VARIATION FOR THE RIESZ TRANSFORM
AND UNIFORM RECTIFIABILITY

ALBERT MAS AND XAVIER TOLSA

ABSTRACT. For 1 < n < d integers and p > 2, we prove that an n-dimensional Ahlfors-
David regular measure x in R? is uniformly n-rectifiable if and only if the p-variation for
the Riesz transform with respect to u is a bounded operator in L?(p). This result can
be considered as a partial solution to a well known open problem posed by G. David and
S. Semmes which relates the L?(u) boundedness of the Riesz transform to the uniform
rectifiability of p.

1. INTRODUCTION

In this paper we characterize the notion of uniform rectifiability in the sense of David and
Semmes [DS2] in terms of the L? boundedness of the p-variation for the Riesz transform,
with p > 2.

Given 1 < n < d integers and a Radon measure x in R?, one defines the n-dimensional
Riesz transform of a function f € L'(u) by RFf(z) = lime g RE f(z) (whenever the limit
exists), where

m o r—Y d
Rf@) = [ V) duty), ze R
lx—y|>e ’x - y’
We will use the notation R¥ f(x) := {RF f(x)}e>0. When d = 2 (i.e., u is a Radon measure in
C), one defines the Cauchy transform of f € L'(u) by CHf(z) = lime g C¥' f(x) (whenever
the limit exists), where

criw=[ I aec
le—y|>e T — Y
To avoid the problem of existence of the preceding limits, it is useful to consider the maximal
operators R f(x) = sup,.¢ |RE f(x)| and C f(z) = sup.s( |C f(z)|. Notice that the Cauchy
transform coincides with the 1-dimensional Riesz transform in R? modulo conjugation, since
1/z =%/|z|? for all x € C\ {0}.

The Cauchy and Riesz transforms are two very important examples of singular integral
operators with a Calderén-Zygmund kernel. Given d > 2, the kernels K : R?\ {0} — R that
we consider in this paper satisfy

C C C
(1) |K ()] < B |0y K (z)] < [t and  |0,:0,; K (z)| < EGEk
foralll <i,j <dandz = (z!,...,2%) € R¥ {0}, where 1 < n < d is some integer and C' > 0
is some constant; and moreover K(—xz) = —K(x) for all x # 0 (i.e. K is odd). Notice that
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the n-dimensional Riesz transform corresponds to the vector kernel (z?,...,z%)/|z|**!, and
the Cauchy transform to (z!, —2?)/|z|? (so, we may consider K to be any scalar component
of these vector kernels). For f € L'(u) and = € R?, we set

TV f(2) = T.(f)(x) = / Kz — ) f(y) du(y),

|lz—y|>e

and we denote THf(x) = {T! f(x)}es0.

Definition 1.1 (p-variation and oscillation). Let F := {F¢}c>0 be a family of functions
defined on R®. Given p > 0, the p-variation of F at x € R? is defined by

1/p

WP = 500 (3 Foa ) = Fua))
{67”} meZ

where the pointwise supremum is taken over all decreasing sequences {€m }mez C (0,00). Fiz

a decreasing sequence {rm}mez C (0,00). The oscillation of F at 2 € R? is defined by

1/2

OF @) = swp (1) = B, @)
{em}{om} \ ez

where the pointwise supremum is taken over all sequences {€m tmez and {dm tmez such that

T+l < €m < O < 1oy, for allm € Z.

The p-variation and oscillation for martingales and some families of operators have been
studied in many recent papers on probability, ergodic theory, and harmonic analysis (see
[Lp], [Bo], [JKRW], [CJRW1], [JSW], [LT], and [OSTTW], for example). In this paper we
are interested in the p-variation and oscillation of the family 7#f. That is, given a Radon
measure  in R? and f € L' (1) we will deal with

(Voo TH)f () ==V, (THf)(2), (O TH)f(x) := O(T"f)(x).

We are specially interested in the case T# = RHM. Notice, by the way, that Tf f(z) <
(V, o TH) f(z) for any compactly supported function f € L'(u) and all z € R,

When g coincides with the Lebesgue measure in the real line and K(x) = 1/z is the
kernel of the Hilbert transform, Campbell, Jones, Reinhold and Wierdl [CJRW1] showed
that V,oT# and O o T* are bounded in L”(y), for 1 < p < oo, and of weak type (1,1). This
result was extended to other singular integral operators in higher dimensions in [CJRW2].
The case of the Cauchy transform and other odd Calderén-Zygmund operators on Lipschitz
graphs was studied recently in [MT].

Let us turn our attention to uniform rectifiability now. Recall that a Radon measure p in
R? is called n-rectifiable if there exists a countable family of n-dimensional C' submanifolds
{M;}ien in R? such that p(E \ U;eyM;) = 0. Moreover, p is said to be n-dimensional
Ahlfors-David regular, or simply AD regular, if there exists some constant C' > 0 such that
C~4m < p(B(x,7)) < Cr™ for all x € suppu and 0 < r < diam(suppu). One also says
that p is uniformly n-rectifiable if there exist 8, M > 0 so that, for each z € suppp and
r > 0, there is a Lipschitz mapping g from the n-dimensional ball B"(0,7) C R" into R?
such that Lip(g) < M and pu(B(z,r) N g(B™(0,r))) > 6r™, where Lip(g) stands for the
Lipschitz constant of g. In particular, uniform rectifiability implies rectifiability. Given a set
E C R4, we denote by H% the n-dimensional Hausdorff measure restricted to £. Then E is
called, respectively, n-rectifiable, AD regular, or uniformly n-rectifiable if H', is so. By the
Lebesgue differentiation theorem, any n-dimensional AD regular measure p is of the form
p= fHuppy With C~! < f(x) < C for some constant C' > 0 and all = € suppu.
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G. David and S. Semmes asked more than twenty years ago the following question, which
is still open (see, for example, [Pa, Chapter 7]):

Question 1.2. Is it true that an n-dimensional AD reqular measure p is uniformly n-
rectifiable if and only if RY is bounded in L*(p)?

Some comments are in order. By the results in [DS1], the “only if” implication of the
question above is already known to hold. Also in [DS1], G. David and S. Semmes gave
a positive answer to Question 1.2 if one replaces the L? boundedness of RY by the L?
boundedness of T} for a wide class of odd kernels K. In the case n = 1 (in particular, for
the Cauchy transform), the “if” implication was proved by P. Mattila, M. Melnikov and J.
Verdera in [MMV] using the notion of curvature of measures. Later on, G. David and J. C.
Léger [Lé] proved that the L? boundedness CL implies that y is rectifiable, even without the
AD regularity assumption (with n = 1).

When 4 is the n-dimensional Hausdorff measure on a set £ C R? such that u(E) < oo,
the rectifiability of p is also related with the existence p-a.e. of the principal value of the
Riesz transform of 4, that is, the existence of RF1(z) = lime o RE1(z) for p-ae. x € E. In
[MPr], P. Mattila and D. Preiss proved that, under the additional assumption that

(2) lim in% r "uw(B(z,r)) >0 for prae. z € E,
r—

the rectifiability of E is equivalent to the existence of R*1(x) p-a.e. « € E. Later on, in [To3]
X. Tolsa removed the assumption (2) and proved the result in full generality, i.e., he proved
that a set £ C R? with u(FE) < oo is rectifiable if and only if R*1(z) exists for y-a.e. x € E.
Let us mention that, for the case n = 1 and d = 2 (that is, for the Cauchy transform), the
analogous results had been obtained previously by [Ma2] under the assumption (2), and in
[Tol], in full generality, by using the notion of curvature of measures.

In this paper we prove the following:

Theorem 1.3. Let 1 < n < d and p > 2. An n-dimensional AD reqular Radon measure [ in
R? is uniformly n-rectifiable if and only if V,0R* is a bounded operator in L*(n). Moreover,
if p is n-uniformly rectifiable, then for any kernel K satisfying (1), the operator V, o TH is
bounded in L*(p).

Let us compare this result with the David-Semmes Question 1.2. Notice that the preceding
theorem asserts that if we replace the L?(1) boundedness of RY by the stronger assumption
that V, o R* is bounded in L?(u), then p must be uniformly rectifiable. On the other hand,
the theorem claims that the variation for odd singular integral operators with any kernel
satisfying (1), in particular for the n-dimensional Riesz transforms, is bounded in L?(p).

A natural question then arises. Given an arbitrary measure 1 on R?, without atoms say,
does the L?(u) boundedness of RY implies the L?() boundedness of V, o R¥, for p > 27
By the results of [MMV] and Theorem 1.3, this is true in the case n = 1 if p is AD regular
1-dimensional. Clearly, a positive answer in the general case n > 1 would solve the David-
Semmes problem in the affirmative. Nevertheless, such an approach to try to solve this
problem looks quite difficult. In fact, we recall that, it is not even known if the L?(u)
boundedness of R ensures the pu-a.e. existence of the principal values of RM1, which is a
necessary condition for the L?(x) boundedness of V, o R

Concerning the proof of Theorem 1.3, in our previous paper [MT] we showed that, if u
stands for the n-dimensional Hausdorff-measure on an n-dimensional Lipschitz graph, then
the p-variation for Riesz transforms and odd Calderén-Zygmund operators with smooth
truncations are bounded in L?(y). This is a fundamental step to prove that V, o R¥ and,
more generally, V, o TH, are bounded in L?(u) if x is uniformly n-rectifiable. Another basic
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tool in our arguments is the geometric corona decomposition of uniformly rectifiable measures
introduced by David and Semmes in [DS1], which, roughly speaking, describes how supp(u)
can be approximated at different scales by n-dimensional Lipschitz graphs.

The proof of the fact that the L?(1) boundedness of V, o R* implies the uniform rectifia-
bility of p is not so laborious as the one of the converse implication. As remarked above, if
V,oRH is bounded in L?(u), then the principal values of R*1 exist p-a.e., which implies the
n-rectifiability of u, by the results of [MPr] or [To3]. However, this is not enough to ensure
the uniform n-rectifiability of p. We will prove the uniform n-rectifiability by arguments
partially inspired by some of the techniques in [To4].

Finally, let us remark that Theorem 1.3 follows from a more general result, namely The-
orem 2.3 below, which also deals with the variation for Riesz transforms and odd Calderén-
Zygmund operators with smooth truncations.

As usual, in the paper the letter ‘C’ stands for some constant which may change its
value at different occurrences, and which quite often only depends on n and d. Given two
families of constants A(t) and B(t), where ¢ stands for all the explicit or implicit parameters
involving A(t) and B(t), the notation A(t) < B(t) (A(t) 2 B(t)) means that there is some
fixed constant C' such that A(t) < CB(t) (A(t) > CB(t)) for all t, with C as above. Also,
A(t) = B(t) is equivalent to A(t) < B(t) < A(t).

2. PRELIMINARIES
2.1. The main theorem.

Definition 2.1 (families of truncations). Let xr := X[1,00) and let @R : [0, +00) — [0, +00)
be a non decreasing C? function with X[d,00) < PR < X[1/4,00)- Suppose moreover that loR| is
bounded below away from zero in [1/3,3], i.e., x[1/33 < Cleg| for some C' > 0.
Given x € R, and 0 < € < 6, we set
Xe(e) = xallel /) and () = xela) — xo),
pe(x) == pr(|z[/€*) and  @(x) = pe(z) — ps().

Notice that, for any finite Radon measure p, Topu(x) = (Kxexp)(z). Givenz = (zt,...,2%) €
R?, we denote T = (z',...,2™,0,...,0) € R, and we set () := ¢ (T) and F°(x) := ©°(T).
Finally, for f € L} () we set Tif = T(fp) := {T" f1es0,

T5 f(z) =Ty (fr)(z) == (Kpex p)(z) and TLf =To(fr) == {15 f}tes0,
TL f(2) = Tp (fr) (@) = (K@e x p)(x)  and TLf =T(fu) = {T5 fleso-

Remark 2.2. In the definition, the choice of [4,00), [1/4,00), and [1/3, 3] is not specially
relevant, it is just for definiteness. One can replace the preceding intervals by other suitable
intervals, and all the proofs in the paper remain almost the same.

We will prove the following.

Theorem 2.3 (Main Theorem). Let 1 < n < d be integers. Let u be an n-dimensional AD
reqular Radon measure on R:. The following are equivalent:
(a) w is uniformly n-rectifiable.
(b) For any K satisfying (1) and any p > 2, the operator V, o T} is bounded in LP(p)
for all 1 < p < 0o, and from L*(u) into LV (u).
(¢) For any K satisfying (1) and any p > 2, the operator V, o T* is bounded in L*(p).
(d) For some p > 0, the operator V, o R* is bounded in L?(p).
(e) For K(z) = z/|z|"™' and some p > 0, the operator V, o T} is bounded in L*(1).
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Clearly, Theorem 1.3 is a direct consequence of the preceding result.

Remark 2.4. Let {ry}mez C (0,00) be a fixed decreasing sequence defining O. Then, the
implications (a) = (b),...,(e) in the theorem above still hold if one replaces V, by O. If
there exists C' > 0 such that C~'r,, < rpm, —7Tm+1 < Cryp, for all m € Z, then the implications
(b),...,(e) = (a) also hold (so Theorem 2.3 remains true replacing V, by O), but we do not
know if they are still true without this additional assumption (see Remark 6.9).

Notice that, by Theorem 2.3, besides V, o R* and O o R¥, the operators V, o 7} and
OoT} for K(x) = z/|x|"™! characterize completely the n-AD regular measures p which are
uniformly n-rectifiable.

One of the main ingredients for the proof of Theorem 2.3 is the following result, which
strengthens one of the endpoint estimates obtained in [MT]. Let M(R?) be the space of
finite real Radon measures on RY, with the norm induced by the variation of measures.

Theorem 2.5. Let p > 2 and let p be the n-dimensional Hausdorff measure restricted to an
n-dimensional Lipschitz graph. Then, V,0T, is a bounded operator from M(R?) to LY (),
i.c., there exists C > 0 such that, for all A > 0 and all v € M(R?),

p({o € B (V0 Tow(a) > A}) < S [l

In particular, V, o TS is of weak type (1,1). The constant C' only depends on n, d, K, p,
YR, and the mazimal slope of T'.

By an n-dimensional Lipschitz graph I' C R? we mean any translation and rotation of a
set of the type {x € R? : x = (y, A(y)), y € R"}, where A : R® — R?" is some Lipschitz
function with Lipschitz constant Lip(A), which coincides with the maximal slope of T'.

Remark 2.6. The theorem above remains valid if one replaces V, by O. Moreover, the
norm of O o 74" is bounded independently of the sequence that defines O.

The plan to prove Theorem 2.3 is the following: in Section 3 we deal with Theorem 2.5,
which is used in the subsequent Section 4 to obtain the implication (a) = (b) of Theorem
2.3. In Section 5 we prove (a) = (c¢) in Theorem 5.1, and in Section 6 we prove Theorem
6.8, which gives (d) = (a) and (¢) = (a), and finishes the proof of Theorem 2.3, taking
into account that the implications (b)) = (e) and (¢) = (d) are trivial.

Theorems 2.3 and 2.5 are stated in terms of V,, but they also hold for O, as remarked
above. However, we will only give the proof of these results for V,, because the case of O
follows by very similar arguments and computations.

2.2. Calderén-Zygmund decomposition for measures. Given a cube Q@ C R? and
a > 0, we denote by £(Q) the side length of @ and by a@ the cube concentric with @
with side length af(Q). The cubes that we consider in this paper have sides parallel to the
coordinate axes in R

A proof of the following result can be found in [To5, Chapter 2] or [M, Lemma 5.1.2].

