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Abstract. The purpose of this paper is twofold. We first prove a weighted

Sobolev inequality and part of a weighted Morrey’s inequality, where the
weights are a power of the mean curvature of the level sets of the function

appearing in the inequalities. Then, as main application of our inequalities, we

establish new Lq and W 1,q estimates for semi-stable solutions of −∆u = g(u)

in a bounded domain Ω of Rn. These estimates lead to an L2n/(n−4)(Ω)

bound for the extremal solution of −∆u = λf(u) when n ≥ 5 and the do-

main is convex. We recall that extremal solutions are known to be bounded in
convex domains if n ≤ 4, and that their boundedness is expected —but still

unkwown— for n ≤ 9.

1. Introduction

The main purpose of this paper is twofold. On the one hand, we prove the fol-
lowing geometric-type Sobolev and Morrey’s inequalities for functions v ∈ C∞0 (Ω),
where Ω is a smooth bounded domain of Rn with n ≥ 2. Assume that p ≥ 1 and
r ∈ {0} ∪ [1,∞). Then, there exists a constant C depending only on n, p, and r,
such that the following inequalities hold for all v ∈ C∞0 (Ω):

‖v‖Lp?r (Ω) ≤ C
∥∥∥|Hv|r|∇v|

∥∥∥
Lp(Ω∩{|∇v|>0})

if n > p(1 + r)

and

‖v‖L∞(Ω) ≤ C|Ω|
p(1+r)−n

np

∥∥∥|Hv|r|∇v|
∥∥∥
Lp(Ω∩{|∇v|>0})

if 1 + r ≤ n < p(1 + r).

Here, the critical exponent p?r is defined by

1

p?r
:=

1

p
− 1 + r

n

and the function Hv appearing in the right hand side of both inequalities denotes
the mean curvature of the level sets of |v| (which are smooth hypersurfaces at points
where |∇v| > 0). In particular, it depends on v in a nonlinear way, given by the
expression

Hv =
−1

n− 1
div

(
∇v
|∇v|

)
.

We also establish a related inequality of Trudinger type when n = p(1 + r).
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On the other hand, as an application of these inequalities, we derive new Lq and
W 1,q a priori estimates for local minimizers (and more generally, for semi-stable
solutions) of reaction-diffusion problems. These estimates motivated the study of
the geometric Sobolev inequalities above.

Consider the reaction-diffusion problem

(1.1)

{
−∆u = g(u) in Ω,

u = 0 on ∂Ω,

where g is any C1 function. We say that a classical solution u ∈ C2(Ω) of (1.1) is
semi-stable if

(1.2)

∫
Ω

{|∇ξ|2 − g′(u)ξ2} dx ≥ 0 for all ξ ∈ C1
0 (Ω).

This class of solutions includes local minimizers of the associated energy functional,
minimal solutions, extremal solutions, and also certain solutions found between a
sub and a super solution. We use the semi-stability condition (1.2) with the test
function ξ = |∇u|η. Using this choice of ξ and an equation for (∆+g′(u))|∇u|, one
deduces that

(1.3) (n− 1)

∫
Ω∩{|∇u|>0}

H2
u|∇u|2η2 dx ≤

∫
Ω

|∇u|2|∇η|2 dx

for every Lipschitz function η in Ω with η|∂Ω ≡ 0. We take η ≡ 1 in a compact set
K ⊂ Ω, and thus |∇η| is supported in Ω \K. Then, if we know that u is regular
in a neighborhood of ∂Ω (this holds for instance when Ω is convex) and we take K
big enough, the right hand side of (1.3) is bounded. We deduce that∫

K∩{|∇u|>0}
H2
u|∇u|2 dx ≤ C

and, with the help of our Sobolev inequality above with r = 1 and p = 2, we
establish a new bound:

u ∈ L2n/(n−4)(Ω) if n ≥ 5 and Ω is convex.

Moreover, using this L2n/(n−4) estimate, we are also able to obtain W 1,q bounds
for semi-stable solutions. This result completes the L∞ estimate obtained by the
first author in [6] whenever n ≤ 4 and Ω is convex.

For general domains and increasing positive and convex nonlinearities g, Nedev
[17] proved an L∞ bound when n ≤ 3, and an Lq estimate, for every q < n/(n− 4)
when n ≥ 4. Note that the exponent 2n/(n − 4) in our Lq bound above improves
the one of Nedev. Besides, we make no assumption on the nonlinearity, but in
contrast with Nedev’s result, we assume Ω to be convex.

2. Main results

2.1. Geometric-type Sobolev inequalities. We start stating the Sobolev and
Morrey’s type inequalities involving the mean curvature of the level sets.

Theorem 2.1. Let Ω be a smooth bounded domain of Rn, with n ≥ 2. Let p ≥ 1
and r ∈ {0} ∪ [1,∞).

Let v ∈ C∞0 (Ω) (i.e., v ∈ C∞(Ω) and v = 0 on ∂Ω). For x ∈ Ω with ∇v(x) 6= 0,
let Hv(x) be the mean curvature at x of the hypersurface {y ∈ Ω : |v(y)| = |v(x)|},
which is smooth at x. The following assertions hold:
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(a) Assume either that 1 + r ≤ n < p(1 + r) or that n = 1 + r and p = 1. Then

(2.1) ‖v‖L∞(Ω) ≤ C1|Ω|
p(1+r)−n

np

(∫
Ω∩{|∇v|>0}

|Hv|pr|∇v|p dx

)1/p

,

for some constant C1 depending only on n, p, and r.
(b) If n > p(1 + r), then

(2.2)

(∫
Ω

|v|p
?
r dx

)1/p?r

≤ C2

(∫
Ω∩{|∇v|>0}

|Hv|pr|∇v|p dx

)1/p

,

where
1

p?r
:=

1

p
− 1 + r

n
, for some constant C2 depending only on n, p,

and r.
(c) If p > 1 and n = p(1 + r), then

(2.3)

∫
Ω

exp


(

|v|
C3(
∫

Ω∩{|∇v|>0} |Hv|pr|∇v|p dx)1/p

)p′ dx ≤ C4|Ω|,

where p′ = p/(p− 1), and C3 and C4 are positive constants depending only
on n and p.

In Remarks 3.1 and 3.3 we give explicit expressions for admissible values of the
constants Ci, i = 1, ..., 4, in the theorem. These expressions involve two isoperi-
metric constants A1 and A2 (only A1 when r = 0) that we describe next.

Note that Theorem 2.1 is well known for r = 0. Indeed, (a) states a part of
Morrey’s inequality, (b) is the classical Sobolev inequality, and (c) is Trudinger’s
inequality. It is well known that they follow from the classical isoperimetric in-
equality, which states that for any smooth bounded domain D of Rn,

(2.4) A1|D|(n−1)/n ≤ |∂D|

where A1 = n|B1|1/n and B1 denotes the unit ball in Rn. Our proof will show this
fact and that admissible constants in the theorem are completely explicit in terms
only of A1, n, and p when r = 0.

