
VARIATION FOR SINGULAR INTEGRALS ON

LIPSCHITZ GRAPHS: Lp AND ENDPOINT ESTIMATES

ALBERT MAS

Abstract. Let 1 ≤ n < d be integers and let µ denote the n-dimensional Hausdorff
measure restricted to an n-dimensional Lipschitz graph in Rd with slope strictly less than
1. For ρ > 2, we prove that the ρ-variation and oscillation for Calderón-Zygmund singular
integrals with odd kernel are bounded operators in Lp(µ) for 1 < p < ∞, from L1(µ) to
L1,∞(µ), and from L∞(µ) to BMO(µ). Concerning the first endpoint estimate, we actually
show that such operators are bounded from the space of finite complex Radon measures in
Rd to L1,∞(µ).

1. Introduction

Many recent papers on probability, ergodic theory, and harmonic analysis dealt with the
topics of ρ-variation and oscillation for martingales and some families of operators (see [Lp],
[Bo], [JKRW], [CJRW1], [JSW], [LT], and [OSTTW], for example). In this paper we continue
the study developed in [MT1] and [MT2] about the ρ-variation and oscillation for Calderón-
Zygmund singular integral operators with odd kernel defined on measures different form the
Lebesgue measure. More precisely, we are concerned with variational Lp (1 < p < ∞) and
endpoint estimates for such singular integral operators defined on Lipschitz graphs and with
respect to the Hausdorff measure.

Throughout the paper 1 ≤ n < d denote two fixed integers. By an n-dimensional Lipschitz
graph Γ ⊂ Rd we mean any translation and rotation of a set of the type

{x ∈ Rd : x = (y,A(y)), y ∈ Rn},
where A : Rn → Rd−n is some Lipschitz function with Lipschitz constant Lip(A). We say
that Lip(A) is the slope of Γ.

Given 1 ≤ n < d integers, ε > 0, and a Radon measure µ in Rd, we consider

Tεµ(x) :=

∫
|x−y|>ε

K(x− y) dµ(y), for x ∈ Rd,(1)

where the kernel K : Rd \ {0} → C satisfies

(2) |K(x)| ≤ C

|x|n
, |∂xiK(x)| ≤ C

|x|n+1
and |∂xi∂xjK(x)| ≤ C

|x|n+2
,

for all 1 ≤ i, j ≤ d and x = (x1, . . . , xd) ∈ Rd \ {0}, C > 0 is some constant, and moreover
K(−x) = −K(x) for all x 6= 0 (i.e. K is odd). We set T µ := {Tεµ}ε>0, and given f ∈ L1(µ),
we also set Tµε f := Tε(fµ), Tµ∗ f(x) := supε>0 |T

µ
ε f(x)|, and T µf := {Tµε f}ε>0. The well-

known Cauchy and n-dimensional Riesz transforms are two very important examples of
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such Calderón-Zygmund singular integral operators, and they correspond to the kernels
K(x) = 1/x for x ∈ C\{0} and K(x) = x/|x|n+1 for x ∈ Rd \{0} respectively (to be precise,
we should consider the scalar components xi/|x|n+1).

Definition 1.1 (ρ-variation). Let F := {Fε}ε>0 be a family of functions defined on Rd.
Given ρ > 0, the ρ-variation of F at x ∈ Rd is defined by

Vρ(F)(x) := sup
{εm}

(∑
m∈Z
|Fεm+1(x)− Fεm(x)|ρ

)1/ρ

,

where the pointwise supremum is taken over all decreasing sequences {εm}m∈Z ⊂ (0,∞).

Given a Radon measure µ in Rd, f ∈ L1(µ), and x ∈ Rd, we will deal with

(Vρ ◦ T )µ(x) := Vρ(T µ)(x), and (Vρ ◦ T µ)f(x) := Vρ(T µf)(x).

For a Borel set E ⊂ Rd, we denote by HnE the n-dimensional Hausdorff measure resticted to
E. The following result is a direct consequence of [MT2, Theorem 1.3].

Theorem 1.2. Let ρ > 2. Let Γ ⊂ Rd be an n-dimensional Lipschitz graph and set µ := HnΓ.
Then, Vρ ◦T µ is a bounded operator in L2(µ). The norm of this operator is bounded by some
constant depending only on n, d, K, ρ, and the slope of Γ.

In fact [MT2, Theorem 1.3] shows that Theorem 1.2 holds whenever µ is an n-dimensional
Ahlfors-David regular uniformly n-rectifiable measure in Rd (the notions of Ahlfors-David
regularity and uniform rectifiability are geometric/measure theoretic conditions about ho-
mogeneity and quantitative rectifiability which are trivially satisfied for Lipschitz graphs; see
[DS, Part I] for precise definitions). Furthermore, in [MT1] it is also proved that, if µ = HnΓ
for some n-dimensional Lipschitz graph Γ ⊂ Rd, ϕ ∈ C∞(R) is some fixed function such that
χ[2,∞) ≤ ϕ ≤ χ[1/2,∞),

Tµϕεf(x) :=

∫
ϕ(|x− y|/ε)K(x− y)f(y) dµ(y) for x ∈ Rd and f ∈ L1(µ),(3)

and T µϕ := {Tµϕε}ε>0, then the operator Vρ ◦ T µϕ is bounded

(a) in Lp(µ) for all 1 < p <∞,
(b) from L1(µ) to L1,∞(µ), and
(c) from L∞(µ) to BMO(µ) (see Section 4 for the precise definition of BMO(µ)).

Usually, we refer to T µ as the family of rough truncations of the singular integral operator
with kernel K and with respect to µ, and we refer to T µϕ as the family of smooth truncations
of the same operator.

The following theorem is one of the main results of this paper. Roughly speaking, under an
extra assumption on the slope of the Lipschitz graph, it improves Theorem 1.2 and extends
the estimates (a), (b), and (c) above to rough truncations.

Theorem 1.3. Let ρ > 2. Let Γ ⊂ Rd be an n-dimensional Lipschitz graph with slope strictly
less than 1 and set µ := HnΓ. Then, Vρ ◦ T µ is a bounded operator

(a) in Lp(µ) for all 1 < p <∞,
(b) from L1(µ) to L1,∞(µ), and
(c) from L∞(µ) to BMO(µ),

The norm of this operator in the cases above is bounded by some constant depending only on
n, d, K, the slope of Γ, ρ, and on p in the case of (a).
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This theorem generalizes the results in [CJRW2] for the class of kernels given by (2)
and, in this sense, it is a natural continuation of the study of variational inequalities for
Calderón-Zygmund singular integral operators.

As we pointed out above, Theorem 1.3 was already known for the family T µϕ , but the case
of rough truncations requires much more work and detail on the estimates due to the lack
of regularity on the truncations. Moreover, [MT2, Theorem 1.3] (and so Theorem 1.2) were
obtained using the so-called corona decomposition (see [DS, Chapter 3 of Part I]), which is a
useful tool to deal with L2 estimates. However, it is very difficult to adapt these techniques
to deal with Lp estimates for p 6= 2. Thus, Theorem 1.3 does not follow from the variational
Lp estimates for T µϕ , nor by a simple modification of the proof of Theorem 1.2, it requires a
more careful and deeper study.

The other main result of this paper is the following theorem, which strengthens the end-
point estimate (b) of Theorem 1.3. Moreover, in combination with the techniques used in
[MT2], we think that the following theorem could be useful to derive Lp (1 < p < ∞)
and endpoint estimates for Vρ ◦ T µ when µ is any n-dimensional AD regular uniformly n-

rectifiable measure in Rd, which would enhance [MT2, Theorems 1.3 and 2.3]. We denote
by M(Rd) the space of finite complex Radon measures on Rd equipped with the norm given
by the variation of measures.

Theorem 1.4. Let ρ > 2. Let Γ ⊂ Rd be an n-dimensional Lipschitz graph with slope strictly
less than 1 and set µ := HnΓ. Then, Vρ ◦ T is a bounded operator from M(Rd) to L1,∞(µ),

i.e., there exist a constant C > 0 such that, for all λ > 0 and all ν ∈M(Rd),

µ{x ∈ Rd : (Vρ ◦ T )ν(x) > λ} ≤ C

λ
‖ν‖.

Moreover, the constant C only depends on n, d, K, ρ, and the slope of Γ.

Remark 1.5. We think that the assumption on the smallness of the slope of the Lipschitz
graph in Theorems 1.3 and 1.4 is just a technical obstruction due to the arguments we will
employ in their proofs. As pointed out in the paragraph above Theorem 1.4, we expect that
this assumption will be removed in the future.

The following corollary is a direct consequence of Theorem 1.4.

Corollary 1.6. Let E be an Hn measurable n-rectifiable subset of Rd with Hn(E) <∞, and
let K be an odd kernel satisfying (2). If ν ∈M(Rd), then the principal values limε↘0 Tεν(x)
exist for Hn almost all x ∈ E.

Given an n-rectifiable set E ⊂ Rd with Hn(E) < ∞, as far as the author knows, the
existence HnE-a.e. of limε↘0 Tεν(x) for ν ∈ M(Rd) was already known for odd kernels K ∈
C∞(Rd \ {0}) satisfying

(4) |∇jK(x)| ≤ Cj |x|−n−j

for all j = 0, 1, 2, 3, . . ., or maybe assuming (4) only for a finite but big number of j’s (see [Ma,
Theorems 20.15 and 20.27, Remarks 20.16 and 20.19] and the references therein). However,
the result is new if one only asks (4) for j = 0, 1, 2, and so Corollary 1.6 improves on previous
results.