Lemma 2.7 (Calderén-Zygmund decomposition). Assume that p := Hinp, where I' is an
n-dimensional Lipschitz graph and B C RY is some fized ball. For any v € M(R?) with
compact support and any X > 297 |v||/||ull, the following holds:
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(a) There exists a finite or countable collection of almost disjoint cubes {Q;}; C RY (that
is, >.;x@; < C) and a function f € LY(p) such that

3) V1(Q)) > 27 au(20;),
(4) VI(nQy) <27 A\u(2nQ;)  forn > 2,
(5) v=fuin Rd\Uij with |f| < X\ p-a.e.

(b) For each j, let R;j := 6Q; and denote wj := XQj(Zk XQk)_l. Then, there exists a
family of functions {b;}; with suppb; C R; and with constant sign satisfying

(6) / b dp = / w; dv,

(7) 1051 Loo(yi(R;) < Clv|(Qy), and
(8) >-ilbjl < CoA  (where Co is some absolute constant).

2.3. Dyadic lattices. For the study of the uniformly rectifiable measures we will use the
“dyadic cubes” built by G. David in [Da, Appendix 1] (see also [DS2, Chapter 3 of Part
I]). These dyadic cubes are not true cubes, but they play this role with respect to a given
n-dimenasional AD regular Radon measure p, in a sense. To distinguish them from the usual
cubes, we will call them p-cubes.

Let us explain which are the precise results and properties about the lattice of dyadic
p-cubes. Given an n-dimensional AD regular Radon measure x in R? (for simplicity, we may
assume diam(suppp) = 00), for each j € Z there exists a family D; of Borel subsets of supppu
(the dyadic p-cubes of the j-th generation) such that:

(a) each Dj is a partition of suppu, i.e. suppy = UQeDj Q@ and Q N Q' = () whenever
Q.Q" €Dj and Q # Q'
(b) if @ € Dj and Q' € Dy, with k < j, then either Q C Q" or Q N Q" = 0;
(c) for all j € Z and Q € Dj, we have 277 < diam(Q) < 277 and u(Q) ~ 277™;
(d) there exists C > 0 such that, for all j € Z, Q € Dj, and 0 < 7 < 1,

p({z € Q :dist(z, suppp \ Q) < 7277}
+ u({z € suppp \ @ : dist(z, Q) < 7277}) < crt/Comim,

This property is usually called the small boundaries condition. From (9), it follows
that there is a point 29 € @ (the center of @) such that dist(zg,suppu \ Q) = 277
(see [DS2, Lemma 3.5 of Part IJ).

We denote D := (J;c; Dj. For @ € Dj, we define the side length of Q as £(Q) = 277,
Notice that £(Q) < diam(Q) < £(Q). Actually it may happen that a pu-cube @ belongs to
D;j N Dy, with j # k. In this case, £(Q) is not well defined. However, this problem can be
solved in many ways. For example, the reader may think that a p-cube is not only a subset
of suppy, but a couple (Q, j), where @ is a subset of suppp and j € Z is such that @ € D;.

Given a > 1 and Q € D, we set aQ := {m € suppp : dist(z, Q) < (a — 1)6(@)}. Observe
that diam(aQ) < diam(Q) + 2(a — 1)4(Q) < (2a — 1)4(Q).

2.4. Corona decomposition. Given an n-dimensional AD regular Radon measure j; on R?,
let D:={Q € Dj : j € Z} be the dyadic lattice associated to p introduced in Subsection
2.3. Following [DS2, Definitions 3.13 and 3.19 of Part I], one says that p admits a corona
decomposition if, for each n > 0 and 6 > 0, one can find a triple (B,G, Trs), where B and
G are two subsets of D (the “bad p-cubes” and the “good p-cubes”) and Trs is a family of
subsets S C G (that we will call trees), which satisfy the following conditions::

9)
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(a) D=BUG and BNgG=0.

(b) B satisfies a Carleson packing condition, i.e., > ncp. ocp (@) S p(R) for all R € D.

(c) G =Wgens S, ie., any Q € G belongs to only one S € Trs.

(d) Each S € Trs is coherent. This means that each S € Trs has a unique maximal
element Qg which contains all other elements of S as subsets, that Q' € S as soon
as Q' € D satisfies Q C Q' C Qg for some Q € S, and that if Q € S then either all of
the children of @ lie in S or none of them do (if @ € Dj, the children of @ is defined
as the collection of pi-cubes Q" € Dj41 such that Q' C Q).

(e) The maximal p-cubes Qg, for S € Trs, satisfy a Carleson packing condition. That
i8, > sems gscr M(Qs) S p(R) for all R € D.

(f) For each S € Trs, there exists an n-dimensional Lipschitz graph I'g with constant
smaller than 7 such that dist(z,I's) < 6 diam(Q) whenever = € 2Q) and @ € S (one
can replace “z € 2Q)” by “x € CeQ” for any constant Ce, > 2 given in advance,
by [DS2, Lemma 3.31 of Part I]).

It is shown in [DS1] (see also [DS2]) that if p is uniformly rectifiable then it admits a
corona decomposition for all parameters £ > 2 and 7,0 > 0. Conversely, the existence of
a corona decomposition for a single set of parameters & > 2 and 1,0 > 0 implies that p is
uniformly rectifiable.

2.5. The o and f coefficients. Let p be an n-dimensional AD regular Radon measure in
R?% and D as in Subsection 2.3. Given 1 < p < co and a p-cube Q € D, one sets (see [DS2])

Bpu(Q) = i%f{ g(é)n /2 ) ( dis;((cyg,)L) >pdu(y) }1/;»7

where the infimum is taken over all n-planes L in R?. For p = oo one replaces the LP norm by
the supremum norm. The B4, coefficients were first introduced by P. Jones in his celebrated
work on rectifiability [Jn], while the 3, ,’s for 1 < p < oo were introduced by G. David and
S. Semmes in their pioneering work on uniform rectifiability (see [DS1] for example).

Other coefficients that have been proved useful in the study of uniform rectifiability and
boundedness of Calderén-Zygmund operators are the a coefficients introduced in [To4]. Let
F C R? be the closure of an open set. Given two finite Radon measures o, v on R?, one
sets distp(o,v) := sup{‘ffda — ffdy‘ : Lip(f) < 1, suppf C F}. Finally, given a p-cube
Q € D, consider the closed ball By := B(zq,6v/dl(Q)), where zg denotes the center of Q.
Then one defines

(10) (@) =

1 . . n
W CIZ%FL dlStBQ (,u, CHL)7

where the infimum is taken over all constants ¢ > 0 and all n-planes L in R,

The following result characterizes the uniform rectifiability of x4 in terms of the o and
coefficients (see [DS1] for (a) <= (b) and [To4] for (a) <= (c)).
Theorem 2.8. Let p € [1,2] and let u be an n-dimensional AD reqular Radon measure in
R®. The following are equivalent:

(a) w is uniformly n-rectifiable.

(b) ZQED:QCR BP,M(Q)QE(Q)H SA(R)™ for all p-cubes R € D.
(¢) 2gep.ocr au(Q)2(Q)™ S U(R)™ for all p-cubes R € D.

For the case u = H2% for some Lipschitz graph I' = {z € R? : 2 = (y, A(y)), y € R"},
one can take D = {Q x R NT : Q € D(R")}, where D(R") denotes the standard dyadic



8 A. MAS AND X. TOLSA

lattice of R™. For Q = (Q x R™™)NT € D, we set

(11) Gu(Q) = ——

(Gt o, agnennis ),

where the infimum is taken over all constants ¢ > 0 and all n-planes L in R%. Then, it is
easy to show that a,(Q) ~ o, (Q) for all Q € D.

One can also define 3, ,(Q) in an analogous manner. By Theorem 2.8,

(12) Y (Boul@7 +@@NUQ)" < CUR)"

QeD: QCR

for all R € D, with C independent of R. Moreover, one can also show that this last inequality
also holds~ replacing @ and R by k1Q and ko R for any ki,ko > 1 given in advance, where
kEQ = (kQ x R=™)NT for k > 0.

3. IF I" 1S AN n-DIMENSIONAL LIPSCHITZ GRAPH, THEN
V,0T,: M(R?) — L1*°(HR) 1S A BOUNDED OPERATOR

The following result is contained in [MT, Theorem 1.1] (see also [M, Main Theorem 3.0.1]).

Theorem 3.1. Let p > 2 and let p be the n-dimensional Hausdorff measure restricted to an
n-dimensional Lipschitz graph. Then, the operator V, o 7'5 is bounded in L?(p). The bound
of the norm only depends on n, d, K, p, pr, and the slope of the graph.

By very similar techniques to the ones used in the proof of the theorem above, one can
prove the following.

Theorem 3.2. Let p > 2 and let p be the n-dimensional Hausdorff measure restricted to an
n-dimensional Lipschitz graph. Then, the operator V, o T} is bounded in L?(p). The bound
of the norm only depends on n, d, K, p, pr, and the slope of the graph.

Sketch of the proof. The first step consists in obtaining the following basic estimate: Fix
acube P CR™ Set ' :={z € R : z = (y,A(y)), y € R"}, where A : R® — R ™ is

a Lipschitz function supported in P, and set P := (P x R™")NT. Set u := fHZ, where
f(x)y=1forallz €T\ Pand Cy* < f(x) < Cp for all z € P, for some constant Cp > 0.
For each x € I, define

(13) Wa@)? = S [(Kyon + p)(@) — (KGpm + 1) ()]
meZ
and

(14) Su(x)® = sup Y > (Ko, *m)(@),

{Gm} JEZ mEL: €m;€'m+161j

where I; = [27771,277) and the supremum is taken over all decreasing sequences of positive
numbers {€,, }mez. Then, we claim that

(15) W a7 + 1SulZ24) £ D (@u(C1Q)* + B2,4(Q)% ) Q)™
QeD

where C7 > 0 only depends on Cy, n, d, K, ¢r, and Lip(A), and where D denotes the dyadic
lattice associated to Hit defined below Theorem 2.8.
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Let us prove the claim. If we define S p like S but replacing o™ | by ¢&m, | in the proof
of Theorem 3.1 in [MT] it is shown that HS,LLHLQ(H) is bounded above by the right hand side
of (15). The proof for ||S[LH%2(#) is almost the same.

Let us deal now with Wp. Fix D := (D x R“)NT € D with £(D) = 2™ and z € D.
Let Lp be an n-plane that minimizes &, (C1D) in (11), where C; > 0 is some constant
big enough which will be fixed later, and let op := cpH}  be a minimizing measure for
a,(C1D). Let LY, be the n-plane parallel to Lp which contains x, and set o7, := cD’H}i%.

Since z € D and £(D) =27, (pg-m(x —-) — pg-m(x —-)) K (x —-) is a function supported
in C1D x R (for some constant C big enough) and with Lipschitz constant smaller than
C2m(+1)  Moreover, by the antisymmetry of the function (@o—m (z—-)—@g-m (x—-)) K (z—-),
and since o7, is a multiple of the n-dimensional Hausdorff measure on an n-plane which
contains x, we have (Kpo—m * 0}))(x) — (K@g-m * 0,)(x) = 0. Therefore,

(K pg—m * p)(2) = (Kpg-m * p)(z) = (K(po-m — po-m) * p)()
= (K(pa-m = @a-m) * (= 0p))(2) + (K(p2-m — a-m) * (0p — 0p))(x).

Using the definition of o, we get

A7) (K (psm —Foom) * (11— o0))(@)] £ 27" diste, 5 gan(1.00) S @u(C1D).
Since LY, is a translation of Lp, by standard estimates it is not hard to show that
(18) (K (pg—m — po-m) x (op —op))(x)| < 2™dist(x, Lp) = dist(x, Lp) /(D).

Let disty (E, F') denote the Hausdorff distance of two given sets I, F' C R?, and set Bp :
6D x R4, If LY and L% denote a minimizing n-plane for By u(D) and Bo (D), respectlvely
one can show that disty(Lp N Bp, Lyn Bp) < a,(D)¢(D) and that disty (L} N Bp, Lin
Bp) < gg#(D)E(D). This easily implies that dist(x, Lp) < dist(z, L%) + EQ,H(D)K(D) +
a,(D)(D) for all z € D. Applying this to (18), and using also (17) and (16), we obtain

Wil = [ 310K ea = Gaon) # ) (o) (o)

MEZ

-y ¥ /| (prmm — Boom) % ) (@) dpu(z)

mEZ DED: £(D)=2—"m

< Z Z / (dist(x, L) /€(D) + Ba,u(D )+au(01D)) dp(z)

meZ DeD: ((D)=2-m

(16)

S Z (au(CID) +/82,,u(D)2)£(D)na

DeD

which proves (15).

Let now p be as in Theorem 3.2. Using (15) and Theorem 3.1, one can show that there
exists C' > 0 such that, for any cube D C R" and any g € L*(u) supported in D (where
D := D x R&™),

[ (0o 7210 du < Clolfe (D).

This yields the endpoint estimates V,074" : H'(u) — L'(p) and V,07" : L*(u) — BMO(u),
where H' (1) denotes the atomic Hardy space related to p. Then, by interpolation, one finally
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deduces that V, o 72" is bounded in L?(y). Since this part of the proof is analogous to the
one in the proof of Theorem 3.1 (see [MT, Theorem 1.1]), we omit it. O

3.1. Proof of Theorem 2.5. The proof of Theorem 2.5 uses the Calderén-Zygmund de-
composition of Lemma 2.7 and rather standard arguments. Set u := H7p, where is some
fixed ball B ¢ R%. Let v € M(R%) be a finite Radon measure with compact support and
A > 290yl /||pl|. We will show that

(19) p({r e R (V0 Tow(a) > A}) < S I,

where C' > 0 depends on n, d, K, p and I', but not on B. Let us check that this implies
that V, o T, is bounded from M (R%) into L%*°(H%). First, we show that (19) also holds for
v without compact support. Set vx = xp(o,n) ¥ and let Ny be such that suppu C B(0, No).
Then it is not hard to show that, for x € supppu,

V(R B(0, N))
(V0 Tov(a) = (V0 Tyua(@)] < C ,
N — Ny
thus (V, 0 To)vn(z) = (V, 0 T,)v(x) for all x € suppp, and since the estimate (19) holds by
assumption for vy, letting N — oo, we deduce that it also holds for v. Now, by increasing
the size of the ball B and by monotone convergence, we deduce that ”H?({x € R? : (V0
To)v(z) > A}) < CA7v||, as desired.
To prove (19) for v € M(R?) with compact support, let {Q;}; be the almost disjoint
family of cubes of Lemma 2.7, and set 2 := Uj Qj and R; := 6Q);. Then we can write
v = gu + v, with

gr = Xra\QV + iju and v, = Zyg = Z (wjv —bjp) ,
J J

J

where the functions b; satisfy (6), (7), (8) and w; = xq, (> XQk)_l
By the subadditivity of V, o 7T, we have

(20) p({z e R (V,0 Tp)v(z) > A})

<p({zeR: (V,0TH)g(x) > A/2}) + p({z € R+ (V, 0 Ty u(x) > A/2}).

Since V, o 7;2{? is bounded in L?(H}) by Theorem 3.2, it is easy to show that V, o 7' is
bounded in L?(u1), with a bound independent of B. Notice that |g| < CX by (5) and (8).
Then, using (7),

M({e%ERd:(V o’TM >)\/2} N)\Q/] gPdMN)\Q/‘g\Zdu
2 <5 fans 3 (mEno +Z/ ol dn
s x(vmh+ > vie) < 5.

