VARIATION AND OSCILLATION FOR
SINGULAR INTEGRALS WITH ODD KERNEL
ON LIPSCHITZ GRAPHS
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ABSTRACT. We prove that, for p > 2, the p-variation and oscillation for the smooth trunca-
tions of the Cauchy transform on Lipschitz graphs are bounded in L? for 1 < p < co. The
analogous result holds for the n-dimensional Riesz transform on n-dimensional Lipschitz
graphs, as well as for other singular integral operators with odd kernel. In particular, our
results strengthen the classical theorem on the L? boundedness of the Cauchy transform on
Lipschitz graphs by Coifman, McIntosh, and Meyer.

1. INTRODUCTION

The p-variation and oscillation for martingales and some families of operators have been
studied in many recent papers on probability, ergodic theory, and harmonic analysis (see [Lé],
[Bo], [JKRW], [CJRW1], and [JSW], for example). The purpose of this paper is to establish
some new results concerning the p-variation and oscillation for families of singular integral
operators defined on Lipschitz graphs. In particular, our results include the LP boundedness
of the p-variation and the oscillation for the smooth truncations of the Cauchy transform
and the n-dimensional Riesz transform on Lipschitz graphs, for 1 < p < co and p > 2.

Given a Borel measure 4 in R?, one defines the n-dimensional Riesz transform of a function
f € L*(u) by R*f(z) = limeo R f(x) (whenever the limit exists), where

T —y
R f(x) = /|x—y|>e [z —g|n 1 f(y) du(y), z € R

When d = 2 (i.e., u is a Borel measure in C), one defines the Cauchy transform of f € L' ()
by CHf(z) = lime o C¥ f(z) (whenever the limit exists), where

crrm=[  TPaw, wec

To avoid the problem of existence of the preceding limits, it is useful to consider the maximal
operators RYf(z) = sup,o [RY f(2)] and CL f(x) = sup,sq |C* ()]

The Cauchy and Riesz transforms are two very important examples of singular integral
operators with a Calderén-Zygmund kernel. The kernels K : R?\ {0} — R that we consider
in this paper satisfy

o c c

(1.1) |K(x)] < |0, K (x)] < P and |0,:0, K(x)| < EEck
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forall1 <i,j <dandx = (2!,...,2%) € R¥\ {0}, where 0 < n < d is some integer and C' > 0
is some constant; and moreover K(—xz) = —K(x) for all  # 0 (i.e. K is odd). Notice that
the n-dimensional Riesz transform corresponds to the vector kernel (z!,... 29)/|z[**!, and
the Cauchy transform to (2!, —2?)/|z|? (so, we may consider K to be any scalar component
of these vector kernels).

Given an odd kernel K satisfying (1.1) and a finite Borel measure u in R%, for each ¢ > 0,
we consider the e-truncated operator

T.p(w) = /| K@),z
r—y|>€

and then we set T'u(x) = lime o Tep(z) whenever the limit makes sense, and Tiu(z) =
sup.sq |Tep(z)|. Finally, given f € L'(u), we define T! f(x) = T.(fu)(z), THf(x) =
T(fp)(x) and T f(x) := Tu(fu)(x). Thus, for a suitable choice of K, the operator T*
coincides with the Cauchy or Riesz transforms.

Besides the operator T, defined above, one can consider another e-truncated variant that
we proceed to define. First we need some additional notation. Given x = (z!, ... ,ﬂsd) € R4,
we use the notation 7 := (z!,...,2") € R™. Let pg : [0,00) — [0,00) be a non decreasing
C? function such that X[3y/m,00) < PR < X[2.1y/m,00) (the numbers 3y/n and 2.1y/n are chosen
just for definiteness and they are not important). Given ¢ > 0 and = € R?, we denote

pe(x) = er(|z]/€) and ¢ = {pctes0.

Given K as above, z € R%, 0 < ¢, and a finite Borel measure p, we set
(Kor n)(@)i= [ oo~ y)K(w — 9) duty).

We also denote (K¢ * u)(z) := {(Kpe * 1)(z)}eso. Finally, given f € L!'(u), we define
T f(x) == (Kpe * (fu)(x), TE f(x) = limeo Th, f(z) (whenever the limit makes sense),
TH F(2) 1= sup,og [T f(2)], and T F(z) i= {TE F(2) }eso.

Let Z be a subset of R (in this paper, we will always have Z = (0,00) or Z = Z), and let
F :={F.}ecr be a family of functions defined on R?. Given p > 0, the p-variation of F at
z € R? is defined by

1/p
Vo(F)(x) = sup ( S |Fops () — Fo, <x>rﬂ> ,

{em} meZ

where the pointwise supremum is taken over all decreasing sequences {€,,}mez C Z. Fix a
decreasing sequence {ry, }mez C Z. The oscillation of F at x € R is defined by

1/2
OF)(x) == sup <Z|Fem<x>—F5m<x>|2> 7

{em b om} \ S,

where the pointwise supremum is taken over all sequences {€,, }mez C Z and {0y }mez C Z
such that 11 < € < 6y < 1y, for all m € Z.

In this paper we are interested in studying the p-variation and oscillation for the family
TE f. That is, we will deal with

(Vo o T () := V,o(TZ ) () = VoK@ (fu))(x)  and
(O oTZ)f(x) = O(TZ[)(x) = O(Kp* (fr)) (@),

for a Borel measure p and f € L'(u). Although it is not clear from the definitions, these
operators are pg-measurable (see [CJRW1], [JSW]).
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Given E C R? we denote by H’% the n-dimensional Hausdorff measure restricted to E.
Let I' := {x € R? : z = (7, A(F))} be the graph of a Lipschitz function A : R* — R
with Lipschitz constant Lip(A4). Let H'(HE) and BMO(HZ) be the (atomic) Hardy space
and the space of functions with bounded mean oscillation, respectively, with respect to the
measure Hp. The following is our main result.

Theorem 1.1. Let p > 2, let K be a kernel satisfying (1.1), and set v := H{t. The operators
V,0Ts and O o TE are bounded

e in LP(u) for 1 <p < oo,

o from H'(u) to L'(p),

o from L'(p) to LY (i), and

e from L*°(u) to BMO(pu).

In all the cases above, the norm of O o T4 is bounded independently of the sequence that

defines O.

Let us recall that the L?(H1) boundedness of the Cauchy transform on Lipschitz graphs
I’ C C with slope small enough was proved by A. P. Calderén in his celebrated paper [Ca].
The L? boundedness on Lipschitz graphs in full generality was proved later on by R. Coifman,
A. McIntosh, and Y. Meyer [CMM].

Consider the Cauchy kernel K(z) = 1/z (2 € C), and set p := Hi, so C¥ = T!. By
standard Calderén-Zygmund theory (namely, Cotlar’s inequality), the L?(z) boundedness of
the Cauchy transform C* is equivalent to the L?(u) boundedness of the maximal operator
C¥. Let M* denote the Hardy-Littlewood maximal operator with respect to the measure
. It is easy to check that, for f € L'(u) with compact support, there exists some constant
Coy > 0 such that

Ceé'f(x) < T f(x) + CoM” f(x) < (Vp o TL) f(x) + CoM" f(x)

for all € > 0, thus (V, o T%') + CoM* controls the maximal operator C4 and, in this sense,
Theorem 1.1 (together with the known LP(u) boundedness of M*) strengthens the results
of [Ca] and [CMM]. Analogous conclusions hold for the n-dimensional Riesz transform and
the maximal operator RY.

The operator V, o T}' is also related to an important open problem posed by G. David
and S. Semmes which actually is our main motivation to prove Theorem 1.1. We need some
definitions to state it.

Recall that a measure p is said to be n-dimensional Ahlfors-David regular, or simply
AD regular, if there exists some constant C' such that C~'" < p(B(x,r)) < Cr" for all
x € suppp and 0 < r < diam(supppu). It is not difficult to see that such a measure p must be
of the form p1 = h'Hg,,p,,, where h is some positive function bounded above and away from
zero. A Borel set E C R? is called AD regular if the measure H% is AD regular. One says
that p is uniformly n-rectifiable, or simply uniformly rectifiable, if there exist 8§, M > 0 so
that, for each x € suppy and R > 0, there is a Lipschitz mapping g from the n-dimensional
ball B"(0,R) C R" into R? such that Lip(g) < M and p(B(z, R) N g(B"(0,R))) > 6R",
where Lip(g) stands for the Lipschitz constant of g. In the language of [DS2], this means that
suppp has big pieces of Lipschitz images of R™. A Borel set E C R? is called uniformly n-
rectifiable if H%, is n-uniformly rectifiable. Of course, the n-dimensional graph of a Lipschitz
function is uniformly n-rectifiable.

David and Semmes asked the following question, which is still open (see [Pa, Chapter 7]):

Problem 1.2. Is it true that an n-dimensional AD regular measure p is n-uniformly recti-
fiable if and only if RY is bounded in L*(u)?
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It is proved in [DS1] that if p is uniformly rectifiable, then RY is bounded in L?(u).
However, the converse implication has been proved only in the case n = 1 and d = 2, by
P. Mattila, M. Melnikov and J. Verdera [MMV], using the notion of curvature of measures
(which seems to be useful only in this case).

Set R* := {RE'}c~0. By combining some techniques from [DS2] and [To], in our forthcom-
ing paper [MT] we show that the L?(x) boundedness of V, o R* implies that p is uniformly
n-rectifiable. Moreover, we also prove that 1, o R* is bounded in L?*(u) for all AD regular
uniformly n-rectifiable measures pu. So we obtain the following theorem, which might be
considered as a first approach to a possible solution of Problem 1.2:

Theorem 1.3. Let p > 2. An n-dimensional AD regular measure u is uniformly n-rectifiable
if and only if V, o R is a bounded operator in L*(y).

An essential ingredient for the proof of this result is Theorem 1.1 above. The arguments
and techniques used to derive the L? boundedness of V,0R* on uniformly rectifiable measures
from the L? boundedness of Vo R on Lipschitz graphs are quite delicate (R is defined as
R* but using the family ¢ for the truncations). In particular, they involve the corona type
decomposition introduced in [DS1]. For this reason, the proof of the preceding theorem is
out of the scope of this paper and will appear in [MT].

Concerning the background on the p-variation and oscillation, a fundamental result is
Lépingle’s inequality [Lé], from which the LP boundedness of the p-variation and oscillation
for martingales follows, for p > 2 and 1 < p < oo (see Theorem 2.4 below for more details).
From this result on martingales, one deduces that the p-variation and oscillation are also
bounded in L? for the averaging operators (also called differentiation operators, see [JKRW]):

1

(1.2) Dcf(z) = B9 Jowa

fly)dy, zeR

As far as we know, the first work dealing with the p-variation and oscillation for singular in-
tegral operators is the one of J. Campbell, R. L. Jones, K. Reinhold and M. Wierdl [CJRW1],
where the LP and weak L' boundedness of the p-variation (for p > 2) and oscillation for the
Hilbert transform was proved. Recall that, for f € LP(R) and x € R,

Hof(z) = - / L rway,

T Jjzg—y|>e T — Y

and then the Hilbert transform of f is defined by H f(z) = lim¢,o Hcf(x), whenever the
limit exists. Later on, there appeared other papers showing the LP boundedness of the p-
variation and oscillation for singular integrals in R? ([CJRW2]), with weights ([GT]), or for
other operators such as the spherical averaging operator or singular integral operators on
parabolas ([JSW]). Finally, we remark that, very recently, the case of the Carleson operator
has been considered too ([LT], [OSTTW]).

Notice that the Hilbert transform is one of the simplest examples where Theorem 1.1
applies (one sets I' = R, i.e. A =0), and so one obtains a new proof of the LP boundedness
of the p-variation and oscillation for the Hilbert transform. In the original proof in [CJRW1],
a key ingredient was the following classical identity, which follows via the Fourier transform:

(1.3) Q.= P.xH,

where P, is the Poisson kernel and @, is the conjugated Poisson kernel. Using this identity
and the close relationship between the operators Q. and H., Campbell et al. derived the
LP boundedness of the p-variation and oscillation for the Hilbert transform from the one of
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the family {D.(H f)}e>0, where D, is the averaging operator in (1.2) (notice that P. can be
written as a convex combination of operators Ds, § > 0).

In most of the previous results concerning p-variation and oscillation of families of oper-
ators from harmonic analysis, the Fourier transform is a fundamental tool. However, this is
not useful in order to prove Theorem 1.1, since the graph I' is not invariant under translations
in general. Moreover, even for the Cauchy transform, there is no formula like (1.3), which
relates the truncations of a singular integral operator with an averaging operator applied to
a singular integral operator, when I' is a general Lipschitz graph.