The plan of the paper is the following: In Section 2 we state some preliminary results
concerning a Calderón-Zygmund decomposition of general measures and about the Hausdorff
measure of a Lipschitz graph on annuli. The proof of Theorem 1.4 is given in Section 3, and
in Section 4 we prove Theorem 1.3(c). Finally, in Section 5 we complete the proof of Theorem
1.3 and we also prove Corollary 1.6.
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Remark 1.7 (oscillation). Let F := {Fε}ε>0 be a family of functions defined on Rd. Fix a
decreasing sequence {rm}m∈Z ⊂ (0,∞). The oscillation of F at x ∈ Rd is defined by

O(F)(x) := sup
{εm},{δm}

(∑
m∈Z
|Fεm(x)− Fδm(x)|2

)1/2

,

where the pointwise supremum is taken over all sequences {εm}m∈Z and {δm}m∈Z such that
rm+1 ≤ εm ≤ δm ≤ rm for all m ∈ Z. We are also interested in the operators (O ◦T )µ(x) :=
O(T µ)(x) and (O ◦ T µ)f(x) := O(T µf)(x). Theorems 1.2, 1.3 and 1.4 also hold replacing
Vρ by O. Moreover, the norm of the corresponding operators is bounded independently of
the sequence that defines O. We will only give the proof of Theorems 1.3 and 1.4 for Vρ,
because the case of O follows by very similar arguments and computations. The details are
left for the reader.

As usual, in the paper the letter ‘C’ stands for some constant which may change its value
at different occurrences, and which quite often only depends on n and d. The notation
A . B (A & B) means that there is some constant C such that A ≤ CB (A ≥ CB), with C
as above. Also, A ≈ B is equivalent to A . B . A.

2. Preliminaries

2.1. Calderón-Zygmund decomposition for general measures. Given a cube Q in Rd,
we denote by `(Q) the side length of Q. In this paper, the cubes are assumed to be closed
and to have sides parallel to the coordinate axes. Given ν ∈ M(Rd), a > 1 and b > an, we
say that a cube Q is (a, b)-|ν|-doubling if |ν|(aQ) ≤ b|ν|(Q), where aQ is the cube concentric
with Q with side length a`(Q). For definiteness, if a and b are not specified, by a doubling
cube we mean a (2, 2d+1)-|ν|-doubling cube.

The following two lemmas are already known (see [To2], [To1], or [To3] for example), but
since they are essential in this paper, we give their proof for completeness.

Lemma 2.1. Let b > ad. If ν is a Radon measure in Rd, then for ν-a.e. x ∈ Rd there exists
a sequence of (a, b)-|ν|-doubling cubes {Qk}k centered at x with `(Qk)→ 0 as k →∞.

Proof. Let Z ⊂ Rd be the set of points x such that there does not exist a sequence of (a, b)-
|ν|-doubling cubes {Qk}k≥0 centered at x with side length decreasing to 0; and let Zj ⊂ Rd
be the set of points x such that there does not exist any (a, b)-|ν|-doubling cube Q centered
at x with `(Q) ≤ 2−j . Clearly, Z =

⋃
j≥0 Zj . Thus, proving the lemma is equivalent to

showing that ν(Zj) = 0 for every j ≥ 0.
Let Q0 be a fixed cube with side length 2−j and let k ≥ 1 be some integer. For each

z ∈ Q0∩Zj , let Qz be a cube centered at z with side length a−k`(Q0). Since the cubes ahQz
are not (a, b)-|ν|-doubling for h = 0, . . . , k − 1 and akQz ⊂ 2Q0, we have

(5) ν(Qz) ≤ b−1ν(aQz) ≤ · · · ≤ b−kν(akQz) ≤ b−kν(2Q0).

By Besicovitch’s theorem, there exists a subfamily {zm}m ⊂ Q0 ∩Zj such that Q0 ∩Zj ⊂⋃
mQzm and moreover

∑
m χQzm ≤ Pd. This is a finite family and the number N of points

zm can be easily bounded above as follows: if L stands for the Lebesgue measure on Rd,

N (a−k`(Q0))d =
N∑
m=1

L(Qzm) ≤ PdL(2Q0) = Pd(2`(Q0))d.



VARIATION FOR SINGULAR INTEGRALS ON LIPSCHITZ GRAPHS 5

Thus, N ≤ Pd2dakd. As a consequence, since {Qzm}1≤m≤N covers Q0 ∩ Zj , by (5),

ν(Q0 ∩ Zj) ≤
N∑
m=1

ν(Qz) ≤ Nb−kν(2Q0) ≤ Pd2dakdb−kν(2Q0).

Since b > ad, the right hand side tends to 0 as k →∞. Therefore ν(Q0 ∩Zj) = 0, and since
the cube Q0 is arbitrary, we are done. �

Lemma 2.2 (Calderón-Zygmund decomposition). Assume that µ := HnΓ∩B, where Γ is an

n-dimensional Lipschitz graph and B ⊂ Rd is some fixed ball. For every ν ∈ M(Rd) with
compact support and every λ > 2d+1‖ν‖/‖µ‖, we have:

(a) There exists a finite or countable collection of almost disjoint cubes {Qj}j (that is,∑
j χQj ≤ C) and a function f ∈ L1(µ) such that

|ν|(Qj) > 2−d−1λµ(2Qj),(6)

|ν|(ηQj) ≤ 2−d−1λµ(2ηQj) for η > 2,(7)

ν = fµ in Rd \ Ω with |f | ≤ λ µ-a.e, where Ω =
⋃
jQj .(8)

(b) For each j, let Rj := 6Qj and denote wj := χQj
(∑

k χQk
)−1

. Then, there exists a
family of functions {bj}j with suppbj ⊂ Rj and with constant sign satisfying∫

bj dµ =

∫
wj dν,(9)

‖bj‖L∞(µ)µ(Rj) ≤ C|ν|(Qj), and(10) ∑
j |bj | ≤ C0λ (where C0 is some absolute constant).(11)

Proof of Lemma 2.2(a). Let H be the set of those points from suppµ ∪ suppν such that
there exists some cube Q centered at x satisfying |ν|(Q) > 2−d−1λµ(2Q). For each x ∈ H,
let Qx be a cube centered at x such that the preceding inequality holds for Qx but fails for
the cubes Q centered at x with `(Q) > 2`(Qx). Notice that the condition λ > 2d+1 ‖ν‖/‖µ‖
guaranties the existence of Qx.

Since H is bounded (because µ and ν are compactly supported), we can apply Besicovitch’s
covering theorem to get a finite or countable almost disjoint subfamily of cubes {Qj}j ⊂
{Qx}x∈H which cover H and satisfy (6) and (7) by construction.

To prove (8), denote by Z be the set of points y ∈ suppν such there does not exist a
sequence of (2, 2d+1)-|ν|-doubling cubes centered at y with side length tending to 0, so that
|ν|(Z) = 0, by Lemma 2.1. By the definitions of H and Z, for every x ∈ suppν \ (H ∪ Z),
there exists a sequence of (2, 2d+1)-|ν|-doubling cubes Pk centered at x, with `(Pk)→ 0, such
that |ν|(Pk) ≤ 2−d−1λµ(2Pk), and thus |ν|(2Pk) ≤ 2d+1|ν|(Pk) ≤ λµ(2Pk). This implies that
χRd\(H∪Z)ν is absolutely continuous with respect to µ and that χRd\Hν = χRd\(H∪Z)ν = fµ

with |f | ≤ λ µ-a.e., by the Lebesgue-Radon-Nikodym theorem (see [Ma, pages 36 to 39], for
instance). �

Proof of Lemma 2.2(b). Assume first that the family of cubes {Qj}j is finite. Then we
may suppose that this family of cubes is ordered in such a way that the sizes of the cubes
Rj are non decreasing (i.e. `(Rj+1) ≥ `(Rj)). The functions bj that we will construct will
be of the form bj = cj χAj , with cj ∈ R and Aj ⊂ Rj . We set A1 = R1 and b1 := c1 χR1 ,

where the constant c1 is chosen so that
∫
Q1
w1 dν =

∫
b1 dµ.

Suppose that b1, . . . , bk−1 have been constructed, satisfy (9) and
∑k−1

j=1 |bj | ≤ C0 λ, where
C0 is some constant which will be fixed below. Let Rs1 , . . . , Rsm be the subfamily of
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R1, . . . , Rk−1 such that Rsi ∩Rk 6= ∅. As `(Rsi) ≤ `(Rk) (because of the non decreasing sizes
of Rj), we have Rsi ⊂ 3Rk. Taking into account that

∫
|bj | dµ ≤ |ν|(Qj) for j = 1, . . . , k − 1

by (9), and using (7) and that µ(6Rk) ≤ Cµ(Rk) (because 1
2Rk = 3Qk intersects suppµ by

(7)), we get∑
i

∫
|bsi | dµ ≤

∑
i

|ν|(Qsi) ≤ C|ν|(3Rk) ≤ Cλµ(6Rk) ≤ C2λµ(Rk).

