥ m− 1 and |x̃− t̃| . 2−m for all t ∈ D a

m.

Claim 4.6. For x ∈ D, j ≥ m− 1, |x− y| . 2−m, and z ∈ suppϕ 2−j

2−j−1(· − y), the following

hold: |Λµ,λm (x, z, t ; y)| . 2m(2n+1)−j and |∇tΛµ,λm (x, z, t ; y)| . 2m(2n+1).

Using Claim 4.6 and the properties of ηQ, we obtain

|Λµm(x, z ; y)− Λλm(x, z ; y)| .
∑

Q∈Dj :Q⊂CeD
2m(2n+1)distBQ(µ, σQ)

.
∑

Q∈Dj :Q⊂CeD
2m(2n+1)−j(n+1)α(Q).
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Plugging this estimate into the definition of G4mj (x) in (4.33), we get

|G4mj (x)| .
∫∫

ϕ 2−j

2−j−1(z − y)γ2−m(x− y)|K(z − y)|∑
Q∈Dj :Q⊂CeD

2m(2n+1)−j(n+1)α(Q) dσD(z) dσD(y)

.
∑

Q∈Dj :Q⊂CeD
2(m−j)(n+1)α(Q),

which, together with the estimates of |G1mj (x)| and |G2mj (x)| in subsections 4.2.1 and 4.2.2,

gives (4.35).

4.2.5. Estimate of G5mj (x). Arguing as in subsection 4.2.4, we have

Λλm(x, z ; y)− ΛσDm (x, z ; y) =
∑

Q∈Dj :Q⊂CeD

∫
ηQ(t)Λλ,σDm (x, z, t ; y) d(σD − σQ)(t)

=
∑

Q∈Dj :Q⊂CeD

∫
HQ(t) d(σD − σQ)(t),

(4.45)

where we have set HQ(t) := ηQ(t)Λλ,σDm (x, z, t ; y).
We are going to estimate the right hand side of (4.45) using the techniques of subsection

4.2.3. We have

(4.46)

∫
HQ d(σD − σQ) = (cD − cQ)

∫
HQ dHnLD + cQ

∫
HQ d(HnLD −H

n
LQ

).

We introduce the intermediate v-cubes between Q ∈ Dj and D ∈ Dm to obtain

(4.47) |cD − cQ| . α(CbD) +
∑

R∈D :Q⊂R⊂CbD
α(R).

Claim 4.7. For x ∈ D, j ≥ m− 1, |x− y| . 2−m, and z ∈ suppϕ 2−j

2−j−1(· − y), the following

holds: |Λλ,σDm (x, z, t ; y)| . 2m(2n+1)−j .

Combining Claim 4.7 with (4.47), we derive that

(4.48) |cD − cQ|
∫
|HQ| dHnLD . 2m(2n+1)−j(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)
.

For the second term on the right side of (4.46), one can also use the arguments in subsection
4.2.3 (see (4.42) and following) to show that

(4.49)

∣∣∣∣∫ HQ d(HnLD −H
n
LQ

)

∣∣∣∣ . 2m(2n+1)−j(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)
(now it is easier because the function HQ(t) only depends on the first n coordinates of the

points involved, i.e., it depends only on x̃, ỹ, z̃ and t̃, so when we project vertically to deal
with the image measure, the function HQ is not affected). Therefore, by (4.48), (4.49),
(4.46), and (4.45), we obtain

|Λλm(x, z ; y) − ΛσDm (x, z ; y)| .
∑
Q∈Dj :
Q⊂CeD

2m(2n+1)−j(n+1)

(
α(CbD) +

∑
R∈D:

Q⊂R⊂CbD

α(R)

)
.
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From the definition of G5mj (x) in (4.34), we conclude that

|G5mj (x)| .
∑

Q∈Dj :Q⊂CeD
2m(2n+1)−j(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)
∫∫

ϕ 2−j

2−j−1(z − y)γ2−m(x− y)|K(z − y)| dσD(z) dσD(y)

.
∑

Q∈Dj :Q⊂CeD
2(m−j)(n+1)

(
α(CbD) +

∑
R∈D :Q⊂R⊂CbD

α(R)

)
,

which, together with the estimate of |G3mj (x)| in subsection 4.2.3, gives (4.36).

4.3. Proof of Claims 4.1, . . . , 4.7. We have to prove:

• Claim 4.1: We have |Λµm(x, z ; y)| . 2mn and |∇zΛµm(x, z ; y)| . 2m(n+1) for all
x, y, z ∈ Rd.
• Claim 4.2: For j < m, y ∈ suppϕ 2−j

2−j−1(x− ·), and |x̃− z̃| ≤ 2−m
√
n, the following

hold: |Λµm(x, z ; y)| . 2mn and ∇yΛµm(x, z ; y) = 0.

• Claim 4.3: We have |Λµ,σDm (x, z, t ; y)| . 22mn and |∇tΛµ,σDm (x, z, t ; y)| . 2m(2n+1)

for all x, y, z, t ∈ Rd.
• Claim 4.4: For z ∈ suppϕ 2−j

2−j−1(·−y), the following hold: |Λµm(x, z ; y)| . 2m(n+1)−j ,

|∇zΛµm(x, z ; y)| . 2m(n+1), and |∇yΛµm(x, z ; y)| . 2m(n+1).

• Claim 4.5: For z ∈ suppϕ 2−j

2−j−1(· − y), |Λµm(x, z ; y)| . 2m(n+1)−j .

• Claim 4.6: For x ∈ D, j ≥ m − 1, |x − y| . 2−m, and z ∈ suppϕ 2−j

2−j−1(· − y), the

following hold: |Λµ,λm (x, z, t ; y)| . 2m(2n+1)−j and |∇tΛµ,λm (x, z, t ; y)| . 2m(2n+1).

• Claim 4.7: For x ∈ D, j ≥ m − 1, |x − y| . 2−m, and z ∈ suppϕ 2−j

2−j−1(· − y), the

following holds: |Λλ,σDm (x, z, t ; y)| . 2m(2n+1)−j .

To prove the claims, we need to express the function Λ at the end of subsection 2.3 in a
more convenient way. Notice that we can replace D a

m by D a
m in the definition of Λ because

µ and the n-dimensional Hausdorff measure vanish on ∂D a
m.

For u ∈ Rn and r > 0, we denote |u|∞ := maxi=1,...,n |ui|, B∞(u, r) := {v ∈ Rn :
|u− v|∞ ≤ r}, and Bm

∞(u) := B∞(u, 2−m−1). Given a ∈ Rn, let b := a+ {2−m−1}n ∈ Rn be

the center of D̃ a
m. Then, given q ∈ Rd,

q ∈ D a
m ⇐⇒ |q̃ − b|∞ ≤ 2−m ⇐⇒ b ∈ Bm

∞(q̃).

