A T(1) theorem for Sobolev spaces on domains PHD thesis in progress, directed by Xavier Tolsa

Martí Prats

Universitat Autònoma de Barcelona

September 19, 2013

Introduction

The Beurling transform

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

The Beurling transform

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

It is essential to quasiconformal mappings because

$$B(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

It is essential to quasiconformal mappings because

$$B(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $B: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>B: W^{s,p}(\mathbb{C}) \to W^{s,p}(\mathbb{C})$ is bounded for 1 and <math>s > 0.

The Beurling transform

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

It is essential to quasiconformal mappings because

$$B(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $B: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>B: W^{s,p}(\mathbb{C}) \to W^{s,p}(\mathbb{C})$ is bounded for 1 and <math>s > 0.

In particular, if $z \notin \operatorname{supp}(f)$ then Bf is analytic in an ε -neighborhood of z and

$$\partial^n Bf(z) = c_n \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{n+2}} dm(z).$$

◆ back to T(P)

The problem we face

Let Ω be a Lipschitz domain.

When is $B:W^{s,p}(\Omega)\to W^{s,p}(\Omega)$ bounded? We want an answer in terms of the geometry of the boundary.

Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s \leq 1, 2 with <math>sp > 2, and $\partial\Omega$ smooth enough,

Theorem

$$B:W^{s,p}(\Omega)\to W^{s,p}(\Omega)$$
 is bounded

if and only if

$$B\chi_{\Omega}\in W^{s,p}(\Omega).$$

Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for $0 < s \le 1$, 2 with <math>sp > 2, and $\partial \Omega$ smooth enough,

Theorem

$$B:W^{s,p}(\Omega)\to W^{s,p}(\Omega)$$
 is bounded

if and only if

$$B\chi_{\Omega} \in W^{s,p}(\Omega)$$
.

One can deduce regularity of a quasiregular mapping in terms of the regularity of its Beltrami coefficient.

Introducing the Besov spaces $B_{p,p}^s$

The geometric answer will be given in terms of Besov spaces $B_{p,p}^s$. $B_{p,p}^s$ form a family closely related to $W^{s,p}$. They coincide for p=2. For p<2, $B_{p,p}^s\subset W^{s,p}$. Otherwise $W^{s,p}\subset B_{p,p}^s$.

Introducing the Besov spaces $B_{p,p}^s$

The geometric answer will be given in terms of Besov spaces $B_{p,p}^s$. $B_{p,p}^s$ form a family closely related to $W^{s,p}$. They coincide for p=2. For p<2, $B_{p,p}^s\subset W^{s,p}$. Otherwise $W^{s,p}\subset B_{p,p}^s$.

Definition

For
$$0 < s < \infty$$
, $1 \le p < \infty$, $f \in \dot{B}^{s}_{p,p}(\mathbb{R})$ if

$$||f||_{\dot{B}^{s}_{p,p}}=\left(\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1}f(x)}{h^{s}}\right|^{p}\frac{dm(h)}{|h|}dm(x)\right)^{1/p}<\infty.$$

Introducing the Besov spaces $B_{p,p}^s$

The geometric answer will be given in terms of Besov spaces $B_{p,p}^s$. $B_{p,p}^s$ form a family closely related to $W^{s,p}$. They coincide for p=2. For p<2, $B_{p,p}^s\subset W^{s,p}$. Otherwise $W^{s,p}\subset B_{p,p}^s$.

Definition

For $0 < s < \infty$, $1 \le p < \infty$, $f \in \dot{B}^{s}_{p,p}(\mathbb{R})$ if

$$\|f\|_{\dot{B}^{s}_{\rho,\rho}}=\left(\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1}f(x)}{h^{s}}\right|^{\rho}\frac{dm(h)}{|h|}dm(x)\right)^{1/\rho}<\infty.$$

Furthermore, $f \in B^s_{p,p}(\mathbb{R})$ if

$$||f||_{B^s_{p,p}} = ||f||_{L^p} + ||f||_{\dot{B}^s_{p,p}} < \infty.$$

We call them homogeneous and non-homogeneous Besov spaces respectively.

Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 ,and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p,p}^{1-1/p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

$$\|\nabla B(\chi_{\Omega})\|_{L^{p}(\Omega)} \leq c \|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$$

In another recent paper, Cruz and Tolsa proved that for any 1 ,and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p,p}^{1-1/p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

$$\|\nabla B(\chi_{\Omega})\|_{L^{p}(\Omega)} \leq c \|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$$

They proved also an analogous result for smoothness 0 < s < 1.

Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 ,and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p,p}^{1-1/p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

$$\|\nabla B(\chi_{\Omega})\|_{L^{p}(\Omega)} \leq c \|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$$

They proved also an analogous result for smoothness 0 < s < 1. This implies

Theorem

Let $0 < s \le 1$, 2 with <math>sp > 2. If the normal vector is in the Besov space $B_{p,p}^{s-1/p}(\partial\Omega)$, then the Beurling transform is bounded in $W^{s,p}(\Omega)$.

Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any $1 , and <math>\Omega$ a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p,p}^{1-1/p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

$$\|\nabla B(\chi_{\Omega})\|_{L^{p}(\Omega)} \leq c \|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$$

They proved also an analogous result for smoothness 0 < s < 1. This implies

Theorem

Let $0 < s \le 1$, 2 with <math>sp > 2. If the normal vector is in the Besov space $B_{p,p}^{s-1/p}(\partial\Omega)$, then the Beurling transform is bounded in $W^{s,p}(\Omega)$.

Tolsa proved a converse for Ω flat enough.

Main results

T(P) Theorem

Let $2 and <math>1 \le n < \infty$. Let Ω be a Lipschitz domain. Then the Beurling transform is bounded in $W^{n,p}(\Omega)$ if and only if for any polynomial of degree less than n restricted to the domain, $P = P\chi_{\Omega}$, $B(P) \in W^{n,p}(\Omega)$.

Main results

T(P) Theorem

Let $2 and <math>1 \le n < \infty$. Let Ω be a Lipschitz domain. Then the Beurling transform is bounded in $W^{n,p}(\Omega)$ if and only if for any polynomial of degree less than n restricted to the domain, $P = P\chi_{\Omega}$, $B(P) \in W^{n,p}(\Omega)$.

This theorem is valid for any Calderon-Zygmund convolution operator with enough smoothness and for any space \mathbb{R}^d .

Main results

T(P) Theorem

Let $2 and <math>1 \le n < \infty$. Let Ω be a Lipschitz domain. Then the Beurling transform is bounded in $W^{n,p}(\Omega)$ if and only if for any polynomial of degree less than n restricted to the domain, $P = P\chi_{\Omega}$, $B(P) \in W^{n,p}(\Omega)$.

This theorem is valid for any Calderon-Zygmund convolution operator with enough smoothness and for any space \mathbb{R}^d .

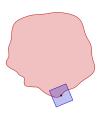
Theorem (Geometric condition on the boundary)

Let Ω be smooth enough. Then we can write

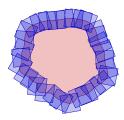
$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

Proof of the T(P) Theorem

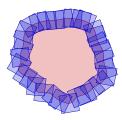
• We have a Lipschitz domain.



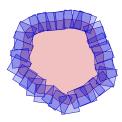
- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization C^{0,1}.



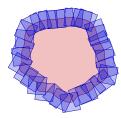
- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization $C^{0,1}$.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_k with some controlled overlapping and find a partition of unity $\{\psi_j\}_{j=0}^N$.



- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization C^{0,1}.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_k with some controlled overlapping and find a partition of unity $\{\psi_j\}_{j=0}^N$.
- $\|Bf\|_{W^{n,p}(\Omega)}^p \approx \|Bf\|_{L^p(\Omega)}^p + \|\nabla^n Bf\|_{L^p(\Omega)}^p$.

