$W^{1, q}$ estimates for the extremal solution of reaction-diffusion problems

Manel Sanchón
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Abstract

We establish a new $W^{1,2 \frac{n-1}{n-2}}$ estimate for the extremal solution of $-\Delta u=$ $\lambda f(u)$ in a smooth bounded domain Ω of \mathbb{R}^{n}, which is convex, for arbitrary positive and increasing nonlinearities $f \in C^{1}(\mathbb{R})$ satisfying $\lim _{t \rightarrow+\infty} f(t) / t=$ $+\infty$. Keywords: Regularity of extremal solutions, second fundamental form of Graph (u) 2010 MSC: 35K57, 35B65, 35J60

1. Introduction

Let Ω be a smooth bounded domain of \mathbb{R}^{n} and consider the reactiondiffusion problem

$$
\left\{\begin{align*}
-\Delta u & =\lambda f(u) & & \text { in } \Omega, \tag{1.1}\\
u & =0 & & \text { on } \partial \Omega,
\end{align*}\right.
$$

where λ is a positive parameter and f is a positive and increasing C^{1} function satisfying

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{f(t)}{t}=+\infty \tag{1.2}
\end{equation*}
$$

Crandall and Rabinowitz [7] proved, using the Implicit Function Theorem, the existence of an extremal parameter $\lambda^{\star} \in(0+\infty)$ such that problem $(1.1)_{\lambda}$ admits a classical minimal solution u_{λ} for all $\lambda \in\left(0, \lambda^{\star}\right)$. Here, minimal means that it is smaller than any other nonnegative solution. Moreover,

[^0]the least eigenvalue of the linearized operator at $u_{\lambda},-\Delta-\lambda f^{\prime}\left(u_{\lambda}\right)$, is positive for all $\lambda \in\left(0, \lambda^{\star}\right)$. Alternatively, this can be reached by using an iteration argument to obtain that u_{λ} is an absolute minimizer of the associated energy functional
\[

$$
\begin{equation*}
J\left(u_{\lambda}\right):=\int_{\Omega}\left|\nabla u_{\lambda}\right|^{2}-\lambda F\left(u_{\lambda}\right) d x \tag{1.3}
\end{equation*}
$$

\]

in the convex set $\left\{w \in H_{0}^{1}(\Omega): 0 \leq w \leq u_{\lambda}\right\}$, where $F^{\prime}=f$. In particular, u_{λ} will be semi-stable in the sense that the second variation of energy at u_{λ} is nonnegative definite:

$$
\begin{equation*}
Q_{u_{\lambda}}(\varphi):=\int_{\Omega}|\nabla \varphi|^{2}-\lambda f^{\prime}\left(u_{\lambda}\right) \varphi^{2} d x \geq 0 \quad \text { for all } \varphi \in C_{0}^{1}(\Omega) \tag{1.4}
\end{equation*}
$$

Brezis et al. [1] proved that there is no weak solution for $\lambda>\lambda^{\star}$, while the increasing limit

$$
u^{\star}:=\lim _{\lambda \uparrow \lambda^{\star}} u_{\lambda}
$$

is a weak solution of the extremal problem $(1.1)_{\lambda^{\star}}$, i.e., $u^{\star} \in L^{1}(\Omega)$, $f\left(u^{\star}\right) \operatorname{dist}(\cdot, \partial \Omega) \in L^{1}(\Omega)$, and

$$
\int_{\Omega} u^{\star}(-\Delta \varphi) d x=\lambda \int_{\Omega} f\left(u^{\star}\right) \varphi d x \quad \text { for all } \varphi \in C_{0}^{2}(\bar{\Omega}) .
$$

This solution is known as extremal solution of the extremal problem $(1.1)_{\lambda^{*}}$.
The study of the regularity of the extremal solution started to growth after Brezis and Vázquez raised some open problems in [2]. In this direction, Nedev [10] proved, in an unpublished preprint, that $u^{\star} \in H_{0}^{1}(\Omega)$ for every positive and increasing nonlinearity f satisfying (1.2) when the domain is convex (see also Theorem 2.9 in [5]). The proof uses the Pohožaev identity and the fact that u_{λ} is an absolute minimizer of the functional J, defined in (1.3), on the compact set $\left\{w \in H_{0}^{1}(\Omega): 0 \leq w \leq u_{\lambda}\right\}$, and hence, $J\left(u_{\lambda}\right) \leq$ $J(0)=0$.