To establish the theorem when r ≥ 1 we need another isoperimetric inequality.
It involves the mean curvature H of C2 immersed (n − 1)-dimensional compact
hypersurfaces without boundary S ⊂ Rn, and states

(2.5) |S|
n−2
n−1 ≤ A2

∫
S

|H(x)| dσ.

Here, H is the mean curvature of S, dσ denotes the area element in S, and A2

is a universal constant depending only on the dimension n ≥ 2. When n = 2,
(2.5) follows from the Gauss-Bonnet formula. When n ≥ 3, the inequality is due
to Michael and Simon [16] and to Allard [1] —see Theorem 28.4.1 [5] for a more
general version of (2.5). From such a version, a Sobolev inequality for functions
defined on hypersurfaces S of Rn, and which involves the mean curvature H of S,
can be deduced (see section 28.5 of [5], Theorem 2.1 [6], or Theorem C.2.1 [9]).

Remark 2.2 (The critical exponents). Note that the critical exponent p?r in part
(b) of the theorem coincides with the classical Sobolev exponent in the embedding
W 1+r,p ⊂ Lp?r for functions with 1 + r derivatives in Lp.
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The critical case in Theorem 2.1 corresponds to n = p(1 + r). It is given in part
(a) when p = 1 and in part (c) when p > 1. In the second case, p > 1, the L∞

estimate does not necessarily hold, as usual. This can be easily seen using radial
functions when Ω is a ball. Instead, the embedding in L∞ holds in the critical case
when p = 1 (and thus n = 1 + r), as in the classical case Wn,1 ⊂ L∞.

Note that in all cases of Theorem 2.1 we have 1 + r ≤ n. In the case p = 1 and
n < 1 + r, which is not covered by Theorem 2.1, we derive an inequality involving
the total variation of |v| in Remark 3.5.

Remark 2.3 (The case p = +∞). Letting p tend to +∞ in (2.1) and using the
explicit constant C1 obtained in Remark 3.1, we deduce

(2.6) ‖v‖L∞(Ω) ≤
n

1 + r

(
n|B1|1/n

) 1+r−n
n−1

Ar2|Ω|
1+r
n ‖|Hv|r|∇v|‖L∞(Ω∩{|∇v|>0})

when n ≥ 2 and 1 ≤ r ≤ n − 1. Here, A2 is a constant depending only on the
dimension n for which (2.5) holds.

Remark 2.4 (The case r ∈ (0, 1)). Theorem 2.1 is stated for r = 0 and r ≥ 1. A
natural question is if it does not hold for r ∈ (0, 1) independently of the dimension n.
In this direction, in Remark 3.4 we prove that Theorem 2.1 (a)-(b) do not hold for
r ∈ (0, 2p−1 − 1) when 1 ≤ p < 2, independently of the dimension. In particular,
they do not hold for r ∈ (0, 1) when p = 1.

For the class of mean convex functions —that is, functions whose level sets have
nonnegative mean curvature— the estimates in Theorem 2.1 can be established in
the larger range r ≥ 1/p. The argument only applies to mean convex functions since
it relies on the fact that the perimeter of the level sets of a mean convex function v
is a nonincreasing function, i.e., |{x ∈ Ω : |v(x)| = t1}| ≥ |{x ∈ Ω : |v(x)| = t2}| for
a.e. 0 < t1 < t2. When r = 1/p, such estimates were proven by Trudinger [21]. The
inequalities in [21] carry optimal constants and are claimed there to hold for all mean
convex functions. However, at present they are only known to hold for functions
with starshaped and mean convex level sets. The reason is that to obtain optimal
constants one needs to use inequality (2.5) with the constant A2 which makes (2.5)
to be an equality when S is a sphere. That such constant A2 is admissible in (2.5) is
still only known among starshaped mean convex hypersurfaces S, by a recent result
of Guan and Li [13]; see also [14].

Theorem 2.1 can be used to study the geometric flow of mean convex hypersur-
faces driven by a positive power r of their mean curvature, the so-called Hr-flow.
The theorem leads, for instance, to upper bounds on the extinction time of the
flow. In the level set formulation, the flow can be represented by the level sets of a
mean convex function v satisfying the elliptic equation

Hv =
−1

n− 1
div

(
∇v
|∇v|

)
=

1

|∇v|1/r
.

Noting that ‖|Hv|r|∇v|‖L∞(Ω∩{|∇v|>0}) = 1 and using (2.6) one obtains an L∞

estimate for v, or equivalently, an upper bound for the extinction time of the Hr-
flow. Let us mention here that Schulze [19] used the Hr-flow to give a new proof
of a deep result of B. Kleiner: the Euclidean isoperimetric inequality also holds
for domains of any complete and simply-connected 3-dimensional manifold with
nonpositive sectional curvatures —a result that is still open for the same type of
manifolds of dimension n ≥ 5.
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In this respect, Theorem 2.1 could be extended to the case of functions defined
on Riemannian manifolds. Indeed, the first ingredient in our proof —the coarea
formula— holds on any Riemannian manifold. On the other hand, the isoperimetric
inequalities that we use to prove the theorem could be replaced by those in the
particular manifold; see section 36.5 of [5].

Remark 2.5 (The radial case). When Ω = BR = BR(0), if we restrict inequality
(2.2) to radially symmetric functions v with compact support in BR then (2.2)
reads

(2.7)

(∫ R

0

|v(ρ)|qρn−1 dρ

)1/q

≤ C

(∫ R

0

ρ−pr|v′(ρ)|p ρn−1 dρ

)1/p

,

where q = p?r . Here ρ = |x|. Note that in the radial case, the level set at x, {|v| =
|v(x)|}, is a sphere of radius |x|, and thus the average of its principal curvatures
is Hv(x) = |x|−1 = ρ−1. The 1-dimensional weighted Sobolev inequality (2.7)
has been well studied (see [15] for this one and more general versions). It is well
known that (2.7) holds, with a constant C independent of v, if and only if either
n < p(1+r) and q ≤ +∞, or n > p(1+r) and q ≤ p?r , or n = p(1+r) and q < +∞.
This shows that Theorem 2.1 (b) is sharp in terms of the exponents that it involves
and the restrictions on them. The sharpness in this same sense of parts (a) and (c)
of Theorem 2.1 can also be checked using radially decreasing functions.

Remark 2.6 (Relation with a Caffarelli-Kohn-Nirenberg inequality). Since Hv(x) =
|x|−1 for radial functions, Theorem 2.1 (b) is related to the Caffarelli, Kohn, and
Nirenberg inequality [8], which states the following. Assume q > 0, p ≥ 1, and
n > pr. Then, there exists a positive constant C such that

(2.8) ‖v‖Lq(Rn) ≤ C‖|x|−r|∇v|‖Lp(Rn)

holds for all v ∈ C∞0 (Rn), if and only if q = p?r and −1 ≤ r ≤ 0. Here, the
condition r ≤ 0 is due to the unboundedness of the domain and to the fact that
the singularity of the weight is fixed at the origin —and thus (2.8) is not invariant
under translations. Indeed, that r ≤ 0 is necessary in (2.8) can be shown by taking
v(x) = u(x− x0) with u ∈ C∞0 (B1) and letting |x0| → +∞.

Instead, our inequalities are invariant under translations.