Let µ1, . . . , µk be positive Borel measures such that µl(D
a
m) > 0 and µl(∂D

a
m) = 0 for all

a ∈ Rn, m ∈ Z and l = 1, . . . , k. Given m ∈ Z and x1, . . . , xi, y1, . . . , yj ∈ Rd we have, by
the change of variable b = a+ {2−m−1}n ∈ Rn,

Λµ1,...,µk
m (x1, . . . , xi ; y1, . . . ,yj) =

∫
{a∈Rn :x1,...,xi∈D a

m, y1,...,yj /∈D a
m}

2nm da∏k
l=1 µl(D

a
m)

= 2nm
∫
χBm∞(x̃1)∩...∩Bm∞(x̃i)∩Bm∞(ỹ1)c∩...∩Bm∞(ỹj)c(b)∏k

l=1 µl
(
D
b−{2−m−1}n
m

) db.

(4.50)

Proof of Claim 4.1. By (4.50), we have

(4.51) Λµm(x, z ; y) = 2nm
∫
µ
(
Db−{2−m−1}n
m

)−1
χBm∞(x̃)∩Bm∞(z̃)∩Bm∞(ỹ)c(b) db.
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Since µ(D b
m) & 2−mn for all b ∈ Rn,

|Λµm(x, z ; y)| . 22mnLn(Bm
∞(x̃) ∩Bm

∞(z̃) ∩Bm
∞(ỹ)c) ≤ 22mnLn(Bm

∞(x̃)) ≤ 2mn.

To deal with the second inequality in Claim 4.1, we will estimate

|Λµm(x, z1 ; y)− Λµm(x, z2 ; y)|/|z1 − z2|

for z1 close enough to z2. Recall that, given two sets F1, F2 ⊂ Rn, F1∆F2 := (F1 \F2)∪ (F2 \
F1) denotes their symmetric difference. Using (4.51), we get

|Λµm(x,z1 ; y)− Λµm(x, z2 ; y)|

. 22nm

∫
|χBm∞(x̃)∩Bm∞(z̃1)∩Bm∞(ỹ)c(b)− χBm∞(x̃)∩Bm∞(z̃2)∩Bm∞(ỹ)c(b)| db

= 22nmLn
((
Bm
∞(x̃) ∩Bm

∞(z̃1) ∩Bm
∞(ỹ)c

)
∆
(
Bm
∞(x̃) ∩Bm

∞(z̃2) ∩Bm
∞(ỹ)c

))
≤ 22nmLn

(
Bm
∞(z̃1)∆Bm

∞(z̃2)
)
. 22nm|z̃1 − z̃2|2−m(n−1) ≤ 2m(n+1)|z1 − z2|,

(4.52)

and the claim follows. �

Proof of Claim 4.2. The first estimate has been already proved in Claim 4.1. Let us deal

with the second one. Notice that if y ∈ suppϕ 2−j

2−j−1(x− ·) then |x̃− ỹ| ≥ 2−j−12.1
√
n. Thus,

if also j < m and |x̃− z̃| ≤ 2−m
√
n, then |x̃− ỹ| > 2−m

√
n and |z̃− ỹ| > 2−m

√
n. Therefore,

Bm
∞(x̃)∩Bm

∞(z̃)∩Bm
∞(ỹ)c = Bm

∞(x̃)∩Bm
∞(z̃) for all y ∈ suppϕ 2−j

2−j−1(x−·), if |x̃− z̃| ≤ 2−m
√
n.

This means, using (4.51), that Λµm(x, z ; y) does not depend on y, so ∇yΛµm(x, z ; y) = 0 for

all y ∈ suppϕ 2−j

2−j−1(x− ·), and the claim is proved. �

Proof of Claim 4.3. This claim follows by arguments very similar to the ones in the proof of
Claim 4.1. Just notice that µ(D b

m)σD(D b
m) & 2−2mn for all b ∈ Rn. �

Proof of Claim 4.4. Using (4.51), we have that

|Λµm(x, z ; y)| . 22mnLn(Bm
∞(x̃) ∩Bm

∞(z̃) ∩Bm
∞(ỹ)c) ≤ 22mnLn(Bm

∞(z̃) ∩Bm
∞(ỹ)c).

Notice that Ln(Bm
∞(z̃) ∩ Bm

∞(ỹ)c) . 2−m(n−1)|ỹ − z̃|. Since z ∈ suppϕ 2−j

2−j−1(· − y), |ỹ − z̃| ≤
2−j3

√
n. Thus, Ln(Bm

∞(z̃) ∩Bm
∞(ỹ)c) . 2−m(n−1)−j , and then |Λµm(x, z ; y)| . 2m(n+1)−j .

In Claim 4.1 we already proved that |∇zΛµm(x, z ; y)| . 2m(n+1). Finally, to prove that

|∇yΛµm(x, z ; y)| . 2m(n+1), one can repeat the computations done in (4.52) but applied to
the y coordinate and use that Bm

∞(ỹ1)c∆Bm
∞(ỹ2)c = Bm

∞(ỹ1)∆Bm
∞(ỹ2). �

Proof of Claim 4.5. This claim is included in the previous one. �

Proof of Claim 4.6. Recall that λ =
∑

Q∈Dj :Q⊂CeD ηQσQ, where Ce is some fixed constant

big enough (see the beginning of subsection 4.2). Using the properties of ηQ and that Ce is

big enough, it is not difficult to show that λ
(
D
b−{2−m−1}n
m

)
& 2−mn for all b ∈ Rn such that

b ∈ Bm
∞(x̃) (recall that x ∈ D and j ≥ m− 1). Therefore, by (4.50),

|Λµ,λm (x, z, t ; y)| . 23nmLn
(
Bm
∞(x̃) ∩Bm

∞(z̃) ∩Bm
∞(t̃) ∩Bm

∞(ỹ)c
)

≤ 23nmLn
(
Bm
∞(z̃) ∩Bm

∞(ỹ)c
)
.

