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Abstract

We establish a new W 1,2n−1

n−2 estimate for the extremal solution of −∆u =
λf(u) in a smooth bounded domain Ω of Rn, which is convex, for arbitrary
positive and increasing nonlinearities f ∈ C1(R) satisfying limt→+∞ f(t)/t =
+∞.
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1. Introduction

Let Ω be a smooth bounded domain of Rn and consider the reaction-
diffusion problem

{

−∆u = λf(u) in Ω,
u = 0 on ∂Ω,

(1.1)λ

where λ is a positive parameter and f is a positive and increasing C1 function
satisfying

lim
t→+∞

f(t)

t
= +∞. (1.2)

Crandall and Rabinowitz [7] proved, using the Implicit Function Theo-
rem, the existence of an extremal parameter λ⋆ ∈ (0+∞) such that problem
(1.1)λ admits a classical minimal solution uλ for all λ ∈ (0, λ⋆). Here, mini-
mal means that it is smaller than any other nonnegative solution. Moreover,
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the least eigenvalue of the linearized operator at uλ, −∆−λf ′(uλ), is positive
for all λ ∈ (0, λ⋆). Alternatively, this can be reached by using an iteration
argument to obtain that uλ is an absolute minimizer of the associated energy
functional

J(uλ) :=

∫

Ω

|∇uλ|
2 − λF (uλ) dx, (1.3)

in the convex set {w ∈ H1
0 (Ω) : 0 ≤ w ≤ uλ}, where F ′ = f . In particular,

uλ will be semi-stable in the sense that the second variation of energy at uλ

is nonnegative definite:

Quλ
(ϕ) :=

∫

Ω

|∇ϕ|2 − λf ′(uλ)ϕ
2 dx ≥ 0 for all ϕ ∈ C1

0(Ω). (1.4)

Brezis et al. [1] proved that there is no weak solution for λ > λ⋆, while the
increasing limit

u⋆ := lim
λ↑λ⋆

uλ

is a weak solution of the extremal problem (1.1)λ⋆ , i.e., u⋆ ∈ L1(Ω),
f(u⋆) dist(·, ∂Ω) ∈ L1(Ω), and

∫

Ω

u⋆(−∆ϕ) dx = λ

∫

Ω

f(u⋆)ϕdx for all ϕ ∈ C2
0 (Ω).

This solution is known as extremal solution of the extremal problem (1.1)λ⋆ .
The study of the regularity of the extremal solution started to growth

after Brezis and Vázquez raised some open problems in [2]. In this direction,
Nedev [10] proved, in an unpublished preprint, that u⋆ ∈ H1

0 (Ω) for every
positive and increasing nonlinearity f satisfying (1.2) when the domain is
convex (see also Theorem 2.9 in [5]). The proof uses the Pohožaev identity
and the fact that uλ is an absolute minimizer of the functional J , defined in
(1.3), on the compact set {w ∈ H1

0 (Ω) : 0 ≤ w ≤ uλ}, and hence, J(uλ) ≤
J(0) = 0.

Our main result establishes that u⋆ ∈ W
1,2n−1

n−2

0 (Ω) for any convex domain
Ω and any nonlinearity fsatisfying the above assumptions. In particular,
u⋆ ∈ H1

0 (Ω). We prove it using a geometric Sobolev inequality on the graph
of minimal solutions uλ.

Theorem 1.1. Let Ω be a smooth bounded domain of Rn with n ≥ 3 and f
a positive and increasing C1 function satisfying (1.2). Let uλ ∈ C2

0(Ω) be the
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minimal solution of (1.1)λ for λ ∈ (0, λ⋆) and

I(t) :=

∫

{uλ≥t}

(1 + |∇uλ|
2)

n−1

n−2 dx, t ∈ (0, ‖uλ‖L∞(Ω)).