Let O == U, 2Q;. By (3), we have u(@) < 3, u(2Q;) S A%, WI(@y) S A~ Llv]. We
are going to show now that

(22) p({e € RN\D (0,0 Tomle) > M/2}) < S Il
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and then (19) is a direct consequence of (20), (21), (22) and the estimate () < Ay
Since V, o T, is sublinear,

({xeRd\Q (V0 To)vp(z) > N/2}) N/\Z/Rd\ WV o%)ugdu

<< V, o To)v du + / (V, o To)! dp.
)\zj:/Rd\sz( poTe) )\Z o

2R;\2Q;

(23)

We are going to estimate the two terms on the right of (23) separately. Let us start with
the first one. Given j and = € suppp \ 2R;, let {€,, }mez be a decreasing sequence of positive
numbers (which depends on j and z, i.e. €, = €,(j,z)) such that

1/p
(24) Vo Ty <2( S (K, ><x>|p) |

meZ
If we set Ij, := [27%=1 27%) we can decompose Z = S U L, where

L:={m€ETZ: €I, ¢nt1 € I;, fori >k},

S = U Sk, Spi={meEZ: en, emys1 € I}}.
kEZ

Let z; denote the center of Q; (and of R;). Then, since I/g(Rj) =0 and suppyg C Ry,

(g xvd)(@)] = / o (& — ) K(z — ) dvf ()

(25) |
< / lper (= y)K(x —y) — o, (z — 2) K (z — 2;)| d|]|(y)

If m € L, it is easy to see that |V(@§2+1K)(t)| < |V (@ern K) ()] + V(e K) ()] S

[t[="~L for all t € R%\ {0}. Moreover, since z € R?\ 2R; and suppui C Rj, there are

finitely many m € £ (which depends only on n and d) such that (Kgim, |+ 1y)(z) # 0,
and this number only depends on n and d. On the other hand, if m € Sk, it is not hard to
show that |V (pgm, K)(t)| S 2% €, — €mat|[t| ™1 Actually, this follows from the fact that

(SpgﬁﬂK)(t) # 0 only if [t| ~ 27% and the estimates

|t | | |t It]
\me()\:\ng( < bl gy | A2 — 14
(26) €m+1 €m+1 €m
€ €Ema1
= ||pfloo)t] ——" §2k\em—em+1|
mEm+
and
t| |t 1
Oui (™ (1))] < ’<‘ >_ /<>
|0 (p&m  (1)] < | ek oo mla ) e
t| 1 |t |t] 1
o <l () () o
( ) 7R €m €m €m+1 R €m R €m+1 €m+1

[t '\ em — €ms1 -
(H@RHooJr 1R o T S 2 em — empn)[t T
Em+1 EmEm+1

where 1 < i < d and t* denotes the i’th coordinate of t € R¢ (recall that €, ~ €11 ~ 2=k
for m € Sy and we assumed || ~ 27%). Similarly to the case m € L, there are finitely many
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k € 7Z such that suppgogii,l (x—-)NR; # 0, and the number only depends on n and d (notice

that suppptm, (z— ) C suppgogiz,l(a: — ) for all m € Sg).
From these estimates and remarks, and (24), (25), we obtain

VpoT, SN K k) @)+ D (K, # 1) ()]

k€EZ mEeSy meL
= > > 2lem — empllz — 1 R4

kez: suppwgiz_l(x—')ﬂRj#w meSk

+ > = 2 R N S = 2] (R 1|

meL: supp<,aemJrl (z—)NR;#0D

for all j and & € suppp \ 2R;. Therefore, using that p has n-dimensional growth, that
|7l S [v[(Q;), and that the Q;’s are semidisjoint,

Voo T dp S E(R‘)Hl/jll/ =2 dp S 1 S vl
39 2 g Vo TS RN [ o S

Let us now estimate the second term on the right hand side of (23). As above, given j
and = € 2R; \ 2Q;, let {€,,}mez be a decreasing sequence of positive numbers such that

1/p
(Vp o Tp)(wjv)(z) < 2( DK+ (ij))($)|”) ;
meZ

where w; = xq,; (>, XQk)fl. Since p > 2, V, o T, is sublinear, and since Vg = w;v — bjpu,
for x € 2R; \ 2Q); we have

(Voo TV () < (Vy 0 Tp) (wjv) (z > (Vp o T)(bj)(z)
<23 (Kol | x (wp))(@)] + (Vy 0 TE)bj (@)

meZ

S wWl@)le = 27" + (V, 0 TZbj ().

Since V, o 7' is bounded in L?(u), using the estimate above and Cauchy-Schwarz we get

vl(Qy)
(Vpo T, Wl dp < / )+ / (V, 0 TE)b; d
Z/R \2Q; b Z 2R;\2Q; |z — 2 |" Z 2R;\2Q; W) ’

2R
S Z! I( Qg +ZH )bl 2y (2R;)?
S Z w(Q) + Z ||ijL°°(u)/~L ) S Do IvI@) S vl
i i i

Together with (28) and (23), this proves (22), and Theorem 2.5 follows.

4. IF p1 1S A UNIFORMLY n-RECTIFIABLE MEASURE, THEN
V, o0 T4« LP(u) — LP(p1) 1S A BOUNDED OPERATOR FOR 1 < p < 00

The purpose of this section consists in proving the following theorem and the subsequent
corollary.
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Theorem 4.1. Let p1 be an n-dimensional AD reqular Radon measure in R® and let p > 2.
Assume that there exist constants Cy and Cy such that, for each ball B centered on supp,
there is a set F' = Fg such that:

(@) u(F N B) > Con(B),
(b) V, 0T, is bounded from M(R?) to LY (H%) with constant bounded by Ch.

Then V, 0T, is bounded from M(R?) to L1*°(u), and V,o T} is a bounded operator in LP ()
forall1l < p < .

Corollary 4.2. If u is an n-dimensional AD reqular uniformly n-rectifiable measure, then
V, 0T} is a bounded operator in LP(u) for all 1 < p < co and p > 2. Moreover, the operator
V, 0T, is bounded from M(R?) to LV*(u), so V, o T} is also of weak type (1,1).

Proof. Recall from [DS2, Definition 1.26] that a Radon measure v in R? has BPLG (big
pieces of Lipschitz graphs) if v is n-dimensional AD regular and if there exist constants
Cy > 0 and € > 0 such that, for any € suppr and 0 < r < diam(suppvr), there is (a
rotation and translation of) an n-dimensional Lipschitz graph I' with constant less than C;
such that v(I'N B(xz,r)) > 6r™. Thus, if v has BPLG, the assumption (a) of Theorem 4.1
is satisfied for v by taking F' = I', while Theorem 2.5 implies that the assumption (b) holds
with a uniform constant. Therefore, from Theorem 4.1 we deduce that, if v has BPLG and
p > 2, then V, o T, is bounded from M (R?) to L1*°(v).

Similarly, a measure v has (BP)?LG (big pieces of big pieces of Lipschitz graphs) if there
exist constants Cy, 0, and 0 < a < 1 so that, if B is any ball centered on suppv, then
there is an n-dimensional AD regular set F' C R? (with constant bounded by Cy) such that
v(F N B) > av(B) and such that H} has BPLG with uniform constants. So V, 07, is a
bounded operator from M (]Rd) to LI’OO(H%), by the comments above. Hence, we can apply
once again Theorem 4.1 to v (now (b) is satisfied for the big pieces F' of v), and we deduce
that, for any measure v which has (BP)2LG, V, o T, is bounded from M (R%) to L1>°(v).
Similar arguments yield that V, o 77 is a bounded operator in LP(v) for all 1 < p < oo.

Finally, from [DS2, page 22] and the remark given in [DS2, page 16], we know that if
1 is n-dimensional AD regular, then being uniformly n-rectifiable is equivalent to having
(BP)2LG. Therefore, the corollary is proved by applying the comments above to v = p. [

Since the arguments for proving Theorem 4.1 are more or less standard in Calderén-
Zygmund theory, for the sake of shortness we will only sketch its proof (see [To5, Chapter
2] or [DS2, Proposition 1.28 of Part I] for a similar argument).

Sketch of the proof of Theorem 4.1. The proof follows by the so-called good A inequal-
ity method. Fix p > 2 and let M* denote the Hardy-Littlewood maximal operator

B
Vo) s sup BT
r>0 W(B(z,7))
The good A inequality: one shows that there exists some absolute constant 1 > 0 such that
for all € > 0 there exists 6 := d(e) > 0 such that

p({z e R . (V, 0 To)v(z) > (14 €)X, MFu(z) < 6A})
<A -nu({zeR?: (V,0T)v(z) > \})

for all A > 0 and v € M(R?). It is easy to check that this implies that V, o T, is bounded
from M (R?) to L1°°(u), and that V,0 7" is bounded in LP(p) for all 1 < p < oo, by standard
arguments (recall that M* is bounded in these spaces).

for v e M(Rd) and x € suppp.

(29)



14 A. MAS AND X. TOLSA

The proof of (29) is quite standard. The interested reader may look at [M, Theorem 5.2.1]
for the detailed proof, or at [To5, Chapter 2] for similar arguments. The only point that
we should mention is that, in order to pursue the good A inequality method, one needs the
following estimate: let v € M(R), consider a ball B C R? and take z,z € B. Then,

(30) (Vo 0 To) (xmavonv) (@) = (V0 To) (xmarapv) (2)| S MMv(2).

We finish the sketch of the proof of Theorem 4.1 by showing (30). Since z,z € B and V,0 7,
is sublinear and positive, by the mean value theorem,

‘(Vp ° %)(XRd\wV)(x) — (Vo %)(XRd\wV)(Z)}

1/p
< sup ( D K, x (Xraopy)) (@) — (K@i | (XRd\zBV))(Z)!p>
em meZ

<sw ( 3 ( / T ) )l ¢ d,y,@))”) "

mEZ

(31)

where B, (r,2) := (R?\ 2B) N (suppper  (x — ) Usuppper, (2 —-)) and uy .(y) is some
point lying on the segment joining x and z. For each x and z, let €, = €,,(x, z) be a sequence
that realizes the supremum in the right hand side of (31). Given €,, > 0, let j(e,,) denote
the integer such that e, € [277(¢m)=1 2=3(em)) For j € Z set I := [27971,279). As usual,

we decompose Z = S U L, where

S = U Sj, Sj = {m SV €m, Em+1 € Ij},
JEZL
L:={m€eZ: en€l; emns €1 fori<j}.

Notice that if 2772 < r(B), where r(B) denotes the radius of B, then B, (z.2) = 0 for
all m € §;. Therefore, we can assume that j < logy(4/r(B)). If m € S, then By, (z,2) C
B(z,277%?%), and for t € supp(pfr, K) we have that [V(pm, | K)(t)] < 212 e, — €]
(see (26) and (27)). If m € L, we easily have |V(pem  K)(1)| < [t|="~1. Therefore, using
(31), that p > 2, that the sets By, (z, z) have bounded overlap for m € £, and that |z — z| <
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r(B), we get
’(Vp ° E)(Xﬂad\w’/)( z) — (Vo )(XRd\2BV)( )‘

S Y el [ dbw
27

j<logy(4/r(B)) meS;

P /  — "V dly|()

meLl B (2,2)

D r(B)2j(”+1)/ dv|(y)

dv|(y) + r(B) / _dlly)
§<log,(4/r(B)) B(a.2-9+3) ri\2p [T =y

r(B)27 5
DY 1(B(x,2-373)) /B(m_m) dlv|(y)

j<logy(4/r(B))

dlv

k>1 r B)>\xfy|>2k_1r(B) |z —

< MHPy( < MH .
M)+ 3 BT oy, I A

0

Remark 4.3. Notice that, to prove (30), it is a key fact that we are considering smooth
truncations (given by ¢r) in the definition of 7,. These computations are no longer valid if
one replaces T, by T.

5. IF ju IS A UNIFORMLY n-RECTIFIABLE MEASURE, THEN
V,oTH: L?(n) — L?(p) 1S A BOUNDED OPERATOR

This section is devoted to the proof of the following result.

Theorem 5.1. Let p > 2 and let i be an n-dimensional AD regular Radon measure on R,
If w is uniformly n-rectifiable, then V, o T* is a bounded operator in L*(p).

5.1. Short and long variation. Given j € Z, set I; := [27771,277). Then, using the
triangle inequality, we can split the variation operator into the so-called short variation and
long variation operators, i.c., (V, 0 TH) f(z) < (V5 o TH) f(z) + (V5 o T") f(x), where

1/p
(VS o T f(x) == sup<z > I(KXEZ:H*(fu))(x)!”> ,

{em} JEZ €m,em+1€1L5
(32) 1/p
VE T 1(0) = (X ma. s aer)

meZ: Emelj, E€m+1 le

for some j<k
and, in both cases, the pointwise supremum is taken over all the sequences of positive numbers
{€m }mez decreasing to zero. To prove Theorem 5.1 we will show that both the short and
long variation operators are bounded in L?(p).

5.2. L?*(n) boundedness of VpﬁoT“. The L?(u)-norm of the long variation operator V/f:OT“
can be handled by comparing it with its smoothed version V, o 74", using Corollary 4.2, and
estimating the error terms by the short variation operator.
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Lemma 5.2. We have |(VE o T) fll 1200 S 1V o T) fll 2 + 1 11220-

Proof. We decompose
(V5 o TH)f(2))" = sup > [(Kxen,, « (fm)(@)]

Em S meZ: em€lj, em+1€l,
for some j<k

s Y (KOG, — e,) + Fm) @) + (Ko, + (Fm)(@))°)
(33) {em} meZ:
em€lj, emy1€ly
for some j<k

< sup > (K (xen,, —var )+ (fr) @) + (V0 TE) f(2))”.
{em} mez: em€lj, emy1€l)
for some j<k
For simplicity, we denote by ((Vpﬁ oTi ) f (z))” the first term on the right hand side of (33).
Notice that, given €,8 > 0, we have x¢ — ©? = (xc — ¢c) — (x5 — ¢s). Recall that, in the
definition of pg in Definition 2.1, we have taken X[4.0) < ¥R < X[1/4,00)- Hence, given ¢ > 0,

4 4

a(5)X o () ds = / B8~ X (1) 0

Ya(t) — @a(t) = X0 (t) — / )

(that is, xg — ¢r is a convex combination of x[1,oc) = X[s,00) for 1/4 < s < 4), and thus, by
Fubini’s theorem,

(K (xe — ) * (1) () = / (el — u?/e) — prlle — y?/e) K (x — v) () duly)

4
= [ ks) [ (xoorlo = /) = X2 = /) Kz = 1) £(0) duy) ds
1/4

| \
- / a(s) / V3 — ) K (@ — ) ) duly) ds = / a(s) (BXE" % (fu) () ds.
1/4 1/4

Therefore, by the triangle inequality and Minkowski’s integral inequality, we get

1/p
sup ( S (K (e, — 0,) # <fu>><x>|ﬂ)

{emEILm: meL} meZ,
4 1/p
<2 o] s ( S (Ko <fu>><a:>v’)

{emEIm:TnEZ} mez
One can easily verify that SUD{e,,Cln: mEZ} (ZmEZ ](Kxﬁﬁﬁ*(fu))(x)\p) 1e < (V;,SoT")f(x)
for all s € [1/4, 4] with uniform bounds. Hence

NOVE o T )iz < 2\

L2(w)

ds.
L2 ()

4
B4 07 e T iz S /1 RO 0T 2 ds S 105 0 Tz
Finally, using (33), (34), and Corollary 4.2,
105 0 T) Fllzgoy S 1% 0 TRE) Fllzaey + 110V 0 TE) Fllzag

SUHOVS o T Fllrzq + 1 L2 -
O

Thus, to prove Theorem 5.1, it only remains to show the L?(x) boundedness of V)f o TH.
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5.3. L?(u) boundedness of V;?o’T“. We will see that Vs oT* is bounded in L?(u), basically
due to the big amount of cancellation given by the kernel defining 7# and the good geometric
properties of y. Since V;Os oTH < Vés oTH for p > 2, we will be done. One could try the same
technique for V/f: oTH, however VQL oT* is not bounded in L?(y) in general, even for the case
of the Hilbert transform or in the setting of martingales (see [JKRW] for a precise example),
and this is why we should mantain p > 2 when we deal with V, o T#. Let us mention that
to pass from p > 2 to p = 2 in the study of the short variation operator is a rather standard
argument (see [CJRW1] for example).