As in the proof of Claim 4.4, we have Ln
(
Bm
∞(z̃) ∩ Bm

∞(ỹ)c
)
. 2−m(n−1)−j for all z ∈

suppϕ 2−j

2−j−1(· − y). Thus, |Λµ,λm (x, z, t ; y)| . 2m(2n+1)−j , as wished.
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For the second estimate in Claim 4.6, we argue as in (4.52). For t1 and t2 close enough,

|Λµ,λm (x,z, t1 ; y)− Λµ,λm (x, z, t2 ; y)|

. 23nm

∫
|χBm∞(x̃)∩Bm∞(z̃)∩Bm∞(t̃1)∩Bm∞(ỹ)c(b)− χBm∞(x̃)∩Bm∞(z̃)∩Bm∞(t̃2)∩Bm∞(ỹ)c(b)| db

≤ 23nmLn
(
Bm
∞(t̃1)∆Bm

∞(t̃2)
)
. 23nm|t̃1 − t̃2|2−m(n−1) ≤ 2m(2n+1)|t1 − t2|,

and the claim follows by letting t1 → t2. �

Proof of Claim 4.7. This claim is proved as the first estimate in Claim 4.6, replacing µ by
σD (we only used that µ(D b

m) & 2−mn for all b ∈ Rn, which also holds for σD). �

5. Proof of Theorem 3.2

Given x ∈ Γ, let {εm}m∈Z be a decreasing sequence of positive numbers such that

(5.1) Sµ(x)2 ≤ 2
∑
j∈Z

∑
m∈Z: εm,εm+1∈Ij

|(Kϕ εmεm+1
∗ µ)(x)|2,

so {εm}m∈Z depends on x.
Fix j ∈ Z and assume that x ∈ D, for some D ∈ Dj . Let LD be an n-plane that minimizes

α(D) and let σD := cDHnLD be a minimizing measure for α(D). Let LxD be the n-plane
parallel to LD which contains x, and set σxD := cDHnLxD .

By the antisymmetry of the function ϕ εmεm+1
K, and since σxD is a Hausdorff measure on the

n-plane LxD and x ∈ LxD, we have

(Kϕ εmεm+1
∗ σxD)(x) =

∫
ϕ εmεm+1

(x− y)K(x− y) dσxD(y) = 0

for all m ∈ Z. Therefore, we can decompose

(5.2) (Kϕ εmεm+1
∗ µ)(x) = (Kϕ εmεm+1

∗ (µ− σD))(x) + (Kϕ εmεm+1
∗ (σD − σxD))(x).

For every m ∈ Z such that εm, εm+1 ∈ Ij we will prove the following inequalities:

|(Kϕ εmεm+1
∗ (µ− σD))(x)| . 2j |εm − εm+1|α(D),(5.3)

|(Kϕ εmεm+1
∗ (σD − σxD))(x)| . 22j |εm − εm+1|dist(x, LD).(5.4)

Assume for a moment that these estimates hold. Then, by (5.2),

|(Kϕ εmεm+1
∗ µ)(x)| . 2j |εm − εm+1|

(
α(D) + 2jdist(x, LD)

)
.

Then, using (5.1), we conclude that

‖Sµ‖2L2(µ) ≤ 2
∑
j∈Z

∑
D∈Dj

∫
D

∑
m∈Z: εm,εm+1∈Ij

|(Kϕ εmεm+1
∗ µ)(x)|2 dµ(x)

.
∑
j∈Z

∑
D∈Dj

∫
D

(
α(D) +

dist(x, LD)

2−j

)2 ∑
m∈Z:

εm,εm+1∈Ij

(
|εm − εm+1|

2−j

)2

dµ(x)

.
∑
D∈D

α(D)2µ(D) +
∑
D∈D

∫
D

(
dist(x, LD)

`(D)

)2

dµ(x).

Notice that, under the integral sign on the right hand side of the first inequality above, εm
and εm+1 depend on x. It is not obvious that the resulting function is measurable. To deal
with this issue more carefully, we might first ask {εm}m∈Z to lie in some finite set, prove
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the variational norm inequality with constants independent of the set, and then enlarge the
set. Then, by monotone convergence we would obtain the result with {εm}m∈Z restricted to
a countable set dense in (0,∞). The final theorem would follow then from the continuity
properties of the operators involved. This applies to other similar situations in the paper.
However, for the sake of conciseness, we will skip further details.

The second term on the right hand side of the last inequality coincides withW1µ (see (4.6)),
thus it is bounded (modulo constants) by

∑
D∈D

(
α(D)2 + β2(D)2

)
µ(D), and Theorem 3.2

is proved.
It only remains to verify (5.3) and (5.4) for x ∈ D ∈ Dj and m ∈ Z such that εm, εm+1 ∈ Ij .

First of all, notice that ϕ εmεm+1
satisfies

|ϕ εmεm+1
(x− y)| =

∣∣∣∣ϕR

(
|x̃− ỹ|
εm+1

)
− ϕR

(
|x̃− ỹ|
εm

)∣∣∣∣ ≤ ‖ϕ′R‖L∞(R)

∣∣∣∣ |x̃− ỹ|εm+1
− |x̃− ỹ|

εm

∣∣∣∣
= ‖ϕ′R‖∞|x̃− ỹ|

εm − εm+1

εmεm+1
. 2j |εm − εm+1|

(5.5)

for all y ∈ suppϕ εmεm+1
(x− ·). For i = 1, . . . , d,

∂yi (ϕεm(x− y)) = ϕ′R

(
|x̃− ỹ|
εm

)
yi − xi

εm|x̃− ỹ|
χ[1,n](i).

Hence,∣∣∂yi(ϕ εmεm+1
(x− y)

)∣∣ ≤ ∣∣∣∣ϕ′R( |x̃− ỹ|εm

)
1

εm
− ϕ′R

(
|x̃− ỹ|
εm+1

)
1

εm+1

∣∣∣∣
≤
∣∣∣∣ϕ′R( |x̃− ỹ|εm

)∣∣∣∣ ∣∣∣∣ 1

εm
− 1

εm+1

∣∣∣∣+

∣∣∣∣ϕ′R( |x̃− ỹ|εm

)
− ϕ′R

(
|x̃− ỹ|
εm+1

)∣∣∣∣ 1

εm+1

≤
(
‖ϕ′R‖∞ + ‖ϕ′′R‖∞

|x̃− ỹ|
εm+1

)
εm − εm+1

εmεm+1
.

Since εm, εm+1 ∈ Ij , we deduce from the previous estimate that, for x− y ∈ suppϕ εmεm+1
,

(5.6) |∇y
(
ϕ εmεm+1

(x− y)
)
| . εm − εm+1

εmεm+1
≈ 22j |εm − εm+1|.

We are going to use (5.5) and (5.6) to prove (5.3) and (5.4). Let us start with (5.3). Since
εm, εm+1 ∈ Ij , we can assume that suppϕ εmεm+1

(x− ·) ⊂ BD, by taking CΓ big enough.