Our main result establishes that $u^{\star} \in W_{0}^{1,2 \frac{n-1}{n-2}}(\Omega)$ for any convex domain Ω and any nonlinearity f satisfying the above assumptions. In particular, $u^{\star} \in H_{0}^{1}(\Omega)$. We prove it using a geometric Sobolev inequality on the graph of minimal solutions u_{λ}.

Theorem 1.1. Let Ω be a smooth bounded domain of \mathbb{R}^{n} with $n \geq 3$ and f a positive and increasing C^{1} function satisfying (1.2). Let $u_{\lambda} \in C_{0}^{2}(\bar{\Omega})$ be the
minimal solution of $(1.1)_{\lambda}$ for $\lambda \in\left(0, \lambda^{\star}\right)$ and

$$
I(t):=\int_{\left\{u_{\lambda} \geq t\right\}}\left(1+\left|\nabla u_{\lambda}\right|^{2}\right)^{\frac{n-1}{n-2}} d x, \quad t \in\left(0,\left\|u_{\lambda}\right\|_{L^{\infty}(\Omega)}\right)
$$

There exists a positive constant C depending only on n such that the following inequality holds

$$
\begin{array}{r}
C I(t)^{2 \frac{n-1}{n} \leq} \frac{1}{t^{2}}\left(\int_{\left\{u_{\lambda} \leq t\right\}}\left(1+\left|\nabla u_{\lambda}\right|^{2}\right)\left|\nabla u_{\lambda}\right|^{2} d x\right) I(t) \tag{1.5}\\
\quad+\left(\int_{\left\{u_{\lambda}=t\right\}}\left(1+\left|\nabla u_{\lambda}\right|^{2}\right)^{\frac{1}{2} \frac{n-1}{n-2}} d S\right)^{2}
\end{array}
$$

for a.e. $t \in\left(0,\left\|u_{\lambda}\right\|_{L^{\infty}(\Omega)}\right)$.
If in addition Ω is convex then the extremal solution $u^{\star} \in W_{0}^{1,2 \frac{n-1}{n-2}}(\Omega)$.
In the last decade several authors studied the regularity of the extremal solution (see the monograph by Dupaigne [8] and references therein). However, there are few results for general reaction terms f (i.e., positive and increasing nonlinearities satisfying (1.2)). Cabré [4] established that $u^{\star} \in$ $L^{\infty}(\Omega)$ when $n \leq 4$ and the domain is convex. More recently, Cabré and the author [5] proved for $n \geq 5$ that there exists a constant C depending only on n such that

$$
\left(\int_{\left\{u_{\lambda}>t\right\}}\left(u_{\lambda}-t\right)^{\frac{2 n}{n-4}} d x\right)^{\frac{n-4}{2 n}} \leq \frac{C}{t}\left(\int_{\left\{u_{\lambda} \leq t\right\}}\left|\nabla u_{\lambda}\right|^{4} d x\right)^{1 / 2}
$$

for all $t \in\left(0,\left\|u_{\lambda}\right\|_{L^{\infty}(\Omega)}\right)$. As a consequence, it is proved that the extremal solution u^{\star} belongs to $L^{\frac{2 n}{n-4}}(\Omega)$ when the domain is convex and the dimension $n \geq 5$. The first step in the proof of both results is to take $\varphi=\left|\nabla u_{\lambda}\right| \eta$ as a test function in the semistability condition (1.4) and use the following geometric identity