Given f € L?(u) and = € suppp, let {€m }mez be a decreasing sequence of positive numbers
(depending on x) such that

(VS oTmf@)?<2> 30 e, * (fu) (@)
JEZL €m,em+1€1;

Given D € D; (see Section 2.3 for the definition of D;) and « € D, we set Sp(x) := {m €
Z: €m,€ms1 € Ij}. Since p > 2, we have

1OV5 0 T FIRa gy < VS 0 T*) Il /Z Yo lEx,, = (fw) (@) du(z)

JEZL €m,em+1€1L5
-y / SR, () (@) du(a).
DeD meSp ()

Let 1 and 0 be two positive numbers that will be fixed below (see the proofs of Claims 5.5
and 5.6). Consider a corona decomposition of pu with parameters n and 6 as in Subsection
2.4. Then, we can decompose D = BU (g S), so that

IS o T 2oy S 3 / Z By, (F) (@) ds(z)

DeB mESD

2> / S X, ) dute)

SeTrs DeS meSp(x

(35)

Since the p-cubes in B satisfy a Carleson packmg condition, we can use Carleson’s em-
bedding theorem to estimate the sum on the right hand side of (35) over the p-cubes in B.
The Carleson’s embedding theorem is a well known result in the area of harmonic analysis
(see [Tob, Chapter 5] for example), but the most usual “continuous” version of this result
can be found in [Du, Theorem 9.5] for example. Thus, if we set mf, f := (D)=t [, f dp for
D € D, we have

>/ S U)o ko)

DeB mESD

(36) = / )y ( [ Gl i) )

DeB meSp
2
d du ~ ol 2 D) < 2,
~Dz;g/< /5D|f' u) 2 D%(mww u(D) S IS,

Now we are going to estimate now the second term on the right hand side of (35), that
is the sum over the p-cubes in S, for all S € Trs. To this end, we need to introduce some
notation.
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Definition 5.3. Given R € D; for some j € Z, let P(R) denote the p-cube in Dj_y which
contains R (the parent of R), and set

Ch(R) :={Q € Dys1: Q C RY,

V(R):=1{Q €D; : QN B(y,{(R)) # 0 for some y € R}
(Ch(R) are the children of R, and V(R) stands for the vicinity of R). If R € S for some
S € Trs, we denote by Tr(R) the set of p-cubes Q € S such that Q@ C R (the tree of R).
Otherwise, i.e., if R € B, we set Tr(R) := 0. Finally, if Tr(R) # 0, let Stp(R) denote the set

of p-cubes Q € BU (G \ Tr(R)) such that Q C R and P(Q) € Tr(R) (the stopping pu-cubes
relative to R), so actually @ C R. On the other hand, if R € B, we set Stp(R) := {R}.

Notice that P(R) is a p-cube but Ch(R) and V(R) are collections of p-cubes. It is not
hard to show that the number of p-cubes in Ch(R) and V(R) is bounded by some constant
depending only on n and the AD regularity constant of p.

Fix S € Trs, D € S, and x € D. To deal with the second term on the right hand side
of (35), we have to estimate the sum >, s ) [(Kxar | * * (fp))(z)|?. By the definition of

Sp(x), we have
(37) S OEXT  (fu)@))P = ) (KX, * (xpfm) (@))%,
meSp(x) meSp(x)

where D := UReV( D) R. Since this union of p-cubes is disjoint, we can decompose the
function x 7 f using a Haar basis adapted to D in the following manner:

(38) Xpf= > ((m‘éf)XRJr > Aof+ D, &gf>,
ReV (D) QeTr(R) QeStp(R)

where we have set

Nof = Y xvlmppf—mpf), and Agf:= 3 xv(f—m@f)=xq(f —mpf).

UeCh(Q) UeCh(Q)
Using (38), we split the left hand side of (37) as follows:

Yoo lEXg, +(m)@P S Y | DD (KX, * (mlgf)xen)) (@)

2

meSp(x) meSp(x) ' ReV (D)
2
(39) + > Y > Kxem+1 (Aqfw))(x)
meSp(xz) ' REV (D) QeTr(R
2
meSp(x) ' REV (D) QeStp(R )

In the following subsections, we will estimate each part separately. We could think that
the leading term in the right hand side of (39) is the second one, which corresponds to
the p-cubes @ € Tr(R) with R € V(D). To control it, we will use that in these p-cubes
the measure u is very close to a sufficiently flat Lipschitz graph, so good estimates can be
achieved using approximation arguments. To control the third term in the right hand side
of (39), we will basically use that the number of cubes Qg with S € Trs or which belong to
B is not too big (see the packing conditions (b) and (e) in Subsection 2.4), so we will be able
to apply the Carleson’s embedding theorem. The first term in (39) requires a much more
detailed study, and we will need to use intensively the multiscale analysis given by the «,
coefficients apart from the Carleson’s embedding theorem and the above-mentioned ideas.
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. 2
5.3.1. Estimate of }_ s ‘ZREV(D) 2getr(r) (KXan, | * * (Agfu))(z)|” from (39).

Lemma 5.4. Under the notation above, we have
SeTrs DES/ meSp(x)

Proof. Let Cy > 0 be a small constant to be fixed below. Given m € Sp(x) let A, (x) =
Az, emrt1,em) = {y €RY: i1 < |y — 2| < €n}, and given R € V(D) let

T = {Q € Tr(R) : QN Ap(x) # 0, £(Q) > Colem — emt1)},
Tl ={Q € Tr(R) » QN Ap(2) # 0, £(Q) < Colem — em+1)}-
Roughly speaking, JEE contains the p-cubes which are big with respect to the thickness

2

oD (Exe, (A fn)(@)] dux) STz

REV(D) QETr(R)

of Ap,(x), and JE! contains the small ones. For the study of J;,;R, we will basically use
that it does not contain too many p-cubes. For J%’R, using that [ Agfdp =0, we will be
reduced to those u-cubes that “intersect” the boundary of A,,(z), which are not too many
once again.

For Q € Ji", we write [(Kx@., * (8qfu))(@)] £ 4D) " xa, 0 Ae |11 The follow-
ing claim will be proved in Subsection 5.3.2 below.

Claim 5.5. The following estimate holds: EQEJl,R oQ)*12 < (D)2,

Using that V(D) has finitely many elements (depending only on n and the AD regularity
constant of 1), Cauchy-Schwarz inequality, Claim 5.5, and the previous estimate, we obtain

2
D ID SN SRCERY RIS

meSp(z) ' REV (D) erl R

2
DYDY ( > UD nHXAm(a:)AQf|L1(,u)>

REV(D) meSp(z) ~ QehF

n— HX mxAQf”21
() <Y Y (T w)( X Smmiaas)

ReV(D) meSp(z) ~ QeshF QeJht

”XAm(;v) ofl? 10
Z Z Z n+1/2€ Q)i 5/2
ReV(D) meSp(z) QETr(R
/2uAquL1w
S22 < ) (D) Q)™

RGV(D QeTr(R

We deal now with the pu-cubes @ € JER Let 2z denote the center of Q). Since [ Agfdu =
0, we can decompose

(Kxer, x(Agfu)(x) = / (XA (@) D E (T = ¥) =X (2) (2Q) K (& = 20)) Aq f(y) duu(y)
~ (Xt (K~ )~ Ko - 20)) Ao () diy)

+ / (XAm(gc) (y) — XAm(x)(ZQ)>K($ —2q)Aq f(y) du(y)
= T (AQf) (@) + TaM(Ag f) ().

(41)
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For the first term on the right hand side of the last equality, we have the standard estimate
(by assuming Cj small enough, so any Q € JER is far from x)

_ 0Q
TR (A f)(z)| < /Am(z) m 1A f (W)l duly) S g(lg)n)ﬂ XA @ AQS L1 ()

From this estimate and Cauchy-Schwarz inequality, we obtain

Y Y Y mreen@

meSp(z) ' REV(D) QejiE

2
Z Z ( Z g n+1||XAm(Z')AQf||L1 >

REV(D) meSp(z) "~ Qeit

/ 2
< Z ( Z f(lgglll Z ||XAm(m)AQfHL1(,u)>

ReV (D) *Q€eTr(R) meSp(x)

<y (x famy( y el )

ReV(D) “QETr(R) QETr(R)

. Y4 n+1 n+1
Since £(R) = £(D) for all R € V(D), we have 3" cry(p) (%) <Y oepocr (%) <
1. Thus, using that ¢t < v/t for all t < 1, we conclude

N2 180512,

3 i) o

ReV(D) QETr(R

TURED SI D DD D S IE

meSp(z) ' REV(D) Qegit

We deal now with the second term on the right hand side of (41). Given Q € J&F,
since supp(Aq f) C Q, if Q@ C Ap(x) or Q C (Am(z))¢ then we obviously have x4, () (¥) —
XA (z)(2q@) = 0 for all y € supp(Aqf). Therefore, to estimate the sum of Tfn’“(AQf)(x) over
all Q € J,%{R, we can replace JER by

I =1{Q € Tr(R) : QN Ap(z) # 0, QN (An(2))° # 0, £Q) < Colem — emr1)}.

Form € Sp(x) and Q € JS’{R,We will use the estimate |75 (A H@)| S UD) Ao f] 1
Q Q (w)

Claim 5.6. The following holds: Zers,R LQ)™ 12 < U(DY Hem — €mrr) 2.
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Hence, using that V(D) has finitely many terms, Cauchy-Schwarz inequality, assuming
Claim 5.6 (see Subsection 5.3.2), and by the previous estimate, we deduce

Sy Y e s ¥ Z(Z'Aéiﬂ'ﬁi“”)?

meSp(z)  ReEV(D) Qejit REV D) meSp(z Q J3ER

n 1/2 1/2 n
= < n 1/2)< n+1/2 || QfHLl )
3

ReV( D) meSp(z) I3

1/
_Em—i-l Q
< ( ) 3 oy 7 180/ s
3

ReV/( D) meSp (x)

7L

€ — i\ V2
Z Z n+1/2 ||AQfHL1 Z <w)ﬂ> '

ReV (D) QeTr(R mGSD(w):Am(x)ﬁQ;éQ),
L(Q)<Co(em—€m+1)

The sum over m on the right hand side of the last inequality can be easily bounded by some
constant depending on Cp, thus we finally obtain

@) > | 2 > TaMAe(

mGSD(:E) RGV( )QGJQR

12| Agf 12
S22 < ) qQ D)

RGV(D) QeTr(R

Finally, combining (40), (41), (42), and (43), we conclude

V2| Aq f1I7,
w Y| Y Y waaeteme 2 Y Y (§5) qoree

meSp(z)' REV (D) QeTr(R) ReV ) QETr(R)

Since [[Aq fllri() S ||AQfHL2(M)£(Q)"/2 by Hélder’s inequality, since V(D) has finitely many
terms, and since ¢(R) = ¢(D) for all R € V (D), we get

>/ L3 % i, Gen

SeTrs DeS meSp(z) ' REV (D) QeTr(R)

Y Y T X (R et

SeTrs DES ReV (D) QeTr(R)

XX > % (i) 1o

SeTrs QeS ReD: ROQ DeV(R)

S Z Z 1AQfII72( < Z 1AQfI1 720 < 1F1 720

SeTrs Qes QeD

dp(x)

To complete the proof of Lemma 5.4, it only remains to show Claims 5.5 and 5.6. U

5.3.2. Proof of Claims 5.5 and 5.6. First of all, we need an auxiliary result whose easy
proof is left for the reader.

Lemma 5.7. LetT := {z € R? : x = (y, A(y)), y € R"} be the graph of a Lipschitz function

A R" — R such that Lip(A) is small enough. Then, ”H?(Ad(z,a,b)) < (b—a)b" ! for
all0<a<band zeT.
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Remark 5.8. Actually, to obtain the conclusion of the lemma, one only needs Lip(A) < 1
(see [M, Lemma 4.1.9]). Let us mention that this assumption is sharp in the sense that if
Lip(A) > 1 then the lemma fails. However, we do not need this stronger version for our
purposes.

Claims 5.5 and 5.6 follow from the next lemma, which will be proved using Lemma 5.7.

Lemma 5.9. Let Cy > 0 be some constant depending only on n, d, and the AD regularity
constant of u, and consider x € D € D; for some j € Z. Let € € [27771 279). Given k > j
and R € V(D), set

A :={QeTr(R)NDy: Q C Az, e — Co27F e+ Cp27M)}.

Then, 1(Ugpen, @) < 27FUD)" 1~ 27h—i(n=1),

Proof. First of all, we can assume k > j (otherwise, the claim follows easily using the AD
regularity of 1), thus we may assume that dist(z, Q) > 4 e. For simplicity, set S = Tr(R). By
the property (f) of the corona decomposition of p, there exists a (rotation and translation of
an) n-dimensional Lipschitz graph I's with Lip(I's) < 7 such that dist(y,I's) < 0 diam(Q)
whenever y € C.p@Q and @ € S, for some given constant C.,. > 2. Since z € D and
R € V(D), we have x € Ceor@ assuming Cpor big enough, and so dist(z, FS) < O diam(Q).
Hence, if n and 6 are small enough, one can easily modify I's inside B(z, ) to obtain a
Lipschitz graph I'g such that x € I'§, and moreover

(45)  Lip(I'g) < 7' for some 7’ small enough, and T\ B(z,e/4) =Tgs\ B(x,¢/4).

Using that dist(z, Q) > %e for all @ € Ay, that dist(zg,I's) < 0 diam(Q) for the centre zg
of @, and the last part of (45), we deduce that dist(zg,I'¢) < 6 diam(Q) for all @ € Ag. So
B(2q, 6 diam(Q))NI'% # 0, which in turn yields H™ (DENB(2q, 20 diam(Q))) 2 (6 diam(Q))™.
Therefore, since {B(zg, 20 diam(Q))}qea, is a family with finite overlap bounded by some
constant depending only on n, 8, and the AD regularity constant of u, we have

( U Q> D UQ™ SO Y H(TE N B(zq, 20 diam(Q)))

QEA QEA Qe

50”%%( U B(zQ,QOdiam(Q))>

Qe
SO0 HE (A, € — Co2*, e+ Co2 ")) S ok D),

where we used Lemma 5.7 and that € ~ 277 in the last inequality. The lemma is proved. [

Proof of Claim 5.5. Recall that Ja"* := {Q € Tr(R) : QN Am(z) # 0, Q) > Colem —
eém+1)}, where R € V(D) and D € Dj. We have to check that 3 ,_1r o122 <

¢(D)*1/2. We will split the sum into different scales and we will apply Lemma 5.9 at
each scale.

Given i € Z such that 27% > Cy(€m — €mas1), the number of p-cubes @Q € D; such that
Q C R and QN Ap(z) # 0 is bounded by C/(R)"~12¢/n=1) ~ 2=3(n=D+i(n=1) "since for all
these p-cubes, Q C A(z,emr1 — C27 % e + C27%) C Az, 6y — C27 1 €, + C277F1) for
some constant C' > 0 big enough, and then by Lemma 5.9, ,u( UQGJ#,RHDZ, Q) <27 (D)t
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Therefore,
QcJLR i€L:i>j  QesLRp, i€Z:i>j
~ 27920(D)y" ! = (D)2,
0

Proof of Claim 5.6. Recall that Jo;/t = {QeTr(R): QN An(x) #0, QN (Ap(x))s #
0, 4Q) < Col€m — €m1)}, where R € V(D) and D € D;. We have to check that

Z K(Q)n_lm 5 E(D)n_l(em - €m+1)1/2'
QeJn™

As before, we will split the sum into the different scales and we will apply Lemma 5.9 at
each scale. Given i € Z such that 27' < Colem — 6m+1>, since for any @ € I3 A D; we have
QC Az, emi1 —C27 61 + C27Y) U A(z, €, — C27% €, + C277) for some constant C' > 0
big enough, by Lemma 5.9 applied to both annuli we have u( UQEJ%RmDi Q) <27 (D)t
Therefore,

> U= > 22 % Q"
QeJSF 1€Z:1>—logy (Co(em—€m+1)) QeJSEnD;

< > 2720(DY" ! & (em — €mpr)/20(D)" L

1€Z: 1>~ logs (Co(€m—€m+1))
O

. X 2
5.3.3. Estimate of >, ¢ ) ‘ZREV ) 2 estp(r) (K Xan, | * (Agfw)(z)|” from (39).

