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The Traveling Salesman Problem

2`(K ) ≥ `(T ).

A salesman wants to visit a
number of villages and then go
back home.

He wants to find the shortest
cycle!
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The route cannot be improved much

The Traveling Salesman Problem

2`(K ) ≥ `(T ).

The greedy algorithm gives us the
minimal spanning tree: choose a
vertex.

Find the closer one to it.
Find the shortest segment with
endpoint in one of the previous,
and keep doing it until you have
united all of them.
The resulting spanning tree is
minimal in length. Call it G .
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Finding a good route

The route cannot be improved much

The Traveling Salesman Problem

2`(K ) ≥ `(T ).

Suppose K connects all these
points with minimal length.
You can do a tour with double
length...

But you can shorten it by taking
straight lines instead of repeating
vertices. Call the minimal tour T .

Obviously, T contains a spanning
tree and G is minimal among
them.
Furthermore, K is shorter than
any spanning tree.
The greedy algorithm provides us
with the best route up to
constant 2.
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2`(K ) ≥ `(T ) > `(G ) ≥ `(K ):
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Finding a good route

The route cannot be improved much

Non-finite sets

I When it comes to a non-finite set E , the Traveling Salesman
Problem consists in finding a minimal rectifiable curve Γ ⊃ E . This
would give us also a minimal tour up to a constant.

I We say that a set is rectifiable when the set is contained in the
image of a finite interval by a Lipschitz function.

I One necessary condition for E to be rectifiable is that the Hausdorff
one-dimensional (outer) measure of the set, H1(E ), is finite, but it
is not sufficient unless E is connected [Falconer].
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Finding a good route

The route cannot be improved much

The Peter Jones’ Betas (1)

Definition
Let Q be a (dyadic) square of side `(Q).

We write 3Q for the concentric square
with triple side-length, and call βE (Q)
to the width of the narrowest strip
containing E ∩ 3Q divided by `(3Q).

Notice that βE (Q) ≤ 1. We also have
that

βE (Q) =
2

`(3Q)
inf
L
{ sup
E∩3Q

dist(z , L)}.
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The route cannot be improved much

The Peter Jones’ Betas (2)

Definition
Given a set E , we associate to it the coefficient

β2(E ) = diam(E ) +
∑
Q∈∆

`(Q)≤diam(E)

β2
E (Q)`(Q).

Notice that βE (Q) is adimensional, and we can see that β2 has a linear
behavior up to a constant.
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Finding a good route

The route cannot be improved much

Main Result

Theorem
Suppose E ⊂ C is a bounded set. Then E is contained in a rectifiable
curve if and only if β2(E ) is finite. Moreover, there are constants c1, c2

such that
c1β

2(E ) ≤ inf
Γ⊃E
H1(Γ) ≤ c2β

2(E ) (1)

where the infimum is taken over all rectifiable curves containing E.

Notice that, even though we do not find the best path for the salesman,
we bound the distance the salesman must travel if he designs his route
wisely.
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Finding a good route

We are about to prove that β2(E ) <∞ implies that E is rectifiable, with

inf
Γ⊃E
H1(Γ) ≤ c2β

2(E ).
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Breaking a rectangle into two

I Consider a given
bounded set E0.

I Cover it by a strip of
minimal width and
shrink to a rectangle
S0.

I Divide in three equal
parts.
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The route cannot be improved much

Breaking a rectangle into two

Case 1: The middle third
has a point p ∈ E0.

I Divide S0 in two
rectangles A0,j by p.

I α0,0 + α0,1 = 1.

I Call E0,j = E0 ∩ A0,j .

I Cover each part E0,j

by a rectangle as
before.

I L0,j ≤√
α2

0,j + β2
0L0 ≤

(1 + 5β2
0)α0,jL0.
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Breaking a rectangle into two

Case 2: The middle third
has a no points in E0.

I Fix α0,0 = α0,1 = 1/2.

I Cover each part of E0

by a rectangle as
before.

I Call
E0,j = E0 ∩ S0 ∩ S0,j .

I Still
L0,j ≤ (1+5β2

0)α0,jL0.

I The minimal segment
joining them
|T0| ≤ (1 + β2

0)L0.
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The route cannot be improved much

Iteration

I Cover E by a rectangle S0 as before. Break the rectangle as shown
to get S0,0 and S0,1. In case 2 you get also a segment T0.