$$
\begin{equation*}
\left(\Delta\left|\nabla u_{\lambda}\right|+\lambda f^{\prime}\left(u_{\lambda}\right)\left|\nabla u_{\lambda}\right|\right)\left|\nabla u_{\lambda}\right|=\bar{A}^{2}\left|\nabla u_{\lambda}\right|^{2}+\left|\nabla_{\bar{T}}\right| \nabla u_{\lambda}| |^{2} \tag{1.6}
\end{equation*}
$$

in $\left\{x \in \Omega:\left|\nabla u_{\lambda}\right|>0\right\}$, where $\bar{A}^{2}(x)$ denotes the second fundamental form at x of the $(n-1)$-dimensional hypersurface $\left\{y \in \Omega:\left|u_{\lambda}(y)\right|=\left|u_{\lambda}(x)\right|\right\}$ and $\nabla_{\bar{T}}$ is the tangential gradient with respect to this level set. Sternberg and Zumbrun [11, 12] made this choice to obtain

$$
Q_{u_{\lambda}}\left(\left|\nabla u_{\lambda}\right| \eta\right)=\int_{\Omega \cap\left\{\left|\nabla u_{\lambda}\right|>0\right\}}\left|\nabla u_{\lambda}\right|^{2}|\nabla \eta|^{2}-\left(\bar{A}^{2}\left|\nabla u_{\lambda}\right|^{2}+\left|\nabla_{\bar{T}}\right| \nabla u_{\lambda}| |^{2}\right) \eta^{2} d x
$$

for every Lipschitz function η in $\bar{\Omega}$ such that $\left.\eta\right|_{\partial \Omega} \equiv 0$, where $Q_{u_{\lambda}}$ is the quadratic form defined in (1.4). The second step in the proof is to choose an appropriate function $\eta=\eta(u)$ and use the coarea formula and a Sobolev inequality on the $(n-1)$-dimensional hypersurface $\left\{y \in \Omega: u_{\lambda}(y)=u_{\lambda}(x)\right\}$.

The first ingredient in the proof of Theorem 1.1 is the following identity, analogue to (1.6), involving the second fundamental form of $\operatorname{Graph}\left(u_{\lambda}\right)$.
Proposition 1.2. Let $u \in C_{0}^{3}(\bar{\Omega})$ be a positive function and $v\left(x, x_{n+1}\right):=$ $u(x)-x_{n+1}$ for all $\left(x, x_{n+1}\right) \in \Omega \times \mathbb{R}$. Let $\nu=-\frac{\nabla v}{|\nabla v|} \in \mathbb{R}^{n+1}$ be the unit normal vector to $\operatorname{Graph}(u), A^{2}$ the second fundamental form of $\operatorname{Graph}(u)$, and $\nabla_{T} \varphi:=\nabla \varphi-(\nu \cdot \nabla \varphi) \nu$ for every $\varphi \in C^{1}\left(\mathbb{R}^{n+1}\right)$. The following identity holds

$$
\begin{equation*}
(\Delta|\nabla v|+\nu \cdot \nabla \Delta v)|\nabla v|=A^{2}|\nabla v|^{2}+\left|\nabla_{T}\right| \nabla v \|^{2} \quad \text { in } \Omega \tag{1.7}
\end{equation*}
$$

In particular, if $u \in C^{2}(\bar{\Omega})$ is a solution of $(1.1)_{\lambda}$ and $f \in C^{1}(\mathbb{R})$ then

$$
\begin{equation*}
\left(\Delta|\nabla v|+\lambda f^{\prime}(u)|\nabla v|\right)|\nabla v|=\lambda f^{\prime}(u)+A^{2}|\nabla v|^{2}+\left.\left|\nabla_{T}\right| \nabla v\right|^{2} \quad \text { in } \Omega . \tag{1.8}
\end{equation*}
$$

Remark 1.3. (i) Let $u \in C^{2}(\bar{\Omega})$ be a solution of $(1.1)_{\lambda}$. Note that

$$
\Delta v=\sum_{i=1}^{n+1} v_{i i}=\sum_{i=1}^{n} u_{i i}=\Delta u
$$

and

$$
\nabla \Delta v=(\nabla \Delta u, 0)=\left(-\lambda f^{\prime}(u) \nabla u, 0\right) \in \mathbb{R}^{n+1}
$$

(ii) Farina, Sciunzi, and Valdinoci [9] and Cesaroni, Novaga, and Valdinoci [6] recently used identity (1.6) to obtain one-dimensional symmetry of solutions to some reaction-diffusion equations. In this sense identity (1.8) could be useful by itself.

