Smoothness of the Beurling transform in Lipschitz domains

Martí Prats

Universitat Autònoma de Barcelona

March 12, 2013

UNIVERSITY AUTONOMA de Barcelona

э

-∢ ≣⇒

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

= 990

・ 同 ト ・ ヨ ト ・ ヨ ト

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

It is essential to quasiconformal mappings because

$$B(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}$$

3

< ∃> < ∃>

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

It is essential to quasiconformal mappings because

$$B(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $B: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>B: W^{s,p}(\mathbb{C}) \to W^{s,p}(\mathbb{C})$ is bounded for 1 and <math>s > 0.

-

イヨト・イヨト

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$Bf(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(z).$$

It is essential to quasiconformal mappings because

$$B(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $B: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>B: \dot{W}^{s,p}(\mathbb{C}) \to \dot{W}^{s,p}(\mathbb{C})$ is bounded for 1 and <math>s > 0.

In particular, if $z \notin \operatorname{supp}(f)$ then Bf is analytic in an ε -neighborhood of z and

$$\partial^n Bf(z) = c_n \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{n+2}} dm(z).$$

▲ back

4 E 6 4 E 6

-

The problem we face

Let $\boldsymbol{\Omega}$ be a Lipschitz domain.

When is $B: W^{s,p}(\Omega) \to W^{s,p}(\Omega)$ bounded? We want an answer in terms of the geometry of the boundary.

Martí Prats Smoothness of the Beurling transform in Lipschitz domains

Versitat Autòn de Barcelona

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s \leq 1, $1 with sp > 2, and <math display="inline">\partial \Omega$ smooth enough,

Theorem

 $B: W^{s,p}(\Omega) \to W^{s,p}(\Omega)$ is bounded

if and only if

 $B\chi_{\Omega} \in W^{s,p}(\Omega).$

э

(E) < E)</p>

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s \leq 1, $1 with sp > 2, and <math display="inline">\partial \Omega$ smooth enough,

Theorem

 $B: W^{s,p}(\Omega) \to W^{s,p}(\Omega)$ is bounded

if and only if

 $B\chi_{\Omega} \in W^{s,p}(\Omega).$

One can deduce regularity of a quasiregular mapping in terms of the regularity of its Beltrami coefficient.

> Universitat Autònom de Barcelona

4 E 6 4 E 6

Besov Spaces $B_{p,p}^s$

The geometric answer will be given in terms of Besov spaces $B_{p,p}^s$. $B_{p,p}^s$ form a family closely related to $W^{s,p}$. They coincide for p = 2. For p < 2, $B_{p,p}^s \subset W^{s,p}$. Otherwise $W^{s,p} \subset B_{p,p}^s$.

3

(*) *) *) *)

A .

Besov Spaces $B_{p,p}^s$

The geometric answer will be given in terms of Besov spaces $B_{p,p}^s$. $B_{p,p}^s$ form a family closely related to $W^{s,p}$. They coincide for p = 2. For p < 2, $B_{p,p}^s \subset W^{s,p}$. Otherwise $W^{s,p} \subset B_{p,p}^s$.

Definition

For $0 < s < \infty$, $1 \leq p < \infty$, $f \in \dot{B}^{s}_{
ho,
ho}(\mathbb{R})$ if

$$\|f\|_{\dot{B}^{s}_{p,p}}=\left(\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1}f(x)}{h^{s}}\right|^{p}\frac{dm(h)}{|h|}dm(x)\right)^{1/p}<\infty.$$

-

* E > * E >

Besov Spaces $B_{p,p}^s$

The geometric answer will be given in terms of Besov spaces $B_{p,p}^s$. $B_{p,p}^s$ form a family closely related to $W^{s,p}$. They coincide for p = 2. For p < 2, $B_{p,p}^s \subset W^{s,p}$. Otherwise $W^{s,p} \subset B_{p,p}^s$.

$\begin{array}{l} \text{Definition} \\ \text{For } 0 < s < \infty, \ 1 \leq p < \infty, \ f \in \dot{B}^{s}_{p,p}(\mathbb{R}) \ \text{if} \end{array}$

$$\|f\|_{\dot{B}^{s}_{p,p}}=\left(\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1}f(x)}{h^{s}}\right|^{p}\frac{dm(h)}{|h|}dm(x)\right)^{1/p}<\infty.$$

Furthermore, $f \in B^s_{p,p}(\mathbb{R})$ if

$$\|f\|_{B^{s}_{p,p}} = \|f\|_{L^{p}} + \|f\|_{\dot{B}^{s}_{p,p}} < \infty.$$

We call them homogeneous and non-homogeneous Besov spaces respectively.

