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Regularity of stable solutions gfLaplace
equations through geometric Sobolev type

Inequalities
Daniele Castorina Manel Sarmh
|
|
Abstract

In this paper we prove a Sobolev and a Morrey type inequatitylving the mean
curvature and the tangential gradient with respect to thad kets of the function that
appears in the inequalities. Then, as an application, wabkstt a priori estimates
for semi-stable solutions 6f A,u = g(u) in a smooth bounded domaihC R”. In
particular, we obtain nedt” andW " bounds for the extremal solutiarf when the
domain is strictly convex. More precisely, we prove thate L>°(Q) if n < p + 2

andu* € LTr=2 (Q) N WEP(Q) if n > p+ 2.

Keywords. Geometric inequalities, mean curvature of level sets, &chaymmetri-
zation,p-Laplace equations, regularity of stable solutions

1 Introduction

The aim of this paper is to obtampriori estimates for semi-stable solutiongeffaplace
equations. We will accomplish this by proving some geoméype inequalities involving
the functionals

1 q 1/p
L, (v;Q) = (/ <E\VT,U|VU|p/q|) + \Hv|q|Vv|pdx) ., pg>1 (1.1)
Q
where(2 is a smooth bounded domain Bf with n > 2 andv € Cg°(Q). Here, and in
the rest of the papef/,(z) denotes the mean curvatureravf the hypersurfacéy € Q) :
lv(y)| = |v(z)|} (which is smooth at points € 2 satisfyingVu(x) # 0), andVr, is the
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tangential gradient along a level setof. We will prove a Morrey’s type inequality when
n < p + ¢ and a Sobolev inequality when> p + ¢ (see Theorern 1.2 below).

Then, as an application of these inequalities, we estalblishnd W' a priori esti-
mates for semi-stable solutions of the reaction-diffugorblem

—Ayu = g(u) inQ,
u > 0 in €, (1.2)
u = 0 on of.

Here, the diffusion is modeled by thelLaplace operator\, (remember that\,u :=
div(|Vul[P~*Vu)) with p > 1, while the reaction term is driven by any positiZé non-
linearity g.

As we will see, these estimates will lead to nétand V" bounds for the extremal
solutionu* of (1.2) wheng(u) = A\f(u) and the domaif is strictly convex. More pre-
cisely, we prove that* € L®(Q)if n < p+ 2 andu* € Li»2(Q) N Wy (Q) if
n>p+2.

1.1 Geometric Sobolev inequalities

Before we establish our Sobolev and Morrey type inequalitie will state that the func-

tional I, , defined in[(1.1l) decreases (up to a universal multiplicatbrestant) by Schwarz

symmetrization. Given a Lipschitz continuous functtoand its Schwarz symmetrization
v* it is well known that

/ lo*|" d:cz/|v\” dx forallr € [1,+o0]
Br Q

and
/ |Vo*|" dxg/ |Voul" dz forallr e [1,00).
Br Q

Ouir first result establishes that, (v*; Br) < C1, ,(v; 2) for some universal constant
C depending only om, p, andg.

Theorem 1.1.Let Q2 be a smooth bounded domainkf with » > 2 and By the ball
centered at the origin and with radiu® = (|Q|/|B;])/". Letv € C5°(Q) and v* its
Schwarz symmetrization. L&f, be the functional defined if.I) with p,q > 1. If n >
g + 1 then there exists a universal const@ahtiepending only on, p, andg, such that

1 1/117
(/B w|Vv*\p dx) = 1,,(v"; Bg) < CI, ,(v; Q). (1.3)
R

Note that the Schwarz symmetrizationwas a radial function, and hence, its level sets
are spheres. In particular, the mean curvatidye(x) = 1/|z| and the tangential gradient
V.| Vo*|P/7 = 0. This explains the equality ifi(1.3).
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A related result was proved by Trudinger [18] wheg: 1 for the class of mean convex
functions (.e., functions for which the mean curvature of the level setsoisnegative).
More precisely, he proved Theorémll.1 replacing the funetid, , by

1/p
L, (:9) (/ IH, | |Vv|”dx) (1.4)

and considering the Schwarz symmetrizatiom @fith respect to the perimeter instead of
the classical one like us (see Definition]2.1 below). In otdetefine this symmetrization
(with respect to the perimeter) it is essential to know thatmean curvaturél, of the
level sets ofv| is nonnegative. Then using an Aleksandrov-Fenchel inégual mean
convex hypersurfaces (see [17]) he proved Thedrei 1.1 icthss of functions when
qg=1.

We prove Theorern 1.1 using two ingredients. The first onedstassical isoperimet-
ric inequality:

n|By|"/"| D[ < 9D (1.5)

for any smooth bounded domainof R". The second one is a geometric Sobolev inequal-
ity, due to Michael and Simon [12] and to Allard [1], on comp&e — 1)-hypersurfaces
M without boundary which involves the mean curvatéifef A/ for everyg € [1,n—1),
there exists a constardtdepending only om andq such that

. 1/q* 1/q
( | tor da) §A< / |v¢|q+|H¢|qdo) (16)
M M

foreveryp € C>*(M), whereg* = (n—1)q/(n—1—¢q) anddo denotes the area elementin
M. Using the classical isoperimetric inequallty (1.5) arelgeometric Sobolev inequality
@B) with M = {zr € Q : |v(x)| = t} and¢ = |Vv|?P~1/7 we will prove Theoreni 111
with the explicit constant’ = A%|aBl =y being A the universal constant i (1.6).
From Theorenm 111 and well known 1-dimensional weighted &shioequalities it is
easy to prove Morrey and Sobolev geometric inequalitieslimrg the functionall,, ,.
Indeed, by Theorem 1.1 and since Schwarz symmetrizatigepres the.,” norm, it is
sufficient to prove the existence of a positive const@imdependent of* such that

||U*||LT(BR) < Ulp,q(U*Q Bg).
Using this argument we prove the following geometric indijjies.
Theorem 1.2.Let2 be a smooth bounded domainRif withn > 2 andv € C5°(Q). Let

I, , be the functional defined L. 1) with p, ¢ > 1 and

np
n—(p+q)

Assume: > ¢ + 1. The following assertions hold:

Py =
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(a) If n < p+qthen
ptg—n

[0l () < CLIQ 7 1 (0 €2) 1.7)

for some constant’; depending only on, p, andg.
(b) If n > p+ g, then
1_1
vl ) < ColQ)7 71, 4(v;Q)  foreveryl <r < Dy (1.8)
where(, is a constant depending only enp, ¢, andr.