Lemma 5.10. Under the notation above, we have

zz/z

SeTrs DeS meSp(x)

2

> Z X+ (B fm) (@) du(@) S I1F 122

ReV(D) QeStp(R

Proof. Recall the definitions of V(D), T (R) and Stp(R) in Definition 5.3. Given R € V(D),
consider a p-cube @ € Stp(R). If Tr(R) # (), then @ € BU (G \ Tr(R)), @ C R and
P(Q) € Tr(R) (in particular, @ C R). Take S € Trs such that R € S. By property (f)
of the corona decomposition (see Subsection 2.4), we have dist(y,I's) < fdiam(P(Q)) for
all y € Cror P(Q). Hence, dist(y,I's) < COdiam(Q) for all y € C.p-Q. On the other hand,
if Tr(R) = 0 we have set Stp(R) = {R}. In this case, we have R € B. Take S such that
D € S. Since R € V(D), we have R C CgD if C,p is chosen big enough, and thus
dist(y,['s) < COdiam(R) for all y € C'R, where C' is as above and C’ depends on C,y,.

Taking into account the comments above, one can prove the following claims using similar
arguments to the ones in the proof of Claims 5.5 and 5.6.

Claim 5.11. Let x € D € D, R € V(D), and m € Sp(x). If we set Jy' := {Q € Stp(R) :
Q N Am(x) 7é Q)’ K(Q) > CO(em - Em-‘rl)}’ then ZQEJ»}ﬁR E(Q)n_lﬂ 5 K(D)n_lm'

Claim 5.12. Let z € D € D, R € V(D), and m € Sp(x). If we set J5% := {Q € Stp(R) :
QN Ap(z) # 0, QN (Am(z))® # 0, UQ) < Colem — €m+1)}, then ZQEJEV{R E(Q)H_I/Q S
(D) em — €myr1) >
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The only properties of Agf that we used to obtain (44) were that Agf is supported in

Q and that [ Agfdp = 0. The function KQ f is also supported in () and has vanishing
integral. Thus, if we replace Tr(R) by Stp(R), Claims 5.5 and 5.6 by Claims 5.11 and 5.12,

and Agf by Agf, the same arguments that gave us (44) yield the following estimate:

@6) > | > > Kxem+1 (Bgfm)(

meESp(z) REV (D) QeStp(R

Below we will use that HAQfHLl Wh@)™" = (fQ |f = mpfl du) E(Q)*” < (mé]f])Q,u(Q)

Notice that, by the definition of Stp(R) and since the corona decomposition is coherent
(property (d)), any ) € Stp(R) is actually a maximal p-cube Qg of some S € Trs or
Q@ € B (and in this case Tr(R) is empty). Hence, if we integrate (46) in D, we sum over all
D € S € Trs, and we change the order of summation, we get

SY [ Y Y Y s BGefn)e)

SeTrs DS’ P mesp () ReV (D) Qestp(R)

1@ 130/ gy
2z 2z @)

SeTrs DeS ReV(D) QeStp(R)

=DIND DD

DeD ReV (D) SeTrs: QsCR

LD IEDDREDY

DeD ReV (D) QeEB:QCR

-3 > % (@) enanues

SeTrs RED: ROQs DeV (R

+> D Z( )1/2(mé|f)2M(Q)-

QEB RED: ROQ DeV(R)

12n

Z Z 1/2+n QfH%l(u)

REV ) QEStp(R

2
dp(x)

7N

e ) (i | 1) (@)

“QN

i S )0(Q)

N
v

~

Finally, using that V' (R) has finitely many elements, and that the p-cubes Qg with S € Trs
and the p-cubes @ € B satisfy a Carleson packing condition (so we can apply Carleson’s
embedding theorem), we deduce

DD EDIRIDS Z v, + (B fm)(a)

SeTrs DeS meSp(z) ' ReEV (D) QeStp(R

Y 1/2
S D (mlg 7)) u(@s) Z m+2(mg|f|)2u(g) 3 e((%lﬂ

2
du(z)

SeTrs ReD: RDQgs QeB ReD: RDQ
2 2
S D (m ) m@s) + Y (ml 1) (@) S 1172,
SeTrs QeB

. c 2
5.3.4. Estimate of }° s | > rev(p)(EXen, | * ((my f)xrp))(x)|” from (39). Recall
the definitions of V(D) and Ch(R) in Definition 5.3. We will need the following auxiliary
lemma, which we prove for completeness, despite we think it is already known.
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Lemma 5.13. Given D € D and f € L*(u), set ap(f) := X gey(py [myf —mpf|. Then,
there exists C' > 0 depending only n and the AD reqularity constant of u such that

3 (@nlD)FHD) < Ul

Proof. By subtracting a constant if necessary, we can assume that f has mean zero. Con-
sider the representation of f with respect to the Haar basis associated to D, that is f =
Zer Aqf. For m € Z, we define the function u,, = Zerm Aqgf,so f =) ,czum and
the equality holds in L?(u). Given j € Z, define the operator

1/2
S;(f) = < 3 (aD<f>>2xD) |

DE'D]'
We will prove that there exists a sequence {o(k)}rez such that
(47) Y ok)<C<oo and |IS(un)lr2(y S o(lm = i) lwml 2w
keZ

Assume for the moment that (47) holds. Then, since each S; is sublinear, by Cauchy-
Schwarz inequality and the orthogonality of the uy,’s,

Z(ap Z/ Z ap(f))*xp dp = ZHS HL2

DED JEZ DED ]GZ
2
JEZ meZ L2(p) ]GZ meZ
<2 ( > olim —a|>) ( > a(im —j|>—1||sj<um>||%2(u))
JEZ “mEZ mez
SO allm=iDllumlZag = D lwmllizgy > o(lm =)
JEZ m€eZ me7z jez

meZ

and the lemma follows. Let us verify (47) now. By definition,

(48) 182 = 3 ( >/ Qf< xR fg))du\)zuw).

DeD; QEDm,

Assume first that m > j. If D € D;, R € V(D), and Q € D,y, then either QNR = or Q C R.
In both cases, since Agf has mean zero and is supported in @, we have [ Agf xrdp = 0.
Thus, the right hand side of (48) vanishes (obviously D € V(D)), and (47) follows.

Assume now that m < j. Set D := UReV(D) R. Recall that Ag f := ZUGCh(Q) xu(mf f—
méf), so Aqf is constant in each U € Ch(Q). Hence, if for some U € Ch(Q) we have DcU
or D C suppp \ U, then (RUD) C U or (RUD)NU =0 for all R € V(D), and so

/xy<mé§f —mlh f) <;j<<§> - %) dp = (mfsf — mgf)/U (/j;;;) - @) dp =0

for all R € V(D). Therefore, if we set my; o f := (m; f —mg, f), using that V(D) has finitely
many elements and that [ [u(R)™xr—u(D)  xp|du < 2 for all R € V(D), we deduce from

ReV (D)
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(48) that

185 = 3 (2

DeD; “ReV (D)

2
o XR B XD d ’) D
ng/Uegl%Q)?(UmU’Qf(ﬂ(R) u(D)> k|)HP)
DNU#D,

DNUC#)

2
(49) =D ( > X |m;;,Qf|) u(D)

DeD; *QeDm yeCh(Q): DNUAD,
DNUC£)

-y ( x |m5,P(U)f|)2u<D>.

DeD;j U€Dm1: DNU0,
DNU<#0

It is not hard to show that, since m < j and D € D;, the number of y-cubes U € Dy, such

that DN U # () and DNUe # () is bounded by some constant depending only on n and the
AD regularity constant of 1 (but not on the precise value of m). Hence,

2
Z < Z ’ml(},p(U)ﬂ) u(D) 5 Z Z |ml[l]7p(U)f‘2ﬂ(D)

DeD; UeDmH:ﬁmU;é@, DeD; UeDTH:f)mU;é@,
Dnue Dnue
(50) NUC#() NUC#£0
_ p 2
= > wkeeia( U D)
U€Dmi1 DED;: DNU#D,

DNU£)
Fix U € Dpt1. Recall that D := Urev(p) B so diam(D) ~ diam(D). Thus, there exists a
constant 79 > 0 such that
U D C {x € U : dist(z,suppp \ U) < 10l(D)}
DeD;: DNU#D, DNUH#)
U{z € suppp \ U : dist(z,U) < 104(D)}
= {2z € U : dist(z,suppp \ U) < 702™ 7 T0(U)}
U {x € suppu \ U : dist(z, U) < 7o2™ 7 H(U)}.
If m < j, then 7 := 792™ 71 < 1, so we can apply the small boundaries condition (9) of
Subsection 2.3 to obtain u( UDeD--f)mU;A(Z) D0 D) < Crl/€2=mn_ QOn the contrary, if [m—
j: )
7l $ 1, then /¢ ~ 1, so pu( D) < u(C1U) < 27mn m 71/C27mn | for
D) s 2tm=hICuu)®,

UDeDj; DNU#D, DNUC£()
some big constant C'y > 0. Thus, in any case, u( UDeD-~5ﬂU7é(Z) DUe£0
J° ’

and combining this with (50) and (49) we conclude that, for m < j,

1 ()1 2y S 20N mpp f = by fIPUU)"
UE'Derl

~ 2<m_j)/c/ Y xulmpf —mlp g fPdu =271 124,
UeDm+l

which gives (47) with o(k) = 9-3¢ and finishes the proof of the lemma. O
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Lemma 5.14. Under the notation above, we have

SY [ | X w s () @)

SeTrs DeS meSp(z) ' ReV(D)

2
dp(x) S 1172

Proof. Recall that, given D € D, we have set D= UReV(D) R. For x € D, we have

2.

2

ST Ex (b xr)@)| S0 JEXE, * (mly Hx ) (@)]

meSp(z) REV (D) meSp(x)
(51) )
X | D (Exa, = ((mipf = mip fxam) ()
meSp(z) ' REV (D)
We are going to estimate the two terms on the right hand side of (51) separately. For the
second one, recall also that, given m € Sp(z), we have set A,,(z) := A(z, €mt1,€m). We
write

((BxEm o (s f — il Fxrm) ()] < e —mls ] /A KG9 () )

S [mipf —mp | p(Am(z) O R)UD)™"

Therefore, interchanging the order of summation,

2.

2

Y X, * (M f —mif)xrw)(2)

meSp(z)' REV (D)
2
( DS It =l ) >£<D>-")
meSp(z) REV (D
M_MM(R)QN u_uz_ 2
<{ 2 Ikl -—mbflygm ) = 2 Imkf—mbJl) = (an()*
ReV(D) ReV(D)

where ap(f) are the coefficients introduced in Lemma 5.13. If we integrate on D and sum
over all D € S and S € Trs, we can apply Lemma 5.13, and we finally obtain

Sy [y 2

dp(z)
(52) SeTrs Des” P meSp(x)

> (Kxem,, # ((mlpf —mi f)xrw))(x)

ReV(D)

< 3 (@n()?u(D) £ 11320,
DeD

Let us estimate now the first term on the right hand side of (51). Let Lp be a minimizing
n-plane for ay,(D), which is defined in (10), and let L}, be the n-plane parallel to Lp
which contains z. Given z € R%, let py denote the orthogonal projection onto L7. Let
91,92 : R — [0,1] be such that suppg1 C (—2el(D),2el(D)), suppga C (—4(D)e,£(D)e),
and g; + go = 1, where £ > 0 is some fixed constant small enough. For z € RY, consider the
projection onto L7, given by

|2 — x|
539 )= (o 65 - )
° p5(2) — =

Since suppgs does not contain the origin, p* is well defined. Moreover, if z € R? is such that
92(Ip6(2) — 2|) = 1, then [z — x| = [p"(2) — «|.

>g2(lpf§(z) o) + ()1 (P (=) — )-
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Let C4 > 0 be a small constant which will be fixed below. Assume that a,(10D) > C..
Then, we can easily estimate

2

ST jENe = Hxpm) @) = [mip 12

meSp (x) meSp(x)

(54) S o Y / ~y)| du(y)>2

meSp Am (2)N

2
N m’f)f\Q(/ﬁﬁ(D)” du(y)) < [ f12 S [mh £ 2, (10D)2.

K(z —y)du(y)

Am(x)ﬂf)

From now on, we assume that «,(10D) < C,. By assuming C, small enough, it is not

difficult to show that then the distance between D and L7, is smaller than ¢(D)/1000. More-
over, p* restricted to {y € Ay (x) : dist(y, L}) < €(D)/1000} is a Lipschitz function with
Lipschitz constant depending only n, d, and the AD regularity constant of u. Furthermore,
by taking € small enough, we have

|2 — x|
PG (2) — =

for all z € {y € DN Ap(z) : dist(y, L}) <4(D)/1000} C suppp.
Recall that D € S for some S € Trs. Let Qg be the maximal p-cube of S, and set

(55) p*(2) =2+ (py(2) — )

(56) Ve := Py (X40Qs 1)

where pf denotes measure transport by p”. Then, since suppp N Ap(z) C D by the con-

struction of ﬁ,

(EXEm (8 F)x ) (@) = (mls f) /A KG9 i)

(57) ~ ) | K== v)) + () / IR0

= Ulp(z) + U2y (x).

Claim 5.15. Under the notation above, we have

: 2
S [ULa(@)? S [miyf P Bru(D)? + au(D)? + (W) )

meSp (z)

Proof of Claim 5.15. By (55), y € Am( ) if and only if p*(y) € A, (x) in the integral
defining Ulp,(x). Since |y — p*(y)| < dist(y, L}) < dist(y, Lp) + dist(z, Lp) for all y €
sup N A (),

UL < o] [ K@ ) = Ko~ 5] duy)
Am(z)

‘me|
N y—p"(y)| du(y
WD )n+1 Amml (Yl du(y)

— dist(y, Lp) + dist(x, Lp)) du(y).
E(D)nﬂ Am(x)( (v, Lp) (z,Lp)) du(y)
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If L} denotes a minimizing n-plane for 81 (D), then disty(LpN Bp, LL,NBp) < a,(D)4(D),
so dist(y, Lp) < dist(y, Lh) + au(D)U(D) for y € CD (see [Tod]). Therefore,

) |U1m<x>|25<'mDﬂ1 > [

meSp (z) meSp(z) ’ Am(®)

2
Sty (D) [ (@isly. L) + dist(e, L) duty) )

< [mhy fI? (BI,H(D)Z +a,(D)? + (Wy)

2
(dist(y, Lp) + dist(x, Lp)) d#(!J))

O

Let us consider U2,,(z) now. We can assume that v, is absolutely continuous with respect
to H”ZD (for example, by convolving it with an approximation of the identity and making a

limiting argument). Let h, be the corresponding density, so
(58) Vg = th”%.

We may also assume that h, € L%( %%). So,

U2a) = iy ) | Kl =)o) = o) /. K= 0)ha(y) 4 ()

Roughly speaking, we are going to estimate U2,,(z) in terms of some coefficients derived
from a decomposition of h, in a suitable basis. Later on, we will need to relate these
coefficients to the «,’s but, in order to do this, we need the elements of the basis which
decompose h, to be at least Lipschitz. Actually, since v, is a transport measure of p (and
hy is the density function corresponding to v,), we can easily estimate integrals of the type
J gd(p — vy) whenever g is Lipschitz with compact support. This is the main reason to use
a wavelet basis instead of a Haar basis in the study of U2,,(z).

