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Regularity of stable solutions ofp-Laplace
equations through geometric Sobolev type

inequalities

Daniele Castorina Manel Sanchón

Abstract

In this paper we prove a Sobolev and a Morrey type inequality involving the mean
curvature and the tangential gradient with respect to the level sets of the function that
appears in the inequalities. Then, as an application, we establisha priori estimates
for semi-stable solutions of−∆pu = g(u) in a smooth bounded domainΩ ⊂ R

n. In
particular, we obtain newLr andW 1,r bounds for the extremal solutionu⋆ when the
domain is strictly convex. More precisely, we prove thatu⋆ ∈ L∞(Ω) if n ≤ p + 2

andu⋆ ∈ L
np

n−p−2 (Ω) ∩W
1,p
0 (Ω) if n > p+ 2.

Keywords. Geometric inequalities, mean curvature of level sets, Schwarz symmetri-
zation,p-Laplace equations, regularity of stable solutions

1 Introduction

The aim of this paper is to obtaina priori estimates for semi-stable solutions ofp-Laplace

equations. We will accomplish this by proving some geometric type inequalities involving

the functionals

Ip,q(v; Ω) :=

(
∫

Ω

( 1

p′
|∇T,v|∇v|p/q|

)q

+ |Hv|q|∇v|p dx
)1/p

, p, q ≥ 1 (1.1)

whereΩ is a smooth bounded domain ofRn with n ≥ 2 andv ∈ C∞
0 (Ω). Here, and in

the rest of the paper,Hv(x) denotes the mean curvature atx of the hypersurface{y ∈ Ω :

|v(y)| = |v(x)|} (which is smooth at pointsx ∈ Ω satisfying∇v(x) 6= 0), and∇T,v is the
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tangential gradient along a level set of|v|. We will prove a Morrey’s type inequality when

n < p+ q and a Sobolev inequality whenn > p+ q (see Theorem 1.2 below).

Then, as an application of these inequalities, we establishLr andW 1,r a priori esti-

mates for semi-stable solutions of the reaction-diffusionproblem






−∆pu = g(u) in Ω,
u > 0 in Ω,
u = 0 on∂Ω.

(1.2)

Here, the diffusion is modeled by thep-Laplace operator∆p (remember that∆pu :=

div(|∇u|p−2∇u)) with p > 1, while the reaction term is driven by any positiveC1 non-

linearityg.

As we will see, these estimates will lead to newLr andW 1,r bounds for the extremal

solutionu⋆ of (1.2) wheng(u) = λf(u) and the domainΩ is strictly convex. More pre-

cisely, we prove thatu⋆ ∈ L∞(Ω) if n ≤ p + 2 andu⋆ ∈ L
np

n−p−2 (Ω) ∩ W 1,p
0 (Ω) if

n > p+ 2.

1.1 Geometric Sobolev inequalities

Before we establish our Sobolev and Morrey type inequalities we will state that the func-

tionalIp,q defined in (1.1) decreases (up to a universal multiplicativeconstant) by Schwarz

symmetrization. Given a Lipschitz continuous functionv and its Schwarz symmetrization

v∗ it is well known that
∫

BR

|v∗|r dx =

∫

Ω

|v|r dx for all r ∈ [1,+∞]

and
∫

BR

|∇v∗|r dx ≤
∫

Ω

|∇v|r dx for all r ∈ [1,∞).

Our first result establishes thatIp,q(v∗;BR) ≤ CIp,q(v; Ω) for some universal constant

C depending only onn, p, andq.

Theorem 1.1. Let Ω be a smooth bounded domain ofR
n with n ≥ 2 andBR the ball

centered at the origin and with radiusR = (|Ω|/|B1|)1/n. Let v ∈ C∞
0 (Ω) and v∗ its

Schwarz symmetrization. LetIp,q be the functional defined in(1.1) with p, q ≥ 1. If n >

q + 1 then there exists a universal constantC depending only onn, p, andq, such that

(
∫

BR

1

|x|q |∇v
∗|p dx

)1/p

= Ip,q(v
∗;BR) ≤ CIp,q(v; Ω). (1.3)

Note that the Schwarz symmetrization ofv is a radial function, and hence, its level sets

are spheres. In particular, the mean curvatureHv∗(x) = 1/|x| and the tangential gradient

∇T,v∗|∇v∗|p/q = 0. This explains the equality in (1.3).
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A related result was proved by Trudinger [18] whenq = 1 for the class of mean convex

functions (i.e., functions for which the mean curvature of the level sets is nonnegative).

More precisely, he proved Theorem 1.1 replacing the functional Ip,q by

Ĩp,q(v; Ω) :=

(
∫

Ω

|Hv|q|∇v|p dx
)1/p

(1.4)

and considering the Schwarz symmetrization ofv with respect to the perimeter instead of

the classical one like us (see Definition 2.1 below). In orderto define this symmetrization

(with respect to the perimeter) it is essential to know that the mean curvatureHv of the

level sets of|v| is nonnegative. Then using an Aleksandrov-Fenchel inequality for mean

convex hypersurfaces (see [17]) he proved Theorem 1.1 for this class of functions when

q = 1.

We prove Theorem 1.1 using two ingredients. The first one is the classical isoperimet-

ric inequality:

n|B1|1/n|D|(n−1)/n ≤ |∂D| (1.5)

for any smooth bounded domainD of Rn. The second one is a geometric Sobolev inequal-

ity, due to Michael and Simon [12] and to Allard [1], on compact (n − 1)-hypersurfaces

M without boundary which involves the mean curvatureH ofM : for everyq ∈ [1, n−1),

there exists a constantA depending only onn andq such that
(∫

M

|φ|q⋆dσ
)1/q⋆

≤ A

(∫

M

|∇φ|q + |Hφ|q dσ
)1/q

(1.6)

for everyφ ∈ C∞(M), whereq⋆ = (n−1)q/(n−1−q) anddσ denotes the area element in

M . Using the classical isoperimetric inequality (1.5) and the geometric Sobolev inequality

(1.6) withM = {x ∈ Ω : |v(x)| = t} andφ = |∇v|(p−1)/q we will prove Theorem 1.1

with the explicit constantC = A
q

p |∂B1|
q

(n−1)p , beingA the universal constant in (1.6).

From Theorem 1.1 and well known 1-dimensional weighted Sobolev inequalities it is

easy to prove Morrey and Sobolev geometric inequalities involving the functionalIp,q.

Indeed, by Theorem 1.1 and since Schwarz symmetrization preserves theLr norm, it is

sufficient to prove the existence of a positive constantC independent ofv∗ such that

‖v∗‖Lr(BR) ≤ CIp,q(v
∗;BR).

Using this argument we prove the following geometric inequalities.

Theorem 1.2.LetΩ be a smooth bounded domain ofR
n withn ≥ 2 andv ∈ C∞

0 (Ω). Let

Ip,q be the functional defined in(1.1)with p, q ≥ 1 and

p⋆q :=
np

n− (p+ q)
.

Assumen > q + 1. The following assertions hold:
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(a) If n < p+ q then

‖v‖L∞(Ω) ≤ C1|Ω|
p+q−n

np Ip,q(v; Ω) (1.7)

for some constantC1 depending only onn, p, andq.

(b) If n > p+ q, then

‖v‖Lr(Ω) ≤ C2|Ω|
1
r
− 1

p⋆q Ip,q(v; Ω) for every1 ≤ r ≤ p⋆q, (1.8)

whereC2 is a constant depending only onn, p, q, andr.

(c) If n = p+ q, then

∫

Ω

exp

{

( |v|
C3Ip,q(v; Ω)

)p′
}

dx ≤ n

n− 1
|Ω|, wherep′ = p/(p− 1), (1.9)

for some positive constantC3 depending only onn andp.

Cabré and the second author [6] proved recently Theorem 1.2under the assumption

q ≥ p using a different method (without the use of Schwarz symmetrization). More

precisely, they proved the theorem replacing the functional Ip,q(v; Ω) by the one de-

fined in (1.4),Ĩp,q(v; Ω). Therefore, our geometric inequalities are only new in the range

1 ≤ q < p.

