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Abstract. Given a Radon measure µ on R
d, which may be non dou-

bling, we introduce a space of type BMO with respect to this mea-
sure. It is shown that many properties which hold for the classical space
BMO(µ) when µ is a doubling measure remain valid for the space of
type BMO introduced in this paper, without assuming µ doubling. For
instance, Calderón-Zygmund operators which are bounded on L2(µ) are
also bounded from L∞(µ) into the new BMO space. Moreover, this
space also satisfies a John-Nirenberg inequality, and its predual is an
atomic space H1. Using a sharp maximal operator it is shown that op-
erators which are bounded from L∞(µ) into the new BMO space and
from its predual H1 into L1(µ) must be bounded on Lp(µ), 1 < p <∞.
From this result one can obtain a new proof of the T (1) theorem for the
Cauchy transform for non doubling measures. Finally, it is proved that
commutators of Calderón-Zygmund operators bounded on L2(µ) with
functions of the new BMO are bounded on Lp(µ), 1 < p <∞.
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1. Introduction

In this paper, given a Radon measure µ on R
d which may be non doubling,

we introduce a BMO space and an atomic space (the predual of the BMO
space), with respect to the measure µ. It is shown that, in some ways, these
spaces play the role of the classical spaces BMO and H1

at in case µ is a
doubling measure.

Recently it has been proved that many results of the Caderón-Zygmund
theory of singular integrals remain valid for non doubling measures on R

d. A
version of the T (1) theorem for the Cauchy transform was obtained in [15],
and another for more general Calderón-Zygmund operators in [10]. Cotlar’s
inequality and weak (1, 1) estimates were studied in [10] (for the particular
case of the Cauchy transform, the weak (1, 1) estimate was studied also
in [15]). G. David [2] obtained a theorem of T (b) type for non doubling
measures that solved Vitushkin’s conjecture for sets with positive finite 1-
dimensional Hausdorff measure. Another T (b) theorem suitable for solving
this conjecture was proved later by Nazarov, Treil and Volberg [12]. In [16],
it is shown that if the Cauchy transform is bounded on L2(µ), then the
principal values of the Cauchy transform exist µ-almost everywhere in C. In
[18], it is given another proof for the T (1) theorem for the Cauchy transform,
and in [17] a T (1) theorem suitable for non doubling measures with atoms
is proved. Also, in [13], another T (b) theorem for non doubling measures
(closer to the classical one than the ones stated above) is obtained.

However, for the moment, the attempts to find good substitutes for the
space BMO and its predual H1

at for non doubling measures have not been
completely succesful. Mateu, Mattila, Nicolau and Orobitg [7] have studied
the spaces BMO(µ) and H1

at(µ) (with definitions similar to the classical ones)
for a non doubling measure µ. They have shown that some of the properties
that these spaces satisfy when µ is a doubling measure are satisfied also if µ
is non doubling. For example, the John-Nirenberg inequality holds, BMO(µ)
is the dual of H1

at(µ) and the operators which are bounded from H1
at(µ) into

L1(µ) and from L∞(µ) into BMO(µ) are bounded on Lp(µ), 1 < p < ∞.
Nevertheless, unlike in the case of doubling measures, Calderón-Zygmund
operators may be bounded on L2(µ) but not from L∞(µ) into BMO(µ) or
from H1

at(µ) into L1(µ), as it is shown by Verdera [18]. This is the main
drawback of the spaces BMO(µ) and H1

at(µ) considered in [7].
On the other hand, Nazarov, Treil and Volberg [13] have introduced an-

other space of BMO type. Calderón-Zygmund operators which are bounded
on L2(µ) are bounded from L∞(µ) into their BMO space. However, the
BMO space considered in [13] does not satisfy John-Nirenberg inequality, it
is not known which is its predual, and (by now) there is no any interpolation
result such as the one given in [7].

Let us introduce some notation and definitions. Let d, n be some fixed
integers with 1 ≤ n ≤ d. A kernel k(·, ·) ∈ L1

loc(R
d ×R

d \ {(x, y) : x = y}) is
called a Calderón-Zygmund kernel if
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(1) |k(x, y)| ≤ C

|x − y|n ,

(2) there exists 0 < δ ≤ 1 such that

|k(x, y) − k(x′, y)| + |k(y, x) − k(y, x′)| ≤ C
|x − x′|δ
|x − y|n+δ

if |x − x′| ≤ |x − y|/2.
Throughout all the paper we will assume that µ is a Radon measure on R

d

satisfying the following growth condition:

(1.1) µ(B(x, r)) ≤ C0 rn for all x ∈ R
d, r > 0.

The Calderón-Zygmund operator (CZO) associated to the kernel k(·, ·) and
the measure µ is defined (at least, formally) as

Tf(x) =

∫
k(x, y) f(y) dµ(y).

The above integral may be not convergent for many functions f because the
kernel k may have a singularity for x = y. For this reason, one introduces
the truncated operators Tε, ε > 0:

Tεf(x) =

∫

|x−y|>ε
k(x, y) f(y) dµ(y),

and then one says that T is bounded on Lp(µ) if the operators Tε are bounded
on Lp(µ) uniformly on ε > 0.

Recall that a function f ∈ L1
loc(µ) is said to belong to BMO(µ) if there

exists some constant C1 such that

(1.2) sup
Q

1

µ(Q)

∫

Q
|f − mQ(f)| dµ ≤ C1,

where the supremum is taken over all the cubes Q ⊂ R
d centered at some

point of supp(µ) (in the paper by a cube we mean a closed cube with sides
parallel to the axes, and if ‖µ‖ < ∞, we allow Q = R

d too) and mQ(f) stands
for the mean of f over Q with respect to µ, i.e. mQ(f) =

∫
Q f dµ/µ(Q).

The optimal constant C1 is the BMO norm of f .
Let us remark that there is a slight difference between the space BMO(µ)

that we have just defined and the one considered in [7]: We have taken the
supremum in (1.2) over cubes which are centered at some point in supp(µ),
while in [7] that supremum is taken over all the cubes in R

d.
It is well known that if µ is a doubling measure, i.e. µ(2Q) ≤ C µ(Q)

for all the cubes Q centered at some point of supp(µ), and T is bounded on
L2(µ), then T is also bounded from L∞(µ) into BMO(µ). As stated above,
this may fail if µ is non doubling. Hence if one wants to work with a BMO
space which fulfils some of the usual and fundamental properties related
with CZO’s, then one must introduce a new space BMO. So, for a fixed
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ρ > 1, one says that a function f ∈ L1
loc(µ) belongs to BMOρ(µ) if for some

constant C2

(1.3) sup
Q

1

µ(ρQ)

∫

Q
|f − mQ(f)| dµ ≤ C2,

again with the supremum taken over all the cubes Q centered at some point
of supp(µ). This is almost the definition taken by Nazarov, Treil and Volberg
in [13].

In fact, in [13], the supremum in the definition (1.3) of BMOρ is taken
not only over all cubes Q centered at some point of supp(µ), but over all
the cubes Q ⊂ R

d. We have prefered to take the supremum only over cubes
centered in points of supp(µ), to be coherent with our definitions below.

It is straigthforward to check that if T is bounded on L2(µ), then T
is bounded from L∞(µ) into BMOρ(µ). This is the main advantage of
BMOρ(µ) over BMO(µ). Nevertheless, the new space BMOρ(µ) does not
have all the nice properties that one may expect. First of all, it happens
that the definition of BMOρ(µ) depends on the constant ρ > 1 that we
choose. Obviously, the BMOρ norm of f (i.e. the optimal constant C2 in
(1.3)) depends on ρ. Moreover, it is shown in [13] that there exist measures
µ and functions f which for some ρ > 1 are in BMOρ(µ), but not for other
ρ > 1.

Given p ∈ [1,∞), one says that f ∈ BMOp
ρ(µ) if

(1.4) sup
Q

∫

Q
|f − mQ(f)|p dµ ≤ C µ(ρQ).

In case µ is doubling measure, by John-Nirenberg inequality, all the spaces
BMOp(µ) ≡ BMOp

ρ=1(µ) coincide. This is not the case if µ is non doubling.

In [13] it is shown that there are measures µ and functions f such that f is
in BMOp

ρ(µ) only for a proper subset of p ∈ [1,∞).
In this paper we will introduce a new variant of the space BMO suitable

for non doubling measures, which will satisfy some of the properties of the
usual BMO, such as for example the John-Nirenberg inequality. This space
will be a (proper, in general) subspace of the spaces BMOp

ρ(µ). It will be
small enough to fulfil the properties that we have mentioned and big enough
in order that CZO’s which are bounded on L2(µ) be also bounded from
L∞(µ) into our new space of BMO type.

We will show that if T is bounded on L2(µ) and g ∈ L∞(µ), then the
oscillations of f = T (g) satisfy not only the condition given by (1.3), but
other regularity conditions. Then, the functions of our new space will be
the functions satisfying (1.3) and, also, these additional regularity condi-
tions about their oscillations. We will denote it as RBMO(µ) (this stands
for ‘regular bounded mean oscillations’). Notice that we have not written
RBMOρ(µ). This is because, as we will see, the definition will not depend
on ρ, for ρ > 1.
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If one says that f is in BMOρ(µ) when it satisfies (1.3), it seems that we

have to consider the atomic space H1,∞
at,ρ (µ) made up with functions of the

form

(1.5) f =
∑

i

λi ai,

where λi ∈ R,
∑

i |λi| < ∞ and, for each i, ai is a function supported in a
cube Qi, with ‖ai‖L∞(µ) ≤ µ(ρQi)

−1, and
∫

ai dµ = 0 (that is ai is an atom).

Obviously, H1,∞
at,ρ (µ) is the usual atomic space H1,∞

at (µ) ≡ H1,∞
at,ρ=1(µ) when

µ is a doubling measure. With this definition, a CZO which is bounded in
L2(µ), is also bounded from H1,∞

at,ρ (µ) into L1(µ) (taking ρ > 1).

In this paper we will introduce another space of atomic type: H1,∞
atb (µ)

(the subindex ‘atb’ stands for ‘atomic block’). This space will be made up
of functions of the form

(1.6) f =
∑

i

bi,

where the functions bi will be some elementary functions, which we will call
atomic blocks (in particular, any atom ai such as the one of (1.5) will be an

atomic block). So we will have H1,∞
at,ρ (µ) ⊂ H1,∞

atb (µ) but, in general, H1,∞
atb (µ)

will be strictly bigger than H1,∞
at,ρ (µ).

We will see that this new atomic space enjoys some very interesting prop-
erties. First of all, the definition of the space will be independent of the
chosen constant ρ > 1. Also, CZO’s which are bounded on L2(µ) will be also

bounded from H1,∞
atb (µ) into L1(µ). Moreover, we will show that H1,∞

atb (µ)
is the predual of RBMO(µ), and that, as in the doubling case, there is a

collection of spaces H1,p
atb(µ), p > 1, that coincide with H1,∞

atb (µ).

We will show two applications of all the results obtained about RBMO(µ)

and H1,∞
atb (µ). In our first application we will obtain an interpolation the-

orem: We will prove that if a linear operator is bounded from L∞ into
RBMO(µ) and from H1,∞

atb (µ) into L1(µ), then it is bounded on Lp(µ),
1 < p < ∞. As a consequence we will obtain a new proof of the T (1)
theorem for the Cauchy transform for non doubling measures.

We have already mentioned that in [7] it is also proved a theorem of
interpolation between (H1

at(µ), L1(µ)) and (L∞(µ), BMO(µ)), with µ non
doubling. However, from this result it is not possible to get the T (1) theorem
for the Cauchy transform, as it is explained in [7].

Finally, in our second application we will show that if a CZO is bounded
on L2(µ), then the commutator of this operator with a function of RBMO(µ)
is bounded on Lp(µ), 1 < p < ∞.

2. The space RBMO(µ)

2.1. Introduction. If µ is a doubling measure and f is a function belonging
to BMO(µ), it is easily checked that if Q,R are two cubes of comparable
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size with Q ⊂ R, then

(2.1) |mQ(f) − mR(f)| ≤ C ‖f‖BMO(µ)

In case µ is not doubling and f ∈ BMOρ(µ), it is easily seen that

(2.2) |mQ(f) − mR(f)| ≤ µ(ρR)

µ(Q)
‖f‖BMOρ(µ),

and that’s all one can obtain. So if µ(Q) is much smaller than µ(R), then
mQ(f) may be very different from mR(f), and one does not have any useful
information. However, to prove most results dealing with functions in BMO,
some kind of control in the changes of the mean values of f , such as the one
in (2.1), appears to be essential.

We will see that if T is a CZO that is bounded on L2(µ) and g ∈ L∞(µ),
then the oscillations of T (g) satisfy some properties which will be stronger
than (2.2). Some of these properties will be stated in terms of some coeffi-
cients KQ,R, for Q ⊂ R cubes in R

d, which now we proceed to describe.

2.2. The coefficients KQ,R. Throughout the rest of the paper, unless oth-

erwise stated, any cube will be a cube in R
d with sides parallel to the axes

and centered at some point of supp(µ).
Given two cubes Q ⊂ R in R

d, we set

(2.3) KQ,R = 1 +

NQ,R∑

k=1

µ(2kQ)

l(2kQ)n
,

where NQ,R is the first integer k such that l(2kQ) ≥ l(R) (in case R = R
d 6=

Q, we set NQ,R = ∞). The coefficient KQ,R measures how close Q is to R,
in some sense. For example, if Q and R have comparable sizes, then KQ,R

is bounded above by some constant which depends on the ratio l(R)/l(Q)
(and on the constant C0 of (1.1)).

Given α > 1 and β > αn, we say that some cube Q ⊂ R
d is (α, β)-doubling

if µ(αQ) ≤ β µ(Q). Due to the fact that µ satisfies the growth condition
(1.1), there are a lot of “big” doubling cubes. To be precise, given any point
x ∈ supp(µ) and d > 0, there exists some (α, β)-doubling cube Q centered
at x with l(Q) ≥ d. This is easily seen by the growth condition (1.1) for µ
and the fact that β > αn.

In the following lemma we show some of the properties of the coefficients
KQ,R.

Lemma 2.1. We have:

(1) If Q ⊂ R ⊂ S are cubes in R
d, then KQ,R ≤ KQ,S, KR,S ≤ C KQ,S

and KQ,S ≤ C (KQ,R + KR,S).
(2) If Q ⊂ R have comparable sizes, KQ,R ≤ C.

(3) If N is some positive integer and the cubes 2Q, 22Q, . . . 2N−1 are non
(2, β)-doubling (with β > 2n), then KQ,2NQ ≤ C, with C depending
on β and C0.
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(4) If N is some positive integer and for some β < 2n,

µ(2NQ) ≤ βµ(2N−1Q) ≤ β2µ(2N−2Q) ≤ . . . ≤ βNµ(Q),

then KQ,2N Q ≤ C, with C depending on β and C0.

Proof. The properties 1 and 2 are immediate. Let us see 3. For β > 2n, we
have µ(2k+1Q) > β µ(2kQ) for k = 1, . . . , N − 1. Thus

µ(2kQ) <
µ(2NQ)

βN−k

for k = 1, . . . , N − 1. Therefore,

KQ,2NQ ≤ 1 +
N−1∑

k=1

µ(2NQ)

βN−k l(2kQ)n
+

µ(2NQ)

l(2NQ)n

≤ 1 + C0 +
µ(2NQ)

l(2NQ)n

N−1∑

k=1

1

βN−k 2(k−N)n

≤ 1 + C0 + C0

∞∑

k=1

(2n/β)k ≤ C.

Let us check the fourth property. For β < 2n, we have

KQ,2NQ ≤ 1 +

N∑

k=1

βkµ(Q)

l(2kQ)n

≤ 1 +
µ(Q)

l(Q)n

N∑

k=1

βk

2kn

≤ 1 + C0

∞∑

k=1

(
β

2n

)k

≤ C.

�

Notice that, in some sense, the property 3 of Lemma 2.1 says that if the
density of the measure µ in the concentric cubes grows much faster than
the size of cubes, then the coefficients KQ,2NQ remain bounded, while the
fourth property says that if the measure grows too slowly, then they also
remain bounded.

Remark 2.2. If we substitute the numbers 2k in the definition (2.3) by αk,
for some α > 1, we will obtain a coefficient Kα

Q,R. It is easy to check that

KQ,R ≈ Kα
Q,R (with constants that may depend on α and C0).

Also, if we set

K ′
Q,R = 1 +

∫ l(R)

l(Q)

µ(B(xQ, r))

rn−1
dr,
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or

K ′′
Q,R = 1 +

∫

l(Q)≤|y−xQ|≤l(R)

1

|y − xQ|n
dµ(y),

where xQ is the center of Q, then it is easily seen that KQ,R ≈ K ′
Q,R ≈ K ′′

Q,R.

The definitions of K ′
Q,R and K ′′

Q,R have the advantage of not depending on
the grid of cubes, unlike the one of KQ,R.

We have stated above that there a lot of “big” (α, β)-doubling cubes. In
the next remark we show that, for β big enough, there are also many “small”
(α, β)-doubling cubes.

Remark 2.3. Given α > 1, if µ is any Radon measure on R
d, it is known that

for β big enough (depending on α and d), for µ-almost all x ∈ R
d there is

a sequence of (α, β)-doubling cubes {Qn}n centered at x with l(Qn) tending
to 0 as n → ∞.