The second part of this paper is devoted to obtain, as an application of Theo-
rem 2.1, a priori estimates for semi-stable solutions of the reaction-diffusion prob-
lem (1.1) —which motivated the present work.

2.2. Application to the regularity of stable solutions and extremal solu-
tions. Applying Theorem 2.1 we obtain a priori estimates for semi-stable solutions
of (1.1). In particular, for the extremal solution u? of (2.13)λ below —i.e., problem
(1.1) when g(u) = λf(u).

Recently, the first author proved the boundedness of the extremal solution of
(2.13)λ when the domain is convex and n ≤ 4. Our following result is the main

application of Theorem 2.1. We establish an L
2n
n−4 estimate for the extremal solution

in convex domains when n ≥ 5. For these domains, the result improves the Lq for

q < n/(n − 4) and the L
2n
n−2 estimates of Nedev proved, respectively, in [17] and

[18].
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Theorem 2.7. Let f : [0,+∞) −→ R be an increasing positive C1 function (in
particular with f(0) > 0) such that f(t)/t→ +∞ as t→ +∞. Assume that Ω is a
convex smooth bounded domain of Rn with n ≥ 5. Let u? be the extremal solution
of (2.13)λ. Then,

u? ∈ L
2n
n−4 (Ω).

The convexity assumption on the domain Ω is only used to control the L∞-norm
of u? in a neighborhood of the boundary ∂Ω. For general domains and general
nonlinearities we are able to prove the following a priori estimates for semi-stable
solutions —from which Theorem 2.7 will follow easily.

Theorem 2.8. Let g be any C∞ function and Ω ⊂ Rn any smooth bounded domain
with n ≥ 5. Let u ∈ C1

0 (Ω) be a semi-stable solution of (1.1), i.e., a solution
satisfying (1.2). Then,

(2.9)

(∫
{|u|>s}

(
|u| − s

) 2n
n−4

dx

)n−4
2n

≤ C(n)

s

(∫
{|u|≤s}

|∇u|4 dx

)1/2

for all s > 0, where C(n) is a constant depending only on n. Moreover,

(2.10)

∫
Ω

|∇u|p dx ≤ p|Ω|+
(

4n

(3n− 4)p
− 1

)−1{∫
Ω

|u|
2n
n−4 dx+ ‖g(u)‖L1(Ω)

}
for all 1 ≤ p < 4n

3n−4 .

Inequality (2.9) is relevant since the set {|u| ≤ s} on its right hand side is a small
neighborhood of ∂Ω (at least if u > 0 in Ω) if s is chosen small enough. Thus the
L2n/(n−4)(Ω) bound gets reduced to a question on the regularity of u near ∂Ω.

To prove Theorem 2.8 we take the truncation of |u| at level s as a test function
in (1.3) to obtain

(2.11) (n− 1)s2

∫
{|u|>s}∩{|∇u|>0}

H2
u|∇u|2 dx ≤

∫
{|u|≤s}

|∇u|4 dx.

Now, (2.9) follows from (2.11) and our geometric Sobolev inequality (2.2) with
p = 2 and r = 1.

When 2 ≤ n ≤ 3, from (2.11) and Theorem 2.1 (a), it follows that

(2.12) ‖u‖L∞(Ω) ≤ s+
C(n)

s
|Ω|

4−n
2n

(∫
{|u|≤s}

|∇u|4 dx

)1/2

,

where C(n) is a constant depending only on n. The a priori estimate (2.12) was
proved by the first author in [6] in a different way, obtaining the L∞ estimate also
in dimension 4.

The gradient estimate (2.10) follows from the L2n/(n−4) bound with the aid of a
technique introduced by Bénilan et al. [2] to prove regularity of entropy solutions
for p-Laplace equations with L1 data (see Proposition 4.1 below).

The study of the regularity of semi-stable solutions was motivated by some open
problems raised by Brezis and Vázquez [4] about the regularity of extremal solu-
tions. They appear in the following context. Consider positive solutions of

(2.13)λ

{
−∆u = λf(u) in Ω,

u = 0 on ∂Ω,
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where λ > 0 is a parameter and f is a C1 positive increasing function defined
on [0,∞) (in particular f(0) > 0) which is superlinear at infinity (i.e., satisfying
f(t)/t→ +∞ as t→ +∞). Under these assumptions (see the excellent monograph
[9] for all these questions), there exists an extremal parameter λ? ∈ (0,∞) such
that problem (2.13)λ admits a classical minimal solution uλ for λ ∈ (0, λ?) and
admits no weak solution (see Definition 4.4) for λ > λ?. By minimality it is easy
to show that uλ is a semi-stable solution for λ ∈ (0, λ?). Moreover,

u? := lim
λ↑λ?

uλ

is a weak solution of (2.13)λ? , known as the extremal solution. Thus, u? is a semi-
stable weak solution of (2.13)λ? .

In full generality (i.e., for all domains Ω and all nonlinearities f), the optimal
regularity for u? remains still as open problem. For instance, it is unknown if u?

always lies in the energy class H1
0 (Ω), or if it is always bounded when n ≤ 9 (see

open problems 1 and 4 in [4]). These questions have a positive answer in the radial
case for all nonlinearities (see Remark 2.11 below), and also for general domains
and power or exponential type nonlinearities. The optimal Lq and W 1,p regularity
(depending on the dimension) in the general case is also still unknown.

Nedev [17] proved in the case of convex nonlinearities that u? ∈ L∞(Ω) when
n ≤ 3 and u? ∈ Lq(Ω) for all q < n/(n− 4) when n ≥ 4. Note that these regularity
results hold for arbitrary smooth domains Ω. In another paper, Nedev [18] also
proved that if in addition Ω is strictly convex then u? ∈ H1

0 (Ω). In particular,

u? ∈ L
2n
n−2 (Ω). This is the content of the unpublished preprint [18]. In the present

paper, we supply with detailed proofs (slightly modified) of the result in [18] —see
Theorem 2.9, Remark 2.10, and subsection 4.3 below.

As in Theorem 2.8, it is also possible to prove that u? ∈ W 1,p
0 (Ω) for all p <

4n/(3n − 4). However, as we said before, the following W 1,2 = H1 estimate of
Nedev [18] —proved using a different argument than ours— is better than the one
of Theorem 2.8.

Theorem 2.9 (Nedev [18]). Let f : [0,+∞) −→ R be an increasing positive C1

function such that f(t)/t → +∞ as t → +∞. Assume that Ω is a convex smooth

bounded domain of Rn with n ≥ 2. Then u? ∈ H1
0 (Ω). In particular, u? ∈ L

2n
n−2 (Ω).

To prove Theorem 2.9, a Pohožaev identity and the minimality of uλ is used to
obtain ∫

Ω

|∇uλ|2 dx ≤
1

2

∫
∂Ω

|∇uλ|2 (x · ν(x)) dσ for all λ ∈ (0, λ?),

where ν is the outward unit normal to Ω. Then, since Ω is convex, the moving planes
method allows to control the right hand side of the previous inequality by ‖u?‖L1(Ω).