Open Problem 1. Is Theorem 1.2 true for the range1 ≤ q < p and replacing the func-

tional Ip,q(v; Ω) by the one defined in (1.4),̃Ip,q(v; Ω)?

This question has a posive answer for the class of mean convexfunctions. Trudinger

[18] proved this result for this class of functions whenq = 1 and can be easily extended

for everyq ≥ 1. However, to our knowledge, for general functions (withoutmean convex

level sets) it is an open problem.

1.2 Regularity of semi-stable solutions

The second part of the paper deals witha priori estimates for semi-stable solutions of

problem (1.2). Remember that a regular solutionu ∈ C1
0(Ω) of (1.2) is said to besemi-

stableif the second variation of the associated energy functionalatu is nonnegative defi-

nite, i.e.,

∫

Ω

|∇u|p−2

{

|∇φ|2 + (p− 2)

(

∇φ · ∇u
|∇u|

)2
}

− g′(u)φ2 dx ≥ 0 (1.10)

for everyφ ∈ H0, whereH0 denotes the space of admissible functions (see Definition 4.1

below). The class of semi-stable solutions includes local minimizers of the energy func-

tional as well as minimal and extremal solutions of (1.2) when g(u) = λf(u).
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Using an appropriate test function in (1.10) we prove the following a priori estimates

for semi-stable solutions. This result extends the ones in [3] and [6] for the Laplacian case

(p = 2) due to Cabré and the second author.

Theorem 1.3. Let g be anyC∞ function andΩ ⊂ R
n any smooth bounded domain.

Let u ∈ C1
0(Ω) be a semi-stable solution of(1.2), i.e., a solution satisfying(1.10). The

following assertions hold:

(a) If n ≤ p+ 2 then there exists a constantC depending only onn andp such that

‖u‖L∞(Ω) ≤ s+
C

s2/p
|Ω|

p+2−n

np

(
∫

{u≤s}

|∇u|p+2 dx

)1/p

for all s > 0. (1.11)

(b) If n > p+ 2 then there exists a constantC depending only onn andp such that

(
∫

{u>s}

(

|u| − s
)

np

n−(p+2)
dx

)
n−(p+2)

np

≤ C

s2/p

(
∫

{u≤s}

|∇u|p+2 dx

)1/p

(1.12)

for all s > 0. Moreover, there exists a constantC depending only onn, p, andr such that
∫

Ω

|∇u|r dx ≤ C

(

|Ω|+
∫

Ω

|u|
np

n−(p+2) dx+ ‖g(u)‖L1(Ω)

)

(1.13)

for all 1 ≤ r < r1 :=
np2

(1+p)n−p−2
.

To prove (1.11) and (1.12) we use the semi-stability condition (1.10) with the test

functionφ = |∇u|η to obtain
∫

Ω

(

4

p2
|∇T,u|∇u|p/2|2 +

n− 1

p− 1
H2

u|∇u|p
)

η2 dx ≤
∫

Ω

|∇u|p|∇η|2 dx (1.14)

for every Lipschitz functionη in Ω with η|∂Ω = 0. Then, takingη = Tsu = min{s, u},

we obtain (1.11) and (1.12) whenn 6= p+2 by using the Morrey and Sobolev inequalities

established in Theorem 1.2 withq = 2. The critical casen = p + 2 is more involved. In

order to get (1.11) in this case, we take another explicit test functionη = η(u) in (1.14)

and use the geometric Sobolev inequality (1.6). The gradient estimate established in (1.13)

will follow by using a technique introduced by Bénilanet al. [2] to get the regularity of

entropy solutions forp-Laplace equations withL1 data (see Proposition 4.2).

The rest of the introduction deals with the regularity of extremal solutions. Let us

recall the problem and some known results in this topic. Consider
{

−∆pu = λf(u) in Ω,
u = 0 on∂Ω,

(1.15)λ

whereλ is a positive parameter andf is aC1 positive increasing function satisfying

lim
t→+∞

f(t)

tp−1
= +∞. (1.16)
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Cabré and the second author [5] proved the existence of an extremal parameterλ⋆ ∈
(0,∞) such that problem(1.15)λ admits a minimal regular solutionuλ ∈ C1

0(Ω) for

λ ∈ (0, λ⋆) and admits no regular solution forλ > λ⋆. Moreover, every minimal solution

uλ is a semi-stable forλ ∈ (0, λ⋆).

For the Laplacian case (p = 2), the limit of minimal solutions

u⋆ := lim
λ↑λ⋆

uλ

is a weak solution of the extremal problem(1.15)λ⋆ and it is known as extremal solution.

Nedev [13] proved, in the case of convex nonlinearities, that u⋆ ∈ L∞(Ω) if n ≤ 3 and

u⋆ ∈ Lr(Ω) for all 1 ≤ r < n/(n − 4) if n ≥ 4. Recently, Cabré [3], Cabré and the

second author [6], and Nedev [14] proved, in the case of convex domains and general

nonlinearities, thatu⋆ ∈ L∞(Ω) if n ≤ 4 andu⋆ ∈ L
2n
n−4 (Ω) ∩H1

0 (Ω) if n ≥ 5.

For arbitraryp > 1 it is unknown if the limit of minimal solutionsu⋆ is a (weak or

entropy) solution of(1.15)λ⋆. In the affirmative case, it is called theextremal solution of

(1.15)λ⋆. However, in [15] it is proved that the limit of minimal solutionsu⋆ is a weak

solution (in the distributional sense) of(1.15)λ⋆ wheneverp ≥ 2 andf satisfies the addi-

tional condition:

there existsT ≥ 0 such that(f(t)− f(0))1/(p−1) is convex for allt ≥ T. (1.17)

Moreover,

u⋆ ∈ L∞(Ω) if n < p+ p′

and

u⋆ ∈ Lr(Ω), for all r < r̃0 := (p− 1)
n

n− (p+ p′)
, if n ≥ p+ p′.

This extends previous results of Nedev [13] for the Laplacian case (p = 2) and convex

nonlinearities.

Our next result improves theLq estimate in [13, 15] for strictly convex domains. We

also prove thatu⋆ belongs to the energy classW 1,p
0 (Ω) independently of the dimension

extending an unpublished result of Nedev [14] forp = 2 to everyp ≥ 2 (see also [6]).

Theorem 1.4. Let f be an increasing positiveC1 function satisfying(1.16). Assume that

Ω is a smooth strictly convex domain ofR
n. Letuλ ∈ C1

0 (Ω) be the minimal solution of

(1.15)λ. There exists a constantC independent ofλ such that:

(a) If n ≤ p+ 2 then‖uλ‖L∞(Ω) ≤ C‖f(uλ)‖1/(p−1)
L1(Ω) .

(b) If n > p + 2 then‖uλ‖
L

np
n−p−2 (Ω)

≤ C‖f(uλ)‖1/(p−1)

L1(Ω) . Moreover‖uλ‖W 1,p
0 (Ω) ≤ C ′

whereC ′ is a constant depending only onn, p, Ω, f and‖f(uλ)‖L1(Ω).

Assume, in addition,p ≥ 2 and that(1.17)holds. Then
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(i) If n ≤ p+ 2 thenu⋆ ∈ L∞(Ω). In particular,u⋆ ∈ C1
0 (Ω).

(ii) If n > p+ 2 thenu⋆ ∈ L
np

n−p−2 (Ω) ∩W 1,p
0 (Ω).

Remark 1.5. If f(uλ) is bounded inL1(Ω) by a constant independent ofλ, then parts(a)

and(b) will lead automatically to the assertions(i) and(ii) stated in the theorem (without

the requirement thatp ≥ 2 and (1.17) hold true). However, as we said before, the estimate

f(u⋆) ∈ L1(Ω) is unknown in the general case,i.e, for arbitrary positive and increasing

nonlinearitiesf satisfying (1.16) and arbitraryp > 1.

Open Problem 2. Is it true thatf(u⋆) ∈ L1(Ω) for arbitrary positive and increasing

nonlinearitiesf satisfying (1.16)?