Therefore, µ {x ∈ Rk :
∑

i|bsi(x)| > 2C2λ} ≤ µ(Rk)/2. So, if we set

Ak := {x ∈ Rk :
∑

i|bsi(x)| ≤ 2C2λ} ,

then µ(Ak) ≥ µ(Rk)/2.
The constant ck is chosen so that for bk = ckχAk we have

∫
bk dµ =

∫
Qk
wk dν. Then we

obtain, by (7),

|ck| ≤
|ν|(Qk)
µ(Ak)

≤
2|ν|(1

2Rk)

µ(Rk)
≤ C3λ

(this calculation also applies to k = 1). Thus, |bk| +
∑

i |bsi | ≤ (2C2 + C3)λ. If we choose
C0 = 2C2 + C3, (11) follows.

Now it is easy to check that (10) also holds. Indeed we have

‖bj‖L∞(µ)µ(Rj) ≤ C|cj |µ(Aj) = C

∣∣∣∣ ∫
Qj

wj dν

∣∣∣∣ ≤ C|ν|(Qj).
Suppose now that the collection of cubes {Qj}j is not finite. For each fixed N we consider

the family of cubes {Qj}1≤j≤N . Then, as above, we construct functions bN1 , . . . , b
N
N with

supp(bNj ) ⊂ Rj satisfying
∫
bNj dµ =

∫
Qj
wj dν,

∑N
j=1 |bNj | ≤ C0 λ and ‖bNj ‖L∞(µ)µ(Rj) ≤

C|ν|(Qj). Notice that the sign of bNj equals the sign of
∫
wj dν and so it does not depend on

N .
Then there is a subsequence {bk1}k∈I1 which is convergent in the weak ∗ topology of L∞(µ)

to some function b1 ∈ L∞(µ). Now we can consider a subsequence {bk2}k∈I2 with I2 ⊂ I1

which is also convergent in the weak ∗ topology of L∞(µ) to some function b2 ∈ L∞(µ).
In general, for each j we consider a subsequence {bkj }k∈Ij with Ij ⊂ Ij−1 that converges in

the weak ∗ topology of L∞(µ) to some function bj ∈ L∞(µ). It is easily checked that the
functions bj satisfy the required properties. �

2.2. Hausdorff measure of Lipschitz graphs on annuli. Given z ∈ Rd and 0 < a ≤ b,
let A(z, a, b) ⊂ Rd denote the closed annulus centered at z and with inner radius a and outer
radius b. This subsection is devoted to the proof of the following lemma, which yields a key
estimate to derive Theorems 1.3 and 1.4.

Lemma 2.3. Let Γ := {x ∈ Rd : x = (y,A(y)), y ∈ Rn} be the graph of a Lipschitz function
A : Rn → Rd−n such that Lip(A) < 1. Then, there exists C > 0 depending on n, d, and
Lip(A), such that HnΓ(A(z, a, b)) ≤ C(b− a)bn−1 for all z ∈ Γ and all 0 < a ≤ b.

We need the following auxiliary result.

Lemma 2.4. Let 1 ≤ n < d. For x := (x1, . . . , xd) ∈ Rd we denote

xH := (x1, . . . , xn, 0, . . . , 0) ∈ Rd and xV := (0, . . . , 0, xn+1, . . . , xd) ∈ Rd.
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Given x, y ∈ Rd \ {0}, if there exists 0 < s < 1 such that |xV | ≤ s|xH |, |yV | ≤ s|yH |, and
|xV − yV | ≤ s|xH − yH |, then there exists C > 0 depending only on s such that

(12) |xV − yV | ≤ C
∣∣∣∣ |x||xH | xH − |y||yH | yH

∣∣∣∣.
Proof. We set Φ(x, y) :=

∣∣|x||xH |−1xH − |y||yH |−1yH
∣∣. Since Φ is symmetric in x and y, we

can assume that |xH | ≤ |yH |. If 〈·, ·〉 denotes the scalar product in Rd, using the polarization
identity,

Φ(x,y)2 = |x|2 + |y|2 − 2|x||xH |−1|y||yH |−1〈xH , yH〉
= |x|2 + |y|2 + |x||xH |−1|y||yH |−1

(
|xH − yH |2 − |xH |2 − |yH |2

)
= |x|2 + |y|2 − 2|x||y|+ |x||xH |−1|y||yH |−1

(
|xH − yH |2 − |xH |2 − |yH |2 + 2|xH ||yH |

)
=
(
|x| − |y|

)2
+ |x||xH |−1|y||yH |−1

(
|xH − yH |2 − (|xH | − |yH |)2

)
.

Since |xH − yH |2 − (|xH | − |yH |)2 ≥ 0, |xH | ≤ |x|, and |yH | ≤ |y|, we have

Φ(x, y)2 ≥
(
|x| − |y|

)2
+ |xH − yH |2 − (|xH | − |yH |)2.(13)

Assume that 2|x| ≤ |y|. Then, using (13),

|xV − yV | ≤ |x|+ |y| ≤
3

2
|y| = 3

(
|y| − 1

2
|y|
)
≤ 3(|y| − |x|) ≤ 3Φ(x, y),

and we obtain (12). By the same arguments, if 2|y| ≤ |x|, then |xV − yV | ≤ 3Φ(x, y) and
(12) holds. Thus, from now on we assume 1

2 |x| ≤ |y| ≤ 2|x|.
Let 0 < δ < 1 be a small number that will be fixed below. Assume that (1−δ)|xH−yH | ≥∣∣|yH | − |xH |∣∣. Then, by (13),

Φ(x, y)2 ≥ |xH − yH |2 − (|xH | − |yH |)2 ≥ |xH − yH |2 − (1− δ)2|xH − yH |2

= δ(2− δ)|xH − yH |2 ≥ δ(2− δ)s−2|xV − yV |2,

and then (12) holds with C = s/
√
δ(2− δ).

Therefore, we can suppose that (1− δ)|xH − yH | ≤
∣∣|yH | − |xH |∣∣ = |yH | − |xH |, since we

are also assuming |xH | ≤ |yH |. If we set z = y − x, we have (1− δ)|zH | ≤ |xH + zH | − |xH |,
so (1− δ)|zH |+ |xH | ≤ |xH + zH |. Hence,

(1− δ)2|zH |2 + |xH |2 + 2(1− δ)|zH ||xH | =
(
(1− δ)|zH |+ |xH |

)2
≤ |xH + zH |2 = |xH |2 + |zH |2 + 2〈xH , zH〉

and we obtain

〈xH , zH〉 ≥ −
1

2
δ(2− δ)|zH |2 + (1− δ)|zH ||xH |.(14)

Using (14), that 〈xV , zV 〉 ≥ −|xV ||zV |, and that |xV | ≤ s|xH | and |zV | ≤ s|zH |, we get

〈x, z〉 = 〈xH + xV , zH + zV 〉 = 〈xH , zH〉+ 〈xV , zV 〉

≥ −1

2
δ(2− δ)|zH |2 + (1− δ)|zH ||xH | − |xV ||zV |

≥ −1

2
δ(2− δ)|zH |2 + (1− δ − s2)|zH ||xH |.

(15)

Notice that, if δ > 0 is small enough depending on s, then −1
4 (1− s2)(1 + s2)−1 < −3

2 δ(2−
δ) < 0 and 1− δ − s2 > 1

2 (1− s2). Let γ(x, z) be the angle between x and z (by definition,
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0 ≤ γ(x, z) ≤ π). Using that 〈x, z〉 = |x||z| cos(γ(x, z)), that |x| ≤
√

1 + s2|xH | and |z| ≤√
1 + s2|zH |, and that |z| ≤ |x|+ |y| ≤ 3|x|, we finally obtain from (15) that

cos(γ(x, z)) ≥ −1

2
δ(2− δ)|zH |2|x|−1|z|−1 + (1− δ − s2)|zH ||xH ||x|−1|z|−1

≥ −3

2
δ(2− δ) + (1− δ − s2)(1 + s2)−1 ≥ 1

4
(1− s2)(1 + s2)−1 =: a.

Notice that a > 0, because 0 < s < 1 by hypothesis. Hence, since cos(γ(−x, y − x)) =
cos(γ(−x, z)) = − cos(γ(x, z)) (because z = y − x and 〈−x, z〉 = −〈x, z〉), we have c0 :=
cos(γ(−x, y − x)) ≤ −a < 0 (notice that c0 ≤ 0 implies that |x| ≤ |y|). By the cosines
theorem, |y|2 = |x|2 − |y − x|2 − 2|x||y − x|c0. Since c0 < 0, we solve the second degree
equation in |y − x| and we obtain

|y − x| =
√
|y|2 − |x|2(1− c2

0)− |x||c0| =
|y|2 − |x|2(1− c2

0)− |x|2c2
0√

|y|2 − |x|2(1− c2
0) + |x||c0|

=
(|y| − |x|)(|y|+ |x|)√

|y|2 − |x|2(1− c2
0) + |x||c0|

≤ (|y| − |x|)(|y|+ |x|)
|x||c0|

≤ (|y| − |x|)3

a
,

where we also used that |y| ≤ 2|x| in the last inequality. Therefore, by (13),

|xV − yV | ≤ |x− y| ≤
3

a
(|y| − |x|) ≤ 3

a
Φ(x, y),

and (12) follows with C = 3/a, where a > 0 only depends on s. This completes the proof of
the lemma. �

Proof of Lemma 2.3. We keep the notation introduced in Lemma 2.4. Fix z ∈ Γ. We can
assume that z = 0, by taking a translation of Γ if it is necessary.

