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The Beurling transform of a function f € LP(C) is:
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The Beurling transform

The Beurling transform of a function f € LP(C) is:

Bf(z) = ¢o lim / f(iw)zdm(z).

€0 lw—z|>e (Z - W)

It is essential to quasiconformal mappings because

B(of) = of Vf € WhP,

Recall that B : LP(C) — LP(C) is bounded for 1 < p < cc.
Also B : W*P(C) — W*P(C) is bounded for 1 < p < oo and s > 0.

In particular, if z ¢ supp(f) then Bf is analytic in an e-neighborhood of
z and
f(w)

mdm(z).

9"Bf (2) = c» /

lw—z|>e
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The problem we face

Let Q2 be a Lipschitz domain.

When is B : W*P(Q) — W=P(Q) bounded?
We want an answer in terms of the geometry of the boundary.
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Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s <1,
1 < p < oo with sp > 2, and 02 smooth enough,

B: W*P(Q) — W*>P(Q) is bounded

if and only if
Bxq € W*P(Q).
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Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s <1,
1 < p < oo with sp > 2, and 02 smooth enough,

B: W*P(Q) — W*>P(Q) is bounded

if and only if
Bxq € W*P(Q).

One can deduce regularity of a quasiregular mapping
in terms of the regularity of its Beltrami coefficient.
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Introducing the Besov spaces B; ,

The geometric answer will be given in terms of Besov spaces B .
B; , form a family closely related to W*P. They coincide for p = 2.
For p<2, By , C W*P. Otherwise W*P C B; o
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Introducing the Besov spaces B; ,

The geometric answer will be given in terms of Besov spaces B .
B; , form a family closely related to W*P. They coincide for p = 2.
For p < 2, B;)p C W*P. Otherwise W*P C B;p.

Definition

For0<s<oo, 1< p<oo, feBs,(R)if

A[s]+1
Il = (/ / |

Furthermore, f € B; ,(R) if

am(n) o\
T dm(x) < 0.

1Flla; = Il + IFllg; , < co.

We call them homogeneous and non-homogeneous Besov spaces
respectively.
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Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 < p < o0,
and Q a Lipschitz domain,

If the normal vector N belongs to B;,;l/p(aﬂ), then B(xq) € WP(Q)
with

HVB(XQ)”LP < C”N”Bl 1/P(89)
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They proved also an analogous result for smoothness 0 < s < 1.
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is in the Besov space B;;,l/ P(0Q), then the Beurling transform
is bounded in W*P(Q).
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Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 < p < o0,
and Q a Lipschitz domain,

If the normal vector N belongs to Bp,"/P(99), then B(xq) € WLP(Q)
with

IVB(xe)lls@) < cllNllg1-1/p(ag)-

They proved also an analogous result for smoothness 0 < s < 1.
This implies

Let0<s<1, 1< p< oo withsp>2. Ifthe normal vector

is in the Besov space B;;,l/ P(0Q), then the Beurling transform
is bounded in W*P(Q).

Tolsa proved a converse for 2 flat enough.
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Main results

Main Theorem

Let2 < p<ooandl<n<oo. Let Q2 be a Lipschitz domain.
Then the Beurling transform is bounded in W"™P(Q)

if and only if for any polynomial of degree less than n
restricted to the domain, P = Pxq, B(P) € W™P(Q).
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with enough smoothness and for any space RY.
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Main results

Main Theorem

Let2 < p<ooandl<n<oo. Let Q2 be a Lipschitz domain.
Then the Beurling transform is bounded in W"™P(Q)

if and only if for any polynomial of degree less than n
restricted to the domain, P = Pxq, B(P) € W™P(Q).

This theorem is valid for any Calderon-Zygmund convolution operator
with enough smoothness and for any space RY.

Let Q be smooth enough. Then we can write

H(09)% ™.
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with fixed side-length R
inducing a parametrization C%!.
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and find a partition of unity {¢;}}\,.

o [|Bf[Yynsiqy = 1B 1oy + V"B [ Fo(q)-
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Local charts

@ We have a Lipschitz domain.

