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Abstract

We establish a new W'%i=2 estimate for the extremal solution of —Au =
Af(u) in a smooth bounded domain €2 of R™, which is convex, for arbitrary
positive and increasing nonlinearities f € C1(R) satisfying lim;_, 1o f(t)/t =
+00.
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1. Introduction

Let © be a smooth bounded domain of R™ and consider the reaction-
diffusion problem
{ —Au = Af(u) in Q, (1.1

u = 0 on 052,

where \ is a positive parameter and f is a positive and increasing C! function
satisfying

lim 2 _ o, (1.2)

Crandall and Rabinowitz ﬂ] proved, using the Implicit Function Theo-
rem, the existence of an extremal parameter \* € (0+ oo) such that problem
(1.1), admits a classical minimal solution u, for all A € (0, \*). Here, mini-
mal means that it is smaller than any other nonnegative solution. Moreover,
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the least eigenvalue of the linearized operator at uy, —A —Af'(u,), is positive
for all A € (0, \*). Alternatively, this can be reached by using an iteration
argument to obtain that u) is an absolute minimizer of the associated energy
functional

J(uy) == /Q |Vuy|? — AF (uy) da, (1.3)

in the convex set {w € H}(Q) : 0 < w < uy}, where F’ = f. In particular,
uy will be semi-stable in the sense that the second variation of energy at u,)
is nonnegative definite:

Qu, (p) == /Q (V|2 = Af'(up)p®dz >0 for all p € C3(9). (1.4)

Brezis et al. [1] proved that there is no weak solution for A > A*, while the
increasing limit
w* = lim wuy
NPA®

is a weak solution of the extremal problem (1.1)y«, ie., u* € L'(Q),
f(u*)dist(-,00) € L(Q), and

/ u(—Ap)dr = )\/ fw)pdr for all ¢ € CF(Q).
Q Q

This solution is known as extremal solution of the extremal problem (1.1)y«.

The study of the regularity of the extremal solution started to growth
after Brezis and Vazquez raised some open problems in [2]. In this direction,
Nedev [10] proved, in an unpublished preprint, that u* € H}(Q) for every
positive and increasing nonlinearity f satisfying (L2)) when the domain is
convex (see also Theorem 2.9 in [5]). The proof uses the Pohozaev identity
and the fact that u, is an absolute minimizer of the functional J, defined in
(L3), on the compact set {w € HJ () : 0 < w < wuy}, and hence, J(uy) <
J(0) =0.

Our main result establishes that u* € VVO1 () for any convex domain
) and any nonlinearity fsatisfying the above assumptions. In particular,
u* € Hi(Q)). We prove it using a geometric Sobolev inequality on the graph
of minimal solutions w).

n—1
’277,72

Theorem 1.1. Let ) be a smooth bounded domain of R with n > 3 and f
a positive and increasing C* function satisfying (L2)). Let uy € CZ(Q) be the
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minimal solution of (1.1)y for A € (0, \*) and
I(t) = / (4 [VaaP) i de, ¢ e (0, lusllzm@).
{ur>t}

There ezists a positive constant C' depending only on n such that the
following inequality holds

on=1 1

CI(t)* < 5 </{u <t}(1 + |VuA|2)|VuA|2d:E> I(t)

2
+ (/ (14 [Vua2) 55 dS)
{ur=t}
fO’F a.e te (0, ||U)\||LOO(Q)).

n—1
If in addition Q is convex then the extremal solution u* € V(/’Ol’zn’2 (Q).