(¢) Ifn=p+gq, then

v ) n :
- de < ——|Q|, wherep’ = —-1), (1.9
/Qexp{(cgjp,q@;m v <=0 Y =p/p-1). (19)

for some positive constant; depending only on andp.

Cabré and the second authior [6] proved recently Thearehurid2r the assumption
g > p using a different method (without the use of Schwarz symizedion). More
precisely, they proved the theorem replacing the functidpg(v;2) by the one de-
fined in (ﬂl),fpvq(v; Q). Therefore, our geometric inequalities are only new in Hrege
1<qg<np.

Open Problem 1. s Theoreni_ 1.2 true for the range< ¢ < p and replacing the func-
tional I, ,(v; ©2) by the one defined ifi.(2.4J,, ,(v; Q)?

This question has a posive answer for the class of mean cdametions. Trudinger
[18] proved this result for this class of functions whes= 1 and can be easily extended
for everyqg > 1. However, to our knowledge, for general functions (withawgan convex
level sets) it is an open problem.

1.2 Regularity of semi-stable solutions

The second part of the paper deals watlpriori estimates for semi-stable solutions of
problem [I.2). Remember that a regular solutioa C}(Q) of (I.2) is said to besemi-
stableif the second variation of the associated energy functiahalis nonnegative defi-
nite,i.e.,

2
/ Va2 VP + (p - 2) (w-ﬁ) _JWde=0  (1.10)
Q |VU‘

for every¢ € H,, whereH, denotes the space of admissible functions (see Definitin 4.
below). The class of semi-stable solutions includes lodalmizers of the energy func-
tional as well as minimal and extremal solutions[of(1.2) wheu) = A f(u).
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Using an appropriate test function [n (1.10) we prove thifahg a priori estimates
for semi-stable solutions. This result extends the one3]iarjd [6] for the Laplacian case
(p = 2) due to Cabré and the second author.

Theorem 1.3. Let g be anyC* function and) Cc R™ any smooth bounded domain.
Letu € C}(Q) be a semi-stable solution ¢f.2), i.e., a solution satisfyindl.10) The
following assertions hold:

(a) If n < p + 2 then there exists a constafitdepending only on andp such that

p+2—n
D

C 1/p
||| Lo ) < 5+ 827|Q| n </ |Vu|Pt? dx) forall s > 0. (1.11)
{u<s}

(b) If n > p + 2 then there exists a constafitdepending only on andp such that

n—(p+2)

np np l/p
(/ (|u| — s) e dx) < % (/ | V[Pt dx) (1.12)
{u>s} S {u<s}

for all s > 0. Moreover, there exists a constaritdepending only on, p, andr such that

[ivara<c (o [ = aslsle ) 019
Q Q

n 2
forall 1 ST <7r = (1+p)+p—2

To prove [(1.111) and(1.12) we use the semi-stability coadi{{.10) with the test
function¢ = |Vu|n to obtain

4 -1
/ (—2|V;r,u|Vu|p/2|2 + n—H5|Vu|p) n*dx < / |VulP|Vn|? dx (1.14)
o \P p—1 Q

for every Lipschitz functiom in Q with 5|5 = 0. Then, taking) = T,u = min{s, u},
we obtain[(1.111) and(1.12) when+# p+ 2 by using the Morrey and Sobolev inequalities
established in Theorem 1.2 with= 2. The critical case: = p + 2 is more involved. In
order to get[(1.11) in this case, we take another explicitftexctionn = n(u) in (1.14)
and use the geometric Sobolev inequalityl(1.6). The gradiimate established in (1113)
will follow by using a technique introduced by Bénilanhal. [2] to get the regularity of
entropy solutions fop-Laplace equations with!' data (see Proposition 4.2).

The rest of the introduction deals with the regularity ofrertal solutions. Let us
recall the problem and some known results in this topic. @ans

—Ayu = Af(u) ing,
{ v = 0 onox, (1.15)
where) is a positive parameter aryfdis aC' positive increasing function satisfying
m () = +o0. (1.16)

t—+oo tP—1
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Cabré and the second author [5] proved the existence ofteeneal parametek* €
(0,00) such that problen{1.15), admits a minimal regular solutiom, € C}(Q) for
A € (0, A*) and admits no regular solution far> A\*. Moreover, every minimal solution
uy Is a semi-stable fok € (0, \*).

For the Laplacian case & 2), the limit of minimal solutions

u* = /l\lTr)l\g Uy
is a weak solution of the extremal problémn15),. and it is known as extremal solution.
Nedev [13] proved, in the case of convex nonlinearitiest tiac L>°(Q2) if n < 3 and
ut e L") foralll < r < n/(n—4)if n > 4. Recently, Cabré [3], Cabré and the
second authot [6], and Nedev [14] proved, in the case of codeenains and general
nonlinearities, that* € L>=(Q) if n < 4 andu* € L+1(Q) N HY(Q) if n > 5.

For arbitraryp > 1 it is unknown if the limit of minimal solutions* is a (weak or
entropy) solution of1.15),-. In the affirmative case, it is called tletremal solution of
(1.15)+. However, in [15] it is proved that the limit of minimal soiabhs «* is a weak
solution (in the distributional sense) @f.15),- whenevep > 2 and f satisfies the addi-
tional condition:

there existg’ > 0 such that f(t) — £(0))Y® Y is convex foraltt > 7.  (1.17)

Moreover,
u* € L*(Q) ifn<p+yp
and
n
e L'(Q), forallr<7gi=(p—1)—————, ifn>p+yp.
u ( ) r To (p )n_(p+p/> nzpwTp

This extends previous results of Nedev|[13] for the Lapladase f = 2) and convex
nonlinearities.

Our next result improves the? estimate in[[18, 15] for strictly convex domains. We
also prove that* belongs to the energy cIaQB’Ol’p(Q) independently of the dimension
extending an unpublished result of Nedev [14] foe 2 to everyp > 2 (see also [6]).

Theorem 1.4.Let f be an increasing positiv€* function satisfyind1.16) Assume that
Q) is a smooth strictly convex domain&f. Letu, € C2(Q) be the minimal solution of
(1.15),. There exists a constaatindependent ok such that:
(a) Ifn < p+2then|juy| e < C||f(U,\)||2/1((pQ_)l).
1/(p—1
(b) 10 >p+2then|u =, <C| Fun)ll 2%, Moreover |, [y 10, < C"
whereC" is a constant depending only anp, 0, f and|| f(ux)|| L1 ()

Assume, in additiory > 2 and that(1.17)holds. Then
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(1) If n < p+2thenu* € L>(Q). In particular,u* € C}(9Q).
(ii) i n > p+ 2thenu* € L2 (Q) N W P(Q).