Since u? is a weak solution of (2.13)λ? , and hence u? ∈ L1(Ω), Theorem 2.9 follows.
For the sake of completeness we will prove this result simplifying slightly the original
proof of Nedev.

Remark 2.10. Nedev [18] pointed out that Theorem 2.9 also holds for certain non-
convex domains. More precisely, let ν be the outward unit normal to Ω and E :=
{x ∈ ∂Ω : there exists ε > 0 and a hyperplane P such that P ∩Ω∩Bε(x) = {x}}.
If there exists a ∈ Rn and α < 0 such that (x− a) · ν(x) ≤ α for every x ∈ ∂Ω \E,
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then the statement of Theorem 2.9 holds in Ω. Note that this assumption is satis-
fied by strictly convex domains, annulus, or bean pea shaped domains, for example.
See also Remark 4.6 below.

Remark 2.11 (Regularity in the radial case). In [7] it is studied the regularity of
semi-stable radially symmetric solutions when the domain is a ball. It is proved
that every semi-stable solution, in particular the extremal solution of (2.13)λ, is
bounded if the dimension n ≤ 9. For n ≥ 10, it is proved that such a solution
belongs to W 1,q

0 (B1) for all 1 ≤ q < q1, where

q1 :=
2n

n− 2
√
n− 1− 2

.

In particular, it belongs to Lq(B1) for all 1 ≤ q < q0, where

q0 :=
2n

n− 2
√
n− 1− 4

.

It can be shown that these regularity results are sharp by taking explicit semi-stable
solutions corresponding to the exponential and power nonlinearities.

Note that the L
2n
n−4 (Ω) estimate obtained in Theorem 2.7 differs from the sharp

exponent q0 defined above by the term 2
√
n− 1.

2.3. Plan of the paper. The paper is organized as follows. In section 3, we prove
the geometric-type inequalities stated in Theorem 2.1. In section 4, we deal with
semi-stable solutions and we prove the estimates stated in Theorems 2.7 and 2.8.
Finally, we prove Theorem 2.9 due to Nedev [18] in an unpublished preprint.

3. Geometric-type Sobolev inequalities. Proof of Theorem 2.1

The main purpose of this section is to establish Theorem 2.1. Its proof uses
two isoperimetric inequalities. The first one is a consequence of the Fleming-Rishel
formula [11] and the classical isoperimetric inequality. If v ∈W 1,1

0 (Ω), then

(3.1) A1V (t)(n−1)/n ≤ P (t) =
d

dt

∫
{|v|≤t}

|∇v|dx for a.e. t > 0,

where A1 := n|B1|1/n, V (t) := |{x ∈ Ω : |v(x)| > t}|, and P (t) stands for the
perimeter in the sense of De Giorgi, i.e., P (t) is the total variation of the charac-
teristic function of {x ∈ Ω : |v(x)| > t}. A proof of this inequality can be found
in [20]. We also note that the distribution function V (t) is differentiable almost
everywhere since it is a nonincreasing function.

The second isoperimetric inequality that we use is inequality (2.5), due to Michael
and Simon [16] and to Allard [1] —see also Theorem 28.4.1 [5]. We apply it to almost
all level sets of |v|, where v ∈ C∞0 (Ω). We have

(3.2) P (t)
n−2
n−1 ≤ A2

∫
{|v|=t}∩{|∇v|>0}

|Hv| dσ for a.e. t > 0.

Here, Hv is the mean curvature of {|v| = t} and A2 is a constant depending only on
the dimension n ≥ 2. Note that, by Sard’s theorem, almost every t ∈ (0, ‖v‖L∞(Ω))
is a regular value of |v|. By definition, if t is a regular value of |v|, then |∇v(x)| > 0
for all x ∈ Ω such that |v(x)| = t. In particular, if t is a regular value, St := {x ∈
Ω : |v(x)| = t} is a C∞ immersed (n − 1)-dimensional compact hypersurface of
Rn without boundary. Hence, we can apply inequality (2.5) to S = St obtaining



GEOMETRIC-TYPE SOBOLEV INEQUALITIES AND APPLICATIONS 9

(3.2). Note here that, since S could have a finite number of connected components,
inequality (2.5) (and (3.2)) for connected manifolds S leads to the same inequality
(with same constant) for S with more than one component.

From (3.2) and Jensen inequality, we deduce

(3.3) P (t)
n−(1+r)
n−1 ≤ Ar2

∫
{|v|=t}∩{|∇v|>0}

|Hv|r dσ for all r ≥ 1.

Since we always have n ≥ 1 + r in Theorem 2.1, we can now use the isoperimetric
inequality (3.1) to conclude

(3.4) A
n−(1+r)
n−1

1 V (t)
n−(1+r)

n ≤ Ar2
∫
{|v|=t}∩{|∇v|>0}

|Hv|r dσ for all r ≥ 1.

This is the key inequality to prove Theorem 2.1. Note that in the case r = 0,
inequality (3.4) also holds —it is nothing but the classical isoperimetric inequality
(3.1). We start by proving parts (a) and (c).

Proof of Theorem 2.1 (a) and (c). First, we deal with the case p = 1 and r = n−1.
Integrating (3.3) from 0 to ‖v‖L∞(Ω) and using the coarea formula, we obtain

‖v‖L∞(Ω) ≤ An−1
2

∫
Ω∩{|∇v|>0}

|Hv|n−1|∇v| dx,

i.e., (2.1) with C1 = An−1
2 .

Assume now p > 1 and r ∈ [1, n− 1]. Using the coarea formula and that almost
every t ∈ (0, ‖v‖L∞(Ω)) is a regular value of |v|, we have

−V ′(t) =

∫
{|v|=t}∩{|∇v|>0}

dσ

|∇v|
for a.e. t > 0.

Hence, by (3.4) and Hölder inequality we obtain

A
n−(1+r)
n−1

1 A−r2 V (t)
n−(1+r)

n ≤ (−V ′(t))1/p′

(∫
{|v|=t}∩{|∇v|>0}

|Hv|pr|∇v|p−1 dσ

)1/p

for a.e. t > 0, where p′ = p/(p− 1), or equivalently,

1 ≤ A
(
V (t)−

n−(1+r)
n p′(−V ′(t))

)1/p′
(∫
{|v|=t}∩{|∇v|>0}

|Hv|pr|∇v|p−1 dσ

)1/p

for a.e. t > 0 such that V (t) > 0, where A = A
−n−(1+r)

n−1

1 Ar2. Integrating the previous
inequality with respect to t in (0, s) and using Hölder inequality, we have

(3.5) s ≤ A

(∫ |Ω|
V (s)

τ−
n−(1+r)

n p′ dτ

)1/p′ (∫
Ω∩{|∇v|>0}

|Hv|pr|∇v|p dx

)1/p

for a.e. s ∈ (0, ‖v‖L∞(Ω)). Let

β := −n− (1 + r)

n
p′ + 1 = −n− p(1 + r)