I Iterate the process as usual. After n steps, you have 2n rectangles SI

covering EI , I = (0, i1, . . . , in), with long sides LI , weights
αI ∈ [1/3, 2/3] and factors βI .

I If case 2 is applied to SI , we get also a segment TI connecting the
sets EI ,0 and EI ,1 which are contained into its sons SI ,j .

I After N = 25 steps the diameter of a rectangle drops by at least 1/2.
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The route cannot be improved much

Bounds for the length (1): the rectangles

Let Rn be the sum of the diameters of the rectangles at stage n.

For SI ,

LI ,0 + LI ,1 ≤ (1 + 5β2
I )αI ,0LI + (1 + 5β2

I )αI ,1LI = (1 + 5β2
I )LI .

Arguing by induction, we will have the uniform bound

Rn ≤ R0 +
∑
|I |≤n

5β2
I LI . diam(E ) +

∑
β2
I LI .
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Let Rn be the sum of the diameters of the rectangles at stage n. For SI ,

LI ,0 + LI ,1 ≤ (1 + 5β2
I )αI ,0LI + (1 + 5β2

I )αI ,1LI = (1 + 5β2
I )LI .
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The route cannot be improved much

Bounds for the length (2): the segments in wide rectangles

If case 2 is applied and LI ,0 + LI ,1 ≥ 0.9LI , then βI ≥ β̃ for a fixed

constant β̃.

When that happens, using

|TI | ≤ (1 + β2
I )LI .

we get
|TI | ≤ Cβ2

I LI .

Thus, the sum of the lengths of the middle segments created from
applications of case 2 with LI ,0 + LI ,1 ≥ 0.9LI is at most

∑
β2
I LI .
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Finding a good route

The route cannot be improved much

Bounds for the length (3): the segments in narrow
rectangles

Now write
Rn = In + IIn

where IIn is the sum of the lengths of the rectangles at stage n to which
case 2 will be applied and for which LI ,0 + LI ,1 < 0.9LI . Let Tn+1 denote
the sum of the lengths of the segments created when LI ,0 + LI ,1 < 0.9LI

at stage n.

Then

Rn+1 ≤

In + C
∑
|I |=n+1

β2
I LI

+ 0.9IIn.

Moreover, as |TI | ≤ (1 + β2
I )LI , we have

0.1Tn+1 ≤ 0.1IIn + C
∑
|I |=n+1

β2
I LI .

Summing both inequalities,

Rn+1 + 0.1Tn+1 ≤ Rn + C
∑
|I |=n+1

β2
I LI .
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Bounds for the length (3): the segments in narrow
rectangles

Now write
Rn = In + IIn

Then

Rn+1 ≤

In + C
∑
|I |=n+1

β2
I LI

+ 0.9IIn.

Moreover, as |TI | ≤ (1 + β2
I )LI , we have

0.1Tn+1 ≤ 0.1IIn + C
∑
|I |=n+1

β2
I LI .

As Rn is uniformly bounded by Cdiam(E ) + C
∑
β2
I LI , also∑

n

Tn . diam(E ) +
∑

β2
I LI .
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Finding a good route

The route cannot be improved much

Summing cubes

It only remains to bound∑
β2
I LI ≤

∑
Q

β2
E (Q)`(Q).

Given I chose a dyadic cube QI such that dI := diam(SI ) ≤ `(QI ) < 2dI

and with QI ∩ SI 6= ∅. As 3QI ⊃ SI , we will have the bound

βI ≤ CβE (Q).

It will suffice to prove that∑
I :QI =Q

β2
I LI ≤ Cβ2

E (Q)`(Q).
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Finding a good route

The route cannot be improved much

Summing cubes

Indeed, write F(I ) for the father index of I , (0, i1, ..., in−1), and call J ≥ I
if I = F j(J) for some j ≥ 0.

Then, if J ≥ I and `(QJ) = `(QI ), then we
have seen that

|J| − |I | ≤ 24.

We can classify the independent branches where Q occurs as follows:

{I : QI = Q} =
⋃

I :dF(I )>`(Q)≥dI

24⋃
j=0

{J ≥ I : |J| = |I |+ j and QJ = Q}

Then, using the previous bound, given a dyadic cube Q we have

∑
I :QI =Q

β2
I LI . βE (Q)`(Q)

24∑
j=0

∑
J:QJ=Q

dF j+1(I )>`(Q)≥dF j (I )

βJ
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Finding a good route

The route cannot be improved much

Summing cubes

Now, for j ≤ 24, the domains EJ appearing in the sum∑
J:QJ=Q

dF j+1(I )>`(Q)≥dF j (I )

βJ

are contained in disjoint convex polygons S̃J of width βJLJ and diameter
comparable to LJ .