@ In particular, at every boundary point
we can center a cube
with fixed side-length R
inducing a parametrization C%!.

o We make a covering of the boundary
by N of such cubes Qy
with some controlled overlapping
and find a partition of unity {¢;}}\,.

° HB’CHf/vn,p(Q) ~ HB’CHIZP(Q) + HV"BfHFL)p(Q)'
n ~ N n n
° [[V"Bf [Ty = Skeo IV"BUFUi)1 o0y + IV BIFU Do 04

@ Away from 9 we have good bounds:
IV'B(fyi)(2)| S moez [, |F(w)]dw
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Local charts

@ We have a Lipschitz domain.

@ In particular, at every boundary point
we can center a cube
with fixed side-length R
inducing a parametrization C%!.

o We make a covering of the boundary
by N of such cubes Qy
with some controlled overlapping
and find a partition of unity {¢;}}\,.

° HB’CHf/vn,p(Q) ~ HB’CHIZP(Q) + HV"BfHFL)p(Q)'
n ~ N n n
° ||V Bf”fp(g) ~ Zk:o IV B(ﬁ/’k)H[Zp(gk) +IV B(fwk)H[L)P(Q\Qk)
@ Away from 9 we have good bounds:
IV"B(fi)(2)] Sz So, IF(W)ldw

@ The restriction to the inner region is always bounded:
fipg € W™P(C).
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Local charts: Whitney decomposition

W(gk)'"""gk 0
\

We perform an oriented Whitney covering W such that
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We perform an oriented Whitney covering W such that
o dist(Q, 00N Q) = £(Q) for every Q € W.
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Local charts: Whitney decomposition

W) Q

We perform an oriented Whitney covering W such that
o dist(Q, 00N Q) = £(Q) for every Q € W.

@ The family {5Q} ey has finite superposition.
o ...
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A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given f € W1P(Q),
1<p<oo,
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Proof of the T(P) theorem
[e]e] lele]ele)

A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given f € W1P(Q),
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Equivalently, for any Sobolev function f with 0 mean on Q,
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If we want to apply recursively the Poincaré inequality we need Df to
have mean 0 in 3Q for any partial derivative D.
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A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given f € WLP(Q),
1<p<oo,

- me“LP(Q) S é(Q)HVfHLP(Q)'
Equivalently, for any Sobolev function f with 0 mean on Q,

1Flluoay S €QIVFlloay-

If we want to apply recursively the Poincaré inequality we need Df to
have mean 0 in 3Q for any partial derivative D.

Definition

Given f € W™P(Q) and a cube Q, we call P f to the polynomial of
degree smaller than n restricted to Q such that for any multiindex § with

18] <,
][ Dﬁpgf:][ DPf.
3Q 3Q
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Properties of approximating polynomials

PL. ||f - pngLp(w) SUQ) IV Il o3y

P2. Given two neighbor Whitney cubes @; and @y,
sz)l f— p2’2f“L""(3Q1I’73Qz) S" E(Ql)n77 ||v f”’-" (3QLU3 Q)"

P5. We can bound the coefficients of the polynomial
Pof(w) = Z|7|<nmo,7( w —xq)":
‘mQ7’Y| J |'y| ||v f||Lac Q)J |’Y|
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Assume that, we have a bound for the polynomials. Fix a point xg € Q
and call Py(z) = (z — x0) xa(2).
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Assume that, we have a bound for the polynomials. Fix a point xg € Q
and call Py(z) = (z — x0) xa(2).
Given a cube @, we can write, using Newton's binomial

Pof( w) Y mon(w —xq)

lvI<n
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The proof: BP € W"P(Q) = HBfHWnp ||fHWnp
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The proof: BP € W"P(Q) = HBfHWnp ||fHWnp

Assume that, we have a bound for the polynomials. Fix a point xg € Q
and call Py(z) = (z — x0) xa(2).
Given a cube @, we can write, using Newton's binomial

Pof( w) Y mon(w —xq)
lvl<n
v _
= Xxa(w meZ(www%ﬂWA
|yv|<n (0,0)<A<~v
SO

D= Y moy X (})0e- ) 0tER)E)

[v|<n (0,0)<A<y
where, by P5,

n—1
M0 S 3 [V, s QY.