For x ∈ Rd with xH 6= 0, consider the map

Υ(x) :=
|x|
|xH |

xH + xV =

√
1 +
|xV |2
|xH |2

xH + xV .

It is not difficult to show that Υ is a bilipschitz mapping from (a neighborhood of) the cone

L := {x ∈ Rd \ {0} : |xV | ≤ Lip(A)|xH |}

to (a neighborhood of) the cone

L′ := {x ∈ Rd \ {0} : |xV | ≤ Lip(A)(1 + Lip(A)2)−1/2|xH |},

whose inverse equals

Υ−1(x) =

√
1− |xV |

2

|xH |2
xH + xV .

Moreover, when Υ and Υ−1 are restricted to L and L′ respectively, Lip(Υ) and Lip(Υ−1)
only depend on n, d, and Lip(A). Hence, since Γ ⊂ L ∪ {0}, for any 0 < a ≤ b we have

HnΓ(A(0, a, b)) = Hn(Γ ∩A(0, a, b)) ≈ Hn(Υ(Γ ∩A(0, a, b))).

Consider the set Υ(Γ). Since Γ has slope smaller than 1 (i.e. Lip(A) < 1), by Lemma 2.4
there exists a constant C > 0 depending only on n, d, and Lip(A) such that for any two points
x, y ∈ Υ(Γ) one has |xV −yV | ≤ C|xH−yH |. Then, it is known that Υ(Γ) is contained in the
n-dimensional graph Γ′ of some Lipschitz function (see for example the proof of [Ma, Lemma
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15.13]). Notice also that, given 0 < a ≤ b, Υ(L ∩ A(0, a, b)) ⊂ {x ∈ Rd : a ≤ |xH | ≤ b}.
Therefore,

HnΓ(A(0, a, b)) ≈ Hn(Υ(Γ ∩A(0, a, b))) ≤ Hn(Γ′ ∩ {x ∈ Rd : a ≤ |xH | ≤ b}) . (b− a)bn−1,

and the lemma is proved. �

Remark 2.5. With a little more of effort, one can show that Υ(Γ) is actually a Lipschitz
graph. We omit the details.

Remark 2.6. Lemma 2.3 is sharp in the sense that the estimate fails if Lip(A) ≥ 1 (notice
that the constant C in Lemma 2.4 for s = Lip(A) is bigger than (1+Lip(A)2)/(1−Lip(A)2)).
Given ε > 0, one can easily construct a Lipschitz graph Γ such that 1 < Lip(A) < 1 + ε and
such that, for some z ∈ Γ and r > 0, Γ contains a set P ⊂ ∂B(z, r) with HnΓ(P ) > 0. Then, if
Lemma 2.3 were true for Γ, we would have 0 < HnΓ(P ) ≤ HnΓ(A(z, r−δ, r+δ)) . 2δ(r+δ)n−1,
and we would have a contradiction by letting δ → 0. By a similar argument, one can also
show that the lemma fails in the limiting case Lip(A) = 1.

3. Vρ ◦ T is a bounded operator from M(Rd) to L1,∞(HnΓ)

This section is devoted to the proof of Theorem 1.4, which is based on a nontrivial mod-
ification of the proof of [CJRW2, Theorem B] using the Calderón-Zygmund decomposition
developed in Subsection 2.1.

Proof of Theorem 1.4. Set µ := HnΓ∩B, where B is some fixed ball in Rd. Let ν ∈M(Rd)
be a finite complex Radon measure with compact support and λ > 2d+1‖ν‖/‖µ‖. We will
show that

(16) µ
({
x ∈ Rd : (Vρ ◦ T )ν(x) > λ

})
≤ C

λ
‖ν‖,

where C > 0 depends on n, d, K, ρ and Γ, but not on B ⊂ Rd. Let us check that (16)
implies that Vρ ◦T is bounded from M(Rd) into L1,∞(HnΓ). Suppose that ν is not compactly
supported. Set νN = χB(0,N) ν. Let N0 be such that suppµ ⊂ B(0, N0). Then it is not hard
to show that, for x ∈ suppµ,

|(Vρ ◦ T )ν(x)− (Vρ ◦ T )νN (x)| ≤ C |ν|(R
d \B(0, N))

N −N0
,

thus (Vρ ◦ T )νN (x)→ (Vρ ◦ T )ν(x) for all x ∈ suppµ uniformly, and since the estimate (16)
holds by assumption for νN , letting N → ∞, we deduce that it also holds for ν. Now, by
increasing the size of the ball B and monotone convergence, (16) yields

HnΓ
({
x ∈ Rd : (Vρ ◦ T )ν(x) > λ

})
≤ C

λ
‖ν‖,

as desired. Thus, we only have to verify (16) for all compactly supported ν.
Let {Qj}j be the almost disjoint family of cubes of Lemma 2.2, and set Ω :=

⋃
j Qj and

Rj := 6Qj . Then we can write ν = gµ+ νb, with

gµ = χRd\Ων +
∑
j

bjµ and νb =
∑
j

νjb :=
∑
j

(wjν − bjµ) ,

where the functions bj satisfy (9), (10), and (11), and wj = χQj
(∑

k χQk
)−1

.
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By the subadditivity of Vρ ◦ T , we have

µ
({
x ∈ Rd : (Vρ ◦ T )ν(x) > λ

})
≤ µ

({
x ∈ Rd : (Vρ ◦ T µ)g(x) > λ/2

})
+ µ

({
x ∈ Rd : (Vρ ◦ T )νb(x) > λ/2

})
.

(17)

Since Vρ ◦ T H
n
Γ is bounded in L2(HnΓ) by Theorem 1.2, it is easy to show that Vρ ◦ T µ is

bounded in L2(µ), with a bound independent of B. Notice that |g| ≤ Cλ by (8) and (11).
Then, using (10),

µ
({
x ∈ Rd : (Vρ ◦ T µ)g(x) > λ/2

})
.

1

λ2

∫
|(Vρ ◦ T µ)g|2 dµ . 1

λ2

∫
|g|2 dµ

.
1

λ

∫
|g| dµ ≤ 1

λ

(
|ν|(Rd \ Ω) +

∑
j

∫
Rj

|bj | dµ
)

≤ 1

λ

(
|ν|(Rd \ Ω) +

∑
j

|ν|(Qj)
)
≤ C

λ
‖ν‖.

(18)

Set Ω̂ :=
⋃
j 2Qj . By (6), we have µ(Ω̂) ≤

∑
j µ(2Qj) . λ−1

∑
j |ν|(Qj) . λ−1‖ν‖. We

are going to show that

(19) µ
({
x ∈ Rd \ Ω̂ : (Vρ ◦ T )νb(x) > λ/2

})
≤ C

λ
‖ν‖,

and then (16) is a direct consequence of (17), (18), (19) and the estimate µ(Ω̂) . λ−1‖ν‖.
For simplicity of notation, given 0 < ε ≤ δ and t ∈ Rd, we set χδε(t) := χ(ε,δ](|t|), so

Tενb(x)− Tδνb(x) =

∫
χδε(x− y)K(x− y) dνb(y) = (Kχδε ∗ νb)(x).

Given x ∈ suppµ, let {εm}m∈Z be a decreasing sequence of positive numbers (which depends
on x, i.e. εm ≡ εm(x)) such that

(20) (Vρ ◦ T )νb(x) ≤ 2

(∑
m∈Z
|(Kχεmεm+1

∗ νb)(x)|ρ
)1/ρ

.

If Rj ∩A(x, εm+1, εm) = ∅ then (Kχεmεm+1
∗ νjb )(x) = 0, so by (20) and the triangle inequality,

(Vρ ◦ T )νb(x) ≤ 2

(∑
m∈Z

∣∣∣∣ ∑
j:Rj⊂A(x,εm+1,εm)

(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

+ 2

(∑
m∈Z

∣∣∣∣ ∑
j:Rj∩∂A(x,εm+1,εm)6=∅

(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

=: 2
(
IS(x) +BS(x)

)
,

and then,

µ
({
x ∈ Rd \ Ω̂ : (Vρ ◦ T )νb(x) > λ/2

})
≤ µ

({
x ∈ Rd \ Ω̂ : IS(x) > λ/8

})
+ µ

({
x ∈ Rd \ Ω̂ : BS(x) > λ/8

})
.

(21)
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Let us estimate first µ
({
x ∈ Rd \ Ω̂ : IS(x) > λ/8

})
. Since the `ρ-norm is not bigger

than the `1-norm for ρ ≥ 1,

IS(x) ≤
∑
m∈Z

∣∣∣∣ ∑
j:Rj⊂A(x,εm+1,εm)

(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣
≤
∑
m∈Z

∑
j:Rj⊂A(x,εm+1,εm)

∣∣∣∣ ∫ χεmεm+1
(x− y)K(x− y) dνjb (y)

∣∣∣∣
=
∑
j

∑
m∈Z:A(x,εm+1,εm)⊃Rj

∣∣∣∣ ∫ χεmεm+1
(x− y)K(x− y) dνjb (y)

∣∣∣∣
≤
∑
j

χRd\Rj (x)

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣.