By (5.5) and (5.6), for all y ∈ suppϕ εmεm+1
(x− ·),∣∣∣∇y (ϕ εmεm+1

(x− y)K(x− y)
)∣∣∣ . 2j(n+2)|εm − εm+1|,

hence

|(Kϕ εmεm+1
∗ (µ− σD))(x)| . 2j(n+2)|εm − εm+1|distBD(µ, σD) . 2j |εm − εm+1|α(D),

which gives (5.3).
In order to prove (5.4), set LxD = {(t̃, a(t̃)) ∈ Rd : t̃ ∈ Rn}, where a : Rn → Rd−n is an

appropriate affine map, and let p : LD → LxD be the map defined by p(t) := (t̃, a(t̃)). Since
Γ is a Lipschitz graph, a is well defined and p is a homeomorphism. Let p]HnLD be the image

measure of HnLD by p. It is easy to see that, |y − p(y)| ≈ dist(x, LD) for all y ∈ LD. Notice

also that the image measure p]HnLD coincides with HnLxD . Therefore, since ϕ εmεm+1
(x− y) only
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depends on x̃− ỹ,

(Kϕ εmεm+1
∗ (σD − σxD))(x) = cD

∫
ϕ εmεm+1

(x− y)K(x− y) d(HnLD − p]H
n
LD

)(y)

= cD

∫
ϕ εmεm+1

(x− y)(K(x− y)−K(x− p(y))) dHnLD(y).

(5.7)

For y ∈ suppϕ εmεm+1
(x− ·) ∩ LD, we have

|K(x− y)−K(x− p(y))| . 2j(n+1)|y − p(y)| ≈ 2j(n+1)dist(x, LD).

Plugging this estimate and (5.5) into (5.7), we conclude that

|(Kϕ εmεm+1
∗ (σD − σxD))(x)| . 22j |εm − εm+1|dist(x, LD),

which gives (5.4); and the theorem follows.

6. L2 localization of Vρ ◦ T
HnΓ
ϕ and O ◦ T H

n
Γ

ϕ

From here till the end of the paper, Γ := {x ∈ Rd : x = (x̃, A(x̃))} will be the graph of a
Lipschitz function A : Rn → Rd−n, without any assumption on the support of A.

Theorem 6.1. Let ρ > 2. There exist C1, C2 > 0 such that, for every f ∈ L∞(HnΓ) supported

in Γ ∩D (where D := D̃ × Rd−n and D̃ is a cube of Rn),∫
D

(
(Vρ ◦ T

HnΓ
ϕ )f

)2
dHnΓ ≤ C1‖f‖2L∞(HnΓ)H

n
Γ(D) and(6.1) ∫

D

(
(O ◦ T H

n
Γ

ϕ )f
)2
dHnΓ ≤ C2‖f‖2L∞(HnΓ)H

n
Γ(D).(6.2)

The constant C2 does not depend on the fixed sequence that defines O.

We will only give the proof of (6.1), because the proof of (6.2) follows by very similar
arguments and computations.

We claim that it is enough to prove (6.1) for all functions f such that f(x) ≈ 1 for all
x ∈ Γ ∩D. Otherwise, we consider g(x) := ‖f‖−1

L∞(HnΓ)f(x) + 2χD(x), which clearly satisfies

g(x) ≈ 1 for all x ∈ Γ ∩D. Since f = ‖f‖L∞(HnΓ) (g − 2χD),

(Vρ ◦ T
HnΓ
ϕ )f(x) ≤ ‖f‖L∞(HnΓ)

(
(Vρ ◦ T

HnΓ
ϕ )g(x) + 2(Vρ ◦ T

HnΓ
ϕ )χD(x)

)
.

Applying (6.1) to the functions g and χD, we finally get∫
D

(
(Vρ ◦ T

HnΓ
ϕ )f

)2
dHnΓ . ‖f‖2L∞(HnΓ)H

n
Γ(D).

Given f and D as in Theorem 6.1, from now on, we assume that f ≈ 1 in Γ ∩ D. Let

z̃D be the center of D̃ and set zD := (z̃D, A(z̃D)). One can easily construct a Lipschitz

function AD : Rn → Rd−n such that Lip(AD) . Lip(A), AD(x̃) = A(z̃D) for all x̃ ∈ (3D̃)c,

and AD(x̃) = A(x̃) for all x̃ ∈ D̃. Let ΓD be the graph of AD and define the measure
µ := HnΓD\D + fHnΓD∩D. Notice that χ(3D)cµ is supported in the n-plane L := Rn×{A(z̃D)}
and χDµ = fHnΓ∩D.

Since f ≈ 1 in Γ ∩D and χDµ = (1− χ(3D)c − χ3D\D)µ, we can decompose∫
D

(
(Vρ ◦ T

HnΓ
ϕ )f

)2
dHnΓ ≈

∫
D
Vρ(Kϕ ∗ (χDµ))2 dµ

.
∫
D

(
Vρ(Kϕ ∗ µ) + Vρ(Kϕ ∗ (χ(3D)cµ)) + Vρ(Kϕ ∗ (χ3D\Dµ))

)2
dµ.
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In the next subsections, we will see that
∫
D Vρ(Kϕ ∗ µ)2 dµ,

∫
D Vρ(Kϕ ∗ (χ(3D)cµ))2 dµ,

and
∫
D Vρ(Kϕ ∗ (χ3D\Dµ))2 dµ are bounded by Cµ(D), and (6.1) will follow.

6.1. Proof of
∫
D Vρ(Kϕ ∗ µ)2 dµ . µ(D). Fix x ∈ suppµ, and let {εm}m∈Z be a decreasing

sequence of positive numbers (which depends on x) such that

(6.3) (Vρ(Kϕ ∗ µ)(x))ρ ≤ 2
∑
m∈Z
|(Kϕ εmεm+1

∗ µ)(x)|ρ.

For j ∈ Z we set Ij := [2−j−1, 2−j). We decompose Z = S ∪ L, where

S :=
⋃
j∈Z
Sj , Sj := {m ∈ Z : εm, εm+1 ∈ Ij},

L := {m ∈ Z : εm ∈ Ii, εm+1 ∈ Ij for i < j}.
(6.4)

Then,
∑

m∈Z |(Kϕ εmεm+1
∗ µ)(x)|ρ =

∑
m∈S |(Kϕ εmεm+1

∗ µ)(x)|ρ +
∑

m∈L |(Kϕ εmεm+1
∗ µ)(x)|ρ.

