VARIATION FOR SINGULAR INTEGRALS ON
LIPSCHITZ GRAPHS: [P AND ENDPOINT ESTIMATES

ALBERT MAS

ABSTRACT. Let 1 < n < d be integers and let p denote the n-dimensional Hausdorff
measure restricted to an n-dimensional Lipschitz graph in R? with slope strictly less than
1. For p > 2, we prove that the p-variation and oscillation for Calderén-Zygmund singular
integrals with odd kernel are bounded operators in LP(u) for 1 < p < oo, from L'(u) to
L'°°(p), and from L™ (u) to BMO(p). Concerning the first endpoint estimate, we actually
show that such operators are bounded from the space of finite complex Radon measures in
R? to LY (p).

1. INTRODUCTION

Many recent papers on probability, ergodic theory, and harmonic analysis dealt with the
topics of p-variation and oscillation for martingales and some families of operators (see [Lp],
[Bo], [JKRW], [CJRW1], [JSW], [LT], and [OSTTW], for example). In this paper we continue
the study developed in [MT1] and [MT2] about the p-variation and oscillation for Calderén-
Zygmund singular integral operators with odd kernel defined on measures different form the
Lebesgue measure. More precisely, we are concerned with variational LP (1 < p < oo) and
endpoint estimates for such singular integral operators defined on Lipschitz graphs and with
respect to the Hausdorff measure.

Throughout the paper 1 < n < d denote two fixed integers. By an n-dimensional Lipschitz
graph T' € R? we mean any translation and rotation of a set of the type

{zeR?: 2= (y,Ay)), y e R"},

where A : R® — R% ™ is some Lipschitz function with Lipschitz constant Lip(A). We say
that Lip(.A) is the slope of T
Given 1 < n < d integers, € > 0, and a Radon measure x in R¢, we consider

W Tuw)i= [ K@y, forock
|z—y|>e
where the kernel K : R?\ {0} — C satisfies
C C C
(2) K (z)| < R |02, K ()| < P and |0y, 0 K (z)| < FEzk
forall 1 <i,j <dand z = (z1,...,24) € R?\ {0}, C > 0 is some constant, and moreover

K(—x) = —K(z) for all z # 0 (i.e. K is odd). We set T := {T.pu}e>0, and given f € L'(u),
we also set TV f := T.(fu), TL f(z) := supeso [T f(z)|, and T#f := {TF f}c>0. The well-
known Cauchy and n-dimensional Riesz transforms are two very important examples of
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2 A. MAS

such Calderén-Zygmund singular integral operators, and they correspond to the kernels
K(x) =1/x for x € C\ {0} and K (z) = z/|z|"*! for € R%\ {0} respectively (to be precise,
we should consider the scalar components x; /|z|"*1).

Definition 1.1 (p-variation). Let F := {F.}cso be a family of functions defined on R<.
Given p > 0, the p-variation of F at x € R? is defined by

1/p
wwwm:wm<§]ﬂmmm—ﬂAmﬁ ,

{em} meZ

where the pointwise supremum is taken over all decreasing sequences {€m }mez C (0,00).
Given a Radon measure p in R?, f € L'(y), and z € R?, we will deal with
(Voo Tu(x) :==V,(Tp)(x), and  (V, o TH)f(x) = Vp(T"[)(x).

For a Borel set E C R?, we denote by ‘H’% the n-dimensional Hausdorff measure resticted to
E. The following result is a direct consequence of [MT2, Theorem 1.3].

Theorem 1.2. Let p > 2. LetT' C RY be an n-dimensional Lipschitz graph and set pi = HE.
Then, V,oT# is a bounded operator in L?(p). The norm of this operator is bounded by some
constant depending only on n, d, K, p, and the slope of T'.

In fact [MT2, Theorem 1.3] shows that Theorem 1.2 holds whenever y is an n-dimensional
Ahlfors-David regular uniformly n-rectifiable measure in R? (the notions of Ahlfors-David
regularity and uniform rectifiability are geometric/measure theoretic conditions about ho-
mogeneity and quantitative rectifiability which are trivially satisfied for Lipschitz graphs; see
[DS, Part I} for precise definitions). Furthermore, in [MT1] it is also proved that, if u = H}.
for some n-dimensional Lipschitz graph I' ¢ R%, ¢ € C*°(R) is some fixed function such that

X[2,00) S @ < X[1/2,00)
(3) T8 f(z) = /90(\37 —yl/e)K(z —y)f(y) du(y) for z € R and f € L'(u),

and 7' := {T}. }e>0, then the operator V, o 72" is bounded

(a) in LP(u) for all 1 < p < oo,
(b) from L'(u) to LY*°(p), and
(c) from L*°(u) to BMO(u) (see Section 4 for the precise definition of BMO(u)).

Usually, we refer to T* as the family of rough truncations of the singular integral operator
with kernel K and with respect to p, and we refer to 72" as the family of smooth truncations
of the same operator.

The following theorem is one of the main results of this paper. Roughly speaking, under an
extra assumption on the slope of the Lipschitz graph, it improves Theorem 1.2 and extends
the estimates (a), (b), and (c) above to rough truncations.

Theorem 1.3. Let p > 2. LetT' C R? be an n-dimensional Lipschitz graph with slope strictly
less than 1 and set p := Hp. Then, V, o TH is a bounded operator

(a) in LP(pu) for all 1 < p < oo,
(b) from L'(u) to LY*°(u), and
(¢) from L() to BMO(y),

The norm of this operator in the cases above is bounded by some constant depending only on
n, d, K, the slope of T, p, and on p in the case of (a).
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This theorem generalizes the results in [CJRW2] for the class of kernels given by (2)
and, in this sense, it is a natural continuation of the study of variational inequalities for
Calderén-Zygmund singular integral operators.

As we pointed out above, Theorem 1.3 was already known for the family 74, but the case
of rough truncations requires much more work and detail on the estimates due to the lack
of regularity on the truncations. Moreover, [MT2, Theorem 1.3] (and so Theorem 1.2) were
obtained using the so-called corona decomposition (see [DS, Chapter 3 of Part I]), which is a
useful tool to deal with L? estimates. However, it is very difficult to adapt these techniques
to deal with L? estimates for p # 2. Thus, Theorem 1.3 does not follow from the variational
LP estimates for 7', nor by a simple modification of the proof of Theorem 1.2, it requires a
more careful and deeper study.

The other main result of this paper is the following theorem, which strengthens the end-
point estimate (b) of Theorem 1.3. Moreover, in combination with the techniques used in
[MT2], we think that the following theorem could be useful to derive LP (1 < p < o0)
and endpoint estimates for V, o T# when p is any n-dimensional AD regular uniformly n-
rectifiable measure in R?, which would enhance [MT2, Theorems 1.3 and 2.3]. We denote
by M(R?) the space of finite complex Radon measures on R? equipped with the norm given
by the variation of measures.