The main ingredients of our proof of Theorem 1.1 are the known results on the p-variation
and oscillation for martingales (Lépingle’s inequality [Lé]) and a multiscale analysis which
stems from the geometric proof of the L? boundedness of the Cauchy transform on Lipschitz
graphs by P. W. Jones [Jnl] and his celebrated work [Jn2] on quantitative rectifiability in
the plane, using the so called  coefficients. Some of the techniques in these papers were
further developed in higher dimensions by David and Semmes [DS1] for Ahlfors-David regular
sets. More recently, in [To] some coefficients denoted by «, in the spirit of the Jones’ f’s,
were introduced, and they were shown to be useful for the study of the LP-boundedness of
Calderén-Zygmund operators on Lipschitz graphs and on uniformly rectifiable sets (see the
definition below Theorem 1.4). In our paper, the o and § coefficients play a fundamental
role.

Let us remark that Lépingle’s inequality, which asserts the LP boundedness of the p-
variation of martingales, fails if one assumes p < 2 (see [Qi] and [JW], for example). More-
over, this fact can be brought to the p-variation of averaging operators and singular integral
operators, thus it is essential to assume p > 2 in Theorem 1.1. Analogous conclusions hold
if one replaces the £2-norm by and ¢’-norm with p < 2 in the definition of O. See [CJRW1],
or [AJS] for the case of martingales.

Concerning the direct applications of Theorem 1.1, it is easily seen that the LP bound-
edness of V, o 7} yields a new proof of the existence of the principal values T0 f(z) :=
lime_,0 75, f(x) for all f € LP(u) and almost all x € T', without using a dense class of func-
tions in LP(u) as in the classical proof. Moreover, from Theorem 1.1 one also gets some
information on the speed of convergence. In fact, a classical result derived from variational
inequalities is the boundedness of the A-jump operator Ny o T4 and the (a,b)-upcrossings
operator N2 o T}'. Given A > 0, f € Li (1) and x € R%, one defines (N, o 72') f(x) as the
supremmum of all integers N for which there exists 0 < €1 < d;1 < €2 <y < -+ < eny <Oy
so that

T8 f(@) — T8 f(@)] > A
for eachi = 1,..., N. Similarly, given a < b, one defines (N2 oT%) f(z) to be the supremmum
of all integers N for which there exists 0 < ¢ < §1 < €3 < 09 < --- < ey < Oy so that

Tp., f(x) < a and T, f(x) > b for each i = 1,..., N. Using Theorem 1.1 one obtains (by
the same arguments as in [CJRW1, Theorem 1.3 and Corollary 7.1]) the following:

Theorem 1.4. Let p > 2, A > 0, and let K, and p be as in Theorem 1.1. For 1 < p < oo,
there exist constants C1 and Co depending on p, n, d, K, and Lip(A) (and on p for the case
of C1) such that

1 C
1((Nx 0 T2 oy < S IFllingey and

C
pl{z €T = (Nao T f () > m}) < 2 11110
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Trivially, (N% o T5)f < (Np_q o T£)f, thus Theorem 1.4 also holds replacing A by b — a
and Ny by N2. In [JSW] it is shown that the results of Theorem 1.4 still hold when p = 2
for the particular case of the Hilbert transform. In our paper we do not pursue this endpoint
result.

2. PRELIMINARIES

Throughout all the paper, n and d are two fixed integers such that 0 < n < d. Given a
point z = (z',...,2%) € R, we use the notation Z := (z',...,2") € R". Given a function
f:R™ — R, we denote by Vf its gradient (when it makes sense), and by V2f the matrix of
second derivatives of f. If f depends on different points =1, z2,... € R™, then V,, f denotes
the gradient of f with respect to the xz; variable, and analogously for V%i f-

For two sets Fi, F» C R, we denote by disty (F, F,) the Hausdorff distance between Fy
and F». We denote by L£" the Lebesgue measure on R", and for the sake of simplicity, we
set || - [|p == |- [|Lp(cny for 1 < p < oo, and dy := dL"(y) for y € R™.

In the paper, when we refer to the angle between two affine n-planes in R?, we mean the
angle between the n-dimensional subspaces associated to the n-planes. As usual, the letter
‘C” stands for some constant which may change its value at different occurrences, and which
quite often only depends on n and d. The notation A < B (A 2, B) means that there is some
fixed constant C' such that A < CB (A > CB), with C as above. Also, A ~ B is equivalent
to A< B <A

2.1. More about the family ¢. Given z € R, 0 < € < §, and a finite Borel measure p,
we set () 1= pc(x) — ps(x) and we define

(Ko 5 1) (x) = / o — 9K (@ - y) du(y),

thus (Ko # 1)(2) = (Koo » 1)(2) — (K5 * 1) ).

For m € N, x € R™, and R > r > 0, we denote by B™(x,r) the closed ball of R™ with
center z and radius r, and by A™(x,r, R) the closed annulus of R centered at x with inner
radius r and outer radius R. We also use the notation B(z,r) and A(z,r, R) when there is
no possible confusion about m.

Each function ¢? is non negative, and suppp? C A™(0,2.1ey/n, 36/n) x R C Re
Moreover, EjeZ @22:;,1(33) =1 for ¥ # 0, and there are at most two terms that do not

vanish in the previous sum for a given x € R,

2.2. The « and f coefficients. Special dyadic lattice. Given m € N, A > 0, and a cube
Q CR™ (ie. Q:=10,b)"+ a with a € R™ and b > 0), £(Q) denotes the side length of @Q,
zq denotes the center of ) and AQ denotes the cube with center zg and side length AM(Q).
Throughout the paper, we will only use cubes with sides parallel to the axes.

Let i be a locally finite Borel measure on R%. Given 1 < p < oo and a cube Q C R%, one
sets (see [DS2])

(2.1 @ =igt{ s | Q<W>pdu(y)}l/p,

where the infimum is taken over all n-planes L in R%. For p = oo one replaces the LP norm
by the supremum norm:

. dist(y,L)}
| N — inf o) [
(2.2) Booun(Q) = in {yesusplﬁﬁmm UQ)
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where the infimum is taken over all n-planes L in R¢ again. These coefficients were introduced
by P. W. Jones in [Jnl] for p = co and by G. David and S. Semmes in [DS1] for 1 < p < co.

Let F C R? be the closure of an open set. Given two finite Borel measures o, v on R%,
one sets

(2.3) distp(o,v) := sup{‘ffda— ffdv‘ : Lip(f) <1, suppf C F}

It is easy to check that this is a distance in the space of finite Borel measures ¢ such that
suppo C F and ¢(0F) = 0. Moreover, it turns out that this distance is a variant of the well
known Wasserstein distance W; from optimal transportation (see [Vi, Chapter 1]). See [Ma,
Chapter 14] for other properties of distp.

Given a cube @ which intersects suppy, consider the closed ball Bg = B(zg, 6/(Q)).
Then one defines (see [Tol)

1 . . n
(2.4) a,(Q) = inf distp, (1, cH),

2Q)"t e>o,L
where the infimum is taken over all constants ¢ > 0 and all n-planes L in R%. For convenience,
if @ does not intersect suppu, we set ozZ(Q) = (0. To simplify notation, sometimes we will
write o, (Q) or a(Q) instead of aj;(Q) (and analogously for the §’s).

The following result characterizes uniform rectifiability in terms of the o and S coeflicients.

Theorem 2.1. Let p be an n-dimensional AD regular measure on R%, and consider any
p € [1,2]. Then, the following are equivalent:

(a) p is uniformly n-rectifiable.
(b) For any cube R C RY,

(2.5) Y Bu@PUQ)" < CUR)"

QEDRd (R)

with C independent of R, where Dga(R) stands for the collection of cubes of R?
contained in R which are obtained by splitting R dyadically.
(c) There exists C > 0 such that, for any cube R C R?,

(2.6) Y au@UQ)" < CUR)™

QEDRd (R)

The equivalence (a)<=>(b) in Theorem 2.1 was proved by G. David and S. Semmes in
[DS1], and the equivalence (a)<=-(c) was proved by X. Tolsa in [To].

In this paper we will use a slightly different definition of the o and 5 coefficients adapted
to the n-uniformly rectifiable measure u = fH%, where I' := {z € R? : z = (7, A(Z))} is
the n-dimensional graph of a given Lipschitz function A : R® — R4 and f € L>®(H})
satisfies f(z) ~ 1 for almost all x € I'. To this end, we need to introduce a special dyadic
lattice of sets related to I'. Given a cube Q@ C R™ (ie. Q := [0,b)" + a with a € R"
and b > 0), we define Q := Q x R, This type of set will be called v-cube (“vertical”
cube). We denote by K(Q) and Zg the side length and center of Q, respectively, and given
A >0 we set AQ := )\Q x R4, Let D denote the standard dyadic lattice of R™, and set
D ={Q: Q € D} It is easy to check that the v-cubes of D intersected with I' provide a
dyadic lattice associated to the graph I" in the sense of [Da, Appendix 1]. Finally, for m € Z,
set Dy, :={Q €D: ¢Q)=2"}.

Fix a constant Cr > 104/n(1+ Lip(A)) (the precise value of Cr will not be relevant in the
proofs given in the paper). Given 1 < p < 0o and a v-cube @ C RY, we define the coefficient
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Bp,u(Q) as in (2.1) and (2.2) but replacing 2Q) by Cr@Q. We also define a,(Q) as in (2.4) but
taking Bg := B(Zg, Crl(Q)) x R4=" c R?. This new definition of the a and 3 coefficients
(adapted to the graph I') is the one that we will use in the whole paper.

Remark 2.2. It is an exercise to check that, with this new definition of the «a’s and f’s,
inequalities (2.5) and (2.6) of Theorem 2.1 still hold. Moreover, the following is an easy
consequence of (2.5) and (2.6): Let I' be an n-dimensional Lipschitz graph, f € L*(H{)
such that f(x) =~ 1 for almost all x € T', and pp = fHE. Let 1 < p < 2. Given Cq,C,C3 > 1,
there exists a constant Cyq > 0 such that, for any R € D,

Z (/Bp,u(C2Q)2 + au(C3Q)2) M(Q) < C4M(R)v

QeD:QCC1R

and the dependence of Cy with respect to I' is only on Lip(A).

Remark 2.3. It is shown in [To, Lemma 3.2], that (1 ,(Q) S «,(Q) for all @ € D. Given
Q € D, let Lg be a minimizing n-plane for o, (Q). In general, S ,(Q) can not be controlled
by f1,.(Q), so given x € suppp N Cr@Q, we can not control dist(z, Lg) by means of o, (Q).
But it is shown in [To, Lemma 5.2] that dist(z,Lq) < D> rep.rerco @u(R)U(R), and in
particular, if P € D is such that P C @ and z € suppuNCrP, and Lp denotes a minimizing
n-plane for a,,(P), one has (see [To, Remark 5.3])

(2.7) dist(z, Lo) S dist(x,Lp) + > au(R)(R).
ReD: PCRCQ

2.3. Martingales. First of all, let us recall a particular case of Lépingle’s inequality (see
[JSW], or [Lé] and [JKRW, Theorem 6.4] for martingales in a probability space):

Theorem 2.4. Let (X,3,\) be a o-finite measure space and p > 2. Then, there exist
constants C1,Cy > 0 such that, for every martingale G := {Gp }mez € L*()),

IVe(Dlr2y < CrllGllrzny  and  |O(G)[lL2n) < CallGllL2(n),

where |G| L2(n) = SUPpez |GmllL2(n)- The constants C1 and Ca do not depend on the mea-
sure A, and Cy neither depends on the fixed sequence that defines O.

To prove Theorem 1.1, we need to introduce a particular martingale, and to review some
known results.

Lemma 2.5. Fiz a cube P C R® (not necessarily dyadic) and a Lipschitz graph T' := {x €
R? : = (Z,A(Z))} such that suppA C P. Consider the measure pi := fHE, where f(x) =1
forallT € P¢ and C’gl < f(z) < Cy forall T € P, for some fixed constant Cy > 0. Also set
P:=P x Ré™, Then, the following hold:

(28)  Tup € Lipe(n),  Tu(xmp) € Line(p) for every compact set E C R?, and
(2.9) 1Tl L2 S w(P)Y2.

Remark 2.6. To avoid the problem of non-integrability near infinity, for this type of measures
p we redefine Topu(x) = limas o0 [ X (e, (|2 — y) K ( — y) du(y), which exists because p is
flat outside a compact set and K is odd. All the results in this paper remain valid with this
new definition and the adjustments that have to be done in the proofs are minimal.

In this paper, we will deal with other integrals which concern the kernel K and the measure
1 near infinity. The non-integrability problem can be avoided in the same manner.
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Proof of Lemma 2.5. Tt is known that the operator T%' is bounded in L?(u), because T is the
maximal operator associated to a Calderén-Zygmund singular integral and p is a uniformly
rectifiable measure (see [DS1]). Thus, Ty (xgu) = T¢(xE) € Lj,.(1) for every compact set
E CR<

We are going to check that |Tipllr2 S p(P)Y/2. This will imply that Tup € L} (1)
and, since T exists (because p is uniformly rectifiable) and |T'u| < Tiu, we will also obtain
Tl 2 < 1(P)'/2; so the lemma will be proved.