The main novelty in the proof of Theorem 1.1 is that we use a Sobolev inequality on the n-dimensional hypersurface

$$
\operatorname{Graph}\left(u_{\lambda}\right)=\left\{\left(x, x_{n+1}\right) \in \Omega \times \mathbb{R}: x_{n+1}=u_{\lambda}(x)\right\} \subset \mathbb{R}^{n+1}
$$

instead on the level sets $\left\{y \in \Omega: u_{\lambda}(y)=u_{\lambda}(x)\right\}$ of u_{λ} as in [4, 5], and the geometric identity (1.8). More precisely, define $v_{\lambda}\left(x, x_{n+1}\right):=u_{\lambda}(x)-x_{n+1}$ for every $\lambda \in\left(0, \lambda^{\star}\right)$. Taking $\varphi=\left|\nabla v_{\lambda}\right| \eta$ in the semistability condition (1.4) and using identity (1.8), we obtain

$$
\begin{equation*}
\int_{\Omega}\left(\lambda f^{\prime}\left(u_{\lambda}\right)+A^{2}\left|\nabla v_{\lambda}\right|^{2}+\left.\left|\nabla_{T}\right| \nabla v_{\lambda}\right|^{2}\right) \eta^{2} d x \leq \int_{\Omega}|\nabla \eta|^{2}\left|\nabla v_{\lambda}\right|^{2} d x \tag{1.9}
\end{equation*}
$$

for every Lipschitz function η in $\bar{\Omega}$ such that $\left.\eta\right|_{\partial \Omega} \equiv 0$. Choosing $\eta=$ $\min \left\{u_{\lambda}, t\right\}$ as a test function in (1.9) and using a geometric Sobolev inequality on the n-dimensional hypersurface $\left\{\left(x, x_{n+1}\right) \in \operatorname{Graph}\left(u_{\lambda}\right): x_{n+1} \geq t\right\}$ (see Theorem 2.1 below) we prove inequality (1.5) in Theorem 1.1. The $W^{1,2 \frac{n-1}{n-2}-}$ estimate for the extremal solution follows from (1.5) and the convexity of the domain.

The paper is organized as follows. In section 2 we recall a Sobolev inequality on n-dimensional hypersurfaces with boundary and we prove the geometric identities established in Proposition 1.2, In section 3 we prove Theorem 1.1 .

2. Geometric indentities and inequalities. Proof of Proposition 1.2

The first ingredient in the proof of Theorem 1.1 is the following Sobolev inequality on n-dimensional hypersurfaces (see section 28.5.3 in [3]): Let $M \subset \mathbb{R}^{n+1}$ be a C^{2} immersed n-dimensional compact hypersurface with $n \geq$ 2. There exists a constant $C(n)$ depending only on the dimension n such that, for every $\phi \in C^{1}(M)$ it holds

$$
\begin{equation*}
C(n)\left(\int_{M}|\phi|^{\frac{n}{n-1}} d V\right)^{\frac{n-1}{n}} \leq \int_{M}(|H \phi|+|\nabla \phi|) d V+\int_{\partial M}|\phi| d S \tag{2.1}
\end{equation*}
$$

where H is the mean curvature of M.
Let $p^{\star}:=n p /(n-p)$ be the critical Sobolev exponent. Replacing ϕ by ϕ^{α} in (2.1), with $\alpha=2^{\star} / 1^{\star}=2(n-1) /(n-2)$, and using Hölder and Minkowski inequalities it is standard to obtain the following result.