(22)

Notice that

∫
Rd\Ω̂

χRd\Rj (x)

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣ dµ(x) ≤
∫
Rd\Rj

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣ dµ(x)

≤
∫
Rd\2Rj

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣ dµ(x) +

∫
2Rj\Rj

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣ dµ(x).

(23)

On one hand, by (10) and using the L2(µ) boundedness of the maximal operator Tµ∗ (recall
that µ = HnΓ∩B, where Γ is a Lipschitz graph and B is a ball) and that µ(2Rj) ≤ Cµ(Rj)

(because 1
2Rj ∩ suppµ 6= ∅), we get

∫
2Rj\Rj

∣∣∣∣ ∫ K(x− y)bj(y) dµ(y)

∣∣∣∣ dµ(x) ≤
∫

2Rj\Rj
Tµ∗ bj dµ

≤
(∫

2Rj

(Tµ∗ bj)
2 dµ

)1/2

µ(2Rj)
1/2

. ‖bj‖L2(µ)µ(2Rj)
1/2 . ‖bj‖L∞(µ)µ(Rj)

. |ν|(Qj).

(24)

On the other hand, since suppwj ⊂ Qj = 1
6Rj and |wj | ≤ 1, if x ∈ 2Rj \ Rj we have∫

|K(x − y)wj(y)| d|ν|(y) . |ν|(Qj)|x − zj |−n, where zj denotes the center of Rj . Hence,
using again that µ(2Rj) ≤ Cµ(Rj) ≤ C`(Rj)n,

∫
2Rj\Rj

∣∣∣∣ ∫ K(x− y)wj(y) dν(y)

∣∣∣∣ dµ(x) ≤
∫

2Rj\Rj

∫
|K(x− y)wj(y)| d|ν|(y) dµ(x)

. |ν|(Qj)
∫

2Rj\Rj
|x− zj |−n dµ(x)

. |ν|(Qj)`(Rj)−nµ(2Rj) . |ν|(Qj).

(25)
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Since νjb (Rj) = 0, suppνjb ⊂ Rj , and ‖νjb‖ . |ν|(Qj) by (10), we have∫
Rd\2Rj

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣ dµ(x) ≤
∫
Rd\2Rj

∫
Rj

|K(x− y)−K(x− zj)| d|νjb |(y) dµ(x)

.
∫
Rd\2Rj

∫
Rj

|y − zj |
|x− zj |n+1

d|νjb |(y) dµ(x)

. ‖νjb‖
∫
Rd\2Rj

`(Rj)

|x− zj |n+1
dµ(x) . ‖νjb‖ . |ν|(Qj).

Combining this last estimate with (24), (25), and the fact that νjb = wjν − bjµ, from (23)
we obtain that ∫

Rd\Ω̂
χRd\Rj (x)

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣ dµ(x) . |ν|(Qj).

Finally, using (22) we conclude

µ
({
x ∈ Rd \ Ω̂ : IS(x) > λ/8

})
≤ 8

λ

∫
Rd\Ω̂

IS(x) dµ(x)

≤ 8

λ

∑
j

∫
Rd\Ω̂

χRd\Rj (x)

∣∣∣∣ ∫ K(x− y) dνjb (y)

∣∣∣∣ dµ(x)

≤ C

λ

∑
j

|ν|(Qj) ≤
C

λ
‖ν‖.

(26)

Let us estimate µ
({
x ∈ Rd \ Ω̂ : BS(x) > λ/8

})
. Recall that εm ≡ εm(x). We define

ψjm(x) :=

{
1 if Rj ∩ ∂A(x, εm+1(x), εm(x)) 6= ∅
0 if not

, and

θjk(x) :=

{
1 if Rj ∩ ∂A(x, 2−k−1, 2−k) 6= ∅
0 if not

.

(27)

Then, by the triangle inequality, for x ∈ Rd \ Ω̂ we have

BS(x) =

(∑
m∈Z

∣∣∣∣∑
j

ψjm(x)(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

≤
(∑
m∈Z

∣∣∣∣∑
j

χRd\2Rj (x)ψjm(x)(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

+

(∑
m∈Z

∣∣∣∣∑
j

χ2Rj\2Qj (x)ψjm(x)(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

≤
(∑
m∈Z

∣∣∣∣∑
j

χRd\2Rj (x)ψjm(x)(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

+
∑
j

χ2Rj\2Qj (x)

(∑
m∈Z

∣∣(Kχεmεm+1
∗ νjb )(x)

∣∣ρ)1/ρ

=: BS1(x) +BS2(x).

(28)
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Notice that BS2(x) ≤
∑

j χ2Rj\2Qj (x)(Vρ ◦ T )νjb (x). Since ρ ≥ 1, for x ∈ 2Rj \ 2Qj ,

(Vρ ◦ T )νjb (x) ≤ (Vρ ◦ T )(wjν)(x) + (Vρ ◦ T )(bjµ)(x)

≤ (V1 ◦ T )(wjν)(x) + (Vρ ◦ T µ)bj(x)

. |ν|(Qj)|x− zj |−n + (Vρ ◦ T µ)bj(x),

where zj denotes the center of Qj (and Rj). Then, similarly to (24) and (25) but using now
the L2(µ) boundedness of Vρ ◦ T µ given by Theorem 1.2, we have

µ
({
x ∈ Rd\Ω̂ : BS2(x) > λ/16

})
≤ 16

λ

∫
Rd\Ω̂

BS2 dµ

≤ 16

λ

∫ ∑
j

χ2Rj\2Qj (Vρ ◦ T )νjb dµ =
16

λ

∑
j

∫
2Rj\2Qj

(Vρ ◦ T )νjb dµ

.
1

λ

∑
j

|ν|(Qj)
∫

2Rj\2Qj
|x− zj |−n dµ(x) +

1

λ

∑
j

∫
2Rj\2Qj

(Vρ ◦ T µ)bj dµ

.
1

λ

∑
j

|ν|(Qj)`(Qj)−nµ(2Rj) +
1

λ

∑
j

‖(Vρ ◦ T µ)bj‖L2(µ)µ(2Rj)
1/2

.
1

λ

∑
j

|ν|(Qj) +
1

λ

∑
j

‖bj‖L∞(µ)µ(Rj) .
1

λ

∑
j

|ν|(Qj) ≤
C

λ
‖ν‖.

(29)

Therefore, to show that µ
({
x ∈ Rd \ Ω̂ : BS(x) > λ/8

})
≤ Cλ−1‖ν‖, by (28) and (29) it is

enough to verify that

µ
({
x ∈ Rd \ Ω̂ : BS1(x) > λ/16

})
≤ C

λ
‖ν‖.

Without loss of generality, we can assume from the beginning that, for a given x ∈ suppµ,
either [εm+1, εm) ⊂ [2−k−1, 2−k) for some k ∈ Z, or [εm+1, εm) = [2−i, 2−k) for some i > k
(see [CJRW2, page 2130] for a similar argument). Thus, if we set Ik := [2−k−1, 2−k), we can
decompose Z = S ∪ L, where

L := {m ∈ Z : εm = 2−k, εm+1 = 2−i for i > k},

S :=
⋃
k∈Z
Sk, Sk := {m ∈ Z : εm, εm+1 ∈ Ik}.

Then, since ρ ≥ 1,

BS1(x) ≤
(∑
m∈L

∣∣∣∣∑
j

χRd\2Rj (x)ψjm(x)(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

+

(∑
m∈S

∣∣∣∣∑
j

χRd\2Rj (x)ψjm(x)(Kχεmεm+1
∗ νjb )(x)

∣∣∣∣ρ)1/ρ

=: BSL(x) +BSS(x),

and we have

µ
({
x ∈Rd \ Ω̂ : BS1(x) > λ/16

})
≤ µ

({
x ∈ Rd \ Ω̂ : BSL(x) > λ/32

})
+ µ

({
x ∈ Rd \ Ω̂ : BSS(x) > λ/32

})
.

(30)
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We are going to estimate first µ
({
x ∈ Rd \ Ω̂ : BSL(x) > λ/32

})
. Given x ∈ Rd \ Ω̂

(recall the definitions of ψjk(x) and θjk(x) in (27)), we have

BSL(x) ≤
∑
j

∑
m∈L

χRd\2Rj (x)ψjm(x)|(Kχεmεm+1
∗ νjb )(x)|

≤
∑
j

∑
k∈Z

χRd\2Rj (x)θjk(x)|(Kχ2−k

2−k−1 ∗ νjb )(x)|

≤
∑
j

∑
k∈Z : 2−k+1>`(Rj)

χRd\2Rj (x)θjk(x)|(Kχ2−k

2−k−1 ∗ νjb )(x)|,

(31)

where in the second and third inequalities above we used the following facts, respectively:

• assume m ∈ L, εm+1 = 2−i and εm = 2−i+s, with i ∈ Z and s ∈ N. Given j such
that Rj ∩ ∂A(x, εm+1, εm) 6= ∅, if Rj ∩ A(x, 2−k−1, 2−k) 6= ∅ for some k ∈ Z, then

Rj ∩ ∂A(x, 2−k−1, 2−k) 6= ∅.
• For x ∈ Rd \ 2Rj , if 2−k+1 ≤ `(Rj) then we have suppχ2−k

2−k−1(x − ·) ∩ Rj = ∅, so

(Kχ2−k

2−k−1 ∗ νjb )(x) = 0.