Remark 1.5. If f(uy) is bounded in.!(€2) by a constant independent bfthen partga)
and(b) will lead automatically to the assertiofis and(ii) stated in the theorem (without
the requirement that > 2 and [1.17) hold true). However, as we said before, the etima
f(u*) € LY() is unknown in the general caseg, for arbitrary positive and increasing
nonlinearitiesf satisfying (1.16) and arbitrangy > 1.

Open Problem 2. Is it true thatf(u*) € L'(Q2) for arbitrary positive and increasing
nonlinearitiesf satisfying [(1.16)?

Under assumptions > 2 and [1.1V) it is proved in [15] that(u*) € L"(Q2) for all
1 <r <n/(n—p)whenn > p and f(u*) € L>(Q) if n < p'. In particular, one
has f(u*) € L'(Q) independently of the dimensionand the parameter > 1. As a
consequence, assertioftg and (i7) follow immediately from part§a) and (b) of the
theorem.

To prove thel” a priori estimates stated in pdit) and(b) we make three steps. First,
we use the strict convexity of the domdto prove that

{z € Q:dist(z,00) <e} C{zr € Q:uy(x) < s}

for a suitables. This is done using a moving plane procedurefdmaplace equations (see
Propositior 3.1l below). Then, we prove that the Morrey andoBey type inequalities
stated in Theorem_ 1.2 for smooth functions, also hold foulagsolutions of[(1.2) when
1 < g < 2. Finally, taking a test function related tadist (-, 92) in (1.14) and proceeding
as in the proof of Theorefm 1.3 we will obtain thé a priori estimates established in the
theorem.

The energy estimate established in parts (i) and (b) of Téeal.4 follows by ex-
tending the arguments of Nedév [14] for the Laplacian case éso Theorem 2.9 inl[6]).
First, using a Pohmev identity we obtain

1
/ |Vuy|P de < 17/ |Vuy|P x - vdo, forallp > 1 andX € (0,\*), (1.18)
Q 20

wheredo denotes the area elementdfe andv is the outward unit normal t&. Then,
using the strict convexity of the domain (as in theestimates) and standard regularity
estimates for-A,u = Af(u,(z)) in a neighborhood of the boundary, we are able to
control the right hand side of (1.118) by a constant whose miggece on\ is given by a
function of || f (ux) | L1(q)-
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Remark 1.6. Let us compare our regularity results with the sharp oneggurby Cabré,
Capella, and the second authorlin [4] wHeis the unit ballB; of R™. In the radial case,
the extremal solution* of (1.15),- is bounded if the dimensiom < p + I% Moreover,

if n>p+ 2 thenu* € Wy (By) forall1 < r < 7y, where

_ np

r = . .
n—2.,/%2=22_9
p—1

In particular,u* € L"(By) forall 1 < r < 7y, where

_ np

To := .

’ n—2./n=_9n_9
p—1 p

It can be shown that these regularity results are sharp loygalke exponential and power
nonlinearities.

Note that thel"(©2)-estimate established in Theorém|1.4 differs with the skapw-
nentr, defined above by the ter % Moreover, observe that is larger tharp and
tends to it as: goes to infinity. In particular, the best expected regufaridlependent of
the dimensiom: for the extremal solution* is T, ”(Q), which is the one we obtain in
Theorem T.1.

1.3 Outline of the paper

The paper is organized as follows. In secfibn 2 we prove Tdrad.1 and the geometric
type inequalities stated in Theorédm]1.2. In secfibn 3 we @ibvat Theorem 112 holds
for solutions of [(1.2) when < ¢ < 2. Moreover we give boundary estimates when the
domain is strictly convex. In sectidn 4, we present the sstatbility condition[(1.10) and
the space of admissible functioh . The rest of the section deals with the regularity of
semi-stable solutions proving Theoreims 1.3[and 1.4.

2 Geometric Hardy-Sobolev type inequalities

In this section we prove Theorers]l.1 1.2. As we said imtheduction, the geo-
metric inequalities established in Theorem 1.2 are newherangel < g < p since the
casey > p was proved in([6]. However, we will give the proof in all casesng Schwarz
symmetrization, giving an alternative proof for the knownge of parameters> p.

We start recalling the definition of Schwarz symmetrizatiba compact set and of a
Lipschitz continuous function.

Definition 2.1. We define theschwarz symmetrization of a compactBetC R" as

Dt — Bg(0) with R = (|D|/|By|)V/™ if D # 0,
0 if D=1(.
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Letv be a Lipschitz continuous function inand(; := {z € Q : |v(x)| > t}. We define
the Schwarz symmetrization ofas

v(x):=sup{t e R:x € Q}.
Equivalently, we can define the Schwarz symmetrization as$
vi(x) =1inf{t > 0: V(t) < |B||z]"},
whereV (t) := || = [{z € Q : |v(x)| > t}| denotes the distribution function of

The first ingredient in the proof of Theordm 1.1 is the isapetric inequality for
functionsv in W, (Q):

n|By YV ()Y < P(t) = i/ |Vu|dz  foraet >0, (2.1)
dt Jqol<ty
where P(t) stands for the perimeter in the sense of De Giorgi (the tatehtion of the
characteristic function ofz € Q : |v(z)| > t}).
The second ingredient is the following Sobolev inequalitycompact hypersurfaces

without boundary due to Michael and Simon|[12] and to Allet§l [

Theorem 2.2([1,[12]). Let M C R™ be aC* immersedn — 1)-dimensional compact
hypersurface without boundary ande C>°(M). If ¢ € [1,n — 1), then there exists a
constantA depending only on andq such that

1/q* 1/q
( / |¢|q*do—) SA( / |V¢\q+|H¢\qdo—) , 2.2)
M M

whereH is the mean curvature df/, do denotes the area elementih, andg* = %

As we said in the introduction it is well known that Schwarmsyetrization preserves
the L"-norm and decreases tHé'"-norm. Let us prove that it also decreases (up to a mul-
tiplicative constant) the functiond), , defined in[(1.1l) using the isoperimetric inequality
(2.1) and the geometric inequalify (R.2) appliedifo= M, = {z € Q : |v(x)| = t} and
¢ = |Vo|P~D/a,

Proof of Theorel.1 Letv € C§°(€2), p > 1, andl < ¢ < n — 1. By Sard’s theorem,
almost everyt € (0, ||v||z~(q)) is a regular value ofv|. By definition, if ¢ is a regular
value of|v|, then|Vu(z)| > 0 for all z € §2 such thafv(z)| = t. Therefore M, := {x €
Q : Ju(z)| = t} is aC>® immersed(n — 1)—dimensional compact hypersurface R
without boundary for every regular valde Applying inequality [2.2) toM/ = M, and
¢ = |Vv|P~V/7 we obtain