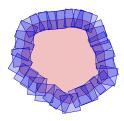


- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization C^{0,1}.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_k with some controlled overlapping and find a partition of unity $\{\psi_j\}_{j=0}^N$.
- $\|Bf\|_{W^{n,p}(\Omega)}^p \approx \|Bf\|_{L^p(\Omega)}^p + \|\nabla^n Bf\|_{L^p(\Omega)}^p$.
- $\|\nabla^n Bf\|_{L^p(\Omega)}^p \approx \sum_{k=0}^N \|\nabla^n B(f\psi_k)\|_{L^p(\mathcal{Q}_k)}^p + \|\nabla^n B(f\psi_k)\|_{L^p(\Omega\setminus\mathcal{Q}_k)}^p$



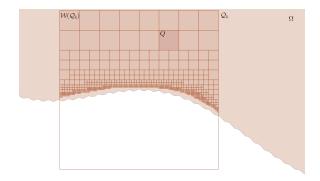
▶ Beurling transform

- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization C^{0,1}.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_k with some controlled overlapping and find a partition of unity $\{\psi_j\}_{j=0}^N$.
- $\|Bf\|_{W^{n,p}(\Omega)}^p \approx \|Bf\|_{L^p(\Omega)}^p + \|\nabla^n Bf\|_{L^p(\Omega)}^p$
- $\|\nabla^n Bf\|_{L^p(\Omega)}^p \approx \sum_{k=0}^N \|\nabla^n B(f\psi_k)\|_{L^p(\mathcal{Q}_k)}^p + \|\nabla^n B(f\psi_k)\|_{L^p(\Omega\setminus\mathcal{Q}_k)}^p$
- Away from Q_k we have good bounds: $|\nabla^n B(f\psi_k)(z)| \lesssim \frac{1}{R^{n+2}} \int_{\mathcal{O}_k} |f(w)| dw$



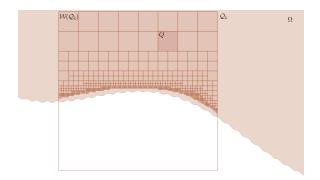
- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization C^{0,1}.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_k with some controlled overlapping and find a partition of unity $\{\psi_j\}_{j=0}^N$.
- $\|Bf\|_{W^{n,p}(\Omega)}^p \approx \|Bf\|_{L^p(\Omega)}^p + \|\nabla^n Bf\|_{L^p(\Omega)}^p$.
- $\|\nabla^n Bf\|_{L^p(\Omega)}^p \approx \sum_{k=0}^N \|\nabla^n B(f\psi_k)\|_{L^p(\mathcal{Q}_k)}^p + \|\nabla^n B(f\psi_k)\|_{L^p(\Omega\setminus\mathcal{Q}_k)}^p$
- Away from Q_k we have good bounds: $|\nabla^n B(f\psi_k)(z)| \lesssim \frac{1}{R^{n+2}} \int_{Q_k} |f(w)| dw$
- The restriction to the inner region is always bounded: $f\psi_0 \in W^{n,p}(\mathbb{C})$.

Local charts: Whitney decomposition



We perform an oriented Whitney covering ${\mathcal W}$ such that

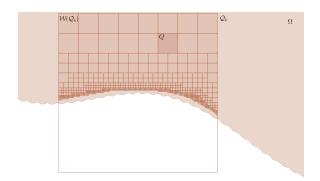
Local charts: Whitney decomposition



We perform an oriented Whitney covering ${\mathcal W}$ such that

• $\operatorname{dist}(Q, \partial\Omega \cap Q) \approx \ell(Q)$ for every $Q \in \mathcal{W}$.

Local charts: Whitney decomposition



We perform an oriented Whitney covering ${\mathcal W}$ such that

- $\operatorname{dist}(Q, \partial\Omega \cap Q) \approx \ell(Q)$ for every $Q \in \mathcal{W}$.
- The family $\{5Q\}_{Q\in\mathcal{W}}$ has finite superposition.
- ...

A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given $f \in W^{1,p}(Q)$, 1 ,

$$||f-m_Qf||_{L^p(Q)}\lesssim \ell(Q)||\nabla f||_{L^p(Q)}.$$

A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given $f \in W^{1,p}(Q)$, $1 \le p \le \infty$,

$$||f-m_Qf||_{L^p(Q)}\lesssim \ell(Q)||\nabla f||_{L^p(Q)}.$$

Equivalently, for any Sobolev function f with 0 mean on Q,

$$||f||_{L^p(Q)} \lesssim \ell(Q) ||\nabla f||_{L^p(Q)}.$$

If we want to apply recursively the Poincaré inequality we need Df to have mean 0 in 3Q for any partial derivative D.

A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given $f \in W^{1,p}(Q)$, $1 \le p \le \infty$,

$$||f-m_Qf||_{L^p(Q)}\lesssim \ell(Q)||\nabla f||_{L^p(Q)}.$$

Equivalently, for any Sobolev function f with 0 mean on Q,

$$||f||_{L^p(Q)} \lesssim \ell(Q) ||\nabla f||_{L^p(Q)}.$$

If we want to apply recursively the Poincaré inequality we need Df to have mean 0 in 3Q for any partial derivative D.

Definition

Given $f \in W^{n,p}(\Omega)$ and a cube Q, we call $\mathfrak{P}_Q^n f$ to the polynomial of degree smaller than n restricted to Ω such that for any multiindex β with $|\beta| < n$,

$$\int_{3Q} D^{\beta} \mathfrak{P}_{Q}^{n} f = \int_{3Q} D^{\beta} f.$$

Properties of approximating polynomials

P1.
$$\|f - \mathfrak{P}_Q^n f\|_{L^p(3Q)} \lesssim \ell(Q)^n \|\nabla^n f\|_{L^p(3Q)}$$
.

Properties of approximating polynomials

P1.
$$\|f - \mathfrak{P}_Q^n f\|_{L^p(3Q)} \lesssim \ell(Q)^n \|\nabla^n f\|_{L^p(3Q)}$$
.

P2. Given two neighbor Whitney cubes Q_1 and Q_2 , $\left\| \mathbf{\mathcal{p}}_{Q_1}^n f - \mathbf{\mathcal{p}}_{Q_2}^n f \right\|_{L^{\infty}(3Q_1 \cap 3Q_2)} \lesssim \ell(Q_1)^{n-\frac{2}{\rho}} \|\nabla^n f\|_{L^{\rho}(3Q_1 \cup 3Q_2)}.$

...

Properties of approximating polynomials

P1.
$$\|f - \mathfrak{P}_Q^n f\|_{L^p(3Q)} \lesssim \ell(Q)^n \|\nabla^n f\|_{L^p(3Q)}$$
.

P2. Given two neighbor Whitney cubes Q_1 and Q_2 , $\left\| \mathbf{\mathcal{p}}_{Q_1}^n f - \mathbf{\mathcal{p}}_{Q_2}^n f \right\|_{L^{\infty}(3Q_1 \cap 3Q_2)} \lesssim \ell(Q_1)^{n-\frac{2}{\rho}} \|\nabla^n f\|_{L^{\rho}(3Q_1 \cup 3Q_2)}.$

...

P5. We can bound the coefficients of the polynomial $\mathfrak{P}_Q^n f(w) = \sum_{|\gamma| < n} m_{Q,\gamma} (w - x_Q)^{\gamma}$:

Properties of approximating polynomials

P1.
$$\|f - \mathfrak{P}_Q^n f\|_{L^p(3Q)} \lesssim \ell(Q)^n \|\nabla^n f\|_{L^p(3Q)}$$
.

P2. Given two neighbor Whitney cubes Q_1 and Q_2 , $\|\mathfrak{P}_{Q_1}^n f - \mathfrak{P}_{Q_2}^n f\|_{L^\infty(3Q_1\cap 3Q_2)} \lesssim \ell(Q_1)^{n-\frac{2}{p}} \|\nabla^n f\|_{L^p(3Q_1\cup 3Q_2)}.$

...

P5. We can bound the coefficients of the polynomial $\mathfrak{P}_Q^n f(w) = \sum_{|\gamma| < n} m_{Q,\gamma} (w - x_Q)^{\gamma}$: $|m_{Q,\gamma}| \lesssim \sum_{j=|\gamma|}^{n-1} \left\| \nabla^j f \right\|_{L^{\infty}(3Q)} \ell(Q)^{j-|\gamma|}$.

The proof:
$$BP \in W^{n,p}(\Omega) \Rightarrow \|Bf\|_{W^{n,p}(\Omega)}^p \lesssim \|f\|_{W^{n,p}(\Omega)}^p$$

Assume that, we have a bound for the polynomials. Fix a point $x_0 \in \Omega$ and call $P_{\lambda}(z) = (z - x_0)^{\lambda} \chi_{\Omega}(z)$.