=l
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The Sobolev Embedding Theorem appears

Thus

1D B Tao) S DIV FIlEw D2 11D BPAI g M (901D,
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The Sobolev Embedding Theorem appears

Thus
[LAECTHNED Dl A DL AR C i
j<n (7<)
0<A<y

Adding with respect to Q € W, by the Sobolev Embedding Theorem
(HvaHLOO(QﬁQ) < CHvaHWLP(QﬁQ) when p > 2), we get

Z HDO‘B(D’éf)H‘ZP(Q) S Z ijstva(ng) Z HBP/\HﬁW(Q)
Qew j<n 0<A<y

S Hf”pww(gm)'
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Key Lemma: sticking to the essential

Lemma

Let Q be a Lipschitz domain, Q a window, ¢ € Coo(loo Q) with
HVMbHLm S % for j > 0. Then, for any |a| = n and f = - f with
f e WrP(Q), TFAE:

C HDanH[LJP(Q) < (1. P(QNQ)-

> ZQEW HDa pQ HLP (Q) ~ S ”fHﬁV"’P(QﬂQ)'
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Key Lemma: sticking to the essential

Lemma
Let Q be a Lipschitz domain, Q a window, ¢ € Coo(loo Q) with
HVMbHLm S % for j > 0. Then, for any |a| = n and f = ¥ - f with
f e WmP(Q), TFAE:

C HDan||LP(Q) S Il P(QNQ)-

© Y oew [1D*BMONI}oi0) S 1flITvnniana):

Idea of the proof: separate local and non-local parts of the error term,

D*Bf(z) - D*B(PY)(2)
— D"B(xao(f — PRF))(2) + D*B((1 - x20)(F — PHA)(2).
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at

A measure of the flatness of a set I':

Definition (P. Jones)
A T
Br(Q) = infy 23

“Q)
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider | C R, and define

Definition

Boo(la A) = infpepr

ONII
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider | C R, and define

Definition

. A—P
Bo(1, A) = infpep ﬁfHWHp
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider | C R, and define

Definition

B (1, A) = infpepn e(/)HA PH

If there is no risk of confusion,
we will write just B, (/).
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Relation between f3(,) and Bj

Theorem (Dorronsoro)

Let f : R — R be a function in the homogeneous Besov space B;p.
Then, for any n > [s],

I, =5 (72 ) .

1eD
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Local charts: Whitney decomposition

Ok Q

z® / |0"Bxa(z)[Pdm(z)
N0
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Local charts: Whitney decomposition

W(Qk) (o) Q

L / 10" Bxa(2)Pdm(2)
QNN

< Z \()”on )|Pdm(z)
{ I Qew:
T
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Local charts: Whitney decomposition

W(Qy)

Ok

.

|10 Buaaan()

QNN

< / 1" Ba(2)Pdm(2)
Qenw’@

< Y m(Q) 19" Bxallj~ g,
Qew

2(Q)
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Local charts: Bounds for the first derivative

A geometric condition for the Beurling transform

Xa = Xa, + (xa — x0,)

2Q)

[m]

» First order derivative » Second order derivative » Higher order derivatives » Skip higher order derivatives

=




A geometric condition for the Beurling transform
[e]e]e] Jo]

Local charts: Bounds for the first derivative

X0 = Xag + (Xa — Xa,)

Q)
(?BXQC}(Z) =0

» First order derivative » Second order derivative » Higher order derivatives » Skip higher order derivatives

[m]