Theorem 1.4. Let p > 2. LetT' C R? be an n-dimensional Lipschitz graph with slope strictly
less than 1 and set i := H}. Then, V, o T is a bounded operator from M(R?) to LY*(p),
i.e., there exist a constant C > 0 such that, for all X > 0 and all v € M(R?),

C
plz €R?: (V0 Tv(z) > A} < 5 I
Moreover, the constant C only depends on n, d, K, p, and the slope of I

Remark 1.5. We think that the assumption on the smallness of the slope of the Lipschitz
graph in Theorems 1.3 and 1.4 is just a technical obstruction due to the arguments we will
employ in their proofs. As pointed out in the paragraph above Theorem 1.4, we expect that
this assumption will be removed in the future.

The following corollary is a direct consequence of Theorem 1.4.

Corollary 1.6. Let E be an H" measurable n-rectifiable subset of R? with H™(E) < oo, and
let K be an odd kernel satisfying (2). If v € M(R?), then the principal values limes o Tev ()
exist for H™ almost all x € E.

Given an n-rectifiable set £ C R? with H"(E) < oo, as far as the author knows, the
existence H'x-a.e. of lime g Tev(z) for v € M(R?) was already known for odd kernels K €
C®(R?\ {0}) satisfying

(4) VK ()] < Cjla| ™"

for allj =0,1,2,3,..., or maybe assuming (4) only for a finite but big number of ;’s (see [Ma,
Theorems 20.15 and 20.27, Remarks 20.16 and 20.19] and the references therein). However,
the result is new if one only asks (4) for j = 0,1, 2, and so Corollary 1.6 improves on previous
results.

The plan of the paper is the following: In Section 2 we state some preliminary results
concerning a Calderén-Zygmund decomposition of general measures and about the Hausdorff
measure of a Lipschitz graph on annuli. The proof of Theorem 1.4 is given in Section 3, and
in Section 4 we prove Theorem 1.3(c). Finally, in Section 5 we complete the proof of Theorem
1.3 and we also prove Corollary 1.6.
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Remark 1.7 (oscillation). Let F := {F.}e0 be a family of functions defined on R?. Fix a
decreasing sequence {7, }mez C (0,00). The oscillation of F at x € R? is defined by

1/2
OF)(x) = sup (Z\Femm)—Fam(xﬂ?) ,

{emb L6} \ S,

where the pointwise supremum is taken over all sequences {€, }mez and {0, }mez such that
Tmtl < €m < O < 1, for all m € Z. We are also interested in the operators (O o7 )u(x) :=
O(Tp)(z) and (O o TH)f(x) := O(THf)(x). Theorems 1.2, 1.3 and 1.4 also hold replacing
V, by O. Moreover, the norm of the corresponding operators is bounded independently of
the sequence that defines ©. We will only give the proof of Theorems 1.3 and 1.4 for V,,
because the case of O follows by very similar arguments and computations. The details are
left for the reader.

As usual, in the paper the letter ‘C’ stands for some constant which may change its value
at different occurrences, and which quite often only depends on n and d. The notation
A < B (A 2 B) means that there is some constant C' such that A < CB (A > CB), with C
as above. Also, A =~ B is equivalent to A < B < A.

2. PRELIMINARIES

2.1. Calderén-Zygmund decomposition for general measures. Given a cube Q in R?,
we denote by £(Q) the side length of (). In this paper, the cubes are assumed to be closed
and to have sides parallel to the coordinate axes. Given v € M(R%), a > 1 and b > a”, we
say that a cube @ is (a, b)-|v|-doubling if |v|(a@) < b|v|(Q), where aQ is the cube concentric
with @ with side length af(Q). For definiteness, if a and b are not specified, by a doubling
cube we mean a (2,2%1)-|v|-doubling cube.

The following two lemmas are already known (see [To2], [Tol], or [To3] for example), but
since they are essential in this paper, we give their proof for completeness.

Lemma 2.1. Let b > a®. If v is a Radon measure in R, then for v-a.e. © € R there exists
a sequence of (a,b)-|v|-doubling cubes {Qy}r centered at x with (Q) — 0 as k — oo.

Proof. Let Z C R? be the set of points x such that there does not exist a sequence of (a, b)-
|v|-doubling cubes {Q}r>0 centered at x with side length decreasing to 0; and let Z; C R4
be the set of points x such that there does not exist any (a, b)-|v|-doubling cube @ centered
at ¢ with £(Q) < 277, Clearly, Z = Uj>0 Zj. Thus, proving the lemma is equivalent to
showing that v(Z;) = 0 for every j > 0.

Let Qo be a fixed cube with side length 277 and let k& > 1 be some integer. For each
2 € QoNZj, let Q. be a cube centered at z with side length a~*0(Qp). Since the cubes a"Q,
are not (a, b)-|v|-doubling for h =0,...,k — 1 and a*Q. C 2Qq, we have

(5) v(Q:) < b 'w(aQ) < -+ <bMu(a"Q.) < b (2Q).

By Besicovitch’s theorem, there exists a subfamily {2, }m C Qo N Z; such that Qo N Z; C
U, @, and moreover > xq, < Py. This is a finite family and the number N of points
Zm can be easily bounded above as follows: if £ stands for the Lebesgue measure on RY,

N
N (a7*0(Q0)? = Y £(Q-,,) < PaL(2Qo) = Fa(20(Qo))".
m=1
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Thus, N < P;2%*4. As a consequence, since {Q,, }1<m<n covers Qo N Z;, by (5),

N
v(QoN Zy) <> v(Q:) < Nb*v(2Q0) < Pi2%a*b~*1(2Q).
m=1
Since b > a¢, the right hand side tends to 0 as k — co. Therefore v(QoN Zj) =0, and since
the cube Qg is arbitrary, we are done. O

Lemma 2.2 (Calderén-Zygmund decomposition). Assume that p := Hinp, where I' is an
n-dimensional Lipschitz graph and B C R? is some fived ball. For every v € M(RY) with
compact support and every X > 2%\ v||/||ul|, we have:
(a) There exists a finite or countable collection of almost disjoint cubes {Q;}; (that is,
>-iXq; < C) and a function f € L(p) such that

(6) WI(Q)) > 277 Au(2Qy),
(7) V(@) < 27 Au(2nQ;)  forn > 2,
(8) v=fuin RI\ Q with |f| <\ p-a.e, where Q = J;Q;.

(b) For each j, let R; := 6Q; and denote wj := XQj(Zk XQk)_l. Then, there exists a
family of functions {b;}; with suppb; C R; and with constant sign satisfying

(9) / by dy — / w; dv,

(10) 1071 oe () (Ry) < Clv|(Qy), and
(11) >-1bjl < CoX  (where Cy is some absolute constant).

Proof of Lemma 2.2(a). Let H be the set of those points from suppp U suppr such that
there exists some cube @ centered at x satisfying |v|(Q) > 279! A\u(2Q). For each = € H,
let @, be a cube centered at = such that the preceding inequality holds for ), but fails for
the cubes @ centered at z with £(Q) > 2((Q.). Notice that the condition A > 24+ ||v||/| |l
guaranties the existence of Q.

Since H is bounded (because p and v are compactly supported), we can apply Besicovitch’s
covering theorem to get a finite or countable almost disjoint subfamily of cubes {Q;}; C
{Qz}zem which cover H and satisfy (6) and (7) by construction.