* Q/q*
</ IVo|P D da) < Aq/
J\/[t J\/lt

Vool Vol | | H Vo do (2.3)
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fora.e.t € (0,||v|z~)), WwhereH, denotes the mean curvature &, do is the area
elementin);, A is the constant i (212) which depends onlyroandgq, and

n—1—q

Recall thatl/(¢), being a nonincreasing function, is differentiable alnmes&rywhere and,
thanks to the coarea formula and that almost every0, ||v|| .~ ()) is @ regular value of
, we have

lv

—V’(t):/ Lola and P(t):/ do fora.e.t € (0, ||v||L=(q))-
M ‘vru‘ M

Therefore applying Jensen inequality and then using theeismetric inequality((2]1),
we obtain

q

e-nean do N PO (A V(@) )T
</];/ft |v | |VU|) 2 <—V/(t))p_1 Z (_v/(t))p_l (24)

fora.e.t € (0, ||v] (o)), WhereA, := n|B; |V

Note that for radial functions the inequalities in_(2.4) arpialities. Therefore, since
the Schwarz symmetrization® of v is a radial function and it satisfies (2.3), with an
equality and with constant = |05, |~/ we obtain

* q/q*
(/ |Vv*|(p_1)qqda) = |aBl|—ﬁ/ |H, || Vo*[P~  do
{Jv*|=t} o=t 2.5
(Av(h)" ) @)

(=v@)

fora.e.t € (0,||v||z~)). Here, we used that (t) = |{|v| > t}| = |[{|v*| > t}| for a.e.
t € (0, [|vllzee()-
Therefore, from[(2J3)[(214), and (2.5), we obtain

0B, 7 / H,
for =t}

for a.e.t € (0,]|v]|L=()). Integrating the previous inequality with respect ttamn
(0, ||v]|z=(02y) @nd using the coarea formula we obtain inequalityl (1.3)hwie explicit
constantC' = A» |98, @=07, proving the resul. ]

q
+ [ Hy|!|Vo~! do,

I\ V[P~ do < Aq/ )VT,U|W|”%
My

Remark 2.3. We obtained the explicit admissible constéht= A» |0B1| 07 in @.3),
whereA is the universal constant appearing[in [2.2).

We prove Theorerm 1.2 using Theoréml1.1 and known results endonensional
weighted Sobolev inequalities.
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Proof of Theorerl.2 Letv € C§°(2) andv* its Schwarz symmetrization. Recall thét
is defined inBx with R = (|Q|/|B1])"/".
(@) Assumél + ¢ < n < p + ¢. Using Holder inequality we obtain

R
v(s) = / (") (7] dr

R 1/p R .. 1/p’
< ([wyereeran) ([ o)
0 s

fora.e.s € (0, R). In particular,
1 A\ 0\ 5
“(s) < 0By P [ L= Lk I,(v" B
U(S)—|8 1| (p+q_n) (|Bl|) P,Q(U7 R)

fora.e.s € (0, R). We conclude this case, by Theoreml 1.1, noting f# « o) = v*(0).
(b) Assumen > p+q. We use the following 1-dimensional weighted Sobolev irsqu
ity:

R 1/pg R 1/p
([ lewpisras) <o ([ sosersa) @)
0 0

with optimal constant

_ 1/p . r p"—pq E
Cﬁunq)::(gfagézﬁ) nlmq[r<7l)§k127m’”) (2.8)

p+q p+q

stated in[[18]. Applying inequality (2.7) tp = v* and noting that thé:-norm is pre-
served by Schwarz symmetrization, we obtain

. . 1/p} 1/p
\mm*%(/wmda gcm%@m&rw</|ﬂﬂwwww) .
Q Br

Using Theorend 1]1 again we prove (1.8) for= p}. The remaining cases$, < r < p},
now follow easily from Holder inequality.
(c) Assumen = p + ¢q. From [2.6) and Theorem 1.1 we obtain

vi(s) < (/OR |(v*) (7)|Pr 07" dT) l/p (/SR 71 dr) "

R 1/p
< |0By|7VYPCTL ,(v; Q) (m (—))

S

fora.e.s € (0, R). Equivalently

< 'U*(S) p’ . R »
(QB 8[3 < —
‘ p{<| 1|_1/pCIp7q('U;“)) }‘ 1‘8 = S|8Bl|s
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fora.e.s € (0, R). Integrating the previous inequality with respectia (0, R) we obtain

v* v R n
< 0B - Ql.
/BReXp{<|0Bl|—1/l’(]]p7q(v;§2)) }dx—m gy s Ll

We conclude the proof noting that the integral in inequaffy@) is preserved under
Schwarz symmetrization. O

Remark 2.4. Note that we obtained explicit admissible constaritsC,, andC’ in in-
equalities of Theorein_1.2. More precisely, we obtained

ptg—n

1

_1 P — 1 v ‘Q‘ ) np q _a

Ci = |0B;| » Av|0B;|tn=Dp
1= (05| <p+q—n) (|Bl| 95|

L1 g _a
Cy = C(n,p,q)|0B |7 7 A»|0B, |17,

and |
Cy = [0B, |77 A"7"|9B, |77,
whereA is the universal constant appearing[in2.2) aia, p, q) is defined in[(Z.B).
All the constants’; depend only om, p, andq. However, the best constantin (2.2)

is unknown (even for mean convex hypersurfaces). BehiredShbolev inequality there
is the following geometric isoperimetric inequality

M < 4, / \H (z)] do. (2.9)
M

Here,M C R"is aC* immersed(n — 1)-dimensional compact hypersurface without
boundary and{ is the mean curvature @ff as in Theorern 2]2. The best constanfinl(2.9)
is also unknown even for mean convex hypersurfaces.

3 Properties of solutions ofp-Laplace equations

In this section, we first establish arpriori > estimate in a neighborhood of the bound-
ary 092 for any regular solution: of (1.2) when the domaif is stricly convex. More
precisely, we prove that there exists positive constardgady, depending only on the
domains?, such that

1 .
||l oo ) < ;||u||L1(Q), where(), := {z € Q : dist(z,00Q) < €}. (3.1)

Then, we establish that the geometric inequalities of TémoL.2 still hold for solutions
of (L.2) in the smaller rangé < ¢ < 2. In the next section, these two ingredients will
allow us to obtaira priori estimates for semi-stable solutions.
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Letu € W,"(Q) be a weak solutiori.g., a solution in the distributional sense) of the
problem

—Ayu = g(u) inQ,
u > 0 in €, (3.2)
u = 0 onof,

where() is a bounded smooth domain Ri*, with n > 2, andg is any positive smooth
nonlinearity.