Using that TY' is bounded in L?(u1), we have
| Teptll z2(uy) < N (xspi) | 220y + 1T apye i) | 22
S (P2 + T pyer) L2 g)-
Set L := R x {0}4™" c R, obviously ypep = HJ\ p- Since L is an n-plane and K is odd,
T\ H} (x) =0 for all x € L. Thus,
(2.11) | T T spllzzam) S NITHL 2oy + I T HLmspll L2 S u(P)M2.

(2.10)

Set zp := (p,0,...,0) € L (recall that Zp denotes the center of P) and y.(z) :=
X(e,00)(|2]). Tt is obvious that [ xc(zp — y)K(zp — y) dHF\3p(y) = 0 for all € > 0. Thus,
given x € suppu N P,

(K s M) @) < [ o =)l (= 9) = K(op = )] M (0)

+ / xe@ = ) = xelzp — DI (2p — )| dH] 40 (o).

Since I' is a Lipschitz graph, |z — zp| S ¢(P). So, the first term on right hand side of the
previous inequality is easily bounded by an absolute constant independent of €, by standard
arguments. For the second term, notice that supp(xe(z —-) — xc(zp —-)) N (L \ 3P) = 0 for
all e < ¢(P), and H7 ({y € R" : xc(z —y) — xe(zp — y) # 0}) S €(P)e"! for all € > ¢(P).
Therefore, since |zp — y| = € for all y € supp(xe(z —-) — xe(zp —-)) N (L \ 3P), the second
term can also be estimated by an absolute constant. Thus, we conclude T; *’HZ\?’P(:J:) =

SUP,sq | (K xe * ’H’E\SP)(@")\ < 1 for all x € suppu N P.
Using the previous observations and (2.11), we have
ITe (X)) 172 = ITHE P22 00 p0) + ITHE 3P 1220 pep)
< N THI\sp I 2 + ”T*HZ\:&P”%%H@ S u(P),
which, combined with (2.10), gives || Tup r2() S ((P)'/2, as desired. O
We are ready to define the martingale. Let P and g be as in Lemma 2.5. Given m € Z

and a € R", we set
D% :=a+[0,27")" CR" and D2 :=D% xR*™cR%
Set D2 := {D%2""F c R? : k € Z"} (notice that DS coincides with D,, translated by

a parameter a € R" and, for a fixed a, |J,,cz D)% is a translation of the standard dyadic

lattice). Notice that pu(D2) ~ 2™ for all m € Z, a € R". For D € D}, and = € D, we set
1
Epn(e) = [ [ K= ) duty) dut2)
u(D) Jp Jpe

(take into account Remark 2.6 for the meaning of [,,. K(z — y) du(y)). Finally, for x € R?,
we define the martingale E pu(x) := > pepa Xp(2)Epp(x), m € Z.
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Let us make some comments to understand better the nature of E2 . First of all notice
that, since p(9D) = 0, for any D € D% and p-almost all z € D we have

(2.12) . K(z —y)du(y) = gg% xe(z —y) K (2 —y) du(y),

and for any ¢ > 0, we have

(2.13) /D /D xelz = 9)K (2 — ) du(y) dp(z) = 0

because of the antisymmetry of K. Therefore, by (2.12), (2.13), (2.8), and the dominated
convergence theorem, [, |[p. K(z —y) du(y)|du(z) < oo (in particular, we have seen that
Ef s well defined) and [, T(xpp) dp = 0. Using this and (2.12), we finally have that

N !
(2.14) Efnu(z) = M(D)/DT(XDCM) dp = M(D)/DTudu

forz € D € D2, thus E% u(x) is the average of the function 7w on the v-cube D € D2 which
contains z. So, it is completely clear that, for a fixed a € R", {E% u}mez is a martingale. In
[MV] it is shown that { E2 u}mez is well defined and it is a martingale without the assumption
of the existence of T'u (i.e., for more general measures p).

Now, we can use (2.14), the L? boundedness of the dyadic maximal operator and (2.9) to
deduce that

(2.15) 1B mll 20 S ITull 20 S w(P)?
for all @ € R™ and m € Z, where the constants that appear in the previous inequalities only
depend on Cp, n, d and Lip(A).

Set E%u := {E%u}mez. Then, the martingale F%u belongs to L?(u) by (2.15); thus by
Theorem 2.4, for all a € R”,

IVo(E ) 200y S 1B pill 2 S w(P)Y? for p > 2,
IOE ) 12 S 1B 1l 20 S u(P)H2,

where the constants in the previous inequalities only depend on Cy, n, d, and Lip(A) (and
on p, in the case of V,).
Finally, for « € R%, we define

Enp(z) = 2m"/ Elu(z)da
{a:zeDg2}
(notice that £"({a : x € D}}) = 27™"). Thus, E,u is an average (of the m’th term) of
some martingales depending on a parameter a € R".

Set Ep = {Epnp}tmez. We want to obtain estimates like (2.16) for V,(Eu) and O(Ep).
We will only show the details for V,(Epu), because the case of O(Epu) follows by similar
arguments.

One can easily check that E,u(r) = 2M» f[O,Z—M]" Efu(z)da for all m, M € Z with
M < m. Therefore, for all M,r,s € Z with M <r < s, we have

(2.17) Byp(a) = Bopla) =2V | (BEu(e)  Bi(w) da

(2.16)

Given M € Z, we consider the auxiliary transformation

1/p
V(B (@) = sup(ZwrmHu - rmu@:)rﬂ) ,

{rm} meZ
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where the pointwise supremum is taken over all decreasing sequences of integers {ry, }mez
such that r,, > M for all m € Z. With this definition it is obvious that the sequence

{Vom(Ep)(z)}mez is non increasing and V,(Ep)(z) = limpr——oo Vo m (Ep)(x) for all z €
R, Minkowski’s integral inequality and (2.17) yield the pointwise estimate

1/p
Vot (Ept) () = (Z Br, (@) — Ermmx)v))

{rm} 'rm>M meZ

1/p
<o [ s (X 1B o) - Bu@)?) o

2 {rm} N\ e,
= 2M”/ Vo(E*p)(z) da.
[O’Q—Zb[]n

Therefore, by the previous estimate, Minkowski’s integral inequality and (2.16),

[Vonr (Ep)l 2y < 2Mn /[0 . V(B )|l L2y da < Cu(P)'?,

)

where C' > 0 only depends on Cj, n, d, Lip(A), and p. By the monotone convergence
theorem, we conclude that [|[V,(Eu)|l2¢) < w(P )1/2. Thus we have proved the following
theorem (which can be considered the starting point to prove Theorem 1.1):

Theorem 2.7. Fiz a cube P C R". SetT := {z € R? : z = (%, A(Z))}, where A : R" —
R~ is a Lipschitz function supported in ﬁ, and set P := P x RT", Set w = fHE, where
flx)=1 forallx € P¢ and Co_l < f(x) < Cp forallx € P, for some constant Cy > 0.

Let p > 2. Then, there exist constants C1,Cy > 0 such that ||V, (Eu)| p2(, < Ciu(P)'/?
and ||O(Ew)||r2¢.) < Cop(P)Y?, where Cy and Cy only depend on Cy, n, d, and Lip(A) (and
on p in the case of C1).

We need to introduce additional notation in order to express E,,u in a more convenient
way for our purposes. Let i1, ..., uxr be a finite collection of positive Borel measures such that
w(D%)>0foralla e R, meZandl=1,...,k. Given m € Z and z1,...,2;,y1,...,Y; €
R?, we define

da
7777 L. ) - — onm
A#Ll Mk(xla'--,xzayla"'ay]) =2 /
{a L1, $1€Dm7y1

—
..... vi#D5} [l (D)
Then, by Fubini’s theorem,

Epl) = /{ e 5 ) / K =) duy) du(z)do

(2.18) = / / <2m" /{ i vt M(CS&DK (z —y) du(z) du(y)

- / A (2, 2 ) K (2 — ) dyu(2) dpu(y).

3. SKETCH OF THE PROOF OF THEOREM 1.1

The proof relies on two basic facts: the known L? boundedness of the p-variation and
oscillation of martingales explained in the previous section and the good geometric properties
of Lipschitz graphs from a measure-theoretic point of view.
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As we said above, the starting point of the proof is Theorem 2.7, where the L? boundedness
of the p-variation and oscillation (of a convex combination) of some particular martingales
is stated. So, the first step consists in relating the results on martingales in Theorem 2.7
with the p-variation and oscillation of singular integrals on Lipschitz graphs, and this is the
aim of the following two theorems:

Theorem 3.1. Let I' and p be as in Theorem 2.7. For each x € T', define

(3.1) Wa(2)? := Y [(Kpg-m % p)(x) = Empr(2)[.
meZ

Then, [|Wpl72( < C1 Ygep (@u(C2Q)? + B2,(Q)?) 1(Q), where C1,Cy > 0 depend only
on Cp, n, d, K, and Lip(A).

Theorem 3.2. Let I' and u be as in Theorem 2.7. For each x € I, define
(32) Su(x)” = sup > > (Ko, *p)(@)?,

{em} JEZ MEL: €m em+1€1;

where I; = [27971 277) and the supremum is taken over all decreasing sequences of positive

numbers {€m tmez. Then, HSMH%2(H) < CYgep (u(Q)? + B2.u(Q)* ) u(Q), where C > 0
only depends on Cy, n, d, K, and Lip(A).

Two fundamental tools to study Wy and Sp are the o and [ coefficients, which will be
used to measure the flatness of I' at different scales, in order to estimate the terms which
appear in the sums in (3.1) and (3.2). This will be done in sections 4 and 5. To use the «
coeflicients to relate the p-variation of martingales with the p-variation of singular integrals,
it is a key fact that we are considering a “smooth” family like ¢, because the o’s are defined
in terms of Lipschitz functions but 7T is defined by means of a rough truncation. Moreover,
we are taking a truncation only on the first n-coordinates because the average of martingales
that we are using is taken over the parameter a € R", using the v-cubes Dy, (see subsection
2.3).

Combining Theorem 3.1 and Theorem 3.2 with the L? estimates of the p-variation and
oscillation on the average of martlngales Ep in Theorem 2.7, we are able to obtain local

L? estimates of V, o 7}, " and Oo 7;, when I is any Lipschitz graph. More precisely, we
separate the sum in the definition of V, o EHF into two parts, which are classically called

short and long variation (and analogously for O o 7:0%?). The short variation corresponds to
the sum Sy in Theorem 3.2 (here 4 is a suitable modification of H}t), where the indices run
over m € Z such that both €,, and €,,+1 lie in the same dyadic interval, and can be handled
using the a’s and £’s. The long variation corresponds to the sum over the indices m € 7Z
such that €,, and €,,41 lie in different dyadic intervals, so one may assume that the €,,’s are
dyadic numbers. It is handled by comparing Kpy-m * u with E,, 1, and then using Theorem
3.1 and the fact the p-variation and oscillation of Eu are bounded in L?(p), by Theorem 2.7.
This will be done in section 6 (see Theorem 6.1).

Using the local L? estimates of Theorem 6.1, combined with rather standard techniques
in Calderén-Zygmund theory, in section 7 we obtain the H'(HZ) — L'(HPE) and L>®(HR) —

BMO(#{) boundedness of V, o 7:0%? and O o ﬁHF. Then, by interpolation, we obtain the
LP boundedness of these operators in the whole range 1 < p < oo, and in particular the L?
boundedness (see Theorem 7.1). Moreover, [CJRW2, Theorem B| can be adapted to prove
that the L?(H}) boundedness of V, o 7:07{? and Qo ’7;%? also yields the boundedness of these
operators from L'(H}) to LLO(HR).
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Let us stress that almost all the estimates in the proof of Theorem 1.1 (in particular, the
constants involved in the relationships <, 2 and ~) depend either on n, d, K or Lip(A), and

~) o~

possibly on other variables such as p or p.

4. PROOF OF THEOREM 3.1

In order to study the difference (K pg-m*pu)(z)— Enmnu(z), we are going to split Fy,u(z) into
two parts, the one we will compare with (K @q-m * p1)(z) (which corresponds to integrate, in
the definition of E,,u(x), over the points y € R? such that 2= < |z —7]), and the remaining
part. Then, we will estimate each part of (Kpg-m % pu)(x) — Enu(z) separately, using the
cancelation properties of the kernel K and the uniform rectifiability of pu.

Recall from (2.18) that E,u(z) = [[ Ah(z,z; y)K(z — y) du(z) du(y). Given € > 0, we
set v ;= 1 — ¢. Then,

//cpzmx— VAL (2, 25 ) K (2 — y) dp(2) dp(y)
//72 (e — g)AE (2, 25 9K (2 — ) du(2) da(y).