Notice that, since the `ρ(Z)-norm is smaller than the `2(Z)-norm for ρ > 2,

(6.5)
∑
m∈S
|(Kϕ εmεm+1

∗ µ)(x)|ρ ≤ Sµ(x)ρ,

where Sµ(x) has been defined in Theorem 3.2.
Let us now estimate the sum over the indices m ∈ L. For m ∈ Z we define j(εm) as the

integer such that εm ∈ Ij(εm). Since {εm}m∈Z is decreasing, given j ∈ Z, there is at most one
index m ∈ L such that εm ∈ Ij . Thus, if k,m ∈ L and k < m, one has j(εk) < j(εm).

With this notation, we have∑
m∈L
|(Kϕ εmεm+1

∗ µ)(x)|ρ =
∑
m∈L
|(Kϕεm+1 ∗ µ)(x)− (Kϕεm ∗ µ)(x)|ρ

.
∑
m∈L
|(Kϕεm+1 ∗ µ)(x)− (Kϕ

2−j(εm+1)−1 ∗ µ)(x)|ρ

+
∑
m∈L
|(Kϕ

2−j(εm+1)−1 ∗ µ)(x)− Ej(εm+1)+1µ(x)|ρ

+
∑
m∈L
|Ej(εm+1)+1µ(x)− Ej(εm)+1µ(x)|ρ

+
∑
m∈L
|Ej(εm)+1µ(x)− (Kϕ2−j(εm)−1 ∗ µ)(x)|ρ

+
∑
m∈L
|(Kϕ2−j(εm)−1 ∗ µ)(x)− (Kϕεm ∗ µ)(x)|ρ

. Sµ(x)ρ +Wµ(x)ρ + Vρ(Eµ)(x)ρ,

(6.6)

where Sµ(x) and Wµ(x) have been defined in Theorems 3.2 and 3.1, respectively, and Vρ(Eµ)
is the ρ-variation of the average of martingales {Emµ}m∈Z from subsection 2.3. Therefore,
by (6.5), (6.6), and (6.3), we deduce that

Vρ(Kϕ ∗ µ)(x) . Sµ(x) +Wµ(x) + Vρ(Eµ)(x)

for all x ∈ suppµ, and so

(6.7)

∫
D
Vρ(Kϕ ∗ µ)2 dµ . ‖Sµ‖2L2(µ) + ‖Wµ‖2L2(µ) + ‖Vρ(Eµ)‖2L2(µ).
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Clearly, Theorem 2.7, Theorem 3.1, and Theorem 3.2 can be applied to the measure µ,
because suppµ is a translation of the graph of a Lipschitz function with compact support.
These theorems in combination with (6.7) yield

(6.8)

∫
D
Vρ(Kϕ ∗ µ)2 dµ ≤ C1

(
µ(3D) +

∑
Q∈D

(
αµ(C2Q)2 + β2,µ(Q)2

)
µ(Q)

)
,

where C1, C2 > 0 only depend on n, d, K, Lip(A), and ρ (the condition ρ > 2 is used
to ensure the L2 boundedness of Vρ(Eµ)). Obviously, µ(3D) ≈ µ(D) and, since χ(3D)cµ
coincides with the n-dimensional Hausdorff measure on an n-plane, using Remark 2.2 it is
easy to check that

∑
Q∈D

(
αµ(C2Q)2 + β2,µ(Q)2

)
µ(Q) . µ(3D). Hence, we conclude that∫

D Vρ(Kϕ ∗ µ)2 dµ . µ(D) by (6.8).

6.2. Proof of
∫
D Vρ(Kϕ ∗ (χ(3D)cµ))2 dµ . µ(D). Fix x ∈ suppµ ∩D, and let {εm}m∈Z be

a decreasing sequence of positive numbers (which depends on x) such that

(6.9)
(
Vρ(Kϕ ∗ (χ(3D)cµ))(x)

)ρ ≤ 2
∑
m∈Z
|(Kϕ εmεm+1

∗ (χ(3D)cµ))(x)|ρ.

Recall that z̃D is the center of D̃, zD := (z̃D, A(z̃D)) and L := Rn × {A(z̃D)}. Since
χ(3D)cµ = HnL\3D and zD is the center of L∩D, (Kϕδε ∗ (χ(3D)cµ))(zD) = 0 for all 0 < ε ≤ δ.
Thus, |(Kϕ εmεm+1

∗ (χ(3D)cµ))(x)| = |(Kϕ εmεm+1
∗ (χ(3D)cµ))(x) − (Kϕ εmεm+1

∗ (χ(3D)cµ))(zD)| ≤
Θ1m + Θ2m, where

Θ1m :=

∫
(3D)c

ϕ εmεm+1
(x− y)|K(x− y)−K(zD − y)| dµ(y),

Θ2m :=

∫
(3D)c

|ϕ εmεm+1
(x− y)− ϕ εmεm+1

(zD − y)|K(zD − y) dµ(y).

(6.10)

Since x ∈ suppµ ∩ D and A is a Lipschitz function, we have |x − zD| . `(D), and then
|K(x − y) − K(zD − y)| . |x − zD||zD − y|−n−1 . `(D)|zD − y|−n−1 for all y ∈ (3D)c.
Therefore, using that

∑
m∈Z ϕ

εm
εm+1

≤ 1 and that ρ > 1,(∑
m∈Z

Θ1ρm

)1/ρ

≤
∑
m∈Z

Θ1m .
∫

(3D)c
`(D)|zD − y|−n−1 dµ(y) . 1.(6.11)

To deal with Θ2m, we decompose Z = S ∪L as in (6.4). As before, given m ∈ Z, let j(εm)
be the integer such that εm ∈ Ij(εm). Observe that

suppϕ εmεm+1
(x− ·) ⊂ A(x̃, 2.1

√
n2−j(εm+1)−1, 3

√
n2−j(εm))× Rd−n =: Am(x).

Notice also that the sets Am(x) have finite overlap for m ∈ L, and the same is true for the
sets A′j(x) := A(x̃, 2.1

√
n2−j−1, 3

√
n2−j) × Rd−n for j ∈ Z. The same observations hold if

we replace x by zD (and x̃ by z̃D). Obviously, Am(x) ⊂ A′j(x) (and Am(zD) ⊂ A′j(zD)) for
m ∈ Sj .

Assume that m ∈ S. With the same computations as those carried out in (5.6), one can
easily prove that, for all z − y ∈ suppϕ εmεm+1

,

|∇z
(
ϕ εmεm+1

(z − y)
)
| .