We say thai, € W, ?(Q) is aregular solutionof (3.2) if it satisfies the equation in the
distributional sense anglu) € L>(Q2). By well known regularity results for degenerate
elliptic equations, one has that every regular solutiobelongs toC'<(2) for some
a € (0,1] (see[8/16]). Moreover; € C*(Q) (seel[11]). This is the best regularity that
one can hope for solutions pfLaplace equations. Therefore, equatibnl(3.2) is always
meant in a distributional sense.

We prove the boundarg priori estimate[(3.1) through a moving plane procedure for
the p-Laplacian which is developed in![9].

Proposition 3.1. Let 2 be a smooth bounded domain®f and g any positive smooth
function. Letu be any positive regular solution @B.2).

If © is strictly convex, then there exist positive constandsid v depending only on
the domain2 such that for every € Q2 with dist(z, 02) < ¢, there exists a set, C Q
with the following properties:

|| >~ and  u(z) <wu(y) forally € I,.
As a consequence,
1 .
||| oo () < ;||u||L1(Q), where(), := {zx € Q : dist(z,0Q) < e}. (3.3)

Proof. First let us observe that from the regularity of the solutionp to the boundary
o€ and the fact thaf\ ,u < 0, we can apply the generalized Hopf boundary lemima [19] to
see that the normal derivatié&é < 0 on9<2. Thus, if we letZ, := {z € Q: Vu(z) = 0}
be the critical set ofi, we have thaZ, N 92 = (). By the compactness of both sets, there
existsey > 0 such thatZ, N Q). = () for anye < &,.

We will now prove that this neighborhood of the boundary isact independent of
the solutionu. In order to begin a moving plane argument we need some aptatiet
e € S~ ! be any direction and fox € R let us consider the hyperplane

T'=T,={reR":z-e=\}
and the corresponding cap

Y=N\,={reQ:2x-e< A}
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Set

ale) = Iilggx-e

and for anyr € Q, leta’ = z, . be its reflection with respect to the hyperplahea.e.,

¥d=x+(N—2x-¢e)e.
For any\ > a(e) the cap
Y={re:a eX}

is the (non-empty) reflected cap Bfwith respect tdl'.

Furthermore, consider the functiofz) = u(z') = u(z, ), which is just the reflected
of u with respect to the same hyperplane. By the boundedne8sfof A — a(e) small,
we have that the corresponding reflected Eajs contained irf2. Moreover, by the strict
convexity of(2, there exists\, = \o(2) (independent of) such that’ remains int2 for
any\ < \.

Let us then compare the functiarand its reflection for such values ok in the cap>:.
First of all, both functions solve the same equation sifAges invariant under reflection;
secondly, on the hyperplafnéthe functions coincide, whereas for anye 0% N 02 we
have that.(z) = 0 and thatv(z) = u(z’) > 0, since the reflection’ € 2. Hence we can
see that:

Ap(u) + f(u) =Apv) + f(v)INE, uw<wvondx.

Again by the boundedness Qf if A — a(e) is small, the measure of the capwill be
small. Therefore, from the Comparison Principle in smalhdins (see [9]) we have that
u < v in X. Moreover, by Strong Comparison Principle and Hopf Lemma,see that
u <wvin X, foranya(e) < A < A. In particular, this spells that(x) is nondecreasing
in thee direction for allx € ..

Now, fix z, € 002 and lete = v(x,) be the unit normal téS2 atz,. By the convexity
assuMptionyy(, (xo)),u(o) N 02 = {x0}. If we letd € S"~! be another direction close to
the outer normad(z,), the reflection of the caps, o with respect to the hyperplang 4
(which is close to the tangent one) would still be contaimed thanks to its strict convex-
ity. So the above argument could be applied also to the nesetitnd. In particular, we
see that we can get a neighborh@®f v () in S"~! such thatu(x) is nondecreasing
in every directiory € © and for anyr such thatr - 6 < %

By eventually taking a smaller neighborho®&dwe may assume that

|z - (0 —v(xg))] < No/8
foranyz € 3,, p andf € ©. Moreover, noticing that

rx-0=x-(0—v(x))+x-v(rg)
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n A A 3\ A A
0 0 0 . 0 0
—2 ———8+—8 > 9>—8——8 =0

it is then easy to see thatis nondecreasing in any directighe © on>, = {z € Q :
2 <z v(z) < 20},

Finally, let us choose = % Fix any pointz € Q. and letx, be its projection onto
0f). From the above arguments we see that

u(x) < ufwo — ev(zo)) < u(y)

foranyy € I, wherel, C ¥, is a truncated cone with vertexat, opening angl®, and
height%o. Hence, we have obtained that there exists a positive aungta (€2, ) such
that|/,| > v andu(z) < u(y) for anyy € I,.. Finally, choosingc. as the maximum of:
in 2., we get
Jullime = vela) < = [ a)dy < el
VI, v

which proves[(3.3). O

We will now prove that inequalities in Theorém11.2 are aldaMar a positive solution
u of (3.2) in the smaller range < ¢ < 2. To do this, we will construct an approximation
of u through smooth functions and see that, thanks to strong@umiéstimates on this
approximation, we can pass to the limit in all of the inecfussi

Proposition 3.2. Let 2 be a smooth bounded domain®f and g any positive smooth
function. Letu be any positive regular solution ¢B.2). If 1 < ¢ < 2, then inequalities in
Theorentl.2 hold forv = u. Givens > 0, the same holds true also for=u — s and2
replaced byQ), := {z € Q : u > s}.

Proof. Let Z, = {z € Q : Vu(x) = 0}. Recall that by standard elliptic regularity
ue C®(Q\ Z,) and that Z,| = 0 by [9]. Thereforeu is smooth almost everywhere in
Q. Letx € Q\ Z, and observe that for the mean curvatiifg of the level set passing
throughz we have the following explicit expression

, Vu Au  (D*>uVu,Vu)
—(n—1)H, =d = — ’ 3.4
(n—1) v <|vu\) V] Vul? (3.4)
whereas for the tangential gradient term we have
D? D?
Vo V| = uVu  (D*uVu, Vu)Vu (3.5)

Vu| [Vul? ’

where all the terms in these expressions are evaluated&nce, there exists a positive
constanC' = C(n, p, q) such that

1 p\?
(—/|VT7H|Vu\q|) + | H,|!|Vul|P < C|D*u|!|VulP~? fora.e.x € Q. (3.6)
p
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From [9] we recall the following important estimate: for ahy ¢ < 2 there holds
/ |D2u|t|VulP~ dz < oo, (3.7)
Q

Thanks to[(3.6) and (3.7), all of the integrals in the geonétardy-Sobolev inequalities
are well defined for any < ¢ < 2.