Let us now introduce a suitable wavelet basis.

Definition 5.16. Let D" denote the standard dyadic lattice of R™. Let {wg}ern,kzl,,..72n,1
be an orthonormal basis of C1 wavelets on R™ in the following manner (see [Da, Part 1]):

(a) wg :R™ —» R is a C' function for all Q € D" and k=1,...,2" — 1.

(b) There exists C > 1 and g : [0,C]" — R with ||voll2 = 1, ||Yollee S 1, and such
that, for any Q € D" and k = 1,...,2" — 1, there exists | € Z™ such that wg(y) =
Yo(y/0(Q) — DUQ)™ for all y € R".

(c) ngHg =1, fi/z(’f?dﬁn =0 and fwgwé%dﬁn =0, for all Q,R € D" and k,l =
1,...,2" =1 such that (Q,k) # (R,1), where L™ denotes the Lebesgue measure in R™.

(d) Suppl/}é C CpQ for allQ € D" and k =1,...,2" — 1, where Cy, > 1 is some fized
constant (which depends on mn). In particular, for any j € Z the supports of the
functions in Uern °Q)=2 ]{Q/Jg}k 1,..2n—1 have finite overlap.

(€) bl S €(Q)~2 and IV§ oo S (Q)*”/2*1 forallQeD" k=1,...,2" —1.

(f) If h € L3(L"), then h = > 0eDn k=1,..27—1 Agh, where Al(fgh = (fth? dﬁn)wg.

In order to reduce the notation, we may think that a cube of D™ is not only a subset of
R™, but a couple (@, k), where @ is a subset of R” and k = 1,...,2" — 1. In particular, there
exist 2" — 1 cubes in D™ such that the subsets that they represent in R™ coincide. We make
this abuse of notation to avoid using the superscript & in the previous definition. Then, we
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can rewrite the wavelet basis as {1)g}gepr, with the evident adjustments of the properties
(a),...,(f) in Definition 5.16.

Let D be a fixed dyadic lattice of the n-plane L%, and let {wQ}QGD;}’O be a wavelet
basis as the one introduced in Definition 5.16 but defined on L%,. Denote by EF the n-
dimensional vector space which defines L%, and let {Q%}kez be a fixed sequence of nested
dyadic cubes in E7, having the origin as a common vertex and such that 6(@2) =27F for all
k € Z. Given s € E%, set Diy* := {s+Q : Q € D’} (notice that, for any k € Z, the family
{QeDy®: 1(Q)=2"F)is perlodlc in the parameter s), For any @ € DY and y € L), if

Q' =5+ Q € Dy*, we define ¥ (y) = ¥s1Q(y) = Yy — 5). Then {¢g}grepn+ is also a
wavelet basis defined on L7,. Consider the decomposition of h, in (58) with respect to this
basis,

(59) ha= Y Abha= > A} ha,

QeDy”® Qep°
where Aw = ([ ha(y)o(y — s)du(y)) Yo(z — s) (recall that, for any Q € Dz,
o d?-ng]:J = 0) We set Y(QS) = —logy(£(Qs)), and given Q € Dy’°, we set Y (Q) :=

—logy,(4(Q)) and Y'(Q) = max{Y(Qs),Y(Q)}. Given Q C E%, denote by msecqg the
average of a function g : Ef, — R over all s € €} and with respect to 7—[”%. Then, by the
periodicity of {¢g}geprs in the parameter s (recall Definition 5.16(b)) and (59), we can
write
hy = SEQY(QS) x Z i mseQY(QS) Z \ mSEQY/(Q) é7shw).
QeDy QeDy

It could seem strange to introduce an averaging (with respect to the parameter s) at this
point. However, it will be necessary in order to obtain the estimate in Lemma 5.20(d). More
preciselly, we cannot ensure that the estimate in (92), which is used in the proof of Lemma
5.20(d), holds for a particular s because we do not have such a level of control on v, but
to take an average overcomes the problem. That is the only point where the averaging with
respect to s is used.

Set

(60) J:={Q € D" : suppyg(- — 5) N Suppxg:j_l(:n — ) # () for some s € Qg)/,(Q)}.

Then,

61)  U2u(x) = (mh ) /A K@) Y gy, (8 ) ()

QeJ

Recall that D € D;j and m € Sp(x). Since z € D and ¢(D) = 277, if Q € J, then
D C B(z,Cul(Q)) or Q C B(x,Col(D)) for some constant C, > 0 big enough. In particular,
if £(Q) Z ¢(D) then D C B(zg,Col(Q)), and if £(Q) < C4(D) with C' > 0 small enough
then @ C B(zp, Col(D)), where zg denotes the center of Q C LY, and zp denotes the center
of D € D. From (60), we define

J:={Qec J: UQ)<CUD)} c{Qe D™ : Q c B(zp,Cul(D))}, and

6 o
yi=J\J1 C{Q €D : D C Blzg, Cal(Q))}.
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Since [ A () K(x —y) d?—[”t}tJ (y) = 0 by antisymmetry, if 2’ denotes some fixed point in
Az, 27771 279) N L%, we have

/Am(x) U) D Macqu, o (84 oha () dH Ly (1)

(63) Qel

= ) / n
- /Am(fv) Z mSGQY’(Q) sha(y) = Ag ha(ah) dHig (y).

QeJ2
Then, using (61), (62), that Y'(Q) = Y(Q) for all Q € J; (because D C Qg), and (63),
Uon(@) = i) [ K@) Som seQW)(Az@,shz(y)) aHE, ()

Qex

(64) _AY / n
+ (m4 f) /A " ng mseQY,(@ Sha(y) = Ag ha(a)) dHE (y)
=: U3, (z) + Udp ().

Claim 5.17. Under the notation above, we have
(D) 1/2 B )
S Ut S P S (5] Q" ey, g 180 hal)”
meSp () QeJ2

Proof of Claim 5.17. By property (e) of the wavelet basis in Definition 5.16, we have
A8 ha(y) =AY ()] < [V(AG o) loola” —y] S IAY Jhall2la’ —yle(Q) /21, Moreover,
if y € Ayp(x), then |2 — y| < (D). Therefore,

U@ < 32 b1 [ K )iy, o, (185.a(0) 8] 3, 0
QeJ2
S Y Imipfimacgy, (185 hall2) (D) =" UQ) ™21y (Au(a)),
QEJ2

and then, by Cauchy-Schwarz inequality and since Jo ¢ {Q € Dy’ : D C B(zq,Ca(Q))}
(in particular, £(D)/0(Q) < (£(D)/(Q))'/?),

/ n/2+1 2
S P 5 (53 lhslmacay, , (18 hala) o My (o))

’rTLESD( mESD x) QEJ2

(
(Z [mpf1maeqs, (\AgshzHQ)g(D)g(Q)n/QH)2
(

Qe

(D) LD
> < Z | Df‘ SEQ?,,(Q> HAg7sh$H2)2e(C§)n)—|—l>

QeJ2 Q

QeJ2

1/2
—n P 2
ZJ( D) HQ " sy, 185 helle)
]

We are going to estimate U3,,(z) with techniques very similar to the ones used in Sub-
sections 5.3.1 and 5.3.3. First of all, let b, > 0 be a small constant which will be fixed later
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on, and consider the family P := {Q € D : ¢(Q) < ¢(D)}. Let Stp denote the set of cubes
Q € P such that there exists Rg € D with £(Rg) = £(Q), 10Rg N (p®) ! (suppyyg) # 0, and

(65) > a,(10R) > b, but > a,(10R) < b..
RED: RoCR, ¢(R)<L(D) RED: P(Rg)CR, {(R)<{(D)

Observe that if @ and Q' are different and belong to Stp, then Q@ N Q" = 0. Notice also
that D ¢ Stp because we assumed «,,(10D) < C,. Finally, denote by Tr the set of cubes
@ € P\ Stp such that R ¢ Stp for all R € P with R D Q. Then P = Tr UJgeg, {R € P -
R C @Q}. By taking C, small enough we can assume that, if R € J; NP and R C @ for some
Q € Stp, then @ € J;. So we write

¥
> gy, (A4 hi)

QeJ1
_ P P
- Z msEQ%’,(Q) (AQ,shI) + Z Z msEQ({,(Q) (AR,shQJ)
QeJiNTr QeJiNStp ReJ1NP: RCQ

Set ﬁé,shx = > Rep: RCQ A}éshx. Then, using the definition of J; and J, we can split

Udm(w) = (i ) / o K@) D0 gy (80,10 dHE 1)

QeJiNTr
(66) b)) [ Koy Y magy (B ) i, )
Am(2) QeJ1NStp

= U3%,(z) + U3 ().
Claim 5.18. Under the notation above, we have

. (Q)\"? .

> ws@P S X (G0) ey o (A5 kIEAD) ™
meSp(x) QeJiNTr
For simplicity of notation, we have set || - [lp == || - |zo (37, )-
D

Proof of Claim 5.18. Notice that H"%(Am(a:)) < (ém — €ms1)0(D)"" . Moreover, the
function MseQd o, (Ag2 ;D) is supported in CQ and has vanishing integral, because the same

holds for each Aé’shx with s € Qoy(Q). Hence, thesum s

using arguments very similar to the ones in Subsection 5.3.1 (see (44)), and the analogues
of Lemma 5.7 and Claims 5.5 and 5.6 for 7—["% follow easily. One obtains the expected

(@) [U3m(2) |2 can be estimated

estimate. O

Claim 5.19. Under the notation above, we have

ANV 2
0Q)\ V2 Imseqo o (Ag sha)li
U?)l;n 2 S 12 2 < ) (Q) )
mezsp(z)’ @) < Impf] QEZJmStp (D) (D)y"e(Q)"

Proof of Claim 5.19. Since msery(Q)(ﬁé ;he) has vanishing integral and it is supported

in a neighbourhood of @, the term U3% (x) can be estimated in the same manner (but now
we do not use the estimate ||mS€Q%(Q>(Aé’shx)||% < E(Q)nHmSery@)(Ag’ShI)H%), and one

~

obtains the expected estimate (compare with (46)). O
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Recall that we have fixed z € D € § € Trs, and we denote by (g the maximal p-cube in
S from the corona decomposition, so D C QQg. The following lemma, whose proof is given in
Subsection 5.3.5, yields the suitable estimates for MseQl o) (Agshx) and meqo

AW
Y(Q) (AQ’Shm)
(recall that h, is given by (58)).

Lemma 5.20. Assume that a,(D) < Cy, for some constant Cy, > 0 small enough. Given
Q € DI, there exists constants C1,Cy > 1 depending on Cy and by (see (65) )such that,

(@) if Q € Jo and 6Q) > £Qs). then mocqy, . (1A% halla) S €(Qs)" Q) 2,
(b) if Q € J2 and £(Q) < U(Qg), then

dist(z, Lp) n
e 1850l S (Y aucm+ B o
ReD: DCRCB(2q,C14(Q))
(¢) if Q € Jy N'Tx, then there ezists Qo = Qo(x, Q) € D depending on x and Q € Dp°
1

such that Qo C C2D, £(Qo) = £(Q), Qo N (p*) " (suppyq) # 0 and

dist(z, L §
[m SEQy(@(Aé,shx”b < < Z o, (CoR) + W)g(@) 2 and

ReD: QoCRCC2D
(d) if Q € JOStp, then [Imegn (A ha)lls £ Q)"

We are ready to put all the estimates together to bound the first term on the right hand
side of (51). From (54), (57), (64), and (66) we have

ST, = (i H)xpm)(@)|* < Imly f2a,(10D)?
(67) meSp (z)

+ ) (Uln(@)P + U35, (2)? + U3}, () + [Udin (2) )
mGSD()

Let us deal with Ul,,(z) (the term |m/, f|>c,(10D)? above is handled in the same man-
ner). If L}, and L?, denote a minimizing n-plane for 31 ,(D) and S2,,(D), respectively, one
can show that disty(Lp N Bp, L}, N Bp) < «,(D)¢(D) and disty (L}, N Bp, L%, N Bp) <

~

B2,.(D)¢(D), so we have dist(z, Lp) < dist(z, L%) + B2,,(D)(D) + a,(D)¢(D) for z € D.
Then, by Claim 5.15 and Carleson’s embedding theorem,

DY R SR

SeTrs DeS meSp(x)

(63) <3 [ it (a0 4 a0+ (L)Y gy

DeD

S Y Imp fPUD) (Bru(D)? + au(D)? + B2,4(D)?) S /172,

DeD
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For the case of U3% (z), by Claim 5.18 and Lemma 5.20(c) applied to the u-cubes in
J1 N Tr, we have

>3, X

SeTrs DeS meSp(z

P 2
0Q)\ 2 Imseqq , (Bg sha)ll2
STTI > (w) et

DeD QeJiNTr
n+1/2 2
g [ 2 () 5 wien)'eo

QQ(:E,Q)CRCCQD

nt1/2 dist(z, Lp)\
2 s LD .
+ > [mi f| / > < > <£(D) ) dp(z) =: Sy + So.
DeD QeJiNTr
Recall that J; € {Q € Dy° : Q C B(zp,Col(D))}. Then > e, (¢ (Q)/¢(D)"+1/2 < 1,
and since dist(z, Lp) < dist(z,L%) + B2,u(D)¢(D) + au(D)(D) for x € D, then Sy <
> pep M fI2(B2,u(D)? + au(D)?)¢(D)™, and hence Sy < C’||f||%2(m7 by Carleson’s embed-
ding theorem. For Si, since £(Q) ~ ¢(Qo(z,Q)) (recall the definition of Qp = Qo(z, Q) in
Lemma 5.20(c)), Qo(z,Q) C C2D, and every Qo € D intersects (p®) ! (supptg) for finitely

many cubes @) € Do (with a bound for the number of such cubes @ independent of x and
Qo), we have

20 (B ™")

QeJiNTr ReD: Qo(z,Q)CRCC2D

S 3 <§EQ;>M/2< > om(@R))Q

PeD:PCCeD QE'D;“O:QCB(ZD,CJ(D)), ReD: PCRCC2D
Qo(z,Q)=P

DS (ﬁg)”( > au<c2R>)2.

PeD:PCC2D ReD: PCRCC2D

By Cauchy-Schwarz inequality,

2 ooli®) (D™ )

PeD:PCC2D ReD: PCRCC2D

L E O (1) i

(69) PeD:PCCyD ReD: PCRCC2D
K(P) n+1/4
< 2 S
ReD: RCC2D PeD:PCR
S ) alGR)? (ﬁéDD =: \i(D)%
ReD: RCC2D

By standard arguments one can easily show that these Ay coefficients satisfy a Car-
leson packing condition, so by (69) and Carleson’s embedding theorem we obtain S; <
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> pep M fIPUD)* A\ (D)? < HfH%Q( which combined with Sy < HfHLQ( yields

(10 S X WS kg,

SeTrs DesS meSp(x)

Let us deal now with U3% . By Claim 5.19 and Lemma 5.20(d) applied to the u-cubes in
J1 N Stp, we have

>y [ 10

SeTrs DeS meSp (z

(Q) 1/2Hmser (A% ha)l?