The first term in the previous sum is the one that we will compare with (K@o-m*u)(z). For
all a € R™ such that x € D2, we have supp @9-m(z—-)N D), = 0, and thus (K@g-m *u)(z) =
(K@g-m * (X(pa)e))(x). Hence, using Fubini’s theorem and the definition of A, (z,z; y),

(K gom % ) () = 2 / (K py-m * (X(psye1t)) () da
{a:zeDg}

_ g /{ oy MDA / (K@ * (X(pgyet)) (@) du(z) da

a
m

= // po-m(z —y)AL (2, 25 y) K (@ — y) du(z) du(y)-
We can decompose (K pg-—m * p)(x) — Epu(x) as
(Kppm * p)(2) = Emp(z)

- / / e (z — g (2,2 ) (K (& — ) — K (= — y)) dp(2) dpu(y)

1) ~ [[ @ = Az G ) ) duty)

=Y @) - Y 6

j<m JEZ
where
(4.2 0)i= [[ 03— 25 ) (K - )~ K = ) du(a) du(y),
(43 2)i= [ @30 = vhn(o = AR 23 DK~ v) duz) duty).
Fix a v-cube D € D,,, for some m € Z. In subsection 4.1 (see (4.18)) we will prove that

(4.4) ST IEMa (hs’tg((xD)LD) + ) EEQ; a(Q)

j<m QeD:DCQ
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for all z € DNT, where Lp denotes an n-plane that minimizes a(D), and in subsection 4.2
(see (4.37)) we will prove that there exists a constant Cj, > 1 such that

" /¢ Q)n+1
(45) Slep@lsa@n+ ¥ 20a@
JEZ QEeD:QCCyD
for all z € DNT. Assuming that these estimates hold, by (4.1),

Walay =S 3 / (K gy # 1)(@) — Enpa(2)]? dia(a)

meEZ DEDy,

< dist(z e @a 2 D
DZ;/( ) <>+£(Q§:€(Q) @) w(o)
(4.6) DcQ
n 1 2
+ 3" a(GyD)? )+Z< > é ,;1 )> (D)
DeD DeD QQCEC'Zb)D

=: Wip+ Wop + Wip + Wap.

If L1, and L% denote a minimizing n-plane for 81 (D) and Sa(D), respectively, one can show
that disty (LpNCrD, LhNCrD) < a(D)¢(D) and disty (LLNCrD, LANCrD) < Bo(D)4(D).
This easily implies that, for z € DNT, dist(x, Lp) < dist(z, L%) + B2(D)¢(D) + a(D)¢(D),

so Wip S 3 pep(a(D)? + B2(D)?)u(D).
By Cauchy-Schwarz inequality,

wae Sum ¥ Bhaer)( 3 10

DeD QeD: DCQ
(D) 2 2
<Y Y Tt Y @@
DeD QeD:DCQ
and also

o B N

DeD QeD:QCCyD QeD: QCCyD

SDINED DO ST S

DeD QeD: QCCyD QeD

~—

Therefore, using (4.6) and that a(Q) < a(CyQ@), we conclude that

W al3an S D (a(CQ)? + B2(Q)*)n(Q),

QeD

and the theorem follows. It only remains to prove (4.4) and (4.5).

4.1. Estimate of ), , F"(z) when z € DNTI for some D € D,,. Assume that = €
DNT for some D € D, and j < m. Let Lp be an n-plane that minimizes «(D) and let
op := cpH}  be a minimizing measure of a(D). Let Lf, be the n-plane parallel to Lp that

contains = and set o, 1= CD’H”%.



VARIATION FOR SINGULAR INTEGRALS ON LIPSCHITZ GRAPHS 15

Notice that, because of x € L%, the antisymmetry of cp%ff,lK , and since j < m (so, if

x€e D2 andyEs.upp@2 ia(z—-), theny ¢ D), we have

0= /¢§_J7_1(x - y)K(x —y)dop(y)

an =[P K -y deb)dop(e) da
- / / o2z — AT (2,2 ) K (z — y) doy (=) do¥ (y).

Given a € R™, let b := a + {27 1} € R" be the center of D. For u € R" we denote
|w]|co = max;—1__, |[u’|. Then, given t € RY, it is clear that ¢t € D2 if and only if ||f — bl <
27™. Using that o7, is a Hausdorff measure on an n-plane, that K is antisymmetric and
that 9022:37_1 is symmetric, one can show that

- I | 0311 (e~ YK (= — ) dop(y) doy(2) db
[Z—=blloo <27 J[[Z=blloo <27™ J[|g=bllcc>27"

By the change of variable b = a+ {27™71}" it is easy to see that this triple integral is equal

to f{a veDa }fDa f(Da <p2 p 1( —y)K(z — y) do},(y) do¥y(z) da. Thus, since of,(D2) does
not depend on a € R"” because aD is flat,

o | 57 ), / o2 (0 — YK (2 — y) dob(y) dop(z) da
{a IEDa a a c
-/ soQ:j_l(x — AT (2,25 9K (= — ) dob(2) dob(y).
y (4.7) and (4.8), we conclude that

(49) 0= / / o2 (AT (2,2 ) (K (2 — y) — K(z — y)) dob(2) do (y).

(4.8)

By definition, it is clear that Afnf’ (z,z;y) = AZP(z,z; y). Therefore, using (4.9), we can
decompose

(4.10) F'(x) = F17'(x) + F27'(x) + F3]'(z) + FAT'(x),

where

(411) F17(x //¢2 I (@ — )M (2,25 y)
(K(z —y) — K(2 —y))d(p — op)(2) du(y),
(412) F2l( //302 I (A (2,25 y)
(K(z —y) — K(2 —y)) dop(z) d(n — op)(y),
(113) P37 (@)= [ [ ed e - )W) = A7 (221)
(K(z —y) — K(z —y))dop(z) dop(y),
(414) FA"(z //@2]1:6— VASP (2,2 1)

(K(z —y) — K(z —y))d(op X op — 0p X 0D)(2,9)-
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In the next subsections we will prove the following estimates:
(4.15) |F17 ()| + |F3]"(z)| < 27 "a(D),
(4.16) |F2] ()| S 277 > a(Q),

QED: DCQ,H(Q)<277

m j—m dist(z, Lp)
(4.17) |F4T (x)] < 2 D)

Then, using (4.10), we will finally get that, for all D € D,,, and x € DNT,

DM@ S dlsz((%)L + 3 2im 3 a(Q)
(4.18) Jsm jsm QEeD: DCQ, £(Q)<2-7
| dist(z, Lp) “o)
Syt QEI;JCQ “Q) (@),

which gives (4.4).

4.1.1. Estimate of F'17'(x). Notice that, if [z —z| > 27™/n, there is no a € R" such that
z,z € D2, and this means that A}, (x, z; y) = 0. Thus, we can assume that |7—2] < 27™/n.
Therefore, if the constant Cr (see the definition of the a’s in subsection 2.2) is big enough,
SuppAu ( Ly y) C Bp.

For y,z € T such that y € suppyp; ! (z—-),j <mand|T—3] <2 ™7 (so, in particular,
|x — z| < |x —y|), we have the following estimates:

|[K(x —y) —K(z—9y)| S|z — 2|z — y’_”—l < 2j(n+1)—m,
VK (z—y)— K(z—y))| = |[V.K(z —y)| < 270D,
Claim 4.1. We have |Aby(x, z; y)| < 2™ and |V A (z, 25 y)| < 270FD forall x,y, z € RY.

Claim 4.1 and the subsequent ones 4.2,....,4.7 will be proved in subsection 4.3 below.
Putting all these estimates together we obtain that

V. (M2 ) (K (2 — y) = K (2= y)) )| S 2/,
and, since suppAl,(z,-; y) C Bp, recalling the definition of distp,, in (2.3),
[ A5 ) (K )~ K = ) dla - o))
We can use this last estimate in (4.11) to obtain

|17 ()| S 200D dist g, (1, o) / 02 (x —y) duly)

< 2t mndistp (u, op) & 207 4(D) " dist g, (1, 0p) < 277 ™a(D),
which, together with the estimate of [F37*(x)| in subsection 4.1.3, gives (4.15).

S 2j<n+l)+mndiStBD (,u,, UD).

4.1.2. Estimate of F2'(z). Arguing as in subsection 4.1.1, we can obtain the following
estimates for x,y, z as above:

(4.19) o2 (@ —y)| <1 and  |Vypl i(z—y)| S 27,
(4.20) [K(z—y) = K(z = y)| S |z — 2|l —y| 71 g 20mr D7
(4.21) V(K (z —y) — K(z — )| S |z — z[ja — y| "2 < 242 -m
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Claim 4.2. For j <m, y € supp<p22:j,1(a: — ), and |T — Z|] < 27™y/n, the following hold:
|Ab(z, 25 y)| S 2™ and VyAn(x, 25 y) = 0.

Notice that the first estimate in Claim 4.2 is the same as the ﬁrst one in Claim 4.1.
Let D; € D; be the unique dyadic v-cube with ¢(D;) = 277 which contains D. Then,

suppgog:jj,l(:c —)CB p; for Cr big enough. Therefore, we can use the previous estimates
to see that the gradient of the term inside the integral with respect to y in (4.12) is bounded
by 27(m+2)+m(n=1) and is supported in Bp,, and then by (2.3) we derive that

F@ls [|[ofie - pahes)

(K(z—y) — K(z —y))d(p — op)(y)| dop(z)
(4.22)

5/ 2j("+2)+m(”_1)distBD_(,u, op)dop(z)
|T—z|<2-™m/n J

< 2i<"+2>*mdistBDj (1, 0p).

We shall estimate distp,, (1, 0p) in terms of the o coeficients. Consider the unique se-
J

quence of dyadic v-cubes D =: D,,, C ... C D;y1 C D; C ... C Dj such that each D; belongs
to Dy, for i = j,...,m. Let Lp, be an n-plane that gives the minimum in the definition of
a(D;) and let op, := cp,dH} , be a minimizing measure. We will prove that

m—1

(4.23) dlstBD (u,op) S 27 g(n+1) Z a(D

i
Combining (4.23) with (4.22), we will finally obtain that |F27(z)| < 2i—m Z;Z;l a(D;),
which gives (4.16).
Let us prove (4.23). By the triangle inequality,
diStBDj (n,0p) < diStBD (1, O’D,) + angl diStBD (O’Di, UD¢+1)
S 270 a(Dy) + 37 distsy, (90, 0D,4);
so we are reduced to prove that, for alli=j,...,m — 1,

(4.24) distp, (0p,,0D,,1) S 2770 (D).

By definition, distp,, (0D:,0D,4,) =sup| [ g d(cDi’H%Di _CDHl/H%DiH )|, where the supre-

mum is taken over all Lipschitz functions g supported in Bp, such that Lip(g) < 1. Fix one
of such Lipschitz functions g. Then,

/gd(cDi/HTLLDi - CDi+1HTIl,Di+1) = (CDi —C z+1) /gdH

tepi, / gd(Hy, —H}, ).

It is shown in [To, Lemma 3.4] that |cp, —cp,,,| S a(D;), so the first term on the right hand
)

side of (4.25) is bounded in absolute value by €27t a(D;).
In order to estimate the second term of the right hand side of (4.25), set Lp, , =

{(t,a(t)) € R : t € R"} (where a : R* — R4 is an appropriate affine map), and let
p: Lp, — Lp,,, be the projection defined by p(t) := (t,a(t)). Since T' is a Lipschitz graph,

(4.25)

i+1
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a is well defined and p is a homeomorphism. Let pyH} =~ be the image measure of H} by
p- It is easy to check that H} = 7pyH] Lp,’ where 7 is some positive constant such that
+1

7 — 1] < a(Di) and 7 < 1. Therefore,
[z, -nz, | = [ <g<t>—rg<p<t>>>deD_<t>]
(1.26) < /(1—T> () a1, (0] + \/ p(E)) I, (8
<27 )g /r ()33, ().

Since g and g o p are supported in Bp, and g is 1-Lipschitz, by [To, Lemma 3.4],

Jla=gonlary, < [ disulLo,n By, Lo, 0B i,
D.

,S 2_jndiStH(LDi N BDJ.,LDH_1 N BDj)
< 27991 disty (Lp, N Bp,, Lp,,, N Bp,) < 277" Da(Dy).

This last estimate together with (4.26) and the fact that |cp,, | < 1 implies that the second

term on the right hand side of (4.25) is also bounded in absolute value by C2-7("*Da/(D;).
Therefore, to obtain (4.24) we only have to take the supremum in (4.25) over all admissible
functions g.

i+1

4.1.3. Estimate of F'3]"(z). Notice that, by Fubini’s theorem,

1 1
Naz: ) = AP (29 =2 | (o555~ 7op7) @
{a:z,2€éD%,y¢D2} :U’(Dv%) O-D(D#L)

_2mn/ UD(DZL)_M(lZm) da
{a:z,2€éD%,y¢D2} M(Dm)aD(Dm)

= gmn / </ d(op — u)(t)>M(D%)10D(D$)1 da
{a:z,z€D2,y¢D2} teDyg,
= /A%"D(m,z,t; y)d(op — p)(1).