The proof:
$$BP \in W^{n,p}(\Omega) \Rightarrow \|Bf\|_{W^{n,p}(\Omega)}^p \lesssim \|f\|_{W^{n,p}(\Omega)}^p$$

Assume that, we have a bound for the polynomials. Fix a point $x_0 \in \Omega$ and call $P_{\lambda}(z) = (z - x_0)^{\lambda} \chi_{\Omega}(z)$. Given a cube Q, we can write

$$\mathfrak{P}_{Q}^{n}f(w) = \chi_{\Omega}(w) \sum_{|\gamma| < n} m_{Q,\gamma}(w - x_{Q})^{\gamma}$$

The proof:
$$BP \in W^{n,p}(\Omega) \Rightarrow \|Bf\|_{W^{n,p}(\Omega)}^p \lesssim \|f\|_{W^{n,p}(\Omega)}^p$$

Assume that, we have a bound for the polynomials. Fix a point $x_0 \in \Omega$ and call $P_{\lambda}(z) = (z - x_0)^{\lambda} \chi_{\Omega}(z)$.

Given a cube Q, we can write, using Newton's binomial

$$\mathfrak{P}_{Q}^{n}f(w) = \chi_{\Omega}(w) \sum_{|\gamma| < n} m_{Q,\gamma} (w - x_{Q})^{\gamma}$$

$$= \chi_{\Omega}(w) \sum_{|\gamma| < n} m_{Q,\gamma} \sum_{(0,0) \le \lambda \le \gamma} {\gamma \choose \lambda} (w - x_{Q})^{\lambda} (x_{Q} - x_{Q})^{\gamma - \lambda}$$

The proof:
$$BP \in W^{n,p}(\Omega) \Rightarrow \|Bf\|_{W^{n,p}(\Omega)}^p \lesssim \|f\|_{W^{n,p}(\Omega)}^p$$

Assume that, we have a bound for the polynomials. Fix a point $x_0 \in \Omega$ and call $P_{\lambda}(z) = (z - x_0)^{\lambda} \chi_{\Omega}(z)$. Given a cube Q, we can write, using Newton's binomial

$$\mathfrak{P}_{Q}^{n}f(w) = \chi_{\Omega}(w) \sum_{|\gamma| < n} m_{Q,\gamma} (w - x_{Q})^{\gamma}$$

$$= \chi_{\Omega}(w) \sum_{|\gamma| < n} m_{Q,\gamma} \sum_{(0,0) \le \lambda \le \gamma} {\gamma \choose \lambda} (w - x_{Q})^{\lambda} (x_{Q} - x_{Q})^{\gamma - \lambda}$$

SO

$$D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)(z) = \sum_{|\gamma| < n} m_{Q,\gamma} \sum_{(0,0) \leq \lambda \leq \gamma} {\gamma \choose \lambda} (x_{0} - x_{Q})^{\gamma - \lambda} D^{\alpha}(BP_{\lambda})(z)$$

The proof: $BP \in W^{n,p}(\Omega) \Rightarrow \|Bf\|_{W^{n,p}(\Omega)}^p \lesssim \|f\|_{W^{n,p}(\Omega)}^p$

Assume that, we have a bound for the polynomials. Fix a point $x_0 \in \Omega$ and call $P_{\lambda}(z) = (z - x_0)^{\lambda} \chi_{\Omega}(z)$. Given a cube Q, we can write, using Newton's binomial

$$\mathfrak{P}_{Q}^{n}f(w) = \chi_{\Omega}(w) \sum_{|\gamma| < n} m_{Q,\gamma} (w - x_{Q})^{\gamma}$$

$$= \chi_{\Omega}(w) \sum_{|\gamma| < n} m_{Q,\gamma} \sum_{(0,0) \le \lambda \le \gamma} {\gamma \choose \lambda} (w - x_{0})^{\lambda} (x_{0} - x_{Q})^{\gamma - \lambda}$$

SO

$$D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)(z) = \sum_{|\gamma| < n} m_{Q,\gamma} \sum_{(0,0) \leq \lambda \leq \gamma} {\gamma \choose \lambda} (x_{0} - x_{Q})^{\gamma - \lambda} D^{\alpha}(BP_{\lambda})(z)$$

where, by P5,

$$|m_{Q,\gamma}| \lesssim \sum_{i=|\gamma|}^{n-1} \|\nabla^j f\|_{L^{\infty}(3Q)} \ell(Q)^{j-|\gamma|}.$$

The Sobolev Embedding Theorem appears

Thus

$$\|D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)\|_{L^{p}(Q)}^{p} \lesssim \sum_{j < n} \|\nabla^{j}f\|_{L^{\infty}}^{p} \sum_{\substack{|\gamma| \leq j \\ 0 \leq \lambda \leq \gamma}} \|D^{\alpha}BP_{\lambda}\|_{L^{p}(Q)}^{p}\mathcal{H}^{1}(\partial\Omega)^{(j-|\lambda|)p}.$$

The Sobolev Embedding Theorem appears

Thus

$$\|D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)\|_{L^{p}(Q)}^{p}\lesssim \sum_{j< n}\|\nabla^{j}f\|_{L^{\infty}}^{p}\sum_{\substack{|\gamma|\leq j\\0\leq \lambda\leq \gamma}}\|D^{\alpha}BP_{\lambda}\|_{L^{p}(Q)}^{p}\mathcal{H}^{1}(\partial\Omega)^{(j-|\lambda|)p}.$$

Adding with respect to $Q \in \mathcal{W}$, by the Sobolev Embedding Theorem $(\|\nabla^j f\|_{L^{\infty}(\mathcal{Q}\cap\Omega)} \le C\|\nabla^j f\|_{W^{1,p}(\mathcal{Q}\cap\Omega)}$ when p>2), we get

$$\sum_{Q \in \mathcal{W}} \|D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)\|_{L^{p}(Q)}^{p} \lesssim \sum_{j < n} \|\nabla^{j}f\|_{W^{1,p}(Q \cap \Omega)}^{p} \sum_{0 \leq \lambda \leq \gamma} \|BP_{\lambda}\|_{W^{n,p}(\Omega)}^{p} \\
\lesssim \|f\|_{W^{n,p}(Q \cap \Omega)}^{p}.$$

Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, \mathcal{Q} a window, $\psi \in \mathcal{C}^{\infty}(\frac{99}{100}\mathcal{Q})$ with $\|\nabla^j\psi\|_{L^\infty}\lesssim \frac{1}{R^j}$ for $j\geq 0$. Then, for any $|\alpha|=n$ and $f=\psi\cdot f$ with $\widetilde{f} \in W^{n,p}(\Omega)$, TFAE:

- $||D^{\alpha}Bf||_{L^{p}(\mathcal{Q})}^{p} \lesssim ||f||_{W^{n,p}(\mathcal{Q}\cap\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}} \| D^{\alpha} B(\mathfrak{P}_Q^n f) \|_{L^p(Q)}^p \lesssim \| f \|_{W^{n,p}(Q \cap \Omega)}^p$

Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, Q a window, $\psi \in C^{\infty}(\frac{99}{100}Q)$ with $\|\nabla^{j}\psi\|_{L^{\infty}} \lesssim \frac{1}{R^{j}}$ for $j \geq 0$. Then, for any $|\alpha| = n$ and $f = \psi \cdot \widetilde{f}$ with $\widetilde{f} \in W^{n,p}(\Omega)$, TFAE:

- $||D^{\alpha}Bf||_{L^{p}(\mathcal{Q})}^{p} \lesssim ||f||_{W^{n,p}(\mathcal{Q}\cap\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}} \| D^{\alpha} B(\mathfrak{P}_{Q}^{n} f) \|_{L^{p}(Q)}^{p} \lesssim \| f \|_{W^{n,p}(Q \cap \Omega)}^{p}$.