Theorem 2.1 ([3]). Let $M \subset \mathbb{R}^{n+1}$ be a C^{2} immersed n-dimensional compact hypersurface with $n \geq 3$. There exists a constant $C=C(n)$ depending only on the dimension n such that, for every $\phi \in C^{1}(M)$ it holds

$$
\begin{gather*}
C\left(\int_{M}|\phi|^{2^{\star}} d V\right)^{2 \frac{n-1}{n}} \leq\left(\int_{M}|\phi|^{2^{\star}} d V\right)\left(\int_{M}\left(|H \phi|^{2}+|\nabla \phi|^{2}\right) d V\right) \tag{2.2}\\
+\left(\int_{\partial M}|\phi|^{2 \frac{n-1}{n-2}} d S\right)^{2}
\end{gather*}
$$

where H is the mean curvature of M and $2^{\star}=2 n /(n-2)$.

The second ingredient is identity (1.8) in Proposition 1.2. Before to prove it let us introduce some notation. Let Ω be a smooth bounded domain of $\mathbb{R}^{n}, v \in C^{2}(\Omega \times \mathbb{R})$, and

$$
\nu\left(x, x_{n+1}\right)=-\frac{\nabla v}{|\nabla v|}\left(x, x_{n+1}\right)
$$

the unit normal vector to the level set of v passing throughout $\left(x, x_{n+1}\right) \in$ $\{|\nabla v| \neq 0\}$. Recall that the eigenvalues of ν are the n principal curvatures $\kappa_{1}, \cdots, \kappa_{n}$ of the level sets of v and zero. In particular, the second fundamental form $A^{2}:=\kappa_{1}^{2}+\cdots+\kappa_{n}^{2}$ of the level sets of v is given by $A^{2}=\nu_{j}^{i} \nu_{i}^{j}$, where as usual Einstein summation convention is used. We denote the gradient along the level sets of v by ∇_{T}, i.e.,

$$
\nabla_{T} \phi=\nabla \phi-(\nabla \phi \cdot \nu) \nu \quad \text { for any } \phi \in C^{1}\left(\mathbb{R}^{n+1}\right)
$$

Let us prove the identities established in Proposition 1.2,
Proof of Proposition 1.2. Let $u \in C_{0}^{3}(\bar{\Omega})$ be a positive function and define $v\left(x, x_{n+1}\right)=u(x)-x_{n+1}$ for all $x \in \Omega$.

We claim that $\nabla_{T} \log |\nabla v|=(D \nu) \nu$. Indeed, noting that

$$
\begin{aligned}
-\frac{v_{i j}}{|\nabla v|} & =\frac{\left(\nu^{i}|\nabla v|\right)_{j}}{|\nabla v|}=\nu^{i} \nabla^{j} \log |\nabla v|+\nu_{j}^{i} \\
& =\nu^{i} \nabla_{T}^{j} \log |\nabla v|+(\nabla \log |\nabla v| \cdot \nu) \nu^{j} \nu^{i}+\nu_{j}^{i}
\end{aligned}
$$

and $v_{i j}=v_{j i}$ for all $i, j=1, \cdots, n+1$, we obtain

$$
\nu_{j}^{i}=\nu_{i}^{j}+\nu^{j} \nabla_{T}^{i} \log |\nabla v|-\nu^{i} \nabla_{T}^{j} \log |\nabla v| \quad \text { for all } i, j=1, \cdots, n+1 .
$$

We prove the claim multiplying the previous equality by ν^{j} and noting that $\nu_{j}^{i} \nu^{i}=0$ for every $j=1, \cdots, n+1$ and $\nabla_{T} \log |\nabla v| \cdot \nu=0$.

Now, using $\nu_{j}^{i} \nu_{i}^{j}=A^{2}$ and $\nabla_{T}^{j} \log |\nabla v|=\nu_{i}^{j} \nu^{i}$, we compute

$$
\begin{aligned}
\Delta|\nabla v| & =-\left(v_{i j} \nu^{j}\right)_{i}=-\nu \cdot \nabla \Delta v-v_{i j} \nu_{i}^{j} \\
& =-\nu \cdot \nabla \Delta v+\left(|\nabla v| \nu^{i}\right)_{j} \nu_{i}^{j} \\
& =-\nu \cdot \nabla \Delta v+|\nabla v| \nu_{j}^{i} \nu_{i}^{j}+|\nabla v|_{j} \nabla_{T}^{j} \log |\nabla v| \\
& =-\nu \cdot \nabla \Delta v+\left(A^{2}+\left|\nabla_{T} \log \right| \nabla v| |^{2}\right)|\nabla v|
\end{aligned}
$$

to obtain identity (1.7).