B

te Barcelon

In another recent paper, Cruz and Tolsa proved that for any $1 and <math display="inline">\Omega$ a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p,p}^{1-1/p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

 $\|B(\chi_{\Omega})\|_{\dot{W}^{1,p}(\Omega)} \leq c \|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$

-

化压力 化压力

In another recent paper, Cruz and Tolsa proved that for any $1 and <math display="inline">\Omega$ a Lipschitz domain,

Theorem

If the normal vector N belongs to $B^{1-1/p}_{p,p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

$$\|B(\chi_{\Omega})\|_{\dot{W}^{1,p}(\Omega)} \leq c \|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$$

They proved also an analogous result for smoothness 0 < s < 1.

In another recent paper, Cruz and Tolsa proved that for any $1 and <math display="inline">\Omega$ a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p,p}^{1-1/p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

$$\|B(\chi_\Omega)\|_{\dot{W}^{1,p}(\Omega)}\leq c\|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$$

They proved also an analogous result for smoothness 0 < s < 1. This implies

Theorem

Let $0 < s \le 1$, 1 with <math>sp > 2. If the normal vector is in the Besov space $B_{p,p}^{s-1/p}(\partial\Omega)$, then the Beurling transform is bounded in $W^{s,p}(\Omega)$.

Martí Prats Smoothness of the Beurling transform in Lipschitz domains

In another recent paper, Cruz and Tolsa proved that for any $1 and <math display="inline">\Omega$ a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p,p}^{1-1/p}(\partial\Omega)$, then $B(\chi_{\Omega}) \in W^{1,p}(\Omega)$ with

$$\|B(\chi_\Omega)\|_{\dot{W}^{1,p}(\Omega)}\leq c\|N\|_{\dot{B}^{1-1/p}_{p,p}(\partial\Omega)}.$$

They proved also an analogous result for smoothness 0 < s < 1. This implies

Theorem

Let $0 < s \le 1$, 1 with <math>sp > 2. If the normal vector is in the Besov space $B_{p,p}^{s-1/p}(\partial\Omega)$, then the Beurling transform is bounded in $W^{s,p}(\Omega)$.

Tolsa proved a converse for Ω flat enough.

Main results

Main Theorem Let Ω be smooth enough. Then we can write

$$\|\partial^n B\chi_{\Omega}\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

∃ 990

A >

Main results

Main Theorem Let Ω be smooth enough. Then we can write

$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

Conjecture (work in progress)

Let $2 and <math>1 \le n < \infty$. Let Ω be a bounded domain smooth enough. If the exterior normal vector of Ω is in the Besov space $B_{p,p}^{n-1/p}(\partial\Omega)$, then the Beurling transform is bounded in $W^{n,p}(\Omega)$.

Universitat Autònoma de Barcelona

▶ We have a domain smooth enough.

э

Martí Prats Smoothness of the Beurling transform in Lipschitz domains

In particular, at every boundary point we can find a cube with fixed side-length *R* parallel to the tangent line inducing a parametrization C^{n-1,1}.

- ▶ We have a domain smooth enough.
- In particular, at every boundary point we can find a cube with fixed side-length *R* parallel to the tangent line inducing a parametrization C^{n-1,1}.
- ► We make a covering of the boundary by *N* of such cubes with some controlled overlapping.

- We have a domain smooth enough.
- In particular, at every boundary point we can find a cube with fixed side-length *R* parallel to the tangent line inducing a parametrization C^{n-1,1}.
- We make a covering of the boundary by N of such cubes with some controlled overlapping.
- The Beurling transform of the interior points is controlled by the distance to the boundary:

$$|\partial^n B\chi_\Omega(z)|\lesssim rac{1}{R^n}.$$

A measure of the flatness of a set Γ :

э

-

A measure of the flatness of a set Γ :

Definition (P. Jones) $\beta_{\Gamma}(Q) = \inf_{V} \frac{w(V)}{\ell(Q)}$

.....

.....

The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

3

通 と く ヨ と く ヨ と

The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition $\beta_{\infty}(I, A) = \inf_{P \in \mathcal{P}^1} \left\| \frac{A - P}{\ell(I)} \right\|_{\infty}$

The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition $\beta_{p}(I, A) = \inf_{P \in \mathcal{P}^{1}} \frac{1}{\ell(I)} \left\| \frac{A - P}{\ell(I)} \right\|_{p}$

Universitat Autònoma de Barcelona

The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition $\beta_{(n)}(I,A) = \inf_{P \in \mathcal{P}^n} \frac{1}{\ell(I)} \left\| \frac{A-P}{\ell(I)} \right\|_1$

If there is no risk of confusion, we will write just $\beta_{(n)}(I)$.