Since AP (z,2,t; y) = 0 if |T — t| > 27™y/n, we may assume that suppAh”> (z,z,-; y) C
Bp (by taking Cr big enough).

Claim 4.3. We have |[Ay7" (z,2,t; y)| < 227" and |V ARTP (2, 2,t 5 y)| < 274D for all
z,Y,2,t € R,

Using Claim 4.3, we deduce that |Al,(z, 2; y) — A%P (x, z; y)| < 2™ D distp, (4, op),
and then,

@IS [ o) st (1, )
[F—31<2-my/m

& — zlle —y[ ™" dop(2) dop(y)

5 22mn+j(n+1) distBD (,u, UD) //%—§<213\/ﬁ dO’D(Z) dop (y)

|z-z]<2~my/n
< 2mn ¥ dist g, (u,0p) < 207 ™a(D),
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which, together with the estimate of [F'17*(x)| (see subsection 4.1.1), gives (4.15).

4.1.4. Estimate of F'47'(z). Set Lp = {(y,a(y)) € RY : 3§ € R"}, where a : R — R4~ is
an appropriate affine map, and let p : L, — Lp be the projection defined by p(y) := (v, a(y)).
Since I' is a Lipschitz graph, a is well defined and p is a homeomorphism. If psof, is the
image measure of o7, under p, we obviously have op = pyo?, because Lp and L7, differ by a

translation. Therefore, since p(y) = y, (4.14) becomes

IM?@)=/7(K@—pw»—JWM@—p@D—(K@—y%—Ku—yD)
02 (x— ) AP (2, 2 y) doty(2) do(y).

Fory, z € L}, such that @22:;_1 (:E—y)Afn% (z,z;y) # 0, we have K (p(z)—p(y))—K(z—y) =0,
so we can estimate

|[K(z —p(y) — K(p(2) —py) — (K(z —y) — K(2 —y))| = |K(z — p(y)) — K(x —y)|

v —pW)| ~ i T
S s < 200D |y — p(y)| = 22+ Ddist (z, Lp).

By the same arguments as in the proof of Claim 4.1, one can easily see that |AZ;D (x,z;9)] <
2™" - Therefore,

LF4?%$)|fg2ﬂn+1%ﬁm(erD)2mnL/};_mggﬁxﬂlda%(z)daﬁ(y)
F-21<2 - va
< 2 dist(x, Lp) ~ 29" dist(z, Lp)/{(D),

which gives (4.17).

4.2. Estimate of }_, ; G]'(z) when z € DNT for some D € Dy,. Assume that z € D
for some D € D,,. Recall from (4.3) that

G?@):/ywiﬂdz—wwvdw—wA%@&;wK@—yﬁm&ﬁw@%

where 0 < vo-m(z —y) < 1, [Vyyo-m(z —y)| < 2™ for all 2,y € R, and vp-m (2 —y) = 0
whenever |Z — | > 27™3./n. Notice that Al (x,2; y) = 0if |7 — 2| > 27™/n, thus we can
assume that |Z — Z| < 27™y/n and |Z — 3| < 27™%2,/n in the integral that defines G ().
Hence, if j < m—2, wng_l(z—y)A‘,f@(fv, z;y) = 0 for all 2,y € R, because @ng_l(z—y) =0
if 27—y <279712.1y/n, and 279712.1y/n > 27" *2/n when j < m—2. Therefore, G7'(z) = 0
for j < m — 2, and then

(4.27) Y G = ) Gfx);

JEL Jjzm—1
so, from now on, we assume that j > m — 1.

Let Lp be an n-plane that minimizes a(D) and let op := cpH7]  be a minimizing measure
of a(D). As we did in the beginning of subsection 4.1, given a € R", let b := a+{2"™ 1}" ¢
R" be the center of D2 . Recall that, for t € R%, ¢ € D@ if and only if || —b||so < 27™. Using
that op is a Hausdorff measure on an n-plane, that K is antisymmetric and that @22:;,1 and
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Y9—m are symmetric, one can show that

0= / / / Py i-1(z—y)
[F—blloo <2~ J | F—bllac<2=m J|[F—b]|oo>2-™
Yo-m(z — y)K (2 —y) dop(y) dop(z) db.

By the change of variable b = a + {27m=11n it is easy to see that this triple integral is equal

to f{a:xED#L} ID#L f(D;,‘L)C <p22:j,1(z — Y)yo-m(x — y)K(2 — y)dop(y) dop(z) da. Thus, since
op(D)%) does not depend on a € R™ because op is flat,

A g
{amGDa a ac

(4.28) (@ — Y)K(z — y) dop(y) dop(z) da
- / / 021 (2 — Y)raem(z — YA (2,2 9)K (2 — ) dop(2) dop(y).

Let {nq }q@ep, be a partition of the unity with respect to the v-cubes Q € Dj, i.e. 1q : R? —
R are C* functions such that: x090 < 70 < X110, |Vno| < €(Q)~! = 27, ZQeDj ng =1
and 1g(y) = 1o(y,0) for all y € RY. Tt is easy to check that, if j > m — 1, Q € D;, and
suppng N suppyz-m(x — -) # 0, then @ C C.D for some absolute constant C, > 1.

Given Q € Dy, let Lg and oq := cQHzQ be a minimizing n-plane and measure for a(Q),
respectively, and consider the measure

A= 2 NQoQ-
QEDj : QCCeD

By (4.28) and the properties of the partition of the unity {ng}gep;, for j > m — 1 we can
decompose G7'(x) as

(4.29) G (x) = G (x) + G2 (w) + G37(x) + GAT () + G5 (x),
where

(4:30) o) = EQjCC ) [+ dtn= o0 duty),

(431) e = > [+ drotdtu =)o

(4.32) G3'(x) = er%:ccg / / d(og x 0g —op X op)(z,Y),

14 2

where stands for @22:;,1 (z = yY)yo-m(z — Y)no(y) K (z — y)Am(x, z; y), and

(4.33) G47'(z //«pQ i1z =Y ve-m(z —y)K(z —y)

(Af (2,25 y) = Ap, (2,25 ) dop(2) dop(y),

(4.34) G57'(x // P51z = y)re-m(r—y)K(z —y)
(Ay(z, 25 y) — AJP (2,23 y)) dop(2) dop(y).
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In the next subsections we will prove the following estimates:

(4.35) GL] (2)] + G2 ()] +|G4] ()| 5 Y 2 Ha(Q),
QEDj : QCCeD

(4.36) |G37 ()| +|GBT ()| S ). 2<m—j><n+1><a(cbp)+ > a(R)>,
Q€eD;:QCC.D ReD:QCRCCyD

where ()}, is some absolute constant bigger than C,. Then, using (4.27) and (4.29), we will
finally obtain that, for all D € D,,, and x € DNT,

Y Y Y 2<mf'><”+1>(a<cbD>+ 3 a(R))

JEZL j>m—1 QeD; :QCCe.D ReD:QCRCCy,D

_ U™ (D) + oR
(4.37) NQeD%:CCeD E(D)n+1< (CyD) RED:QZC%CC%D ( )>
n+1
Sa(GD)+ Y j(g))w“(m’

ReD: RCCyD
which gives (4.5).
4.2.1. Estimate of G17'(z). If @22_7_1(,2 — %) # 0 then 279712.1y/n < |7 — y| < 2773\/n, so

if we also have that y € suppng, then z € 8,/n(Q because ) € D;. Therefore, we can assume
that supp<p22:j]_1(- —y)no(y) C Bg if Cr is big enough.

Claim 4.4. For z € suppgog:jj,l(- —y), the following hold: |Ab(z,z;y)| < 2mH+D—7,
|V AR (2,25 )] < 270+ | and \VyAn(z, 25 y)| S gm(n+1)

We have that |K(z —y)| < 27" and |V.K (2 —y)| < 27D for all 2 € supp<p22:j,1(- —y).
Using (4.19) and the first two estimates in Claim 4.4, we get

|V (@22:5;1 (z—y)K(z —y)Ab (2,25 9))| S gm(nt1)+jn.

Therefore, for y € suppnqg,

\ [ e = )R — )N 23 ) = 0)(2)| S 270 st (1, 00)
< it io(Q),

and then,

G1 (@) s ) / 2 o(Q)du(y) S Y. 2 (),
suppnQ

Q€D :QCC.D Q€D :QCC.D

4.2.2. Estimate of G2]'(z). It can be estimated using the arguments of subsection 4.2.1,

but now we also have to take into account that |V, yp-m(z — y)| < 2™ < 27, because we are
assuming j > m — 1, and we have to use the last estimate in Claim 4.4.
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4.2.3. Estimate of G37'(x). Given x € DNT and Q € Dj, denote

Ho(y, 2) == 31 (z = Y)o-m(z — )W) K (z — y)Ah(z, 25 ).
Then, (4.32) becomes

G = Y / Ho(y, 2)d(og % 0g — op X 7p)(2,4)
QED QCC.D
= Y[ ot am, < Hy, - H, < H) e
QED;:QCCeD
4.38 n n
(438) = ¥ / Holy, 2)(c — b) dH} (=) dH3, (1)
QeD;:QCCeD
Y 8 / Holy, 2) (M}, x M3, — M3, x HE,) (1)
QGDjZQCCeD

=: G3AT"(z) + G3B]"(z).

We are going to estimate the terms G3AJ'(z) and G3B]'(x) separately. Recall that
D) = 27™. Given a v-cube ) € D; such that Q C CcD, let Q =: Q; C ... C Qi1 C
Q; C ... C Qm—1 be the sequence of v-cubes such that Q); belongs to D; fori =m—1,...,3.
Evidently, Q,,—1 C CpD for some constant Cj big enough, because ¢(Qy,—1) = 2¢(D) and
Q C Qm-1NC.D. Let Lg, be an n-plane that minimizes «(Q;) and let og, := chH%Q' be
a minimizing measure of a(Q;). Also, let Lc,p and o¢,p = cc, Dchb , bea minimizzing
n-plane and measure of a(CyD), respectively.

In order to estimate G3A’" (), notice that, by [To, Lemma 3.4] and the triangle inequality,
lcg,| S1foralli=m—1,...,7, and

¢y — cb| = lcq + epl leg — ep| S leg, — cp]

j—1
S le@u-y — co,pl +[cc,p — el + Z |CQi+1 — e,
(4.39) i=m—1
7j—1
a(CyD) + Z a(Q;) S a(CyD) + Z a(R)
i=m—1 ReD: QCRCCyD

(in the case that j = m — 1, there are no intermediate scales between j and m — 1, so one
just obtains \CQQ — 3| < a(CyD)).
Claim 4.5. For z € suppnpg,_j,l(- —y), we have |Aby(z, z; y)| < 2mtD—I

Notice that this last estimate is the same as the first one in Claim 4.4. Using Claim
4.5 and that |K(z — y)| < 27" for all z € suppp? | (- — y), we easily obtain [Hg(y, 2)| <
241 +i(n=1) " Therefore, using (4.39),

GA@IS Y Il [[ 1ol 2)l Mg, () ang, )

QEDj : QCCeD

S 0D 2mi <a(CbD) + > a(R)>.

QED;:QCCeD ReD:QCRCCyD

(4.40)
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To estimate G3B]"(z) in (4.38), we set
(4.41) G3Bj'(x)= Y.  cHG3B(Q)](x),
QEDj : QCCeD

where G3B(Q)T'(z) := [[ Hgd( Lo X Hi, — M, x H}, ). Given Q € Dj such that
Q C CeD, we split G3B(Q)7'(z) as follows:

j—1
G3B(Q = > / Hod(M}, —xHi, —Hi, xHi,)

i=m—1

4.42
( ) +/ HQ d(H%Qm—l x Hz@m—l o szD x HzcbD)

+ [ Hodtye,, x My, — 1y, < HE)

(as before, in the case j = m — 1 the first term on the right hand side of (4.42) does not
exist).

Fix i € Z such that m —1 < i < j. Set Lo,,, = {(y,a(y)) € R? : § € R"}, where
a:R™ — R4 is an appropriate affine map, and let p : Lo, — Lg,,, be the map defined by
p(y) := (y,a(y)). Let pﬁ’H" be the image measure of H”Q by p. It is easy to check that

szH = Tpti'HL , where 7 is some positive constant such that |7 — 1| < a(Q;) and 7 < 1.

Therefore,
[ Hatw i, <M, - Hig, % )
- / [ (7Howw).p(2) ~ Holw. ) dH, () aH,, (v)
— [[ 7 (Halbo).n(2)) - Holw.2)) aHi, (2) ki, ()
+ [[ @ = DHow. ) arty, () a, )

Since |72 — 1| < a(Q;) and we have seen that [Hg(y, z)| < 2D+ (=1 after Claim 4.5,
the second term on the right side of the last equality is bounded by C2(m—7)(n+1) (Ql).