One can see that

βJL2
J ≈ Area(S̃J).
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The route cannot be improved much

Summing cubes

At the same time, all of them are in a strip of width βE (Q)`(Q) and
contained in 3Q. The areas of the polygons are bounded in consequence
by the area of this strip intersected with 3Q. Thus,∑

J:QJ=Q
dF j (I )>`(Q)≥dF j−1(I )

βJL2
J ≤ CβE (Q)`(Q)2

Taking into account that LJ ≈ `(Q) and summing in j we obtain∑
I :QI =Q

β2
I LI ≤ Cβ2

E (Q)`(Q).
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Finding a good route

The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Lipschitz graphs

Lemma
Let Γ be the graph of a Lipschitz function. For E ⊂ Γ, β2(E ) ≤ CH1(Γ).
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The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Lipschitz graphs

Let Γ = {0 ≤ x ≤ 1, y = f (x)},
where f is Lipschitz with constant
M. It is enough to show the case
E = Γ and f (0) = f (1).
Let I nj be the jth dyadic interval

of length 2−n, call its image
graph Γn

j and let Jn
j be the

segment uniting the endpoints of
Γn
j . Then Jn+1

2j , Jn+1
2j+1 and Jn

j are
the three sides of a triangle. Call
δn,j its height times 2n. Using the
Pythagorean Theorem, one gets

2−nδ2
n,j . `(Jn+1

2j )+`(Jn+1
2j+1)−`(Jn

j )

with constant depending on M.
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The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Lipschitz graphs
This implies∑

m,k

c2−mδ2
m,k ≤ 2`(Γ).

Now, by the triangular inequality,

βn,j := 2n sup{dist(z , Jn
j ) : z ∈ Γn

j },

βn,j ≤
∞∑

m=n

2n−m sup{δm,k : Imk ⊂ I nj }.

Using Hölder inequalities and
other standard arguments for
series, one gets∑
n,j

2−nβ2
n,j .

∑
m,k

2−mδ2
m,k . 2`(Γ).
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The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Hölderizing

Indeed,

∑
n,j

2−nβ2
n,j ≤

∑
n,j

2−n

( ∞∑
m=n

2n−m sup
Imk ⊂I

n
j

δm,k

)2

≤
∑
n,j

2−n
∞∑

m=n

23 n−m
2 sup

Imk ⊂I
n
j

δ2
m,k

∞∑
m=n

2
n−m

2

≤ C
∑
n,j

∑
m≥n
Imk ⊂I

n
j

2
n
2 2−

3m
2 δ2

m,k

≤ C
∑
m,k

 m∑
n=0

∑
I nj ⊃I

m
k

2
n
2

 2−
3m
2 δ2

m,k
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Hölderizing

Indeed,

∑
n,j

2−nβ2
n,j ≤

∑
n,j

2−n

( ∞∑
m=n

2n−m sup
Imk ⊂I

n
j

δm,k

)2

≤
∑
n,j

2−n
∞∑

m=n

23 n−m
2 sup

Imk ⊂I
n
j

δ2
m,k

∞∑
m=n

2
n−m

2

≤ C
∑
n,j

∑
m≥n
Imk ⊂I

n
j

2
n
2 2−

3m
2 δ2

m,k

≤ C
∑
m,k

 m∑
n=0

∑
I nj ⊃I

m
k

2
n
2

 2−
3m
2 δ2

m,k

Mart́ı Prats Rectifiable sets and the Traveling Salesman Problem



Introduction
Finding a good route

The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case
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Final step
Finally we extend the function periodically and obtain some translated
coefficients βn,j(t) related to Γ(t) = (Id × f )([t, 1 + t]) ⊂ C verifying the
last inequality as well.

Then, for a cube Q with `(Q) = 2−n−2, 3Q will have projection
contained in the translation of an interval In,j(t) with probability 1/4
with respect to the Lebesgue measure on t.
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So ∑
`(Q)=2−n−2

β2
Γ(Q) .

∫ 1

−1

∑
j

βn,j(t)2dt.