Therefore, from (31) and since |(Kχ2−k

2−k−1 ∗ νjb )(x)| . 2(k+1)n‖νjb‖,

µ
({
x ∈ Rd \ Ω̂ :BSL(x) > λ/32

})
≤ 32

λ

∫
Rd\Ω̂

BSL(x) dµ(x)

≤ 32

λ

∑
j

∑
k∈Z : 2−k+1>`(Rj)

∫
Rd\2Rj

θjk(x)|(Kχ2−k

2−k−1 ∗ νjb )(x)| dµ(x)

.
1

λ

∑
j

∑
k∈Z : 2−k+1>`(Rj)

2(k+1)n‖νjb‖
∫
θjk(x) dµ(x).

(32)

Let us check that
∫
θjk(x) dµ(x) . `(Rj)2

−k(n−1). Fix k and j such that 2−k+1 > `(Rj),

and take u ∈ 9
10Rj ∩ suppµ (this u exists because of (7)). There exists a > 0 depending only

on d such that suppθjk ⊂ B(u, 2−ka); thus, if `(Rj) ≥ 2−kb for some small constant b > 0,∫
θjk dµ ≤ µ(B(u, 2−ka)) . 2−kn ≤ b−1`(Rj)2

−k(n−1). On the contrary, if `(Rj) < 2−kb and b
is small enough, then

suppθjk ⊂ A(u, 2−k − b′`(Rj), 2−k + b′`(Rj)) ∪A(u, 2−k−1 − b′`(Rj), 2−k−1 + b′`(Rj))

for some constant b′ > 0 depending on b and d such that 2−k−1 − b′`(Rj) > 0. In that case,

since u ∈ suppµ, we have
∫
θjk dµ = µ(suppθjk) . `(Rj)2

−k(n−1) (because µ(A(u, r,R)) .
(R− r)Rn−1 for all 0 < r ≤ R by Lemma 2.3, since Γ has slope smaller than 1), as desired.

Using that
∫
θjk dµ . `(Rj)2

−k(n−1) and that ‖νjb‖ . |ν|(Qj) in (32), we conclude

µ
({
x ∈ Rd \ Ω̂ : BSL(x) > λ/32

})
.

1

λ

∑
j

∑
k∈Z : 2−k+1>`(Rj)

2(k+1)n‖νjb‖`(Rj)2
−k(n−1)

=
1

λ

∑
j

‖νjb‖`(Rj)
∑

k∈Z : 2−k+1>`(Rj)

2n+k

.
1

λ

∑
j

|ν|(Qj) ≤
C

λ
‖ν‖.

(33)
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It only remains to show µ
({
x ∈ Rd \ Ω̂ : BSS(x) > λ/32

})
≤ Cλ−1‖ν‖ to finish the proof

of the theorem. We set

Φj
m(x) := χRd\2Rj (x)ψjm(x)(Kχ

εm(x)
εm+1(x) ∗ ν

j
b )(x).

Recall that Ir = [2−r−1, 2−r). Since the `ρ-norm is not bigger than the `2-norm,

µ
({
x ∈ Rd \ Ω̂ : BSS(x) > λ/32

})
.

1

λ2

∫
Rd\Ω̂

∑
m∈S

∣∣∣∣∑
j

Φj
m(x)

∣∣∣∣2dµ(x)

=
1

λ2

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

∣∣∣∣ ∑
j : 2−k+1>`(Rj)

Φj
m(x)

∣∣∣∣2dµ(x)

=
1

λ2

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

∣∣∣∣ ∑
r∈Z : r≥k−1

∑
j : `(Rj)∈Ir

Φj
m(x)

∣∣∣∣2dµ(x),

and then by Cauchy-Schwarz inequality,

µ
({
x ∈Rd \ Ω̂ : BSS(x) > λ/32

})
.

1

λ2

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

( ∑
r∈Z:
r≥k−1

2(k−r)/2
)( ∑

r∈Z:
r≥k−1

2(r−k)/2

∣∣∣∣ ∑
j : `(Rj)∈Ir

Φj
m(x)

∣∣∣∣2)dµ(x)

.
1

λ2

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

∑
r∈Z : r≥k−1

2(r−k)/2

∣∣∣∣ ∑
j : `(Rj)∈Ir

Φj
m(x)

∣∣∣∣2dµ(x).

Thus, if we set P rm(x) :=
∑

j : `(Rj)∈Ir Φj
m(x), we have seen that

µ
({
x ∈ Rd \ Ω̂ : BSS(x) > λ/32

})
.

1

λ2

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

∑
r∈Z:
r≥k−1

2(r−k)/2|P rm(x)|2 dµ(x).
(34)

Let us estimate P rm(x) for m ∈ Sk and r ≥ k − 1. Since ‖νjb‖ . |ν|(Qj) ≤ |ν|(3Qj) .
λµ(6Qj) by (10) and (7), we have

|P rm(x)| ≤
∑

j : `(Rj)∈Ir

χRd\2Rj (x)ψjm(x)|(Kχεmεm+1
∗ νjb )(x)|

.
∑

j : `(Rj)∈Ir

χRd\2Rj (x)ψjm(x)2kn‖νjb‖ .
∑

j : 6`(Qj)∈Ir,
6Qj∩∂A(x,εm+1,εm)6=∅

2knλµ(6Qj).
(35)

It is not difficult to see that, if
∑

j χQj ≤ C for some C > 0, then
∑

j : `(6Qj)∈Ir χ6Qj ≤
C ′ for all r ∈ Z, where C ′ > 0 only depends on C (that is, the family of cubes F :=
{6Qj}j : `(6Qj)∈Ir has finite overlap uniformly in r ∈ Z). We set

Υ :=
∑

j : 6`(Qj)∈Ir,
6Qj∩∂A(x,εm+1,εm)6=∅

χ6Qj .

If 2−ka ≤ 2−r ≤ 2−k+1 for some small constant a > 0 (recall that we are assuming r ≥ k−1),
then there exists a constant b > 0 depending only on d and a such that suppΥ ⊂ B(x, b2−k),
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and then, by the finite overlap of the family F ,∑
j : 6`(Qj)∈Ir,

6Qj∩∂A(x,εm+1,εm)6=∅

µ(6Qj) =

∫
B(x,b2−k)

Υ dµ ≤ C ′µ(B(x, b2−k)) . 2−kn ≈ 2−r2−k(n−1).

On the contrary, if 2−ka ≥ 2−r for a small enough (depending on d), then there exists a
constant b > 0 depending on d and a such that 2−k−1 > 2−rb and suppΥ ⊂ A(x, εm −
2−rb, εm + 2−rb) ∪ A(x, εm+1 − 2−rb, εm+1 + 2−rb), and then, since m ∈ Sk, x ∈ suppµ and
the slope of Γ is smaller than 1, by Lemma 2.3 we have µ(suppΥ) ≤ µ(A(x, εm − 2−rb, εm +

2−rb)) + µ(A(x, εm+1 − 2−rb, εm+1 + 2−rb)) . 2−r2−k(n−1), thus by the finite overlap of the
family F , ∑

j : 6`(Qj)∈Ir,
6Qj∩∂A(x,εm+1,εm) 6=∅

µ(6Qj) =

∫
suppΥ

Υ dµ . µ(suppΥ) . 2−r2−k(n−1).

In any case, from (35) we get |P rm(x)| . 2knλ2−r2−k(n−1) = 2k−rλ. Therefore, using (34)
we obtain that

µ
({
x ∈Rd \ Ω̂ : BSS(x) > λ/32

})
.

1

λ

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

∑
r∈Z : r≥k−1

2(k−r)/2|P rm(x)| dµ(x)

≤ 1

λ

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

∑
r∈Z:
r≥k−1

2(k−r)/2
∑

j : `(Rj)∈Ir,
Rj∩∂A(x,εm+1,εm) 6=∅

|(Kχεmεm+1
∗ νjb )(x)| dµ(x)

.
1

λ

∑
k∈Z

∫
Rd\Ω̂

∑
m∈Sk

∑
r∈Z:
r≥k−1

2(k−r)/2
∑

j : `(Rj)∈Ir,
Rj∩A(x,2−k−1,2−k)6=∅

2kn|νjb |(A(x, εm+1, εm)) dµ(x)

≤ 1

λ

∑
k∈Z

∫
Rd\Ω̂

∑
r∈Z:
r≥k−1

2(k−r)/2+kn
∑

j : `(Rj)∈Ir,
Rj∩A(x,2−k−1,2−k)6=∅

|νjb |(A(x, 2−k−1, 2−k)) dµ(x).

Hence, if we set

τ jk(x) :=

{
1 if Rj ∩A(x, 2−k−1, 2−k) 6= ∅
0 if not

,

we obtain

µ
({
x ∈ Rd \ Ω̂ : BSS(x) > λ/32

})
≤ 1

λ

∑
k∈Z

∫
Rd\Ω̂

∑
r∈Z:
r≥k−1

2(k−r)/2+kn
∑

j : `(Rj)∈Ir

‖νjb‖τ
j
k(x) dµ(x)

=
1

λ

∑
k∈Z

∑
r∈Z:
r≥k−1

2(k−r)/2+kn
∑

j : `(Rj)∈Ir

‖νjb‖
∫
Rd\Ω̂

τ jk dµ.