Idea of the proof: separate local and non-local parts of the error term,

$$D^{\alpha}Bf(z) - D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)(z)$$

$$= D^{\alpha}B(\chi_{2Q}(f - \mathfrak{P}_{Q}^{n}f))(z) + D^{\alpha}B((1 - \chi_{2Q})(f - \mathfrak{P}_{Q}^{n}f))(z).$$

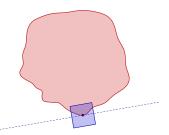
Sketch of the proof

A geometric condition for the Beurling transform

Theorem (Geometric condition on the boundary)

Let Ω be smooth enough. Then we can write

$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p\lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p+\mathcal{H}^1(\partial\Omega)^{2-np}.$$

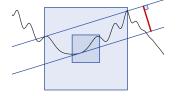


Theorem (Geometric condition on the boundary)

Let Ω be smooth enough. Then we can write

$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p\lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p+\mathcal{H}^1(\partial\Omega)^{2-np}.$$

A measure of the flatness of a set Γ :

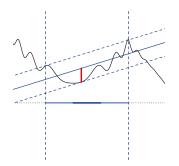


A measure of the flatness of a set Γ :

Definition (P. Jones)

$$\beta_{\Gamma}(Q) = \inf_{V} \frac{w(V)}{\ell(Q)}$$

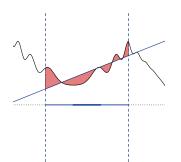
The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define



The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition

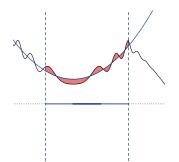
$$\beta_{\infty}(I,A) = \inf_{P \in \mathcal{P}^1} \left\| \frac{A-P}{\ell(I)} \right\|_{\infty}$$



The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition

$$\beta_{p}(I,A) = \inf_{P \in \mathcal{P}^{1}} \frac{1}{\ell(I)^{\frac{1}{p}}} \left\| \frac{A-P}{\ell(I)} \right\|_{p}$$



The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition

$$\beta_{(n)}(I,A) = \inf_{P \in \mathcal{P}^n} \frac{1}{\ell(I)} \left\| \frac{A-P}{\ell(I)} \right\|_1$$

If there is no risk of confusion, we will write just $\beta_{(n)}(I)$.

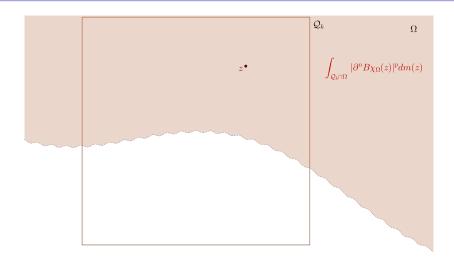
Relation between $\beta_{(n)}$ and $B_{p,p}^n$

Theorem (Dorronsoro)

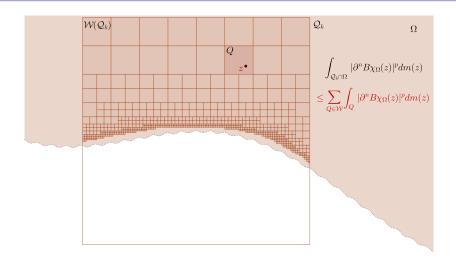
Let $f : \mathbb{R} \to \mathbb{R}$ be a function in the homogeneous Besov space $\dot{B}_{p,p}^s$. Then, for any $n \ge [s]$,

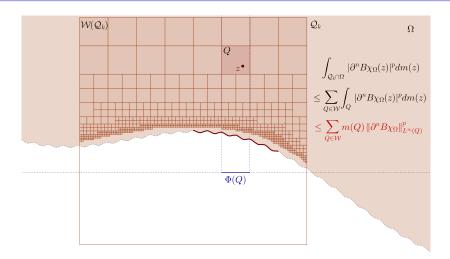
$$||f||_{\dot{B}^{s}_{\rho,\rho}}^{p} \approx \sum_{I \in \mathcal{D}} \left(\frac{\beta_{(n)}(I)}{\ell(I)^{s-1}} \right)^{p} \ell(I).$$

Local charts: Whitney decomposition

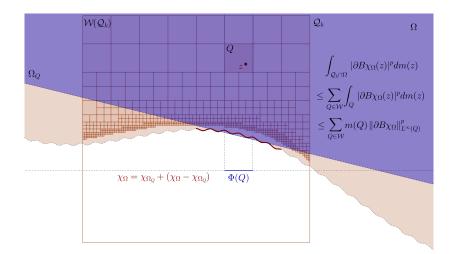


Local charts: Whitney decomposition





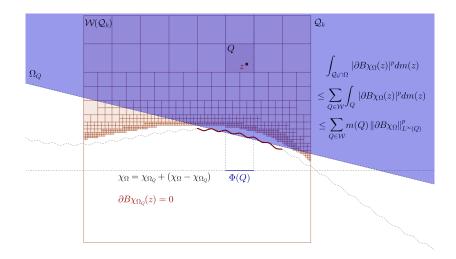
Local charts: Bounds for the first derivative



First order derivative

▶ Skip higher order derivatives

Local charts: Bounds for the first derivative



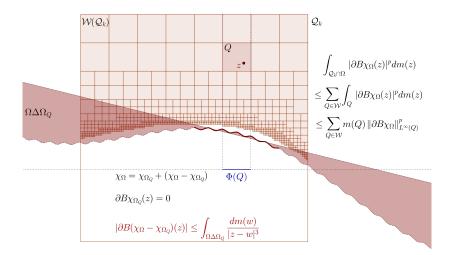
First order derivative

Second order derivative

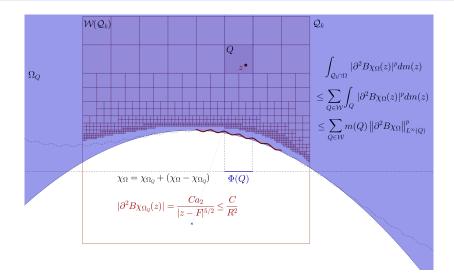
▶ Higher order derivatives

Skip higher order derivatives

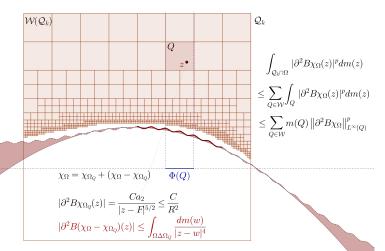
Local charts: Bounds for the first derivative



Local charts: Second order derivative

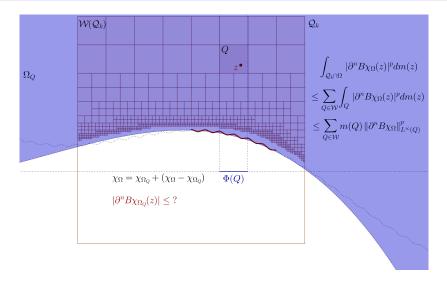


Local charts: Second order derivative

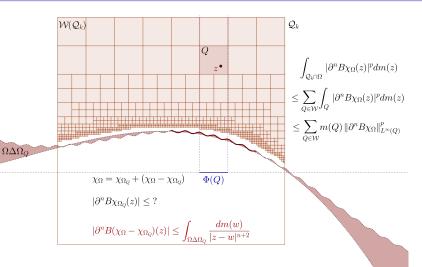


 $\Omega\Delta\Omega_Q$

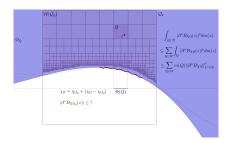
Local charts: Higher order derivatives



Local charts: Higher order derivatives

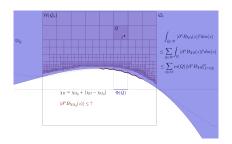


Bounding the polynomial region



We can choose the window length R small enough so that

Bounding the polynomial region



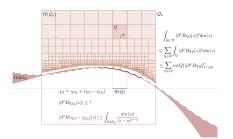
We can choose the window length R small enough so that

Proposition

If we denote by Ω_Q the region with boundary a minimizing polynomial for $\beta_{(n)}(\Phi(Q))$, we get

$$\left|\partial^n B \chi_{\Omega_Q}\right| \leq \frac{C}{R^n}.$$

Bounding the interstitial region

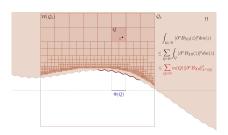


Proposition

Choosing a minimizing polynomial for $\beta_{(n)}(\Phi(Q))$, we get

$$\int_{\Omega\Delta\Omega_Q}\frac{dm(w)}{|z-w|^{n+2}}\lesssim \sum_{\substack{I\in\mathcal{D}\\ \Phi(Q)\subset I\subset\Phi(\mathcal{Q}_k)}}\frac{\beta_{(n)}(I)}{\ell(I)^n}+\frac{1}{R^n}.$$

Hölder inequalities do the rest

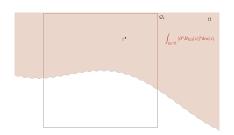


Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p \lesssim \sum_{k=1}^N \sum_{I \in \mathcal{D}^k} \left(\frac{\beta_{(n)}(I)}{\ell(I)^{n-1/p}}\right)^p \ell(I) + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

Hölder inequalities do the rest

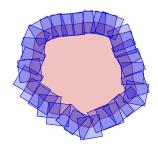


Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p \lesssim \sum_{k=1}^N \|A_k\|_{\dot{B}^{n-1/p+1}_{p,p}}^p + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

Hölder inequalities do the rest



Using a decomposition in windows,

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{2,n}(\partial\Omega)}^p + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

Conclusions

• For p > 2 we have a T(P) theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.