Summing with respect to n proofs the claim for Lipschitz graphs.
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Second session
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The case of Lipschitz graphs
A decomposition theorem
The general case

Back to previous steps: Main Result

Theorem
Suppose E ⊂ C is a bounded set. Then E is contained in a rectifiable
curve if and only if β2(E ) is finite. Moreover, there are constants c1, c2

such that
c1β

2(E ) ≤ inf
Γ⊃E
H1(Γ) ≤ c2β

2(E ) (2)

where the infimum is taken over all rectifiable curves containing E.

We have already proven left-hand side for Lipschitz graphs and
right-hand side for general sets with finite β.
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The general case

Purpose of the second talk

In this session we will proof the left-hand side inequality for general sets
of finite length.

The key point is to find E ⊂
⋃

Γj being each Γj the boundary of a
Lipschitz domain Dj with some restrictions on the constant and the
shapes. We need to do this in such a way that we keep control on the
total length and the relations between the original betas and∑

Q

∑
Γj
β2

Γj
(Q).

We will do that in three steps. First we present a theorem which will
allow us to make the decomposition as long as E is the boundary of a
simply connected domain. The second step is a simple corollary allowing
us to make such a decomposition on any connected plain set γ. Finally
we will prove the relation between betas.
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M-Lipschitz domains

Definition
We call an M-Lipschitz domain to a simply connected domain whose
boundary can be expressed as {r(θ)e iθ : 0 ≤ θ < 2π} (i.e. it is starlike
with respect to the origin), with r a Lipschitz function of coefficient M
and 1

M+1 ≤ r(θ) ≤ 1 after translation and dilation if necessary.
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Decomposition theorem

Theorem
There is a constant M such that whenever Ω is a simply connected
domain with H1(∂Ω) <∞ there exists a rectifiable curve Γ such that

I Ω \ Γ =
⋃∞

j=0 Ωj ,

I each Ωj is an M-Lipschitz domain,

I and
∑

j H1(∂Ωj) ≤ MH1(∂Ω).
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The case of Lipschitz graphs
A decomposition theorem
The general case

Summary of the proof

Let ϕ : D→ Ω be a Riemann mapping. By translating, rotating and
rescaling the domain, we can assume WLOG that ϕ(0) = 0 and
ϕ′(0) = 1 (i.e. ϕ ∈ S).

We will make a division in the disk in such a way that, using the
properties of ϕ we can ensure that the images of the domains in D are
also M-Lipschitz domains.
On the first step we will create uniformly chord-arc domains such that we
keep control on the lengths. After that we will decompose these domains
into smaller domains to ensure the M-Lipschitz condition is satisfied.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Useful theorems

Theorem (Koebe’s estimate, growth and distortion theorem)
Given a conformal mapping ϕ ∈ S (ϕ : D→ Ω, ϕ(0) = 0, ϕ(0) = 1), we
have

I dist(ϕ(z), ∂Ω) ≈ |ϕ′(z)|(1− |z |2).

I Whitney cubes are almost invariant, with constant derivative
absolute value on them.

I |z|
(1+|z|)2 ≤ |ϕ(z)| ≤ |z|

(1−|z|)2 .

I 1−|z|
(1+|z|)3 ≤ |ϕ′(z)| ≤ 1+|z|

(1−|z|)3 .

Theorem (F. and M. Riesz Theorem)
Given a Riemann mapping ϕ to a Jordan domain Ω, it is bounded by a
rectifiable curve if and only if ϕ′ ∈ H1, with

H1(Γ) = ‖ϕ′‖H1 .
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The case of Lipschitz graphs
A decomposition theorem
The general case

Useful theorems

Theorem (Alexander’s)
For Γ connected with finite length, call ϕi to a collection of Riemann
mappings to each component of C∗. Then

2H1(Γ) =
∑
i

‖ϕ′i‖H1

Call the cone Γα(ψ) = {z ∈ D : |z − ψ| < α(1− |z |)} and the area

function Aαϕ(ψ) =
(∫∫

Γα(ψ)
|ϕ′(z)|2

)1/2

.

Theorem (M. Calderon’s)
Let Ω be chord-arc domain, α > 1, 0 < p <∞, ϕ : Ω analytic. Then

‖ϕ− ϕ(z0)‖pHp(Ω) ≈ ‖Aαϕ‖
p
Lp(∂Ω).
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The case of Lipschitz graphs
A decomposition theorem
The general case

Some tools

Write F =
√
ϕ′ and g = log(ϕ′).