For α = 2, we denote by βd one of these big constants β. For definiteness,
one can assume that βd is twice the infimum of these β’s.

If α and β are not specified, by a doubling cube we will mean a (2, βd)-
doubling cube.

Let f ∈ L1
loc(µ) be given. Observe that, by the Lebesgue differentiation

theorem, for µ-almost all x ∈ R
d one can find a sequence of (2, βd)-doubling

cubes {Qk}k centered at x with l(Qk) → 0 such that

lim
k→∞

1

µ(Qk)

∫

Qk

f dµ = f(x).

Thus, for any fixed λ > 0, for µ-almost all x ∈ R
d such that |f(x)| > λ,

there exists a sequence of (2, βd)-doubling cubes {Qk}k centered at x with
l(Qk) → 0 such that

lim sup
k→∞

1

µ(2Qk)

∫

Qk

|f | dµ >
λ

βd
.

2.3. The definition of RBMO(µ). Given a cube Q ⊂ R
d, let N be the

smallest integer ≥ 0 such that 2NQ is doubling. We denote this cube by Q̃

(recall that this cube Q̃ exists because otherwise the growth condition (1.1)
on µ would fail).

Let ρ > 1 be some fixed constant. We say that f ∈ L1
loc(µ) is in RBMO(µ)

if there exists some constant C3 such that for any cube Q (centered at some
point of supp(µ)),

(2.4)
1

µ(ρQ)

∫

Q
|f − m

eQf | dµ ≤ C3

and

(2.5) |mQf − mRf | ≤ C3 KQ,R for any two doubling cubes Q ⊂ R.

The minimal constant C3 is the RBMO(µ) norm of f (in fact, it is a norm
in the space of functions modulo additive constants), and it will be denoted
by ‖ · ‖∗.
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Let us remark that the space RBMO(µ) depends on the integer n because
of the definition of the coefficients KQ,R.

Notice that if (2.4) is satisfied, then (1.3) also holds. Indeed, for any cube
Q and any a ∈ R one has

∫

Q
|f − mQf | dµ ≤ 2

∫

Q
|f − a| dµ.

In particular this holds for a = m
eQf . So, the condition (2.4) is stronger than

(1.3). Moreover, in the definition of RBMO(µ) we ask also the regularity
condition (2.5).

Observe also that, as a consequence of (2.5), if Q ⊂ R are doubling cubes
with comparable size, then

(2.6) |mQf − mRf | ≤ C ‖f‖∗,
taking into account the property 2 of Lemma 2.1.

Remark 2.4. In fact, (2.6) also holds for any two doubling cubes with com-
parable sizes such that dist(Q,R) / l(Q). To see this, let Q0 be a cube
concentric with Q, containing Q and R, and such that l(Q0) ≈ l(Q). Then

K(Q0, Q̃0) ≤ C, and thus we have K(Q, Q̃0) ≤ C and K(R, Q̃0) ≤ C (we
have used the properties 1, 2 and 3 of Lemma 2.1). Then |mQf − m

fQ0
f | ≤

C ‖f‖∗ and |mRf − m
fQ0

f | ≤ C ‖f‖∗. So (2.6) holds.

Let us remark that the condition (2.6) is not satisfied, in general, by
functions of the bigger space BMOρ(µ) and cubes Q, R as above.

We have the following properties:

Proposition 2.5. 1. RBMO(µ) is a Banach space of functions (mod-
ulo additive constants).

2. L∞(µ) ⊂ RBMO(µ), with ‖f‖∗ ≤ 2‖f‖L∞(µ).
3. If f ∈ RBMO(µ), then |f | ∈ RBMO(µ) and ‖ |f | ‖∗ ≤ C ‖f‖∗.
4. If f, g ∈ RBMO(µ), then min(f, g), max(f, g) ∈ RBMO(µ) and

‖min(f, g)‖∗, ‖max(f, g)‖∗ ≤ C (‖f‖∗ + ‖g‖∗).

Proof. The properties 1 and 2 are easy to check. The third property is also
easy to prove with the aid of Lemma 2.8 below. The fourth property follows
from the third. �

Before showing that CZO’s which are bounded on L2(µ) are also bounded
from L∞(µ) into RBMO(µ), we will see other equivalent norms for RBMO(µ).
Suppose that for a given a function f ∈ L1

loc(µ) there exist some constant
C4 and a collection of numbers {fQ}Q (i.e. for each cube Q, there exists
fQ ∈ R) such that

(2.7) sup
Q

1

µ(ρQ)

∫

Q
|f(x) − fQ| dµ(x) ≤ C4,
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and,

(2.8) |fQ − fR| ≤ C4 KQ,R for any two cubes Q ⊂ R.

Then, we write ‖f‖∗∗ = inf C4, where the infimum is taken over all the
constants C4 and all the numbers {fQ} safisfying (2.7) and (2.8). It is esily
checked that ‖ · ‖∗∗ is a norm in the space of functions modulo constants.

The definition of the norm ‖ · ‖∗∗ depends on the constant ρ chosen in
(2.7) (the same occurs for ‖ · ‖∗). However, if we write ‖ · ‖∗∗,(ρ) instead of
‖ · ‖∗∗, we have

Lemma 2.6. The norms ‖ · ‖∗∗,(ρ), ρ > 1, are equivalent.

Proof. Let ρ > η > 1 be some fixed constants. Obviously, ‖f‖∗∗,(ρ) ≤
‖f‖∗∗,(η). So we only have to show ‖f‖∗∗,(η) ≤ C ‖f‖∗∗,(ρ). It is enough to
prove that for a fixed collection of numbers {fQ}Q satisfying

sup
Q

1

µ(ρQ)

∫

Q
|f(x) − fQ| dµ(x) ≤ 2 ‖f‖∗∗,(ρ)

and

|fQ − fR| ≤ 2KQ,R ‖f‖∗∗,(ρ) for any two cubes Q ⊂ R,

we have

(2.9)
1

µ(ηQ0)

∫

Q0

|f − fQ0
| dµ ≤ C ‖f‖∗∗,(ρ) for any fixed cube Q0.

For any x ∈ Q0∩ supp(µ), let Qx be a cube centered at x with side length
η−1
10ρ l(Q0). Then l(ρQx) = η−1

10 l(Q0), and so ρQx ⊂ ηQ0. By Besicovich’s

covering theorem, there exists a family of points {xi}i ⊂ Q0 ∩ supp(µ) such
that the cubes {Qxi

}i form an almost disjoint covering of Q0 ∩ supp(µ).
Since Qxi

and Q0 have comparable sizes,

|fQxi
− fQ0

| ≤ C ‖f‖∗∗,(ρ),

with C depending on η and ρ. Therefore,
∫

Qxi

|f − fQ0
| dµ ≤

∫

Qxi

|f − fQxi
| dµ + |fQ0

− fQxi
|µ(Qxi

)

≤ C ‖f‖∗∗,(ρ) µ(ρQxi
).

Then we get
∫

Q0

|f − fQ0
| dµ ≤

∑

i

∫

Qxi

|f − fQ0
| dµ ≤ C ‖f‖∗∗,(ρ)

∑

i

µ(ρQxi
).

Since ρQxi
⊂ ηQ0 for all i, we obtain

∫

Q0

|f − fQ0
| dµ ≤ C ‖f‖∗∗,(ρ) µ(ηQ0)N,

where N is the number of cubes of the Besicovich covering. Now it is easy
to check that N is bounded some constant depending only on η, ρ and d: If
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Ld is the Lebesgue measure on R
d and Bd is the Besicovich constant in R

d,
we have

N Ld(Qxi
) =

∑

i

Ld(Qxi
) ≤ Bd Ld(ηQ0).

Thus

N ≤ Bd Ld(ηQ0)

Ld(Qxi
)

= Bd

(
10ηρ

η − 1

)d

,

and (2.9) holds. �

Remark 2.7. In fact, in the preceding lemma we have seen that if Cf is some
constant and {fQ}Q is some fixed collection of numbers satisfying

sup
Q

1

µ(ρQ)

∫

Q
|f(x) − fQ| dµ(x) ≤ Cf

and
|fQ − fR| ≤ KQ,R Cf for any two cubes Q ⊂ R,

then for the same numbers {fQ}Q, for any η > 1 we have

sup
Q

1

µ(ηQ)

∫

Q
|f(x) − fQ| dµ(x) ≤ C Cf ,

with C depending on η.

We also have:

Lemma 2.8. For a fixed ρ > 1, the norms ‖ · ‖∗ and ‖ · ‖∗∗ are equivalent.

Proof. Let f ∈ L1
loc(µ). To see that ‖f‖∗∗ ≤ C ‖f‖∗ we set fQ = m

eQ
f for

all cubes Q. Then (2.7) holds with C4 = ‖f‖∗. Let us check that the second
condition (2.8) is also satisfied. We have to prove that for any two cubes
Q ⊂ R,

(2.10) |m
eQ
f − m

eR
f | ≤ C KQ,R ‖f‖∗.

Notice that if Q̃ ⊂ R̃, then

|m
eQf − m

eRf | ≤ K
eQ, eR ‖f‖∗,

because Q̃, R̃ are doubling. So (2.10) follows if K
eQ, eR ≤ C KQ,R. However,

in general, Q ⊂ R does not imply Q̃ ⊂ R̃, and so we have to modify the
argument.

Suppose first that l(R̃) ≥ l(Q̃). Then Q̃ ⊂ 4R̃. We denote R0 = 4̃R̃.
Then we have

(2.11) |m
eQf − m

eRf | ≤ |m
eQf − mR0

f | + |mR0
f − m

eRf |.
Using the properties of Lemma 2.1 repeatedly, we get

K
eQ,R0

≤ C KQ,R0
≤ C (KQ,R + KR,R0

)

≤ C (KQ,R + K
R, eR

+ K
eR,4 eR

+ K
4 eR,R0

) ≤ C KQ,R.



12 XAVIER TOLSA

Since Q̃ ⊂ R0 and they are doubling cubes, we have

|m
eQf − mR0

f | ≤ K
eQ,R0

‖f‖∗ ≤ C KQ,R ‖f‖∗.
Now we are left with the second term on the right hand side of (2.11). We
have

K
eR,R0

≤ C(K
eR,4 eR

+ K
4 eR,R0

) ≤ C ≤ C KQ,R.

Due to the fact that R̃ ⊂ R0 are doubling cubes,

|mR0
f − m

eRf | ≤ K
eR,R0

‖f‖∗ ≤ C KQ,R ‖f‖∗,
and, by (2.11), we get that (2.10) holds in this case.

Assume now l(R̃) < l(Q̃). Then R̃ ⊂ 4Q̃. There exists some m ≥ 1

such that l(R̃) ≥ l(2mQ)/10 and R̃ ⊂ 2mQ ⊂ 4Q̃. Since R̃ and 2mQ have

comparable sizes, we have K
eR,2mQ

≤ C. Then, if we denote Q0 = 4̃Q̃, we
get

K
eR,Q0

≤ C (K
eR,2mQ

+ K
2mQ,4 eQ

+ K
4 eQ,Q0

) ≤ C.

Also,

K
eQ,Q0

≤ C (K
eQ,4 eQ + K4 eQ,Q0

) ≤ C.

Therefore,

|m
eQf − m

eRf | ≤ |m
eQf − mQ0

f |+ |mQ0
f − m

eRf |
≤ K

eQ,Q0
‖f‖∗ + K

eR,Q0
‖f‖∗ ≤ C ‖f‖∗ ≤ C KQ,R ‖f‖∗.

Now we have to check that ‖f‖∗ ≤ C ‖f‖∗∗. If Q is a doubling cube, since
(2.7) holds with ρ = 2 (by Lemma 2.6), we have

|fQ − mQf | =

∣∣∣∣
1

µ(Q)

∫

Q
(f − fQ) dµ

∣∣∣∣ ≤ ‖f‖∗∗
µ(2Q)

µ(Q)
≤ C ‖f‖∗∗.

Therefore, for any cube Q (non doubling, in general), using KQ, eQ ≤ C we
get

|fQ − m
eQf | ≤ |fQ − f

eQ| + |f
eQ − m

eQf | ≤ C ‖f‖∗∗.
Thus

1

µ(ρQ)

∫

Q
|f(x) − m

eQ
f | dµ(x) ≤ 1

µ(ρQ)

∫

Q
|f(x) − fQ| dµ(x)

+
1

µ(ρQ)

∫

Q
|fQ − m

eQ
f | dµ(x)

≤ C ‖f‖∗∗.
It only remains to show that (2.5) also holds with C ‖f‖∗∗ instead of C3.
This follows easily. Indeed, if Q ⊂ R are doubling cubes, we have

|mQf − mRf | ≤ |mQf − fQ| + |fQ − fR| + |fR − mRf |
≤ C ‖f‖∗∗ + KQ,R ‖f‖∗∗ ≤ C KQ,R ‖f‖∗∗.

�
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Remark 2.9. By the preceding lemma, it is easily seen that we obtain equiv-
alent norms and the same space RBMO(µ) if we replace (2, βd)-doubling
cubes in the definition of the space RBMO(µ) by (α, β)-doubling cubes, for
any choice of α > 1 and β > αn. We have taken (2, βd)-doubling cubes in
the definition of ‖ · ‖∗ (and not (2, 2n+1)-doubling, say) because to prove
some of the results below it will be necessary to work with doubling cubes
having the properties explained in Remark 2.3.

On the other hand, by Lemmas 2.6 and 2.8, the definition of RBMO(µ)
does not depend on the number ρ > 1 chosen in (2.4). So, throughout the
rest of the paper we will assume that the constant ρ in the definition of
RBMO(µ) is 2.

Also, it can be seen that we also obtain equivalent definitions for the space
RBMO(µ) if instead of cubes centered at points in supp(µ), we consider all
the cubes in R

d (with sides parallel to the axes). Furthermore, it does not
matter if we take balls instead of cubes.

Notice that in Lemma 2.8 we have shown that if we choose fQ = m
eQ
f for

all cubes Q, then (2.7) and (2.8) are satisfied with C4 = C ‖f‖∗.
Other possible ways of defining RBMO(µ) are shown in the following

lemma.

Lemma 2.10. Let ρ > 1 be fixed. For a function f ∈ L1
loc(µ), the following

are equivalent:

a) f ∈ RBMO(µ).
b) There exists some constant Cb such that for any cube Q

(2.12)

∫

Q
|f − mQf | dµ ≤ Cb µ(ρQ)

and
(2.13)

|mQf − mRf | ≤ Cb KQ,R

(
µ(ρQ)

µ(Q)
+

µ(ρR)

µ(R)

)
for any two cubes Q ⊂ R.

c) There exists some constant Cc such that for any doubling cube Q

(2.14)

∫

Q
|f − mQf | dµ ≤ Cc µ(Q)

and

(2.15) |mQf − mRf | ≤ Cc KQ,R for any two doubling cubes Q ⊂ R.

Moreover, the best constants Cb and Cc are comparable to the RBMO(µ)
norm of f .

Proof. Assume ρ = 2 for simplicity. First we show a) ⇒ b). If f ∈ RBMO(µ),
then (2.12) holds with Cb = 2‖f‖∗. Moreover, for any cube Q we have

(2.16) |mQf − m
eQf | ≤ mQ(|f − m

eQf |) ≤ ‖f‖∗
µ(2Q)

µ(Q)
.
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Therefore,

|mQf − mRf | ≤ |mQf − m
eQ
f | + |m

eQ
f − m

eR
f |+ |mRf − m

eR
f |.

The second term on the right hand side is estimated as (2.10) in the preced-
ing lemma. For the first and third terms on the right, we apply (2.16). So
we get,

|mQf − mRf | ≤
(

C KQ,R +
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)
‖f‖∗

≤ C KQ,R

(
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)
‖f‖∗.

Thus f satisfies (2.13) too.
The implication b) ⇒ c) is easier: One only has to consider doubling

cubes in b).
Let us see now c)⇒ a). Let Q be some cube, non doubling in general. We

only have to show that (2.4) holds. We know that for µ-almost all x ∈ Q
there exists some doubling cube centered at x with sidelength 2−k l(Q), for
some k ≥ 1. We denote by Qx the biggest cube satisfying these properties.
Observe that KQx, eQ ≤ C, and then

(2.17) |mQxf − m
eQf | ≤ C Cc.

By Besicovich’s covering theorem, there are points xi ∈ Q such that µ-
almost all Q is covered by a family of cubes {Qxi

}i with bounded overlap.
By (2.17), using that Qxi

⊂ 2Q, we get
∫

Q
|f − m

eQ
f | dµ ≤

∑

i

∫

Qxi

|f − m
eQ
f | dµ

≤
∑

i

∫

Qxi

|f − mQxi
f | dµ +

∑

i

|m
eQf − mQxi

f |µ(Qxi
)

≤ C Cc µ(2Q).

�

2.4. Boundedness of CZO’s from L∞(µ) into RBMO(µ). Now we are
going to see that if a CZO is bounded on L2(µ), then it is bounded from
L∞(µ) into RBMO(µ). In fact, we will replace the assumption of L2(µ)
boundedness by another weaker assumption.