To prove (8), denote by Z be the set of points y € suppr such there does not exist a
sequence of (2,2971)-|v|-doubling cubes centered at y with side length tending to 0, so that
|v|(Z) = 0, by Lemma 2.1. By the definitions of H and Z, for every = € suppv \ (H U Z),
there exists a sequence of (2,2%+1)-|v|-doubling cubes Py centered at x, with £(P},) — 0, such
that |v|(P) < 279 1Au(2P;), and thus |v|(2P;) < 27 |v|(Py) < Au(2P:). This implies that
Xré\(HUZ)V is absolutely continuous with respect to p and that xpa\ gV = Xga\(ruz)V = [1
with | f| < A p-a.e., by the Lebesgue-Radon-Nikodym theorem (see [Ma, pages 36 to 39], for
instance). O

Proof of Lemma 2.2(b). Assume first that the family of cubes {Q;}; is finite. Then we
may suppose that this family of cubes is ordered in such a way that the sizes of the cubes
R; are non decreasing (i.e. ¢(R;y1) > ¢(R;)). The functions b; that we will construct will
be of the form b; = ¢; XA;» with ¢; € R and A; C R;. We set Ay = Ry and b1 := ¢1 XR;,
where the constant ¢; is chosen so that le widv = [ by dp.

Suppose that by, ..., bg_1 have been constructed, satisfy (9) and Zf;ll |bj| < Co A, where
Co is some constant which will be fixed below. Let Rs,,...,Rs, be the subfamily of
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Ry,...,Ry_q such that R;, N Ry, # (0. As £(Rs,) < £(Ry) (because of the non decreasing sizes
of Rj), we have R,, C 3Rj,. Taking into account that [ |b;|du < |v|(Q;) for j=1,...,k—1
by (9), and using (7) and that u(6Ry) < Cu(Ry) (because %Rk = 3@y intersects suppu by
(7)), we get

Z/ |bs, | dp < Z v[(Qs,) < Clv[(3Rk) < CAu(6Ry) < CoAp(Ry).

Therefore, p{x € Ry : >, |bs;(x)] > 2C2A} < p(Ry)/2. So, if we set
Ap:={x € R : ) ;|bs,(x)| <2C2\},

then p(Ag) = p(Ry)/2.
The constant ¢ is chosen so that for by = ¢xxa, we have [bydu = ka wy dv. Then we
obtain, by (7),

2l (L
VI(@Qx) _ 2G5 Ry) Ca
1(Ag) 1(Rr)
(this calculation also applies to k = 1). Thus, |bx| + >, |bs;| < (2C2 + C3) A. If we choose
Co = 2C5 + (3, (11) follows.
Now it is easy to check that (10) also holds. Indeed we have

x| <

IlimgonRy) < Cleuta) = | [ ] < Cloi@y)
j

Suppose now that the collection of cubes {Q;}; is not finite. For each fixed N we consider
the family of cubes {Q;}1<j<n. Then, as above, we construct functions bY,...,bY with
supp(bév) C Rj satisfying fb;v dp = fQ]‘ wj dv, Zjvzl |b§V| < Cp A and ||b§y||Lm(M)M(Rj) <
Clv|(Qj). Notice that the sign of b;-v equals the sign of [ w; dv and so it does not depend on
N.

Then there is a subsequence {b¥}e;, which is convergent in the weak * topology of L>(u)
to some function by € L>(u). Now we can consider a subsequence {b5}rcr, with Is C I
which is also convergent in the weak x topology of L*°(u) to some function by € L>(u).
In general, for each j we consider a subsequence {b?}ke 1; with I; C I that converges in
the weak * topology of L*°(u) to some function b; € L>(u). It is easily checked that the
functions b; satisfy the required properties. O

2.2. Hausdorff measure of Lipschitz graphs on annuli. Given z € R% and 0 < a < b,
let A(z,a,b) C R? denote the closed annulus centered at z and with inner radius a and outer
radius b. This subsection is devoted to the proof of the following lemma, which yields a key
estimate to derive Theorems 1.3 and 1.4.

Lemma 2.3. LetT := {z € R? : z
A R" = R“™ such that Lip(A) <
Lip(A), such that H{(A(z,a,b)) < C(

= (y,A(y)), y € R} be the graph of a Lipschitz function
1. Then, there exists C' > 0 depending on n, d, and
b—a)b" ! forall z €T and all 0 < a < b.

We need the following auxiliary result.
Lemma 2.4. Let 1 <n <d. Forz:= (x1,...,24) € R? we denote

= (21,...,20,0,...,0) €R? and xy :=(0,...,0,Zn11,...,24) € R
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Given z,y € R2\ {0}, if there exists 0 < s < 1 such that |zvy| < s|lzyl, |yv| < slyul|, and
|y —yv| < sleg — yul, then there exists C > 0 depending only on s such that

(12) oy —yv| < 0| 12 gy = L
wrl "2 Tyl

Proof. We set ®(z,y) := ||z||zg| " =5 — |yl|lyu| " yu|. Since ® is symmetric in  and y, we
can assume that |zz| < |yg|. If (-,-) denotes the scalar product in RY, using the polarization
identity,

®(z,y)* = |2l + [y* = 2lellenl " yllyn | @m, yn)
= |2 + |y + |zllzal "M yllye| ™ (lea — yul® = lenl* — lyul?)
= lal? + ly* = 2lzllyl + [ellen " yllyr| ™ (er — yal® — lenl — lyal® + 2lzwllyn)
= (|| = [w))* + 2llzal Myllya| " (2 = yul = (zul = lyu))?).
Since |y — yu|* — (lem| = lyu])® = 0, |z < |z], and |yu| < |y|, we have
(13) o(x,y)* > (|| = |y)* + lon — yul* = (wn| = lyu))?.
Assume that 2|x| < |y|. Then, using (13),

3 1
v — vl <l + Iyl < Slyl =3Iyl = 5 Ivl) <3yl - |z]) < 30(zy),

and we obtain (12). By the same arguments, if 2|y| < |z|, then |zv — yy| < 3®(x,y) and
(12) holds. Thus, from now on we assume 3|z| < |y| < 2|z|.

Let 0 < 0 < 1 be a small number that will be fixed below. Assume that (1—20)|zg —yg| >
|lyr| — |z#]|. Then, by (13),

®(z,y)? > len —yul* — (lenl —lyu))? 2 lon —yul® — (1= 0)*lem — yul®
=0(2 =8|z —yul® > 6(2 - 8)s ey —yv /%,

and then (12) holds with C = s/4/8(2 — 9).

Therefore, we can suppose that (1 — 0)|zg — yu| < |lya| — |zul| = lya| — |z#]|, since we

are also assuming |xy| < |yg|. If we set z =y — z, we have (1 —9)|zg| < |zy + zu| — |zH],
o (1—=9)|zg|+ |zg| < |zg + zx|. Hence,

2
(1= 0zu* + len* +2(1 = 0)|znl|lzal = ((1 - 0)|zn| + |zal)
<l|eg +zul’ = |lzal® + |z6)* + 2(xw, 20)
and we obtain
1
(14) (wn, 2m) = =5 82 = 0)|zul* + (1= ) 2 ||zn].
Using (14), that (zvy, zy) > —|zy||zv], and that |zy| < s|zg| and |zy| < s|zg|, we get

(x,2) = (xg + 2v, 20 + 2v) = (g, 2H) + (TV, 27v)

1
(15) > —55(2—5)|2’H|2+(1—5)|ZH||55H|_|xV||ZV|

v

1
—3 52— (5)|2H\2 +(1-9—- 52)\zH]\a:H].