Using Bieberbach’s Theorem one can
see that g is in the Bloch space with norm

‖g‖B ≤ 6 (3)

i.e. |ϕ
′′(z)|
|ϕ′(z)| ≤

6
1−|z|2 for all z ∈ D.

A simple computation shows that 4F ′(z)2 = ϕ′(z)g ′(z)2.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Some help from Hardy spaces

This implies that∫∫
D
|ϕ′(z)||g ′(z)|2 log

1

|z |
dm(z) = 4

∫∫
D
|F ′(z)|2 log

1

|z |
dm(z).

By the Littlewood-Paley formula for the Hardy space H2, we have∫∫
D
|ϕ′(z)||g ′(z)|2 log

1

|z |
dm(z) ≤ 2‖F‖2

H2 = 2‖ϕ′‖2
H1 .

Thanks to a result due to Alexander (which somehow generalizes the F.
and M. Riesz Theorem to any simply connected domain) we can see that
ϕ′ ∈ H1, and ‖ϕ′‖H1 ≤ 2H1(∂Ω). Summing up,∫∫

D
|ϕ′(z)||g ′(z)|2 log

1

|z |
dm(z) ≤ 4H1(∂Ω).
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The case of Lipschitz graphs
A decomposition theorem
The general case

The local zone

Set D0 = {|z | ≤ 1/2} and
U0 = ϕ(D0).

By the growth
theorem and the distortion
theorem for univalent functions,
one can see that U0 is an
M-Lipschitz domain.
Since ϕ′ ∈ H1 we also have

H1(∂U0) ≤ H1(∂Ω). (4)
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The case of Lipschitz graphs
A decomposition theorem
The general case

Carleson boxes
Next form the dyadic Carleson
boxes

and consider their top
halves T (Q) = {z ∈ Q : |z | <
1− 2−(n+1)}. Write zQ for the
center of T (Q).
We will choose the domains by a
stoping time argument.
The domains Dj will be unions of
T (Q) so that we have a covering
of the unit disk with disjoint
interiors. We will choose them so
that their images Uj = ϕ(Dj) are
such that H(

⋃
Uj) ≤ CH(Γ).

Finally we will make a subdivision
of those domains to get starlike
domains with uniform Lipschitz
constant.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Type 0 cubes

Fix ε to be determined later and
consider a Carleson box Q as big
as possible.

If

sup
T (Q)

|g(z)− g(zQ)| ≥ ε,

we say that Q is a type 0 cube
and define D(Q) = T (Q). In
that case, using the Bloch norm,
we can find that UQ = ϕ(DQ) is
a chord-arc domain with fixed
constant.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Stopping time argument: almost constant derivative
If Q is not of type 0, define G (Q)
to be the set of maximal boxes
Q ′ ⊂ Q for which

sup
T (Q′)

|g(z)− g(zQ)| ≥ ε

and define
D(Q) =

(
Q \

⋃
G(Q) Q ′

)
.

Then, D(Q) is a chord-arc
domain with constant 4 and

sup
D(Q)

|g(z)− g(zQ)| ≤ ε.

For ε small enough, UQ = ϕ(DQ)
will be chord-arc domains with
constant 5.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Type 1 and type 2

If the domain attains the border
of D in more than the half of the
measure of Q ∩ D, then we say Q
is of type 1.

Otherwise, we say that Q is of
type 2.
Keep finding D(Q) for the
successive remaining maximal
cubes in Q \ D(Q). Then, the
family {Dj}j≥0 is pairwise
disjoint.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Lengths in domains of type 0
If Q is of type 0, then using the Bloch norm of g and
supT (Q′) |g(z)− g(zQ)| ≥ ε, we see that there is a significative part of

T (Q) with |g ′| > Cε`(Q), so `(Q)2 .
∫
|g ′|2.

Notice that, for z ∈ T (Q) we have

`(Q) = 1− |z | ≈ 1− |z |2 ≈ log
1

|z |
.