Theorem 2.11. If for any cube Q and any function a supported on Q

(2.18)

∫

Q
|Tεa| dµ ≤ C ‖a‖L∞ µ(ρQ)

uniformly on ε > 0, then T is bounded from L∞(µ) into RBMO(µ).

Let us remark that when we say that T is bounded from L∞(µ) into
RBMO(µ), we mean that the operators Tε, ε > 0, are uniformly bounded
from L∞(µ) into RBMO(µ).
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Proof. First we will show that if f ∈ L∞(µ) ∩ Lp0(µ) for some p0 ∈ [1,∞),
then

(2.19) ‖Tεf‖RBMO(µ) ≤ C‖f‖L∞(µ).

We will use the characterization of RBMO(µ) given by (2.12) and (2.13) in
Lemma 2.10.

The condition (2.12) follows by standard methods. The same proof that
shows that Tεf ∈ BMO(µ) when µ is a doubling measure works here. We
omit the details.

Let us see how (2.13) follows. For simplicity, we assume ρ = 2. We have
to show that if Q ⊂ R, then

|mQ(Tεf) − mR(Tεf)| ≤ C KQ,R

(
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)
‖f‖L∞(µ).

Recall that NQ,R is the first integer k such that 2kQ ⊃ R. We denote

QR = 2NQ,R+1Q. Then, for x ∈ Q and y ∈ R, we set

Tεf(x) − Tεf(y) = Tεf χ2Q(x) +

NQ,R∑

k=1

Tεf χ2k+1Q\2kQ(x) + Tεf χRd\QR
(x)

−
(
Tεf χQR

(y) + Tεf χRd\QR
(y)
)

.

Since

|Tεf χRd\QR
(x) − Tεf χRd\QR

(y)| ≤ C ‖f‖L∞(µ),

we get

|Tεf(x) − Tεf(y)| ≤ |Tεf χ2Q(x)| + C

NQ,R∑

k=1

µ(2k+1Q)

l(2k+1Q)n
‖f‖L∞(µ)

+ |Tεf χQR
(y)| + C ‖f‖L∞(µ).(2.20)

Now we take the mean over Q for x, and over R for y. Using the L2(µ)
boundedness of T , we obtain

mQ(|Tεf χ2Q|) ≤
(

1

µ(Q)

∫

Q
|Tεf χ2Q|2 dµ

)1/2

≤ C

(
µ(2Q)

µ(Q)

)1/2

‖f‖L∞(µ)

≤ C
µ(2Q)

µ(Q)
‖f‖L∞(µ).

For R we write

mR(|Tεf χQR
|) ≤ mR(|Tεf χQR∩2R|) + mR(|Tεf χQR\2R|).
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The estimate for the first term on the right hand side is similar to the
previous estimate for Q:

mR(|Tεf χQR∩2R|) ≤
(

1

µ(R)

∫

R
|Tεf χQR∩2R|2 dµ

)1/2

≤ C

(
µ(QR ∩ 2R)

µ(R)

)1/2

‖f‖L∞(µ)

≤ C
µ(2R)

µ(R)
‖f‖L∞(µ).

On the other hand, since l(QR) ≈ l(R), we have mR(|Tεf χQR\2R|) ≤
C ‖f‖L∞(µ). Therefore,

|mQ(Tεf) − mR(Tεf)| ≤ C

NQ,R∑

k=1

µ(2k+1Q)

l(2k+1Q)n
‖f‖L∞(µ)

+ C

(
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)
‖f‖L∞(µ)

≤ C KQ,R

(
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)
‖f‖L∞(µ).

So we have proved that (2.19) holds for f ∈ L∞(µ) ∩ Lp0(µ).

If f 6∈ Lp(µ) for all p ∈ [1,∞), then the integral
∫
|x−y|>ε k(x, y) f(y) dµ(y)

may be not convergent. The operator Tε can be extended to the whole space
L∞(µ) following the usual arguments: Given a cube Q0 centered at the origin
with side length > 3ε, we write f = f1 + f2, with f1 = f χ2Q0

. For x ∈ Q0,
we define

Tεf(x) = Tεf1(x) +

∫
(k(x, y) − k(0, y)) f2(y) dµ(y).

Now both integrals in this equation are convergent and with this definition
one can check that (2.19) holds too, with arguments similar to the case
f ∈ L∞(µ) ∩ Lp0(µ). �

Let us remark that in Theorem 8.1 we will see that the condition (2.18)
holds if and only if T is bounded from L∞(µ) into RBMO(µ).

2.5. Examples.

Example 2.12. Assume d = 2 and n = 1. So we can think that we are
in the complex plane and T is the Cauchy transform. Let E ⊂ C be a
1-dimensional Ahlfors-David (AD) regular set. That is,

C−1 r ≤ H1(E ∩ B(x, r)) ≤ C r for all x ∈ E, 0 < r ≤ diam(E).

(Here H1 stands for the 1-dimensional Hausdorff measure.) We set µ = H1
|E.

Notice that µ is a doubling measure.
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For any Q centered at some point of supp(µ), one has

µ(2kQ) ≈ l(2kQ)

if l(2kQ) ≤ diam(E). Then, given Q ⊂ R, it is easy to check that if l(R) ≤
diam(E),

(2.21) KQ,R ≈ 1 + log
l(R)

l(Q)
,

and if l(R) > diam(E),

(2.22) KQ,R ≈ 1 + log
diam(E)

l(Q)
.

So, in this case, we have RBMO(µ) = BMO(µ), since any function f ∈
BMO(µ) satisfies (2.7) and (2.8), with fQ = mQf for all cubes Q. Notice
that (2.8) holds because of (2.21) and (2.22).

Example 2.13. We assume again d = 2 and n = 1. Let µ be the planar
Lebesgue measure restricted to the unit square [0, 1] × [0, 1]. This measure
is doubling, but not AD-regular (for n = 1). Now one can check that
the coefficients KQ,R are uniformly bounded. That is, for any two squares
Q ⊂ R,

KQ,R ≈ 1.

Let us take R0 = [0, 1]2 and Q ⊂ R0. Then, if f ∈ RBMO(µ),

|mQ(f − mR0
f)| = |mQf − mR0

f | ≤ KQ,R0
‖f‖∗ ≤ C ‖f‖∗.

Since this holds for any square Q ⊂ R0, by the Lebesgue differentiation
theorem f − mR0

f is a bounded function, with

‖f − mR0
f‖L∞(µ) ≤ ‖f‖∗.

Therefore, now RBMO(µ) coincides with L∞(µ) modulo constants functions,
which is strictly smaller than BMO(µ).

Example 2.14. This example is borrowed in part from [13]. Suppose d = 2
(i.e. we are in the complex plane) and n = 1. Let µ be a measure on the
real axis such that in the intervals [−2,−1] and [1, 2] is the linear Lebesgue
measure, on the interval [−1/2, 1/2] is the linear Lebesgue measure times
ε, with ε > 0 very small, and µ = 0 elsewhere. We consider the function
f = ε−1 (χ[1/4,1/2] − χ[−1/2,−1/4]). It is easily checked that for ρ ≤ 2,

‖f‖BMOρ(µ) ≈ ε−1,

while for ρ = 5,
‖f‖BMO5(µ) ≈ 1.

On the other hand, the RBMO(µ) norm of f is

‖f‖∗ ≈ ε−1,

since
C ‖f‖∗ ≥ |m[−2,2]f − m[1/4,1/2]f | = ε−1
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and ‖f‖∗ ≤ C ‖f‖L∞(µ) ≤ C ε−1.

3. The inequality of John-Nirenberg

The following result is a version of John-Nirenberg’s inequality suitable
for the space RBMO(µ). To prove it we will adapt the arguments in [6,
p.31-32] to the present situation.

Theorem 3.1. Let f ∈ RBMO(µ) and let {fQ}Q be a collection of numbers
satisfying

(3.1) sup
Q

1

µ(2Q)

∫

Q
|f(x) − fQ| dµ(x) ≤ C ‖f‖∗

and

(3.2) |fQ − fR| ≤ C KQ,R ‖f‖∗ for any two cubes Q ⊂ R.

Then, for any cube Q and any λ > 0 we have

(3.3) µ{x ∈ Q : |f(x) − fQ| > λ} ≤ C5 µ(ρQ) exp

(−C6 λ

‖f‖∗

)
,

with C5 and C6 depending on the constant ρ > 1 (but not on λ).

To prove this theorem, we will use the following straightforward result:

Lemma 3.2. Let f ∈ RBMO(µ) and let {fQ}Q be a collection of numbers
satisfying (3.1) and (3.2). If Q and R are cubes such that l(Q) ≈ l(R) and
dist(Q,R) / l(Q), then

|fQ − fR| ≤ C ‖f‖∗.
Proof. Let R′ be the smallest cube concentric with R containing Q and R.
Since l(Q) ≈ l(R′) ≈ l(R), we have KQ,R′ ≤ C and KR,R′ ≤ C. Then,

|fQ − fR| ≤ |fQ − fR′ | + |fR − fR′ | ≤ C (KQ,R + KR,R′) ‖f‖∗ ≤ C ‖f‖∗.
�

We will use the following lemma too.

Lemma 3.3. Let f ∈ RBMO(µ). Given q > 0, we set

fq(x) =





f(x) if |f(x)| ≤ q,

q
f(x)

|f(x)| if |f(x)| > q.

Then fq ∈ RBMO(µ), with ‖fq‖∗ ≤ C ‖f‖∗.
Proof. For any function g, we set g = g+ − g−, with g+ = max(g, 0) and
g− = −min(g, 0).

By Proposition 2.5, ‖f+‖∗, ‖f−‖∗ ≤ C ‖f‖∗. Since fq,+ = min(f+, q)
and fq,− = min(f−, q), we have ‖fq,+‖∗, ‖fq,−‖∗ ≤ C ‖f‖∗. Thus ‖fq‖∗ ≤
‖fq,+‖∗ + ‖fq,−‖∗ ≤ C ‖f‖∗. �



BMO AND H1 FOR NON DOUBLING MEASURES 19

Remark 3.4. Let f ∈ RBMO(µ) and let {fQ}Q be a collection of numbers sat-
isfying (3.1) and (3.2). We set fQ,+ = max(fQ, 0) and fQ,− = −min(fQ, 0)
and we take

fq,Q = min(fQ,+, q) − min(fQ,−, q).

It is easily seen that

sup
Q

1

µ(2Q)

∫

Q
|fq(x) − fq,Q| dµ(x) ≤ C ‖f‖∗

and

|fq,Q − fq,R| ≤ C KQ,R ‖f‖∗ for any two cubes Q ⊂ R.

Proof of Theorem 3.1. We will prove (3.3) for ρ = 2. The proof for other
values of ρ is similar. Recall that if (3.1) and (3.2) are satisfied, then (3.1)
is also satisfied subsituting “µ(2Q)” by “µ(ρQ)”, for any ρ > 1 (see Remark
2.7).

Let f ∈ RBMO(µ). Assume first that f is bounded. Let Q0 be some fixed
cube in R

d. We write Q′
0 = 3

2Q0.
Let B be some positive constant which will be fixed later. By Remark

2.3, for µ-almost any x ∈ Q0 such that |f(x) − fQ0
| > B ‖f‖∗, there exists

some doubling cube Qx centered at x satisfying

(3.4) mQx(|f − fQ0
|) > B ‖f‖∗.

Moreover, we may assume that Qx is the biggest doubling cube satisfying
(3.4) with side length 2−k l(Q0) for some integer k ≥ 0, with

l(Qx) ≤ 1

10
l(Q0).

By Besicovich’s covering theorem, there exists an almost disjoint subfamily
{Qi}i of the cubes {Qx}x such that

(3.5) {x : |f(x) − fQ0
| > B ‖f‖∗} ⊂

⋃

i

Qi.

Then, since Qi ⊂ Q′
0 and |fQ0

− fQ′
0
| ≤ C ‖f‖∗, we have

∑

i

µ(Qi) ≤
∑

i

1

B ‖f‖∗

∫

Qi

|f − fQ0
| dµ

≤ C

B ‖f‖∗

∫

Q′
0

|f − fQ0
| dµ

≤ C

B ‖f‖∗
|fQ0

− fQ′
0
|µ(Q′

0) +
C

B ‖f‖∗

∫

Q′
0

|f − fQ′
0
| dµ.(3.6)

Since (3.1) is satisfied if we change “µ(2Q)” by “µ(4
3Q)”, we have

∫

Q′
0

|f − fQ′
0
| dµ ≤ C µ(2Q0) ‖f‖∗,
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and, by (3.6),
∑

i

µ(Qi) ≤
C µ(2Q0)

B
.

So if we choose B big enough,

(3.7)
∑

i

µ(Qi) ≤
µ(2Q0)

2βd
.

Now we want to see that for each i we have

(3.8) |fQi
− fQ0

| ≤ C7 ‖f‖∗.

We consider the cube 2̃Qi. If l(2̃Qi) > 10l(Q0), then there exists some cube

2mQi, m ≥ 1, containing Q0 and such that l(Q0) ≈ l(2mQi) ≤ l(2̃Qi). Thus

|fQi
− fQ0

| ≤ |fQi
− f2Qi

| + |f2Qi
− f2mQi

| + |f2mQi
− fQ0

|.
The first and third sums on the right hand side are bounded by C ‖f‖∗
because Qi and 2Qi on the one hand and 2mQi and Q0 on the other hand
have comparable sizes. The second sum is also bounded by C ‖f‖∗ due to
the fact that there are no doubling cubes of the form 2kQi between Qi and
2mQi, and then KQi,2mQi

≤ C.

Assume now 1
10 l(Q0) < l(2̃Qi) ≤ 10l(Q0). Then

|fQi
− fQ0

| ≤ |fQi
− f

g2Qi
| + |f

g2Qi
− fQ0

|.

Since 2̃Qi and Q0 have comparable sizes, by Lemma 3.2 we have |f
g2Qi

−
fQ0

| ≤ C ‖f‖∗. And since K
Qi,g2Qi

≤ C(KQi,2Qi
+ K

2Qi,g2Qi
), we also have

|fQi
− f

g2Qi
| ≤ C ‖f‖∗. So (3.8) holds in this case too.

If l(2̃Qi) ≤ 1
10 l(Q0), then, by the choice of Qi, we have m

g2Qi
(|f −fQ0

|) ≤
B ‖f‖∗, which implies

(3.9) |m
g2Qi

(f − fQ0
)| ≤ B ‖f‖∗.

Thus

|fQi
− fQ0

| ≤ |fQi
− f

g2Qi
| + |f

g2Qi
− m

g2Qi
f | + |m

g2Qi
f − fQ0

|.

As above, the term |fQi
− f

g2Qi
| is bounded by C ‖f‖∗. The last one equals

|m
g2Qi

(f − fQ0
)|, which is estimated in (3.9). For the second one, since 2̃Qi

is doubling, we have

|f
g2Qi

− m
g2Qi

f | ≤ 1

µ(2̃Qi)

∫

g2Qi

|f − f
g2Qi

| dµ ≤ C
µ(2 · 2̃Qi)

µ(2̃Qi)
‖f‖∗ ≤ C ‖f‖∗.

So (3.8) holds in any case.
Now we consider the function

X(t) = sup
Q

1

µ(2Q)

∫

Q
exp

(
|f − fQ|

t

‖f‖∗

)
dµ.
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Since we are assuming that f is bounded, X(t) < ∞. By (3.5) and (3.8) we
have

1

µ(2Q0)

∫

Q0

exp

(
|f − fQ0

| t

‖f‖∗

)
dµ

≤ 1

µ(2Q0)

∫

Q0\
S

i Qi

exp(B t) dµ

+
1

µ(2Q0)

∑

i

∫

Qi

exp

(
|f − fQi

| t

‖f‖∗

)
dµ · exp(C7 t)

≤ exp(B t) +
1

µ(2Q0)

∑

i

µ(2Qi)X(t) exp(C7 t).

By (3.7) and taking into account that µ(2Qi)/µ(Qi) ≤ βd, we get

1

µ(2Q0)

∫

Q0

exp

(
|f − fQ0

| t

‖f‖∗

)
dµ ≤ exp(B t) +

1

2
X(t) exp(C7 t).

Thus

X(t)

(
1 − 1

2
exp(C7 t)

)
≤ exp(B t).

Then, for t0 small enough,

X(t0) ≤ C8,

with C8 depending on t0, B and C7.
Now the theorem is almost proved for f bounded. We have

µ{x ∈ Q : |f(x) − fQ| > λ ‖f‖∗/t0}

≤
∫

Q
exp

(
t0 |f(x) − fQ|

‖f‖∗

)
exp(−λ) dµ(x)

≤ C8 µ(2Q) exp(−λ),

which is equivalent to (3.3).
When f is not bounded, we consider the function fq of Lemma 3.3. By

this Lemma and the subsequent remark we know that

µ{x ∈ Q : |fq(x) − fQ,q| > λ} ≤ C5 µ(ρQ) exp

(−C6 λ

‖f‖∗

)
.

Since µ{x ∈ Q : |fq(x)−fQ,q| > λ} → µ{x ∈ Q : |f(x)−fQ| > λ} as q → ∞,
(3.3) holds in this case too. �

From Theorem 3.1 we can get easily that the following spaces RBMOp(µ)
coincide for all p ∈ [1,∞). Given ρ > 1 and p ∈ [1,∞), RBMOp(µ) is defined
as follows. We say that f ∈ L1

loc(µ) is in RBMOp(µ) if there exists some
constant C9 such that for any cube Q (centered at some point of supp(µ))

(3.10)

(
1

µ(ρQ)

∫

Q
|f − m

eQ
f |p dµ

)1/p

≤ C9
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and

(3.11) |mQf − mRf | ≤ C9 KQ,R for any two doubling cubes Q ⊂ R.