Conclusions

- For p > 2 we have a T(P) theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- In the complex plane, the Besov regularity $B_{p,p}^{n-1/p}$ of the normal vector to the boundary of the domain gives us a bound of B(P) in $W^{n,p}$ (and 0 < s < 1).

Conclusions

- For p > 2 we have a T(P) theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- In the complex plane, the Besov regularity $B_{n,n}^{n-1/p}$ of the normal vector to the boundary of the domain gives us a bound of B(P) in $W^{n,p}$ (and 0 < s < 1).
- Next steps:
 - Proving analogous results for any $s \in \mathbb{R}_+$.
 - Looking for a more general set of operators where the Besov condition on the boundary implies Sobolev boundedness.
 - Giving a necessary condition for the boundedness of the Beurling transform when p < 2.
 - Sharpness of all those results.

Farewell

Thank you!

Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, $\mathcal Q$ a window, $\psi \in \mathcal C^\infty(\frac{99}{100}\mathcal Q)$ with $\|\nabla^j \psi\|_{L^\infty} \lesssim \frac{1}{R^j}$ for $j \geq 0$. Then, for any $|\alpha| = n$ and $f = \psi \cdot \widetilde{f}$ with $\widetilde{f} \in W^{n,p}(\Omega)$, TFAE:

- $\bullet \|D^{\alpha}Bf\|_{L^{p}(\mathcal{Q})}^{p} \lesssim \|f\|_{W^{n,p}(\mathcal{Q}\cap\Omega)}^{p}.$
- $\sum_{Q\in\mathcal{W}} \|D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)\|_{L^{p}(Q)}^{p} \lesssim \|f\|_{W^{n,p}(Q\cap\Omega)}^{p}$.

Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, \mathcal{Q} a window, $\psi \in \mathcal{C}^{\infty}(\frac{99}{100}\mathcal{Q})$ with $\|\nabla^j \psi\|_{L^{\infty}} \lesssim \frac{1}{R^j}$ for $j \geq 0$. Then, for any $|\alpha| = n$ and $f = \psi \cdot \widetilde{f}$ with $\widetilde{f} \in W^{n,p}(\Omega)$, TFAE:

- $||D^{\alpha}Bf||_{L^{p}(\mathcal{Q})}^{p} \lesssim ||f||_{W^{n,p}(\mathcal{Q}\cap\Omega)}^{p}$.
- $\sum_{Q\in\mathcal{W}} \|D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)\|_{L^{p}(Q)}^{p} \lesssim \|f\|_{W^{n,p}(Q\cap\Omega)}^{p}$.

We will see that

$$\left\|D^{\alpha}Bf - \sum_{Q \in \mathcal{W}} \chi_{Q} D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)\right\|_{L^{p}(\mathcal{Q})}^{p} \lesssim \|f\|_{W^{n,p}(\mathcal{Q} \cap \Omega)}^{p}.$$

Breaking the integral into local and non-local parts

Take $\chi_{\frac{3}{2}Q} \leq \varphi_Q \leq \chi_{2Q}$ a smooth bump function.

Breaking the integral into local and non-local parts

Take $\chi_{\frac{3}{2}Q} \leq \varphi_Q \leq \chi_{2Q}$ a smooth bump function. For $z \in Q$,

$$D^{\alpha}Bf(z) - D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)(z)$$

$$= D^{\alpha}B(\varphi_{Q}(f - \mathfrak{P}_{Q}^{n}f))(z) + D^{\alpha}B((\chi_{\Omega} - \varphi_{Q})(f - \mathfrak{P}_{Q}^{n}f))(z).$$

Breaking the integral into local and non-local parts

Take $\chi_{\frac{3}{2}Q} \leq \varphi_Q \leq \chi_{2Q}$ a smooth bump function. For $z \in Q$,

$$D^{\alpha}Bf(z) - D^{\alpha}B(\mathfrak{P}_{Q}^{n}f)(z)$$

$$= D^{\alpha}B(\varphi_{Q}(f - \mathfrak{P}_{Q}^{n}f))(z) + D^{\alpha}B((\chi_{\Omega} - \varphi_{Q})(f - \mathfrak{P}_{Q}^{n}f))(z).$$

Thus, we need to prove that the local part is bounded

$$\boxed{1} = \sum_{Q \in \mathcal{W}} \left\| D^{\alpha} B(\varphi_{Q}(f - \mathfrak{P}_{Q}^{n} f)) \right\|_{L^{p}(Q)}^{p} \lesssim \|f\|_{W^{n,p}(Q \cap \Omega)}^{p}$$

and the non-local part is bounded

$$(2) = \sum_{Q \in \mathcal{W}} \| D^{\alpha} B((\chi_{\Omega} - \varphi_{Q})(f - \mathfrak{P}_{Q}^{n} f)) \|_{L^{p}(Q)}^{p} \lesssim \| f \|_{W^{n,p}(Q \cap \Omega)}^{p}$$

The local part
$$\widehat{\mathbb{1}} = \sum_{Q \in \mathcal{W}} \| D^{\alpha} B(\varphi_Q(f - \mathfrak{P}_Q^n f)) \|_{L^p(Q)}^p$$

As $\varphi_Q(f - \mathfrak{P}_Q^n f) \in W^{n,p}(\mathbb{C})$, the Beurling transform commutes with the derivative

$$\left\|D^{\alpha}B(\varphi_{Q}(f-\mathfrak{P}_{Q}^{n}f))\right\|_{L^{p}(Q)}^{p}=\left\|BD^{\alpha}(\varphi_{Q}(f-\mathfrak{P}_{Q}^{n}f))\right\|_{L^{p}(Q)}^{p}$$

The local part
$$\widehat{\mathbb{1}} = \sum_{Q \in \mathcal{W}} \| D^{\alpha} B(\varphi_Q(f - \mathfrak{P}_Q^n f)) \|_{L^p(Q)}^p$$

As $\varphi_Q(f - \mathfrak{P}_Q^n f) \in W^{n,p}(\mathbb{C})$, the Beurling transform commutes with the derivative

$$\left\|D^{\alpha}B(\varphi_{Q}(f-\mathfrak{P}_{Q}^{n}f))\right\|_{L^{p}(Q)}^{p}\lesssim \|B\|_{p}^{p}\left\|D^{\alpha}(\varphi_{Q}(f-\mathfrak{P}_{Q}^{n}f))\right\|_{L^{p}(\mathbb{C})}^{p}$$

The local part
$$\widehat{\mathbb{1}} = \sum_{Q \in \mathcal{W}} \| D^{\alpha} B(\varphi_Q(f - \mathfrak{P}_Q^n f)) \|_{L^p(Q)}^p$$

As $\varphi_Q(f - \mathfrak{P}_Q^n f) \in W^{n,p}(\mathbb{C})$, the Beurling transform commutes with the derivative

$$\|D^{\alpha}B(\varphi_{Q}(f-\mathfrak{P}_{Q}^{n}f))\|_{L^{p}(Q)}^{p} \lesssim \|B\|_{p}^{p}\|D^{\alpha}(\varphi_{Q}(f-\mathfrak{P}_{Q}^{n}f))\|_{L^{p}(\mathbb{C})}^{p}$$

Using P1 and P4, we get

$$\left\|D^{\alpha}B(\varphi_{Q}(f-\mathfrak{P}_{Q}^{n}f))\right\|_{L^{p}(Q)}^{p}\lesssim \left\|\nabla^{n}f\right\|_{L^{p}(3Q)}^{p}.$$

Breaking the non-local part

In the non-local part we can take the derivative in the kernel of the transform (let's call it $B^{(-\alpha)}$)

Breaking the non-local part

In the non-local part we can take the derivative in the kernel of the transform (let's call it $B^{(-\alpha)}$) and use a partition of unity $\chi_{\Omega} - \varphi_{Q} = \sum_{S \in \mathcal{W}} \psi_{QS}$ related to the covering $\{2S\}_{S \in \mathcal{W}}$ with the usual bounds in their derivatives.