Under assumptionsp ≥ 2 and (1.17) it is proved in [15] thatf(u⋆) ∈ Lr(Ω) for all

1 ≤ r < n/(n − p′) whenn ≥ p′ andf(u⋆) ∈ L∞(Ω) if n < p′. In particular, one

hasf(u⋆) ∈ L1(Ω) independently of the dimensionn and the parameterp > 1. As a

consequence, assertions(i) and (ii) follow immediately from parts(a) and (b) of the

theorem.

To prove theLr a priori estimates stated in part(a) and(b) we make three steps. First,

we use the strict convexity of the domainΩ to prove that

{x ∈ Ω : dist(x, ∂Ω) < ε} ⊂ {x ∈ Ω : uλ(x) < s}

for a suitables. This is done using a moving plane procedure forp-Laplace equations (see

Proposition 3.1 below). Then, we prove that the Morrey and Sobolev type inequalities

stated in Theorem 1.2 for smooth functions, also hold for regular solutions of (1.2) when

1 ≤ q ≤ 2. Finally, taking a test functionη related todist(·, ∂Ω) in (1.14) and proceeding

as in the proof of Theorem 1.3 we will obtain theLr a priori estimates established in the

theorem.

The energy estimate established in parts (ii) and (b) of Theorem 1.4 follows by ex-

tending the arguments of Nedev [14] for the Laplacian case (see also Theorem 2.9 in [6]).

First, using a Pohǒzaev identity we obtain

∫

Ω

|∇uλ|p dx ≤ 1

p′

∫

∂Ω

|∇uλ|p x · ν dσ, for all p > 1 andλ ∈ (0, λ⋆), (1.18)

wheredσ denotes the area element in∂Ω andν is the outward unit normal toΩ. Then,

using the strict convexity of the domain (as in theLr estimates) and standard regularity

estimates for−∆pu = λf(uλ(x)) in a neighborhood of the boundary, we are able to

control the right hand side of (1.18) by a constant whose dependence onλ is given by a

function of‖f(uλ)‖L1(Ω).
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Remark 1.6. Let us compare our regularity results with the sharp ones proved by Cabré,

Capella, and the second author in [4] whenΩ is the unit ballB1 of Rn. In the radial case,

the extremal solutionu⋆ of (1.15)λ⋆ is bounded if the dimensionn < p+ 4p
p−1

. Moreover,

if n ≥ p+ 4p
p−1

thenu⋆ ∈ W 1,r
0 (B1) for all 1 ≤ r < r̄1, where

r̄1 :=
np

n− 2
√

n−1
p−1

− 2
.

In particular,u⋆ ∈ Lr(B1) for all 1 ≤ r < r̄0, where

r̄0 :=
np

n− 2
√

n−1
p−1

− p− 2
.

It can be shown that these regularity results are sharp by taking the exponential and power

nonlinearities.

Note that theLr(Ω)-estimate established in Theorem 1.4 differs with the sharpexpo-

nentr̄0 defined above by the term2
√

n−1
p−1

. Moreover, observe that̄r1 is larger thanp and

tends to it asn goes to infinity. In particular, the best expected regularity independent of

the dimensionn for the extremal solutionu⋆ is W 1,p
0 (Ω), which is the one we obtain in

Theorem 1.4.

1.3 Outline of the paper

The paper is organized as follows. In section 2 we prove Theorem 1.1 and the geometric

type inequalities stated in Theorem 1.2. In section 3 we prove that Theorem 1.2 holds

for solutions of (1.2) when1 ≤ q ≤ 2. Moreover we give boundary estimates when the

domain is strictly convex. In section 4, we present the semi-stability condition (1.10) and

the space of admissible functionsH0. The rest of the section deals with the regularity of

semi-stable solutions proving Theorems 1.3 and 1.4.

2 Geometric Hardy-Sobolev type inequalities

In this section we prove Theorems 1.1 and 1.2. As we said in theintroduction, the geo-

metric inequalities established in Theorem 1.2 are new for the range1 ≤ q < p since the

caseq ≥ p was proved in [6]. However, we will give the proof in all casesusing Schwarz

symmetrization, giving an alternative proof for the known range of parametersq ≥ p.

We start recalling the definition of Schwarz symmetrizationof a compact set and of a

Lipschitz continuous function.

Definition 2.1. We define theSchwarz symmetrization of a compact setD ⊂ R
n as

D∗ :=

{

BR(0) with R = (|D|/|B1|)1/n if D 6= ∅,
∅ if D = ∅.
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Let v be a Lipschitz continuous function inΩ andΩt := {x ∈ Ω : |v(x)| ≥ t}. We define

theSchwarz symmetrization ofv as

v∗(x) := sup{t ∈ R : x ∈ Ω∗
t}.

Equivalently, we can define the Schwarz symmetrization ofv as

v∗(x) = inf{t ≥ 0 : V (t) < |B1||x|n},

whereV (t) := |Ωt| = |{x ∈ Ω : |v(x)| > t}| denotes the distribution function ofv.

The first ingredient in the proof of Theorem 1.1 is the isoperimetric inequality for

functionsv in W 1,1
0 (Ω):

n|B1|1/nV (t)(n−1)/n ≤ P (t) :=
d

dt

∫

{|v|≤t}

|∇v| dx for a.e.t > 0, (2.1)

whereP (t) stands for the perimeter in the sense of De Giorgi (the total variation of the

characteristic function of{x ∈ Ω : |v(x)| > t}).

The second ingredient is the following Sobolev inequality on compact hypersurfaces

without boundary due to Michael and Simon [12] and to Allard [1].

Theorem 2.2([1, 12]). LetM ⊂ R
n be aC∞ immersed(n − 1)-dimensional compact

hypersurface without boundary andφ ∈ C∞(M). If q ∈ [1, n − 1), then there exists a

constantA depending only onn andq such that
(∫

M

|φ|q⋆dσ
)1/q⋆

≤ A

(∫

M

|∇φ|q + |Hφ|q dσ
)1/q

, (2.2)

whereH is the mean curvature ofM , dσ denotes the area element inM , andq⋆ = (n−1)q
n−1−q

.

As we said in the introduction it is well known that Schwarz symmetrization preserves

theLr-norm and decreases theW 1,r-norm. Let us prove that it also decreases (up to a mul-

tiplicative constant) the functionalIp,q defined in (1.1) using the isoperimetric inequality

(2.1) and the geometric inequality (2.2) applied toM = Mt = {x ∈ Ω : |v(x)| = t} and

φ = |∇v|(p−1)/q.

Proof of Theorem1.1. Let v ∈ C∞
0 (Ω), p ≥ 1, and1 ≤ q < n − 1. By Sard’s theorem,

almost everyt ∈ (0, ‖v‖L∞(Ω)) is a regular value of|v|. By definition, if t is a regular

value of|v|, then|∇v(x)| > 0 for all x ∈ Ω such that|v(x)| = t. Therefore,Mt := {x ∈
Ω : |v(x)| = t} is aC∞ immersed(n − 1)−dimensional compact hypersurface ofR

n

without boundary for every regular valuet . Applying inequality (2.2) toM = Mt and

φ = |∇v|(p−1)/q we obtain
(
∫

Mt

|∇v|(p−1) q
⋆

q dσ

)q/q⋆

≤ Aq

∫

Mt

∣

∣

∣
∇T,v|∇v|

p−1
q

∣

∣

∣

q

+ |Hv|q|∇v|p−1 dσ (2.3)
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for a.e.t ∈ (0, ‖v‖L∞(Ω)), whereHv denotes the mean curvature ofMt, dσ is the area

element inMt,A is the constant in (2.2) which depends only onn andq, and

q⋆ :=
(n− 1)q

n− 1− q
.

Recall thatV (t), being a nonincreasing function, is differentiable almosteverywhere and,

thanks to the coarea formula and that almost everyt ∈ (0, ‖v‖L∞(Ω)) is a regular value of

|v|, we have

−V ′(t) =

∫

Mt

1

|∇v| dσ and P (t) =

∫

Mt

dσ for a.e.t ∈ (0, ‖v‖L∞(Ω)).