(p− 1)n
.
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(a) Assume n < p(1 + r) and note that β > 0. Therefore, letting s ↑ ‖v‖L∞(Ω)

in (3.5), we obtain

‖v‖L∞(Ω) ≤
A|Ω|

p(1+r)−n
np

β1/p′

(∫
Ω∩{|∇v|>0}

|Hv|pr|∇v|p dx

)1/p

,

proving the remaining case of assertion (a).
(c) Assume n = p(1 + r) and p > 1. From (3.5), we obtain

s ≤ A

(∫ |Ω|
V (s)

dτ

τ

)1/p′ (∫
Ω∩{|∇v|>0}

|Hv|pr|∇v|p dx

)1/p

for a.e. s ∈ (0, ‖v‖L∞(Ω)),

and therefore,

(3.6) V (s) ≤ |Ω| exp

{
−
(

s

AIp

)p′}
for a.e. s ∈ (0, ‖v‖L∞(Ω)),

where Ip :=
(∫

Ω∩{|∇v|>0} |Hv|pr|∇v|p dx
)1/p

. Let k be any positive integer. Using

(3.6) we obtain ∫
Ω

|v|kp
′
dx = kp′

∫ ∞
0

skp
′−1V (s) ds

≤ kp′|Ω|
∫ ∞

0

skp
′−1e

−
(

s
AIp

)p′
ds

= k|Ω|(AIp)kp
′
∫ ∞

0

τk−1e−τ dτ

= |Ω|(AIp)kp
′
k!.

Let C3 > A (remember that here A depends only on n and p since r = (n− p)/p)
be any positive constant. Then, the previous inequality leads to∫

Ω

exp

{(
|v|
C3Ip

)p′}
dx ≤

∞∑
k=0

(
A

C3

)kp′
|Ω| = Cp

′

3

Cp
′

3 −Ap
′
|Ω|.

This ends the proof of parts (a) and (c) of Theorem 2.1. �

Remark 3.1. In the previous proof we have obtained the following explicit expres-
sions for the constants in parts (a) and (c) of Theorem 2.1. Here, A1 = n|B1|1/n and
A2 denote the constants appearing in (2.4) and (2.5), respectively, which depend
only on n.

The constant in the L∞ estimate of part (a) can be taken to be

C1 =

(
(p− 1)n

p(1 + r)− n

)1− 1
p

A
1+r−n
n−1

1 Ar2

when p > 1, and C1 = An−1
2 when p = 1 and r = n−1. Trudinger’s type inequality

(2.3) holds for all

C3 > A
− n

(n−1)p′

1 A
n
p−1

2 =: A

and the constant C4 is given by C4 = Cp
′

3 /(C
p′

3 −Ap
′
).
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Remark 3.2. Assume p > 1 and n > p(1 + r). Let p?r the critical Sobolev exponent
defined in Theorem 2.1 (b). Computing the first integral in (3.5), we deduce

V (s) ≤ |Ω|

(
p′

p?r

(
|Ω|1/p?r
AIp

)p′
sp
′
+ 1

)−p?r/p′
for a.e. s ∈ (0, ‖v‖L∞(Ω)),

where Ip :=
(∫

Ω∩{|∇v|>0} |Hv|pr|∇v|p dx
)1/p

. Noting that∫
Ω

|v|q dx = q

∫ ∞
0

sq−1V (s) ds,

one obtains that, for some constant C depending only on n, p, r, and q,(∫
Ω

|v|q dx
)1/q

≤ C|Ω|
1
q−

1
p?r

(∫
Ω∩{|∇v|>0}

|Hv|pr|∇v|p dx

)1/p

for all q < p?r . The constant C may be chosen to be

C =

(
q

p′

) 1
q
(
p′

p?r

)− 1
p′

A

(∫ ∞
0

τ
q
p′−1

(τ + 1)
− p

?
r
p′ dτ

)1/q

,

which is finite if and only if q < p?r . However, using this argument it is not possible
to obtain the inequality with the critical Sobolev exponent q = p?r . Although we
could introduce Schwarz (or decreasing) symmetrization in order to get the critical
exponent p?r , we use the following slightly different argument.

Now, we prove Theorem 2.1 (b).

Proof of Theorem 2.1 (b). Assume n > p(1 + r) and let p?r = np/(n − p(1 + r)).
Integrating (3.4) from 0 to M := ‖v‖L∞(Ω), we obtain

(3.7) A
n−(1+r)
n−1

1

∫ M

0

V (t)
n−(1+r)

n dt ≤ Ar2
∫

Ω∩{|∇v|>0}
|Hv|r|∇v| dx for all r ≥ 1.

Let

W (t) :=

(∫ t

0

V (s)
n−(1+r)

n ds

)1?r

.

Using that V (t) is a nonincreasing function, we easily deduce

1?r t
1?r−1V (t) ≤W ′(t) for a.e. t ∈ (0,M).

Hence, integrating from 0 to M , we get∫
Ω

|v|1
?
r dx = 1?r

∫ M

0

t1
?
r−1V (t) dt ≤W (M) =

(∫ M

0

V (t)
n−(1+r)

n dt

)1?r

.

Combining this with (3.7) we obtain

(3.8) A
n−(1+r)
n−1

1

(∫
Ω

|v|1
?
r dx

)1/1?r

≤ Ar2
∫

Ω∩{|∇v|>0}
|Hv|r|∇v| dx,

i.e., assertion (b) for p = 1.
For p > 1, we only need to apply inequality (3.8) with |v| replaced by |v|γ and

γ = p?r/1
?
r (noting that the level sets of |v| and |v|γ are the same, and hence, their

mean curvatures coincide) and use Hölder inequality to conclude (2.2). �
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Remark 3.3. Inequality (2.2) in Theorem 2.1 (b) holds with the constant

C2 =
n− (1 + r)

n− p(1 + r)
p
(
n|B1|1/n

)−n−(1+r)
n−1

Ar2,

where A2 is the constant appearing in (2.5).

Remark 3.4. Here we show that the inequalities in Theorem 2.1 (both the Sobolev
and the Morrey inequalities) do not hold when r ∈ (0, 2p−1 − 1) and 1 ≤ p < 2. In
particular, they do not hold for r ∈ (0, 1) and p = 1.

We also study the geometric inequalities behind (3.3) and (3.4). That is, we
study the inequalities

(3.9) |∂Ω|
n−(1+pr)
n−1 ≤ C

∫
∂Ω

|H|pr dσ

and

(3.10) |Ω|
n−(1+pr)

n ≤ C
∫
∂Ω

|H|pr dσ,

where H is the mean curvature of ∂Ω ⊂ Rn. We show that for every constant
C = C(n, p, r) inequalities (3.9) and (3.10) fail, even among convex sets Ω ⊂ Rn,
when r ∈ (0, 1/p) and p ≥ 1.

Γε

εε

ε ε

1

Figure 1. Level sets of v.