DED Q€J1ﬁstp
e Q n+1/2
<Z|me|2/ Z <£< ;) dp.
DeD QeJ1NStp

Given D € D, consider the family Ap := {R € D: R = R for some € D and some Q €
J1NStp} (see the definition of Rg in (65)). Observe that every R € D intersects (p®)~1(Q N

L%,) for finitely many p-cubes @ € D% such that £(Q) = ¢(R). Thus, simlilarly to what we
did for @ € J; N Tr in the case of U3%,, we have

Z ‘me‘z/ Z (ﬁ(g;)nﬂ/z N[;D‘meP/ RGZA ( g)nﬂ/zdu

DeD QeJiNStp
/R n+1/2
<Y b P Y (EED))) (D)= 3 [ FPAa(D)2u(D),
DeD ReAp DeD

where we have set \a(D)? := > ReAp (L(R)/€(D))"+1/2. Since the a,’s satisfy a Carleson
packing condition, it is not hard to show that the same holds for the As’s. Indeed, since for
any R € Ap we have 3 pep. gepr, o(ry<e(p) @u(10R) = by by (65), then

AP S D (%)nﬂ% > Oép(lOR’)>2,

ReAp R'€D: RCR!', £(R)<L(D)

and we can proceed as in (69). Hence, putting these estimates together and using Carleson’s
embedding theorem for the As’s, we obtain

(71) S [ WPl

SeTrs DesS meSp(x)
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We deal now with U4,,(z). By Claim 5.17 and Lemma 5.20(a) and (b) applied to the
cubes in Jo,

>y /[ ¥ (G4l

SeTrs DeS meSp(x

P 2
(e(D)>1/2 Myeqy, o (18G,shell2)
UQ)

S [my f|2 - du
SezTrs D;S’ P /D QEZJQ Q E(Q)
(D) 1/2
S s £ (%)
s;Trs DZE;S' ¥ /D QEJ2: £(Q)<H(Qs) Q)

(o Z )+ (%57) |

ReD: DCRCB(z0,C14(Q))

/(D 1/2€ 2n
mEeer], 5 () s

SeTrs DES D e ts: 0(Q)>0(Qs)

Regarding S, since dist(z, Lp) < dist(z, L) + Bo,u(D)(D) + a,(D)¢(D) for z € D

and > e, (U(D)/(@Q)Y? < 1, the second term in the definition of S is bounded by

5 pep Ml £ (82,4(D)? + (D)) (D)", amd hence by C|f|2a,.
theorem. For the first term in S3, by Cauchy-Schwarz inequality,

sxme[ T (B £ wen)u

by Carleson’s embedding

SETrs DES QEJ2: U(Q)<U(Qs) DCRCJQES:CI@(Q))
o(D)\V/? 0°Q

sy St [ X (Gg) (i) X ecrra

SeTrs DeS D Qe Ja: (Q) ( ) ReD:

UQ)<UQs) DCRCB(2q,C14(Q))

< 12 2 C R 2 E(D) 1/4d

DeD D Rrep: QeD™O.

DCR

RCB(20,014(Q))

Notice that ZQG’DQ’O:RCB(ZQ,CM(Q)) (E(D)/E(Q))l/4 < (6(D)/€(R))1/4, thus the right side of

~

the preceeding inequality is bounded above by

1/4
1) Y b iPany Y aﬂ<clR>2(“D>) — 3" ks FPUD) A (D).

U(R)
DeD ReD: DCR DeD

By standard arguments one can show that the A3’s satisfy a Carleson packing condition,
so by Carleson’s embedding theorem again, the last term in (73) is bounded by C||f||2, )"
Thus we obtain S3 < HfH%Q(u)'

The estimate of Sy from (72) is easier:

(D) 20(Qs)™"
2
S1S Y Y Impf /D > 0(Q)2+1/2 ().
S€Trs DES QeDPIY: 1(Q)>(Qs),
DCB(2q,C14(Q))




VARIATION FOR THE RIESZ TRANSFORM AND UNIFORM RECTIFIABILITY 37

As before, Zern,o_ =12 < (Qg) "2 1/2, thus

10, 0(Q)>4(Qs), DCB(z0.01£(@) L (@)

1/2 1/2
5.5 3 S mpsror (M) < S oy s (420

SeTrs DeS DeD SeTrs: S3D

= Y [mhfIP(D)" \a(D)?.

DeD

Similarly to the case of the A3 coefficients, one can show that the A4’s also satisfy a Carleson
packing condition, thus Sy < ||f ”%Q(u) by Carleson’s embedding theorem. Actually, if one

~

defines a,(Q) = 1 if Q = Qg for some S € Trs and @, (Q)) = 0 otherwise, using the packing
condition for the p-cubes Qg with S € Trs, one can easily verify that the a,’s satisfy a
Carleson packing condition. Then,

- (DN, (DN
wor= 5 (i) wer= % (Gg) e

SeTrs: DCQg QEeD: DCQ

and we can argue as in the case of the A3’s in (73).
By the estimates of S3 and Sy, we obtain

(74) S / S U dn S 112,
SeTrs DesS meSp(x)

Finally, plugging (68), (70), (71), and (74) in (67), and combining the result with (51)
and (52), we conclude that

zz/z

SeTrs DeS D meSp (z

2
du(z) < 11720,

> (X, * (mpf)xam) (@)

ReV (D)

and Lemma 5.14 is finally proved, except for Lemma 5.20. O
5.3.5. Proof of Lemma 5.20. See (56) and (58) for the definitions of v, and h,.
Proof of Lemma 5.20(a). By Definition 5.16(e), for any s € Qoy,(Q) we have

1A halloe < [ o) Q)2 < €(Q) / By dHY, — / dvs

:E(Q)n/ d(pf (xa0Qs 1)) = Q)" AOQS ns é(%s;n .

Hence, ]]Agsthg < HAw’shz\\ooﬁn(suppws+Q)1/2 < UQ5)™(Q)~™2 for all s € Q%,(Q), and
Lemma 5.20(a) follows by taking the average over s € Qg,,(Q). O

Proof of Lemma 5.20(b). Since D C B(zg,Col(Q)), D € S, and £(D) < 4(Q) < U(Qs),
by taking C.,, big enough (see property (f) in Subsection 2.4), we can assume that y is well
approximated by I'g in a neighborhood of ). We are going to show that, for each s € Qg,, @)’

dist(x, L n
(75)  1AGhall2 S ( > au(C1R) + M)acz) ”,
ReD: DCRCB(2g,C14(Q))
and Lemma 5.20(b) will follow by taking the average over s € @Y., )
Fix Q € Ja, so D C B(zg,Cl(Q)) with £(Q) < ¢(Qs), and s € Q%,(Q). Take Q' € D
such that £(Q) = ¢(Q") and Q C B(z¢,34(Q)). Recall that suppys+o C CQ and |Vips1g| S
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0Q)~* 1. Let ¢siq be an extension of s q, i-e., let dsro : RS — R be such that

suppdstqr C B CRY, [V SUQ) ™! and ¢ypqp = tharq in L.
Let Lo be a minimizing n-plane for a,(C1Q"), where C; > 1 is some big constant to be
fixed below, and let Ly, be the n-plane parallel to Ly which contains x. Let o¢g := CQngQ/

be a minimizing measure for a;,(C1Q’) and define 0§, := CQ/H%EI. Finally, set 0 := cQqHls -

Since 151 has vanishing integral in L), we also have [ ¢si ¢y d’Hﬁ% = 0. Hence,

188 shale = s e )erolle = o busall = | [ 6ero(v) dvalo)
(76) b

= | [ éusarv) s — o)) £ €@ dist 020,
We can assume that

ReD: DCRCB(20,C14(Q))

otherwise Lemma 5.20(b) follows easily. By assuming (77) one can show that the angle
between L7, and Lfy is small. By the triangle inequality, we have

(78) distBQ,(l/z, o) < distBQ, (Vx,pé”ag),) + distBQ/ (p?aé/, o).

To deal with the first term on the right hand side of (78), let h be a Lipschitz function
such that supph C Bg and Lip(h) < 1. Then, using that suppy is well approximated in CQ’
by a Lipschitz graph I'g with small slope, the function A o p” restricted to suppu U Lé can be
extended to a Lipschitz function supported in Be, o (if Ci is big enough) with Lip(h o p*)
bounded by a constant which only depends on n, d, and Lip(I's). Therefore,

‘ hd(ve — piogy)
(79) /BQ’
< diSthlQ, (1, O'Q/) + diSthlQ, (O’Q/, O'ch/) < Ozu(lel)g(Q)n+1 + dist(z, LQ/)E(Q)”

Since x € D and D C C1Q’ (if C; > C}), by [To4, Remark 5.3] we have

(80) dist(x, Lgy) S Z a,(R)((R) + dist(z, Lp).
ReD: DCRCChQ’

- | / hop* d(n— ofy)| < dista, o (1,0%)
Ble/

Taking the supremum over all possible Lipschitz functions & in (79) and using that £(D) <
/(R) < 4(Q) in the sum above, we get

. dist(x LD)
+1 ) +1
(81) dist,, (va, Py ody) S > a, (CLR)E(Q)™ ! + D) o)™,
ReD: DCRCC1Q’
To estimate the second term on the right hand side of (78), notice that pgo = o because
p®|rz = 1d. Hence, as in (79),
distp,, (pfogy,0) = dist g, (Pfogyspio) S distgle, (0¢y,0)
< diSthlQ, (0’6;, O'Q/) + diStBC’IQ’ (UQ/, O’)
S diSthlQr (Hﬁg,,HﬁQ,) + diSthlQl (HTL‘Q,,HT,{D) + diSthlQ/( %D,H’L‘%)

< dist(x, Lo )0(Q)" + diStBClQ/( 2@/’ 7,) +dist(x, Lp)e(Q)".
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The term distp o Q,( %Q/ , HﬁD) can be estimated using the intermediate u-cubes between
D and C1Q’ (similarly to (81)), and we obtain
distpe, o (M1 Hip) S > au(CLR)LQ)" .
ReD: DCRCC1Q
Thus, by (80) and since /(D) < 4(Q),

distp,, (Pfoy,0) < a,(CLR)E(Q)™
Q
ReD: DCRCC1Q’

Then, (75) follows by plugging this last inequality and (81) in (78) combined with (76), and
recalling that £(Q) ~ £(Q"). Thus we are done with Lemma 5.20(b).

n dist(z, Lp)

E(D) E(Q)R-H.

O
Proof of Lemma 5.20(c). Given @ € J; NTr, using (65) we have

> a,(10R') < b,
R'€D: RCR/, 6(R')<{(D)
for all R € D with ¢(R) = £(Q) and such that RN (p®) ! (supps+q) # 0 for all s € Qoy(Q).
By assuming b, small enough, we are going to show that for some Qy(x,Q) € D as in the
statement (c) and all s € Q%(Q) we have
dist(z, Lp)

(52) 85l (S aucamy+ I g
RED: QoCRCC2D

As before, Lemma 5.20(c) will follow by averaging over s € Q%(Q), and noting that

Hmsng’,(Q)(Ag,shw)HQ < MseQy o, HAé,shac‘h by Minkowski’s integral inequality.

Take Q € Jy NTr. Let Cs be some big constant which will be fixed later on, and let
Qo € D be a minimal p-cube such that C2Qq contains suppu N (p®) ! (suppts+g N LE) for
all s € Y(Q). We can assume that Qo C CoD if Cy is big enough and, by (65), we may
also suppose that > pcp. o crec,p @u(C2R) is small enough. Hence, if Lg, is a minimizing
n-plane for S ,(C2Qo), the angle between Lg, and L7, is also small enough, since it is
bounded by > pep. gocrcoyp u(C2R) (see [Tod, Lemma 5.2] for a related argument). It is

not hard to show that then
(83) diam(T' N (p")"1(Q N LD)) S Q).

Let Lg, and 0¢, := CQonQO be a minimizing n-plane and measure for o, (C2Qo), respec-
tively. Fix zq, € Lg, N Bc,q, and let L, be an n-plane parallel to L}, which contains zg,.

Finally, define the measures o, := cq,H}, and o’ := cq,H}x -

Since ¢’ is a multiple of Hzg , similarly to (76) and using the triangle inequality,
(84) ’|Ag,shx||2€(Q)n/2+l 5 diStBQ (an U,)
< distp, (Va, pf 0Q,) + dist s, (pf 0y, P§or) + distp, (pf oy, o),

where we have set Bg := B(zg,30(Q)) C R? (for these computations, we may also assume
that ¢(Q) is small enough in comparison with ¢(D)).
Arguing as in (79), if C5 is big enough, we have

(85) dist g, (Vz, P 0Q,) = distp, (Pf 1 PE0Qy) S au(Cng)E(Q)”H,
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and

diStBQ (PfUQo,PfUr) S diSth2Q0 (0Qo: 07) S disty (L, N Beyqos Lr N By ) Q)"
Let 7 be the angle between L, and L¢, (which is the same as the one between Lp and Lg,).
Since zg, € Lg, N Ly N Bey,q,, we have disty (Lg, N Bcygy, Lr N Beyg,) S sin(y)4(Q), and
it is not difficult to show that sin(y) < 3" pep. goc recyp @u(C2R). Thus,

(36) distsg (Pfoge.pfor) S >, au(GR)UQ)™.
ReD: QoCRCC2D

Let us estimate the last term on the right hand side of (84). Since cg, S 1, we have
dist g, (p"é”m«,a') < distg, (p? s 2%). Let h be a 1-Lipschitz function supported in Bg
and such that Set d := dist(zq,,L7},). Since @ € J; C J and ¢(Q) < C4(D), if C is small
enough then dist(z, Bg) 2 (D). Without loss of generality, we may assume that = 0 and
that L}, = R™ x {0}, so L, = zq, + R™ x {0}~ Thus, if we set 2, = (250!, ..., 28),
we have that d = [z | and p® restricted to L, N Bg can be written in the following manner:
Pty = (yh,.. Yt 2g,) P (F(y,...,y™),0), where F : R™\ {0} — R" is defined by

/T2 + a2 2
Ply) =y I+r5

vl [l
Therefore, [ hd(pfH} )= [hop®dH} = [pa(hop”)(y,25,)dy = [gn M(F(y),0) dy, and we
also have [ hdMi. = Jzn h((y,0)) dy = [gn M(F(y),0)J(F)(y) dy by a change of variables,
where J(F') denotes the Jacobian of F. Hence

[ rawrs, =il s [ nE@.0I1 = IE) )]y

Notice that, because of the assumptions on supph(F(-),0) and since zg, € Bc,q, and Qo C
CyD, we have d < |y| for all y € supph(F(-),0). If F; denotes the i’th coordinate of
F, it is straightforward to check that 9,, F;(y) = —d*y'y?|y|~3(|y|* + d?)~12 if i # j and
0y Fi(y) = (1 + a2 /lyH)? — d2(y")?|y| 3 (|ly|*> + d*)~'/2. Thus, we easily obtain

(88) 1= J(F)(y)| < d/lyl < d/E(D)

for all y € supph(F(-),0). Since diam(supph(F'(-),0)) < 4(Q) and h((F(-),0)) is Lip-

~

schitz, using (88) and taking the supremum in (87) over all such functions h, we have
dist g, (py H7,» ’i%) < 4(Q)"d/¢(D). Finally, by [To4, Remark 5.3] and since zg, € Lg,,

(87)

d S dist(zq,, Lp) + dist(Lp, LY) S Z a,(CoR)(R) + dist(x, Lp),
ReD: QoCRCC2D
and thus
(89)  distp,(pYH,  Hiz) S > au(C2R)UQ)™ +
ReD: QoCRCC2D

Finally, (82) follows by applying (85), (86), and (89) to (84), which yields Lemma 5.20(c).
O

dist(z, Lp)

K(D) E(Q)n—’—l.