(1.5)

In the last decade several authors studied the regularity of the extremal
solution (see the monograph by Dupaigne [8] and references therein). How-
ever, there are few results for general reaction terms f (i.e., positive and
increasing nonlinearities satisfying (L2)). Cabré [4] established that u* €
L>(9) when n < 4 and the domain is convex. More recently, Cabré and the
author [5] proved for n > 5 that there exists a constant C' depending only
on n such that

20 et 1/2
(/ (u,\ — t) e dx) < g </ |Vuy|? dl’)
{ur>t} t \Jqus<ty

for all ¢t € (0, [|ux|lz=()). As a consequence, it is proved that the extremal

solution u* belongs to L (Q) when the domain is convex and the dimension
n > 5. The first step in the proof of both results is to take ¢ = |Vu,|n as
a test function in the semistability condition ([L4]) and use the following
geometric identity

(AIVur| + A () Vua|) [Vua| = A2 Vus|* + [V | Vs || (1.6)

in {z € Q: |Vuy| > 0}, where A%(z) denotes the second fundamental form
at x of the (n — 1)-dimensional hypersurface {y € Q : |ux(y)| = |ua(z)|} and
V# is the tangential gradient with respect to this level set. Sternberg and
Zumbrun |11, 12] made this choice to obtain

Qun (IVurly) = / VusP V2 — (BIVur + V|Vl P) 7P de
QN{|Vuy|>0}



for every Lipschitz function 7 in Q such that n|pq = 0, where Q,, is the
quadratic form defined in (I4]). The second step in the proof is to choose
an appropriate function 7 = n(u) and use the coarea formula and a Sobolev
inequality on the (n — 1)-dimensional hypersurface {y € Q : u)(y) = ux(x)}.
The first ingredient in the proof of Theorem [[.1]is the following identity,
analogue to (LG), involving the second fundamental form of Graph(u,).

Proposition 1.2. Let u € C3(Q) be a positive function and v(x, Tpy1) =

u(x) — xpyy for all (x,z,41) € QX R, Let v = —‘g:j' € R be the unit

normal vector to Graph(u), A? the second fundamental form of Graph(u),
and Vo := Vo — (v-Vo)v for every o € CHR™1). The following identity
holds

(A|Vo| +v - VAD) [Vo| = A2|Vo]* + |V | Vol > in Q. (1.7)
In particular, if u € C*(Q) is a solution of (1.1)y and f € CY(R) then
(A|V| + Af'(w)|Vo]) Vo] = Af'(u) + A2 |Vl + V2| Vol? in Q. (1.8)
Remark 1.3. (i) Let u € C?(2) be a solution of (1.1),. Note that

n+1

n
Av = E Vii = E U”:AU
i=1 =1

and
VAv = (VAu,0) = (=Af'(u)Vu,0) € R™.
(ii) Farina, Sciunzi, and Valdinoci [9] and Cesaroni, Novaga, and Valdinoci
[6] recently used identity (IL6]) to obtain one-dimensional symmetry of solu-
tions to some reaction-diffusion equations. In this sense identity (L8) could
be useful by itself.

The main novelty in the proof of Theorem [L.1] is that we use a Sobolev
inequality on the n-dimensional hypersurface

Graph(u)\) = {(ZE, xn-l—l) €EQXR: Tpt+1 = U)\(ZIZ')} - Rn+1>

instead on the level sets {y € Q : u)(y) = ur(x)} of uy as in [4, 5], and the
geometric identity (IL8). More precisely, define vy(x, z,41) = ux(x) — 211
for every A € (0, \*). Taking ¢ = |Vv,|n in the semistability condition (L.4))
and using identity (I.8]), we obtain

/()\f’(uk)+A2|Vm|2+|VT|VUA||2>n2d:c§/|Vn|2|VvA|2da: (1.9)
Q Q
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for every Lipschitz function 7 in € such that n|sno = 0. Choosing n =
min{uy, t} as a test function in (L.9]) and using a geometric Sobolev inequality
on the n-dimensional hypersurface {(x,z,+1) € Graph(uy) : z,41 > t} (see
Theorem 2.1] below) we prove inequality (L5) in Theorem [[L1l The Wh2im.
estimate for the extremal solution follows from (L.H) and the convexity of the
domain.