In order to estimate the first term on the right hand side of (4.43), notice that ¢2 ], (z —
Y), Yo-m (x —y),no(y) and AR, (2, z; y) only depend on the first n coordinates of y and z (i.e.,
on y and z), thus their values coincide on (y, z) and (p(y),p(z)). Then,

/ 72 (HQ(p(y)ap(Z)) — Ho(y, z)) a, (=) dHs, ()
=72 // 9022:;;1(2 —y)Yo-m(x — y)no(y)AL, (z, 25 y)

(K(p(=) = py) = K (= = ) dHE, (2) dHz,, (v).

Let 6; be the angle between Lg, and Lg,,,. One can easily see that, for y,z € Lg,, |(p(2) —
p(y)) — (z —y)| Ssin(;)|z — y| S a(Qq)|z — y|. Thus, if also z € suppgogjj_l(- —9),

K (p(2) = p(y) = K(z = 9)| S PV N(p(2) = ply)) = (2 = )| S 2"a(Q0).

(4.43)
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Together with Claim 4.5 and the fact that 72 < 1, this gives
[ 7 (tr000).00) = Hatw. 2)) i, 2) i, )
/ / = D)2 O o) it (2) e, )

S 200 a ().

~

N

From the last estimates and (4.43), we get
‘ / HQ d( ?’Qiﬂ x H?’Q'HA N ?‘Qi x Hng)’ 5 2(m_j)(n+1)a(Qi)
for i = ..,j — 1. With similar arguments, one also obtains

‘ // HQ d HLQ X HLQ TLleD X HzcbD)‘ ,S 2(m7])(n+1)a(CbD)7
| / / Ho d(HzcbD XMy, — ML, x HY,)| <20 a(6,0)
These last three inequalities together with (4.42), (4.41) and the fact that |cp| < 1 yield

7j—1
@B Y 2<m—j><n+1>( (CyD) + Z aQZ>

(4'44) QGD] ZQCCED i=m—1
< Z o(m—j)(n+1) <a(CbD) + Z a(}g))_
QeD;:QCCeD ReD:QCRCCyD

Finally, (4.40) and (4.44) applied to (4.38) give half of (4.36).
4.2.4. Estimate of G47'(x). By Fubini’s theorem and the definitions of A, Ah, and A,

MNDg) = (D) |

A (2,25 ) — AN (2,25 ) = 2’””/

{GIZEZ),L ygl)a} /I(I-DW,I)A(I-)”])
{a:a: z D yiD } Da“ QED QCC D

nQ(t) dog — MW))
_ Z /7762 A”’ (x,2,t; y)d(og — p)(1).

QeD; :QCCeD

da
w(Dg)NDy,)

We also used in the second equality that 1 = Zerj ng(t) = ZQeDj:QcCED ng(t) for all
t € D2 if C, is big enough, and this is because j > m — 1 and |T —t| <27 for all t € D2..

Claim 4.6. Forx € D, j>m—1, |[x —y| <27, and z € suppcpg:jj,l(- —y), the following
hold: [Nz, z,t; y)| < 2mC@rtD=0 and |V AR (3, 2, t 5 y)| < 2D,
Using Claim 4.6 and the properties of g, we obtain

A (25 y) = Az )| S0 Y 27 Ddistp, (1, 0q)
QEDj :QCCeD

S Z 2m(2n+1)—j(n+1)a(Q).

QEDj :QCCeD
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Plugging this estimate into the definition of G47*(x) in (4.33), we get
G @I S [[ @3- w9 )

S gm0 0(Q) dop(2) dop(y)
QED] H QCC@D

< Z 2(m=1)(+1) o (Q),
QEDj :QCCeD
which, together with the estimates of |G17"(x)| and |G2](z)| in subsections 4.2.1 and 4.2.2,
gives (4.35).

4.2.5. Estimate of G57'(x). Arguing as in subsection 4.2.4, we have

Mz -0z = > [no@Akr (et vden - oot

D;: CeD
(4.45) 9€P;:Qc

- Y [Hetden— o)),

erj :QCCED
where we have set Ho(t) := no(t)Am’” (z, 2, ; y).

We are going to estimate the right hand side of (4.45) using the techniques of subsection
4.2.3. We have

(4.46) /HQ d(op —oq) = (cp — cq) /HQ dH7 , + CQ/HQ d('H%D — %Q)
We introduce the intermediate v-cubes between @) € D; and D € D,, to obtain
(4.47) lep — col < a(CyD) + > a(R).

RED:QCRCCyD
Claim 4.7. Forz € D, j>m—1, [t —y| <27™, and z € supp<p22:j_1(- —y), the following
holds: [ANTP (z, 2,t; y)| < 2mEn+D=j,

Combining Claim 4.7 with (4.47), we derive that

(4.48) lep — g / |Hq| My, < 2m@ntl=itl) (Oé(CbD) + > a(R)).
ReD:QCRCCyD

For the second term on the right side of (4.46), one can also use the arguments in subsection
4.2.3 (see (4.42) and following) to show that

< 2m<2”+1>—j<”+”(a<obD> + a(R))

(4.49) ’ / Ho d(H}, — H3,)
RED: QCRCCyD

(now it is easier because the function Hg(t) only depends on the first n coordinates of the
points involved, i.e., it depends only on Z, §, Z and ¢, so when we project vertically to deal
with the image measure, the function Hg is not affected). Therefore, by (4.48), (4.49),
(4.46), and (4.45), we obtain

Az, 2 y) — AP(z,z59)] S ) 2m(2”+1)‘j(”+1)<a(CbD) + > a(R)>~
QED;: ReD:
QCcC.D QCRCCyD
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From the definition of G57(x) in (4.34), we conclude that

|G5§”($)! < Z om(2n+1)—j(n+1) <a(C’bD) + Z a(R))

QeD;:QCCeD ReD:QCRCCyD

/ / 0271 (2 — Y (@ — YK (= — )| dop(2) dop(y)
< Z o(m—j)(n+1) (a(CbD) + Z a(}g))

QeD;:QCCeD ReD:QCRCCyD

which, together with the estimate of [G37*(x)| in subsection 4.2.3, gives (4.36).

4.3. Proof of Claims 4.1,..., 4.7. We have to prove:

e Claim 4.1: We have |Al(z,2;y)| < 2™ and |V Ah(z, 2; )| < 270D for all
z,y,z € R, _

e Claim 4.2: For j < m, y € supppy |, (x —-), and |2 — 2| < 27™/n, the following
hold: |Af(z, z; y)| S 2™ and VAL (z,2; y) = 0.

e Claim 4.3: We have [ARP (2, 2,t; y)| < 22 and |V ARP (2, 2, t; )| < 2m@ntD)
for all z,y,z,t € R% _

e Claim 4.4: For z € suppp2’;_, (- —y), the following hold: |Ah,(z,z; y)| S 2m( D=7,
VoAm(z, 25 y)| £ 270D, and [V A (z, 25 )| < 200D,

e Claim 4.5: For z € suppgoQQ:_f_l(- —y), | (z,z; y)| < 2mntD—,

e Claim 4.6: Forx € D, j>m—1, |[x —y| <27, and z € suppapgjj,l(- —y), the
following hold: |A% (z, 2, t; y)| < 2mCntD)=d and |V ANz, 2,85 y)| S 2m(@ntD),

e Claim 4.7: Forx € D, j>m—1, |[x —y| <27™, and z € suppgog:;_l(- —y), the
following holds: [ApP (z, 2,3 y)| < 2m@nt1)—3,

To prove the claims, we need to express the function A at the end of subsection 2.3 in a
more convenient way. Notice that we can replace D% by D2 in the definition of A because
w1 and the n-dimensional Hausdorff measure vanish on D%.

For u € R™ and r > 0, we denote |u|oo = max;—1,_ n|u'|, Beo(u,r) = {v € R" :
|u — v|oo <7}, and BT (u) := Boo(u,27™71). Given a € R™, let b :=a + {277 1}" € R" be
the center of 15,?1 Then, given ¢ € R?,

qEDE < |§—bloo <27 < be BZ(q).

Let 1, .., ux be positive Borel measures such that p;(D%) > 0 and p;(0D,}) = 0 for all
acR"meZandl=1,...,k. Given m € Z and x1,...,2;,Y1,...,Y; € R? we have, by
the change of variable b = a + {277 1}" € R",

2" da
APl (g Ty YL, - 5Yg) :/ e
" {a€Rm o1 i€D yr ey @05 } L1y (D)
_ Qnm/Xng(zl)m...mBg;(@)mBg(yz)cm...mBomo(gj)c(b)

[Ty (D 77

(4.50)
db.

Proof of Claim 4.1. By (4.50), we have

(4.51) ALz, 25 y) = 2’””/u(DZ:{Q‘"‘”}")‘1ng<g>nt<amBg<@c(b> db.



VARIATION FOR SINGULAR INTEGRALS ON LIPSCHITZ GRAPHS 27

Since pu(D2) = 27™" for all b € R™,
A (2,23 y)| S 227" L7 (BI (&) N BL(Z) N BL(G)°) < 227 L7 (BIL()) < 2™,
To deal with the second inequality in Claim 4.1, we will estimate
(A (@, 215 y) — AL (@, 225 9)| /|21 — 22

for z; close enough to z9. Recall that, given two sets F, Fo C R", F1AF, := (F}\ Fo) U (Fy\
F1) denotes their symmetric difference. Using (4.51), we get

MG (2,215 y) = A (2, 225 y)|

< 22 / IXBr @nBm (z)nBz @) (0) — XBo (@B (2)nBz @) (0)] db

(4.52)

= 9Znm pn <(ng(55) N B (1) N BR(5)°) A(BZ(2) N BL(22) N B (@“)C))

S 22nmﬁn(Bong(z~l)ABong(z~2)) S 22nm|21 _ Z~2’2—m(n 1) < 2m (n+1) |Z1 _ 22|
and the claim follows. O

Proof of Claim 4.2. The first estimate has been already proved in Claim 4.1. Let us deal
with the second one. Notice that if y € suppp2 ), (z — ) then |z —g] > 2777'2.1\/n. Thus,
ifalso j <mand |7 —Z] < 2*m\f then |2 —y| > 27"/n and \E—N\ > 27™y/n. Therefore,
BI#)NBI(3)N BL()° = BR(E) N B () forally € supppl ) (a— ), if [F—3] < 27"/
This means, using (4.51), that Al (z,z; y) does not depend on y, so V, AL (z,z; y) = 0 for
all y € supp«pg:jj_l (x — ), and the claim is proved. O

Proof of Claim 4.3. This claim follows by arguments very similar to the ones in the proof of
Claim 4.1. Just notice that u(D2)op(D2) 2 272m for all b € R™. O

Proof of Claim 4.4. Using (4.51), we have that
AR (2,25 y)| S 22MLM(BL(T) N BY%(2) N BR(y)) < 22" LM(BR(2) N BR(5)°)-

Notice that £*(B™(2) N B2 (7)¢) < 2-™=D|y — Z|. Since z € suppgogjjj_l(- —y), ly—2] <
2773y/n. Thus, £"(B7(Z) N BZ(5)°) < 27"~ D=3 and then |Ab,(z,z; y)| < 2mtD—J
In Claim 4.1 we already proved that |V, Ak (z,z; y)| < 2™+, Finally, to prove that

IV A (2, 25 y)| S 2D one can repeat the computations done in (4.52) but applied to
the y coordinate and use that BT (y1)*ABZ(y2)¢ = B2 (y1)ABZ (y2). O

Proof of Claim 4.5. This claim is included in the previous one. 0

Proof of Claim 4.6. Recall that \ = ZQE'D]-: 0cc.D M1QIQ; where C, is some fixed constant
big enough (see the beginning of subsection 4.2). Using the properties of g and that C. is

big enough, it is not difficult to show that A( ph s ) 2 27™" for all b € R™ such that
b € B2 (7) (recall that x € D and j > m — 1). Therefore by (4.50),

A, 2,85 y)] S 297 LM (BI (&) N BI(2) N B () N BL(G)°)
< 29" L7 (BI(3) N BL(5)°)-

As in the proof of Claim 4.4, we have L£"(BZ(Z) N BZ(§)°) < 2-m(=D=7 for all z €
suppp2 ;i (- —y). Thus, ]A%)‘(x, z,t; y)| < 2mCnt)=I as wished.
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For the second estimate in Claim 4.6, we argue as in (4.52). For ¢; and ¢2 close enough,

AL (2,815 y) = MM, 2,85 )]

sz / XB@nBz @Bz @Bz @ (0) ~ XBr@nez@nse @nes@:- ()| db
< 23nm£n(Bong(a)ABgno(t;)) S 23nm’t“i B t;|2—m(n—l) < 2m(2n+1)‘t1 N tg’,
and the claim follows by letting t; — ts. O

Proof of Claim 4.7. This claim is proved as the first estimate in Claim 4.6, replacing u by
op (we only used that pu(D2) > 27™" for all b € R™, which also holds for op). O

5. PROOF OF THEOREM 3.2

Given z € T, let {€,, }mez be a decreasing sequence of positive numbers such that
(5.1) Su)? <2y > (Kpom,, (@))%,
JEZ meZl: €m15m+161j

80 {€m }mez depends on x.