Breaking the non-local part

$$(2) = \sum_{Q \in \mathcal{W}} \| D^{\alpha} B((\chi_{\Omega} - \varphi_{Q})(f - \mathfrak{P}_{Q}^{n} f)) \|_{L^{p}(Q)}^{p}$$

In the non-local part we can take the derivative in the kernel of the transform (let's call it $B^{(-\alpha)}$) and use a partition of unity $\chi_{\Omega} - \varphi_{Q} = \sum_{S \in \mathcal{W}} \psi_{QS}$ related to the covering $\{2S\}_{S \in \mathcal{W}}$ with the usual bounds in their derivatives. Then,

$$\widehat{2} \leq \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \left\| B^{(-\alpha)} (\psi_{QS} (f - \mathfrak{P}_{S}^{n} f)) \right\|_{L^{p}(Q)} \right)^{p} \\
+ \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \left\| B^{(-\alpha)} (\psi_{QS} (\mathfrak{P}_{S}^{n} f - \mathfrak{P}_{Q}^{n} f)) \right\|_{L^{p}(Q)} \right)^{p} \\
= \widehat{3} + \widehat{4}.$$

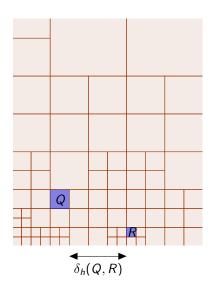
The re-localized sum is the easier to bound. Using the Hölder inequality and the Poincaré inequality, we get

$$|B^{(-\alpha)}(\psi_{QS}(f-\mathfrak{P}_{S}^{n}f))(z)| \lesssim \frac{\ell(S)^{n+\frac{2}{\rho'}}}{D(Q,S)^{n+2}} \|\nabla^{n}f\|_{L^{p}(3S)}.$$

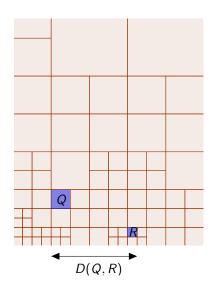
The re-localized sum is the easier to bound. Using the Hölder inequality and the Poincaré inequality, we get

$$|B^{(-\alpha)}(\psi_{QS}(f-\mathfrak{P}_S^nf))(z)| \lesssim \frac{\ell(S)^{n+\frac{2}{p'}}}{D(Q,S)^{n+2}} \|\nabla^n f\|_{L^p(3S)}.$$

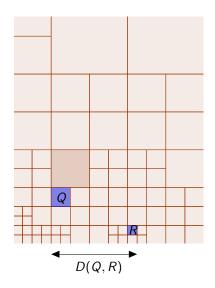
Using this uniform bound on Q, the properties of the covering and some Hölder inequalities, we bound



• We can define the long distance

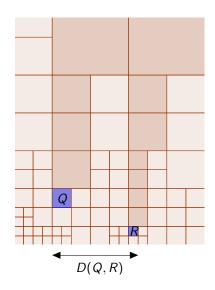


• We can define the long distance $D(Q,R) = \delta_h(Q,R) + \ell(Q) + \ell(R)$.

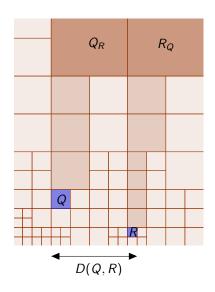


• We can define the long distance $D(Q,R) = \delta_h(Q,R) + \ell(Q) + \ell(R)$.

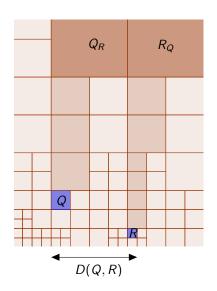
 We find a natural way to define fathers and sons in the Whitney family.



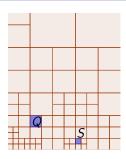
- We can define the long distance $D(Q,R) = \delta_h(Q,R) + \ell(Q) + \ell(R)$.
- We find a natural way to define fathers and sons in the Whitney family.
- Given two cubes Q and R we can look for a common ancestor,



- We can define the long distance $D(Q,R) = \delta_h(Q,R) + \ell(Q) + \ell(R)$.
- We find a natural way to define fathers and sons in the Whitney family.
- Given two cubes Q and R we can look for a common ancestor, but it is better to look for neighbor ancestors, Q_R and R_Q:

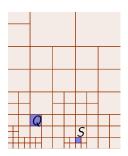


- We can define the long distance $D(Q,R) = \delta_h(Q,R) + \ell(Q) + \ell(R)$.
- We find a natural way to define fathers and sons in the Whitney family.
- Given two cubes Q and R we can look for a common ancestor, but it is better to look for neighbor ancestors, Q_R and R_Q : $D(Q,R) \approx \ell(Q_R) \approx \ell(R_Q)$.



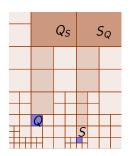
• The difference between polynomials of distant cubes can be huge.

$$|B^{(-\alpha)}\left[(\mathfrak{P}_{S}^{n}f-\mathfrak{P}_{Q}^{n}f)\psi_{QS}\right](z)|$$



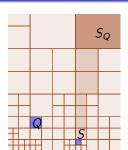
• The difference between polynomials of distant cubes can be huge.

$$|B^{(-\alpha)}\left[(\mathfrak{P}_{S}^{n}f-\mathfrak{P}_{Q}^{n}f)\psi_{QS}\right](z)|\lesssim \int_{2S}\frac{|\mathfrak{P}_{S}^{n}f(w)-\mathfrak{P}_{Q}^{n}f(w)|}{D(Q,S)^{n+2}}dm(w)$$



- The difference between polynomials of distant cubes can be huge.
- We take a tour changing between neighbor cubes.

$$|B^{(-\alpha)}\left[(\mathfrak{P}_{S}^{n}f - \mathfrak{P}_{Q}^{n}f)\psi_{QS}\right](z)| \lesssim \int_{2S} \frac{|\mathfrak{P}_{S}^{n}f(w) - \mathfrak{P}_{Q}^{n}f(w)|}{D(Q,S)^{n+2}} dm(w)$$
$$\lesssim \frac{1}{D(Q,S)^{n+2}} \int_{2S} \sum_{Q \leq P < S} |\mathfrak{P}_{P}^{n}f(w) - \mathfrak{P}_{\mathcal{N}(P)}^{n}f(w)| dm(w)$$

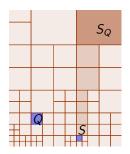


- The difference between polynomials of distant cubes can be huge.
- We take a tour changing between neighbor cubes.
- We apply the property P3 to one branch to illustrate.

$$|B^{(-\alpha)}\left[\left(\mathfrak{P}_{S}^{n}f-\mathfrak{P}_{S_{Q}}^{n}f\right)\psi_{QS}\right](z)|\lesssim \int_{2S}\frac{|\mathfrak{P}_{S}^{n}f(w)-\mathfrak{P}_{S_{Q}}^{n}f(w)|}{D(Q,S)^{n+2}}dm(w)$$

$$\lesssim \frac{1}{D(Q,S)^{n+2}}\int_{2S}\sum_{S< P\leq S_{Q}}|\mathfrak{P}_{P}^{n}f(w)-\mathfrak{P}_{\mathcal{N}(P)}^{n}f(w)|dm(w)$$

$$\lesssim \sum_{S< P\leq S_{Q}}\ell(S)^{2}\frac{D(P,S)^{n-1}}{D(Q,S)^{n+2}}\ell(P)^{1-\frac{2}{p}}\|\nabla^{n}f\|_{L^{p}(5P)}$$



- The difference between polynomials of distant cubes can be huge.
- We take a tour changing between neighbor cubes.
- We apply the property P3 to one branch to illustrate.
- Hölder inequalities and the propeties of the Whitney covering will do the rest.