Therefore applying Jensen inequality and then using the isoperimetric inequality (2.1),

we obtain
(
∫

Mt

|∇v|(p−1) q
⋆

q
+1 dσ

|∇v|

)
q

q⋆

≥ P (t)p−1+ q

q⋆

(−V ′(t))p−1 ≥ (A1V (t)
n−1
n )p−1+ q

q⋆

(−V ′(t))p−1 (2.4)

for a.e.t ∈ (0, ‖v‖L∞(Ω)), whereA1 := n|B1|1/n.

Note that for radial functions the inequalities in (2.4) areequalities. Therefore, since

the Schwarz symmetrizationv∗ of v is a radial function and it satisfies (2.3), with an

equality and with constantA = |∂B1|−1/(n−1), we obtain

(∫

{|v∗|=t}

|∇v∗|(p−1) q
⋆

q dσ

)q/q⋆

= |∂B1|−
q

n−1

∫

{v∗=t}

|Hv∗ |q|∇v∗|p−1 dσ

=
(A1V (t)

n−1
n )p−1+ q

q⋆

(−V ′(t))p−1 .

(2.5)

for a.e.t ∈ (0, ‖v‖L∞(Ω)). Here, we used thatV (t) = |{|v| > t}| = |{|v∗| > t}| for a.e.

t ∈ (0, ‖v‖L∞(Ω)).

Therefore, from (2.3), (2.4), and (2.5), we obtain

|∂B1|−
q

n−1

∫

{v∗=t}

|Hv∗|q|∇v∗|p−1 dσ ≤ Aq

∫

Mt

∣

∣

∣
∇T,v|∇v|

p−1
q

∣

∣

∣

q

+ |Hv|q|∇v|p−1 dσ,

for a.e. t ∈ (0, ‖v‖L∞(Ω)). Integrating the previous inequality with respect tot on

(0, ‖v‖L∞(Ω)) and using the coarea formula we obtain inequality (1.3), with the explicit

constantC = A
q

p |∂B1|
q

(n−1)p , proving the result.

Remark 2.3. We obtained the explicit admissible constantC = A
q

p |∂B1|
q

(n−1)p in (1.3),

whereA is the universal constant appearing in (2.2).

We prove Theorem 1.2 using Theorem 1.1 and known results on one dimensional

weighted Sobolev inequalities.
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Proof of Theorem1.2. Let v ∈ C∞
0 (Ω) andv∗ its Schwarz symmetrization. Recall thatv∗

is defined inBR with R = (|Ω|/|B1|)1/n.

(a) Assume1 + q < n < p+ q. Using Hölder inequality we obtain

v∗(s) =

∫ R

s

|(v∗)′(τ)| dτ

≤
(∫ R

0

|(v∗)′(τ)|pτ−qτn−1 dτ

)1/p(∫ R

s

τ
1+q−n

p−1 dτ

)1/p′ (2.6)

for a.e.s ∈ (0, R). In particular,

v∗(s) ≤ |∂B1|−1/p

(

p− 1

p+ q − n

)1/p′ ( |Ω|
|B1|

)
p+q−n

np

Ip,q(v
∗;BR)

for a.e.s ∈ (0, R). We conclude this case, by Theorem 1.1, noting that‖v‖L∞(Ω) = v∗(0).

(b) Assumen > p+q. We use the following 1-dimensional weighted Sobolev inequal-

ity:

(
∫ R

0

|ϕ(s)|p⋆qsn−1 ds

)1/p⋆q

≤ C(n, p, q)

(
∫ R

0

s−q|ϕ′(s)|psn−1 ds

)1/p

(2.7)

with optimal constant

C(n, p, q) :=

(

p− 1

n− (p+ q)

)1/p′

n−1/p⋆q





Γ
(

np
p+q

)

Γ
(

n
p+q

)

Γ
(

1 + n(p−1)
p+q

)





p+q

np

(2.8)

stated in [18]. Applying inequality (2.7) toϕ = v∗ and noting that theLp⋆q -norm is pre-

served by Schwarz symmetrization, we obtain

|∂B1|−1/p⋆q

(
∫

Ω

|v|p⋆q dx
)1/p⋆q

≤ C(n, p, q)|∂B1|−1/p

(
∫

BR

|x|−q|∇v∗|p dx
)1/p

.

Using Theorem 1.1 again we prove (1.8) forr = p⋆q . The remaining cases,1 ≤ r < p⋆q,

now follow easily from Hölder inequality.

(c) Assumen = p+ q. From (2.6) and Theorem 1.1 we obtain

v∗(s) ≤
(
∫ R

0

|(v∗)′(τ)|pτ−qτn−1 dτ

)1/p(∫ R

s

τ−1 dτ

)1/p′

≤ |∂B1|−1/pCIp,q(v; Ω)

(

ln

(

R

s

))1/p′

for a.e.s ∈ (0, R). Equivalently

exp

{

(

v∗(s)

|∂B1|−1/pCIp,q(v; Ω)

)p′
}

|∂B1|sn−1 ≤ R

s
|∂B1|sn−1
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for a.e.s ∈ (0, R). Integrating the previous inequality with respect tos in (0, R) we obtain

∫

BR

exp

{

(

v∗

|∂B1|−1/pCIp,q(v; Ω)

)p′
}

dx ≤ |∂B1|
Rn

n− 1
=

n

n− 1
|Ω|.

We conclude the proof noting that the integral in inequality(1.9) is preserved under

Schwarz symmetrization.

Remark 2.4. Note that we obtained explicit admissible constantsC1, C2, andC3 in in-

equalities of Theorem 1.2. More precisely, we obtained

C1 = |∂B1|−
1
p

(

p− 1

p+ q − n

) 1
p′
( |Ω|
|B1|

)
p+q−n

np

A
q

p |∂B1|
q

(n−1)p ,

C2 = C(n, p, q)|∂B1|
1
p⋆q

− 1
pA

q

p |∂B1|
q

(n−1)p ,

and

C3 = |∂B1|−
1
pA

n−p

p |∂B1|
n−p

(n−1)p ,

whereA is the universal constant appearing in (2.2) andC(n, p, q) is defined in (2.8).

All the constantsCi depend only onn, p, andq. However, the best constantA in (2.2)

is unknown (even for mean convex hypersurfaces). Behind this Sobolev inequality there

is the following geometric isoperimetric inequality

|M |n−2
n−1 ≤ A2

∫

M

|H(x)| dσ. (2.9)

Here,M ⊂ R
n is aC∞ immersed(n − 1)-dimensional compact hypersurface without

boundary andH is the mean curvature ofM as in Theorem 2.2. The best constant in (2.9)

is also unknown even for mean convex hypersurfaces.

3 Properties of solutions ofp-Laplace equations

In this section, we first establish ana priori L∞ estimate in a neighborhood of the bound-

ary ∂Ω for any regular solutionu of (1.2) when the domainΩ is stricly convex. More

precisely, we prove that there exists positive constantsε andγ, depending only on the

domainΩ, such that

‖u‖L∞(Ωε) ≤
1

γ
‖u‖L1(Ω), whereΩε := {x ∈ Ω : dist(x, ∂Ω) < ε}. (3.1)

Then, we establish that the geometric inequalities of Theorem 1.2 still hold for solutions

of (1.2) in the smaller range1 ≤ q ≤ 2. In the next section, these two ingredients will

allow us to obtaina priori estimates for semi-stable solutions.
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Let u ∈ W 1,p
0 (Ω) be a weak solution (i.e., a solution in the distributional sense) of the

problem






−∆pu = g(u) in Ω,
u > 0 in Ω,
u = 0 on∂Ω,

(3.2)

whereΩ is a bounded smooth domain inRn, with n ≥ 2, andg is any positive smooth

nonlinearity.

We say thatu ∈ W 1,p
0 (Ω) is aregular solutionof (3.2) if it satisfies the equation in the

distributional sense andg(u) ∈ L∞(Ω). By well known regularity results for degenerate

elliptic equations, one has that every regular solutionu belongs toC1,α(Ω) for some

α ∈ (0, 1] (see [8, 16]). Moreover,u ∈ C1(Ω) (see [11]). This is the best regularity that

one can hope for solutions ofp-Laplace equations. Therefore, equation (3.2) is always

meant in a distributional sense.