Fix j € Z and assume that x € D, for some D € D;. Let Lp be an n-plane that minimizes
a(D) and let op := cpH}  be a minimizing measure for a(D). Let L} be the n-plane
parallel to Lp which contains z, and set o, := CD”H"ID.

By the antisymmetry of the function ¢ K, and since o7, is a Hausdorff measure on the
n-plane LY, and x € L%, we have

(K, <op)@) = [ el (@~ K@ - y) dob(y) =0
for all m € Z. Therefore, we can decompose

(5.2) (Kol xp)(x) = (Ko *(p—op))(x) + (Ko  *(op —op)) ().

For every m € Z such that €, €;,+1 € I; we will prove the following inequalities:

(5-3) (Ko, * (n—0p) ()| S 2lem — emr1la(D),
(5.4) (Ke&rn,, * (op — o) ()| S 2¥|em — emra|dist(z, Lp).

Assume for a moment that these estimates hold. Then, by (5.2),
(Kpsr,, + 1)(@)| S 2lem — ems| ((D) + 27dist(z, Lp)) -
Then, using (5.1), we conclude that

ISl <2 3 [ 2 I, 0@ du)

JEZ DED; MEZL: €m,em+1€1;

< dist(z, Lp) 2 Z l€m — €m+1] ?
JEZ DED; mezzel
€Em,Em+41<1Lj

< 9 dist(z, Lp)\ >
S S a@pup)+ 3 [ (BHELo)Y gy )
p\ D)
DeD DeD
Notice that, under the integral sign on the right hand side of the first inequality above, €,
and €,,+1 depend on z. It is not obvious that the resulting function is measurable. To deal
with this issue more carefully, we might first ask {€;,}mez to lie in some finite set, prove
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the variational norm inequality with constants independent of the set, and then enlarge the
set. Then, by monotone convergence we would obtain the result with {€,, };nez restricted to
a countable set dense in (0,00). The final theorem would follow then from the continuity
properties of the operators involved. This applies to other similar situations in the paper.
However, for the sake of conciseness, we will skip further details.

The second term on the right hand side of the last inequality coincides with Wy (see (4.6)),
thus it is bounded (modulo constants) by Y pep ((D)? + B2(D)?) (D), and Theorem 3.2
is proved.

It only remains to verify (5.3) and (5.4) for x € D € D; and m € Z such that €,,, €pm41 € I;.
First of all, notice that ¢.m  satisfies

- .
pem (- )| = ‘m(‘y‘) - ¢R<‘ y‘)’ < el o)
(55) €m41 €m

~ ~ Em — €m+1 :
= [l¢R ool — gl ——T= S 2

[z -yl |7 -yl

m+1 €m

’6m - 6m+1|
m€m41

for all y € suppp™  (z —-). Fori=1,...,d,

T —7 i_xi .
ayz'(soem(z—y)):soﬁ@(’ y’) Y =2 ).

€m eml|T — 7|

-7\ 1 Z—yl\ 1
olsto- < (E2) L (B2 1
‘ y ((’05m+1( y))’ ¥R €m €m R €Em+1 ) €Em+1
L (E-TN|] 11 C(E=TN\ _ , (1E=3

i PR — ¥R
€m €Em Em+1

+
Z =Y\ ém — émt
<(\wRuoo+ugo e m — Cm1
m+1

Hence,

1

Em+1

<

€m €m+1
€ EmEm+1

Since €, €m+1 € Ij, we deduce from the previous estimate that, for x —y € supp pem s

€Em — € :
(5.6) 9y (0, @ = 9) | S " & 96 — .

EmEm+1

We are going to use (5.5) and (5.6) to prove (5.3) and (5.4). Let us start with (5.3). Since
€m, €m+1 € Ij, we can assume that supp o (z — ) C Bp, by taking Cr big enough.
By (5.5) and (5.6), for all y € supp p™, (2 — ),

9y (eir @ = K@ =) | S 2 e — e,

hence

(K&, (p—op))(@)] S 20D en — emt|dists, (1,0) S 2lem — em1la(D),

which gives (5.3).

In order to prove (5.4), set L% = {(t,a(t)) € R? : t € R"}, where a : R® — R%™ is an
appropriate affine map, and let p : Lp — L7, be the map defined by p(t) := (t,a(t)). Since
I' is a Lipschitz graph, a is well defined and p is a homeomorphism. Let pyH} = be the image
measure of H} by p. It is easy to see that, |y — p(y)| ~ dist(x, Lp) for all y € Lp. Notice
also that the image measure pyH7  coincides with ’H"% . Therefore, since pcm | (x —y) only



30 A. MAS AND X. TOLSA

depends on T — ¥,

( (Kol % (op — o)) (@) = ep / pin (x — ) (x — ) d(HD, — pHl,) ()
5.7)
—ep / pin (o —y)(K(z —y) — K(z — p(y))) dH2 (1),

For y € supppf™, (z —-) N Lp, we have

Em+1
K (2 —y) = K(x = p(y)] S 2Dy — ply)| = 2 Ddist(z, Lp).
Plugging this estimate and (5.5) into (5.7), we conclude that
(Kecr, + (op — D)) (@)] £ 2%|em — eme1ldist(z, Lp),

which gives (5.4); and the theorem follows.

My My
6. L? LOCALIZATION OF V,0 75" AND Oo T, "

From here till the end of the paper, I := {z € R? : x = (¥, A(Z))} will be the graph of a
Lipschitz function A : R® — R%", without any assumption on the support of A.

Theorem 6.1. Let p > 2. There exist C1,Cy > 0 such that, for every f € L>(Hp) supported
in TN D (where D := D x R™ and D is a cube of R"),

(6.1) [ oo TN < Cullf e 1D and

HE 2 n n
(6.2 [ (@) amty < Call ey (D).
The constant Co does not depend on the fixed sequence that defines O.

We will only give the proof of (6.1), because the proof of (6.2) follows by very similar
arguments and computations.

We claim that it is enough to prove (6.1) for all functions f such that f(x) ~ 1 for all
x € I'N D. Otherwise, we consider g(x) := ||f||Z§O(H?)f(:U) + 2xp(x), which clearly satisfies

g(z) = Lforall z € 'ND. Since f = || f|[zoo (3 (9 — 2XD),

Hn ’]_L’n/ ’}_Ln
Voo Te M) f (@) < (1 fll ooy (Vo 0 To )g(2) +2(V, 0 To T )xp()).
Applying (6.1) to the functions g and xp, we finally get

[ (0n0 T2 1) a1 S 111 gy HRCD).

Given f and D as in Theorem 6.1, from now on, we assume that f =~ 1 in ' N D. Let
Zp be the center of D and set zp = (2D, A(Zp)). One can easily construct a Lipschitz
function Ap : R” — R4 such that Lip(Ap) < Lip(A4), Ap(F) = A(Zp) for all & € (3D)C,
and Ap(Z) = A(Z) for all € D. Let T'p be the graph of Ap and define the measure
W= /H?D\D + fH{ ~p- Notice that x(3p)ep is supported in the n-plane L := R" x {A(zp)}
and xpp = fHE~p-

Since f~1in I'N D and xpp = (1 — x(3p)c — X3p\Dp)H, We can decompose

[ (po T i~ [ Vit o) an

S/D(Vp(KsO*u)+Vp(Ks0*(X(smcu))+Vp(K<,0*(X3D\DM)))2dﬂ-
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In the next subsections, we will see that [ V,(Ky * u) 2du, Jp Vo(EK g * (X(3D)e w)? dp,
and [, V(Ko * (X3D\D.U))2 dy are bounded by C,u( ), and (6.1) Wlll follow.

6.1. Proof of [, V,(Ky¢xpu)*du < p(D). Fix x € suppp, and let {€y, }mez be a decreasing
sequence of p081tlve numbers (which depends on z) such that

(6.3) (VoK x p)(2))” <2 [(Kpir,, + p)(x))”.
mEeEZ

For j € Z we set I; := [27971,277). We decompose Z = S U L, where

S:= U Si, Sj={meZ: en,ems1 €1},
(6.4) JEL
L:={m€eZ: en€l;ens €1 fori<j}.

Then, 3,z [(Kodr, + 1) (@) = 2 mes (Kol * ) (@) + 2 (Ko, + p)()]”.
Notice that, since the £/(Z)-norm is smaller than the ¢?(Z)-norm for p > 2,

(6.5) S O IE e # p)(@)]P < Sp(x)P,

meS

where Spu(x) has been defined in Theorem 3.2.

Let us now estimate the sum over the indices m € L. For m € Z we define j(e,,) as the
integer such that €, € I;,,). Since {€m }mez is decreasing, given j € Z, there is at most one
index m € L such that €,, € I;. Thus, if k,m € £ and k < m, one has j(e;) < j(em).

With this notation, we have

S IEpe ) (@) = [(Kepe,,, = 1) (x) — (K, * p)(x)|”

meL meL
S B ey * 1)(@) = (Kpy i1 * p) ()]

meL

Y Ky iemyn-1 % ) (@) = Bje,pyys1()]?
meL

(6.6) + Z | Ejtemin)+10(T) = Ejce,y411(2)|”

meL

+ Z 1 Ej(en)+10(2) = (K @g-item)—1 * p) ()]
meL

+ ) K@y i1 * ) (x) = (Kpe,, * 1) ()]
meL

S Su)? + Wa(x)? + Vo (Ep)(x)”,

where Sy (x) and Wp(x) have been defined in Theorems 3.2 and 3.1, respectively, and V,(Epu)
is the p-variation of the average of martingales {Fy,p}mez from subsection 2.3. Therefore,
by (6.5), (6.6), and (6.3), we deduce that

VoK p)(z) S Sp(x) + Wa(x) + Vp(Ep)(x)

for all x € suppu, and so

(6.7) /D V(K )2 dpe S 180220 + W22 + Vo (B2
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Clearly, Theorem 2.7, Theorem 3.1, and Theorem 3.2 can be applied to the measure u,
because supppu is a translation of the graph of a Lipschitz function with compact support.
These theorems in combination with (6.7) yield

68 [ vt P dn < (D) + X (0G0 + @),

QeD

where C1,Cy > 0 only depend on n, d, K, Lip(A), and p (the condition p > 2 is used
to ensure the L? boundedness of V,(Epu)). Obviously, u(3D) ~ u(D) and, since x(3pjet
coincides with the n-dimensional Hausdorff measure on an n-plane, using Remark 2.2 it is
easy to check that > o.p (u(C2Q)? + B2,,(Q)?) (@) < w(3D). Hence, we conclude that

JpVo(Ke + p)? du < (D) by (6.8).

6.2. Proof of [, V,(K¢* (x3pyen))® dp S (D). Fix € suppu N D, and let {€y, }mez be
a decreasing sequence of positive numbers (which depends on x) such that

(6.9) VoK * (x@apyen) (@) <2 ) [(Kofm |+ (x@apyer)) (@)
MEZ

Recall that Zp is the center of D, zp = (Zp, A ( p)) and L := R"™ x {A(Zp)}. Since
X(3pyeh = M} \3p and zp is the center of LN D, (KgpE (x3pyer))(zp) = 0 for all 0 < e < 6.

Thus, [(Kegr , * (Xap)er) (@) = [(Kedr, | = (x@pyw) (@) — (Kodr | * (X@ap)er))(zp)| <
01,, + ©2,,, where

o1, = / pim (& — )| K(x — ) — K(zp — y)| du(y),
(6.10) (8D)
02, = /( £ =) = 2l G — DK e — ) da).

Since = € suppu N D and A is a Lipschitz function, we have |z — zp| < ¢(D), and then
|K(z —y) = K(zp —y)| < |z = zpllzp —y[7""" < U(D)|zp —y|7""" for all y € (3D)°".
Therefore, using that >, ., oS <1 and that p > 1,

1/p
(6.11) < > ®1£’n> <> Ol / UD)|zp —y| ™" dp(y) S 1.
mez meZ D)e

To deal with ©2,,, we decompose Z = SUL as in (6.4). As before, given m € Z, let j(en,)
be the integer such that €, € Ij,,). Observe that

supp o™, (z — 1) C A(F,2.1y/n2 I em )71 3 /oI (em)) x R = A, (2).

Notice also that the sets A,,(z) have finite overlap for m € £, and the same is true for the
sets Aj(z) == A(Z,2.1y/n27771 3,/n277) x R for j € Z. The same observations hold if
we replace x by zp (and T by Zp). Obviously, Ap(x) C A%(x) (and Ay (2p) C Al(2p)) for
m € Sj.