The paper is organized as follows. In section Pl we recall a Sobolev in-
equality on m-dimensional hypersurfaces with boundary and we prove the

geometric identities established in Proposition [L2l In section Bl we prove
Theorem [L11

2. Geometric indentities and inequalities. Proof of Proposition

The first ingredient in the proof of Theorem [[.1]is the following Sobolev
inequality on n-dimensional hypersurfaces (see section 28.5.3 in [3]): Let
M C R" be a C? immersed n-dimensional compact hypersurface with n >
2. There exists a constant C(n) depending only on the dimension n such
that, for every ¢ € C*(M) it holds

n—1

ct) ([ 1o av) " < [ qol+vohav+ [ jolas 2

where H is the mean curvature of M.

Let p* := np/(n — p) be the critical Sobolev exponent. Replacing ¢ by ¢
in (1)), with a = 2*/1* = 2(n—1)/(n—2), and using Hélder and Minkowski
inequalities it is standard to obtain the following result.

Theorem 2.1 ([3]). Let M C R™™ be a C? immersed n-dimensional compact
hypersurface with n > 3. There exists a constant C' = C(n) depending only
on the dimension n such that, for every ¢ € C*(M) it holds

au |¢|2*dv)2n71s( 1o av) ([ amo + 2|v¢|2>dV) -
+(/{)M|¢|23—5d5) ,

where H is the mean curvature of M and 2* = 2n/(n — 2).



The second ingredient is identity (L)) in Proposition[[.2l Before to prove
it let us introduce some notation. Let {2 be a smooth bounded domain of
R", v € C?(2 x R), and

Vo
V(xvxn-l-l) = _W(xvxn-l-l)

the unit normal vector to the level set of v passing throughout (x,z,.1) €
{|Vv| # 0}. Recall that the eigenvalues of v are the n principal curvatures
K1, -+, ky of the level sets of v and zero. In particular, the second fundamen-
tal form A% := k?+- -+ k2 of the level sets of v is given by A* = viv/, where
as usual Einstein summation convention is used. We denote the gradient

along the level sets of v by Vo, i.e.,
Vrp=Vo— (Vo -v)v forany ¢ € CH(R™1).
Let us prove the identities established in Proposition

Proof of Proposition[L2. Let u € C3(Q) be a positive function and define
v(x, Tpy1) = u(x) — 2y for all z € Q.
We claim that Vrlog|Vu| = (Dv)v. Indeed, noting that

Vi (Vi|vv|)j
Vol VY -
= V'Vilog|Vu| + (Vlog| Vol - v)v/v' + v

= V'Vlog|Vo| + v/

and v;; = vj; for all ¢,7 =1,--- ,n 4+ 1, we obtain
v, = vl + 1V log|Vu| — 'V log|Vo| foralli,j=1,--- ,n+ 1.

We prove the claim multiplying the previous equality by ©/ and noting that
viv' =0 for every j =1,--- ,n+ 1 and Vylog|Vu|-v = 0.
Now, using vji; = A* and V7 log|Vo| = v/v’, we compute

AV = —(v1?); = —v-VAv — Uij’/ij
—v-VAv+ (Vo) V]

= —v-VAv+ |V’U|I/]i-l/g + [ Vo Vilog| Vvl
= —v-VAv + (A +|Vlog| Vo[ |}) Vo]

to obtain identity (L.



If u € C*(Q) is a solution of (1.1)y and f € C'(R), then by standard
regularity results for uniformly elliptic equations one has u € C3(Q). From
(L) and noting that

VAU = (<A /(W) Vi, 0) and v — |V1—|(—Vu, D),
v
we obtain
! ‘VU|2 2 2
A|lVo| = =\f (U)W + (A” + |Vrlog|Vo||%) | V|
proving the proposition. O

3. Proof of Theorem [I.1]

Let uy be the minimal solution of (1.1)) for A € (0, A*). Choosing ¢ =
V14 |Vuy|?n as a test function in the semistability condition (L4]) and
using Proposition [[2], we first obtain (L9).