We also have that in Whitney cubes |ϕ′(z)| is almost constant, so that

H1(∂Uj) =

∫
∂T (Q)

|ϕ′(z)|

. `(Q)|ϕ′(zQ)| ≤
∫∫

T (Q)

|ϕ′(z)||g ′(z)|2 log
1

|z |

Finally, using the previous estimates on the last integral over D,∑
type 0

H1(∂Uj) ≤ CH1(∂Ω).
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The case of Lipschitz graphs
A decomposition theorem
The general case

Starlike domains come out

Dividing the region into a fixed number of polar rectangles, we can apply
yet the previous reasoning. Furthermore, using again the Bloch estimate
for g we find that the derivative is almost constant so that the image of
the regions are M-Lipschitz domains.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Lengths in domains of type 1

For Q of type 1, using F. and M. Riesz Theorem for Jordan domains we
know that

H1(∂Uj) =

∫∫
∂Dj

|ϕ′(z)|

and using that ϕ′ is almost constant in type 1 domains, we have∫∫
∂Dj

|ϕ′(z)| .
∫∫

∂Dj∩∂D
|ϕ′(z)|.

Finally, as this arcs have zero superposition in H1, we have using
Alexander’s result that∑

type 1

H1(∂Uj) ≤ C

∫∫
∂D
|ϕ′(z)| ≤ CH1(∂Ω).
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The case of Lipschitz graphs
A decomposition theorem
The general case

Lengths in domains of type 2

When it comes to type 2 cubes, the reasoning is more involved. We
sketch the proof.
Call {Jk} to the top edges of the boxes in G (Q). Then

H1(Jk) ≥ H
1(∂D(Q))

12
.

By equicontinuity, there is a big part of Jk where

|g(z)− g(zQ)| ≥ δ.

This allows us to prove that

H1(∂Uj) .
∫
∂D(Q)

|F (z)− F (zQ)|2.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Lengths in domains of type 2

By M. Calderon’s Theorem,∫
∂D(Q)

|F (z)− F (zQ)|2 ≤ C

∫∫
D(Q)

|F ′(z)|2H1(B(z , 2dist(z , ∂D(Q))))

and using that chord-arc domains are bounded by Ahlfors-regular curves,∫
∂D(Q)

|F (z)− F (zQ)|2 ≤ C

∫∫
D(Q)

|F ′(z)|2dist(z , ∂D(Q))

≤ C

∫∫
D(Q)

|F ′(z)|2 log
1

|z |

Therefore, ∑
type 2

H1(∂Uj) ≤ CH1(∂Ω).
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The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Starlike domains in type 1 or 2

It only remains to subdivide the domains D(Q) related to cubes of type 1
and type 2 into domains DQ,k such that UQ,k = ϕ(DQ,k) are M-Lipschitz
domains with lendth still bounded.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Starlike domains in type 1 or 2: visual explanation

H1(T (Qk)) = C`(Qk)

Dj \
⋃
G(Q)

T (Qk) =
⋃
Dj,k

∑
H1(∂ϕ(Dj,k)) ≤ C |ϕ′(zQ)|`(Q) ≤ CH1(Uj)
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The case of Lipschitz graphs
A decomposition theorem
The general case

Given any connected set

Corollari
There exists a constant M <∞ such that if Γ is a connected plane set
with H1(Γ) <∞, then there exists a connected plane set Γ̃ ⊃ Γ such that

H1(Γ̃) ≤ MH1(Γ), the bounded components Dj of C \ Γ̃ are M-Lipschitz
domains with Γ ⊂

⋃
∂Dj , and the boundary of the unbounded

component D0 of C \ Γ̃ is a circle at least 3
√

2H1(Γ) units from Γ.
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The case of Lipschitz graphs
A decomposition theorem
The general case

The shortest proof

Proof.
Apply the previous result to each bounded component of the original set
united to a circle big enough by a segment.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Small domains, big domains

Now, let Γ be connected with H1(Γ) <∞, let {Dj} be the Lipschitz
domains given by the previous corollary and write Γj = ∂Dj and
δj = diam(Dj).

Let Q be any dyadic square and define

F(Q) = {Γj : Γj ∩ 3Q 6= ∅, δj ≥ `(Q)}

and
G(Q) = {Γj : Γj ∩ 3Q 6= ∅, δj < `(Q)}.
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The case of Lipschitz graphs
A decomposition theorem
The general case

The relation between betas

Lemma
There is a constant C such that if `(Q) ≤ diamΓ and `(Q) = 1

4`(Q ′),
with Q ⊂ Q ′, then

β2
Γ(Q) ≤ C

∑
F(Q)

β2
Γj

(Q ′) + C1
1

`(Q)2

∑
G(Q)

Area(Dj).
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The case of Lipschitz graphs
A decomposition theorem
The general case

Trivialities

WLOG, WMA that `(Q) = 1 and βΓ(Q) > 0, so that 3Q ∩ Γj 6= ∅ for
some Γj and 3Q ′ ⊂

⋃
Dj .