There exists a positive constant C depending only on n such that the

following inequality holds

CI(t)2
n−1

n ≤
1

t2

(
∫

{uλ≤t}

(1 + |∇uλ|
2)|∇uλ|

2 dx

)

I(t)

+

(
∫

{uλ=t}

(1 + |∇uλ|
2)

1

2

n−1

n−2 dS

)2 (1.5)

for a.e. t ∈ (0, ‖uλ‖L∞(Ω)).

If in addition Ω is convex then the extremal solution u⋆ ∈ W
1,2n−1

n−2

0 (Ω).

In the last decade several authors studied the regularity of the extremal
solution (see the monograph by Dupaigne [8] and references therein). How-
ever, there are few results for general reaction terms f (i.e., positive and
increasing nonlinearities satisfying (1.2)). Cabré [4] established that u⋆ ∈
L∞(Ω) when n ≤ 4 and the domain is convex. More recently, Cabré and the
author [5] proved for n ≥ 5 that there exists a constant C depending only
on n such that

(
∫

{uλ>t}

(

uλ − t
)

2n

n−4

dx

)
n−4

2n

≤
C

t

(
∫

{uλ≤t}

|∇uλ|
4 dx

)1/2

for all t ∈ (0, ‖uλ‖L∞(Ω)). As a consequence, it is proved that the extremal

solution u⋆ belongs to L
2n

n−4 (Ω) when the domain is convex and the dimension
n ≥ 5. The first step in the proof of both results is to take ϕ = |∇uλ|η as
a test function in the semistability condition (1.4) and use the following
geometric identity

(∆|∇uλ|+ λf ′(uλ)|∇uλ|) |∇uλ| = Ā2|∇uλ|
2 + |∇T̄ |∇uλ||

2 (1.6)

in {x ∈ Ω : |∇uλ| > 0}, where Ā2(x) denotes the second fundamental form
at x of the (n− 1)-dimensional hypersurface {y ∈ Ω : |uλ(y)| = |uλ(x)|} and
∇T̄ is the tangential gradient with respect to this level set. Sternberg and
Zumbrun [11, 12] made this choice to obtain

Quλ
(|∇uλ|η) =

∫

Ω∩{|∇uλ|>0}

|∇uλ|
2|∇η|2 −

(

Ā2|∇uλ|
2 + |∇T̄ |∇uλ||

2
)

η2 dx
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for every Lipschitz function η in Ω such that η|∂Ω ≡ 0, where Quλ
is the

quadratic form defined in (1.4). The second step in the proof is to choose
an appropriate function η = η(u) and use the coarea formula and a Sobolev
inequality on the (n− 1)-dimensional hypersurface {y ∈ Ω : uλ(y) = uλ(x)}.

The first ingredient in the proof of Theorem 1.1 is the following identity,
analogue to (1.6), involving the second fundamental form of Graph(uλ).

Proposition 1.2. Let u ∈ C3
0 (Ω) be a positive function and v(x, xn+1) :=

u(x) − xn+1 for all (x, xn+1) ∈ Ω × R. Let ν = − ∇v
|∇v|

∈ R
n+1 be the unit

normal vector to Graph(u), A2 the second fundamental form of Graph(u),
and ∇Tϕ := ∇ϕ− (ν · ∇ϕ)ν for every ϕ ∈ C1(Rn+1). The following identity

holds

(∆|∇v|+ ν · ∇∆v) |∇v| = A2|∇v|2 + |∇T |∇v||2 in Ω. (1.7)

In particular, if u ∈ C2(Ω) is a solution of (1.1)λ and f ∈ C1(R) then

(∆|∇v|+ λf ′(u)|∇v|) |∇v| = λf ′(u) + A2|∇v|2 + |∇T |∇v||2 in Ω. (1.8)

Remark 1.3. (i) Let u ∈ C2(Ω) be a solution of (1.1)λ. Note that

∆v =

n+1
∑

i=1

vii =

n
∑

i=1

uii = ∆u

and
∇∆v = (∇∆u, 0) = (−λf ′(u)∇u, 0) ∈ R

n+1.