Lemma 3.1. Assume that Q) is a smooth bounded domain of R™ and f a
positive and increasing C* function satisfying (L2). Let uy be the minimal
solution of (1.1)x and vy(x,zp11) = ux(z) — Tpyq for X € (0,A%). The
following inequality holds

/()\f/(U)\)—I—A2|V’U)\|2+|VT|V’U)\||2) n2d$§/|VU,\|2|V77|2dx (3.1)
Q Q

for every Lipschitz function n in Q with n)sq = 0, where A% and V1 are as
in Proposition [L.2

Proof. In order to improve the notation, let us denote uy = v and vy = v for
A € (0,)\*). Choosing ¢ = |Vv|n as a test function in (4] and integrating
by parts we get

0 < Qu(|Vuln)
= / VUl [Vnl? + [Vol V[Vl - Vi + VIVl P9 = Af'(u)[Von* do

= [ [Vol?|Vnl* = (div(|Vo|V[Vo]) = [VIV][? + A (w)[Vol*)n? dx
= [ |[Vu|*|Vn]? — (|VU|A\VU\ + Af’(u)\VvP) n*dzx.
Q
Inequality (B3.1]) follows directly from identity (L.§]). O
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Finally, using Lemma [3.1] and the geometric Sobolev inequality estab-
lished in Theorem 2.1l we prove Theorem [L.1l

Proof of Theorem L1l Let uy € C2(2) be the minimal solution of (1.1)y for
A€ (0,X) and t € (0, [|ur||z=()). Define vy(x,xny1) = ur(x) — 2541 Let
M; = {(z,2p41) € Graph(uy) : x,41 > t} and dV = /1 + |Vu,|?dx its
element of volume.

We start by proving inequality (LH). On the one hand, taking n =
min{uy,t} as a test function in (B.1]), using that f is an increasing function,
and H? = (ky + -+ + Kk,)? <nA? = n(k? + -+ £2), we obtain

1 1
/ <H2|VU)\| + |VT|V’U)\|5|2> dVS/ (TLA2|VU)\|2 + —|VT|V’U)\||2) dx
Mt {U)\Zt} 4

n Va2 Vuy|? do (3.2)

T8 Jun<n

forall ¢t € (O, HU)\HLOO(Q)).
Therefore, applying Theorem .1 with M = M, and ¢ = |Vu,|'/2, we
obtain

on—1
C (/ |V |72 dV) < % (/ |V’U)\|2|VU)\|2dZL') (/ |V, |72 dV)
M, {u)\gt} M,
+ (/ |VU)\
OM;

where C'is a constant depending only on n. This is inequality (3.
Assume in addition that €2 is convex. To prove that the extremal solution

n—1

u* belongs to V(/’OM”’2 (2) we only need to bound the integrals on {u, < t}
and OM;, for some t, by a constant independent of A and then let A\ tend to
A*. The same argument was done in the proof of Theorem 2.7 [5]. However,
for convinience to the reader we sketch the proof.

Since () is convex, there exist positive constants € and v independent of
A such that

~

2
= dS) , (3.3)

1
||'U/)\||Loo(Q€) < §Hu*||L1(Q) for all A < )\*, (34)

where Q. := {zx € Q : dist(z,0Q) < e} (see Proposition 4.3 [5] and references
therein). Moreover, if \*/2 < A < X, then uy > uxjo > cdist(-,0Q) for



some positive constant ¢ independent of A € (A*/2,\*). Therefore, letting
t:=ce/2, we have {x € Q :up(x) <t} CQpp C Q..

Note that wuy is a solution of the linear equation —Au, = h(z) =
Af(ux(z)) in Q. and that, by (34, u, and the right hand side h are bounded
in L>°(€2.) by a constant independent of A. Hence, using interior and bound-
ary estimates for the linear Poisson equation and (3.3), we deduce that

27L
(/ \vmn"zdv) 301/ [V,
Mt Mt

for some constants C'; and C5 independent of .
Finally, noting that 2(n — 1)/n > 1 (since n > 3) and |Vu,| < |Vu,| we
obtain

/ |V o2 da < / |V
{ux>t} {ux>t}

for some constant C' independent of \. Letting A tend to A* in the previous

n—1

1,22=1 ,
inequality we conclude that u* € W, " *(£2) proving the theorem. O

—1
n

72 dV + Cy

ne2 Ty = / |Voy|»-2 dV < C,
My
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