Notice that, if § > 0 is small enough depending on s, then —% (1-5?)(1+s*)"1 < —% 52—
§) <0Oand 1—6—s2>1(1—s?). Let y(z,2) be the angle between z and z (by definition,
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0 < ~v(x,2) < 7). Using that (z,z) = |z||z| cos(y(z, 2)), that |z| < V1 + s?|zg| and |z] <
V1+ s?|zg|, and that |z| < |z| + |y| < 3|z|, we finally obtain from (15) that

1
cos(y(@, 2)) 2 =5 8(2 - O)zm Pl el T+ (1 =6 — %) emllem o] 72T
1
4

Notice that a > 0, because 0 < s < 1 by hypothesis. Hence, since cos(y(—z,y — z)) =
cos(y(—z,z)) = —cos(y(x,z)) (because z = y — x and (—=x,z) = —(x,2)), we have ¢y :=
cos(y(—z,y —z)) < —a < 0 (notice that ¢p < 0 implies that |z| < |y|). By the cosines
theorem, |y|? = |z|?> — |y — z|?> — 2|z|ly — z|co. Since ¢y < 0, we solve the second degree
equation in |y — x| and we obtain

12 — 2*(1 — cf) — |=[*c5

ly— ol = /Iyl? — [22(1 - &) — |allcol =
VIVE — 2P~ &) + []co]

(lyl = |2z (ly| + |«) (lyl = |z (y[ + |«]) hd
~ VWP PO - @) + lallcol - [l ol = (Wi=lehg

where we also used that |y| < 2|z| in the last mequality. Therefore, by (13),

> 250+ (1-5 -1+ > (1-A1+5) " =a

3
2y —yv| <z -yl <~ (Iy\ [2]) < = ®(z,y),

and (12) follows with C' = 3/a, where a > 0 only depends on s. This completes the proof of
the lemma. 0

Proof of Lemma 2.3. We keep the notation introduced in Lemma 2.4. Fix z € I'. We can
assume that z = 0, by taking a translation of I if it is necessary.
For z € RY with x5 # 0, consider the map

x x
T(z):= ‘JU"QUH—I—QU 1+]‘mvl
H H

‘2
5 TH +xy.

It is not difficult to show that T is a bilipschitz mapping from (a neighborhood of) the cone

L:={z e R\ {0} : |zv| < Lip(A)|zp|}
to (a neighborhood of) the cone

L= {z e R\ {0} : |zy| < Lip(A)(1 + Lip(A)*) "2 |zxl},

whose inverse equals

2
T () = 1 - 12V .
(2) EFE TH+ Ty
Moreover, when T and Y~! are restricted to L and L’ respectively, Lip(Y) and Lip(Y~!)
only depend on n, d, and Lip(.A). Hence, since I' C L U {0}, for any 0 < a < b we have

HI(A0,a,b)) = H" (T N A0, a,b)) ~ H"(T(T N A0, a,b))).

Consider the set Y(I'). Since I' has slope smaller than 1 (i.e. Lip(A) < 1), by Lemma 2.4
there exists a constant C' > 0 depending only on n, d, and Lip(.A) such that for any two points
x,y € T(T') one has |xy —yy| < Clzg —ym|. Then, it is known that Y(T') is contained in the
n-dimensional graph I'" of some Lipschitz function (see for example the proof of [Ma, Lemma
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15.13]). Notice also that, given 0 < a < b, T(L N A(0,a,b)) C {x € R?: a < |zy| < b}.
Therefore,

HE(A0,a,b)) ~ HM(T(T N A0,a,b) <H'T' N{zeR?: a <|zy|<b}) < (b—a)h” 1,
and the lemma is proved. g

Remark 2.5. With a little more of effort, one can show that Y(I') is actually a Lipschitz
graph. We omit the details.

Remark 2.6. Lemma 2.3 is sharp in the sense that the estimate fails if Lip(.A) > 1 (notice
that the constant C in Lemma 2.4 for s = Lip(.A) is bigger than (1+Lip(.A)?)/(1—Lip(.A)?)).
Given € > 0, one can easily construct a Lipschitz graph I" such that 1 < Lip(A) < 1+ € and
such that, for some z € I" and > 0, I" contains a set P C 0B(z,r) with H{(P) > 0. Then, if
Lemma 2.3 were true for I', we would have 0 < HE(P) < HR(A(z,r—3,7+6)) < 25(r+6)" 1,
and we would have a contradiction by letting § — 0. By a similar argument, one can also
show that the lemma fails in the limiting case Lip(A) = 1.

3. V,0T IS A BOUNDED OPERATOR FROM M (R?) 1o LL>°(HR)

This section is devoted to the proof of Theorem 1.4, which is based on a nontrivial mod-
ification of the proof of [CJRW2, Theorem B| using the Calderén-Zygmund decomposition
developed in Subsection 2.1.

Proof of Theorem 1.4. Set i := H~p, where B is some fixed ball in R, Let v € M(RY)
be a finite complex Radon measure with compact support and A > 241 ||v|| /|| u]. We will
show that

(16) ,u({x e R? : (VyoT)v(z) > )\}) < % vl

where C' > 0 depends on n, d, K, p and T', but not on B € R%. Let us check that (16)
implies that V,o 7 is bounded from M (R?) into L1*°(H}). Suppose that v is not compactly
supported. Set vx = xp(o,n) V- Let No be such that suppu C B(0, Np). Then it is not hard
to show that, for x € suppp,

V|(R?\ B(0,N))
N-Ny '

|(Voo Thv(x) = (Voo Tvn(z)| < C

thus (V, o T)vn(x) = (V, 0 T)v(x) for all x € suppy uniformly, and since the estimate (16)
holds by assumption for vy, letting N — oo, we deduce that it also holds for v. Now, by
increasing the size of the ball B and monotone convergence, (16) yields

H?({x eR? . (Voo T)v(z) > )\}) < % vl

as desired. Thus, we only have to verify (16) for all compactly supported v.
Let {Q;}; be the almost disjoint family of cubes of Lemma 2.2, and set Q := Uj Q; and
Rj := 6Q);. Then we can write v = gu + 13, with

gp = Xra\QV + iju and v = Z Z/Z = Z (wjv —bjp) ,
J J J

where the functions b; satisfy (9), (10), and (11), and w; = xq, (>}, XQk)_l
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By the subadditivity of V, o T, we have

p({z € R . (V,0T)v(x) > A1)

a7 <p({zeR: (V,0TMg(z) > N/2}) +u({z € R : (V, 0 T)up(x) > A/2}).