However, since the solution is not smooth around’,,, we need to regularize in
a neighborhood of the critical set in order to apply the iradifjes of Theoreni 1]2. We
will now describe an approximation argument due to Canirg,dnd Sciunzi [[7] for the
p(+)-Laplacian (in our casg(z) = p constant).

Lemma 3.3([7]). Let D C 2 be an open set, < ¢ < 2, ande € (0,1). Letu € C*(Q)
be a solution of(l.2)andh := g(u). If h. € C>=(D) is any sequence converging/ian
CY(D) ase | 0, then the unique solution of the following regularized problem

{—div ((52+|Vva|2)¥wa> = he(z) inD, (3.8)

Ve = u onoD.

tends tou strongly inW1?( B). Moreover, there exists a constafiindependent of such
that
/ |D*0.|9(e2 4 |V ) T de < C
D

and
lim/ | D%, |7(e2 4 |Vu )= dx:/ | D2u|9|VulP~ dx. (3.9)
e=0 Jp D

Let v. € C°°(D) be the unique solution of (3.8) and let us consider a smoath cu
off function n» with compact support contained §{d and such thaty = 1 on D. We can
construct a smooth regularizatian of « definingu. := (1 — n)u + nv.. We can then
apply Theorem 1]2 to any. to get the appropriate inequality), (b), or (¢). From [8/11]
and standard elliptic regularity we know that the regukaticn «. will converge tou, as
e} 0, bothinC'(Q2) andC?(Q2\ Z,). Hence we can easily pass to the limitas0 in the
left hand side ofl(1]7) and (1.8).

In order to see that also the remaining tering(u.; €2) which involve tangential gra-
dient and mean curvature behave well under this approxomatie argument is the fol-
lowing. Splitting the domaif) and recalling that.. = v. in D we have that:

Ip,q(u€5 Q) = Ip,q(ué D) + Ip,q(ué Q\ D)= Ip,q(vé D)+ Ip,q(ue§ Q\ D).

Clearly, from theC? convergence we have that,(u.; Q\ D) — I, ,(u; 2\ D) ase |, 0.
Therefore we can concentrate on the convergendg gt.; D).

From [3.2),[(3.5), and through a simple expansiofedf+ |Vv.|?)"z" arounds = 0,
we see that for a sufficiently smalj > 0 there exists a constaint = K (n, p, q,&0) > 0
such that for any < ¢, we have
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1 p\? p—a
(EWTWJVM”) + | Hy || Vel? < K | Do |?(e? + [V ) = (3.10)

Moreover, by the fact that — « in C*(D \ Z,) and|Z,| = 0, almost everywhere in
D we have

1 p \? 1 » \ ¢
lim (—,WT,UJWH) +|Hvs|q|wa|p:(—/|VT,u|Vu|a|) VP, (3.11)
e—0 p p

Now, thanks to[(3)9)[(3.10), and (3111), by dominated cogeece theorem we see
that:

1 » \?
lim (—/\VT,UJVUE\E\) + |H, |?| Vv |P dx
D

e—0 D

1 p \?
:/ (E\VT,U\VUW) + | H, || Vul? de.
D

Thus, the assertions of Theorém]1.2 holdfet w.

To conclude the proof let us fix ay> 0 and consider = u — sonQ), = {z € 0 :
u > s}. Itis clear that the integrands in the inequalities remaichanged in this case, so
the only problem comes from the fa@t might not be smooth. If this is the case, let us
consider two sequences — 0 ands,, — s, with the corresponding regularizations:of
given byv,, := v., = u., — s,. Thanks to the smoothness of anyand Sard Lemma, we
can choose eact), as a regular value af,, so that the level sét,, > 0} = {u,, > s,}is
smooth. Moreover, from th€' convergence, it is clear that for the characteristic fuomnsti
we havey(,,>s,} — X{u>s}- Hence we can conclude the proof using the same dominated
convergence argument as above. O

4 Regularity of stable solutions. Proof of Theorems 113
and[1.4

We are now ready to establighi andW!" a priori estimates of semi-stable solutions to
p-Laplace equations proving Theorems| 1.3 1.4.

Before the proof our regularity results let us recall somevkmfacts on the linearized
operator associated o (11.2) and semi-stable solutions.

4.1 Linearized operator and semi-stable solutions

This subsection deals with the linearized operator at agylae semi-stable solutiom €
C(Q) of

—Ayu = g(u) inQ,
u > 0 in €, (4.2)
u = 0 onof),
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where () is a bounded smooth domain &, with n > 2, andg is any positiveC'!
nonlinearity.
The linearized operatat, associated td (4.1) atis defined by duality as

Lo(v, 0) ::/Q|Vu|p_2{Vv-V¢+(p—2) (Vv- ;ZO (v -%)}dm

— [ g (w)vg dx
Q

forall (v, ¢) € Hyx Hy, where the Hilbert spack, is defined according to[9] as follows.

Definition 4.1. Let u € C}(Q2) be a regular semi-stable solution bf(4.1). We introduce
the following weighted.2-norm of the gradient

1/2
|| :== </ p|Vo|? dx) wherep := |Vul[P~2.
Q
According to [9], the space
H)(Q) := {¢ € L*(Q) weakly differentiable |¢| < +oo}

is a Hilbert space and is the completion(@® (€2) with respect to the- |-norm.
We define the Hilbert spadd, of admissible test functions as

{¢p € HA(Q): |¢] < +o0} if 1<p<2
HQ =
the closure o’3°(Q) in H)(Q) if p> 2.

Note that forl < p < 2, H, is a subspace df/} (2) and since
Vol < IVl ol
Q

we see thatH,, | - |) is a Hilbert space. Fgr > 2, the weightp = [Vu[P~2isin L>(Q)
and satisfiep~! € L'(Q2), as shown in[[9].

Now, thanks to the above definition, the operatgris well defined forp € H, and,
therefore, the semistability of the solutiarreads as

Vu

Lu(¢,0) = /Q [Vl {|V¢|2 +(p—2) <V¢ - W) } —¢'(u)¢* dz >0, (4.2)

for every¢ € H,.
On the one hand, considerigg= |Vu|n as a test function in the semistability condi-
tion (4.2) foru, we obtain

/ [(p = D)IVul" V| Vul|* + By Vul’] n* de < (p — 1)/ [Vul?|Vn|*dz (4.3)
Q Q



p-Laplace equations and geometric Sobolev inequalities 19

for any Lipschitz continuous functiopwith compact support. Heré3? denotes the.?-
norm of the second fundamental form of the level seudthroughz (i.e., the sum of the
squares of its principal curvatures). The fact that n|Vu| is an admissible test function
derives from the estimate (3.7), whereas the computatiehs [4.8) are done in [10]
(see Theorem 2.5 [10]).