We prove the boundarya priori estimate (3.1) through a moving plane procedure for

thep-Laplacian which is developed in [9].

Proposition 3.1. Let Ω be a smooth bounded domain ofR
n and g any positive smooth

function. Letu be any positive regular solution of(3.2).

If Ω is strictly convex, then there exist positive constantsε andγ depending only on

the domainΩ such that for everyx ∈ Ω with dist(x, ∂Ω) < ε, there exists a setIx ⊂ Ω

with the following properties:

|Ix| ≥ γ and u(x) ≤ u(y) for all y ∈ Ix.

As a consequence,

‖u‖L∞(Ωε) ≤
1

γ
‖u‖L1(Ω), whereΩε := {x ∈ Ω : dist(x, ∂Ω) < ε}. (3.3)

Proof. First let us observe that from the regularity of the solutionu up to the boundary

∂Ω and the fact that∆pu ≤ 0, we can apply the generalized Hopf boundary lemma [19] to

see that the normal derivative∂u
∂ν
< 0 on∂Ω. Thus, if we letZu := {x ∈ Ω : ∇u(x) = 0}

be the critical set ofu, we have thatZu ∩ ∂Ω = ∅. By the compactness of both sets, there

existsε0 > 0 such thatZu ∩ Ωε = ∅ for anyε ≤ ε0.

We will now prove that this neighborhood of the boundary is infact independent of

the solutionu. In order to begin a moving plane argument we need some notations: let

e ∈ Sn−1 be any direction and forλ ∈ R let us consider the hyperplane

T = Tλ,e = {x ∈ R
n : x · e = λ}

and the corresponding cap

Σ = Σλ,e = {x ∈ Ω : x · e < λ}.
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Set

a(e) = inf
x∈Ω

x · e

and for anyx ∈ Ω, let x′ = xλ,e be its reflection with respect to the hyperplaneT , i.e.,

x′ = x+ (λ− 2x · e) e.

For anyλ > a(e) the cap

Σ′ = {x ∈ Ω : x′ ∈ Σ}

is the (non-empty) reflected cap ofΣ with respect toT .

Furthermore, consider the functionv(x) = u(x′) = u(xλ,e), which is just the reflected

of u with respect to the same hyperplane. By the boundedness ofΩ, for λ − a(e) small,

we have that the corresponding reflected capΣ′ is contained inΩ. Moreover, by the strict

convexity ofΩ, there existsλ0 = λ0(Ω) (independent ofe) such thatΣ′ remains inΩ for

anyλ ≤ λ0.

Let us then compare the functionu and its reflectionv for such values ofλ in the capΣ.

First of all, both functions solve the same equation since∆p is invariant under reflection;

secondly, on the hyperplaneT the functions coincide, whereas for anyx ∈ ∂Σ ∩ ∂Ω we

have thatu(x) = 0 and thatv(x) = u(x′) > 0, since the reflectionx′ ∈ Ω. Hence we can

see that:

∆p(u) + f(u) = ∆p(v) + f(v) in Σ, u ≤ v on∂Σ.

Again by the boundedness ofΩ, if λ− a(e) is small, the measure of the capΣ will be

small. Therefore, from the Comparison Principle in small domains (see [9]) we have that

u ≤ v in Σ. Moreover, by Strong Comparison Principle and Hopf Lemma, we see that

u ≤ v in Σλ,e for anya(e) < λ ≤ λ0. In particular, this spells thatu(x) is nondecreasing

in thee direction for allx ∈ Σ.

Now, fix x0 ∈ ∂Ω and lete = ν(x0) be the unit normal to∂Ω atx0. By the convexity

assumptionTa(ν(x0)),ν(x0) ∩ ∂Ω = {x0}. If we let θ ∈ Sn−1 be another direction close to

the outer normalν(x0), the reflection of the capsΣλ,θ with respect to the hyperplaneTλ,θ
(which is close to the tangent one) would still be contained inΩ thanks to its strict convex-

ity. So the above argument could be applied also to the new directionθ. In particular, we

see that we can get a neighborhoodΘ of ν(x0) in Sn−1 such thatu(x) is nondecreasing

in every directionθ ∈ Θ and for anyx such thatx · θ < λ0

2
.

By eventually taking a smaller neighborhoodΘ, we may assume that

|x · (θ − ν(x0))| < λ0/8

for anyx ∈ Σλ0,θ andθ ∈ Θ. Moreover, noticing that

x · θ = x · (θ − ν(x0)) + x · ν(x0)
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and
λ0
2

=
λ0
8

+
3λ0
8

> x · θ > λ0
8

− λ0
8

= 0

it is then easy to see thatu is nondecreasing in any directionθ ∈ Θ onΣ0 = {x ∈ Ω :
λ0

8
< x · ν(x0) < 3λ0

8
}.

Finally, let us chooseε = λ0

8
. Fix any pointx ∈ Ωε and letx0 be its projection onto

∂Ω. From the above arguments we see that

u(x) ≤ u(x0 − εν(x0)) ≤ u(y)

for anyy ∈ Ix, whereIx ⊂ Σ0 is a truncated cone with vertex atx1, opening angleΘ, and

heightλ0

4
. Hence, we have obtained that there exists a positive constant γ = γ(Ω, ε) such

that |Ix| ≥ γ andu(x) ≤ u(y) for anyy ∈ Ix. Finally, choosingxε as the maximum ofu

in Ωε, we get

‖u‖L∞(Ωε) = uε(xε) ≤
1

γ

∫

Ixε

u(y) dy ≤ 1

γ
‖u‖L1(Ω)

which proves (3.3).

We will now prove that inequalities in Theorem 1.2 are also valid for a positive solution

u of (3.2) in the smaller range1 ≤ q ≤ 2. To do this, we will construct an approximation

of u through smooth functions and see that, thanks to strong uniform estimates on this

approximation, we can pass to the limit in all of the inequalities.

Proposition 3.2. Let Ω be a smooth bounded domain ofR
n and g any positive smooth

function. Letu be any positive regular solution of(3.2). If 1 ≤ q ≤ 2, then inequalities in

Theorem1.2hold for v = u. Givens > 0, the same holds true also forv = u − s andΩ

replaced byΩs := {x ∈ Ω : u > s}.

Proof. Let Zu = {x ∈ Ω : ∇u(x) = 0}. Recall that by standard elliptic regularity

u ∈ C∞(Ω \ Zu) and that|Zu| = 0 by [9]. Therefore,u is smooth almost everywhere in

Ω. Let x ∈ Ω \ Zu and observe that for the mean curvatureHu of the level set passing

throughx we have the following explicit expression

− (n− 1)Hu = div

( ∇u
|∇u|

)

=
∆u

|∇u| −
〈D2u∇u,∇u〉

|∇u|3 (3.4)

whereas for the tangential gradient term we have

∇T,u|∇u| =
D2u∇u
|∇u| − 〈D2u∇u,∇u〉∇u

|∇u|3 , (3.5)

where all the terms in these expressions are evaluated atx. Hence, there exists a positive

constantC = C(n, p, q) such that
(

1

p′
|∇T,u|∇u|

p

q |
)q

+ |Hu|q|∇u|p ≤ C|D2u|q|∇u|p−q for a.e.x ∈ Ω. (3.6)
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From [9] we recall the following important estimate: for any1 ≤ q ≤ 2 there holds
∫

Ω

|D2u|q|∇u|p−q dx <∞. (3.7)

Thanks to (3.6) and (3.7), all of the integrals in the geometric Hardy-Sobolev inequalities

are well defined for any1 ≤ q ≤ 2.

However, since the solutionu is not smooth aroundZu, we need to regularizeu in

a neighborhood of the critical set in order to apply the inequalities of Theorem 1.2. We

will now describe an approximation argument due to Canino, Le, and Sciunzi [7] for the

p(·)-Laplacian (in our casep(x) ≡ p constant).