Since V, o T" is bounded in L?(H2) by Theorem 1.2, it is easy to show that V, o TH is
bounded in L?(u), with a bound independent of B. Notice that |g| < C\ by (8) and (11).
Then, using (10),

p({z eR . (V,0TH)g(x) > A/2}) NAQ/I Vp o TH) gl2duNA2/lgl2du

" ,S)\/\gldﬂéA(IVI(R”I\Q)Jij:/Rj\bj!du)
<3 (ME D + T @) < S

Set @ := U, 2Q;. By (6), we have u(@) < ¥, n(2Q,) S ALY, (@5) S A1 vl We
are going to show that

(19) p({e e RND : (V0 Thn(e) > A/2)) < § I,

and then (16) is a direct consequence of (17), (18), (19) and the estimate p(Q2) < A=Yy
For simplicity of notation, given 0 < ¢ < § and ¢ € R%, we set x(t) := X(e,0)([t]), 80

Tevy(z) — Tovp(x) = /xf(w — YK (z —y) du(y) = (Kx{ * v)(2).

Given z € suppp, let {€, }mez be a decreasing sequence of positive numbers (which depends
on x, i.e. €, = €y(x)) such that

1/p
(20) Vo Th(a) < 2( S |+ ub><x>|f’) |

meZ

If RN A(z, €mt1, €m) = 0 then (Kxgn |« VZ)(&:) = 0, so by (20) and the triangle inequality,
> (Kxen,, * ) (x)

o\ 1/p
Wy Tinta) <2( 1 )
J: RjCA(z,€m+1,6m)

meZ
2 X > g, )

meEZ " j: R;NOA(Z,em+1 €m )70

—: 2(1S(x) + BS(x)),

and then,

p({z e R\ Q (Voo Tup(z) > A/2})

21 <pu({z e RINQ : 1S(x) > A/8}) + pu({z e RI\ Q : BS(z) > \/8}).
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Let us estimate first p({z € R\ Q: IS(z) > A/8}). Since the £7-norm is not bigger
than the ¢'-norm for p > 1,

IS(z) < Z

meZ

> (KX, +v))(2)

J: RjCA(Z,€m+1,€m)

<> > ‘ /xizﬂ(yﬁ —y)K(z —y) dVﬁ(y)’

meEZ j: RjCA(x,em+1,€m)

=2 X

J mEZ: A(x,€m41,6m) DR,

<ZXRd\R /K r—y )‘

Notice that

/ AXRd\R /K r—y )‘dﬂ /
RA\D RA\R,
RI\2R, 2R;\R;

On one hand, by (10) and using the L?(x) boundedness of the maximal operator T%' (recall
that p = H{~p, where I' is a Lipschitz graph and B is a ball) and that p(2R;) < Cu(Rj)
(because $R; Nsuppp # 0), we get

[

= : </23 (T2h))° dﬂ) Cery

J

. [KE-y >1du( )

/Kx— ()| duto).

[ K= duto|aute) < [ 10

2R\R,
S 1B 22y 2R S 1bjl] oo (uyie(Ry)
< vl (@y)-

On the other hand, since suppw; C Q; = %Rj and |w;| < 1, if x € 2R; \ R; we have
JIK(z — y)wi()|dlv|(y) S [v[(Qj)|z — z;|~™, where z; denotes the center of R;. Hence,
using again that p(2R;) < CH(R ) < CURy)",

/ZRj\Rj

[ K =vmw | < [ [l )

(25) < |1/|(Q]) /QR.\R. |z — zj|_n dpu(x)

S Q)R " (2R;) < [v(Q5)-
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Since I/b (Rj) =0, SuppZ/b C Rj, and ||v] | < |v|(Q;) by (10), we have

/Rd\m /K‘L’_ )‘dﬂ /Rd\m/ K (x —y) — K(z — 2;)| dy |(y) dps()

— zj]
/Rd\2R /R |z — z; ygz+1 d‘”zj;\(y) du(z)

U(R)) ,
———du(x) < ||V S Iv(Q).
RA\2R, | — 2"+ COBSY 179 NYLA(OT)

Al

Combining this last estimate with (24), (25), and the fact that I/g = wjv — bjp, from (23)
we obtain that

[ e @] [ K= )| au) < bi@)
Finally, using (22) we conclude
~ 8
p({z e RN\ Q : IS(z) > A/8}) < )\/Rd\ﬁIS(a:) du(x)
26) <3 [ e @) [ K )| duto
< S M@) < Sl

Let us estimate p({z € R?\ Q : BS(z) > A/8}). Recall that €, = €, (z). We define

%]n(x) — { (1] g fgtﬂ OA(x, emr1(x), em()) # 0 . and
(27) iy [ 1A Ry NOA, 2751 27k) £
H®) =90 if ot '

Then, by the triangle inequality, for z € R%\ Q we have

BS (2 S (@) (K, ) (@)

p) 1/p
meZ' j

< ( SUS vpovan, ()0 @) (K, + vi)(2)

meZ' j

(28) + < S xerpq, @)W, () (KX, |+ ) (x)

meZ' j

p>1/p
) P\ 1/p
< (TS e @@, ) @) )
meZ' j

1/p
+ ZXZR 20, (7 ( Z [(Kxem, x)\p>

meZ
=: BSl( ) + BSa(z).

p) 1/p
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Notice that BSy(x) < 37, Xar;\2q, (%) (V, © 'T)Vg(x). Since p > 1, for z € 2R; \ 2Q);,
(Vo T (x) < (V0 T)(wjw)(x) + (V0 T)(bju) ()
< V1o T)(wiw)(x) + (V0 TH)bj(x)
S @)l = 27" + (V, 0 TH)bj (),

where z; denotes the center of Q; (and R;). Then, similarly to (24) and (25) but using now
the L?(u) boundedness of V, o TH given by Theorem 1.2, we have

. 1
p({z € RAQ : BSy(x) > \/16}) < f/ _BSydu
RA\Q
6 .
Xar\2q, (Vo o TV, dp = == / (Vp o T)vj dp

<[ Lo = ; o, o T

<3 |u|<@->/ & — 2" dp(a L et d
(29) )\Z J 2R\20, J )\Z R\QQJ

1
XZM Q@) <2Rj>+XZH(vpoTﬂ)bj||L2(mu<2Rj>1/2

%ZMQJ )\Z”bHLw ~NAZ|V|QJ ol

Therefore, to show that p({z € R®\ Q : BS(z) > A/8}) < CA7Hv|l, by (28) and (29) it is
enough to verify that

p({r € BNQ 2 BSi(2) > A16}) < S ||

Without loss of generality, we can assume from the beginning that, for a given x € suppu,
either [e,,11,€m) C [27%71,27F) for some k € Z, or [emr1,€m) = [277,27%) for some i > k
(see [CJRW2, page 2130] for a similar argument). Thus, if we set I := [27%71,27), we can
decompose Z = S U L, where

L= {mEZ : Em:2_ka €m+1 :2_i for i > k}a

S = U Sk, Sp:={m€eZ: en, emns1 € I}
k€EZ

Then, since p > 1,

BS\(a <Z S Xaon, (@) () (KX« 13) (@)

meL' j

; ( 5™ 1S Xanor, (@), (@) (KX, +17) (2)

meS ' J
— BS¢(2) + BSs(a),

p) 1/p
p> 1/p

and we have
p({z R\ Q : BS(z) > A/16})