To see all this, let Q1 = (0, 1)n be the open unitary cube of Rn, n ≥ 2. Given
ε ∈ (0, 1/2), set Γε := {x ∈ Rn \ Q1 : dist(x,Q1) = ε} and Ωε to be its bounded
interior. Let HΓε be the mean curvature of Γε and Aε := {x ∈ Γε : HΓε(x) 6= 0}.
Note that

(3.11) HΓε ≡ 0 on Γε \Aε, |Aε| ≤ c1ε, and |HΓε | ≤ c2ε−1 on Aε,

where c1 and c2 are constants depending only on n. Therefore, since r > 0,

(3.12)

∫
Γε

|HΓε |pr dσ ≤ c3ε1−pr,
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where c3 is a constant depending only on n, p, and r. Since |Γε| > 1 and |Ωε| > 1
for all ε ∈ (0, 1/2), and the right hand side of (3.12) tends to zero, as ε goes to zero,
when r ∈ (0, 1/p), we obtain that (3.9) and (3.10) do not hold for r ∈ (0, 1/p), as
claimed.

Although Γε is not C∞ (since dist(·, Q1) is not a C∞ function), the same facts
hold for C∞ immersed (n − 1)-dimensional compact hypersurfaces of Rn. Indeed,

there exists d̃ ∈ C∞c (Rn) such that 0 ≤ d̃ ≤ 1, d̃ ≡ 0 in Q1, d̃ ≡ 1 in {x ∈ Rn :

dist(x,Q1) ≥ 1}, |∇d̃| ≤ 2, and its level sets Γ̃ε := {x ∈ Rn : d̃(x) = ε}, 0 < ε < 1,

satisfy (3.11) (and hence (3.12)). This can be seen choosing a hypersurface Γ̃1

coinciding with Γ1 in its flat parts and smoothing it in vertex, edges, etc. Then we
define Γ̃ε for 0 < ε < 1 as an homotethy with respect to the vertex, edges, etc., of
the cube. In this way, Γ̃ε produces a foliation of {x ∈ Rn : 0 < dist(x,Q1) < 1}.
We finally define d̃(x) = ε if and only if x ∈ Γ̃ε.

Now, we can prove that the inequalities in Theorem 2.1 fail whenever r ∈
(0, 2p−1 − 1). Let v be a positive function whose level sets are Γ̃ε. More pre-
cisely, let ψ : [0,+∞) −→ R be any decreasing C∞ function such that ψ(s) = 0 for

s ≥ 1 and ψi)(0) = 0 for all i ≥ 1. Given ε0 ∈ (0, 1), we define v(x) = ψ(d̃(x)/ε0) in
Rn \ [0, 1]n and v = ψ(0) in [0, 1]n. Note that v ∈ C∞(Ω) where Ω is the bounded

interior of Γ̃ε0 .

Using the coarea formula, |∇d̃| ≤ 2, (3.12), and the change of variables v =

ψ(d̃/ε0) = t = ψ(s), it is easy to check that∫
Ω∩{|∇v|>0}

|Hv|pr|∇v|p dx =

∫ ψ(0)

0

∫
{v=t}∩{|∇v|>0}

|Hv|pr|∇v|p−1 dσ dt

≤ C

∫ 1

0

|ψ′(s)|pε−(p−1)
0

∫
Γ̃ε0s

|Hε0s|pr dσ ds

≤ C

εp−1
0

ε1−pr
0

∫ 1

0

|ψ′(s)|p s1−pr ds,

where C is a constant depending only on n, p, and r. Note that the right hand side
of this inequality tends to zero as ε0 goes to 0 if r < 2p−1 − 1. On the other hand,
it is clear that, for any q ≥ 1,

‖v‖Lq(Ω) ≥
(∫

Q1

|v|q dx
)1/q

= ψ(0) = ‖v‖L∞(Ω) > 0.

Therefore, a necessary condition in order that Theorem 2.1 holds (in the range
r > 0) is r ≥ 2p−1− 1. In particular, if p = 1 the necessary condition is that r ≥ 1.

Remark 3.5. We derive two more inequalities involving the perimeter P (t) of
the level sets. On the one hand, using (3.3), integrating with respect to t in
(0, ‖v‖L∞(Ω)), and using the coarea formula, we obtain

‖v‖L∞(Ω) ≤ Ar2
∫

Ω∩{|∇v|>0}
P (v)

1+r−n
n−1 |Hv|r|∇v| dx for all n ≥ 2, r ≥ 1.

On the other hand, note that the total variation of v may be written as∫
Ω

|∇v| dx =

∫ ‖v‖L∞(Ω)

0

P (t) dt,
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and that by (3.3) we have

1 ≤ An−1
2 P (t)

1+r−n
r

(∫
{|v|=t}∩{|∇v|>0}

|Hv|r dσ

)n−1
r

.

In the case 2 ≤ n < 1 + r (which is not considered in Theorem 2.1), integrating the
previous inequality with respect to t in (0, ‖v‖L∞(Ω)) and using Hölder inequality,
we obtain

‖v‖L∞(Ω) ≤ An−1
2

(∫
Ω

|∇v| dx
) 1+r−n

r

(∫
Ω∩{|∇v|>0}

|Hv|r|∇v| dx

)n−1
r

.

4. Semi-stable solutions. Proof of Theorems 2.8, 2.7, and 2.9

This section deals with semi-stable solutions. We apply Theorem 2.1 to prove
Theorems 2.8 and 2.7. Finally we prove Theorem 2.9 using a Pohožaev identity
and the fact that the extremal solution u? is the increasing limit in L1 of minimal
classical solutions.

To obtain the L
2n
n−4 estimate of Theorems 2.8 and 2.7 we use the semi-stability

condition (1.2) with test function ξ = |∇u|η, where u is a smooth semi-stable
solution of (1.1) and η vanishes on ∂Ω and is still arbitrary. With this choice one
has∫

Ω∩{|∇u|>0}
|Bu|2|∇u|2η2 dx ≤

∫
Ω∩{|∇u|>0}

(
|∇T |∇u||2 + |Bu|2|∇u|2

)
η2 dx

≤
∫

Ω

|∇u|2|∇η|2 dx,(4.1)

for every Lipschitz function η in Ω with η|∂Ω ≡ 0 (see for instance Proposition 2.2
of [6] and references therein). Here, ∇T denotes the tangential gradient along a
level set of |u| and

|Bu(x)|2 =

n−1∑
i=1

κ2
i (x),

where κi(x) are the principal curvatures of the level set of |u| passing through x,
for a given x ∈ Ω ∩ {|∇u| > 0}. Now, noting that (n − 1)H2

u ≤ |Bu|2, we deduce
inequality (1.3) from (4.1):

(4.2) (n− 1)

∫
Ω∩{|∇u|>0}

H2
u|∇u|2η2 dx ≤

∫
Ω

|∇u|2|∇η|2 dx.

4.1. Proof of Theorem 2.8. The L
2n
n−4 estimate will follow from (4.2). Instead,

theW 1,p estimates of Theorem 2.8 will use the following result. It holds for solutions
of the linear problem

(4.3)

{
−∆u = h(x) in Ω,

u = 0 on ∂Ω.

Proposition 4.1. Assume n ≥ 3 and h ∈ L1(Ω). If u ∈ W 1,1
0 (Ω) ∩ Lq(Ω) is a

solution (in the distributional sense) of (4.3) for some q ≥ n/(n− 2), then∫
Ω

|∇u|p dx ≤ p|Ω|+
(
pq
p
− 1

)−1 {
‖u‖qLq(Ω) + ‖h‖L1(Ω)

}
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for all p < pq := 2q
q+1 .