Relation between $\beta_{(n)}$ and $B_{p,p}^n$

Theorem (Dorronsoro)

Let $f : \mathbb{R} \to \mathbb{R}$ be a function in the homogeneous Besov space $\dot{B}_{p,p}^{s}$. Then, for any $n \ge [s]$,

$$\|f\|_{\dot{B}^{s}_{p,p}}^{p}\approx \sum_{I\in\mathcal{D}}\left(\frac{\beta_{(n)}(I)}{\ell(I)^{s-1}}\right)^{p}\ell(I).$$

э

∃ ► < ∃ ►</p>

Local charts: Whitney decomposition

3 x 3

-

Local charts: Whitney decomposition

UAB iversitat Autòno de Barcelona

3

A B > A B >

Local charts: Whitney decomposition

Local charts: Bounds for the first derivative

Martí Prats Smoothness of the Beurling transform in Lipschitz domains

Local charts: Bounds for the first derivative

Local charts: Bounds for the first derivative

Martí Prats Smoothness of the Beurling transform in Lipschitz domains

Local charts: Second order derivative

Martí Prats Smoothness of the Beurling transform in Lipschitz domains

Local charts: Second order derivative

Local charts: Higher order derivatives

Local charts: Higher order derivatives

Bounding the polynomial region

We can choose R small enough (depending on the Lipschitz condition of the boundary) so that the following proposition holds:

э

A 32 b

3 N

Bounding the polynomial region

We can choose R small enough (depending on the Lipschitz condition of the boundary) so that the following proposition holds:

Proposition

If we denote by Ω_Q the region with boundary a minimizing polynomial for $\beta_{(n)}(\Phi(Q))$, we get

$$\left|\partial^n B\chi_{\Omega_Q}\right| \leq \frac{C}{R^n}.$$

-

医下口 医下

Bounding the interstitial region

Proposition

Choosing a minimizing polynomial for $\beta_{(n)}(\Phi(Q))$, we get

$$\int_{\Omega \Delta \Omega_Q} \frac{dm(w)}{|z-w|^{n+2}} \lesssim \sum_{\substack{I \in \mathcal{D} \\ \Phi(Q) \subset I \subset \Phi(\mathcal{Q}_k)}} \frac{\beta_{(n)}(I)}{\ell(I)^n} + \frac{1}{R^n}.$$

UAB iversitat Autòno de Barcelona

э

< ∃> < ∃>

A >

Theorem Let Ω be a Lipschitz domain of order *n*. Then, with the previous notation,

$$\|\partial^{n}B\chi_{\Omega}\|_{L^{p}(\Omega)}^{p} \lesssim \sum_{k=1}^{N} \sum_{I \in \mathcal{D}^{k}} \left(\frac{\beta_{(n)}(I)}{\ell(I)^{n-1/p}}\right)^{p} \ell(I) + \mathcal{H}^{1}(\partial\Omega)^{2-np}.$$

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$\|\partial^n B\chi_{\Omega}\|_{L^p(\Omega)}^p \lesssim \sum_{k=1}^N \|A_k\|_{\dot{B}^{n-1/p+1}_{p,p}}^p + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

UAB iversitat Autòn de Barcelona

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$\|\partial^n B\chi_\Omega\|_{L^p(\Omega)}^p \lesssim \sum_{k=1}^N \|A_k'\|_{\dot{B}^{n-1/p}_{p,p}}^p + \mathcal{H}^1(\partial\Omega)^{2-np}.$$

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$\|\partial^{n}B\chi_{\Omega}\|_{L^{p}(\Omega)}^{p} \lesssim \sum_{k=1}^{N} \|N_{\partial\Omega\cap\mathcal{Q}_{k}}\|_{B^{n-1/p}_{p,p}}^{p} + \mathcal{H}^{1}(\partial\Omega)^{2-np}.$$

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$\|\partial^{n}B\chi_{\Omega}\|_{L^{p}(\Omega)}^{p} \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^{p} + \mathcal{H}^{1}(\partial\Omega)^{2-np}.$$

JAE ersitat Autòn fe Barcelona

Conclusions

• The Besov regularity $B_{p,p}^{n-1/p}$ of the normal vector to the boundary of the domain gives us a bound of $B\chi_{\Omega}$ in $W^{n,p}$ (and 0 < s < 1).

3

∃→ < ∃→</p>

Conclusions

- The Besov regularity B^{n-1/p}_{p,p} of the normal vector to the boundary of the domain gives us a bound of Bχ_Ω in W^{n,p} (and 0 < s < 1).</p>
- We think we are close to proving that if we assume $N \in B_{p,p}^{n-1/p}$, we get also the boundedness of the Beurling transform in $W^{n,p}(\Omega)$ as long as p > 2.

-

医下颌 医下

Conclusions

- The Besov regularity $B_{p,p}^{n-1/p}$ of the normal vector to the boundary of the domain gives us a bound of $B\chi_{\Omega}$ in $W^{n,p}$ (and 0 < s < 1).
- ▶ We think we are close to proving that if we assume $N \in B_{p,p}^{n-1/p}$, we get also the boundedness of the Beurling transform in $W^{n,p}(\Omega)$ as long as p > 2.
- Next steps are proving analogous results for any s ∈ ℝ₊ and giving a necessary condition for the boundedness of the Beurling transform when p ≤ 2.

UNIVERSITY AUTONOMA UNIVERSITY AUTONOMA de Barcelona Thank you!

æ.

<ロ> <同> <同> < 回> < 回>