If $u \in C^{2}(\bar{\Omega})$ is a solution of $(1.1)_{\lambda}$ and $f \in C^{1}(\mathbb{R})$, then by standard regularity results for uniformly elliptic equations one has $u \in C^{3}(\bar{\Omega})$. From (1.7) and noting that

$$
\nabla \Delta v=\left(-\lambda f^{\prime}(u) \nabla u, 0\right) \quad \text { and } \quad \nu=\frac{1}{|\nabla v|}(-\nabla u, 1)
$$

we obtain

$$
\Delta|\nabla v|=-\lambda f^{\prime}(u) \frac{|\nabla u|^{2}}{|\nabla v|}+\left(A^{2}+\left|\nabla_{T} \log \right| \nabla v| |^{2}\right)|\nabla v|
$$

proving the proposition.

3. Proof of Theorem 1.1

Let u_{λ} be the minimal solution of $(1.1)_{\lambda}$ for $\lambda \in\left(0, \lambda^{\star}\right)$. Choosing $\varphi=$ $\sqrt{1+\left|\nabla u_{\lambda}\right|^{2}} \eta$ as a test function in the semistability condition (1.4) and using Proposition 1.2, we first obtain (1.9).
Lemma 3.1. Assume that Ω is a smooth bounded domain of \mathbb{R}^{n} and $f a$ positive and increasing C^{1} function satisfying (1.2). Let u_{λ} be the minimal solution of $(1.1)_{\lambda}$ and $v_{\lambda}\left(x, x_{n+1}\right):=u_{\lambda}(x)-x_{n+1}$ for $\lambda \in\left(0, \lambda^{\star}\right)$. The following inequality holds

$$
\begin{equation*}
\int_{\Omega}\left(\lambda f^{\prime}\left(u_{\lambda}\right)+A^{2}\left|\nabla v_{\lambda}\right|^{2}+\left.\left|\nabla_{T}\right| \nabla v_{\lambda}\right|^{2}\right) \eta^{2} d x \leq \int_{\Omega}\left|\nabla v_{\lambda}\right|^{2}|\nabla \eta|^{2} d x \tag{3.1}
\end{equation*}
$$

for every Lipschitz function η in $\bar{\Omega}$ with $\left.\eta\right|_{\partial \Omega} \equiv 0$, where A^{2} and ∇_{T} are as in Proposition 1.2.
Proof. In order to improve the notation, let us denote $u_{\lambda}=u$ and $v_{\lambda}=v$ for $\lambda \in\left(0, \lambda^{\star}\right)$. Choosing $\varphi=|\nabla v| \eta$ as a test function in (1.4) and integrating by parts we get

$$
\begin{aligned}
0 & \leq Q_{u}(|\nabla v| \eta) \\
& =\int_{\Omega}|\nabla v|^{2}|\nabla \eta|^{2}+|\nabla v| \nabla|\nabla v| \cdot \nabla \eta^{2}+\left.|\nabla| \nabla v\right|^{2} \eta^{2}-\lambda f^{\prime}(u)|\nabla v|^{2} \eta^{2} d x \\
& =\int_{\Omega}|\nabla v|^{2}|\nabla \eta|^{2}-\left(\operatorname{div}(|\nabla v| \nabla|\nabla v|)-\left.|\nabla| \nabla v\right|^{2}+\lambda f^{\prime}(u)|\nabla v|^{2}\right) \eta^{2} d x \\
& =\int_{\Omega}|\nabla v|^{2}|\nabla \eta|^{2}-\left(|\nabla v| \Delta|\nabla v|+\lambda f^{\prime}(u)|\nabla v|^{2}\right) \eta^{2} d x
\end{aligned}
$$

Inequality (3.1) follows directly from identity (1.8).