Remark 4.2. Assume h ∈ L1(Ω). By standard estimates for elliptic equations, there
exists a constant C depending only on n, p, and |Ω|, such that∫

Ω

|∇u|p dx ≤ C‖h‖L1(Ω) for all p <
n

n− 1

for every solution u of (4.3). The critical exponent p = n/(n − 1) can not be
reached. In Proposition 4.1, under the additional assumption u ∈ Lq(Ω) for some
q ≥ n/(n − 2), we improve the previous estimate; note that pq := 2q/(q + 1) ≥
n/(n− 1).

The exponent pq in Proposition 4.1 is the same as the one in the Gagliardo-
Nirenberg interpolation inequality

‖∇u‖Lpq (Ω) ≤ C‖u‖
1/2
W 2,1(Ω)‖u‖

1/2
Lq(Ω).

Note that in Proposition 4.1 we assume −∆u = h ∈ L1(Ω) and u ∈ Lq(Ω).

The proof of Proposition 4.1 is based in a technique introduced by Bénilan et al.
[2] to obtain gradient estimates for the entropy solution of problem (4.3) with the
Laplacian replaced by the p-Laplacian.

Proof of Proposition 4.1. Multiplying (4.3) by Tsu = max{−s, min{s, u}} we ob-
tain ∫

{|u|≤s}
|∇u|2 dx =

∫
Ω

h(x)Tsu dx ≤ s‖h‖L1(Ω).

From this, we deduce

sq|{|∇u| > s(q+1)/2}|≤ sq
∫
{|∇u|>s(q+1)/2}∩{|u|≤s}

(
|∇u|

s(q+1)/2

)2

dx+ sq
∫
{|u|>s}

dx

≤‖h‖L1(Ω) + sqV (s), for a.e. s > 0.

Recall that V (s) = |{x ∈ Ω : |u(x)| > s}|. Letting t = s(q+1)/2, we have

(4.4) t2q/(q+1)|{|∇u| > t}| ≤ sup
σ>0

{
σqV (σ)

}
+ ‖h‖L1(Ω) , for a.e. t > 0.

Moreover, since

σqV (σ) ≤ σq
∫
{|u|>σ}

|u|q

σq
dx ≤

∫
Ω

|u|q dx = ‖u‖qLq(Ω), for a.e. σ > 0,

we have supσ>0

{
σqV (σ)

}
≤ ‖u‖qLq(Ω). Therefore, from (4.4) we deduce∫

Ω

|∇u|p dx = p

∫ ∞
0

tp−1|{|∇u| > t}| dt

≤ p|Ω|+ p

∫ ∞
1

tp−1t−
2q
q+1

(
‖u‖qLq(Ω) + ‖h‖L1(Ω)

)
dt,

proving the proposition. �

Using (4.2), Proposition 4.1, and applying Theorem 2.1 (b) to |u| − s with Ω
replaced by {x ∈ Ω : |u(x)| > s}, we prove Theorem 2.8.
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Proof of Theorem 2.8. Since g ∈ C∞, we have that u ∈ C∞(Ω). Recall that we
assume n ≥ 5. By taking η = Tsu = max{−s,min{s, u}} in (4.2), we obtain

(4.5) (n− 1)

∫
{|u|>s}∩{|∇u|>0}

H2
u|∇u|2 dx ≤

1

s2

∫
{|u|≤s}

|∇u|4 dx,

for all s > 0. We apply Theorem 2.1 (b) to v = u − s ∈ C∞(Ω) with p = 2 and
r = 1, replacing Ω by each component of {x ∈ Ω : u(x) > s} (which is C∞ for a.e.
s). Using also (4.5) we deduce(∫

{u>s}

(
u− s

) 2n
n−4

dx

)n−4
2n

≤ C2

(∫
{u>s}∩{|∇u|>0}

H2
u|∇u|2 dx

) 1
2

≤ C(n)

s

(∫
{u≤s}

|∇u|4 dx

) 1
2

,

for a.e. s > 0, where C(n) depends only on n. Doing the same argument for −u−s
in {−u > s} we conclude (2.9).

Finally, (2.10) follows applying Proposition 4.1 with q = 2n/(n− 4). �

4.2. Proof of Theorem 2.7. To prove Theorem 2.7 we need to control the right
hand side of (2.9). We accomplish this using a boundary regularity result for
positive solutions in convex domains. More precisely, we use the following result
from [12, 10] (see also [9] for its proof).

Proposition 4.3 ([12, 10]). Let f be any locally Lipschitz function and let Ω be a
smooth bounded domain of Rn. Let u be any positive classical solution of (1.1).

If Ω is convex, then there exist positive constants ε and γ depending only on the
domain Ω such that for every x ∈ Ω with dist(x, ∂Ω) < ε, there exists a set Ix ⊂ Ω
with the following properties:

|Ix| ≥ γ and u(x) ≤ u(y) for all y ∈ Ix.
As a consequence,

‖u‖L∞(Ωε) ≤
1

γ
‖u‖L1(Ω), where Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}.

We recall (see [9]) that it is well known that the extremal solution u? belongs to
L1(Ω) and it is a weak solution of (2.13)λ? in the following sense.

Definition 4.4. Let δ(x) := dist(x, ∂Ω). We say that u ∈ L1(Ω) is a weak solution
of (1.1) if g(u)δ ∈ L1(Ω) and∫

Ω

u(−∆ϕ) dx =

∫
Ω

g(u)ϕ dx for all ϕ ∈ C2(Ω) with ϕ|∂Ω = 0.

Since u? ∈ L1(Ω), from Proposition 4.3 we deduce next that u? is bounded (and
smooth) in a neighborhood of the boundary if the domain is convex. This and
Theorem 2.8 give Theorem 2.7.

Proof of Theorem 2.7. Assume first that f ∈ C∞(R). Let uλ ∈ C∞(Ω) be the
minimal solution of (2.13)λ for λ ∈ (0, λ?). By Proposition 4.3, and noting that the
extremal solution u? is the increasing limit of {uλ}, there exist constants ε and γ
independent of λ such that

(4.6) ‖uλ‖L∞(Ωε) ≤
1

γ
‖u?‖L1(Ω) for all λ < λ?,
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where
Ωε := {x ∈ Ω : dist(x, ∂Ω) < ε}.

By taking ε smaller if necessary, we may assume that Ωδ is C∞ for every 0 < δ ≤ ε.
We can conclude the proof in two ways. First, we proceed as in the proof of

Proposition 3.1 in [6]. For this, note that if λ?/2 < λ < λ?, then

uλ ≥ uλ?/2 > cdist(·, ∂Ω)

for some positive constant c independent of λ ∈ (λ?/2, λ?). Therefore, letting

s̃ := c
ε

2
,

we have
{x ∈ Ω : uλ(x) ≤ s̃} ⊂ Ωε/2.