(
‖ϕ′R‖L∞(R) + ‖ϕ′′R‖L∞(R)

|z̃ − ỹ|
εm+1

)
εm − εm+1

εmεm+1
. 2j(εm) |εm − εm+1|

|z̃ − ỹ|
,
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because |z̃ − ỹ| ≈ εm ≈ εm+1 ≈ 2j(εm) for all z − y ∈ suppϕ εmεm+1
and m ∈ S. In particular, if

z ∈ D and y ∈ (3D)c, |∇z
(
ϕ εmεm+1

(z − y)
)
| . 2j(εm)|εm − εm+1||z̃D − ỹ|−1. Hence,

Θ2m .
∫

(Am(x)∪Am(zD))\3D
`(D)2j(εm) |εm − εm+1|

|z̃D − ỹ|n+1
dµ(y),

and then, (∑
m∈S

Θ2ρm

)1/ρ

.
∑
m∈S

∫
(Am(x)∪Am(zD))\3D

`(D)2j(εm) |εm − εm+1|
|z̃D − ỹ|n+1

dµ(y)

≤
∑
j∈Z

∫
(A′j(x)∪A′j(zD))\3D

`(D)

|z̃D − ỹ|n+1

∑
m∈Sj

|εm − εm+1|
2−j

dµ(y)

.
∫

(3D)c

`(D)

|z̃D − ỹ|n+1
dµ(y) . 1.

(6.12)

Assume now that m ∈ L. It is easy to check that |∇z
(
ϕ εmεm+1

(z − y)
)
| . |z̃ − ỹ|−1 for all

z, y ∈ Rd. So, if also z ∈ D and y ∈ (3D)c, |∇z
(
ϕ εmεm+1

(z − y)
)
| . |z̃D − ỹ|−1. Therefore,(∑

m∈L
Θ2ρm

)1/ρ

.
∑
m∈L

∫
(Am(x)∪Am(zD))\3D

`(D)

|zD − y|n+1
dµ(y)

.
∫

(3D)c

`(D)

|z̃D − ỹ|n+1
dµ(y) . 1.

(6.13)

Finally combining (6.11), (6.12), and (6.13), with (6.9) and the fact that (Kϕ εmεm+1
∗

(χ(3D)cµ))(x)| ≤ Θ1m + Θ2m, we conclude that

Vρ(Kϕ ∗ (χ(3D)cµ))(x) .

(∑
m∈Z

Θ1ρm

)1/ρ

+

(∑
m∈S

Θ2ρm

)1/ρ

+

(∑
m∈L

Θ2ρm

)1/ρ

. 1

for all x ∈ suppµ ∩D. Therefore,
∫
D Vρ(Kϕ ∗ (χ(3D)cµ))2 dµ . µ(D).

6.3. Proof of
∫
D Vρ(Kϕ ∗ (χ3D\Dµ))2 dµ . µ(D). Fix x ∈ suppµ ∩D. Since ρ > 1,

Vρ(Kϕ∗(χ3D\Dµ))(x) = sup
{εm}

(∑
m∈Z

∣∣∣∣ ∫
3D\D

ϕ εmεm+1
(x− y)K(x− y) dµ(y)

∣∣∣∣ρ)1/ρ

≤ sup
{εm}

∑
m∈Z

∫
3D\D

ϕ εmεm+1
(x− y)|K(x− y)| dµ(y) ≤

∫
3D\D

|K(x− y)| dµ(y).

By a standard computation, one can show that∫
D

(∫
3D\D

|K(x− y)| dµ(y)

)2

dµ(x) . µ(D),

hence we conclude that
∫
D Vρ(Kϕ ∗ (χ3D\Dµ))2dµ . µ(D).

7. Lp and endpoint estimates for Vρ ◦ T
HnΓ
ϕ and O ◦ T H

n
Γ

ϕ

We denote by H1(HnΓ) and BMO(HnΓ) the (atomic) Hardy space and the space of functions
with bounded mean oscillation, respectively, with respect to the measure HnΓ. These spaces

are defined as the classical H1(Rd) and BMO(Rd) (see [Du, Chapter 6], for example), but
by replacing the true cubes of Rd by our special v-cubes.
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Theorem 7.1. Let ρ > 2. The operators Vρ ◦ T
HnΓ
ϕ and O ◦ T H

n
Γ

ϕ are bounded

• in Lp(HnΓ) for 1 < p <∞,
• from H1(HnΓ) to L1(HnΓ),
• from L1(HnΓ) to L1,∞(HnΓ), and
• from L∞(HnΓ) to BMO(HnΓ),

and the norm of O ◦ T H
n
Γ

ϕ in the cases above is bounded independently of the sequence that
defines O.

We will only give the proof of Theorem 7.1 in the case of the ρ-variation, because the
proof for the oscillation follows by analogous arguments.

7.1. The operator Vρ ◦ T
HnΓ
ϕ : H1(HnΓ) → L1(HnΓ) is bounded. Fix a cube D̃ ⊂ Rn and

set D := D̃ × Rd−n. Let f be an atom, i.e., a function defined on Γ and such that

(7.1) suppf ⊂ D, ‖f‖L∞(HnΓ) ≤
1

HnΓ(D)
, and

∫
f dHnΓ = 0.

We have to prove that
∫

(Vρ ◦ T
HnΓ
ϕ )f dHnΓ ≤ C, for some constant C > 0 which does not

depend on f or D. Since (Vρ◦T
HnΓ
ϕ )f(x) is well defined and non negative for f ∈ L1(HnΓ), the

uniform boundedness of Vρ ◦ T
HnΓ
ϕ on atoms yields its boundedness from H1(HnΓ) to L1(HnΓ)

by standard arguments. We omit the details.
First of all, by Hölder’s inequality, Theorem 6.1, and (7.1),∫

3D
(Vρ ◦ T

HnΓ
ϕ )f dHnΓ ≤ HnΓ(3D)1/2

(∫
3D

(
(Vρ ◦ T

HnΓ
ϕ )f

)2
dHnΓ

)1/2

. HnΓ(3D)1/2
(
‖f‖2L∞(HnΓ)H

n
Γ(3D)

)1/2
. 1.

Thus, it remains to prove that
∫

(3D)c(Vρ ◦ T
HnΓ
ϕ )f dHnΓ ≤ C.

Given x ∈ Γ \ 3D, let {εm}m∈Z be a decreasing sequence of positive numbers (which
depends on x) such that

(7.2)
(
(Vρ ◦ T

HnΓ
ϕ )f(x)

)ρ ≤ 2
∑
m∈J
|(Kϕ εmεm+1

∗ (fHnΓ))(x)|ρ,

where J := {m ∈ Z : suppϕ εmεm+1
(x− ·) ∩ suppf 6= ∅}.