If F(Q) = ∅ then
∑
G(Q) AreaDj ≥ 9`(Q)2. Thus, we can assume there

exists Γ1 ∈ F(Q).
We distinguish three cases.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Case 1

F(Q) = {Γ1}.

Let L be a line such that

d = sup
Γ1∩3Q

dist(z , L) ≤ βΓ1 (Q)`(3Q).

Let z0 ∈ Γ ∩ 3Q have maximal distance d0 = dist(z0, Γ1) and let z1 ∈ Γ1

have minimal distance to z0. Call z2 = z0+z1

2 . Then, if B = B
(
z2,

d0

2

)
,

B ∩ 3Q ⊂
⋃
G(Q)

Dj

and Area(B ∩ 3Q) ≈ d2
0 .

Hence

β2
Γ(Q) ≤ (d + d0)2 ≤ 2d2 + 2d2

0 . β2
Γ1

(Q ′) +
∑
G(Q)

AreaDj .

Mart́ı Prats Rectifiable sets and the Traveling Salesman Problem



Introduction
Finding a good route

The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Case 1

F(Q) = {Γ1}. Let L be a line such that

d = sup
Γ1∩3Q

dist(z , L) ≤ βΓ1 (Q)`(3Q).

Let z0 ∈ Γ ∩ 3Q have maximal distance d0 = dist(z0, Γ1) and let z1 ∈ Γ1

have minimal distance to z0. Call z2 = z0+z1

2 . Then, if B = B
(
z2,

d0

2

)
,

B ∩ 3Q ⊂
⋃
G(Q)

Dj

and Area(B ∩ 3Q) ≈ d2
0 .

Hence

β2
Γ(Q) ≤ (d + d0)2 ≤ 2d2 + 2d2

0 . β2
Γ1

(Q ′) +
∑
G(Q)

AreaDj .

Mart́ı Prats Rectifiable sets and the Traveling Salesman Problem



Introduction
Finding a good route

The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Case 1

F(Q) = {Γ1}. Let L be a line such that

d = sup
Γ1∩3Q

dist(z , L) ≤ βΓ1 (Q)`(3Q).

Let z0 ∈ Γ ∩ 3Q have maximal distance d0 = dist(z0, Γ1) and let z1 ∈ Γ1

have minimal distance to z0.

Call z2 = z0+z1

2 . Then, if B = B
(
z2,

d0

2

)
,

B ∩ 3Q ⊂
⋃
G(Q)

Dj

and Area(B ∩ 3Q) ≈ d2
0 .

Hence

β2
Γ(Q) ≤ (d + d0)2 ≤ 2d2 + 2d2

0 . β2
Γ1

(Q ′) +
∑
G(Q)

AreaDj .

Mart́ı Prats Rectifiable sets and the Traveling Salesman Problem



Introduction
Finding a good route

The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Case 1

F(Q) = {Γ1}. Let L be a line such that

d = sup
Γ1∩3Q

dist(z , L) ≤ βΓ1 (Q)`(3Q).

Let z0 ∈ Γ ∩ 3Q have maximal distance d0 = dist(z0, Γ1) and let z1 ∈ Γ1

have minimal distance to z0. Call z2 = z0+z1

2 . Then, if B = B
(
z2,

d0

2

)
,

B ∩ 3Q ⊂
⋃
G(Q)

Dj

and Area(B ∩ 3Q) ≈ d2
0 .

Hence

β2
Γ(Q) ≤ (d + d0)2 ≤ 2d2 + 2d2

0 . β2
Γ1

(Q ′) +
∑
G(Q)

AreaDj .

Mart́ı Prats Rectifiable sets and the Traveling Salesman Problem



Introduction
Finding a good route

The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Case 1

F(Q) = {Γ1}. Let L be a line such that

d = sup
Γ1∩3Q

dist(z , L) ≤ βΓ1 (Q)`(3Q).