Proof of Lemma 5.20(d). As remarked just before (60), this is the key point where taking
averages of dyadic lattices with respect to the parameter s is necessary. Given ) € J; N Stp,
we have to show that ||mSery(Q) (Ag )t S(Q)". Unlike in (a), (b), and (c), the estimate
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in (d) does not hold for a particular choice of s in general but, as we will see, it holds in
average. Recall that, for a fixed s € Q%(Q),

Egshxz > Aﬁ,shx

ReP: RCQ
= Z Xs+Q A}g,shz - Z Xs+Q Aq]é,sh?C
REP: suppyrNQ#D ReP: suppy rNQAD
{R)<UQ) UR)<U(Q), RZQ
+ ) X(srq)e A he = I + I, + 111,
ReP:
RCQ
We are going to estimate I, I, and 111, separately. For the case of I, we have
Xs+Q hy = Xs+Q Z A%th + Xs+Q Z Ajtpg,shx = Xs+Q Ié + I,
ReD20: 0(R)>4(Q) ReD20: 0(R)<0(Q)

where we have set I, := ZRGD”’O:Z(R)>Z(Q) A}é she. On one hand, since @ € J; N Stp, (65)
holds. Thus, using that ZRGD:P(RQ)CR,Z(R)SZ(D) a,(10R) < by, one can show that

(90) HXS—}-Q hx”l S E(Q)n

(see above (83) for a related argument). On the other hand, since ||xs+q hzl1 S 4(Q)", it is

known that then ||xst+oll|li < 4(Q)™ (see [Da, Part I], in particular pay attention to the last

sum in equation (46) of Part I). Combining these estimates, we conclude that || I5|; < €(Q)".
Let us now deal with I1,. First of all, split 11, into different scales, that is

Z Xs+Q A}é’shx = Z Z Xs+Q A%’shx.

REP: suppyrNQFAD k>Y(Q) ReP:supptyrNQ#D
{(R)<UQ), RZQ {(R)=2"% RZQ

Observe that if & > Y(Q), suppyr N Q # 0, ((R) = 27% and R ¢ Q, then s + R C
Ugo-k(s + 0Q), where C > 1 is some fixed constant and Ugy-«(s + 0Q) := {z € L}, :
dist(z, s + 0Q) < C27%}. Hence, using Definition 5.16(e) and the definition of h,, we get

1Ll < > S ALl S Y ve(Ucs-i(s +0Q)).

k>Y(Q) REP:suppyprNQ#D k>Y(Q)
(R)=2"" RZQ

The case of 111, can be dealt with very similar techniques, and then one obtains the same
estimate. Therefore,

AW _
”mngQ,(Q)(Asthx)Hl = ||mseQ§’,(Q) (s + 1L + 1115) |1 < msng’,(Q) 115 + I1s + 1111

oy SUQ ey (X vallioy (s +0Q) ).

k>Y(Q)
Using Fubini’s theorem, it is not difficult to show that

(92) Maeqy, velUea(s +0Q)) 5 27(Q) ' 1a(CQ)

for all for k > Y (Q) (see [To2, Lemma 7.5] for example, for a related argument). Since
@ € Stp, then (65) holds and then, as in (90), we have v,(CQ) < 4(Q)", thus

Moc (X lUcan(s+9Q)) £ Q"

k2Y(Q)
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If we combine this last estimate with (91), we are done. O

5.3.6. Final estimates. From Lemmas 5.4, 5.10, and 5.14, we obtain the following;:

>/ Z Y (B, + (BeHm)(@)

SeTrs DeS meSp(z) ' REV (D) QeTr(R)

I Z S X i Gani

SeTrs DeS meSp(xz) ' REV (D) QeStp(R

DIDY / S| X G, ) )

SeTrs DS’ P mesp(z) ! ReV (D)

2
du(x)

2
dp(z)

2
(@) S 11320

Combining this estimate with (39), we deduce

>/ 510z, + e dute) S 1l

SeTrs DeS meSp(z

Finally, using (35) and (36), we conclude that

I8 0 Ty < 3 [ 2 (Fxe,, (P @) due) < 17122,

DeD mESD
This finishes the proof of Theorem 5.1.

6. Ir V, 0o R*: L*(u) — L*(p1) 1S A BOUNDED OPERATOR,
THEN £ IS A UNIFORMLY n-RECTIFIABLE MEASURE

Let €y > 0 be the AD regularity constant of an AD regular measure p, that is C; Lpn <
pu(B(z,r)) < Cur™ for all x € suppp and 0 < r < diam(suppy). For simplicity of notation,
we may assume that diam(supppu) = oo (the general case follows with minor modifications
in our arguments). As before, we denote by D the dyadic lattice of u-cubes introduced in
Subsection 2.3.

In this section, we set K(x) = x|z|7"! for x # 0. Recall that, given € > 0, a Radon
measure g, and f € L'(u), we have set R*f := {RF f}c~0, where

Rif@) = [ K pi) )

In order to prove the main theorem of this section, namely Theorem 6.8, we need first to
introduce some notation and state some preliminary results.

Definition 6.1 (Special truncation of the Riesz transform). For e > 0, let ¢, be as in
Definition 2.1. Given m € Z and a Radon measure p in R, we set

Smis(z) = / (p3mei (& — ) — ppm(z — 1)) K (@ — y) du(y).

Lemma 6.2 (Lemma 5.8 of [DS1]). Given Q € D, there exist n + 1 points xo, ..., Ty in Q
(and thus in suppp) such that dist(z;, Lj—1) > CU(Q), where Ly, denotes the k-plane passing
through xo, ..., x, and where C' depends only on n and C,,.

Lemma 6.3 (Lemma 7.4 and Remark 7.5 of [Tod]). Let Q € D and x, ..., z, € Q be like in
Lemma 6.2. Denote r = diam(Q), and let m,p € 7Z be such that t > s > 4r for t = 27P and
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s = 27", Suppose that A(xg, 2™ Y2, 272y nsuppu # 0. Then any point x,.1 € 3Q
satisfies
n+1 m

. rs
(93) dist(2nt1,L0) S8 > [Skala;) — Spilxo)| + — + —
Jj=1k=p
where Lg is the n-plane passing through xq, ..., Ty.

The following proposition is a direct consequence of the techniques used in the last section
of [To4]. We give the proof for completeness.

Proposition 6.4. Given ¢y > 0, there exist dg > 0 and mq, kg € N depending on €y, n, and
C,, such that, for alli € Z and all Q € D; with B1,(Q) > €o, there exist k € Z with |k| < ko
and P € D;yjim, such that P C 4Q and |S;1rpp(z)| > o for all z € P.

Proof. Fix g > 0. Let Q € D; such that 1 ,(Q) > €. Take points zg,...,z, in Q as in
Lemma 6.2, denote r = diam(), and let m € Z to be fixed below such that 4r < 27" =: s
and A(z,27"" 12,2712y N suppu # () (we assume diam(suppp) = o). By Lemma 6.3,
for t := 27P > s to be fixed below and all z,11 € 3Q,

n+1 m
. s
dist(zn41, Lo) S5 > [Skila;) — Sgp(xo)| + — + -
Jj=1k=p
m n+1 rs
SZZ|SkM($j +*+*
k=p 7=0

Then, by integrating on x,41 € 3Q, for some constant C; > 0 depending only on n and C),

1 diSt(SEnJrl, Lo)
€0 < fru(Q) < Q) /3(42 Q) dp(xpi1)
S — 1 r S
<Cy <T kgp <€(Q)/ |Skp(Tng1) | dp(Tng1) + JE . | Skp( :c])\) + 3 + t)'

Thus,
r{ € r S @ |Skp(Tn 1)l -
S (01 - - t) < Ep (/?)Q —ior dp(wp41) + ]EO \Skﬂ(xjﬂ)-

We can easily choose s and t big enough (depending on r, €y, and C4) such that, for some
constant €; > 0 depending only on €y, n and C,

(94) 0<e < Z </ Wdﬂ(xn+l) + Z |Skﬂ($J)’)

J=0

Notice that, since t = 277 and s = 2™ where chosen depending on r ~ 27, the sum on the
right hand side of (94) has a finite number of terms which only depends on €y, n and C,,.
Therefore, there exists kg € N and C2 > 0 depending only on ¢y, n and C}, such that, for
some negative integer k with |k| < ko and some j =0,...,n,

1
<C / Siarp| dp + |Sjpp(z )
<oy [ ISrvaldn + 1Sl
which implies that there exists C3 (depending on Cs) and z € 3@ such that €; < C3|S;1xpu(2)].
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Given z € suppy, if |z — z| < 2777% then

[Siprp(x) — Siprp(2)] < / — IV (0itrd) || o]z — 2| dua(y)
Yy—z|S270
S 2600l g duy) S 2]z — 2.
ly—z|<27i=F

Hence if |z—2| < C427"% with C; > 0 small enough, we have C3|S; y 1u(x)—S;irpp(2)] < €1/2,
s0 €1/2 < C5]S;4ku(x)|. Therefore, there exist mg € N depending on C4 (and thus on ey,
n, and C,) and P € Djypim, such that €1/2 < C3]S;pu(zx)| for all z € P. We can also
assume that P C 4Q by taking C4 small enough, and since |k| < ko we have {(P) ~ £(Q).
The proposition follows by setting dp := €1/(2C3) > 0. O

Definition 6.5. Given €y > 0, let dg, mg > 0 be as in Proposition 6.4. Set
B:={QeD: Q) >e}, B:=|J{QEDrsmy : [Seu(x)| = o for all z € Q}.

keZ
Given P,R € D with P C R, we set F§ = ZQGg:PCQCRXQ and FR = ZQGg:QCRXQ'

Lemma 6.6. Let p > 0. Assume that there exists Cy > 0 such that, for all R € D,
(95) [ < cont).
R

Then, there exists C > 0 such that ZQGE: OCR w(Q) < Cu(R) for all R € D.
Proof. Let M > 1 big enough (it will be fixed below). For R € D, set

Tree(R) := {Q € B:QCR, XQFcSz < Mxq},

Topy(R) := {P € B: PCR,xpFF > Mxp, and XQFg < Mxq

for all Q € B such that P C Q C R}.
For m > 1, set Top,,(R) := Uperop, ,(r) ToPo(P), and Top(R) := U,,>0 Top,(P).

Notice that if R € B then R € Tree(R), because M > 1. Notice also that
(96) {QeB: QC R} = Tree(R) U <UP€TOP(R)Tree(P)>,

and the union is disjoint.
Fix R € D. Then, by (96),

Yoow@= > w@+ > D wQ

(97) QeB:QCR Q€Tree(R) PeTop(R) QE€Tree(P)
/ > xa du + / Y Y xedw
Q&ETree(R PcTop(R) Q€Tree(P)

Given z € R and P € D such that P C R, by the definition of Tree(P), we have
> xq(@) < Mxp(z).

QETree(P)
Therefore, by (97),

08) D MQ) <MuR)+ /R > MXPdu=M<u(R)+Z > u(P)).

QeB:QCR PcTop(R) m>0 PeTop,, (R)
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We are going to prove that, if M is big enough,
(99) > wP)<27"u(R)
PeTop,, (R)
for all m > 0, and then, by (98), we will finally obtain
>, wlQ) < Mp(R)+ MY 27" u(R) < 3Mp(R),
QEB:QCR m>0

and the lemma will be proven.
Notice that, if P, P' € Topy(R) are different, then PN P’ = () because of the last condition
in the definition of Topy(R). So, to verify (99), it is enough to show that, for all m > 0,

1
(100) Z u(P) < B} Z 1(P).
We have
(101) >, wpP) = ) DORT(®)
PETOpm+1(R) PETOpm(R) QETOPO(P)

and ZQETopO(P) XQ = Xvu, where U := UQETopO(P)Q C P. If x € U, there exists Q €
Topy(P) such that x € @, so 1 = xg(x) < M_Q/p(Fg(m))z/p < M_Q/p(FP(m))Q/p, and then
using (95) we have

_ 2 &
> w@) = Yo xedu= [ vdp< M [ (FP)Pau < 2 pu(p),
b U P M?2/p
Q€Top (P) Q€Topy(P)

which, in combination with (101), yields (100) by taking M > (2Cy)*/2. O

Lemma 6.7. Assume that, for some C7 > 0, ZQGE:QCR w(@Q) < Cip(R) for all R € D.
Then there exists Cy > 0 such that 3 oep. ocr H(Q) < Cop(R) for all R € D.

Proof. Given () € B, by Proposition 6.4, there exists Py € Dy, for some k € Z such that
Po C 4Q, w(Pg) > Cop(Q), and [Sku(z)| > do for all z € Py, where Cy > 0 is some small
constant. Thus, in particular, Py € B for all Q € B. Since Pg C 4Q and p(Pg) > Cou(Q)
for all @ € B, given P € B there are finitely many p-cubes @@ € B such that Py = P, and
the number of such u-cubes is bounded above by a constant depending only on n, Cp, and
C. Hence, since 4R is contained in the union of a bounded number of p-cubes with side

length ¢(R),
Yo Q<G Y wP)s Y, wulP)<Ciu(R)

QEB:QCR QEB:QCR PeB: PC4R
for all R € D, as wished. O

Theorem 6.8. Let p > 0. Given an n-dimensional AD regular measure i, if V, o R* is a
bounded operator in L%(p), then u is uniformly n-rectifiable.

Proof. 1t is easy to see that, if V, o R* is a bounded operator in L%(yx), then R is also
bounded in L?(x). By Theorem 1.2 in [DS2, Part I1I, Chapter 1], in order to show that p
is uniformly n-rectifiable, it is enough to show that p satisfies the Weak Geometric Lemma,
i.e., that for any ¢y > 0, the set B is a Carleson set. In other words, it suffices to show that
there exists a constant C' > 0 depending on €y such that > 5 p ocp (@) < Cu(R) for all
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R € D. By Lemma 6.7 and Lemma 6.6, this holds if, for some p > 0, there exists C > 0
depending on ¢y such that, for all R € D,

(102) / (FR)** dp < Cu(R).
R

Notice that, for m € Z and f € L'(u), Sm(fu) = Th, .., f — Th, .. f, where Sp, is

introduced in Definition 6.1 and T}, is as in Definition 2.1 (remember that now K denotes
the Riesz kernel), thus

(103) Z’Sk(fﬂ)(ﬂf)’p < ((VpOW)f(x))p-
keZ

We may assume that p > 1, since (V5o R¥)f(z) < (V, 0 R*)f(x) for p > p, and then the
L?(p) boundedness of V, o R* for some p > 0 implies the L?(1) boundedness of V5o R* for
all p > p. Since pr(2*™t?) is a convex combination of the functions X{seR:s>e}(t) for € >0,
using that p > 1 and Minkowski’s integral inequality, it is not hard to show that the L?(u)
boundedness of V, o R* implies the L?(1) boundedness of V, o T} (see Subsection 5.2, or
[CJRW1, Lemma 2.4], for a similar argument). Therefore, for any M > 0, we have

(104) (Vo o TE)xarlI22 () < Cu(MR) < Cu(R) for all R € D.

Fix g > 0, let dp,mo > 0 be as in Proposition 6.4, and let R € D. Given z € R and
k € Z, for any Q € Diym, N B such that € Q C R we have |Sgu(z)| > dp. Notice that,
since Q@ € Diym, and Q C R, there exists M > 1 depending only on n and mg such that
do < |Sgp(z)] = |Sk(xamrrp)(x)|. Therefore, using (103) and that for each k € Z there is at
most one pi-cube @ € Dy, such that z € Q C R,

Fi(z) = > xo(z) <) > 80”15k (xarri) ()]

(105) K€L QEDyymyNB:2€QCR k€Z QeDyymyNB:z€QCR
<607 1SkOearrm) (@) < 657 ((Vp o T )xar(x))”
kEZ

and then, by (104),

e <052 [ (%0 Tarm)? du < 0521V 0 Tl < Ol
for all R € D. This yields (102), and the theorem follows. O

Remark 6.9. Let {rp}mez C (0,00) be a fixed decreasing sequence defining O. If there
exists C' > 0 such that C~'r,, < rp, — rmy1 < Cry, for all m € Z, then the last inequality
in (105) still holds if we replace V, by O (by taking from the beginning p = 2). Hence,
Theorem 6.8 still holds replacing V, by O for this particular sequence {7y, }mecz. However,
we do not know if it holds for any {7, }mez C (0, 00).
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