Set zD := (z̃D, A(z̃D)) ∈ D ∩ Γ, where z̃D is the center of D̃. By (7.1), we have
∫
ϕδε(x−

zD)K(x− zD)f(y) dHnΓ(y) = 0 for all 0 < ε ≤ δ. Thus, given m ∈ J , we can decompose

(Kϕ εmεm+1
∗ (fHnΓ))(x) =

∫
ϕ εmεm+1

(x− y) (K(x− y)−K(x− zD)) f(y) dHnΓ(y)

+

∫ (
ϕ εmεm+1

(x− y)− ϕ εmεm+1
(x− zD)

)
K(x− zD)f(y) dHnΓ(y),

and we obtain |(Kϕ εmεm+1
∗ (fHnΓ))(x)| ≤ ‖f‖L∞(HnΓ)(Θ1m + Θ2m), where

Θ1m : =

∫
D
ϕ εmεm+1

(x− y) |K(x− y)−K(x− zD)| dHnΓ(y),

Θ2m : =

∫
D

∣∣ϕ εmεm+1
(x− y)− ϕ εmεm+1

(x− zD)
∣∣|K(x− zD)| dHnΓ(y).
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The term Θ1m can be easily handled. For x ∈ Γ \ 3D, we have

(7.3) Θ1m . `(D) dist(x,D)−n−1

∫
D
ϕ εmεm+1

(x− y) dHnΓ(y).

Let us estimate Θ2m. Decompose J = S ∪L, where S and L are as in (6.4) but replacing
m ∈ Z by m ∈ J , and as before, let j(εm) be the integer such that εm ∈ Ij(εm). Using that
x ∈ Γ\3D and suppf ⊂ D, one can easily check that L contains a finite number of elements,
and this number only depends on n and d. Similarly, Sj = ∅ for all j ∈ Z except on a finite
number which only depends on n and d.

Assume that m ∈ S. With the same computations as those in (5.6), one can prove that,

for all y ∈ suppϕ εmεm+1
(x − ·), |∇y

(
ϕ εmεm+1

(x − y)
)
| . 2j(εm)|εm − εm+1||x̃ − ỹ|−1, because

|x̃− ỹ| ≈ εm ≈ εm+1 ≈ 2−j(εm) for all y ∈ suppϕ εmεm+1
(x− ·). Thus,

(7.4) Θ2m . `(D)n+1 dist(x,D)−n−12j(εm)|εm − εm+1|.

Assume now that m ∈ L. It is easy to verify that |∇y
(
ϕ εmεm+1

(x − y)
)
| . |x̃ − ỹ|−1, so

Θ2m . `(D)n+1 dist(x,D)−n−1.
Combining this last estimate with (7.3), (7.4), the fact that |(Kϕ εmεm+1

∗ (fHnΓ))(x)| ≤
‖f‖L∞(HnΓ)(Θ1m+Θ2m), the remark on S and L made just after (7.3), (7.2), and that ρ > 1,

we have that, for all x ∈ Γ \ 3D,

(Vρ ◦ T
HnΓ
ϕ )f(x) . ‖f‖L∞(HnΓ)

(∑
m∈J

Θ1m +
∑
m∈S

Θ2m +
∑
m∈L

Θ2m

)

.
‖f‖L∞(HnΓ)`(D)n+1

dist(x,D)n+1

(∑
m∈J

∫
D

ϕ εmεm+1
(x− y)

`(D)n
dHnΓ(y) +

∑
m∈S

|εm − εm+1|
2−j(εm)

+
∑
m∈L

1

)

.
‖f‖L∞(HnΓ)`(D)n+1

dist(x,D)n+1
.

Then, using (7.1) and standard estimates, we conclude that∫
(3D)c

(Vρ ◦ T
HnΓ
ϕ )f(x) dHnΓ(x) .

∫
(3D)c

‖f‖L∞(HnΓ)`(D)n+1

dist(x,D)n+1
dHnΓ(x) . 1.

7.2. The operator Vρ ◦T
HnΓ
ϕ : L∞(HnΓ)→ BMO(HnΓ) is bounded. We have to prove that

there exists a constant C > 0 such that, for any f ∈ L∞(HnΓ) and any cube D̃ ⊂ Rn, there

exists some constant c depending on f and D̃ such that∫
D

∣∣(Vρ ◦ T HnΓϕ )f − c
∣∣ dHnΓ ≤ C‖f‖L∞(HnΓ)HnΓ(D).

Let f and D be as above, and set f1 := fχ3D and f2 := f − f1. First of all, by Hölder’s
inequality and Theorem 6.1, we have∫

D
(Vρ ◦ T

HnΓ
ϕ )f1 dHnΓ ≤ HnΓ(D)1/2

(∫
3D

(
(Vρ ◦ T

HnΓ
ϕ )f1

)2
dHnΓ

)1/2

. HnΓ(D)1/2
(
‖f1‖2L∞(HnΓ)H

n
Γ(3D)

)1/2
. ‖f‖L∞(HnΓ)HnΓ(D).
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Notice that |(Vρ ◦ T
HnΓ
ϕ )(f1 + f2) − (Vρ ◦ T

HnΓ
ϕ )f2| ≤ (Vρ ◦ T

HnΓ
ϕ )f1, because Vρ ◦ T

HnΓ
ϕ is

sublinear and positive. Then, for any c ∈ R,

|(Vρ ◦ T
HnΓ
ϕ )(f1 + f2)− c| ≤ |(Vρ ◦ T

HnΓ
ϕ )(f1 + f2)− (Vρ ◦ T

HnΓ
ϕ )f2|+ |(Vρ ◦ T

HnΓ
ϕ )f2 − c|

≤ (Vρ ◦ T
HnΓ
ϕ )f1 + |(Vρ ◦ T

HnΓ
ϕ )f2 − c|,

hence we are reduced to prove that, for some constant c ∈ R,

(7.5)

∫
D

∣∣(Vρ ◦ T HnΓϕ )f2 − c
∣∣ dHnΓ ≤ C‖f‖L∞(HnΓ)HnΓ(D).