Assume that m € S. With the same computations as those carried out in (5.6), one can
easily prove that, for all z —y € suppp™ |,

‘ - @\ €m — €m+1 ; ’€m - 6m—l—l‘
V. (ofm — < - - < 9jlem) [fm —— Fmrll
Va(pem (2 =) S <”90R||L ®) + 19R oo ey S B

m+1
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because |Z — 7| & € & €my1 ~ 27(m) for all z — y € supppr, and m € S. In particular, if

z€ D andy € (3D), |V, (g06m+1(z -y S 29(em) e, — emi1||Zp — 7|'. Hence,
|€m Em—i—l’
02,5 [ (D)iem) ] g,
(A (2) U Am (20))\3D |Zp — |+t
and then,
( > o2 )W S / ¢(D)2em) )lm = emo1| dp(y)
mes " mes \3D Zp — gl
|€m - 6m+1|
6.12 < / ,u(y)
(6.12) j% () U A (2p))\3D |ZD y’”“ W;g
¢(D)
S = =g dMy) S 1.
/(3D)c Zp —y" ! )

Assume now that m € L. Tt is easy to check that [V.(¢fm, (2 —y))| S [2—3]7! for all

z,y € R% So, if also z € D and y € (3D)°, |V (o (2 —y))| < |Zp — §l~". Therefore,

( > 92%) v <> / D) gy

n+1
(6.13) meL mel (ux)xm(zD n3D 12D — Y|
oD
S T~ <~ du Yy S 1.
/<3D)c Zp —y|"t! ®)

Finally combining (6.11), (6.12), and (6.13), with (6.9) and the fact that (Koo
(X@3Dyen))(w)] < Oly, + ©2y,, we conclude that

1/p 1/p 1/p
Z@wn) +<Z@2¢n> +<Z@2%> <1

mezZ meS meL
for all = € suppp N D. Therefore, [, V,(K¢* (x3pyen))* dp < p(D).

VoK (xamyer)) (@) < (

6.3. Proof of [, V,(Ky * (XSD\D,U)) du < p(D). Fix o € suppu N D. Since p > 1,

p) 1/p

<sup Y /D\D par (@ —y)|K(z —y)|du(y) < /3D\D (K (z —y)| du(y).

{em} meZ 3

V(K p+(xsp\pi)) () = sup ( 3

fem} meZ

/ o (& — 9K (z — y) du(y)
3D\D

By a standard computation, one can show that

/D </D\D |K (2 — Z/)|dﬂ(y)>2dp(w) < u(D),

hence we conclude that [, V,(K¢ * (x3p\pw))*dp S (D).

H’n ’]_[n
7. LP AND ENDPOINT ESTIMATES FOR V,07," AND Qo 7, ™"

We denote by H'(H}) and BMO(H}) the (atomic) Hardy space and the space of functions
with bounded mean oscillation, respectively, with respect to the measure H{. These spaces
are defined as the classical H'(R?) and BMO(RY) (see [Du, Chapter 6], for example), but
by replacing the true cubes of R? by our special v-cubes.
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Theorem 7.1. Let p > 2. The operators V, o 7;,%? and O o 7;%? are bounded

o in LP(H{) for 1 <p < oo,

o from HY(H}) to L*(H}),

e from L'(H}) to LY (HE), and
o from L*(H{) to BMO(HE),

and the norm of O o 7;,%? in the cases above is bounded independently of the sequence that

defines O.

We will only give the proof of Theorem 7.1 in the case of the p-variation, because the
proof for the oscillation follows by analogous arguments.

7.1. The operator V, o 7;%? . HY(HZ) — L*(H}) is bounded. Fix a cube D C R™ and
set D := D x R%™. Let f be an atom, i.e., a function defined on I and such that

1
7.1 c D, oo (yn) < =, d dHp = 0.
(71) suppf € D, i < gy ond [ £
We have to prove that [(V, o EHF) fdHE < C, for some constant C' > 0 which does not
depend on f or D. Since (Vpo’]prF)f(:c) is well defined and non negative for f € L'(HP), the

uniform boundedness of V, o EHF on atoms yields its boundedness from H'(H}) to L'(HR)
by standard arguments. We omit the details.
First of all, by Holder’s inequality, Theorem 6.1, and (7.1),

n n 1/2
/ <vpo7;”f>fd%%s%<3z?>”2( / ((VpO%HF)f)ZdH’r‘>
3D 3

D

1/2
SHEBD)Y? (11w HEBD)) T S 1.

Thus, it remains to prove that f(3D)C(Vp o %Hg)f dHE < C.
Given x € T'\ 3D, let {€m}mez be a decreasing sequence of positive numbers (which
depends on x) such that

(7.2) (Vo TE) f(@)” <2 [(Kpm,, = (FHR) ()],

meJ

where J := {m € Z : supp ;™ (v —-) N suppf # 0}.

Set zp := (Zp, A(Zp)) € DNT, where Zp is the center of D. By (7.1), we have [z —
zp)K (z — zp) f(y) dHE(y) = 0 for all 0 < e < 4. Thus, given m € J, we can decompose

(Kear,, « (fHR))(2) = /wf;”;l (z —y) (K(x —y) = K(x = 2p)) f(y) dH1(y)

4 / (e (= y) — o (& — 2p)) K (x — 2p) f(y) dHR(w),

and we obtain (Ko * (fHE))(@)] < [|fllzec(ap) (Olm + ©2,), where
oL, : = /D pim (w9 |K(z —y) — K(z — 2p)| dH(y),

02, : = /D loem, (@ —y) — g (& — 2p)||K (z — 2p)| dHE().
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The term ©1,, can be easily handled. For z € I\ 3D, we have

(7.3) O1,, < (D) dist(z, D) " /D o (@ — ) AH(Y).

Let us estimate ©2,,. Decompose J = SU L, where S and £ are as in (6.4) but replacing
m € Z by m € J, and as before, let j(€,,) be the integer such that €, € Ij(e,,)- Using that
x € '\ 3D and suppf C D, one can easily check that £ contains a finite number of elements,
and this number only depends on n and d. Similarly, S; = () for all j € Z except on a finite
number which only depends on n and d.

Assume that m € S. With the same computations as those in (5.6), one can prove that,
for all y € supper,, (z — ), [V, (0, (@ — )| S 2 ey — empallF — §1!, because
1T — 9| = em ~ emy1 ~ 277(m) for all y € suppps m (z—-). Thus,

(7.4) 02,, < (D) dist(z, D) 127 e, — €yl

Assume now that m € L. It is easy to verify that |V, (gojgﬂ(x -yl S 1E -y so
02, < (D) dist(x, D)L

Combining this last estimate with (7.3), (7.4), the fact that |(Kepcm o+ (fHE))(2)] <
[ £l Lo (242) (O 13 + ©2py ), the remark on S and £ made just after (7.3), (7.2), and that p > 1,
we have that, for all z € T\ 3D,

Voo T 1) £ Wl ( X 01+ X 020+ % ®2m>

meJ meS meL
= I llzoe gy (D)™ Qe +1 \e —c +1|
m d m
STy (S o+ X S )
meS meL
_ Iy D)™

~  dist(z, D)"t!
Then, using (7.1) and standard estimates, we conclude that

n oo ()£ (D)L
Mo iy < [ f | oo (e iy <
L e Thi@ a5 [ Sl i) <1

7.2. The operator Vpo’EDHF : L®(H}) — BMO(H}) is bounded. We have to prove that
there exists a constant C' > 0 such that, for any f € L°°(Hf) and any cube D C R", there
exists some constant ¢ depending on f and D such that

Hn n n
/D |V 0 TEH)f = ] dH: < Ol gy HE (D).

Let f and D be as above, and set f1 := fxsp and fo := f — fi. First of all, by Holder’s
inequality and Theorem 6.1, we have

[ 0o T < H?(DW( /
D 3

1/2
SHED)2 (A1 iy HEGD)) T S 11 Lo gy HE(D).

B 1/2
(W, oﬁF)fl)%H%)

D
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Notice that |(V, o EHF)(fl +f2) = (Vo0 EHF)fﬂ < (Voo %H?)fh because V, o EHF is
sublinear and positive. Then, for any ¢ € R,

(Vo o TEE) (1 + fo) = ¢ <1V o TEE) (fr + fo) = Vp o Ta ) fol + [V 0 TR ) fo = ]
< W o TPV A+ 1V, 0TI £ — o,

hence we are reduced to prove that, for some constant ¢ € R,
(75) L1000 T2 = c| g < Cl i (D).

Set zp := (2p, A(Zp)), where zp is the center of D, and take ¢ := =V,0 7;, )fg(zD). We
may assume that ¢ < oo (this is the case if, for example f has compact support).
Given a family a := {ac}e>0 C C, define its p-variation semi-norm to be

1/p
lally, = sup (Z ey pr — aemv’) ,

em meZ
where the supremum is taken over all decreasing sequences {€m }mez C (0,00). Since || - [y,

satisfies the triangle inequality, we have |[||ally, — [[b|ly,| < |la — b[]y, for all @ := {ac}e>0 and
b := {bc}e>0, where a — b := {ac — be}e>0. Hence,

HE n
(Voo To M) fala) —c|” < sup D [(Kogm, + (faHi)) (@) — (Kpim,, + (foH?) (20)]7-
{em O} o,
Given x € I'ND, let {€,, }mez be a decreasing sequence of positive numbers (which depends
on x) such that

|V 0 ToE) fal) — | < 2 3 WKl + (FH)) ) — (Kol (foH) (20) "
meZ
Notice that |(Kpar, |+ (fHE) (@) — (Ko, + (FHD) )| < 1f ey (O + O2),
where ©1,, and ©2,, are as in (6.10) but replacing p by H}. It is straightforward to check
that the arguments and computations given in subsection 6.2 to estimate the two terms in
(6.10) (see (6.11), (6.12), and (6.13)) still hold if we replace p by Hpt. Therefore, we have

> (01 +602,) <1,
meZ=SUL

which impies that |(V, o %H?)fg(:c) —c| S | £l oo (34z) and, by integrating in D, gives (7.5).

7.3. The operator V, o EH? o LP(Hp) — LP(HE) is bounded for all 1 < p < co. Since

V0 7;3{? is sublinear, the LP boundedness follows by applying the results of subsection 7.1
and subsection 7.2, and the interpolation theorem between the pairs (H(H}), L'(H})) and
(L (H}), BMO(H})) in [Ju, page 43].

Given a v-cube @ C R%, set mg(f) := HE(Q) ! fQ fdH}, and let M denote the Hardy-
Littlewood maximal operator with respect to I', i.e. for x € T', M(f)(x) := supmqg(|f]),
where the supremum is taken over all v-cubes Q C R? containing z € I'. Let M?* be the
sharp maximal operator defined by M*(f)(x) := supmq(|f —mq(f)|), where the supremum
is also taken over all v-cubes Q C R? containing x € T.

One comment about the interpolation theorem in [Ju, page 43] is in order. Given an
operator F bounded form H! to L' and from L> to BMO, in the proof of the interpolation
theorem applied to F, one uses that M%o F is sublinear (i.e. (Mo F)(f+4g) < (MfoF)f+
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(M* o F)g for all functions f, g). This is the case when F is linear. However, V, o 7;,%? is not
linear, and then it is not clear if M? o Vo0 EH? is sublinear. Nevertheless, this problem can
be fixed easily using that V, o 7;%? is sublinear and positive (that is (V, o EH?) f(z) > 0 for
all f and z), as the following lemma shows.

Lemma 7.2. Let F : L (H}) — Li.(H}) be a positive and sublinear operator. Then
(M? o F)(f +9) S (Mo F)f + (Mo Flg for all functions f, .

Proof. If F' is sublinear and positive, one has that |F(f)(x) — F(g9)(z)| < F(f — g)(x) for
all functions f,g € L}, .(H?). In particular, |F(f + g)(z) — F(g)(z)| < F(f)(z). Then, for
r,yeQNT,
[F(f +9)(y) —mq(Fg)| < |F(f +9)(y) — Fa(y)| + [Fg(y) — mq(Fg)|
<|Ff)l+[Fg(y) — mo(Fg)l.

Hence, mo|F(f+g)—mq(Fg)| < mg|F f|+mg|Fg—mq(Fg)| < (MoF)f(x)+(M*oF)g()
and, by taking the supremum over all possible v-cubes @ > x, we conclude (M fo F)(f+
9)(@) S (Mo F)f(x) + (M* o F)g(x). u

By using Lemma 7.2 and the fact that [ M f{|rswp) S HMﬁfHLp(HrFL) for f e LPO(HE) N
LP(HE) and 1 < py < p < o0, one can reprove Journé’s interpolation theorem applied to

Vo0 EHF with minor modifications in the original proof.

7.4. The operator V, o T,0 : L1(}2) — LY*°(H}) is bounded. By adapting [CJRW?2,
Theorem B] to our setting and using the smoothnes of the family ¢, one can show that the

L%(H}) boundedness of V, o ’7;7{? yields the boundedness of this operator from L'(HZ) to
LY%°(HR®). The interested reader may see [MT], where a more general result is proved.
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