(ii) Farina, Sciunzi, and Valdinoci [9] and Cesaroni, Novaga, and Valdinoci
[6] recently used identity (1.6) to obtain one-dimensional symmetry of solu-
tions to some reaction-diffusion equations. In this sense identity (1.8) could
be useful by itself.

The main novelty in the proof of Theorem 1.1 is that we use a Sobolev
inequality on the n-dimensional hypersurface

Graph(uλ) = {(x, xn+1) ∈ Ω× R : xn+1 = uλ(x)} ⊂ R
n+1,

instead on the level sets {y ∈ Ω : uλ(y) = uλ(x)} of uλ as in [4, 5], and the
geometric identity (1.8). More precisely, define vλ(x, xn+1) := uλ(x) − xn+1

for every λ ∈ (0, λ⋆). Taking ϕ = |∇vλ|η in the semistability condition (1.4)
and using identity (1.8), we obtain

∫

Ω

(

λf ′(uλ) + A2|∇vλ|
2 + |∇T |∇vλ||

2
)

η2 dx ≤

∫

Ω

|∇η|2|∇vλ|
2 dx (1.9)
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for every Lipschitz function η in Ω such that η|∂Ω ≡ 0. Choosing η =
min{uλ, t} as a test function in (1.9) and using a geometric Sobolev inequality
on the n-dimensional hypersurface {(x, xn+1) ∈ Graph(uλ) : xn+1 ≥ t} (see

Theorem 2.1 below) we prove inequality (1.5) in Theorem 1.1. The W 1,2n−1

n−2 -
estimate for the extremal solution follows from (1.5) and the convexity of the
domain.

The paper is organized as follows. In section 2 we recall a Sobolev in-
equality on n-dimensional hypersurfaces with boundary and we prove the
geometric identities established in Proposition 1.2. In section 3 we prove
Theorem 1.1.

2. Geometric indentities and inequalities. Proof of Proposition 1.2

The first ingredient in the proof of Theorem 1.1 is the following Sobolev
inequality on n-dimensional hypersurfaces (see section 28.5.3 in [3]): Let

M ⊂ R
n+1 be a C2 immersed n-dimensional compact hypersurface with n ≥

2. There exists a constant C(n) depending only on the dimension n such

that, for every φ ∈ C1(M) it holds

C(n)

(
∫

M

|φ|
n

n−1 dV

)
n−1

n

≤

∫

M

(|Hφ|+ |∇φ|) dV +

∫

∂M

|φ| dS, (2.1)

where H is the mean curvature of M .

Let p⋆ := np/(n−p) be the critical Sobolev exponent. Replacing φ by φα

in (2.1), with α = 2⋆/1⋆ = 2(n−1)/(n−2), and using Hölder and Minkowski
inequalities it is standard to obtain the following result.

Theorem 2.1 ([3]). Let M ⊂ R
n+1 be a C2 immersed n-dimensional compact

hypersurface with n ≥ 3. There exists a constant C = C(n) depending only

on the dimension n such that, for every φ ∈ C1(M) it holds

C

(
∫

M

|φ|2
⋆

dV

)2n−1

n

≤

(
∫

M

|φ|2
⋆

dV

)(
∫

M

(|Hφ|2 + |∇φ|2) dV

)

+

(
∫

∂M

|φ|2
n−1

n−2 dS

)2

,

(2.2)

where H is the mean curvature of M and 2⋆ = 2n/(n− 2).
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The second ingredient is identity (1.8) in Proposition 1.2. Before to prove
it let us introduce some notation. Let Ω be a smooth bounded domain of
R

n, v ∈ C2(Ω× R), and

ν(x, xn+1) = −
∇v

|∇v|
(x, xn+1)

the unit normal vector to the level set of v passing throughout (x, xn+1) ∈
{|∇v| 6= 0}. Recall that the eigenvalues of ν are the n principal curvatures
κ1, · · · , κn of the level sets of v and zero. In particular, the second fundamen-
tal form A2 := κ2

1+ · · ·+κ2
n of the level sets of v is given by A2 = νi

jν
j
i , where

as usual Einstein summation convention is used. We denote the gradient
along the level sets of v by ∇T , i.e.,

∇Tφ = ∇φ− (∇φ · ν)ν for any φ ∈ C1(Rn+1).