(30) LA i
<pu({z e R\ Q : BSg(z) > A/32}) + pu({z € R*\ Q : BSs(z) > \/32}).
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We are going to estimate first p({z € R\ Q : BS;(z) > A/32}). Given z € R?\ Q
(recall the definitions of ¢} (z) and %(x) in (27)), we have

BSr(x) <33 Xpaar, (@), (@) (KX, + 1)) (@)

Jj meL

(31) <D Xwaar, (@0 @) (G + 1)) (@)

7 kez

A e A
<y > Xrrzr, (2)07(2) (K xG -k * 1) ()],
J k€L:2—k+1>0(Ry)
where in the second and third inequalities above we used the following facts, respectively:
e assume m € L, €41 = 2 ¢ and €, = 27, with i € Z and s € N. Given j such
that Rj N OA(z, €mi1,€m) # 0, if Rj N A(z,27%71,27K) £ () for some k € Z, then
RjNOA(z,27F1 27F) £ 0.
e For x € R\ 2R;, if 27FF1 < ((R;) then we have suppxgiz_l(x —)NR; =0, so
(KX2E, %) (@) = 0.
Therefore, from (31) and since |(Kxg::,1 * ug)(m)| < 2(k+1)”|]1/g||,

32

p({z e R\ Q :BS,(x) > 2/32}) < 3 Jowa BS¢(x) du(z)
32
(32) - )\zj:kez 2§+:I>£ /R\?R 9]( )‘(KXZ - 1*yb)( )‘dlu( )
1Y X ) [ @) dute)
j )

| k€Z:2-k+t1>0(R;

Let us check that [ 67 (z)du(z) < €(R;)27F=1D. Fix k and j such that 27%1 > ((R;),
and take u € %Rj Nsuppy (this u exists because of (7)). There exists a > 0 depending only
on d such that suppﬁi C B(u,27%a); thus, if £(R;) > 27%b for some small constant b > 0,
fﬁi dp < p(B(u,27%a)) < 270 < p71(R;)27*"=1. On the contrary, if £(R;) < 27%b and b
is small enough, then

suppl, C A(u,27% — bU(R;),27F + VU(R;)) U A(u, 2751 —b'0(R;), 27% 1 + V'U(Ry))

for some constant b > 0 depending on b and d such that 27%~1 — VU(R;) > 0. In that case,

since u € suppy, we have [ du = p(suppb) < £(R;)275=1) (because u(A(u,r, R)) <

(R—r)R" ! for all 0 < r < R by Lemma 2.3, since I" has slope smaller than 1), as desired.
Using that fﬁj du S (R;)27F=1 and that [|v]|| < |v[(Q;) in (32), we conclude

d k+Dny,,J —k(n—1
p({z € RINQ : BSe(z) > A/32}) < AZ Yoo 2Ry Y
J kEZ:2-k+1>4(Ry)

(33) =3 ST lery) S ot
j

keZ:2=F+1>¢(R;)

1 C
S M@ <
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It only remains to show p({z € R4\ Q) : BSs(x) > A/32}) < CA1v|| to finish the proof
of the theorem. We set

], (2) = Xpa\or, ()05 (2) (KX )+ 1) (@).

Recall that I, = [27771,27"). Since the ¢’-norm is not bigger than the £2-norm,

p({z e R4\ Q : BSs(z) > A/32}) N)\Q/ Z Zqﬂ

RN
' 2
SE-D37 U Sl BD SR “NCRTE
kez  RN2 e, | oksg(r))
2
o) B0 DI D SENED DT AEI R 7C
keZ mESk r€Z:r>k—1 j:4(R;)El,
and then by Cauchy-Schwarz inequality,
p({z eR*\ Q : BSs(z) > A/32})
1 2
= (k—r)/2 (r—Fk)/2
< Z/R < 9 >< 3 2 S @) >du(x)
kEZ mESk re’: reZ: j:4(R;)el,
r>k—1 r>k—1
2
(r—k)/2 j
SN DY 2 > @) duta)
keZ meSy re€l: r>k 1

j:4(R;)el,

Thus, if we set P} (z) := Zj:g(R_)EIT ®J, (), we have seen that

g0y (e € RIND 5 BSs(0) > 3/32) ~A2Z/ SS9 BB ()2 dpa).

R? \Q meSy rTEL:
r>k—

Let us estimate P/ (z) for m € S, and r > k — 1. Since HVZH S Q) < [v|(3Q5) S
A(6Q;) by (10) and (7), we have

Pr@) < D Xeaar, @@ (KXo, +17)(@)]

j:e(Rj)GL«

35 ] n / n

(35) S S pean, (@U@ S 3 2 AL(6Q;).
JU(RyEl J:60Q))El,

6Q;NOA(T,€m+1,6m)7#D

It is not difficult to see that, if Zj X, < C for some C > 0, then Zj:é(GQj)eIT X6Q;
C’ for all r € Z, where C' > 0 only depends on C (that is, the family of cubes F
{6Q;};. 0(6Q,)er, has finite overlap uniformly in r € Z). We set

T:= Z XGQj .

j:60(Qj)€elr,
6Q;NOA(T,€m+1,6m)7#D

A

If 27 %q < 277 < 27F+1 for some small constant a > 0 (recall that we are assuming r > k—1),
then there exists a constant b > 0 depending only on d and a such that suppY C B(x, bQ*k),
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and then, by the finite overlap of the family F,

S w@)= [ TS Cp(Bat) £ 2k 2,
B(z,b27k)

J: 6Z(Qj)€]r,
6Q;NOA(T,€m+t1,6m)#D

On the contrary, if 27%a > 27" for a small enough (depending on d), then there exists a
constant b > 0 depending on d and @ such that 27571 > 277h and suppY C A(x, €, —
27"b, € + 2770) U A(, €p41 — 277b, €1 + 277D), and then, since m € Sk, = € suppu and
the slope of T" is smaller than 1, by Lemma 2.3 we have pu(suppY) < u(A(x, €y —277b, €, +
277b)) 4 u(A(Z, €my1 — 277, €my1 +277b)) < 2772751 thus by the finite overlap of the
family F,

Z n(6Q;) = / Y du < p(suppY) < 2o k1),
suppY

J:6L(Qj)€Ely,
6Qjﬂ§A(I,€m+1 ,Em)?éw

In any case, from (35) we get |Pr (z)| < 2F0A2772- k(=1 — 2k=7 )\ Therefore, using (34)

we obtain that

w({z R\ : BSs(z) > A/32)) < Z/ 21)/2| P ()] dpa()
R4

ez /RNQ 123, rer’ r>k 1

<> /R SOY otk S BN, < v)(@) dula)

kez RN\ es, rez: 3 0(R;)EL,
r>k—1 RjﬂaA(x,€m+1,€m)3£®
<3 Ly / SO alen 3 2|7 (A2, emst, em)) du(e)
kez /RN\Q s, ez j Ry
r2k—1 RJﬁA(J: 9—k=1 o—k)£g
<3 Z/ h=r)/2hn 3 Wi (A, 2771, 27)) dp(a).
kez VRN o7 j: UREL,
r>k—1 RjNA(z,2~ -1 Q—k)?g@