Lemma 3.3([7]). LetD ⊂ Ω be an open set,1 ≤ q ≤ 2, andε ∈ (0, 1). Letu ∈ C1(Ω)

be a solution of(1.2)andh := g(u). If hε ∈ C∞(D) is any sequence converging toh in

C1(D) asε ↓ 0, then the unique solutionvε of the following regularized problem
{

−div
(

(ε2 + |∇vε|2)
p−2
2 ∇vε

)

= hε(x) in D,

vε = u on∂D.
(3.8)

tends tou strongly inW 1,p(B). Moreover, there exists a constantC independent ofε such

that
∫

D

|D2vε|q(ε2 + |∇vε|2)
p−q

2 dx ≤ C

and

lim
ε→0

∫

D

|D2vε|q(ε2 + |∇vε|2)
p−q

2 dx =

∫

D

|D2u|q|∇u|p−q dx. (3.9)

Let vε ∈ C∞(D) be the unique solution of (3.8) and let us consider a smooth cut-

off function η with compact support contained inΩ and such thatη ≡ 1 onD. We can

construct a smooth regularizationuε of u defininguε := (1 − η)u + ηvε. We can then

apply Theorem 1.2 to anyuε to get the appropriate inequality(a), (b), or (c). From [8, 11]

and standard elliptic regularity we know that the regularizationuε will converge tou, as

ε ↓ 0, both inC1(Ω) andC2(Ω \Zu). Hence we can easily pass to the limit asε ↓ 0 in the

left hand side of (1.7) and (1.8).

In order to see that also the remaining termsIp,q(uε; Ω) which involve tangential gra-

dient and mean curvature behave well under this approximation the argument is the fol-

lowing. Splitting the domainΩ and recalling thatuε ≡ vε in D we have that:

Ip,q(uε; Ω) = Ip,q(uε;D) + Ip,q(uε; Ω \D) = Ip,q(vε;D) + Ip,q(uε; Ω \D).

Clearly, from theC2 convergence we have thatIp,q(uε; Ω \D) → Ip,q(u; Ω \D) asε ↓ 0.

Therefore we can concentrate on the convergence ofIp,q(vε;D).

From (3.4), (3.5), and through a simple expansion of(ε2 + |∇vε|2)
p−q

2 aroundε = 0,

we see that for a sufficiently smallε0 > 0 there exists a constantK = K(n, p, q, ε0) > 0

such that for anyε ≤ ε0 we have
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(

1

p′
|∇T,vε|∇vε|

p

q |
)q

+ |Hvε |q|∇vε|p ≤ K |D2vε|q(ε2 + |∇vε|2)
p−q

2 . (3.10)

Moreover, by the fact thatvε → u in C2(D \ Zu) and|Zu| = 0, almost everywhere in

D we have

lim
ε→0

(

1

p′
|∇T,vε |∇vε|

p

q |
)q

+ |Hvε|q|∇vε|p =
(

1

p′
|∇T,u|∇u|

p

q |
)q

+ |Hu|q|∇u|p. (3.11)

Now, thanks to (3.9), (3.10), and (3.11), by dominated convergence theorem we see

that:

lim
ε→0

∫

D

(

1

p′
|∇T,vε|∇vε|

p

q |
)q

+ |Hvε|q|∇vε|p dx

=

∫

D

(

1

p′
|∇T,u|∇u|

p

q |
)q

+ |Hu|q|∇u|p dx.

Thus, the assertions of Theorem 1.2 hold forv = u.

To conclude the proof let us fix anys > 0 and considerv = u − s onΩs = {x ∈ Ω :

u > s}. It is clear that the integrands in the inequalities remain unchanged in this case, so

the only problem comes from the factΩs might not be smooth. If this is the case, let us

consider two sequencesεn → 0 andsn → s, with the corresponding regularizations ofv

given byvn := vεn = uεn − sn. Thanks to the smoothness of anyvn and Sard Lemma, we

can choose eachsn as a regular value ofvn, so that the level set{vn > 0} = {un > sn} is

smooth. Moreover, from theC1 convergence, it is clear that for the characteristic functions

we haveχ{un>sn} → χ{u>s}. Hence we can conclude the proof using the same dominated

convergence argument as above.

4 Regularity of stable solutions. Proof of Theorems 1.3
and 1.4

We are now ready to establishLr andW 1,r a priori estimates of semi-stable solutions to

p-Laplace equations proving Theorems 1.3 and 1.4.

Before the proof our regularity results let us recall some known facts on the linearized

operator associated to (1.2) and semi-stable solutions.

4.1 Linearized operator and semi-stable solutions

This subsection deals with the linearized operator at any regular semi-stable solutionu ∈
C1

0(Ω) of






−∆pu = g(u) in Ω,
u > 0 in Ω,
u = 0 on∂Ω,

(4.1)
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whereΩ is a bounded smooth domain inRn, with n ≥ 2, and g is any positiveC1

nonlinearity.

The linearized operatorLu associated to (4.1) atu is defined by duality as

Lu(v, φ) :=

∫

Ω

|∇u|p−2

{

∇v · ∇φ+ (p− 2)

(

∇v · ∇u
|∇u|

)(

∇φ · ∇u
|∇u|

)}

dx

−
∫

Ω

g′(u)vφ dx

for all (v, φ) ∈ H0×H0, where the Hilbert spaceH0 is defined according to [9] as follows.

Definition 4.1. Let u ∈ C1
0(Ω) be a regular semi-stable solution of (4.1). We introduce

the following weightedL2-norm of the gradient

|φ| :=
(
∫

Ω

ρ|∇φ|2 dx
)1/2

whereρ := |∇u|p−2.

According to [9], the space

H1
ρ(Ω) := {φ ∈ L2(Ω) weakly differentiable: |φ| < +∞}

is a Hilbert space and is the completion ofC∞(Ω) with respect to the| · |-norm.

We define the Hilbert spaceH0 of admissible test functions as

H0 :=







{φ ∈ H1
0 (Ω) : |φ| < +∞} if 1 < p ≤ 2

the closure ofC∞
0 (Ω) in H1

ρ(Ω) if p > 2.

Note that for1 < p ≤ 2,H0 is a subspace ofH1
0 (Ω) and since

∫

Ω

|∇φ|2 ≤ ‖∇u‖2−p
L∞(Ω)|φ|2,

we see that(H0, | · |) is a Hilbert space. Forp > 2, the weightρ = |∇u|p−2 is in L∞(Ω)

and satisfiesρ−1 ∈ L1(Ω), as shown in [9].

Now, thanks to the above definition, the operatorLu is well defined forφ ∈ H0 and,

therefore, the semistability of the solutionu reads as

Lu(φ, φ) =

∫

Ω

|∇u|p−2

{

|∇φ|2 + (p− 2)

(

∇φ · ∇u
|∇u|

)2
}

− g′(u)φ2 dx ≥ 0, (4.2)

for everyφ ∈ H0.

On the one hand, consideringφ = |∇u|η as a test function in the semistability condi-

tion (4.2) foru, we obtain
∫

Ω

[

(p− 1)|∇u|p−2|∇T,u|∇u||2 +B2
u|∇u|p

]

η2 dx ≤ (p− 1)

∫

Ω

|∇u|p|∇η|2 dx (4.3)
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for any Lipschitz continuous functionη with compact support. Here,B2
u denotes theL2-

norm of the second fundamental form of the level set of|u| throughx (i.e., the sum of the

squares of its principal curvatures). The fact thatφ = η|∇u| is an admissible test function

derives from the estimate (3.7), whereas the computations behind (4.3) are done in [10]

(see Theorem 2.5 [10]).

On the other hand, noting that(n− 1)H2
u ≤ B2

u and

|∇u|p−2|∇T,u|∇u||2 =
4

p2
|∇T,u|∇u|

p

2 |2,

we obtain the key inequality to prove our regularity resultsfor semi-stable solutions

∫

Ω

(

4

p2
|∇T,u|∇u|p/2|2 +

n− 1

p− 1
H2

u|∇u|p
)

η2 dx ≤
∫

Ω

|∇u|p|∇η|2 dx (4.4)

for any Lipschitz continuous functionη with compact support.

4.2 A priori estimates of stable solutions. Proof of Theorem 1.3

In order to prove the gradient estimate (1.13) established in Theorem 1.3 (b) we will use

the following result. Its proof is based on a technique introduced by Bénilanet al. [2] to

obtain the regularity of entropy solutions forp-Laplace equations withL1 data.