The minimal constant C9 is the RBMOp(µ) norm of f , denoted by ‖ · ‖∗,p.
Arguing as for p = 1, one can show that another equivalent definition for
RBMOp(µ) can be given in terms of the numbers {fQ}Q (as in (2.7) and
(2.8)), and that the definition of the space does not depend on the constant
ρ > 1.

We have the following corollary of John-Nirenberg inequality:

Corollary 3.5. For p ∈ [1,∞), the spaces RBMOp(µ), coincide, and the
norms ‖ · ‖∗,p are equivalent.

Proof. The conditions (2.5) and (3.11) coincide. So we only have to compare
(2.4) and (3.10).

For any f ∈ L1
loc(µ), the inequality ‖f‖∗ ≤ ‖f‖∗,p follows from Hölder’s

inequality. To obtain the converse inequality we will apply John-Nirenberg.
If f ∈ RBMO(µ), then

1

µ(ρQ)

∫

Q
|f − m

eQf |p dµ =
1

µ(ρQ)

∫ ∞

0
p λp−1 µ{x : |f(x) − m

eQf | > λ} dλ

≤ C5 p

∫ ∞

0
λp−1 exp

(−C6 λ

‖f‖∗

)
dλ ≤ C ‖f‖p

∗,

and so ‖f‖∗,p ≤ C‖f‖∗. �

4. The space H1,∞
atb (µ)

For a fixed ρ > 1, a function b ∈ L1
loc(µ) is called an atomic block if

1. there exists some cube R such that supp(b) ⊂ R,

2.

∫
b dµ = 0,

3. there are functions aj supported on cubes Qj ⊂ R and numbers
λj ∈ R such that b =

∑∞
j=1 λjaj, and

‖aj‖L∞(µ) ≤
(
µ(ρQj)KQj ,R

)−1
.

Then we denote

|b|H1,∞
atb

(µ) =
∑

j

|λj |

(to be rigorous, we should think that b is not only a function, but a structure
formed by the function b, the cubes R and Qj, the functions aj , etc.)

Then, we say that f ∈ H1,∞
atb (µ) if there are atomic blocks bi such that

f =

∞∑

i=1

bi,
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with
∑

i |bi|H1,∞
atb

(µ) < ∞. The H1,∞
atb (µ) norm of f is

‖f‖H1,∞
atb

(µ) = inf
∑

i

|bi|H1,∞
atb

(µ),

where the infimum is taken over all the possible decompositions of f in
atomic blocks.

Observe the difference with the atomic space H1,∞
at,ρ (µ). The size condition

on the functions aj is similar (we should forget the coefficient KQ,R), but the
cancellation property

∫
aj dµ = 0 is substituted by something which offers

more possibilities: We can gather some terms λjaj in an atomic block b, and
then we must have

∫
b dµ = 0.

Notice also that if we take atomic blocks bi made up of a unique function
ai, we derive H1,∞

at,ρ (µ) ⊂ H1,∞
atb (µ).

We have the following properties:

Proposition 4.1. 1. H1,∞
atb (µ) is a Banach space.

2. H1,∞
atb (µ) ⊂ L1(µ), with ‖f‖L1(µ) ≤ ‖f‖H1,∞

atb
(µ).

3. The definition of H1,∞
atb (µ) does not depend on the constant ρ > 1.

Proof. The proofs of properties 1 and 2 are similar to the usual proofs for
H1,∞

at (µ).
Let us sketch the proof of the third property, we can follow an argument

similar to the one of Lemma 2.6. Given ρ > η > 1, it is obvious that
H1,∞

atb,ρ(µ) ⊂ H1,∞
atb,η(µ) and ‖f‖H1,∞

atb,η
(µ) ≤ ‖f‖H1,∞

atb,ρ
(µ). For the converse in-

equality, given an atomic block b =
∑

j λjaj with supp(aj) ⊂ Qj ⊂ R, it
is not difficult to see that each function aj can be decomposed in a finite
fixed number of functions aj,k such that ‖aj,k‖L∞(µ) ≤ ‖aj‖L∞(µ) for all k,
with supp(aj,k) ⊂ Qj,k, where Qj,k are cubes such that l(Qj,k) ≈ l(Qj) and
ρQj,k ⊂ ηQj , etc.

Then, we will have |b|
H1,∞

atb,ρ
(µ)

≤ C |b|
H1,∞

atb,η
(µ)

, which yields ‖f‖
H1,∞

atb,ρ
(µ)

≤
C ‖f‖H1,∞

atb,η
(µ). �

Unless otherwise stated, we will assume that the constant ρ in the defini-
tion H1,∞

atb (µ) is equal to 2.
Now we are going to see that if a CZO is bounded on L2(µ), then it is

bounded from H1,∞
atb (µ) into L1(µ). In fact, we will replace the assumption

of L2(µ) boundedness by another weaker assumption (as in Theorem 2.11).

Theorem 4.2. If for any cube Q and any function a supported on Q

(4.1)

∫

Q
|Tεa| dµ ≤ C ‖a‖L∞(µ) µ(ρQ)

uniformly on ε > 0, then T is bounded from H1,∞
atb (µ) into L1(µ).
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Proof. By standard arguments, it is enough to show that

‖Tεb‖L1(µ) ≤ C |b|H1,∞
atb

(µ)

for any atomic block b with supp(b) ⊂ R, b =
∑

j λj aj, where the aj ’s are
functions satisfying the properties 3 and 4 of the definition of atomic block.

We write

(4.2)

∫
|Tεb| dµ =

∫

Rd\2R
|Tεb| dµ +

∫

2R
|Tεb| dµ.

To estimate the first integral on the right hand side, we take into account
that

∫
b dµ = 0, and by usual arguments we get

(4.3)

∫

Rd\2R
|Tεb| dµ ≤ C ‖b‖L1(µ) ≤ C |b|H1,∞

atb
(µ).

On the other hand, for the last integral in (4.2), we have
∫

2R
|Tεb| dµ ≤

∑

j

|λj |
∫

2R
|Tεaj | dµ

=
∑

j

|λj |
∫

2Qj

|Tεaj| dµ +
∑

j

|λj |
∫

2R\2Qj

|Tεaj| dµ.

By (4.1), for each j we have
∫

2Qj

|Tεaj | dµ ≤ C ‖aj‖L∞(µ) µ(2ρQj).

Also,

∫

2R\2Qj

|Tεaj| dµ ≤
NQj,R∑

k=1

∫

2k+1Qj\2kQj

|Tεaj | dµ

≤ C

NQj,R∑

k=1

µ(2k+1Qj)

l(2k+1Qj)n
‖aj‖L1(µ)

≤ C KQj ,R ‖aj‖L∞(µ) µ(Qj).

Thus ∫

2R
|Tεaj | dµ ≤ C KQj ,R ‖aj‖L∞(µ) µ(2ρQj),

and then, taking into account the property 3 in Proposition 4.1,

(4.4)

∫

2R
|Tεb| dµ ≤ C

∑

j

|λj |KQj ,R ‖aj‖L∞(µ) µ(2ρQj) ≤ C |b|
H1,∞

atb
(µ)

.

By (4.3) and (4.4), we are done. �
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We will see below, in Theorem 8.1, that condition (4.1) holds if and only

if T is bounded from H1,∞
atb (µ) into L1(µ).

The spaces H1,∞
atb (µ) and RBMO(µ) are closely related. In the next section

we will prove that the dual of H1,∞
atb (µ) is RBMO(µ). Let us see one of the

inclusions (the easiest one).

Lemma 4.3.

RBMO(µ) ⊂ H1,∞
atb (µ)

∗
.

That is, for g ∈ RBMO(µ), the linear functional

Lg(f) =

∫
f g dµ

defined over bounded functions f with compact support extends to a contin-
uous linear functional Lg over H1,∞

atb (µ) with

‖Lg‖H1,∞
atb

(µ)
∗ ≤ C ‖g‖∗.

Proof. Following some standard arguments (see [3, p.294-296], for example),
we only need to show that if b is an atomic block and g ∈ RBMO(µ), then

∣∣∣∣
∫

b g dµ

∣∣∣∣ ≤ C |b|H1,∞
atb

(µ) ‖g‖∗.

Suppose supp(b) ⊂ R, b =
∑

j λj aj, where the aj’s are functions satisfy-
ing the properties 3 and 4 of the definition of atomic blocks. Then, using∫

b dµ = 0,

(4.5)

∣∣∣∣
∫

b g dµ

∣∣∣∣ =
∣∣∣∣
∫

R
b (g − gR) dµ

∣∣∣∣ ≤
∑

j

|λj | ‖aj‖L∞(µ)

∫

Qj

|g − gR| dµ.

Since g ∈ RBMO(µ), we have
∫

Qj

|g − gR| dµ ≤
∫

Qj

|g − gQj
| dµ + |gR − gQj

|µ(Qj)

≤ ‖g‖∗ µ(2Qj) + KQj ,R ‖g‖∗ µ(Qj)

≤ C KQj ,R ‖g‖∗ µ(2Qj).

From (4.5) we get
∣∣∣∣
∫

b g dµ

∣∣∣∣ ≤ C
∑

j

|λj | ‖g‖∗ = C |b|H1,∞
atb

(µ) ‖g‖∗.

�

In the following lemma we prove the converse inequality to the one stated
in Lemma 4.3.

Lemma 4.4. If g ∈ RBMO(µ), we have

‖Lg‖H1,∞
atb

(µ)
∗ ≈ ‖g‖∗.
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To obtain this result we need to define another equivalent norm for
RBMO(µ). First we introduce some notation. Given a cube Q ⊂ R

d and
f ∈ L1

loc(µ), let αQ(f) be the constant for which infα∈R mQ(|f − α|) is at-
tained. It is known that the constant αQ(f) (which may be not unique)
satisfies

µ{x ∈ Q : f(x) > αQ(f)} ≤ 1

2
µ(Q)

and

µ{x ∈ Q : f(x) < αQ(f)} ≤ 1

2
µ(Q)

(see [6, p.30], for example).
Given f ∈ L1

loc(µ), we denote by ‖f‖◦ the minimal constant C10 such that

(4.6)
1

µ(2Q)

∫

Q
|f − α

eQ
(f)| dµ ≤ C10

and, for any two doubling cubes Q ⊂ R,

(4.7) |αQ(f) − αR(f)| ≤ C10 KQ,R.

Then,

Lemma 4.5. ‖ · ‖◦ is a norm which equivalent with ‖ · ‖∗.

To prove this result, one can argue as in Lemma 2.8 and show that the
norm ‖ · ‖◦ is equivalent with the norm ‖ · ‖∗∗. The details are left for the
reader

Proof of Lemma 4.4. We have to prove that ‖Lg‖H1,∞
atb

(µ)
∗ ≥ C−1 ‖g‖∗. We

will show that there exists some function f ∈ H1,∞
atb (µ) such that

|Lg(f)| ≥ C−1 ‖g‖◦ ‖f‖H1,∞
atb

(µ).

Let ε > 0 be some small constant which will be fixed later. There are two
possibilities:

1. There exists some doubling cube Q ⊂ R
d such that

(4.8)

∫

Q
|g − αQ(g)| dµ ≥ ε ‖g‖◦ µ(Q).

2. For any doubling cube Q ⊂ R
d, (4.8) does not hold.

If case 1 holds and Q is doubling and satisfies (4.8), then we take f such
that f(x) = 1 if g(x) > αQ(g), f(x) = −1 if g(x) < αQ(g), and f(x) = ±1
if g(x) = αQ(g), so that

∫
f dµ = 0 (this is possible because of (4.6) and

(4.7)). Then,
∣∣∣∣
∫

g f dµ

∣∣∣∣ =

∣∣∣∣
∫

(g − αQ(g)) f dµ

∣∣∣∣ =

∫
|g − αQ(g)| dµ ≥ ε ‖g‖◦ µ(Q).



BMO AND H1 FOR NON DOUBLING MEASURES 27

Since f is an atomic block and Q is doubling, ‖f‖H1,∞
atb

(µ) ≤ |f |H1,∞
atb

(µ) ≤
C µ(Q). Therefore

|Lg(f)| =

∣∣∣∣
∫

g f dµ

∣∣∣∣ ≥ C−1 ε ‖g‖◦ ‖f‖H1,∞
atb

(µ)
.

In the case 2 there are again two possibilities:

a) For any two doubling cubes Q ⊂ R.

|αQ(g) − αR(g)| ≤ 1

2
KQ,R ‖g‖◦.

b) There are doubling cubes Q ⊂ R such that

|αQ(g) − αR(g)| >
1

2
KQ,R ‖g‖◦.

Assume first that a) holds. By the definition of ‖g‖◦ there exists some
cube Q such that ∫

Q
|g − α

eQ(g)| dµ ≥ 1

2
‖g‖◦ µ(2Q).

We consider the following atomic block supported on Q̃: We set f = a1 +a2,
where

a1 = χQ∩{g>α eQ
(g)} − χQ∩{g≤α eQ

(g)},

and a2 is supported on Q̃, constant on this cube, and such that
∫
(a1 +

a2) dµ = 0.
Let us estimate ‖f‖

H1,∞
atb

(µ)
. We have

‖a2‖L∞(µ) µ(Q̃) =

∣∣∣∣
∫

a2 dµ

∣∣∣∣ =

∣∣∣∣
∫

a1 dµ

∣∣∣∣ ≤ µ(Q).

Then, since Q̃ is doubling and K
Q,2 eQ

≤ C,

‖f‖H1,∞
atb

(µ) ≤ ‖a1‖L∞(µ) µ(2Q) + C ‖a2‖L∞(µ) µ(2Q̃) ≤ C µ(2Q).

Now we have

Lg(f) =

∫
g f dµ =

∫

eQ
(g − α

eQ(g)) f dµ

=

∫

eQ
(g − α

eQ
(g)) a1 dµ +

∫

eQ
(g − α

eQ
(g)) a2 dµ.(4.9)

By the definition of a1,

(4.10)

∣∣∣∣
∫

eQ
(g − α

eQ
(g)) a1 dµ

∣∣∣∣ =

∫

Q
|g − α

eQ
(g)| dµ ≥ 1

2
‖g‖◦ µ(2Q).

On the other hand, by the computation about ‖a2‖L∞(µ) and since (4.8)

does not hold for Q̃,

(4.11)

∣∣∣∣
∫

eQ
(g − α

eQ
(g)) a2 dµ

∣∣∣∣ ≤
µ(Q)

µ(Q̃)

∫

eQ
|g − α

eQ
(g)| dµ ≤ C ε‖g‖◦ µ(2Q).
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By (4.9), (4.10) and (4.11), if ε has been chosen small enough,

|Lg(f)| ≥ 1

4
‖g‖◦ µ(2Q) ≥ C−1 ‖g‖◦ ‖f‖H1,∞

atb
(µ).

Now we consider the case b). Let Q ⊂ R be doubling cubes such that

(4.12) |αQ(g) − αR(g)| >
1

2
KQ,R ‖g‖◦.

We take

f =
1

µ(R)
χR − 1

µ(Q)
χQ.

So
∫

f dµ = 0, and f is an atomic block. Since Q and R are doubling,
‖f‖H1,∞

atb
(µ) ≤ C KQ,R. We have

Lg(f) =

∫

R
(g − αR(g)) f dµ

=
1

µ(R)

∫

R
(g − αR(g)) dµ − 1

µ(Q)

∫

Q
(g − αR(g)) dµ

=
1

µ(R)

∫

R
(g − αR(g)) dµ − 1

µ(Q)

∫

Q
(g − αQ(g)) dµ

+ (αQ(g) − αR(g)).

Since we are in the case 2, the terms
∣∣∣∣

1

µ(R)

∫

R
(g − αR(g)) dµ

∣∣∣∣ ,
∣∣∣∣

1

µ(Q)

∫

Q
(g − αQ(g)) dµ

∣∣∣∣

are bounded by ε ‖g‖◦. By (4.12), if ε is chosen ≤ 1/8, then

|Lg(f)| ≥ 1

4
KQ,R ‖g‖◦ ≥ C−1 ‖g‖◦ ‖f‖H1,∞

atb
(µ).

�

5. The spaces H1,p
atb(µ) and duality

To study the duality between H1,∞
atb (µ) and RBMO(µ) we will follow the

scheme of [6, p.34-40]. We will introduce the atomic spaces H1,p
atb(µ), and we

will prove that they coincide with H1,∞
atb (µ) and that the dual of H1,∞

atb (µ) is
RBMO(µ) simultaneously.

For a fixed ρ > 1 and p ∈ (1,∞), a function b ∈ L1
loc(µ) is called a

p-atomic block if

1. there exists some cube R such that supp(b) ⊂ R,

2.