Notice that, if `(Rj) ∈ Ir and r ≥ k− 1, then `(Rj) < 2−k+1. Hence, there exists a constant

C > 0 such that suppτ jk ⊂ B(zj , C2−k) for all `(Rj) ∈ Ir and all r ≥ k − 1 (recall that zj is

the center of Rj), and then
∫
Rd\Ω̂ τ

j
k dµ ≤ µ(B(zj , C2−k)) . 2−kn. Therefore, by exchanging
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the order of summation and using that ‖νjb‖ . |ν|(Qj), we finally obtain

µ
({
x ∈ Rd\Ω̂ : BSS(x) > λ/32

})
.

1

λ

∑
k∈Z

∑
r∈Z : r≥k−1

2(k−r)/2
∑

j : `(Rj)∈Ir

‖νjb‖

=
1

λ

∑
j

|ν|(Qj)
∑

r∈Z : 2−r−1≤`(Rj)<2−r

∑
k∈Z : k≤r+1

2(k−r)/2

.
1

λ

∑
j

|ν|(Qj) ≤
C

λ
‖ν‖.

(36)

The estimate (19) is a direct consequence of (21), (26), (28), (29), (30), (33), and (36). �

4. Vρ ◦ T H
n
Γ is a bounded operator from L∞(HnΓ) to BMO(HnΓ)

This section is devoted to the proof of the endpoint estimate (c) of Theorem 1.3. The use
of Lemma 2.3 is also essential in this section.

We may assume that Γ = {(y,A(y)) : y ∈ Rn}, where A : Rn → Rd−n is some Lipschitz
function with Lipschitz constant Lip(A). We say that a function f ∈ L1

loc(HnΓ) belongs to
BMO(HnΓ) if there exists a constant C > 0 such that

sup
D

inf
c∈R

1

HnΓ(D)

∫
D
|f − c| dHnΓ ≤ C,

where the supremum is taken over all the sets of the type D := D̃ × Rd−n, where D̃ is

a cube in Rn. For convenience of notation, given a > 0 we define aD := aD̃ × Rd−n
and `(aD) := `(aD̃). Notice that, since Γ is an n-dimensional Lipschitz graph, we have

HnΓ(D) ≈ `(D)n for all cubes D̃ ⊂ Rn. Moreover (Γ,HnΓ) is a space of homogeneous type,
and it is not hard to show that our definition of BMO(HnΓ) is equivalent to the classical one
for doubling measures (see [To1] for a definition of BMO on doubling measures).

Proof of Theorem 1.3(c). We have to prove that there exists a constant C > 0 such that,

for any f ∈ L∞(HnΓ) and any cube D̃ ⊂ Rn, there exists some constant c depending on f

and D̃ such that∫
D̃×Rd−n

∣∣(Vρ ◦ T HnΓ)f − c
∣∣ dHnΓ ≤ C‖f‖L∞(HnΓ)HnΓ(D̃ × Rd−n).(37)

Let f and D̃ be as above, and set D := D̃×Rd−n, f1 := fχ3D, and f2 := f − f1. First of
all, by Hölder’s inequality, Theorem 1.2, and since HnΓ(3D) ≈ HnΓ(D) because Γ is a Lipschitz
graph, we have∫

D
(Vρ ◦ T H

n
Γ)f1 dHnΓ ≤ HnΓ(D)1/2

(∫ (
(Vρ ◦ T H

n
Γ)f1

)2
dHnΓ

)1/2

. HnΓ(D)1/2
(
‖f1‖2L∞(HnΓ)H

n
Γ(3D)

)1/2
. ‖f‖L∞(HnΓ)HnΓ(D).

(38)

Notice that |(Vρ ◦ T H
n
Γ)(f1 + f2) − (Vρ ◦ T H

n
Γ)f2| ≤ (Vρ ◦ T H

n
Γ)f1, because Vρ ◦ T H

n
Γ is

sublinear and positive. Then, for any c ∈ R,

|(Vρ ◦ T H
n
Γ)f − c| = |(Vρ ◦ T H

n
Γ)(f1 + f2)− c|

≤ |(Vρ ◦ T H
n
Γ)(f1 + f2)− (Vρ ◦ T H

n
Γ)f2|+ |(Vρ ◦ T H

n
Γ)f2 − c|

≤ (Vρ ◦ T H
n
Γ)f1 + |(Vρ ◦ T H

n
Γ)f2 − c|,

(39)
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hence, to prove (37), by (38) and (39) we are reduced to prove that, for some constant c ∈ R,

(40)

∫
D

∣∣(Vρ ◦ T HnΓ)f2 − c
∣∣ dHnΓ ≤ C‖f‖L∞(HnΓ)HnΓ(D).

Set zD := (z̃D,A(z̃D)), where z̃D is the center of D̃ ⊂ Rn, and take c := (Vρ ◦T H
n
Γ)f2(zD).

We may assume that c <∞. By the triangle inequality,∣∣(Vρ ◦ T HnΓ)f2(x)− c
∣∣ρ ≤ sup

{εm↘0}

∑
m∈Z
|(Kχ εmεm+1

∗ (f2HnΓ))(x)− (Kχ εmεm+1
∗ (f2HnΓ))(zD)|ρ.

Given x ∈ Γ∩D, let {εm}m∈Z be a decreasing sequence of positive numbers (which depends
on x) such that∣∣(Vρ ◦ T HnΓ)f2(x)− c

∣∣ρ ≤ 2
∑
m∈Z
|(Kχ εmεm+1

∗ (f2HnΓ))(x)− (Kχ εmεm+1
∗ (f2HnΓ))(zD)|ρ.

Notice that |(Kχ εmεm+1
∗ (f2HnΓ))(x) − (Kχ εmεm+1

∗ (f2HnΓ))(zD)| ≤ ‖f‖L∞(HnΓ)(Θ1m + Θ2m),
where

Θ1m : =

∫
(3D)c

χ εmεm+1
(x− y) |K(x− y)−K(zD − y)| dHnΓ(y),

Θ2m : =

∫
(3D)c

|χ εmεm+1
(x− y)− χ εmεm+1

(zD − y)||K(zD − y)| dHnΓ(y).

Thus,

(41)
∣∣(Vρ ◦ T HnΓ)f2(x)− c

∣∣ . ‖f‖L∞(HnΓ)

(∑
m∈Z

(Θ1m + Θ2m)ρ
)1/ρ

.

Since ρ ≥ 1, we easily have(∑
m∈Z

Θ1ρm

)1/ρ

≤
∑
m∈Z

Θ1m .
∫

(3D)c

∑
m∈Z

χ εmεm+1
(x− y)

|x− zD|
|zD − y|n+1

dHnΓ(y)

. `(D)

∫
(3D)c

|zD − y|−n−1 dHnΓ(y) . 1.

(42)

The case of Θ2m is more delicate. Since Γ is a Lipschitz graph, there exists an integer M >
10 depending only on Lip(A) such that any x ∈ Γ∩D satisfies |x− zD| < 2M`(D). Without
loss of generality, we can assume that there exists m0 ∈ Z such that εm0 = 2M+2`(D), just by
adding the term 2M+2`(D) to the fixed sequence {εm}m∈Z. Obviously, we can also assume
that εm > εm+1 for all m ∈ Z.

We set J0 := {m ∈ Z : εm ≤ 2M+2`(D)} = {m ∈ Z : m ≥ m0} and, for j > M + 2,

J1
j := {m ∈ Z : 2j−1`(D) ≤ εm+1 < εm ≤ 2j`(D) and εm − εm+1 ≥ 2M`(D)},
J2
j := {m ∈ Z : 2j−1`(D) ≤ εm+1 < εm ≤ 2j`(D) and εm − εm+1 < 2M`(D)},
J3
j := {m ∈ Z : 2j−1`(D) ≤ εm+1 ≤ 2j`(D) < εm}.

Then Z = J0∪
(⋃

j>M+2(J1
j ∪J2

j ∪J3
j )
)
. For the case of m ∈ J0, we have the easy estimate( ∑

m∈J0

Θ2ρm

)1/ρ

.
∑
m∈J0

∫
(3D)c

(
χ εmεm+1

(x− y) + χ εmεm+1
(zD − y)

)
`(D)−n dHnΓ(y)

≤
∫
|x−y|≤2M+2`(D)

dHnΓ(y)

`(D)n
+

∫
|zD−y|≤2M+2`(D)

dHnΓ(y)

`(D)n
. 1.
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Assume that m ∈ J1
j . Notice that supp

(
χ εmεm+1

(x−·)−χ εmεm+1
(zD−·)

)
⊂ Am(x, zD), where

Am(x, zD) denotes the symmetric difference between A(x, εm+1, εm) and A(zD, εm+1, εm).
Notice also that, since m ∈ J1

j and x ∈ D ∩ Γ, the set Am(x, zD) is contained in the union

of annuli A1 := A(x, εm+1 − 2M`(D), εm+1 + 2M`(D)) and A2 := A(x, εm − 2M`(D), εm +
2M`(D)). Hence, using that m ∈ J1

j and Lemma 2.3, we have

HnΓ({y ∈ Rd : |χεmεm+1
(x− y)− χεmεm+1

(zD − y)| 6= 0}) ≤ HnΓ(A1 ∪A2)

. 2M+1`(D)
(
εm + 2M`(D)

)n−1
+ 2M+1`(D)

(
εm+1 + 2M`(D)

)n−1

. 2j(n−1)`(D)n.