Set zD := (z̃D, A(z̃D)), where zD is the center of D̃, and take c := (Vρ ◦ T
HnΓ
ϕ )f2(zD). We

may assume that c <∞ (this is the case if, for example, f has compact support).
Given a family a := {aε}ε>0 ⊂ C, define its ρ-variation semi-norm to be

‖a‖Vρ = sup
{εm}

(∑
m∈Z
|aεm+1 − aεm |ρ

)1/ρ

,

where the supremum is taken over all decreasing sequences {εm}m∈Z ⊂ (0,∞). Since ‖ · ‖Vρ
satisfies the triangle inequality, we have |‖a‖Vρ − ‖b‖Vρ | ≤ ‖a− b‖Vρ for all a := {aε}ε>0 and
b := {bε}ε>0, where a− b := {aε − bε}ε>0. Hence,∣∣(Vρ ◦ T HnΓϕ )f2(x)− c

∣∣ρ ≤ sup
{εm↘0}

∑
m∈Z
|(Kϕ εmεm+1

∗ (f2HnΓ))(x)− (Kϕ εmεm+1
∗ (f2HnΓ))(zD)|ρ.

Given x ∈ Γ∩D, let {εm}m∈Z be a decreasing sequence of positive numbers (which depends
on x) such that∣∣(Vρ ◦ T HnΓϕ )f2(x)− c

∣∣ρ ≤ 2
∑
m∈Z
|(Kϕ εmεm+1

∗ (f2HnΓ))(x)− (Kϕ εmεm+1
∗ (f2HnΓ))(zD)|ρ.

Notice that |(Kϕ εmεm+1
∗ (f2HnΓ))(x) − (Kϕ εmεm+1

∗ (f2HnΓ))(zD)| ≤ ‖f‖L∞(HnΓ)(Θ1m + Θ2m),

where Θ1m and Θ2m are as in (6.10) but replacing µ by HnΓ. It is straightforward to check
that the arguments and computations given in subsection 6.2 to estimate the two terms in
(6.10) (see (6.11), (6.12), and (6.13)) still hold if we replace µ by HnΓ. Therefore, we have∑

m∈Z=S∪L
(Θ1m + Θ2m)ρ . 1,

which impies that
∣∣(Vρ ◦ T HnΓϕ )f2(x)− c

∣∣ . ‖f‖L∞(HnΓ) and, by integrating in D, gives (7.5).

7.3. The operator Vρ ◦ T
HnΓ
ϕ : Lp(HnΓ) → Lp(HnΓ) is bounded for all 1 < p < ∞. Since

Vρ ◦ T
HnΓ
ϕ is sublinear, the Lp boundedness follows by applying the results of subsection 7.1

and subsection 7.2, and the interpolation theorem between the pairs (H1(HnΓ), L1(HnΓ)) and
(L∞(HnΓ), BMO(HnΓ)) in [Ju, page 43].

Given a v-cube Q ⊂ Rd, set mQ(f) := HnΓ(Q)−1
∫
Q f dH

n
Γ, and let M denote the Hardy-

Littlewood maximal operator with respect to Γ, i.e. for x ∈ Γ, M(f)(x) := supmQ(|f |),
where the supremum is taken over all v-cubes Q ⊂ Rd containing x ∈ Γ. Let M ] be the
sharp maximal operator defined by M ](f)(x) := supmQ(|f −mQ(f)|), where the supremum

is also taken over all v-cubes Q ⊂ Rd containing x ∈ Γ.
One comment about the interpolation theorem in [Ju, page 43] is in order. Given an

operator F bounded form H1 to L1 and from L∞ to BMO, in the proof of the interpolation
theorem applied to F , one uses that M ] ◦F is sublinear (i.e. (M ] ◦F )(f + g) ≤ (M ] ◦F )f +
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(M ] ◦F )g for all functions f, g). This is the case when F is linear. However, Vρ ◦ T
HnΓ
ϕ is not

linear, and then it is not clear if M ] ◦ Vρ ◦ T
HnΓ
ϕ is sublinear. Nevertheless, this problem can

be fixed easily using that Vρ ◦ T
HnΓ
ϕ is sublinear and positive (that is (Vρ ◦ T

HnΓ
ϕ )f(x) ≥ 0 for

all f and x), as the following lemma shows.

Lemma 7.2. Let F : L1
loc(HnΓ) → L1

loc(HnΓ) be a positive and sublinear operator. Then

(M ] ◦ F )(f + g) . (M ◦ F )f + (M ] ◦ F )g for all functions f, g.

Proof. If F is sublinear and positive, one has that |F (f)(x) − F (g)(x)| ≤ F (f − g)(x) for
all functions f, g ∈ L1

loc(HnΓ). In particular, |F (f + g)(x) − F (g)(x)| ≤ F (f)(x). Then, for
x, y ∈ Q ∩ Γ,

|F (f + g)(y)−mQ(Fg)| ≤ |F (f + g)(y)− Fg(y)|+ |Fg(y)−mQ(Fg)|
≤ |Ff(y)|+ |Fg(y)−mQ(Fg)|.

Hence, mQ|F (f+g)−mQ(Fg)| ≤ mQ|Ff |+mQ|Fg−mQ(Fg)| ≤ (M ◦F )f(x)+(M ]◦F )g(x)

and, by taking the supremum over all possible v-cubes Q 3 x, we conclude (M ] ◦ F )(f +
g)(x) . (M ◦ F )f(x) + (M ] ◦ F )g(x). �

By using Lemma 7.2 and the fact that ‖Mf‖Lp(HnΓ) . ‖M ]f‖Lp(HnΓ) for f ∈ Lp0(HnΓ) ∩
Lp(HnΓ) and 1 ≤ p0 ≤ p < ∞, one can reprove Journé’s interpolation theorem applied to

Vρ ◦ T
HnΓ
ϕ with minor modifications in the original proof.

7.4. The operator Vρ ◦ T
HnΓ
ϕ : L1(HnΓ) → L1,∞(HnΓ) is bounded. By adapting [CJRW2,

Theorem B] to our setting and using the smoothnes of the family ϕ, one can show that the

L2(HnΓ) boundedness of Vρ ◦ T
HnΓ
ϕ yields the boundedness of this operator from L1(HnΓ) to

L1,∞(HnΓ). The interested reader may see [MT], where a more general result is proved.

References

[AJS] M. Akcoglu, R. L. Jones, and P. Schwartz, Variation in probability, ergodic theory and analysis,
Illinois J. of Math, 42 (1998), 154–177.

[Bo] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Etudes Sci. Publ. Math.
69 (1989), 5–45.

[Ca] A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci.
U.S.A 74 (1977), 1324–1327.

[CJRW1] J. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for the Hilbert
transform, Duke Math. J. 105 (2000), 59–83.

[CJRW2] J. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for singular
integrals in higher dimensions, Trans. Amer. Math. Soc. 35 (2003), 2115–2137.

[CMM] R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L2
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