∫
b dµ = 0,

3. there are functions aj supported in cubes Qj ⊂ R and numbers
λj ∈ R such that b =

∑∞
j=1 λjaj, and

‖aj‖Lp(µ) ≤ µ(ρQj)
1/p−1 K−1

Qj ,R.
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We denote

|b|
H1,p

atb
(µ)

=
∑

j

|λj|

(as in the case of H1,∞
atb (µ), to be rigorous we should think that b is not only

a function, but a structure formed by the function b, the cubes R and Qj,
the functions aj , etc.)

Then, we say that f ∈ H1,p
atb(µ) if there are p-atomic blocks bi such that

f =
∞∑

i=1

bi,

with
∑

i |bi|H1,p
atb

(µ) < ∞. The H1,p
atb(µ) norm of f is

‖f‖
H1,p

atb
(µ)

= inf
∑

i

|bi|H1,p
atb

(µ)
,

where the infimum is taken over all the possible decompositions of f in
p-atomic blocks.

We have properties analogous to the ones for H1,∞
atb (µ):

Proposition 5.1. 1. H1,p
atb(µ) is a Banach space.

2. H1,p
atb(µ) ⊂ L1(µ), with ‖f‖L1(µ) ≤ ‖f‖H1,p

atb
(µ).

3. For 1 < p1 ≤ p2 ≤ ∞, we have the continuous inclusion H1,p2

atb (µ) ⊂
H1,p1

atb (µ).

4. The definition of H1,p
atb(µ) does not depend on the constant ρ > 1.

The proof of these properties is similar to the proof of the properties in
Proposition 4.1.

As in the case of RBMO(µ) and H1,∞
atb (µ), we will assume that the constant

ρ in the definition of the H1,p
atb(µ) is ρ = 2.

The proof about the duality between H1,∞
atb (µ) and RBMO(µ) and the

coincidence of the spaces H1,p
atb(µ) has been split in several lemmas. The first

one is the following.

Lemma 5.2. For 1 < p < ∞,

RBMO(µ) ⊂ H1,p
atb(µ)

∗
.

That is, for g ∈ RBMO(µ), the linear functional

Lg(f) =

∫
f g dµ

defined over bounded functions f with compact support extends to a unique
continuous linear functional Lg over H1,p

atb(µ) with

‖Lg‖H1,p
atb

(µ)
∗ ≤ C ‖g‖∗.
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Proof. This lemma is very similar to Lemma 4.3. We only need to show that
if b is a p-atomic block and g ∈ RBMO(µ), then

∣∣∣∣
∫

b g dµ

∣∣∣∣ ≤ C |b|
H1,p

atb
(µ)

‖g‖∗.

Suppose supp(b) ⊂ R, b =
∑

j λj aj , where the aj’s are functions satisfying

the properties 3 and 4 of the definition of p-atomic block. Since
∫

b dµ = 0,
(5.1)
∣∣∣∣
∫

b g dµ

∣∣∣∣ =

∣∣∣∣
∫

R
b (g − gR) dµ

∣∣∣∣ ≤
∑

j

|λj| ‖aj‖Lp(µ)

(∫

Qj

|g − gR|p
′
dµ

)1/p′

,

where p′ = p/(p − 1). As g ∈ RBMO(µ) = RBMOp′(µ), we have

(∫

Qj

|g − gR|p
′
dµ

)1/p′

≤
(∫

Qj

|g − gQj
| dµ

)1/p′

+ |gR − gQj
|µ(Qj)

1/p′

≤ ‖g‖∗ µ(2Qj)
1/p′ + KQj ,R ‖g‖∗ µ(Qj)

1/p′

≤ C KQj ,R ‖g‖∗ µ(2Qj)
1/p′ .

From (5.1) we get
∣∣∣∣
∫

b g dµ

∣∣∣∣ ≤ C
∑

j

|λj| ‖g‖∗ = C |b|H1,p
atb

(µ) ‖g‖∗.

�

Lemma 5.3. For 1 < p < ∞,

H1,p
atb(µ)

∗ ∩ Lp′

loc(µ) ⊂ RBMO(µ).

Proof. Let g ∈ Lp′

loc(µ) such that such that the functional Lg belongs to

H1,p
atb(µ)

∗
. We have to show that g ∈ RBMO(µ) and ‖g‖◦ ≤ C ‖Lg‖H1,p

atb
(µ)

∗ .

So we will see that, for any cube Q,

(5.2)
1

µ(2Q)

∫

Q
|g − α

eQ(g)| dµ ≤ C ‖Lg‖H1,p
atb

(µ)
∗

and for any two doubling cubes Q ⊂ R,

(5.3) |αQ(g) − αR(g)| ≤ C ‖Lg‖H1,p
atb

(µ)
∗ KQ,R.

First we will show that (5.2) holds for any doubling cube Q = Q̃. In this
case the argument is almost the same as the one of [6, p.38-39]. We will
repeat it for the sake of completeness. Without loss of generality we may
assume that∫

Q∩{g>αQ(g)}
|g − αQ(g)|p′ dµ ≥

∫

Q∩{g<αQ(g)}
|g − αQ(g)|p′ dµ.
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We consider an atomic block defined as follows:

a(x) =





|g(x) − αQ|p
′−1 if x ∈ Q ∩ {g > αQ(g)},

CQ if x ∈ Q ∩ {g ≤ αQ(g)},
0 if x 6∈ Q,

where CQ is a constant such that
∫

a dµ = 0.
By the definition of αQ(g), we have

µ(Q ∩ {g > αQ(g)}) ≤ 1

2
µ(Q) ≤ µ(Q ∩ {g ≤ αQ(g)}).

Since Q is doubling,

‖a‖
H1,p

atb
(µ)

≤ C ‖a‖Lp(µ) µ(Q)1−1/p ≤ C µ(Q)

×
(

1

µ(Q)

∫

Q∩{g>αQ(g)}
|g − αQ(g)|p′ dµ +

1

µ(Q)

∫

Q∩{g≤αQ(g)}
|CQ|p dµ

)1/p

.

Now we have

1

µ(Q)

∫

Q∩{g≤αQ(g)}
|CQ|p dµ

≤ 1

µ(Q ∩ {g ≤ αQ(g)})

∫

Q∩{g≤αQ(g)}
|CQ|p dµ

=

∣∣∣∣∣
1

µ(Q ∩ {g ≤ αQ(g)})

∫

Q∩{g≤αQ(g)}
CQ dµ

∣∣∣∣∣

p

=

(
1

µ(Q ∩ {g ≤ αQ(g)})

∫

Q∩{g>αQ(g)}
|g − αQ(g)|p′−1 dµ

)p

≤ 1

µ(Q ∩ {g ≤ αQ(g)})

∫

Q∩{g>αQ(g)}
|g − αQ(g)|p′ dµ.

Therefore,

(5.4) ‖a‖H1,p
atb

(µ) ≤ C µ(Q)

(
1

µ(Q)

∫

Q∩{g>αQ(g)}
|g − αQ(g)|p′ dµ

)1/p

.

Since (g − αQ(g))a ≥ 0 on Q, we have

∫

Q
g a dµ =

∫

Q
(g − αQ(g))a dµ

≥
∫

Q∩{g>αQ(g)}
|g − αQ(g)|p′ dµ ≥ 1

2

∫

Q
|g − αQ(g)|p′ dµ.(5.5)
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From (5.4) and (5.5) we get

(
1

µ(Q)

∫

Q
|g − αQ(g)|p′ dµ

)1/p′

‖a‖H1,p
atb

(µ) ≤ C

∫

Q
|g − αQ(g)|p′ dµ

≤ C

∫

Q
g a dµ = C Lg(a) ≤ C ‖Lg‖H1,p

atb
(µ)

∗ ‖a‖
H1,p

atb
(µ)

.

So (5.2) holds in this case.

Assume now that Q is non doubling. We consider an atomic block b =
a1 + a2, with

(5.6) a1 =
|g − α

eQ
(g)|p′

g − α
eQ(g)

χQ∩{g 6=α eQ
(g)}

and

(5.7) a2 = C
eQ
χ

eQ
,

where C
eQ

is such that
∫
(a1 + a2) dµ = 0.

Let us estimate ‖b‖H1,p
atb

(µ). Since Q̃ is doubling and KQ, eQ ≤ C,

(5.8) ‖b‖
H1,p

atb
(µ)

≤ C

(∫

Q
|g − α

eQ
(g)|p′ dµ

)1/p

µ(2Q)1/p′ + C |C
eQ
|µ(Q̃).

Since
∫

b dµ = 0, we have

µ(Q̃) |C
eQ
| =

∣∣∣∣
∫

a1 dµ

∣∣∣∣ ≤
∫

Q
|g − α

eQ
(g)|p′−1 dµ

≤
(∫

Q
|g − α

eQ
(g)|p′ dµ

)1/p

µ(Q)1/p′ .(5.9)

Thus

(5.10) ‖b‖H1,p
atb

(µ) ≤ C

(∫

Q
|g − α

eQ(g)|p′ dµ

)1/p

µ(2Q)1/p′ .

As
∫

b dµ = 0, we also have

∫
g b dµ =

∫

eQ
(g−α

eQ
(g))b dµ =

∫

Q
(g−α

eQ
(g))a1 dµ+C

eQ

∫

eQ
(g−α

eQ
(g)) dµ.
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Therefore, taking into account that Q̃ satisfies (5.2), and using (5.9),

(5.11)

∫

Q
|g − α

eQ
(g)|p′ dµ =

∫

Q
(g − α

eQ
(g))a1 dµ

≤
∣∣∣∣
∫

g b dµ

∣∣∣∣+ |C
eQ|
∫

eQ
|g − α

eQ(g)| dµ

≤ ‖Lg‖H1,p
atb

(µ)
∗ ‖b‖

H1,p
atb

(µ)
+ C |C

eQ
| ‖Lg‖H1,p

atb
(µ)

∗ µ(Q̃)

≤ C ‖Lg‖H1,p
atb

(µ)
∗

[
‖b‖

H1,p
atb

(µ)
+

(∫

Q
|g − α

eQ
(g)|p′ dµ

)1/p

µ(Q)1/p′

]
.

By (5.10) we get
∫

Q
|g − α

eQ(g)|p′ dµ ≤ C ‖Lg‖H1,p
atb

(µ)
∗

(∫

Q
|g − α

eQ(g)|p′ dµ

)1/p

µ(2Q)1/p′ .

That is, (
1

µ(2Q)

∫

Q
|g − α

eQ(g)|p′ dµ

)1/p′

≤ C ‖Lg‖H1,p
atb

(µ)
∗ ,

which implies (5.2).

Finally, we have to show that (5.3) holds for doubling cubes Q ⊂ R. We
consider an atomic block b = a1 + a2 similar to the one defined above. We
only change Q̃ by R in (5.6) and (5.7):

a1 =
|g − αR(g)|
g − αR(g)

χQ∩{g 6=αR(g)}

and
a2 = CR χR,

where CR is such that
∫

(a1 + a2) dµ = 0. Arguing as in (5.8), (5.9) and
(5.10) (the difference is that now Q and R are doubling, and we do not have
KQ,R ≤ C) we will obtain

(5.12) ‖b‖
H1,p

atb
(µ)

≤ C KQ,R

(∫

Q
|g − α

eQ
(g)|p′ dµ

)1/p

µ(2Q)1/p′ .

As in (5.11), we get
∫

Q
|g − αR(g)|p′ dµ ≤ ‖Lg‖H1,p

atb
(µ)

∗ ‖b‖H1,p
atb

(µ) + C |CR| ‖Lg‖H1,p
atb

(µ)
∗ µ(R)

≤ C ‖Lg‖H1,p
atb

(µ)
∗

[
‖b‖H1,p

atb
(µ) +

(∫

Q
|g − αR(g)|p′ dµ

)1/p

µ(Q)1/p′

]
.

By (5.12) we have
∫

Q
|g−αR(g)|p′ dµ ≤ C ‖Lg‖H1,p

atb
(µ)

∗ KQ,R

(∫

Q
|g − αR(g)|p′ dµ

)1/p

µ(Q)1/p′ .
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Thus

(5.13)

(
1

µ(Q)

∫

Q
|g − αR(g)|p′ dµ

)1/p′

≤ C ‖Lg‖H1,p
atb

(µ)
∗ KQ,R.

Since Q is doubling and satisfies (5.2), by (5.13) we get

|αQ(g) − αR(g)| =
1

µ(Q)

∫

Q
|αQ(g) − αR(g)| dµ

≤ 1

µ(Q)

∫

Q
|g − αQ(g)| dµ +

1

µ(Q)

∫

Q
|g − αR(g)| dµ

≤ C ‖Lg‖H1,p
atb

(µ)
∗ KQ,R,

and we are done. �

Lemma 5.4. For 1 < p < ∞,

H1,p
atb(µ)

∗ ⊂ Lp′

loc(µ) modulo constants.

Proof. This lemma is an easy consequence of the Riesz representation theo-
rem. The same argument as the one of [6, p.39-40] works here. �

Now we have:

Theorem 5.5. For 1 < p < ∞, H1,p
atb(µ) = H1,∞

atb (µ). Also, H1,∞
atb (µ)

∗
=

RBMO(µ).

Proof. Notice that, by Lemmas 5.2, 5.3 and 5.4, H1,p
atb(µ)

∗
= RBMO(µ) for

1 < p < ∞.
Now we repeat the arguments in [6] again. We consider the diagram

i : H1,∞
atb (µ) −→ H1,p

atb(µ)

i∗ : RBMO(µ) = H1,p
atb(µ)

∗ −→ H1,∞
atb (µ)

∗
.

The map i is an inclusion and i∗ is the canonical injection of RBMO(µ) in

H1,∞
atb (µ)

∗
(with the identification g ≡ Lg for g ∈ RBMO(µ)). By Lemma

4.4, i∗(RBMO(µ)) is a closed subspace of H1,∞
atb (µ)

∗
. By Banach’s closed

range theorem (see [19, p.205]), H1,∞
atb (µ) is also closed in H1,p

atb(µ). Now it is

easily checked that the Hahn-Banach theorem and the fact that H1,p
atb(µ)

∗
=

RBMO(µ) imply H1,∞
atb (µ)

∗
= RBMO(µ). �

Example 5.6. By the previous theorem and the fact that for an AD-regular
set the space RBMO(µ) coincides with BMO(µ), we derive that in this case

we have H1,∞
atb (µ) = H1,∞(µ) too (using the same sort of uniqueness ar-

gument as above). However, this does not hold for all doubling measures
µ. For instance, in the example 2.13 (µ equal to the Lebesgue measure on
[0, 1]2, with n = 1, d = 2) since RBMO(µ) = L∞(µ) modulo constants, we

have H1,∞
atb (µ) = {f ∈ L1(µ) :

∫
f dµ = 0}.
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6. The sharp maximal operator

The classical (centered) sharp maximal operator M ♯ is defined as

M ♯f(x) = sup
Q

1

µ(Q)

∫

Q
|f − mQf | dµ,

where the supremum is taken over the cubes Q centered at x and f ∈ L1
loc(µ).

Then, one has f ∈ BMO(µ) if and only if M ♯f ∈ L∞(µ).
Since M ♯f is pointwise bounded above by the (centered) Hardy-Littlewood

maximal operator

Mf(x) = sup
Q

1

µ(Q)

∫

Q
|f | dµ

(with the supremum again over the cubes Q centered at x), one has

(6.1) ‖M ♯f‖Lp(µ) ≤ C ‖f‖Lp(µ)

for 1 < p ≤ ∞. On the other hand, the converse inequality also holds. If
f ∈ Lp(µ), 1 < p < ∞, then

(6.2) ‖f‖Lp(µ) ≤ C ‖M ♯f‖Lp(µ)

(assuming
∫

f dµ = 0 if ‖µ‖ < ∞).
In [7] it is shown that the inequalities (6.1) and (6.2) are satisfied too if µ

is non doubling (choosing an appropiate grid of cubes). However, the above
definition of the sharp operator is not useful for our purposes because we do
not have the equivalence

(6.3) f ∈ RBMO(µ) ⇐⇒ M ♯f ∈ L∞(µ).

Now we want to introduce another sharp maximal operator suitable for
our space RBMO(µ) enjoying properties similar to the ones of the classical
sharp operator. We define

(6.4) M ♯f(x) = sup
Q∋x

1

µ(3
2Q)

∫

Q
|f − m

eQ
f | dµ + sup

Q ⊂ R : x ∈ Q,
Q,R doubling

|mQf − mRf |
KQ,R

.

Notice that the cubes that appear in these supremums may be non centered
at x. It is clear that f ∈ RBMO(µ) if and only if M ♯f ∈ L∞(µ) (recall
Remark 2.9).

We consider the non centered doubling maximal operator N :

Nf(x) = sup
Q ∋ x,

Q doubling

1

µ(Q)

∫

Q
|f | dµ.

Observe that |f(x)| ≤ Nf(x) for µ-a.e. x ∈ R
d, by Remark 2.3. Moreover,

the operator N is of weak type (1, 1) and bounded on Lp(µ), p ∈ (1,∞].
Indeed, if Q is doubling and x ∈ Q, we can write

1

µ(Q)

∫

Q
|f | dµ ≤ βd

µ(2Q)

∫

Q
|f | dµ ≤ βd M(2)f(x),
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where, for ρ > 1, we denote

M(ρ)f(x) = sup
Q∋x

1

µ(ρQ)

∫

Q
|f | dµ.