(43)

Using that |K(zD − y)| . (2j`(D))−n for all y ∈ Am(x, zD) ∩ (3D)c, we get

Θ2m . (2j`(D))−n2j(n−1)`(D)n = 2−j

and, since ρ ≥ 2 and J1
j contains at most 2j−M−1 indices, we have

∑
m∈J1

j
Θ2ρm . 2−j .

Assume now that m ∈ J2
j . Then, using Lemma 2.3, we obtain

HnΓ({y ∈ Rd : |χ εmεm+1
(x− y)− χ εmεm+1

(zD − y)| 6= 0})

≤ HnΓ({y ∈ Rd : χ εmεm+1
(x− y) = 1}) +HnΓ({y ∈ Rd : χ εmεm+1

(zD − y) = 1})
. (εm − εm+1)εn−1

m ,

and, as above, |K(zD − y)| . (2j`(D))−n for all y ∈ Am(x, zD) ∩ (3D)c. Since m ∈ J2
j ,

Θ2ρm . (2j`(D))−ρn
(
(εm − εm+1)εn−1

m

)ρ
. (2j`(D))−ρn(εm − εm+1)(2M`(D))ρ−1(2j`(D))(n−1)ρ . 2−jρ`(D)−1(εm − εm+1)

and then, since ρ ≥ 2 and j > M + 2 > 12,∑
m∈J2

j

Θ2ρm . 2−jρ
∑
m∈J2

j

εm − εm+1

`(D)
≤ 2−jρ2j−1 ≈ 2−j(ρ−1) ≤ 2−j .

Finally, assume that m ∈ J3
j . Obviously, the set J3

j contains at most one term. If

εm − εm+1 < 2M`(D), arguing as in the case m ∈ J2
j , we have

HnΓ({y ∈ Rd : |χ εmεm+1
(x− y)− χ εmεm+1

(zD − y)| 6= 0}) . (εm − εm+1)εn−1
m

. 2M`(D)(2j`(D) + 2M`(D))n−1 . 2j(n−1)`(D)n,

and then Θ2m . 2j(n−1)`(D)n(2j−1`(D))−n . 2−j . On the contrary, if εm−εm+1 ≥ 2M`(D),
arguing as in the case m ∈ J1

j , we have supp
(
χ εmεm+1

(x− ·)− χ εmεm+1
(zD − ·)

)
⊂ Am(x, zD) ⊂

A1 ∪A2. Similarly to (43), we have

HnΓ(A1) . 2M+1`(D)(εm+1 + 2M`(D))n−1 . εn−1
m+1`(D) ≤ 2j(n−1)`(D)n,

and |K(zD − y)| . (2j`(D))−n for all y ∈ A1 ∩ (3D)c. If we denote by j(εm) the positive

integer such that 2j(εm)−1`(D) ≤ εm ≤ 2j(εm)`(D) (obviously, j(εm) > j), we have HnΓ(A2) .
εn−1
m `(D) ≤ 2j(εm)(n−1)`(D)n, and |K(zD−y)| . (2j(εm)`(D))−n for all y ∈ A2∩(3D)c. Hence,

Θ2m . 2j(n−1)`(D)n(2j`(D))−n + 2j(εm)(n−1)`(D)n(2j(εm)`(D))−n . 2−j + 2−j(εm) . 2−j .
Therefore, since J3

j contains at most one term,
∑

m∈J3
j

Θ2ρm . 2−jρ ≤ 2−j .
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We put all these estimates of Θ2m for m belonging to J0, J1
j , J2

j , and J3
j together with

(42) in (41) and we conclude that∣∣(Vρ ◦ T HnΓ)f2(x)− c
∣∣ . ‖f‖L∞(HnΓ)

(∑
m∈Z

(Θ1m + Θ2m)ρ
)1/ρ

. ‖f‖L∞(HnΓ)

(∑
m∈Z

Θ1ρm

)1/ρ

+ ‖f‖L∞(HnΓ)

( ∑
m∈J0

Θ2ρm

)1/ρ

+ ‖f‖L∞(HnΓ)

( ∑
j>M+2

( ∑
m∈J1

j

Θ2ρm +
∑
m∈J2

j

Θ2ρm +
∑
m∈J3

j

Θ2ρm

))1/ρ

. ‖f‖L∞(HnΓ)

(
1 + 1 +

(∑
j>12

2−j
)1/ρ)

. ‖f‖L∞(HnΓ).

Finally, (40) follows by integrating in D this last estimate. This yields the boundedness of
Vρ ◦ T H

n
Γ from L∞(HnΓ) to BMO(HnΓ). �

5. Vρ ◦ T H
n
Γ is a bounded operator in Lp(HnΓ) for all 1 < p <∞

This section is devoted to complete the proof of Theorem 1.3 and Corollary 1.6.

Proof of Theorem 1.3(b). This is a straightforward application of Theorem 1.4. �

Proof of Theorem 1.3(a). Recall from Theorem 1.2 that Vρ ◦T H
n
Γ is bounded in L2(HnΓ).

We deduce the Lp boundedness of the positive sublinear operator Vρ ◦ T H
n
Γ by interpolation

between the pairs (L1(HnΓ), L1,∞(HnΓ)) and (L2(HnΓ), L2(HnΓ)) for 1 < p < 2, and between
(L2(HnΓ), L2(HnΓ)) and (L∞(HnΓ), BMO(HnΓ)) for 2 < p < ∞. Let us remark that, in the
latter case, the classical interpolation theorem (see [Du, Theorem 6.8], for instance) would
require the operator Vρ ◦ T H

n
Γ to be linear. Clearly, this fails in our case. However, an easy

modification of the arguments in [Du] using Lemma 5.1 below shows that that interpolation
theorem is also valid for positive sublinear operators. Before stating the lemma, let us recall

some definitions. Given f ∈ L1
loc(HnΓ), x ∈ Rd, and a cube Q̃ ∈ Rn, set Q = Q̃ × Rd−n and

define

mQf :=
1

HnΓ(Q)

∫
Q
f dHnΓ,

Mf(x) := supQ3xmQ|f |, and M ]f(x) := supQ3xmQ|f −mQf |.

Lemma 5.1. Let F : L1
loc(HnΓ) → L1

loc(HnΓ) be a positive and sublinear operator. Then

(M ] ◦ F )(f + g) . (M ◦ F )f + (M ] ◦ F )g for all functions f, g ∈ L1
loc(HnΓ).

By using Lemma 5.1 and the fact that ‖Mf‖Lp(HnΓ) . ‖M ]f‖Lp(HnΓ) for f ∈ Lp0(HnΓ) and

1 ≤ p0 ≤ p < ∞ (see [Du, Lemma 6.9]), one can reprove the interpolation theorem [Du,
Theorem 6.8] applied to Vρ ◦ T H

n
Γ with minor modifications in the original proof. �

Proof of Lemma 5.1. If F is sublinear and positive, one has that |F (f)(x) − F (g)(x)| ≤
F (f−g)(x) for all functions f, g ∈ L1

loc(HnΓ). Let Q̃ be a cube in Rn, and set Q = Q̃×Rd−n ⊂
Rd. Then, for x, y ∈ Q ∩ Γ,

|F (f + g)(y)−mQ(Fg)| ≤ |F (f + g)(y)− Fg(y)|+ |Fg(y)−mQ(Fg)|
≤ |Ff(y)|+ |Fg(y)−mQ(Fg)|.
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Hence, mQ|F (f + g) − mQ(Fg)| ≤ mQ|Ff | + mQ|Fg − mQ(Fg)| ≤ (M ◦ F )f(x) + (M ] ◦
F )g(x) and, by taking the supremum over all possible cubes Q̃ ⊂ Rn such that Q 3 x, we
conclude (M ] ◦ F )(f + g)(x) . (M ◦ F )f(x) + (M ] ◦ F )g(x) (recall that (M ] ◦ F )h(x) .
supQ3x infa∈RmQ|Fh− a| for all h ∈ L1

loc(HnΓ)). �

Proof of Corollary 1.6. The arguments follow closely the proof of [Ma, Theorem 20.27].
First of all, we may assume that E is a Lipschitz graph with slope smaller than 1, since
Hn almost all E can be covered with countably many C1 manifolds which in turn can be
covered by Lipschitz graphs with small slope. By the Lebesgue decomposition theorem and
Radon-Nikodym theorem (see [Ma, Theorem 2.17] for the real case, for example), there exists
f ∈ L1(HnE) and a finite complex Radon measure νs such that HnE and |νs| are mutually
singular and ν = fHnE + νs.

Given K satisfying (2), by Theorem 1.3(b) we have (Vρ ◦ T H
n
E )f(x) < ∞ for Hn almost

all x ∈ E. Therefore, for any decreasing sequence {εm}m∈Z, {Tµεmf(x)}m∈Z is a Cauchy se-

quence, so it is convergent. Thus limε→0 T
HnE
ε f(x) exists for Hn almost all x ∈ E. Therefore,

we may assume that ν = νs. The rest of the proof is almost the same of [Ma, Theorem 20.27]
(just replace T ∗ by Vρ ◦ T in the proof in [Ma] and use Theorem 1.4). The details are left
for the reader. �
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