$$\underbrace{\left(4^{*}\right)} \lesssim \sum_{P \in \mathcal{W}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p} \ell(P)^{p-\frac{5}{2}} \sum_{Q \in \mathcal{W}} \frac{\ell(Q)^{\frac{3}{2}}}{D(Q, P)^{2p-\frac{1}{2}}} \sum_{S < P} \ell(S)^{p+\frac{1}{2}} \\
\lesssim \|\nabla^{n} f\|_{L^{p}(Q \cap \Omega)}^{p}.$$

The uniform bound in every square leads to

$$(3) \lesssim \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \frac{\ell(Q)^{\frac{2}{p}} \ell(S)^{n+\frac{2}{p'}}}{D(Q,S)^{n+2}} \|\nabla^n f\|_{L^p(3S)} \right)^p$$

and, applying the Hölder inequality,

$$(3) \lesssim \sum_{Q \in \mathcal{W}} \sum_{S \in \mathcal{W}} \frac{\ell(Q)^2 \ell(S)^{np}}{D(Q, S)^{\frac{3}{2} + np}} \|\nabla^n f\|_{L^p(3S)}^p \left(\sum_{S \in \mathcal{W}} \frac{\ell(S)^2}{D(Q, S)^{2 + \frac{p'}{2p}}}\right)^{\frac{1}{p'}}$$

The uniform bound in every square leads to

$$(3) \lesssim \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \frac{\ell(Q)^{\frac{2}{p}} \ell(S)^{n+\frac{2}{p'}}}{D(Q,S)^{n+2}} \|\nabla^n f\|_{L^p(3S)} \right)^p$$

and, applying the Hölder inequality,

$$(3) \lesssim \sum_{Q \in \mathcal{W}} \sum_{S \in \mathcal{W}} \frac{\ell(Q)^2 \ell(S)^{np}}{D(Q, S)^{\frac{3}{2} + np}} \|\nabla^n f\|_{L^p(3S)}^p \left(\sum_{S \in \mathcal{W}} \frac{\ell(S)^2}{D(Q, S)^{2 + \frac{p'}{2p}}}\right)^{\frac{1}{p'}}$$

Lemma

Let b > a > 1. Then,

$$\sum_{R\in\mathcal{W}}\frac{\ell(R)^a}{D(Q,R)^b}\leq C_{a,b}\ell(Q)^{a-b}.$$

$$(3) \leq C_p \sum_{S \in \mathcal{W}} \ell(S)^{np} \|\nabla^n f\|_{L^p(3S)}^p \sum_{Q \in \mathcal{W}} \frac{\ell(Q)^2}{D(Q, S)^{\frac{3}{2} + np}} \ell(Q)^{-\frac{1}{2}}$$

As $\frac{3}{2} + np > \frac{3}{2} > 1$, we can use the previous lemma again to get

$$\widehat{(3)} \leq C_{n,p} \sum_{S \in \mathcal{W}} \ell(S)^{np} \|\nabla^n f\|_{L^p(3S)}^p \ell(S)^{-np}
\lesssim \|\nabla^n f\|_{L^p(\mathcal{Q} \cap \Omega)}^p$$

▶ Back

We have

$$\underbrace{\left(4*_{QS}\right)} = |B^{(-\alpha)}\left[\left(\mathfrak{P}_{S}^{n}f - \mathfrak{P}_{S_{Q}}^{n}f\right)\psi_{QS}\right](z)|$$

$$\lesssim \sum_{S < P < S_{Q}} \ell(S)^{2} \frac{D(P,S)^{n-1}}{D(Q,S)^{n+2}} \ell(P)^{1-\frac{2}{p}} \|\nabla^{n}f\|_{L^{p}(5P)}.$$

On the other hand, as $S < P \le S_Q$, we have

$$D(P,S) \approx \ell(P) \leq \ell(S_Q) \approx D(Q,S)$$

and

$$D(Q,S) \approx \ell(S_Q) = \ell(P_Q) \approx D(Q,P).$$

Thus,

$$\boxed{4*_{Q}} \leq C \left(\sum_{S \in \mathcal{W}} \sum_{S < P \leq S_{Q}} \frac{\ell(S)^{2} \ell(P)^{1-\frac{2}{p}} \|\nabla^{n} f\|_{L^{p}(5P)}}{D(Q, P)^{3}} \right)^{p}.$$

We have

$$\underbrace{\left(4*_{QS}\right)} = |B^{(-\alpha)}\left[\left(\mathfrak{P}_{S}^{n}f - \mathfrak{P}_{S_{Q}}^{n}f\right)\psi_{QS}\right](z)|$$

$$\lesssim \sum_{S < P \leq S_{Q}} \ell(S)^{2} \frac{D(P,S)^{n-1}}{D(Q,S)^{n+2}} \ell(P)^{1-\frac{2}{\rho}} \|\nabla^{n}f\|_{L^{p}(5P)}.$$

On the other hand, as $S < P \le S_Q$, we have

$$D(P,S) \approx \ell(P) \leq \ell(S_Q) \approx D(Q,S)$$

and

$$D(Q, S) \approx \ell(S_Q) = \ell(P_Q) \approx D(Q, P).$$

Using Hölder inequality, we get

$$(4*_{Q}) \lesssim \left(\sum_{S} \left(\sum_{P} \frac{\ell(S)^{2p} \ell(P)^{p-\frac{5}{2}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p}}{D(Q,P)^{3p}} \right)^{\frac{1}{p}} \left(\sum_{P} \ell(P)^{\frac{p'}{2p}} \right)^{\frac{1}{p'}} \right)^{p}.$$

$$g \left(4 \right)$$

$$\overbrace{4*_{QS}} = |B^{(-\alpha)} \left[(\mathfrak{P}_{S}^{n} f - \mathfrak{P}_{S_{Q}}^{n} f) \psi_{QS} \right] (z)|.$$

The sum $\sum_{S < P \le S_0} \ell(P)^{\frac{p'}{2p}}$ is geometric. Thus

$$\left(\sum_{S < P \leq S_Q} \ell(P)^{\frac{p'}{2p}}\right)^{\frac{1}{p'}} \lesssim \ell(S_Q)^{\frac{1}{2p}} \approx \frac{\ell(S)^{\frac{1}{2p}-1}}{D(Q,P)^{-\frac{1}{2p}-1}} \frac{\ell(S)^{1-\frac{1}{2p}}}{D(Q,S)}$$

$$\widehat{\left(4*_{QS}\right)} = |B^{(-\alpha)}\left[\left(\mathfrak{P}_{S}^{n}f - \mathfrak{P}_{S_{Q}}^{n}f\right)\psi_{QS}\right](z)|.$$

The sum $\sum_{S < P < S_O} \ell(P)^{\frac{p'}{2p}}$ is geometric. Thus

$$\left(\sum_{S < P \leq S_Q} \ell(P)^{\frac{p'}{2p}}\right)^{\frac{1}{p'}} \lesssim \ell(S_Q)^{\frac{1}{2p}} \approx \frac{\ell(S)^{\frac{1}{2p}-1}}{D(Q,P)^{-\frac{1}{2p}-1}} \frac{\ell(S)^{1-\frac{1}{2p}}}{D(Q,S)}$$

Then,

$$\begin{split} \boxed{4*_{Q}} \lesssim \left(\sum_{S} \left(\sum_{P} \frac{\ell(S)^{2p} \ell(P)^{p-\frac{5}{2}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p}}{D(Q,P)^{3p}} \right)^{\frac{1}{p}} \left(\sum_{P} \ell(P)^{\frac{p'}{2p}} \right)^{\frac{1}{p'}} \right)^{\frac{1}{p'}} \\ \lesssim \left(\sum_{S} \left(\sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p+\frac{1}{2}} \ell(P)^{p-\frac{5}{2}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p}}{D(Q,P)^{2p-\frac{1}{2}}} \right)^{\frac{1}{p}} \frac{\ell(S)^{1-\frac{1}{2p}}}{D(Q,S)} \right)^{p} \end{split}$$

$$\widehat{\left(4*_{QS}\right)} = |B^{(-\alpha)}\left[\left(\mathfrak{P}_{S}^{n}f - \mathfrak{P}_{S_{Q}}^{n}f\right)\psi_{QS}\right](z)|.$$

The sum $\sum_{S < P \leq S_Q} \ell(P)^{\frac{p'}{2p}}$ is geometric. Thus

$$\left(\sum_{S < P \leq S_Q} \ell(P)^{\frac{p'}{2p}}\right)^{\frac{1}{p'}} \lesssim \ell(S_Q)^{\frac{1}{2p}} \approx \frac{\ell(S)^{\frac{1}{2p}-1}}{D(Q,P)^{-\frac{1}{2p}-1}} \frac{\ell(S)^{1-\frac{1}{2p}}}{D(Q,S)}$$