So Nf(x) ≤ βdM(2)f(x). The maximal operator M(ρ) is bounded above by
the operator defined as

M (ρ)f(x) = sup
ρ−1Q∋x

1

µ(Q)

∫

Q
|f | dµ.

This is the version of the Hardy-Littlewood operator that one obtains taking
supremums over cubes Q which may be non centered at x but such that x ∈
ρ−1Q. Recall that since 0 < ρ−1 < 1, one can apply Besicovich’s covering
theorem (see [9] or [4, p.6-7], for example) and then one gets that M (ρ) is of
weak type (1, 1) and bounded on Lp(µ), p ∈ (1,∞]. As a consequence, M(ρ)

is also of weak type (1, 1) and bounded on Lp(µ), p ∈ (1,∞]
Now we derive that M ♯ also satifies the inequality (6.1) since the first

supremum in the definition of M ♯f is bounded by M(3/2)f(x)+Nf(x) while
the second one is bounded by 2Nf(x).

Remark 6.1. We have

M ♯|f |(x) ≤ 5βd M ♯f(x).

This easy to check: Assume that x ∈ Q and Q is doubling. Then we have

|mQ|f | − |mQf || =

∣∣∣∣
1

µ(Q)

∫

Q
(|f(x)| − |mQf |) dµ(x)

∣∣∣∣

≤ 1

µ(Q)

∫

Q
|f(x) − mQf | dµ(x)

≤ βd M ♯f(x).(6.5)

Therefore, if Q ⊂ R are doubling,

|mQ|f | − mR|f | | ≤ |mQf − mRf | + 2βd M ♯f(x)

≤ (KQ,R + 2βd)M ♯f(x) ≤ 3βdKQ,R M ♯f(x).

Thus

sup
Q ⊂ R : x ∈ Q,
Q, R doubling

|mQ|f | − mR|f | |
KQ,R

≤ 3βd M ♯f(x).
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For the other supremum, by (6.5) we have

sup
Q∋x

1

µ(3
2Q)

∫

Q
| |f(x)| − m

eQ|f | | dµ(x)

≤ sup
Q∋x

1

µ(3
2Q)

∫

Q
| |f(x)| − |m

eQ
f | | dµ(x) + βd M ♯f(x)

≤ sup
Q∋x

1

µ(3
2Q)

∫

Q
|f(x) − m

eQ
f | dµ(x) + βd M ♯f(x)

≤ 2βd M ♯f(x).

Finally we are going to prove that our new operator M ♯ satisfies (6.2)
too. This is a consequence of the next result and Remark 2.3.

Theorem 6.2. Let f ∈ L1
loc(µ), with

∫
f dµ = 0 if ‖µ‖ < ∞. For 1 < p <

∞, if inf(1, Nf) ∈ Lp(µ), then we have

(6.6) ‖Nf‖Lp(µ) ≤ C ‖M ♯f‖Lp(µ).

Proof. We assume ‖µ‖ = ∞. The proof for ‖µ‖ < ∞ is similar. For some
fixed η < 1 and all ε > 0, we will prove that there exists some δ > 0 such
that for any λ > 0 we have the following good λ inequality:

(6.7) µ{x : Nf(x) > (1 + ε)λ, M ♯f(x) ≤ δλ} ≤ η µ{x : Nf(x) > λ}.
It is well known that by this inequality one gets ‖Nf‖Lp(µ) ≤ C ‖M ♯f‖Lp(µ).
if inf(1, Nf) ∈ Lp(µ).

We denote Ωλ = {x : Nf(x) > λ} and

Eλ = {x : Nf(x) > (1 + ε)λ, M ♯f(x) ≤ δλ}.
For the moment we assume f ∈ Lp(µ). For each x ∈ Eλ, among the doubling
cubes Q that contain x and such that mQ|f | > (1 + ε/2)λ, we consider one
cube Qx which has ‘almost maximal’ side lenght, in the sense that if some
doubling cube Q′ with side lenght ≥ 2l(Qx) contains x, then mQ′|f | ≤
(1 + ε/2)λ. It is easy to check that this maximal cube Qx exists, because
f ∈ Lp(µ).

Let Rx be the cube centered at x with side length 3l(Qx). We denote

Sx = R̃x. Then, assuming δ small enough we have mSx|f | > λ, and then
Sx ⊂ Ωλ. Indeed, by construction, we have KQx,Sx ≤ C. Then, as Qx ⊂ Sx

are doubling cubes containing x,

|mQx |f | − mSx |f | | ≤ KQx,Sx M ♯|f |(x) ≤ C115βdδλ.

Thus, for δ < C11ε/10βd,

mSx |f | > (1 + ε/2)λ − C115βdδλ > λ.

By Besicovich’s covering theorem there are nB (depending on d) subfam-
ilies Dk = {Sk

i }i, k = 1, . . . , nB , of cubes Sx such that they cover Eλ, they
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are centered at points xk
i ∈ Eλ, and each subfamily Dk is disjoint. Therefore,

at least one the subfamilies Dk satisfies

µ

(
⋃

i

Sk
i

)
≥ 1

nB
µ


⋃

i,k

Sk
i


 .

Suppose, for example, that it is D1. We will prove that for each cube S1
i ,

(6.8) µ(S1
i ∩ Eλ) ≤ µ(S1

i )/2nB

if δ is chosen small enough. From this inequality one gets

µ

(
Eλ ∩

⋃

i

S1
i

)
≤ 1

2nB

∑

i

µ(S1
i ) ≤ 1

2nB
µ(Ωλ).

Then,

µ(Eλ) ≤ µ


⋃

i,k

Sk
i \
⋃

i

S1
i


+ µ

(
Eλ ∩

⋃

i

S1
i

)

≤
(

1 − 1

nB

)
µ

(
⋃

i

S1
i

)
+

1

2nB
µ(Ωλ)

≤
(

1 − 1

2nB

)
µ(Ωλ).(6.9)

Let us prove (6.8). Let y ∈ S1
i ∩ Eλ. If Q ∋ y is doubling and such that

mQ|f | > (1 + ε)λ, then l(Q) ≤ l(S1
i )/8. Otherwise, 3̃0Q ⊃ S1

i ⊃ Qx1
i
, and

since Q and 3̃0Q are doubling, we have
∣∣∣mQ|f | − m

g30Q
|f |
∣∣∣ ≤ K

Q, g30Q
M ♯|f |(y) ≤ C12 δλ ≤ ε

2
λ,

assuming C12δ < ε/2, and so

m
g30Q

|f | > (1 + ε/2)λ,

which contradicts the choice of Qx1
i

because 3̃0Q ⊃ Qx1
i

and l(3̃0Q) >

2l(Qx1
i
).

So Nf(y) > (1 + ε)λ, implies

N(χ 5

4
S1

i
f)(y) > (1 + ε)λ.

On the other hand, we also have

m
g5

4
S1

i

|f | ≤ (1 + ε/2)λ,

since 5̃
4S1

i is doubling and its side length is > 2l(Qx1
i
). Therefore, we get

N(χ 5

4
S1

i
|f | − m

g5

4
S1

i

|f |)(y) >
ε

2
λ,
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and then, by the weak (1, 1) boundedness of N and the fact that S1
i is

doubling,

µ(S1
i ∩ Eλ) ≤ µ{y : N(χ 5

4
S1

i
(|f | − m

g5

4
S1

i

|f |))(y) >
ε

2
λ}

≤ C

ελ

∫

5

4
S1

i

(|f | − m
g5

4
S1

i

|f |) dµ

≤ C

ελ
µ(2S1

i )M ♯|f |(x1
i )

≤ C13 δ

ε
µ(S1

i ).

Thus, (6.8) follows by choosing δ < ε/2nBC13, which implies (6.9), and as
a consequence we obtain (6.7) and (6.6) (under the assumption f ∈ Lp(µ)).

Suppose now that f 6∈ Lp(µ). We consider the functions fq, q ≥ 1,
introduced in Lemma 3.3. Since for all functions g, h ∈ L1

loc(µ) and all

x we have M ♯(g + h)(x) ≤ M ♯g(x) + M ♯h(x) and M ♯|g|(x) ≤ C M ♯g(x),
operating as in Lemma 3.3 we get M ♯fq(x) ≤ C M ♯f(x). On the other hand,
|fq(x)| ≤ q inf(1, |f |)(x) ≤ q inf(1, Nf)(x) and so fq ∈ Lp(µ). Therefore,

‖Nfq‖Lp(µ) ≤ C ‖M ♯f‖Lp(µ).

Taking the limit as q → ∞, (6.6) follows. �

7. Interpolation results

An immediate corollary of the properties of the sharp operator is the
following result.

Theorem 7.1. Let 1 < p < ∞ and T be a linear operator bounded on
Lp(µ) and from L∞(µ) into RBMO(µ). Then T extends boundedly to Lr(µ),
p < r < ∞.

Proof. Assume ‖µ‖ = ∞. The operator M ♯◦T is sublinear and it is bounded
in Lp(µ) and L∞(µ). By the Marcinkiewitz interpolation theorem, it is
bounded on Lr(µ), p < r < ∞. That is,

‖M ♯Tf‖Lr(µ) ≤ C ‖f‖Lr(µ).

We may assume that f ∈ Lr(µ) has compact support. Then f ∈ Lp(µ) and
so Tf ∈ Lp(µ). Thus Nf ∈ Lp(µ), and so inf(1, Nf) ∈ Lr(µ). By Theorem
6.2, we have

‖Tf‖Lr(µ) ≤ C ‖M ♯Tf‖Lr(µ) ≤ C ‖f‖Lr(µ).

The proof for ‖µ‖ < ∞ is similar: Given f ∈ Lr(µ), we write f =(
f −

∫
f dµ

)
+
∫

f dµ. It easily seen that the same argument as for ‖µ‖ = ∞
can be applied to the function f −

∫
f dµ. On the other hand, T is bounded
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on Lr(µ) over constant functions. Indeed, since T is bounded from L∞(µ)
into RBMO(µ), we get

‖T1‖Lr(µ) ≤ ‖T1 − mRd(T1)‖Lr(µ) + ‖mRd(T1)‖Lr(µ)

≤ C µ(Rd)1/r + ‖mRd(T1)‖Lr(µ).

We also have

‖mRd(T1)‖Lr(µ) = ‖mRd(T1)‖Lp(µ) µ(Rd)
1

r
− 1

p

≤ ‖T1‖Lp(µ) µ(Rd)
1

r
− 1

p ≤ C µ(Rd)1/r ≡ C ‖1‖Lr(µ),

and so ‖T1‖Lr(µ) ≤ C ‖1‖Lr(µ). �

The main theorem of this section is another interpolation result which is
not as immediate as the previous one. Using this result, we will be able to
prove the T (1) theorem for the Cauchy integral in the next section. The
statement is the following.

Theorem 7.2. Let T be a linear operator which is bounded from H1,∞
atb (µ)

into L1(µ) and from L∞(µ) into RBMO(µ). Then, T extends boundedly to
Lp(µ), 1 < p < ∞.

The proof of this theorem will follow the scheme of [6, p.43-44]. To prove
it we need a substitute for the Calderón-Zygmund decomposition of a func-
tion, suitable for non doubling measures. Nazarov, Treil and Volberg [11]
showed that if a CZO is bounded on L2(µ), then it is of weak type (1, 1)
(with µ non doubling). They used some kind of Calderón-Zygmund decom-
position to obtain this result. However, their decomposition does not work
in the proof of Theorem 7.2. Mateu, Mattila, Nicolau and Orobitg [7] also
used a Calderón-Zygmund type decomposition to prove an interpolation the-
orem between (H1

at(µ), L1(µ)) and (L∞(µ), BMO(µ)) with µ non doubling.
Their decompositon is not suitable for our purposes either. We will use the
following decomposition instead.

Lemma 7.3 (Calderón-Zygmund decomposition). For 1 ≤p <∞, consider
f ∈ Lp(µ) with compact support. For any λ > 0 (with λ > βd ‖f‖L1(µ)/‖µ‖
if ‖µ‖ < ∞), we have:

a) There exists a finite family of almost disjoint (i.e. with a bounded
overlap) cubes {Qi}i such that

(7.1)
1

µ(2Qi)

∫

Qi

|f |p dµ >
λp

βd
,

(7.2)
1

µ(2ηQi)

∫

ηQi

|f |p dµ ≤ λp

βd
for all η > 2,

(7.3) |f | ≤ λ a.e. (µ) on R
d \⋃i Qi.
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b) For each i, let wi =
χQi

P

k χQk

and let Ri be a (6, 6n+1)-doubling cube

concentric with Qi, with l(Ri) > 4l(Qi). Then there exists a family
of functions ϕi with supp(ϕi) ⊂ Ri satisfying

(7.4)

∫
ϕi dµ =

∫

Qi

f wi dµ,

(7.5)
∑

i

|ϕi| ≤ B λ

(where B is some constant), and if 1 < p < ∞,

(7.6)

(∫

Ri

|ϕi|p dµ

)1/p

µ(Ri)
1/p′ ≤ C

λp−1

∫

Qi

|f |p dµ.

c) For 1 < p < ∞, if Ri is the smallest (6, 6n+1)-doubling cube of the
family {6kQi}k≥1 and we set b =

∑
i(f wi − ϕi), then

(7.7) ‖b‖H1,p
atb

(µ) ≤
C

λp−1
‖f‖p

Lp(µ).

Proof. We will assume ‖µ‖ = ∞.

a) Taking into account Remark 2.3, for µ-almost all x ∈ R
d such that

|f(x)|p > λp, there exists a cube Qx satisfying

1

µ(2Qx)

∫

Qx

|f |p dµ >
λp

βd

and such that if Q′
x is centered at x with l(Q′

x) > 2l(Qx), then

1

µ(2Q′
x)

∫

Q′
x

|f |p dµ ≤ λp

βd
.

Now we can apply Besicovich’s covering theorem to get an almost
disjoint subfamily of cubes {Qi}i ⊂ {Qx}x satisfying (7.1), (7.2) and
(7.3).

b) Assume first that the family of cubes {Qi}i is finite. Then we may
suppose that this family of cubes is ordered in such a way that the
sizes of the cubes Ri are non decreasing (i.e. l(Ri+1) ≥ l(Ri)). The
functions ϕi that we will construct will be of the form ϕi = αi χAi

,
with αi ∈ R and Ai ⊂ Ri. We set A1 = R1 and

ϕ1 = α1 χR1
,

where the constant α1 is chosen so that
∫
Q1

f w1 dµ =
∫

ϕ1 dµ.

Suppose that ϕ1, . . . , ϕk−1 have been constructed, satisfy (7.4)

and
∑k−1

i=1 |ϕi| ≤ B λ, where B is some constant (which will be fixed
below).
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Let Rs1
, . . . , Rsm be the subfamily of R1, . . . , Rk−1 such that Rsj

∩
Rk 6= ∅. As l(Rsj

) ≤ l(Rk) (because of the non decreasing sizes of
Ri), we have Rsj

⊂ 3Rk. Taking into account that for i = 1, . . . , k−1

∫
|ϕi| dµ ≤

∫

Qi

|f | dµ

by (7.4), and using that Rk is (6, 6n+1)-doubling and (7.2), we get

∑

j

∫
|ϕsj

| dµ ≤
∑

j

∫

Qsj

|f | dµ

≤ C

∫

3Rk

|f | dµ

≤ C

(∫

3Rk

|f |p dµ

)1/p

µ(3Rk)
1/p′

≤ Cλµ(6Rk)
1/p µ(3Rk)1/p′

≤ C14λµ(Rk).

Therefore,

µ
{∑

j|ϕsj
| > 2C14λ

}
≤ µ(Rk)

2
.

So we set

Ak = Rk ∩
{∑

j|ϕsj
| ≤ 2C14λ

}
,

and then

µ(Ak) ≥ µ(Rk)/2.

The constant αk is chosen so that for ϕk = αk χAk
we have∫

ϕk dµ =
∫
Qk

f wk dµ. Then we obtain

|αk| ≤ 1

µ(Ak)

∫

Qk

|f | dµ ≤ 2

µ(Rk)

∫

Qk

|f | dµ

≤ 2

µ(Rk)

∫

1

2
Rk

|f | dµ ≤
(

2

µ(Rk)

∫

1

2
Rk

|f |p dµ

)1/p

≤ C15λ

(this calculation also applies to k = 1). Thus,

|ϕk| +
∑

j

|ϕsj
| ≤ (2C14 + C15)λ.

If we choose B = 2C14 + C15, (7.5) follows.
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Now it is easy to check that (7.6) also holds. Indeed we have
(∫

Ri

|ϕi|p dµ

)1/p

µ(Ri)
1/p′ = |αi|µ(Ai)

1/p µ(Ri)
1/p′

≤ C |αi|µ(Ai)

= C

∣∣∣∣
∫

Qi

f wi dµ

∣∣∣∣

≤ C

(∫

Qi

|f |p dµ

)1/p

µ(Qi)
1/p′ ,

and by (7.1),

(7.8)

(∫

Qi

|f |p dµ

)1/p

µ(2Qi)
1/p′ ≤ C

λp−1

∫

Qi

|f |p dµ.

Thus we get (7.6).