Let z0 ∈ Γ ∩ 3Q have maximal distance d0 = dist(z0, Γ1) and let z1 ∈ Γ1

have minimal distance to z0. Call z2 = z0+z1

2 . Then, if B = B
(
z2,

d0

2

)
,

B ∩ 3Q ⊂
⋃
G(Q)

Dj

and Area(B ∩ 3Q) ≈ d2
0 .

Hence

β2
Γ(Q) ≤ (d + d0)2 ≤ 2d2 + 2d2

0 . β2
Γ1

(Q ′) +
∑
G(Q)

AreaDj .

Mart́ı Prats Rectifiable sets and the Traveling Salesman Problem



Introduction
Finding a good route

The route cannot be improved much

The case of Lipschitz graphs
A decomposition theorem
The general case

Case 2

F(Q) = {Γ1, Γ2} for disjoint D1 and D2.

In this case, we may assume that β2
Γj

(Q) < ε0, j = 1, 2, since otherwise

the lemma would hold for C = ε−1
0 .

Let d1 = supΓ2∩3Q dist(z , Γ1). Then, if ε0 is small enough, Γ ∩ 3Q is
trapped between Γ1 and Γ2, and

βΓ(Q) ≤ βΓ1 (Q ′) + βΓ2 (Q ′) + d1.

Also because D2 is an M-Lipschitz domain, there exists
z3 ∈ 4Q \ (D1 ∪ D2) such that dist(z3, Γj) ≥ Cd1.
Consequently,

β2
Γ(Q) . β2

Γ1
(Q ′) + βΓ2 (Q ′)2 + d(z3, Γj)

2 .
∑
F(Q)

β2
Γj

(Q ′) +
∑
G(Q)

Area(Dj)
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Let d1 = supΓ2∩3Q dist(z , Γ1). Then, if ε0 is small enough, Γ ∩ 3Q is
trapped between Γ1 and Γ2, and

βΓ(Q) ≤ βΓ1 (Q ′) + βΓ2 (Q ′) + d1.

Also because D2 is an M-Lipschitz domain, there exists
z3 ∈ 4Q \ (D1 ∪ D2) such that dist(z3, Γj) ≥ Cd1.
Consequently,

β2
Γ(Q) . β2

Γ1
(Q ′) + βΓ2 (Q ′)2 + d(z3, Γj)

2 .
∑
F(Q)

β2
Γj

(Q ′) +
∑
G(Q)

Area(Dj)
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The case of Lipschitz graphs
A decomposition theorem
The general case

Case 3

F(Q) contains at least three distinct Γj .

Then, because each Dj is an M-Lipschitz domain, there exist at least one
Γj ∈ F(Q) such that βΓj (3Q ′) ≥ C1, as three strips intersecting 3Q will
always intersect one another in 3Q ′.
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The case of Lipschitz graphs
A decomposition theorem
The general case

Proof of the theorem

To finish the proof of the main theorem, let Γ be a rectifiable curve and
let {Gammaj} be as in the corollary. Using the lemma on Lipschitz
graphs we can see that ∑

Q

β2
Γj

(Q)`(Q) ≤ C`(Γj).
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The case of Lipschitz graphs
A decomposition theorem
The general case

Small cubes’ areas

If δj < 2−n there are at most 25 dyadic cubes Q such that `(Q) = 2−n

and Dj ∈ G(Q).

Hence,∑
Q

1

`(Q)

∑
G(Q)

AreaDj =
∑
j

AreaDj

∑
Q:Dj∈G(Q)

1

`(Q)

≤ 25
∑
j

AreaDj

∞∑
m=0

2−mδ−1

≤ 50
∑
j

AreaDj

δj

≤ C
∑
j

`(Γj) ≤ C`(Γ)
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The case of Lipschitz graphs
A decomposition theorem
The general case

Big cubes’ betas
On the other hand, in the sum∑

Q

∑
F(Q)

β2
Γj

(Q ′)`(Q)

each term appears sixteen times,

so

β2(E ) = diamΓ +
∑

`(Q)≤diamΓ

β2
Γ(Q)`(Q)

≤ H1(Γ) +
∑
Q

∑
F(Q)

β2
Γj

(Q ′)`(Q) +
1

`(Q)

∑
G(Q)

AreaDj

≤ CH1(Γ) + C
∑
j

∑
Q

β2
Γj

(Q)`(Q)

≤ CH1(Γ) +
∑
j

`(Γj)

≤ CH1(Γ)
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Thank you!
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