On the other hand, noting that — 1) H?2 < B? and

_ 4 »
[VulP = V| Vul]* = p|VT7u|VU|2|27
we obtain the key inequality to prove our regularity restdtssemi-stable solutions
4 /212 , T L. 2 2
—|Vru|VulPZ)* + ——H|Vul” | n*de < [ [Vul’|Vny|* dx (4.4)
o \P p—1 Q

for any Lipschitz continuous functiopwith compact support.

4.2 A priori estimates of stable solutions. Proof of Theorem 1.3

In order to prove the gradient estimdie (1.13) establish&theoreni 1.3 (b) we will use
the following result. Its proof is based on a technique idtreed by Bénilaret al. [2] to
obtain the regularity of entropy solutions fei_aplace equations with! data.

Proposition 4.2. Assume: > 3 andh € L'(Q). Letu be the entropy solution of

{—Apu = h(z) InQ, (4.5)

u = 0 onof).

Letro > (p — 1)n/(n — p). If [, |u|" dz < +o0, then the following a priori estimate

holds:
r ~1
/ |Vu|" dx < r|Q| + <—1 — 1) (/ lul™ dx + ||h||L1(Q))
Q r Q

forall r < ry :=pro/(ro + 1).

Remark 4.3. Bénilanet al.[2] proved the existence and uniqueness of entropy solsition
to problem[(4.5). Moreover, they proved th&tu|P~! € L"(Q) forall1 <r < n/(n—1)
andluP~t € L"(Q) forall 1 < r < n/(n—p). Propositiof 4.2 establishes an improvement
of the previous gradient estimate knowing apriori estimate of |, |u|"dz for some

ro > (p—1)n/(n —p).

Proof of Propositioid.2 Multiplying (4.5) by T,u = max{—s, min{s, u}} we obtain

/ IVl de = / W) Ty de < s|[hl1io.
{lu|<s} Q
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Lett = s("+1)/P, From the previous inequality, recalling tHats) = [{z € Q : |u| > s}|,
we deduce

V p
SOVl > 8] < / (M) dﬁsm/ i
(vul>tin{lul<st \ ¢ {Jul>s}

< |Allp) +s™V(s) fora.e.s > 0.

In particular

|Vl > ] < Bl +sup {7V} foraet>0.  (46)
>0

Moreover, since

To
V(1) < 7_7"0/ (M) dr < / |u|"™ dx  fora.e.r >0,
{lul>r} \ 7 Q

we havesup o 1 7V (1) ¢ < [, |ul™ d.
Letr < ry:=pro/(ro + 1). From [4.6) and the previous inequality, we have

/|vuvdx - r/ V| > 1] dt
Q 0

< ’I“|Q| +7r </ |U|r0 dx + ||h||L1(Q)) / tr_lt_% dt
Q 1

proving the proposition. 0

Now, we have all the ingredients to prove th@riori estimates established in Theo-
rem[1.3 for semi-stable solutions. It will follow from Thewn[1.2 and Propositiofs 3.2
and 4.2 choosing adequate test functions in the semidjadiindition [4.4).

First, we prove Theorem 1.3 when+# p + 2. We will taken = T,u = min{s, u}
as a test function il (4.4) and then, thanks to Propositidn\w8e apply our Morrey and
Sobolev inequalities (11.7) and (1.8) wigh= 2.

Proof of Theorerfi.3for n # p + 2. Assumen # p+ 2. Letu € C3(Q) be a semi-stable
solution of [1.2). By taking) = T,u = min{s, u} in the semistability conditior (4.4) we
obtain

4 -1 1
/ (F|VT,U|VU|”/2|2 + Z—1H5|Vu|p> dx < = |VulPt? de
{u>s -

{u<s}

for a.e.s > 0. In particular,

) 4 p—1 /
min| —— 1| Ls(u—s;{z€Q:u>s})P < ——— VulP? dx
() et it V'S 00 Juey ™
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for a.e.s > 0, wherel,, , is the functional defined i (1.1) with= 2. By Proposition 3.2
we can apply Theorem 1.2 with replaced by{x € Q : u > s}, v = u — s, andq = 2.
Then, theL” estimates established in parts (a) and (b) follow direatiyrf the Morrey
and Sobolev type inequalitids (11.7) and {1.8).

Finally, the gradient estimate (1]13) follows directlyfrdProposition 4.2 with, =
np/(n—p—2). O

Now, we deal with the proof of Theorelm 1(8) whenn = p + 2. This critical case
follows from Theoreni 2]2 and the semistability conditiondijdwith the test function

n = n(u) defined in[(4.111) and(4.10) below.

Proof of Theored.3whenn = p + 2. Assumen = p + 2 (and henceyp > 3). Taking a
Lipschitz functiony = n(u) (to be chosen later) i (4.3) and using the coarea formula we

obtain
0o o1 2
c/ / {‘vmwuw } n(t)? dodt
0 {u=t} ~
<

< / / |Vul|P™ () dodt,
0 {u=t}

2 _—
+ )Hu|Vu|T

4.7)

wheredo denotes the area element{in = ¢t} andC', here and in the rest of the proof, is
a constant depending only gn

To apply the Sobolev inequality (2.2) in the left hand sidéhefprevious inequality we
need to make an approximation argument. Consider the sequgrmf smooth regular-
izations ofu introduced in the proof of Propositign 8.2 and note that = ¢} is a smooth
hypersurface for a.e¢.> 0. Then, from the Sobolev inequality (2.2) with= |vu]€|,%1’
q = 2, andM = {u; = t}, and noting that

—1
(p—l)Z—_gszrl whenn = p + 2,

we obtain

n—3

C / ( / \vukwl)"l n(t)? do dt
0 \J{u=n (4.8)

[%9) p—1|2 b1 |2
S/ / {)VTWVWT +)Huk|Vuk|T }n(t)2dadt.
0 {uk:t}

Now, we will pass to the limit in the previous inequality. Mahat, ifn is bounded,
through a dominated convergence argument as in PropoSiiorne have

lim / / {‘VT7uk|Vuk|p21
k—o0 0 {uk:t}
o p—1 2 p—1
:/ / {)VT,UWU\T +‘Hu|Vu\T
0 {u=t}