Let us prove the identities established in Proposition 1.2.

Proof of Proposition 1.2. Let u ∈ C3
0 (Ω) be a positive function and define

v(x, xn+1) = u(x)− xn+1 for all x ∈ Ω.
We claim that ∇T log|∇v| = (Dν)ν. Indeed, noting that

−
vij
|∇v|

=
(νi|∇v|)j
|∇v|

= νi∇j log|∇v|+ νi
j

= νi∇j
T log|∇v|+ (∇log|∇v| · ν)νjνi + νi

j

and vij = vji for all i, j = 1, · · · , n+ 1, we obtain

νi
j = νj

i + νj∇i
T log|∇v| − νi∇j

T log|∇v| for all i, j = 1, · · · , n+ 1.

We prove the claim multiplying the previous equality by νj and noting that
νi
jν

i = 0 for every j = 1, · · · , n+ 1 and ∇T log|∇v| · ν = 0.

Now, using νi
jν

j
i = A2 and ∇j

T log|∇v| = νj
i ν

i, we compute

∆|∇v| = −(vijν
j)i = −ν · ∇∆v − vijν

j
i

= −ν · ∇∆v +
(

|∇v|νi
)

j
νj
i

= −ν · ∇∆v + |∇v|νi
jν

j
i + |∇v|j∇

j
T log|∇v|

= −ν · ∇∆v + (A2 + |∇T log|∇v||2)|∇v|

to obtain identity (1.7).
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If u ∈ C2(Ω) is a solution of (1.1)λ and f ∈ C1(R), then by standard
regularity results for uniformly elliptic equations one has u ∈ C3(Ω). From
(1.7) and noting that

∇∆v = (−λf ′(u)∇u, 0) and ν =
1

|∇v|
(−∇u, 1),

we obtain

∆|∇v| = −λf ′(u)
|∇u|2

|∇v|
+ (A2 + |∇T log|∇v||2)|∇v|

proving the proposition.

3. Proof of Theorem 1.1

Let uλ be the minimal solution of (1.1)λ for λ ∈ (0, λ⋆). Choosing ϕ =
√

1 + |∇uλ|2 η as a test function in the semistability condition (1.4) and
using Proposition 1.2, we first obtain (1.9).

Lemma 3.1. Assume that Ω is a smooth bounded domain of Rn and f a

positive and increasing C1 function satisfying (1.2). Let uλ be the minimal

solution of (1.1)λ and vλ(x, xn+1) := uλ(x) − xn+1 for λ ∈ (0, λ⋆). The

following inequality holds
∫

Ω

(

λf ′(uλ) + A2|∇vλ|
2 + |∇T |∇vλ||

2
)

η2 dx ≤

∫

Ω

|∇vλ|
2|∇η|2 dx (3.1)

for every Lipschitz function η in Ω with η|∂Ω ≡ 0, where A2 and ∇T are as

in Proposition 1.2.

Proof. In order to improve the notation, let us denote uλ = u and vλ = v for
λ ∈ (0, λ⋆). Choosing ϕ = |∇v|η as a test function in (1.4) and integrating
by parts we get

0 ≤ Qu(|∇v|η)

=

∫

Ω

|∇v|2|∇η|2 + |∇v|∇|∇v| · ∇η2 + |∇|∇v||2η2 − λf ′(u)|∇v|2η2 dx

=

∫

Ω

|∇v|2|∇η|2 − (div(|∇v|∇|∇v|)− |∇|∇v||2 + λf ′(u)|∇v|2)η2 dx

=

∫

Ω

|∇v|2|∇η|2 −
(

|∇v|∆|∇v|+ λf ′(u)|∇v|2
)

η2 dx.

Inequality (3.1) follows directly from identity (1.8).
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Finally, using Lemma 3.1 and the geometric Sobolev inequality estab-
lished in Theorem 2.1 we prove Theorem 1.1.