We now use (2.9) in Theorem 2.8 with s replaced by s̃. It suffices to bound
‖uλ‖W 1,4(Ωε/2). But uλ is a solution of the linear equation −∆uλ = h(x) :=

λf(uλ(x)) in Ωε and uλ = 0 on ∂Ω (which is one part of ∂Ωε). On the other
hand, ∂Ω ∪ Ωε/2 has compact closure contained in ∂Ω ∪ Ωε, and both sets are
C∞. By (4.6), both uλ and the right hand side h are bounded independently of λ.
Hence, by interior and boundary estimates for the linear Poisson equation, we de-
duce a bound for ‖uλ‖W 1,4(Ωε/2) independent of λ. Letting λ tend to λ?, we obtain

u? ∈ L
2n
n−4 (Ω).

Our second proof is perhaps more direct; it does not use regularity for the linear
problem. Here we choose a regular value s of u (and thus {x ∈ Ω : uλ(x) > s} is
smooth) such that

1

γ
‖u?‖L1(Ω) ≤ s ≤

2

γ
‖u?‖L1(Ω).

By (4.6) we have

(4.7) Ωε ⊂ {x ∈ Ω : uλ(x) ≤ s} .
Now, we use

η(x) =

{
dist(x, ∂Ω) in Ωε = {dist(x, ∂Ω) < ε},

ε in {dist(x, ∂Ω) ≥ ε}
as a test function in (4.2). Using (4.7) we obtain

(n− 1)ε2

∫
{uλ>s}∩{|∇uλ|>0}

H2
uλ
|∇uλ|2 dx ≤

∫
{uλ<s}

|∇uλ|2 dx.

Multiplying equation (2.13)λ by Tsuλ = min{s, uλ} we have∫
{uλ<s}

|∇uλ|2 dx = λ

∫
Ω

f(uλ)Tsuλ dx ≤ λ?s‖f(u?)‖L1(Ω).

Note that ‖f(u?)‖L1(Ω) < ∞ since it is well known that f(u?) dist(·, ∂Ω) ∈ L1(Ω)
in general smooth domains and if in addition Ω is convex then u?, and thus f(u?),
are bounded in Ωε by (4.6).

Therefore, using Theorem 2.1 (b) applied to v = uλ − s, with p = 2 and r = 1,
and replacing Ω by each component of {x ∈ Ω : uλ(x) > s} (which is smooth), we
deduce (∫

{uλ>s}

(
uλ − s

) 2n
n−4

dx

)n−4
2n

≤ C2

ε
√
n− 1

(
λ?s‖f(u?)‖L1(Ω)

) 1
2
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for all λ ∈ (0, λ?). In particular, letting λ tend to λ?, we obtain u? ∈ L
2n
n−4 (Ω).

In case that f is only C1(R) then one can make an easy approximation argument
to obtain the same result (see proof of Theorem 1.2 in [6] for the details). �

Remark 4.5. As a consequence of Theorem 2.8, if u ∈ L1(Ω) is a weak solution of
(1.1) (in the sense of Definition 4.4) which is bounded in a neighborhood of ∂Ω and
which is the L1(Ω) limit of a sequence of classical semi-stable solutions of (1.1),

then u ∈ L2n/(n−4)(Ω) and u ∈W 1,p
0 (Ω) for all p < 4n/(3n− 4). In particular,

u ∈ L2(Ω) ∩W 1,4/3
0 (Ω)

independently of the dimension n. For general solutions (not necessarily semi-
stable) the best regularity that one expects assuming only g(u) ∈ L1(Ω) is u ∈
Lq(Ω) ∩ W 1,p

0 (Ω) for all 1 ≤ q < n/(n − 2) and 1 ≤ p < n/(n − 1). Hence,
semi-stable solutions enjoy more regularity than general solutions.

4.3. Proof of Theorem 2.9. In an unpublished paper, Nedev [18] proved that the
extremal solution u? lies in the energy class H1

0 , independently of the dimension,
when Ω is strictly convex. For this, he used a Pohožaev identity, an upper bound
independent of λ for the energy of the minimal solutions uλ, and the fact that u?

is bounded (and hence regular) in a neighborhood of the boundary. Here, for the
sake of completeness, we give a proof of Nedev’s result.

Recall that the energy functional associated to (2.13)λ is given by

Jλ(u) :=
1

2

∫
Ω

|∇u|2 dx− λ
∫

Ω

F (u) dx, F (u) :=

∫ u

0

f(s) ds.

In [18] an upper bound of Jλ(uλ) is proved by using the parabolic equation associ-
ated to (2.13)λ, ut −∆u = λf(u). This equation was studied by Brezis et al. [3].
The proof that we present here uses a different, purely elliptic, argument at this
point.

Proof of Theorem 2.9. Let uλ be the minimal solution of (2.13)λ and let ν be the
outward unit normal to Ω. Multiplying (2.13)λ by x · ∇uλ it is standard to obtain
the following Pohožaev identity:

(4.8)

∫
Ω

|∇uλ|2 dx =
1

2

∫
∂Ω

|∇uλ|2 x · ν(x) dσ + nJλ(uλ)

for all λ ∈ (0, λ?). Since the minimal solution uλ is the only solution of (2.13)λ in
{u ∈ H1

0 (Ω) : 0 ≤ u ≤ uλ}, it is also the absolute minimizer of Jλ in this convex
set. Hence, we have Jλ(uλ) ≤ Jλ(0) = 0 for every λ ∈ (0, λ?).

Therefore, from (4.8) one deduces that

(4.9)

∫
Ω

|∇uλ|2 dx ≤
1

2

∫
∂Ω

|∇uλ|2 x · ν(x) dσ, for all λ ∈ (0, λ?).

Now, since Ω is convex, there exist positive constants ε and γ depending only on
the domain Ω such that (4.6) holds. As a consequence, ‖f(uλ)‖L∞(Ωε) ≤ ‖f‖L∞(0,α)

for all λ ∈ (0, λ?), where α is a constant depending only on Ω and ‖u?‖L1(Ω) —and
thus independent of λ. By (4.6), also uλ is bounded in Ωε independently of λ.
Hence, using boundary estimates at ∂Ω for the linear Poisson equation −∆uλ =
λf(uλ(x)) in Ωε, we deduce a bound for the right hand side of inequality (4.9)
independent of λ. Making λ tend to λ? we conclude the proof. �
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Remark 4.6. As mentioned in [18], Theorem 2.9 holds for some nonconvex domains
such as annulus or bean pea shaped domains. Indeed, using Pohožaev identity
(obtained multiplying (2.13)λ by (x − a) · ∇u) and the fact that Jλ(uλ) ≤ 0, one
obtains

(4.10)

∫
Ω

|∇uλ|2 dx ≤
1

2

∫
∂Ω

|∇uλ|2(x− a) · ν(x) dσ for all λ ∈ (0, λ?).

Let E := {x ∈ ∂Ω : there exists ε > 0 and a hyperplane P such that P ∩Ω∩Bε(x) =
{x}}. By using the moving planes method, as in the proof of Proposition 4.3, it
can be seen that u? is bounded (by a constant independent of λ) and regular in a
neighborhood in Ω of any compact subset of E. In particular, if there exists a ∈ Rn
and α < 0 such that (x−a) · ν(x) ≤ α for every x ∈ ∂Ω \E one obtains from (4.10)
that u? ∈ H1

0 (Ω).
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