2 p—1
+ ‘Huk|Vuk| >

2} n(t)? dodt

2} n(t)? dodt.
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Moreover, from the”'! convergence of;, to u we obtain

n—

lim < / |Vuk|p+1) U ) do dt = / < / |vu|p+1) U ()2 do dt.
k—oo Jg {ur=t} 0 {u=t}

Therefore, taking the limit ak goes to infinity in[(4.8) and using (4.7), we get
¢ [ v aeras [Cowiera= [ [ vaptdeiera, @)
0 0 0 J{u=t}

where

ot = / IVl do. (4.10)
{u=t}
Now, let M := |ju| (). Givens > 0, choose
t/s if 0<t<s,
1 [t Cpr)E . :
t)=ns(t) ;=< exp | —= ——— | dr if s<t<M (4.11)
(t) = (1) p(ﬂl(¢m
n(M) if t> M.
It is then clear that
+1 +2 c 23 2
|Vul|Pt do () dt = — |VulP™de + — W»(t) =1 ng(t)* dt.
{u=t} 5% J{u<s} 2 s
Therefore, from[(4.19) we obtain
c M n-3 2 1 +2
— Y(t) =1 ns(t)*dt < — |VulP™ dz. (4.12)
2 s? {u<s}
Let us chooser = 2,6: W andm = n — 2. Note thato, 8 > 0, m > 1,
andgm’ =1/(n —1). Moreover using the definition of, we have
1 2 is(t)
, S == 4.13
DX O e PX O @19

for all t > s. By (4.13), Holder inequality, an@ (4.12), we see that

N O,
M=s = 1 OO

(/’rwfmm@wmﬁ>

L2 M ()
< nl J— -
= (/ VO dt) <\f0/ ORCE dt)
= 2n—3 n?
p+2 E
(C’s /{u<s}|Vu| dx) ( o3 )

which is exactly[(1.T1) (note that— 2 = p andn(M) > 1). O

IA

3|
/\
N
i~
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~
3
3| &
-
Y
3
N——
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4.3 Regularity of the extremal solution. Proof of Theoreni 14

In this subsection we will prove theepriori estimates for minimal and extremal solutions
of (1.15), stated in Theorein 1.4. Let us remark that in the proof of Téx0t.4 we will
assume the nonlinearitfyto be smooth. However, if it is onlg'! we can proceed with an
approximation argument as in the proof of Theorem 1.2lin [3].

The WlP-estimate established in Theorém]1.4 has as main ingrettierfollowing
result.

Lemma 4.4.Let f be an increasing positiv€” function satisfyingL.I8)and\ € (0, \*).
Letu = uy € CZ(Q) be the minimal solution dff.15),. The following inequality holds:

1
/ |Vul? de < (m@(|x|) —// |VulP do. (4.14)
Q zeQ D Joa

Proof. Let G'(t) = g(t) = Af(t). First, we note that
z-Vug(u)=z-VG(u) = div <G(u)x> —nG(u)
and that almost everywhere énwe can evaluate
x-VuAyu— div(x -Vu |Vu|p_2Vu) = —|VulP2Vu-V(z-Vu)
= —|Vulf - %V|Vu\p T

n

- . p_l i P
- |Vul pd1V<|Vu| 93)

As a consequence, multiplyir{d.15), by = - Vu and integrating ofi2, we have

— 1
n/ G(u) dx — u/ |VulP de = —,/ |VulP z - v do, (4.15)
Q P Ja D Joa

wherev is the outward unit normal tQ.
Noting thatu is an absolute minimizer of the energy functional

J(u):%/QWuV’ dx—/QG(u) dx

in the convex sefv € W, () : 0 < v < u} (see5]), we have thaf(u) < J(0) = 0.
Therefore, from[(4.15) we obtain

1 1
/ \VulP do = nJ(u) + —// |VulP - v do < (magc |93|) —// \Vul? do
Q P Joa €N D Joa

proving the lemma. O

Finally, we prove Theorein 1.4 (using the semistability dbod (4.4) with an appro-
priate test function), Theoreim 1.2, and Lenima 4.4.
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Proof of Theorerfi.4 Letu, be the minimal solution of1.15), for A € (0, A*). From [5]
we know that minimal solutions are semi-stable. In particul, satisfies the semistability
condition [4.4) for all\ € (0, \*).

Assume thaf is strictly convex. Leb (z) := dist(x, 0Q2) be the distance to the bound-
ary and(). := {x € Q : d(x) < e}. By Propositior. 3.1 there exist positive constants
and~ such that for every,, € . there exists a sdt,, C (2 satisfying|/,,| > v and

u(10)P "t < up(y)P~t forally € I,,. (4.16)

Let z. € Q. be such that,(z.) = |lu||r~(@.) Integrating with respect tg in 1,
inequality [4.16) and using (1.16), we obtain

_ 1 _ 1 _ C
lurlle i, < ;/ uf T dy < ;/Quﬁ tdy < ;Hf(u)\)HLl(Q)a (4.17)

where(C, here and in the rest of the proof, is a constant independekit loetting s =
1/(p—1)
(Clf)le) " we deduce

Q. C{zr e Q:uy(x) < s} (4.18)
Now, choose

n(z) = { o(x) if d(z) <e,

€ if d(z) > e,
as a test function in(4.4) and use (4.18) to obtain

4 -1
82/ <—2|VTM|VU>\|7”/2|2 + n—HSAWWVD) o< / |Vu, [P da.
{ur>s) \P p—1 {ur<s)
Multiplying equation(1.15) by Tsu, = min{s, u,} we have
/ |VuylP de = )\/ flun)Tou dx < Xs|| f(ur) |l = C’Hf(uA)Hgl(Q). (4.19)
{ur<s} Q
Combining the previous two inequalities we obtain
SV [ Vusl?2P + P22 H2 (Vs de < O )7
{ur>s) \P? foal B A p—1 T - AL @)
At this point, proceeding exactly as in the proof of Theofef, ive conclude thd.”

estimates established in paftg and(b).
In order to prove théV *P-estimate of partb), recall that by[(4.75) we have

/ [VuylP de < C/ |Vuy|P do.
Q o9
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Therefore, we need to control the right hand side of the presvinequality. Since the
nonlinearityf is increasing by hypothesis we obtain

) < £ (Clfl ) ino

by (4.17), where”' is a constant independent bf
Now, since—A, uy = Af(uy) € L=(€) in Q., it holds

luallcrs,) < €7

for somes € (0, 1) by [11], whereC” is a constant depending only en p, €2, f, and
|.f (ux)|| L1 () Proving the assertion.
Finally, assume that > 2 and [1.17) holds. From [15] we know thatu*) € L"(Q)

forall 1 < r < n/(n —p'). In particular,f(u*) € L'(Q). Therefore, part$i) and (i)
follow directly from (a) and(b). ]
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