Then, we apply Hölder inequality

$$\begin{split} \left(4*_{Q}\right) &\lesssim \left(\sum_{S} \left(\sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p+\frac{1}{2}}\ell(P)^{p-\frac{5}{2}} \|\nabla^{n}f\|_{L^{p}(5P)}^{p}}{D(Q,P)^{2p-\frac{1}{2}}}\right)^{\frac{1}{p}} \frac{\ell(S)^{1-\frac{1}{2p}}}{D(Q,S)} \end{split} \right)^{p} \\ &\lesssim \sum_{S} \sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p+\frac{1}{2}}\ell(P)^{p-\frac{5}{2}} \|\nabla^{n}f\|_{L^{p}(5P)}^{p}}{D(Q,P)^{2p-\frac{1}{2}}} \left(\sum_{S} \frac{\ell(S)^{p'-\frac{p'}{2p}}}{D(Q,S)^{p'}}\right)^{\frac{p}{p'}} \end{split}$$

$$\widehat{\left(4*_{QS}\right)} = |B^{(-\alpha)}\left[\left(\mathfrak{P}_{S}^{n}f - \mathfrak{P}_{S_{Q}}^{n}f\right)\psi_{QS}\right](z)|.$$

The sum $\sum_{S < P \le S_Q} \ell(P)^{\frac{P'}{2p}}$ is geometric. Thus

$$\left(\sum_{S < P \leq S_Q} \ell(P)^{\frac{p'}{2p}}\right)^{\frac{1}{p'}} \lesssim \ell(S_Q)^{\frac{1}{2p}} \approx \frac{\ell(S)^{\frac{1}{2p}-1}}{D(Q,P)^{-\frac{1}{2p}-1}} \frac{\ell(S)^{1-\frac{1}{2p}}}{D(Q,S)}$$

Then, we apply Hölder inequality and the properties of the covering,

$$\begin{split} \underbrace{(4*_{Q})} \lesssim \sum_{S} \sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p + \frac{1}{2}} \ell(P)^{p - \frac{5}{2}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p}}{D(Q, P)^{2p - \frac{1}{2}}} \left(\sum_{S} \frac{\ell(S)^{p' - \frac{p'}{2p}}}{D(Q, S)^{p'}} \right)^{\frac{p}{p'}} \\ \lesssim \sum_{S \in \mathcal{W}} \sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p + \frac{1}{2}} \ell(P)^{p - \frac{5}{2}}}{D(Q, P)^{2p - \frac{1}{2}} \ell(Q)^{\frac{1}{2}}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p}. \end{split}$$

$$\underbrace{4*_{QS}} = |B^{(-\alpha)}\left[(\mathfrak{P}_{S}^{n}f - \mathfrak{P}_{S_{Q}}^{n}f)\psi_{QS}\right](z)|.$$

Then,

$$\boxed{4*_{Q}} \lesssim \sum_{S \in \mathcal{W}} \sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p+\frac{1}{2}} \ell(P)^{p-\frac{5}{2}}}{D(Q,P)^{2p-\frac{1}{2}} \ell(Q)^{\frac{1}{2}}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p}.$$

$$\underbrace{\mathbf{4}^*} = \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \left\| B^{(-\alpha)} (\psi_{QS} (\mathbf{p}_S^n f - \mathbf{p}_{S_Q}^n f)) \right\|_{L^p(Q)} \right)^p$$

Then,

$$\boxed{4*_{Q}} \lesssim \sum_{S \in \mathcal{W}} \sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p + \frac{1}{2}} \ell(P)^{p - \frac{5}{2}}}{D(Q, P)^{2p - \frac{1}{2}} \ell(Q)^{\frac{1}{2}}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p}.$$

Summing with respect to Q, we have

$$\underbrace{\left(4^{*}\right)} \lesssim \sum_{Q \in \mathcal{W}} \ell(Q)^{2} \sum_{S \in \mathcal{W}} \sum_{S < P \leq S_{Q}} \frac{\ell(S)^{p + \frac{1}{2}} \ell(P)^{p - \frac{5}{2}}}{D(Q, P)^{2p - \frac{1}{2}} \ell(Q)^{\frac{1}{2}}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p} \\
\leq \sum_{P \in \mathcal{W}} \|\nabla^{n} f\|_{L^{p}(5P)}^{p} \ell(P)^{p - \frac{5}{2}} \sum_{Q \in \mathcal{W}} \frac{\ell(Q)^{\frac{3}{2}}}{D(Q, P)^{2p - \frac{1}{2}}} \sum_{S < P} \ell(S)^{p + \frac{1}{2}}.$$

Bounding
$$4$$

$$(4^*) = \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \left\| B^{(-\alpha)} (\psi_{QS} (\mathfrak{P}_S^n f - \mathfrak{P}_{S_Q}^n f)) \right\|_{L^p(Q)} \right)^p$$

We have found out

$$(4^*) \lesssim \sum_{P \in \mathcal{W}} \|\nabla^n f\|_{L^p(5P)}^p \ell(P)^{p-\frac{5}{2}} \sum_{Q \in \mathcal{W}} \frac{\ell(Q)^{\frac{3}{2}}}{D(Q,P)^{2p-\frac{1}{2}}} \sum_{S < P} \ell(S)^{p+\frac{1}{2}}.$$

$$\underbrace{\left(4^{*}\right)} = \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \left\| B^{(-\alpha)} \left(\psi_{QS} (\mathfrak{P}_{S}^{n} f - \mathfrak{P}_{S_{Q}}^{n} f) \right) \right\|_{L^{p}(Q)} \right)^{p}$$

We have found out

$$(4^*) \lesssim \sum_{P \in \mathcal{W}} \|\nabla^n f\|_{L^p(5P)}^p \ell(P)^{p-\frac{5}{2}} \sum_{Q \in \mathcal{W}} \frac{\ell(Q)^{\frac{3}{2}}}{D(Q,P)^{2p-\frac{1}{2}}} \sum_{S < P} \ell(S)^{p+\frac{1}{2}}.$$

Now, being $p + \frac{1}{2} > 1$ and $2p - \frac{1}{2} > \frac{3}{2} > 1$ imply

$$\sum \ell(S)^{p+\frac{1}{2}} \lesssim \ell(P)^{p+\frac{1}{2}} \text{ and } \sum \frac{\ell(Q)^{\frac{3}{2}}}{D(Q,P)^{2p-\frac{1}{2}}} \lesssim \ell(P)^{-2(p-1)}$$

Bounding (4)

$$\underbrace{\left(4^{*}\right)} = \sum_{Q \in \mathcal{W}} \left(\sum_{S \in \mathcal{W}} \left\| B^{(-\alpha)} \left(\psi_{QS} (\mathfrak{P}_{S}^{n} f - \mathfrak{P}_{S_{Q}}^{n} f) \right) \right\|_{L^{p}(Q)} \right)^{p}$$

We have found out

$$(4^*) \lesssim \sum_{P \in \mathcal{W}} \|\nabla^n f\|_{L^p(5P)}^p \ell(P)^{p-\frac{5}{2}} \sum_{Q \in \mathcal{W}} \frac{\ell(Q)^{\frac{3}{2}}}{D(Q,P)^{2p-\frac{1}{2}}} \sum_{S < P} \ell(S)^{p+\frac{1}{2}}.$$

Now, being $p+\frac{1}{2}>1$ and $2p-\frac{1}{2}>\frac{3}{2}>1$ imply

$$\sum \ell(S)^{p+\frac{1}{2}} \lesssim \ell(P)^{p+\frac{1}{2}} \ \text{and} \ \sum \frac{\ell(Q)^{\frac{3}{2}}}{D(Q,P)^{2p-\frac{1}{2}}} \lesssim \ell(P)^{-2(p-1)}$$

SO

$$(4^*) \lesssim \sum_{P \in \mathcal{M}} \ell(P)^{p - \frac{5}{2} - 2p + 2 + p + \frac{1}{2}} \|\nabla^n f\|_{L^p(5P)}^p \lesssim \|\nabla^n f\|_{L^p(\mathcal{Q} \cap \Omega)}^p.$$