Suppose now that the collection of cubes {Qi}i is not finite. For
each fixed N we consider the family of cubes {Qi}1≤i≤N . Then,
as above, we construct functions ϕN

1 , . . . , ϕN
N with supp(ϕN

i ) ⊂ Ri

satisfying ∫
ϕN

i dµ =

∫

Qi

f wi dµ,

(7.9)
N∑

i=1

|ϕN
i | ≤ B λ

and, if 1 < p < ∞,

(7.10)

(∫

Ri

|ϕN
i |p dµ

)1/p

µ(Ri)
1/p′ ≤ C

λp−1

∫

Qi

|f |p dµ.

By (7.9) and (7.10) there is a subsequence {ϕk
1}k∈I1 which is con-

vergent in the weak ∗ topology of L∞(µ) and in the weak ∗ topol-
ogy of Lp(µ) to some function ϕ1 ∈ L∞(µ) ∩ Lp(µ). Now we can
consider a subsequence {ϕk

2}k∈I2 with I2 ⊂ I1 which is convergent
also in the weak ∗ topologies of L∞(µ) and Lp(µ) to some function
ϕ2 ∈ L∞(µ)∩Lp(µ). In general, for each j we consider a subsequence
{ϕk

j }k∈Ij
with Ij ⊂ Ij−1 that converges in the weak ∗ topologies of

L∞(µ) and Lp(µ) to some function ϕj ∈ L∞(µ) ∩ Lp(µ).
We have supp(ϕi) ⊂ Ri and, by the weak ∗ convergence in L∞(µ)

and Lp(µ), the functions ϕi also satisfy (7.4) and (7.6). To get (7.5),
notice that for each fixed m, by the weak ∗ convergence in L∞(µ),

m∑

i=1

|ϕi| ≤ Bλ,

and so (7.5) follows.
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c) For each i, we consider the atomic block bi = f wi − ϕi, supported
on the cube Ri. Since KQi,Ri

≤ C, by (7.8) and (7.6) we have

|bi|H1,p
atb

(µ)
≤ C

λp−1

∫

Qi

|f |p dµ,

which implies (7.7).

�

Proof of Theorem 7.2. For simplicity we assume ‖µ‖ = ∞. The proof fol-
lows the same lines as the one of [6, p.43-44].

The functions f ∈ L∞(µ) having compact support with
∫

f dµ = 0 are
dense in Lp(µ), 1 < p < ∞. For such functions we will show that

(7.11) ‖M ♯Tf‖Lp(µ) ≤ C ‖f‖Lp(µ) 1 < p < ∞.

By Theorem 6.2, this implies

‖Tf‖Lp(µ) ≤ C ‖f‖Lp(µ).

Notice that if f ∈ L∞(µ) has compact support and
∫

f dµ = 0, then f ∈
H1,∞

atb (µ) and Tf ∈ L1(µ). Thus N(Tf) ∈ L1,∞(µ), and then inf(1, N(Tf)) ∈
Lp(µ). So the hypotheses of Theorem 6.2 are satisfied.

Given any function f ∈ Lp(µ), 1 < p < ∞, for λ > 0 we take a family of
almost disjoint cubes {Qi}i as in the previous lemma, and a collection cubes
{Ri}i as in c) in the same lemma. Then we can write

f = b + g =
∑

i

(
χQi∑
k χQk

f − ϕi

)
+ g.

By (7.3) and (7.5), we have ‖g‖L∞(µ) ≤ C λ, and by (7.7),

‖b‖
H1,p

atb
(µ)

≤ C

λp−1
‖f‖p

Lp(µ).

Due to the boundedness of T from L∞(µ) into RBMO(µ), we have

‖M ♯Tg‖L∞(µ) ≤ C16 λ.

Therefore,

{M ♯Tf > (C16 + 1)λ} ⊂ {M ♯Tb > λ}.
Since M ♯ is of weak type (1, 1), we have

µ{M ♯Tb > λ} ≤ C
‖Tb‖L1(µ)

λ
.

On the other hand, as T is bounded from H1,∞
atb (µ) into L1(µ),

‖Tb‖L1(µ) ≤ C ‖b‖
H1,∞

atb
(µ)

≤ C

λp−1
‖f‖p

Lp(µ).
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Thus

µ{x ∈ R
d : M ♯(Tf) > λ} ≤ C

‖f‖p
Lp(µ)

λp
.

So the sublinear operator M ♯T is of weak type (p, p) for all p ∈ (1,∞).
By the Marcinkiewitz interpolation theorem we get that M ♯T is bounded on
Lp(µ) for all p ∈ (1,∞). In particular, (7.11) holds for a bounded function
f with compact support and

∫
f dµ = 0. �

8. The T (1) theorem for the Cauchy integral

Before studying the particular case of the Cauchy integral operator, we
will see a result that shows the close relation between CZO’s and the spaces
RBMO(µ), H1,∞

atb (µ).

Theorem 8.1. Let T be a CZO and ρ > 1 some fixed constant. The follow-
ing conditions are equivalent:

a) For any cube Q and any function a supported on Q

(8.1)

∫

Q
|Tεa| dµ ≤ C ‖a‖L∞ µ(ρQ)

uniformly on ε > 0.
b) T is bounded from L∞(µ) into RBMO(µ).

c) T is bounded from H1,∞
atb (µ) into L1(µ).

Proof. We have already seen a)=⇒b) in Theorem 2.11 and a)=⇒c) in The-
orem 4.2.

Let us prove b)=⇒a). Suppose that ρ = 2, for example. Let a ∈
L∞(µ) be a function supported on some cube Q. Suppose first l(Q) ≤
diam(supp(µ))/20 (this is always the case if ‖µ‖ = ∞). We have

(8.2)

∫

Q
|Tεa − m

eQ
(Tεa)| dµ ≤ C ‖a‖L∞(µ) µ(2Q).

So it is enough to show that

(8.3) |m
eQ
(Tεa)| ≤ C ‖a‖L∞(µ).

Let x0 ∈ supp(µ) be the point (or one of the points) in R
d \ (5Q)◦ which

is closest to Q. We denote d0 = dist(x0, Q). We assume that x0 is a point
such that some cube with side length 2−kd0, k ≥ 2, is doubling. Otherwise,
we take y0 in supp(µ) ∩ B(x0, l(Q)/100) such that satisfies this condition,
and we interchange x0 with y0.

We denote by R a cube concentric with Q with side length max(10d0, l(Q̃)).
So K

eQ,R ≤ C. Let Q0 be the biggest doubling cube centered at x0 with side

length 2−k d0, k ≥ 2. Then Q0 ⊂ R, with KQ0,R ≤ C, and one can easily
check that

(8.4) |mQ0
(Tεa) − m

eQ
(Tεa)| ≤ C ‖Tεa‖RBMO(µ) ≤ C ‖a‖L∞(µ).
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Moreover, dist(Q0, Q) ≈ d0 and so, for y ∈ Q0,

|Tεa(y)| ≤ C
µ(Q)

dn
0

‖a‖L∞(µ) ≤ C ‖a‖L∞(µ),

because l(Q) < d0. Then we get |mQ0
(Tεa)| ≤ C ‖a‖L∞(µ), and from (8.4),

we obtain (8.3).
Suppose now that l(Q) > diam(supp(µ))/20. Since Q is centered at

some point of supp(µ), we may assume that l(Q) ≤ 4 diam(supp(µ)). Then
Q∩supp(µ) can be covered by a finite number of cubes Qj centered at points
of supp(µ) with side length l(Q)/200. It is quite easy to check that the
number of cubes Qj is bounded above by some fixed constant N depending
only on d. We set

aj =
χQj∑
k χQk

a.

Since a) holds for the cubes 2Qj (which support the functions aj), we have
∫

Q
|Tεa| dµ ≤

∑

j

∫

Q\2Qj

|Tεaj | dµ +
∑

j

∫

2Qj

|Tεaj | dµ

≤
∑

j

C ‖aj‖L∞(µ) µ(Q) +
∑

j

C ‖aj‖L∞(µ) µ(4Qj)

≤ C N ‖a‖L∞(µ) µ(2Q).

Now we are going to prove c)=⇒a). Let a ∈ L∞(µ) be supported on
a cube Q. Assume ρ = 2 and suppose first l(Q) ≤ diam(supp(µ))/20. We
consider the same construction as the one for b)=⇒a). The cubes Q, Q0 and
R are taken as above, and they satisfy Q,Q0 ⊂ R, KQ,R ≤ C, KQ0,R ≤ C
and dist(Q0, Q) ≥ l(Q). Recall also that Q0 is doubling.

We take the atomic block (supported on R)

b = a + cQ0
χQ0

,

where cQ0
is a constant such that

∫
b dµ = 0. For y ∈ Q we have

|Tε(cQ0
χQ0

)(y)| ≤ C
|cQ0

|µ(Q0)

dist(Q,Q0)n
≤ C

‖a‖L1(µ)

dist(Q,Q0)n

≤ C
µ(Q)

l(Q)n
‖a‖L∞(µ) ≤ C ‖a‖L∞(µ).

Then we have∫

Q
|Tεa| dµ ≤

∫

Q
|Tεb| dµ + C ‖a‖L∞(µ) µ(Q)

≤ C ‖b‖H1,∞
atb

(µ) + C ‖a‖L∞(µ) µ(Q)

≤ C KQ,R ‖a‖L∞(µ) µ(2Q) + C KQ0,R |cQ0
|µ(2Q0)

+ C ‖a‖L∞(µ) µ(Q).
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Since Q0 is doubling, we have

|cQ0
|µ(2Q0) ≤ C ‖a‖L1(µ) ≤ C ‖a‖L∞(µ) µ(Q).

Therefore, ∫

Q
|Tεa| dµ ≤ C ‖a‖L∞(µ) µ(2Q).

If l(Q) > diam(supp(µ))/20, operating as in the implication b)=⇒a), we
get that a) also holds. �

Now we are going to deal with the T (1) theorem for Cauchy integral
operator. So we take d = 2 and n = 1. Using the relationship of the Cauchy
kernel with the curvature of measures, it is not difficult to get the following
result operating as Melnikov and Verdera [8]:

Lemma 8.2. Let µ be some measure on C satisfying the growth condition
(1.1). If ‖CεχQ‖L2(µ|Q) ≤ C µ(2Q)1/2 (uniformly on ε > 0), then for any

bounded function a with supp(a) ⊂ Q,
∫

Q
|Cεa|2 dµ ≤ C ‖a‖2

L∞(µ) µ(2Q)

uniformly on ε > 0.

We omit the details of the proof (see [8]). This follows from the formula,
for a ∈ L∞(µ) with supp(a) ⊂ Q,

2

∫

Q
|Cεa|2 dµ + 4Re

∫

Q
a Cεa · CεχQ dµ

=

∫ ∫ ∫

Sε

c(x, y, z)2 a(y) a(z) dµ(x) dµ(y) dµ(z) + O(‖a‖2
L∞(µ)µ(2Q)),

where we have denoted

Sε = {(x, y, z) ∈ Q3 : |x − y| > ε, |y − z| > ε, |z − x| > ε},

and c(x, y, z) is the Menger curvature of the triple (x, y, z) (i.e. the inverse
of the radius of the circumference passing through x, y, z).

Using the preceding lemma and the interpolation theorem between the
pairs (H1,∞

atb (µ), L1(µ)) and (L∞(µ), RBMO(µ)), we get the following version
of the T1 theorem for the Cauchy transform for non doubling measures.

Theorem 8.3. The Cauchy integral operator is bounded on L2(µ) if and
only if

(8.5)

∫

Q
|CεχQ|2 dµ ≤ C µ(2Q) for any square Q ⊂ C

uniformly on ε > 0.
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This result is already known. The first proofs were obtained indepen-
dently in [10] and [15]. Another was given later in [18]. The proof of the
present paper follows the lines of the proof found by Melnikov and Verdera
for the L2 boundedness of the Cauchy integral in the (doubling) case where
µ is the arc length on a Lipschitz graph [8].

Let us remark that in the previous known proofs of the T (1) theorem for
the Cauchy integral, instead of the hypothesis (8.5), the assumption was

∫

Q
|CεχQ|2 dµ ≤ C µ(Q) for any square Q ⊂ C.

This is a little stronger than (8.5). However, the arguments given in [10],
[15] and [18] can be modified easily to yield the same result as the one stated
in Theorem 8.3.

Using the relationship between the spaces BMOρ(µ) and RBMO(µ) we
obtain another version of the T (1) theorem, which is closer to the classical
way of stating the T (1) theorem:

Theorem 8.4. The Cauchy integral operator is bounded on L2(µ) if and
only if Cε(1) ∈ BMOρ(µ) (uniformly on ε > 0), for some ρ > 1.

Proof. Suppose that Cε1 ∈ BMOρ(µ). Let us see that this implies Cε1 ∈
RBMO(µ). The estimates are similar to the ones that we used to show that
CZO’s bounded on L2(µ) are also bounded from L∞(µ) into RBMO(µ).
Assume, for example ρ = 2. We have to show that if Q ⊂ R, then

|mQ(Cε1) − mR(Cε1)| ≤ C KQ,R

(
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)
.

We denote QR = 2NQ,R+1Q. Then we write

|mQ(Cε1) − mR(Cε1)|
≤ |mQ(CεχQ)| + |mQ(Cεχ2Q\Q)| + |mQ(CεχQR\2Q)|

+ |mQ(CεχC\QR
) − mR(CεχC\QR

)|
+ |mR(CεχR)| + |mR(CεχQR\2R)| + |mR(CεχQR∩2R\R)|

= M1 + M2 + M3 + M4 + M5 + M6 + M7.

Since Cε is antisymmetric, we have M1 = M5 = 0. On the other hand, since
the Cauchy transform is bounded from L2(µ|C\Q) into L2(µ|Q), we also have

M2 = |mQ(Cεχ2Q\Q)| ≤
(

1

µ(Q)

∫

Q
|Cεχ2Q\Q)|2 dµ

)1/2

≤ C

(
µ(2Q)

µ(Q)

)1/2

≤ C
µ(2Q)

µ(Q)
.

By the same argument, we get

M7 = |mR(CεχQR∩2R\R)| ≤ C
µ(QR ∩ 2R)

µ(R)
≤ C

µ(2R)

µ(R)
.
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Also, it is easily seen that |CεχQR\2Q(x)| ≤ C KQ,R for x ∈ Q, and so

M3 = |mQ(CεχQR\2Q)| ≤ C KQ,R.

On the other hand, if x ∈ Q and y ∈ R, we have

|CεχC\QR
(x) − CεχC\QR

(y)| ≤ C,

and so M4 ≤ C. Finally, since l(QR) ≈ l(R), |CεχQR\2R(x)| ≤ C for x ∈ R,
and thus M6 ≤ C.

Therefore,

|mQ(Cε1) − mR(Cε1)| ≤ C KQ,R + C

(
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)

≤ C KQ,R

(
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

)
.

So Cε1 ∈ RBMO(µ), and thus we also have Cε1 ∈ BMO2
ρ(µ), for any ρ > 1.

Now, some standard calculations show that the condition (8.5) of Theorem
8.3 is satisfied:

(∫

Q
|CεχQ|2 dµ

)1/2

=

(∫

Q
|CεχQ − mQ(CεχQ)|2 dµ

)1/2

≤
(∫

Q
|Cε1 − mQ(Cε1)|2 dµ

)1/2

+

(∫

Q
|CεχC\2Q − mQ(CεχC\2Q)|2 dµ

)1/2

+

(∫

Q
|Cεχ2Q\Q − mQ(Cεχ2Q\Q)|2 dµ

)1/2

.

Since Cε1 ∈ BMO2
2(µ), we have

∫
Q |Cε1 − mQ(Cε1)|2 dµ ≤ C µ(2Q). Also, as

usual, we have
∫
Q |CεχC\2Q − mQ(CεχC\2Q)|2 dµ ≤ C µ(Q). Finally, the last

integral can be estimated using the boundedness of the Cauchy transform
from L2(µ|C\Q) into L2(µ|Q). Thus (8.5) holds. �

Let us remark that, until now, the T1 theorem for the Cauchy integral
was known under the assumption Cε1 ∈ BMO2

ρ(µ), but not under the weaker
assumption Cε1 ∈ BMOρ(µ).

Also, for general CZO’s, the assumption Tε1, T
∗
ε 1 ∈ BMO2

ρ(µ) in the T1
theorem for non doubling measures of Nazarov, Treil and Volberg can be
substituted by the weaker one Tε1, T

∗
ε 1 ∈ BMOρ(µ). This is due to the fact

that if Tε is weakly bounded in the sense of [13] and Tε1, T
∗
ε 1 ∈ BMOρ(µ)

for some ρ > 1, then arguing as in the proof of Theorem 8.4 it follows that
Tε1, T

∗
ε 1 ∈ RBMO(µ), and so Tε1, T

∗
ε 1 ∈ BMO2

ρ(µ), for any ρ > 1.
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9. Commutators

In this section we will prove that if b ∈ RBMO(µ) and T is a CZO bounded
on L2(µ), then the commutator [b, T ] defined by

[b, T ](f) = b T (f) − T (bf)

is bounded on Lp(µ), 1 < p < ∞. In this formula, T stands for a weak limit
as ε → 0 of some subsequence of the uniformly bounded operators Tε.