Proof of Theorem 1.1. Let uλ ∈ C2
0(Ω) be the minimal solution of (1.1)λ for

λ ∈ (0, λ⋆) and t ∈ (0, ‖uλ‖L∞(Ω)). Define vλ(x, xn+1) = uλ(x) − xn+1. Let

Mt := {(x, xn+1) ∈ Graph(uλ) : xn+1 ≥ t} and dV =
√

1 + |∇uλ|2 dx its
element of volume.

We start by proving inequality (1.5). On the one hand, taking η =
min{uλ, t} as a test function in (3.1), using that f is an increasing function,
and H2 = (κ1 + · · ·+ κn)

2 ≤ nA2 = n(κ2
1 + · · ·+ κ2

n), we obtain

∫

Mt

(

H2|∇vλ|+ |∇T |∇vλ|
1

2 |2
)

dV ≤

∫

{uλ≥t}

(

nA2|∇vλ|
2 +

1

4
|∇T |∇vλ||

2

)

dx

≤
n

t2

∫

{uλ≤t}

|∇vλ|
2|∇uλ|

2 dx (3.2)

for all t ∈ (0, ‖uλ‖L∞(Ω)).
Therefore, applying Theorem 2.1 with M = Mt and φ = |∇vλ|

1/2, we
obtain

C

(
∫

Mt

|∇vλ|
n

n−2 dV

)2n−1

n

≤
n

t2

(
∫

{uλ≤t}

|∇vλ|
2|∇uλ|

2 dx

)(
∫

Mt

|∇vλ|
n

n−2 dV

)

+

(
∫

∂Mt

|∇vλ|
n−1

n−2 dS

)2

, (3.3)

where C is a constant depending only on n. This is inequality (1.5).
Assume in addition that Ω is convex. To prove that the extremal solution

u⋆ belongs to W
1,2n−1

n−2

0 (Ω) we only need to bound the integrals on {uλ ≤ t}
and ∂Mt, for some t, by a constant independent of λ and then let λ tend to
λ⋆. The same argument was done in the proof of Theorem 2.7 [5]. However,
for convinience to the reader we sketch the proof.

Since Ω is convex, there exist positive constants ε and γ independent of
λ such that

‖uλ‖L∞(Ωε) ≤
1

γ
‖u⋆‖L1(Ω) for all λ < λ⋆, (3.4)

where Ωε := {x ∈ Ω : dist(x, ∂Ω) < ε} (see Proposition 4.3 [5] and references
therein). Moreover, if λ⋆/2 < λ < λ⋆, then uλ ≥ uλ⋆/2 > c dist(·, ∂Ω) for
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some positive constant c independent of λ ∈ (λ⋆/2, λ⋆). Therefore, letting
t := cε/2, we have {x ∈ Ω : uλ(x) ≤ t} ⊂ Ωε/2 ⊂ Ωε.

Note that uλ is a solution of the linear equation −∆uλ = h(x) :=
λf(uλ(x)) in Ωε and that, by (3.4), uλ and the right hand side h are bounded
in L∞(Ωε) by a constant independent of λ. Hence, using interior and bound-
ary estimates for the linear Poisson equation and (3.3), we deduce that

(
∫

Mt

|∇vλ|
n

n−2 dV

)2n−1

n

≤ C1

∫

Mt

|∇vλ|
n

n−2 dV + C2

for some constants C1 and C2 independent of λ.
Finally, noting that 2(n− 1)/n > 1 (since n ≥ 3) and |∇uλ| ≤ |∇vλ| we

obtain
∫

{uλ≥t}

|∇uλ|
n

n−2
+1 dx ≤

∫

{uλ≥t}

|∇vλ|
n

n−2
+1 dx =

∫

Mt

|∇vλ|
n

n−2 dV ≤ C,

for some constant C independent of λ. Letting λ tend to λ⋆ in the previous

inequality we conclude that u⋆ ∈ W
1,2n−1

n−2

0 (Ω) proving the theorem.
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