Hence, if we set

J(2) 1 if RjnA(z, 2751 27F) #£ ()
"1 0 if not ’

we obtain

p({z € R4\ Q : BSs(z) > 1/32})

3D fg 2 2 ST @ e
re’:

keZ U(R;)EI,
r>k—1 3 U(R;)
k r)/2+kn J J
SO SE LD DI P B
. ] RA\Q
keZ rel: j:4(R;)el,
r>k—1

Notice that, if £(R;) € I, and r > k — 1, then {(R;) < 27F+1. Hence, there exists a constant
C > 0 such that supprj C B(zj, C27%) for all £(R;) € I, and all r > k — 1 (recall that z; is
the center of R;), and then fRd\ﬁ 7l dp < p(B(zj,C27%)) < 2757 Therefore, by exchanging



VARIATION FOR SINGULAR INTEGRALS ON LIPSCHITZ GRAPHS 17

the order of summation and using that ”l/]H S [v|(Q;), we finally obtain

p({z e RN\Q : BSs(x) > A\/32}) < Z DA N 7]

kGZ reZ:r>k—1 j:l(R;)El,

(30 -3XM@ 3 S

reZ-z—T—lge(Rj)<2—"" k€Z : k<r+1

FONCIE o
The estimate (19) is a direct consequence of (21), (26), (28), (29), (30), (33), and (36). O

4. V, o THI 1S A BOUNDED OPERATOR FROM L*®(HE) TO BMO(HE)

This section is devoted to the proof of the endpoint estimate (¢) of Theorem 1.3. The use
of Lemma 2.3 is also essential in this section.

We may assume that I' = {(y, A(y)) : y € R"}, where A : R® — R%" is some Lipschitz
function with Lipschitz constant Lip(A). We say that a function f € Lj (H}) belongs to
BMO(H}) if there exists a constant C' > 0 such that

sup inf ———— cldHt < C,

DP eR ’H” / \f \ r

where the supremum is taken over all the sets of the type D := D x Ré—", where D is
a cube in R”. For convenience of notation, given a > 0 we define aD := aD x R

and ¢(aD) := ((aD). Notice that, since I' is an n-dimensional Lipschitz graph, we have

HE(D) ~ £(D)" for all cubes D C R"™. Moreover (I',H{) is a space of homogeneous type,
and it is not hard to show that our definition of BMO(H}) is equivalent to the classical one
for doubling measures (see [Tol] for a definition of BMO on doubling measures).

Proof of Theorem 1.3(c). We have to prove that there exists a constant C' > 0 such that,
for any f € L*°(H}) and any cube D C R™, there exists some constant ¢ depending on f
and D such that

(37) Lo A0, 0T = | it < Ol g MR(D < R
xRd—n

Let f and D be as above, and set D := D x RI=" f1 := fxsp, and fo := f — f1. First of
all, by Holder’s inequality, Theorem 1.2, and since H{:(3D) ~ H(D) because I' is a Lipschitz
graph, we have

/D(V ° T M < M (D WQ(/((VpoT”?)fl)deg>l/2

S HED)2 (i) o HEGBD)) T S 1S ooy HE(D)-

Notice that [(V, o T0)(fi + fa) — (V, 0 THE) fa| < (V, 0 THF) f1, because V, o T/ is
sublinear and positive. Then, for any ¢ € R,
(Voo THE)f — el = |V 0 TH)(f1 + fo) — ]
(39) <NV o TH)(fr + f2) = Vo o THE) ol +[(Vp 0 TH) f2 — ]
< Voo T +1(Vp 0 T f2 = cl,

(38)
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hence, to prove (37), by (38) and (39) we are reduced to prove that, for some constant ¢ € R,
(10) L1000 T2 = c| g < Ol 1D,

Set zp := (Zp,.A(Zp)), where Zp is the center of Dc R"™, and take ¢ := (VpoTH?)fg(zD).
We may assume that ¢ < co. By the triangle inequality,

|(V, 0 THE) fa(z) — | < S Z|Kxem+1 (foHE) (@) — (Kx&m,, * (faHE)) (2D
meZ

Given x €e 'N D, let {Em}mez be a decreasing sequence of positive numbers (which depends
on x) such that

(Voo THE) o) — c|” <2 [(Bx&m,, + (2H) (@) — (Kx&m,, + (foHE) (20)I7-

meZ
Notice that [(Kx&r,,  (fH)(x) — (Kx&r,, * (FHE)(z0) < ]l (Ol + O2,0),

€m+1
where

Ol i = /(w) X (@ —y) [K (2 — y) — K(2p — )| dH(y),

02, : = /( e X =0 =X G IR (0 — ) i )

Thus,

1/p
(41) V0 TH) o) — | < | Fllzeguary ( S (01, + @2m>p) .

MEZ
Since p > 1, we easily have

o e < “T — ZD’ n
Z @lm < Z @1771 ~ Z X5m+1 _ y\”“ dHF(y)

(42) me7Z mEZ mEZ
< (D) / 20—yl " dHR(y) < 1.
(3D)e

The case of ©2,, is more delicate. Since I' is a Lipschitz graph, there exists an integer M >
10 depending only on Lip(.A) such that any € I' N D satisfies |« — zp| < 2M¢(D). Without
loss of generality, we can assume that there exists mg € Z such that e,,, = 2M2((D), just by
adding the term 2M+2/(D) to the fixed sequence {e;, }mez. Obviously, we can also assume
that €, > ¢p,+1 for all m € Z.

We set Jo:={m €Z : ey <2M*2Y(D)} = {m €Z : m > myp} and, for j > M + 2,

le ={meZ: 27UD) < ens1 < em < 24(D) and €, — ey1 > 2M0(D)},
Jf ={meZ:27UD) < eni < em <20(D) and €, — €11 < 2M(D)},
JPi={meZ:27UD) < emi1 <VUD) < €}

Then Z = JoU ( Uj>M+2(Jj1 UJJZUJJ‘-O’)). For the case of m € Jy, we have the easy estimate

(Som) s X [ (matomn o xiz o -n)0) " ity

meJo meJo

S/ dHE (y) +/ dHp(y) <1,
le—y|<2M+2¢(p) £(D)" lep—yl<2M+2¢(p) (D)™
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Assume that m € le. Notice that supp(x&m, | (—-) — xem, (#p — 1)) C Am(z, zp), where
Ap(x,zp) denotes the symmetric difference between A(z,€p41,€m) and A(zp, €mi1, €m)-
Notice also that, since m € le and z € DNT, the set A, (z,2zp) is contained in the union

of annuli A 1= A(z, emy1 — 2MU(D), emr1 + 2M4(D)) and Ag := A(x, 6y — 2MU(D), € +
2M¢(D)). Hence, using that m € le and Lemma 2.3, we have

Hi({y e R : xm, (w —y) — xm,, (20 — y)| # 0}) < HE(A1 U Ay)
n—1
(43) < oM+1y(p) <em n QMZ(D)) + 2M+1y(D) (emﬂ v 2M£(D)>

< 20=Dy(Dy.