The Lp(µ) boundedness of the commutator [b, T ] is a result due to Coif-
man, Rochberg and Weiss [1] in the classical case where µ is the Lebesgue
measure on R

d. Their proof, with some minor changes, works also for dou-
bling measures. On the other hand, for µ being the Lebesgue measure,
they showed that if Ri, i = 1, · · · , d, are the Riesz transforms on R

d, then
the Lp(µ) boundedness of the commutators [b,Ri], i = 1, · · · , d, for some
p ∈ (1,∞) implies b ∈ BMO(µ).

When µ is a non doubling measure and b satisfies (1.2), i.e. it belongs to
the classical space BMO(µ), then it has been shown by Orobitg and Pérez
[14] that the commutator [b, T ] is bounded on Lp(µ), 1 < p < ∞.

Let us state now the result that we will obtain in this section in detail.

Theorem 9.1. If T is a CZO bounded on L2(µ) and b ∈ RBMO(µ), then
the commutator [b, T ] is bounded on Lp(µ).

Our proof will be based on the use of the sharp maximal operator, as the
one of Janson and Strömberg [5] for the doubling case. However, the result
can be obtained also by means of a good λ inequality, as in [1].

To prove Theorem 9.1 we will need a couple of lemmas dealing with the
coefficients KQ,R.

Lemma 9.2. There exists some constant P (big enough) depending on C0

and n such that if Q1 ⊂ Q2 ⊂ · · · ⊂ Qm are concentric cubes with KQi,Qi+1
>

P for i = 1, . . . ,m − 1, then

(9.1)
m−1∑

i=1

KQi,Qi+1
≤ C17 KQ1,Qm,

where C17 depends only on C0 and n.

Proof. Let Q′
i be a cube concentric with Qi such that l(Qi) ≤ l(Q′

i) < 2l(Qi),
with l(Q′

i) = 2kl(Q1) for some k ≥ 0. Then

C−1
18 KQi,Qi+1

≤ KQ′
i,Q

′
i+1

≤ C18 KQi,Qi+1
,

for all i, with C18 depending on C0 and n.
Observe also that if we take P so that C−1

18 P ≥ 2, then KQ′
i,Q

′
i+1

> 2 and
so

KQ′
i,Q

′
i+1

≤ 2

NQ′
i
,Q′

i+1∑

k=1

µ(2kQ′
i)

l(2kQ′
i)

n
.
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Therefore,

(9.2)
∑

i

KQ′
i,Q

′
i+1

≤ 2
∑

i

NQ′
i
,Q′

i+1∑

k=1

µ(2kQ′
i)

l(2kQ′
i)

n
.

On the other hand, if P is big enough, then Q′
i 6= Q′

i+1. Indeed,

C0 NQi,Qi+1
≥

NQi,Qi+1∑

k=1

µ(2kQi)

l(2kQi)n
≥ P − 1,

and so NQi,Qi+1
≥ (P − 1)/C0 > 2, assuming P big enough. This implies

l(Qi+1) > 2l(Qi), and then, by construction, Q′
i 6= Q′

i+1.
As a consequence, on the right hand side of (9.2), there is no overlapping

in the terms
µ(2kQ′

i)

l(2kQ′
i)

n , and then

∑

i

KQ′
i,Q

′
i+1

≤ 2KQ1,Q′
m
≤ 2C18 KQ1,Qm,

and (9.1) follows. �

Lemma 9.3. There exists some constant P0 (big enough) depending on C0,
n and βd such that if x ∈ R

d is some fixed point and {fQ}Q∋x is a collection
of numbers such that |fQ − fR| ≤ Cx for all doubling cubes Q ⊂ R with
x ∈ Q such that KQ,R ≤ P0, then

|fQ − fR| ≤ C KQ,R Cx for all doubling cubes Q ⊂ R with x ∈ Q,

where C depends on C0, n, P0 and βd.

Proof. Let Q ⊂ R be two doubling cubes in R
d, with x ∈ Q =: Q0. Let

Q1 be the first cube of the form 2kQ, k ≥ 0, such that KQ,Q1
> P . Since

KQ,2−1Q1
≤ P , we have KQ,Q1

≤ P + C0. Therefore, for the doubling cube

Q̃1, we have KQ, eQ1
≤ C19, with C19 depending on P , n, βd and C0.

In general, given Q̃i, we denote by Qi+1 the first cube of the form 2kQ̃i,

k ≥ 0, such that K
eQi,Qi+1

> P , and we consider the cube Q̃i+1. Then, we

have K
eQi, eQi+1

≤ C19, and also K
eQi, eQi+1

> K
eQi,Qi+1

> P .

Then we obtain

(9.3) |fQ − fR| ≤
N∑

i=1

|f
eQi−1

− f
eQi
| + |f

eQN
− fR|,

where Q̃N is the first cube of the sequence {Q̃i}i such that Q̃N+1 ⊃ R. Since
K

eQN , eQN+1
≤ C19, we also have K

eQN ,R ≤ C19. By (9.3) and Lemma 9.2, if

we set P0 = C19, we get

|fQ − fR| ≤
N∑

i=1

K
eQi, eQi+1

Cx + K
eQN ,R Cx

≤ C K
Q, eQN

Cx + K
eQN ,R

Cx ≤ C KQ,R Cx.
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�

Remark 9.4. By the preceding lemma, to see if some function f belongs
to RBMO(µ), the regularity condition (2.5) only needs to be checked for
doubling cubes Q ⊂ R such that KQ,R ≤ P0. In a similar way, it can
be proved that if the regularity condition (2.8) holds for any pair of cubes
Q ⊂ R with KQ,R not too large, then it holds for any pair of cubes Q ⊂ R.

On the other hand, one can introduce an operator M̂ ♯ defined as M ♯, but
with the second supremum in the definition (6.4) taken only over doubling
cubes Q ⊂ R such that x ∈ Q and KQ,R ≤ P0. Then, by the preceding

lemma it follows that M̂ ♯(f) ≈ M ♯(f).

Proof of Theorem 9.1. For all p ∈ (1,∞), we will show the pointwise in-
equality

(9.4) M ♯([b, T ]f)(x) ≤ Cp ‖b‖∗ (Mp,(9/8)f(x) + Mp,(3/2)Tf(x) + T∗f(x)),

where, for η > 1, Mp,(η) is the non centered maximal operator

Mp,(η)f(x) = sup
Q∋x

(
1

µ(ηQ)

∫

Q
|f |p dµ

)1/p

,

and T∗ is defined as
T∗f(x) = sup

ε>0
|Tεf(x)|.

The operator Mp,(η) is bounded on Lr(µ) for r > p, and T∗ is bounded on

Lr(µ) for 1 < r < ∞ because T is bounded on L2(µ) (see [11]). Then the
pointwise inequality (9.4) for 1 < p < ∞ implies the Lp(µ) boundedness of
M ♯([b, T ]) for 1 < p < ∞. If b is a bounded function we can apply Theorem
6.2 because, by the Lp(µ) boundedness of T , it follows that [b, T ] ∈ Lp(µ).
On the other hand, by Lemma 3.3 it is easily seen that we can assume that b
is a bounded function. So the inequality (9.4) implies that [b, T ] is bounded
on Lp(µ), 1 < p < ∞.

Let {bQ}Q a family of numbers satisfying
∫

Q
|b − bQ| dµ ≤ 2µ(2Q) ‖b‖∗∗

for any cube Q, and
|bQ − bR| ≤ 2KQ,R ‖b‖∗∗

for all cubes Q ⊂ R. For any cube Q, we denote

hQ := mQ(T ((b − bQ) fχ
Rd\

4
3Q

)

We will show that

(9.5)
1

µ(3
2Q)

∫

Q
|[b, T ]f − hQ| dµ ≤ C ‖b‖∗ (Mp,(9/8)f(x) + Mp,(3/2)Tf(x))
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for all x and Q with x ∈ Q, and

(9.6) |hQ − hR| ≤ C ‖b‖∗ (Mp,(9/8)f(x) + T∗f(x))K2
Q,R

for all cubes Q ⊂ R with x ∈ Q. In the final part of the proof we will see
that from the preceding two inequalities one easily gets (9.4).

To get (9.5) for some fixed cube Q and x with x ∈ Q, we write [b, T ]f in
the following way:

[b, T ]f = (b − bQ)Tf − T ((b − bQ) f)

= (b − bQ)Tf − T ((b − bQ) f1) − T ((b − bQ) f2),(9.7)

where f1 = f χ 4

3
Q and f2 = f − f1. Let us estimate the term (b − bQ)Tf :

1

µ(3
2Q)

∫

Q
|(b − bQ)Tf | dµ ≤

(
1

µ(3
2Q)

∫

Q
|(b − bQ)|p′ dµ

)1/p′

×
(

1

µ(3
2Q)

∫

Q
|Tf |p dµ

)1/p

≤ C ‖b‖∗ Mp,(3/2)Tf(x).(9.8)

Now we are going to estimate the second term on the right hand side of
(9.7). We take s =

√
p. Then we have

[
1

µ(3
2Q)

∫

4

3
Q
|(b − bQ) f1|s dµ

]1/s

≤
(

1

µ(3
2Q)

∫

4

3
Q
|b − bQ|ss

′
dµ

)1/ss′

×
(

1

µ(3
2Q)

∫

4

3
Q
|f |p dµ

)1/p

≤ C ‖b‖∗ Mp,(9/8)f(x).

Notice that we have used that
∫

4

3
Q |b − bQ|ss

′
dµ ≤ C ‖b‖ss′

∗ µ(3
2Q), which

holds because |bQ − b 4

3
Q| ≤ C ‖b‖∗. Then we get

1

µ(3
2Q)

∫

Q
|T ((b − bQ) f1)| dµ ≤ µ(Q)1−1/s

µ(3
2Q)

‖T ((b − bQ) f1)‖Ls(µ)

≤ C
µ(Q)1−1/s

µ(3
2Q)

‖(b − bQ) f1‖Ls(µ)

≤ C
µ(Q)1−1/s

µ(3
2Q)1−1/s

‖b‖∗ Mp,(9/8)f(x)

≤ C ‖b‖∗ Mp,(9/8)f(x).(9.9)
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By (9.7), (9.8) and (9.9), to prove (9.5) we only have to estimate the
difference |T ((b − bQ) f2) − hQ|. For x, y ∈ Q we have

(9.10) |T ((b − bQ) f2)(x) − T ((b − bQ) f2)(y)|

≤ C

∫

Rd\ 4

3
Q

|y − x|δ
|z − x|n+δ

|b(z) − bQ| |f(z)| dµ(z)

≤ C

∞∑

k=1

∫

2k 4

3
Q\2k−1 4

3
Q

l(Q)δ

|z − x|n+δ
(|b(z) − b2k 4

3
Q| + |bQ − b2k 4

3
Q|) |f(z)| dµ(z)

≤ C

∞∑

k=1

2−kδ 1

l(2kQ)n

∫

2k 4

3
Q
|b(z) − b2k 4

3
Q| |f(z)| dµ(z)

+ C

∞∑

k=1

k2−kδ ‖b‖∗
1

l(2kQ)n

∫

2k 4

3
Q
|f(z)| dµ(z)

≤ C

∞∑

k=1

2−kδ ‖b‖∗ Mp,(9/8)f(x) + C

∞∑

k=1

k2−kδ ‖b‖∗ M(9/8)f(x)

≤ C ‖b‖∗ Mp,(9/8)f(x).

Taking the mean over y ∈ Q, we get

|T ((b − bQ) f2)(x) − hQ| = |T ((b − bQ) f2)(x) − mQ(T ((b − bQ) f2))|
≤ C ‖b‖∗ Mp,(9/8)f(x),

and so (9.5) holds.

Now we have to check the regularity condition (9.6) for the numbers
{hQ}Q. Consider two cubes Q ⊂ R with x ∈ Q. We denote N = NQ,R + 1.
We write the difference |hQ − hR| in the following way:

|mQ(T ((b − bQ) fχ4
3Q

)) − mR(T ((b − bR) fχ4
3R

))|

≤ |mQ(T ((b − bQ) fχ
2Q\

4
3Q

))|

+ |mQ(T ((bQ − bR) f χRd\2Q))|
+ |mQ(T ((b − bR) f χ2NQ\2Q))|
+ |mQ(T ((b − bR) f χRd\2N Q)) − mR(T ((b − bR) f χRd\2N Q))|
+ |mR(T ((b − bR) f χ2N Q\2R))|

= M1 + M2 + M3 + M4 + M5.
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Let us estimate M1. For y ∈ Q we have

|T ((b − bQ) f χ
2Q\

4
3Q

)(y)| ≤ C

l(Q)n

∫

2Q
|b − bQ| |f | dµ

≤ C

l(Q)n

(∫

2Q
|b − bQ|p

′
dµ

)1/p′ (∫

2Q
|f |p dµ

)1/p

≤ C ‖b‖∗
l(Q)n/p

(∫

2Q
|f |p dµ

)1/p

≤ C ‖b‖∗ Mp,(9/8)f(x).

So we derive M1 ≤ C ‖b‖∗ Mp,(9/8)f(x).
Let us consider the term M2. For x, y ∈ Q, it is easily seen that

|T (f χRd\2Q)(y)| ≤ T∗f(x) + C sup
Q0∋x

1

l(Q0)n

∫

Q0

|f | dµ

≤ T∗f(x) + C Mp,(9/8)f(x).

Thus

M2 = |(bR − bQ)T (f χRd\2Q)(y)| ≤ C KQ,R ‖b‖∗ (T∗f(x) + Mp,(9/8)f(x)).

Let us turn our attention to the term M4. Operating as in (9.10), for any
y, z ∈ R, we get

|T ((b− bR) f χRd\2N Q)(y)−T ((b− bR) f χRd\2N Q)(z)| ≤ C ‖b‖∗ Mp,(9/8)f(x).

Taking the mean over Q for y and over R for z, we obtain

M4 ≤ C ‖b‖∗ Mp,(9/8)f(x).

The term M5 is easy to estimate too. Some calculations very similar to the
ones for M1 yield M5 ≤ C ‖b‖∗ Mp,(9/8)f(x).

Finally, we have to deal with M3. For y ∈ Q, we have

|T ((b − bR) f χ2N Q\2Q))(y)| ≤ C

N−1∑

k=1

1

l(2kQ)n

∫

2k+1Q\2kQ
|b − bR| |f | dµ

≤ C

N−1∑

k=1

1

l(2kQ)n

(∫

2k+1Q
|b − bR|p

′
dµ

)1/p′

×
(∫

2k+1Q
|f |p dµ

)1/p

.

We have
(∫

2k+1Q
|b − bR|p

′
dµ

)1/p′

≤
(∫

2k+1Q
|b − b2k+1Q|p

′
dµ

)1/p′

+ µ(2k+1Q)1/p′ |b2k+1Q − bR|

≤ C KQ,R ‖b‖∗ µ(2k+2Q)1/p′ .
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Thus

|T ((b − bR) f χ2N Q\2Q))(y)|

≤ C KQ,R ‖b‖∗
N−1∑

k=1

µ(2k+2Q)

l(2kQ)n

(
1

µ(2k+2Q)

∫

2k+1Q
|f |p dµ

)1/p

≤ C KQ,R ‖b‖∗ M(9/8)f(x)
N−1∑

k=1

µ(2k+2Q)

l(2kQ)n

≤ C K2
Q,R ‖b‖∗ Mp,(9/8)f(x).

Taking the mean over Q, we get

M3 ≤ C K2
Q,R ‖b‖∗ Mp,(9/8)f(x).

So by the estimates on M1,M2,M3,M4 and M5, the regularity condition
(9.6) follows.

Let us see how from (9.5) and (9.6) one obtains (9.4). From (9.5), if Q is
a doubling cube and x ∈ Q, we have

|mQ([b, T ]f) − hQ| ≤ 1

µ(Q)

∫

Q
|[b, T ]f − hQ| dµ

≤ C ‖b‖∗ (Mp,(9/8)f(x) + Mp,(3/2)Tf(x)).(9.11)

Also, for any cube Q ∋ x (non doubling, in general), K
Q, eQ

≤ C, and then

by (9.5) and (9.6) we get

(9.12)
1

µ(3
2Q)

∫

Q
|[b, T ]f − m

eQ([b, T ]f)| dµ

≤ 1

µ(3
2Q)

∫

Q
|[b, T ]f − hQ| dµ + |hQ − h

eQ| + |h
eQ − m

eQ([b, T ]f)|

≤ C ‖b‖∗ (Mp,(9/8)f(x) + Mp,(3/2)Tf(x) + T∗f(x)).

On the other hand, for all doubling cubes Q ⊂ R with x ∈ Q such that
KQ,R ≤ P0, where P0 is the constant in Lemma 9.3, by (9.6) we have

|hQ − hR| ≤ C ‖b‖∗ (Mp,(9/8)f(x) + T∗f(x))P 2
0 .

So by Lemma 9.3 we get

|hQ − hR| ≤ C ‖b‖∗ (Mp,(9/8)f(x) + T∗f(x))KQ,R

for all doubling cubes Q ⊂ R with x ∈ Q and, using (9.11) again, we obtain

|mQ([b, T ]f) − mR([b, T ]f)|
≤ C ‖b‖∗ (Mp,(9/8)f(x) + Mp,(3/2)Tf(x) + T∗f(x))KQ,R.

From this estimate and (9.12), we get (9.4). �
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Gran Via 585, 08071 Barcelona, Spain

Current address: Department of Mathematics, Chalmers, 412 96 Göteborg, Sweden
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