=

N



A geometric condition for the Beurling transform
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Local charts: Bounds for the first derivative

W(Qx) Qi
Q
2® / |0Bxa(2)[Pdm/(z)
QN
| <> / |OBxa(2)dm(2)
QAQ o eegeAEN ] ] Qew-
Q ] e Y
EEEmEmEa: i : T < )||0B -

Xa = Xa, + (xa — x00) (Q)

OBxoy(2) =0

. " :
0B - a2 < [ A
i JQAQ, |z — wf’
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Conclusions

@ For p > 2 we have a T(P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.
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Conclusions

@ For p > 2 we have a T(P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

@ In the complex plane, the Besov regularity B,’,’f,,l/"
of the normal vector to the boundary of the domain
gives us a bound of B(P) in W™P (and 0 < s < 1).
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Conclusions

@ For p > 2 we have a T(P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

@ In the complex plane, the Besov regularity B,Z,;I/P
of the normal vector to the boundary of the domain
gives us a bound of B(P) in W™P (and 0 < s < 1).

o Next steps:
o Proving analogous results for any s € R...
o Looking for a more general set of operators where
the Besov condition on the boundary implies Sobolev boundedness.
o Giving a necessary condition for the boundedness
of the Beurling transform when p < 2.
o Sharpness of all those results.
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Thank you!
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Local charts: Second order derivative

Q1) e
Q
Z° / |0° Bxa(2)["dm/(2)
QN
< Z / |0*Bxa(2)|Pdm(z)
Qew-
| < Z m( |O BXQHI)\
T Qew
QAQ0 ™
Xo=Xxa, + (xa—x0,)  ®(Q) \\\
4 ‘ Ca c '
7 92 ="
[0°Bxa(2)| = e S
0B~ )] < [ dmte)
: Jaag, |z —wl*




Local charts: Higher order derivatives

» First order derivative » Second order derivative » Higher order derivatives » Skip higher order derivatives

[m] = = =




Local charts: Higher order derivatives

W(Qk) Qk

[ 10 Bata)pam)
QN

<y /Q |07 Bxa()|Pdm(2)

Qew

| <Y m@)I0"Bxallyq)

— Qew

Xo=Xxa, + (xa—x0,)  ®(Q)

0" Bxog(2) <7

‘(.)HB(XQ?X%)(:)‘ < / dm(w)

aaq, |7 — w2



Bounding the polynomial region

Xo =X+ (xe = xn,)  ®(Q)

[0"Bxag(2)| <7

We can choose the window length R small enough so that



Bounding the polynomial region

Qe

|, B pan()
ava

e [ o)

< > m(Q19"Bxallnq)
o

3 o

We can choose the window length R small enough so that

Proposition

If we denote by Q¢ the region with boundary a minimizing polynomial for

By (®(Q)), we get

C
|8HBXQQ| S ﬁ




Bounding the interstitial region

W(Qu) [+

/ 10" Bxa(=)['dm(=)
< Z/ 18" Bya(z)|"dm(=)
BN Gova

o S < > m(@)9"Bxall g
ang, M\\
o =X+ (o xa) W@ A
10" Bxay(:)| <7

B el < [

Proposition

Choosing a minimizing polynomial for 3,y (®(Q)), we get

/ dm(w*)w s 2 Parll) | 1
Qag, 12— w| i «n"  Rn
®(Q)CICH(Qx)




Holder inequalities do the rest

/ 10" Bxa(z)|"dm(
/\77!’\(1\’

Z (@) 10" Bxall;

Let Q be a Lipschitz domain of order n. Then, with the previous notation,

N
10" Bxallfra) S D Z ( 5(”") 1)/p> 0(1) + H(OQ)>">.

k=1 |¢e




Holder inequalities do the rest

Using a decomposition in windows,

Let Q) be a Lipschitz domain of order n. Then, with the previous notation,

107Bxalg) S N2 11 g, + H (O,

P (0%)
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