Proposition 4.2. Assumen ≥ 3 andh ∈ L1(Ω). Letu be the entropy solution of

{

−∆pu = h(x) in Ω,
u = 0 on∂Ω.

(4.5)

Let r0 ≥ (p − 1)n/(n − p). If
∫

Ω
|u|r0 dx < +∞, then the following a priori estimate

holds:
∫

Ω

|∇u|r dx ≤ r|Ω|+
(r1
r
− 1
)−1

(
∫

Ω

|u|r0 dx+ ‖h‖L1(Ω)

)

for all r < r1 := pr0/(r0 + 1).

Remark 4.3. Bénilanet al. [2] proved the existence and uniqueness of entropy solutions

to problem (4.5). Moreover, they proved that|∇u|p−1 ∈ Lr(Ω) for all 1 ≤ r < n/(n− 1)

and|u|p−1 ∈ Lr(Ω) for all 1 ≤ r < n/(n−p). Proposition 4.2 establishes an improvement

of the previous gradient estimate knowing ana priori estimate of
∫

Ω
|u|r0dx for some

r0 > (p− 1)n/(n− p).

Proof of Proposition4.2. Multiplying (4.5) byTsu = max{−s, min{s, u}} we obtain

∫

{|u|≤s}

|∇u|p dx =

∫

Ω

h(x)Tsu dx ≤ s‖h‖L1(Ω).
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Let t = s(r0+1)/p. From the previous inequality, recalling thatV (s) = |{x ∈ Ω : |u| > s}|,
we deduce

sr0 |{|∇u| > t}| ≤ sr0
∫

{|∇u|>t}∩{|u|≤s}

( |∇u|
t

)p

dx+ sr0
∫

{|u|>s}

dx

≤ ‖h‖L1(Ω) + sr0V (s) for a.e.s > 0.

In particular

t
pr0
r0+1 |{|∇u| > t}| ≤ ‖h‖L1(Ω) + sup

τ>0

{

τ r0V (τ)
}

for a.e.t > 0. (4.6)

Moreover, since

τ r0V (τ) ≤ τ r0
∫

{|u|>τ}

( |u|
τ

)r0

dx ≤
∫

Ω

|u|r0 dx for a.e.τ > 0,

we havesupτ>0

{

τ r0V (τ)
}

≤
∫

Ω
|u|r0 dx.

Let r < r1 := pr0/(r0 + 1). From (4.6) and the previous inequality, we have

∫

Ω

|∇u|r dx = r

∫ ∞

0

tr−1|{|∇u| > t}| dt

≤ r|Ω|+ r

(
∫

Ω

|u|r0 dx+ ‖h‖L1(Ω)

)
∫ ∞

1

tr−1t
−

pr0
r0+1 dt

proving the proposition.

Now, we have all the ingredients to prove thea priori estimates established in Theo-

rem 1.3 for semi-stable solutions. It will follow from Theorem 1.2 and Propositions 3.2

and 4.2 choosing adequate test functions in the semistability condition (4.4).

First, we prove Theorem 1.3 whenn 6= p + 2. We will takeη = Tsu = min{s, u}
as a test function in (4.4) and then, thanks to Proposition 3.2, we apply our Morrey and

Sobolev inequalities (1.7) and (1.8) withq = 2.

Proof of Theorem1.3 for n 6= p+ 2. Assumen 6= p+2. Letu ∈ C1
0 (Ω) be a semi-stable

solution of (1.2). By takingη = Tsu = min{s, u} in the semistability condition (4.4) we

obtain
∫

{u>s}

(

4

p2
|∇T,u|∇u|p/2|2 +

n− 1

p− 1
H2

u|∇u|p
)

dx ≤ 1

s2

∫

{u<s}

|∇u|p+2 dx

for a.e.s > 0. In particular,

min

(

4

(n− 1)p
, 1

)

Ip,2(u− s; {x ∈ Ω : u > s})p ≤ p− 1

(n− 1)s2

∫

{u<s}

|∇u|p+2 dx
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for a.e.s > 0, whereIp,2 is the functional defined in (1.1) withq = 2. By Proposition 3.2

we can apply Theorem 1.2 withΩ replaced by{x ∈ Ω : u > s}, v = u − s, andq = 2.

Then, theLr estimates established in parts (a) and (b) follow directly from the Morrey

and Sobolev type inequalities (1.7) and (1.8).

Finally, the gradient estimate (1.13) follows directly from Proposition 4.2 withr0 =

np/(n− p− 2).

Now, we deal with the proof of Theorem 1.3(a) whenn = p + 2. This critical case

follows from Theorem 2.2 and the semistability condition (4.4) with the test function

η = η(u) defined in (4.11) and (4.10) below.

Proof of Theorem1.3whenn = p+ 2. Assumen = p + 2 (and hence,n > 3). Taking a

Lipschitz functionη = η(u) (to be chosen later) in (4.3) and using the coarea formula we

obtain

C

∫ ∞

0

∫

{u=t}

{

∣

∣

∣
∇T,u|∇u|

p−1
2

∣

∣

∣

2

+
∣

∣

∣
Hu|∇u|

p−1
2

∣

∣

∣

2
}

η(t)2 dσdt

≤
∫ ∞

0

∫

{u=t}

|∇u|p+1 η̇(t)2 dσdt,
(4.7)

wheredσ denotes the area element in{u = t} andC, here and in the rest of the proof, is

a constant depending only onp.

To apply the Sobolev inequality (2.2) in the left hand side ofthe previous inequality we

need to make an approximation argument. Consider the sequenceuk of smooth regular-

izations ofu introduced in the proof of Proposition 3.2 and note that{uk = t} is a smooth

hypersurface for a.e.t ≥ 0. Then, from the Sobolev inequality (2.2) withφ = |∇uk|
p−1
2 ,

q = 2, andM = {uk = t}, and noting that

(p− 1)
n− 1

n− 3
= p + 1 whenn = p+ 2,

we obtain

C

∫ ∞

0

(
∫

{uk=t}

|∇uk|p+1

)
n−3
n−1

η(t)2 dσ dt

≤
∫ ∞

0

∫

{uk=t}

{

∣

∣

∣
∇T,uk

|∇uk|
p−1
2

∣

∣

∣

2

+
∣

∣

∣
Huk

|∇uk|
p−1
2

∣

∣

∣

2
}

η(t)2 dσdt.

(4.8)

Now, we will pass to the limit in the previous inequality. Note that, ifη is bounded,

through a dominated convergence argument as in Proposition3.2 we have

lim
k→∞

∫ ∞

0

∫

{uk=t}

{

∣

∣

∣
∇T,uk

|∇uk|
p−1
2

∣

∣

∣

2

+
∣

∣

∣
Huk

|∇uk|
p−1
2

∣

∣

∣

2
}

η(t)2 dσdt

=

∫ ∞

0

∫

{u=t}

{

∣

∣

∣
∇T,u|∇u|

p−1
2

∣

∣

∣

2

+
∣

∣

∣
Hu|∇u|

p−1
2

∣

∣

∣

2
}

η(t)2 dσdt.
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Moreover, from theC1 convergence ofuk to u we obtain

lim
k→∞

∫ ∞

0

(
∫

{uk=t}

|∇uk|p+1

)
n−3
n−1

η(t)2 dσ dt =

∫ ∞

0

(
∫

{u=t}

|∇u|p+1

)
n−3
n−1

η(t)2 dσ dt.

Therefore, taking the limit ask goes to infinity in (4.8) and using (4.7), we get

C

∫ ∞

0

ψ(t)
n−3
n−1 η(t)2 dt ≤

∫ ∞

0

ψ(t) η̇(t)2 dt =

∫ ∞

0

∫

{u=t}

|∇u|p+1 dσ η̇(t)2 dt, (4.9)

where

ψ(t) :=

∫

{u=t}

|∇u|p+1 dσ. (4.10)

Now, letM̄ := ‖u‖L∞(Ω). Givens > 0, choose

η(t) = ηs(t) :=























t/s if 0 ≤ t ≤ s,

exp





1√
2

∫ t

s

(

Cψ(τ)
n−3
n−1

ψ(τ)

)
1
2

dτ



 if s < t ≤ M̄

η(M) if t > M̄.