Finally, using Lemma 3.1 and the geometric Sobolev inequality established in Theorem 2.1 we prove Theorem 1.1.

Proof of Theorem 1.1. Let $u_{\lambda} \in C_{0}^{2}(\bar{\Omega})$ be the minimal solution of $(1.1)_{\lambda}$ for $\lambda \in\left(0, \lambda^{\star}\right)$ and $t \in\left(0,\left\|u_{\lambda}\right\|_{L^{\infty}(\Omega)}\right)$. Define $v_{\lambda}\left(x, x_{n+1}\right)=u_{\lambda}(x)-x_{n+1}$. Let $M_{t}:=\left\{\left(x, x_{n+1}\right) \in \operatorname{Graph}\left(u_{\lambda}\right): x_{n+1} \geq t\right\}$ and $d V=\sqrt{1+\left|\nabla u_{\lambda}\right|^{2}} d x$ its element of volume.

We start by proving inequality (1.5). On the one hand, taking $\eta=$ $\min \left\{u_{\lambda}, t\right\}$ as a test function in (3.1), using that f is an increasing function, and $H^{2}=\left(\kappa_{1}+\cdots+\kappa_{n}\right)^{2} \leq n A^{2}=n\left(\kappa_{1}^{2}+\cdots+\kappa_{n}^{2}\right)$, we obtain

$$
\begin{align*}
\int_{M_{t}}\left(H^{2}\left|\nabla v_{\lambda}\right|+\left.\left.\left|\nabla_{T}\right| \nabla v_{\lambda}\right|^{\frac{1}{2}}\right|^{2}\right) d V & \leq \int_{\left\{u_{\lambda} \geq t\right\}}\left(n A^{2}\left|\nabla v_{\lambda}\right|^{2}+\left.\frac{1}{4}\left|\nabla_{T}\right| \nabla v_{\lambda}\right|^{2}\right) d x \\
& \leq \frac{n}{t^{2}} \int_{\left\{u_{\lambda} \leq t\right\}}\left|\nabla v_{\lambda}\right|^{2}\left|\nabla u_{\lambda}\right|^{2} d x \tag{3.2}
\end{align*}
$$

for all $t \in\left(0,\left\|u_{\lambda}\right\|_{L^{\infty}(\Omega)}\right)$.
Therefore, applying Theorem [2.1] with $M=M_{t}$ and $\phi=\left|\nabla v_{\lambda}\right|^{1 / 2}$, we obtain

$$
\begin{align*}
C\left(\int_{M_{t}}\left|\nabla v_{\lambda}\right|^{\frac{n}{n-2}} d V\right)^{2 \frac{n-1}{n}} \leq \frac{n}{t^{2}} & \left(\int_{\left\{u_{\lambda} \leq t\right\}}\left|\nabla v_{\lambda}\right|^{2}\left|\nabla u_{\lambda}\right|^{2} d x\right)\left(\int_{M_{t}}\left|\nabla v_{\lambda}\right|^{\frac{n}{n-2}} d V\right) \\
& +\left(\int_{\partial M_{t}}\left|\nabla v_{\lambda}\right|^{\frac{n-1}{n-2}} d S\right)^{2}, \tag{3.3}
\end{align*}
$$

where C is a constant depending only on n. This is inequality (1.5).
Assume in addition that Ω is convex. To prove that the extremal solution u^{\star} belongs to $W_{0}^{1,2 \frac{n-1}{n-2}}(\Omega)$ we only need to bound the integrals on $\left\{u_{\lambda} \leq t\right\}$ and ∂M_{t}, for some t, by a constant independent of λ and then let λ tend to λ^{\star}. The same argument was done in the proof of Theorem 2.7 [5]. However, for convinience to the reader we sketch the proof.