n—1

Using that |K(zp — )| < (274(D))™™ for all y € A, (x,2p) N (3D)¢, we get
02,, < (27¢(D)) "2 Vy(D)" = 277

and, since p > 2 and le contains at most 2™~ indices, we have ZmeJ} 025, <274,

Assume now that m € JJZ. Then, using Lemma 2.3, we obtain

HE({y e R+ [xm, (x—y) — xS, (2p — )| #0})
<HR{y eR?: xS (—y) =1} +HE{y e R : xm (z2p —y) =1})
S (em - 6m+1)621_17
and, as above, |K(zp — )| < (274(D))™" for all y € A, (x, zp) N (3D)¢. Since m € JjQ,

020, < (2UD)) ™" ((em — ems1)ep, )"
S (27U(D)) 7 (em — em41) (M U(D))PH(27(D) VP S 27PU(D) T em — emi1)
and then, since p > 2 and j > M + 2 > 12,
i €m — Em+1 —jpoi—1  o—j(p—1) —j
p < 9=ip T« 97 P9I~ gy 979 < .
d e g2 > ) < 2792 2 <2

2 2
mEJ]- mGJj

Finally, assume that m & Jj Obviously, the set J]:-)’ contains at most one term. If
em — emt1 < 2M{(D), arguing as in the case m € J]?, we have

Hi({y € R« xS, (@ —y) = x&m, (20 — 9)| # 03) S (em — emy1 )y !
< 2My(D)(274(D) + 2M¢(D))" < 2= Ve(D),

and then ©2,, < 2/"=Dg(D)*(20-14(D))~" < 277. On the contrary, if €, — €41 > 2M4(D),
arguing as in the case m € le, we have supp(xj;"ﬂ(x =) =x&m, (20 — 1)) C Ap(z,zp) C
A1 U As. Similarly to (43), we have

Hit (A1) S 2YH(D) (emr + 2V (D))" S ent(D) < 20 DeD)",

and |K(zp —y)| < (274(D))™™ for all y € A; N (3D)¢. If we denote by j(e,,) the positive
integer such that 27(¢m)=1¢(D) < ¢, < 27(ém)¢(D) (obviously, j(em) > j), we have HE(Ag) <
e"=1(D) < 20(em)=D (D) and | K (zp—y)| < (27 ¢(D))~" for all y € AN (3D)¢. Hence,
02,, < 2=Dg(D)(274(D))~"™ + 2i(em)n=Dp(Dyr(2i(em)g(D))~" < 277 4 273(em) < 27,
Therefore, since J]?’ contains at most one term, ) 73 02, <2779P <277,
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We put all these estimates of ©2,, for m belonging to Jy, le, Jj2, and Jf together with
(42) in (41) and we conclude that

1/p
00 T)a(e) = | $ iy | X (©1n+ 02,7

mEZ

1/p 1/p
Sloay (X 018)  + Ul X ©2)

meEZ meJg

1
+HfHL°°(H{i)( Z ( Z 027, + Z 027, + Z 92%)) '

J>M+2 meJ} merz meJJ:.3

N\ 1/e
Sl zoe gy (1 +1+ ( Z 2_]> ) S llzoe gy

j>12

Finally, (40) follows by integrating in D this last estimate. This yields the boundedness of
V, o T from L°°(HR) to BMO(HY). O

5.V, o THI IS A BOUNDED OPERATOR IN LP(HZ) FOR ALL 1 < p < 0o
This section is devoted to complete the proof of Theorem 1.3 and Corollary 1.6.
Proof of Theorem 1.3(b). This is a straightforward application of Theorem 1.4. O

Proof of Theorem 1.3(a). Recall from Theorem 1.2 that V,o 77T is bounded in L?(HE).
We deduce the LP boundedness of the positive sublinear operator V, o THr by interpolation
between the pairs (L1(HR), LY°(HE)) and (L*(H}), L2(HR)) for 1 < p < 2, and between
(L2(H}), L2(H})) and (L®(HE), BMO(H})) for 2 < p < oo. Let us remark that, in the
latter case, the classical interpolation theorem (see [Du, Theorem 6.8], for instance) would
require the operator V, o T to be linear. Clearly, this fails in our case. However, an easy
modification of the arguments in [Du] using Lemma 5.1 below shows that that interpolation
theorem is also valid for positive sublinear operators. Before stating the lemma, let us recall
some definitions. Given f € L} (HE), z € R?, and a cube @ € R”, set Q = @ x R4 and

loc
define
1

= dH?
mal = 3 /Q fang,
Mf(x) = supQSme|f], and Mﬁf(x) = supQSme|f —mqf].

Lemma 5.1. Let F : L (H}) — L .(HP}) be a positive and sublinear operator. Then

(Mo F)(f+9) S (MoF)f+ (MFfo F)g for all functions f,g € L} _(H}).

loc

By using Lemma 5.1 and the fact that || M fl|zsn) S HMﬁfHLp(H?) for f € LPo(HE) and
1 <po <p < oo (see [Du, Lemma 6.9]), one can reprove the interpolation theorem [Du,
Theorem 6.8] applied to V, o TMr with minor modifications in the original proof. O

Proof of Lemma 5.1. If F' is sublinear and positive, one has that |F(f)(z) — F(g)(x)| <
F(f—g)(z) for all functions f,g € Li, .(HX). Let @ be a cube in R", and set @ = Q@ xR¥™ C
R?. Then, for z,y € QNT,
[E(f +9)(y) = mq(Fg)l < [F(f +9)(y) — Fa(y)l + [ Fgly) — mq(Fg)|
< [Ff)l+ [Fg(y) — mo(Fg)l.
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Hence, mo|F(f + g) — mq(Fg)| < mq|Ff| +mq|Fg —mq(Fg)| < (M o F)f(x) + (M* o
F)g(z) and, by taking the supremum over all possible cubes @@ C R™ such that Q > z, we
conclude (M* o F)(f + g)(z) < (M o F)f(z) + (M* o F)g(x) (recall that (M* o F)h(z) <
SUPgs, infacr mo|Fh — al for all h € L}, (H})). O

Proof of Corollary 1.6. The arguments follow closely the proof of [Ma, Theorem 20.27].
First of all, we may assume that F is a Lipschitz graph with slope smaller than 1, since
H" almost all E can be covered with countably many C' manifolds which in turn can be
covered by Lipschitz graphs with small slope. By the Lebesgue decomposition theorem and
Radon-Nikodym theorem (see [Ma, Theorem 2.17] for the real case, for example), there exists
f € LY(H?%) and a finite complex Radon measure v; such that H% and |vs| are mutually
singular and v = fHE + vs.

Given K satisfying (2), by Theorem 1.3(b) we have (V, o W%)f(m) < oo for H"™ almost
all z € E. Therefore, for any decreasing sequence {em}tmez, {TE, f(x)}mez is a Cauchy se-

quence, so it is convergent. Thus lim,_,q T & f(x) exists for H"™ almost all x € E. Therefore,
we may assume that v = v;. The rest of the proof is almost the same of [Ma, Theorem 20.27]
(just replace T* by V, o T in the proof in [Ma] and use Theorem 1.4). The details are left
for the reader. O
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