(4.11)

It is then clear that

∫ M̄

0

∫

{u=t}

|∇u|p+1 dσ η̇s(t)
2 dt =

1

s2

∫

{u≤s}

|∇u|p+2 dx+
C

2

∫ M̄

s

ψ(t)
n−3
n−1 ηs(t)

2 dt.

Therefore, from (4.9) we obtain

C

2

∫ M̄

s

ψ(t)
n−3
n−1 ηs(t)

2 dt ≤ 1

s2

∫

{u≤s}

|∇u|p+2 dx. (4.12)

Let us chooseα = 2
n−2

, β = n−3
(n−2)(n−1)

, andm = n − 2. Note thatα, β > 0, m > 1,

andβm′ = 1/(n− 1). Moreover, using the definition ofηs we have

1

ψ(t)βm′ηs(t)αm
′
=

√

2

C

η̇s(t)

ηs(t)αm
′+1

(4.13)

for all t > s. By (4.13), Hölder inequality, and (4.12), we see that

M̄ − s =

∫ M̄

s

ψ(t)βηs(t)
α

ψ(t)βηs(t)α
dt

≤
(

∫ M̄

s

ψ(t)βmηs(t)
αm dt

) 1
m
(

∫ M̄

s

dt

ψ(t)βm′ηs(t)αm
′

) 1
m′

≤
(

∫ M̄

s

ψ(t)
n−3
n−1 ηs(t)

2 dt

)
1

n−2
(

√

2

C

∫ M̄

s

η̇s(t)

ηs(t)m
′α+1

dt

)
n−3
n−2

≤
(

2

Cs2

∫

{u≤s}

|∇u|p+2 dx

)
1

n−2

(

√

2

C

n− 3

2

)
n−3
n−2

which is exactly (1.11) (note thatn− 2 = p andη(M̄) ≥ 1).
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4.3 Regularity of the extremal solution. Proof of Theorem 1.4

In this subsection we will prove thea priori estimates for minimal and extremal solutions

of (1.15)λ stated in Theorem 1.4. Let us remark that in the proof of Theorem 1.4 we will

assume the nonlinearityf to be smooth. However, if it is onlyC1 we can proceed with an

approximation argument as in the proof of Theorem 1.2 in [3].

TheW 1,p-estimate established in Theorem 1.4 has as main ingredientthe following

result.

Lemma 4.4.Letf be an increasing positiveC1 function satisfying(1.16)andλ ∈ (0, λ⋆).

Letu = uλ ∈ C1
0 (Ω) be the minimal solution of(1.15)λ. The following inequality holds:

∫

Ω

|∇u|p dx ≤
(

max
x∈Ω

|x|
)

1

p′

∫

∂Ω

|∇u|p dσ. (4.14)

Proof. LetG′(t) = g(t) = λf(t). First, we note that

x · ∇u g(u) = x · ∇G(u) = div
(

G(u)x
)

− nG(u)

and that almost everywhere onΩ we can evaluate

x · ∇u ∆pu− div
(

x · ∇u |∇u|p−2∇u
)

= −|∇u|p−2∇u · ∇(x · ∇u)

= −|∇u|p − 1

p
∇|∇u|p · x

=
n− p

p
|∇u|p − 1

p
div
(

|∇u|px
)

.

As a consequence, multiplying(1.15)λ by x · ∇u and integrating onΩ, we have

n

∫

Ω

G(u) dx− n− p

p

∫

Ω

|∇u|p dx =
1

p′

∫

∂Ω

|∇u|p x · ν dσ, (4.15)

whereν is the outward unit normal toΩ.

Noting thatu is an absolute minimizer of the energy functional

J(u) =
1

p

∫

Ω

|∇u|p dx−
∫

Ω

G(u) dx

in the convex set{v ∈ W 1,p
0 (Ω) : 0 ≤ v ≤ u} (see [5]), we have thatJ(u) ≤ J(0) = 0.

Therefore, from (4.15) we obtain
∫

Ω

|∇u|p dx = nJ(u) +
1

p′

∫

∂Ω

|∇u|p x · ν dσ ≤
(

max
x∈Ω

|x|
)

1

p′

∫

∂Ω

|∇u|p dσ

proving the lemma.

Finally, we prove Theorem 1.4 (using the semistability condition (4.4) with an appro-

priate test function), Theorem 1.2, and Lemma 4.4.
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Proof of Theorem1.4. Letuλ be the minimal solution of(1.15)λ for λ ∈ (0, λ⋆). From [5]

we know that minimal solutions are semi-stable. In particular,uλ satisfies the semistability

condition (4.4) for allλ ∈ (0, λ⋆).

Assume thatΩ is strictly convex. Letδ(x) := dist(x, ∂Ω) be the distance to the bound-

ary andΩε := {x ∈ Ω : δ(x) < ε}. By Proposition 3.1 there exist positive constantsε

andγ such that for everyx0 ∈ Ωε there exists a setIx0 ⊂ Ω satisfying|Ix0| > γ and

uλ(x0)
p−1 ≤ uλ(y)

p−1 for all y ∈ Ix0 . (4.16)

Let xε ∈ Ωε be such thatuλ(xε) = ‖uλ‖L∞(Ωε). Integrating with respect toy in Ixε

inequality (4.16) and using (1.16), we obtain

‖uλ‖p−1
L∞(Ωε)

≤ 1

γ

∫

Ixε

up−1
λ dy ≤ 1

γ

∫

Ω

up−1
λ dy ≤ C

γ
‖f(uλ)‖L1(Ω), (4.17)

whereC, here and in the rest of the proof, is a constant independent of λ. Letting s =
(

C
γ
‖f(uλ)‖L1(Ω)

)1/(p−1)

, we deduce

Ωε ⊂ {x ∈ Ω : uλ(x) ≤ s}. (4.18)

Now, choose

η(x) :=

{

δ(x) if δ(x) < ε,
ε if δ(x) ≥ ε,

as a test function in (4.4) and use (4.18) to obtain

ε2
∫

{uλ>s}

(

4

p2
|∇T,uλ

|∇uλ|p/2|2 +
n− 1

p− 1
H2

uλ
|∇uλ|p

)

dx ≤
∫

{uλ≤s}

|∇uλ|p dx.

Multiplying equation(1.15)λ by Tsuλ = min{s, uλ} we have

∫

{uλ<s}

|∇uλ|p dx = λ

∫

Ω

f(uλ)Tsu dx ≤ λ⋆s‖f(uλ)‖L1(Ω) = C‖f(uλ)‖p
′

L1(Ω). (4.19)

Combining the previous two inequalities we obtain

∫

{uλ>s}

(

4

p2
|∇T,uλ

|∇uλ|p/2|2 +
n− 1

p− 1
H2

uλ
|∇uλ|p

)

dx ≤ C‖f(uλ)‖p
′

L1(Ω).

At this point, proceeding exactly as in the proof of Theorem 1.3, we conclude theLr

estimates established in parts(a) and(b).

In order to prove theW 1,p-estimate of part(b), recall that by (4.15) we have

∫

Ω

|∇uλ|p dx ≤ C

∫

∂Ω

|∇uλ|p dσ.
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Therefore, we need to control the right hand side of the previous inequality. Since the

nonlinearityf is increasing by hypothesis we obtain

f(uλ) ≤ f

(

C‖f(uλ)‖
1

p−1

L1(Ω)

)

in Ωε

by (4.17), whereC is a constant independent ofλ.

Now, since−∆puλ = λf(uλ) ∈ L∞(Ωε) in Ωε, it holds

‖uλ‖C1,β(Ωε)
≤ C ′

for someβ ∈ (0, 1) by [11], whereC ′ is a constant depending only onn, p, Ω, f , and

‖f(uλ)‖L1(Ω) proving the assertion.

Finally, assume thatp ≥ 2 and (1.17) holds. From [15] we know thatf(u⋆) ∈ Lr(Ω)

for all 1 ≤ r < n/(n − p′). In particular,f(u⋆) ∈ L1(Ω). Therefore, parts(i) and(ii)

follow directly from (a) and(b).
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