Since Ω is convex, there exist positive constants ε and γ independent of λ such that

$$
\begin{equation*}
\left\|u_{\lambda}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leq \frac{1}{\gamma}\left\|u^{\star}\right\|_{L^{1}(\Omega)} \quad \text { for all } \lambda<\lambda^{\star} \tag{3.4}
\end{equation*}
$$

where $\Omega_{\varepsilon}:=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)<\varepsilon\}$ (see Proposition 4.3 [5] and references therein). Moreover, if $\lambda^{\star} / 2<\lambda<\lambda^{\star}$, then $u_{\lambda} \geq u_{\lambda^{\star} / 2}>c \operatorname{dist}(\cdot, \partial \Omega)$ for
some positive constant c independent of $\lambda \in\left(\lambda^{\star} / 2, \lambda^{\star}\right)$. Therefore, letting $t:=c \varepsilon / 2$, we have $\left\{x \in \Omega: u_{\lambda}(x) \leq t\right\} \subset \Omega_{\varepsilon / 2} \subset \Omega_{\varepsilon}$.

Note that u_{λ} is a solution of the linear equation $-\Delta u_{\lambda}=h(x):=$ $\lambda f\left(u_{\lambda}(x)\right)$ in Ω_{ε} and that, by (3.4), u_{λ} and the right hand side h are bounded in $L^{\infty}\left(\Omega_{\varepsilon}\right)$ by a constant independent of λ. Hence, using interior and boundary estimates for the linear Poisson equation and (3.3), we deduce that

$$
\left(\int_{M_{t}}\left|\nabla v_{\lambda}\right|^{\frac{n}{n-2}} d V\right)^{2 \frac{n-1}{n}} \leq C_{1} \int_{M_{t}}\left|\nabla v_{\lambda}\right|^{\frac{n}{n-2}} d V+C_{2}
$$

for some constants C_{1} and C_{2} independent of λ.
Finally, noting that $2(n-1) / n>1$ (since $n \geq 3)$ and $\left|\nabla u_{\lambda}\right| \leq\left|\nabla v_{\lambda}\right|$ we obtain

$$
\int_{\left\{u_{\lambda} \geq t\right\}}\left|\nabla u_{\lambda}\right|^{\frac{n}{n-2}+1} d x \leq \int_{\left\{u_{\lambda} \geq t\right\}}\left|\nabla v_{\lambda}\right|^{\frac{n}{n-2}+1} d x=\int_{M_{t}}\left|\nabla v_{\lambda}\right|^{\frac{n}{n-2}} d V \leq C,
$$

for some constant C independent of λ. Letting λ tend to λ^{\star} in the previous inequality we conclude that $u^{\star} \in W_{0}^{1,2 \frac{n-1}{n-2}}(\Omega)$ proving the theorem.

Acknowledgments

The author was supported by projects MTM2011-27739-C04-01 (Spain) and 2009SGR345 (Catalunya).

References

[1] H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for $u_{t}-$ $\Delta u=g(u)$ revisited, Adv. Differential Equations 1 (1996), 73-90.
[2] H. Brezis, J.L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Compl. Madrid 10 (1997), 443-469.
[3] Yu.D. Burago, V.A. Zalgaller, Geometric inequalities, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1988.
[4] X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure Appl. Math 63 (2010), 1362-1380.
[5] X. Cabré, M. Sanchón, Geometric-type Sobolev inequalities and applications to the regularity of minimizers, Preprint: arXiv:1111.2801v1.
[6] A. Cesaroni, M. Novaga, M. Valdinoci, A symmetry result for the Ornstein-Uhlenbeck operator. Preprint: arXiv:1204.0880v1
[7] M.G. Crandall, P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58 (1975), 207-218.
[8] Dupaigne, L.: Stable solutions to elliptic partial differential equations. Monographs and Surveys in Pure and Applied Mathematics, 2011.
[9] A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7(4) (2008), 741-791.
[10] G. Nedev, Extremal solution of semilinear elliptic equations, Preprint 2001.
[11] P. Sternberg, K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal. 141 (1998), 375-400.
[12] P. Sternberg, K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503 (1998), 63-85.

[^0]: Email address: msanchon@maia.ub.es (Manel Sanchón)

