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Universitat Autònoma de Barcelona

March 12, 2013

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

The Beurling Transform

The Beurling transform of a function f ∈ Lp(C) is:

Bf (z) = c0 lim
ε→0

∫
|w−z|>ε

f (w)

(z − w)2
dm(z).

It is essential to quasiconformal mappings because

B(∂̄f ) = ∂f ∀f ∈W 1,p.

Recall that B : Lp(C)→ Lp(C) is bounded for 1 < p <∞.
Also B : Ẇ s,p(C)→ Ẇ s,p(C) is bounded for 1 < p <∞ and s > 0.

In particular, if z /∈ supp(f ) then Bf is analytic in an ε-neighborhood of
z and

∂nBf (z) = cn

∫
|w−z|>ε

f (w)

(z − w)n+2
dm(z).

back
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The problem we face

Let Ω be a Lipschitz domain.

When is B : W s,p(Ω)→W s,p(Ω) bounded?
We want an answer in terms of the geometry of the boundary.
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Introduction

Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s ≤ 1,
1 < p <∞ with sp > 2, and ∂Ω smooth enough,

Theorem

B : W s,p(Ω)→W s,p(Ω) is bounded

if and only if
BχΩ ∈W s,p(Ω).

One can deduce regularity of a quasiregular mapping
in terms of the regularity of its Beltrami coefficient.
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Introduction

Besov Spaces B s
p,p

The geometric answer will be given in terms of Besov spaces Bs
p,p.

Bs
p,p form a family closely related to W s,p. They coincide for p = 2.

For p < 2, Bs
p,p ⊂W s,p. Otherwise W s,p ⊂ Bs

p,p.

Definition
For 0 < s <∞, 1 ≤ p <∞, f ∈ Ḃs

p,p(R) if

‖f ‖Ḃs
p,p

=

(∫
R

∫
R

∣∣∣∣∣∆[s]+1
h f (x)

hs

∣∣∣∣∣
p
dm(h)

|h|
dm(x)

)1/p

<∞.

Furthermore, f ∈ Bs
p,p(R) if

‖f ‖Bs
p,p

= ‖f ‖Lp + ‖f ‖Ḃs
p,p
<∞.

We call them homogeneous and non-homogeneous Besov spaces
respectively.
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p,p
<∞.

We call them homogeneous and non-homogeneous Besov spaces
respectively.

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

Besov Spaces B s
p,p

The geometric answer will be given in terms of Besov spaces Bs
p,p.

Bs
p,p form a family closely related to W s,p. They coincide for p = 2.

For p < 2, Bs
p,p ⊂W s,p. Otherwise W s,p ⊂ Bs

p,p.

Definition
For 0 < s <∞, 1 ≤ p <∞, f ∈ Ḃs

p,p(R) if

‖f ‖Ḃs
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Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 < p <∞,
and Ω a Lipschitz domain,

Theorem
If the normal vector N belongs to B

1−1/p
p,p (∂Ω), then B(χΩ) ∈W 1,p(Ω)

with
‖B(χΩ)‖Ẇ 1,p(Ω) ≤ c‖N‖

Ḃ
1−1/p
p,p (∂Ω)

.

They proved also an analogous result for smoothness 0 < s < 1.
This implies

Theorem
Let 0 < s ≤ 1, 1 < p <∞ with sp > 2. If the normal vector

is in the Besov space B
s−1/p
p,p (∂Ω), then the Beurling transform

is bounded in W s,p(Ω).

Tolsa proved a converse for Ω flat enough.
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Main results

Main Theorem
Let Ω be smooth enough. Then we can write

‖∂nBχΩ‖pLp(Ω) . ‖N‖
p

B
n−1/p
p,p (∂Ω)

+H1(∂Ω)2−np.

Conjecture (work in progress)
Let 2 < p <∞ and 1 ≤ n <∞. Let Ω be a bounded domain
smooth enough. If the exterior normal vector of Ω

is in the Besov space B
n−1/p
p,p (∂Ω), then the Beurling transform

is bounded in W n,p(Ω).
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Reduction to local charts

Beurling transform

I We have a domain smooth enough.

I In particular, at every boundary point
we can find a cube
with fixed side-length R
parallel to the tangent line
inducing a parametrization C n−1,1.

I We make a covering of the boundary
by N of such cubes
with some controlled overlapping.

I The Beurling transform
of the interior points
is controlled by the distance to the
boundary:

|∂nBχΩ(z)| . 1

Rn
.
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Introduction

Defining some generalized betas of David-Semmes

A measure of the flatness of a set Γ:

Definition (P. Jones)
βΓ(Q) = infV

w(V )
`(Q)

If there is no risk of confusion,
we will write just β(n)(I ).
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider I ⊂ R, and define

Definition

β∞(I ,A) = infP∈P1

∥∥∥A−P
`(I )

∥∥∥
∞

βp(I ,A) = infP∈P1
1

`(I )

∥∥∥A−P
`(I )

∥∥∥
p

β(n)(I ,A) = infP∈Pn
1

`(I )

∥∥∥A−P
`(I )

∥∥∥
1

If there is no risk of confusion,
we will write just β(n)(I ).
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Relation between β(n) and Bn
p,p

Theorem (Dorronsoro)
Let f : R→ R be a function in the homogeneous Besov space Ḃs

p,p.
Then, for any n ≥ [s],

‖f ‖p
Ḃs
p,p

≈
∑
I∈D

(
β(n)(I )

`(I )s−1

)p

`(I ).

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

Local charts: Whitney decomposition

First order derivative Second order derivative Higher order derivatives Skip higher order derivatives
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Local charts: Bounds for the first derivative

First order derivative Second order derivative Higher order derivatives Skip higher order derivatives
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Local charts: Second order derivative

First order derivative Second order derivative Higher order derivatives Skip higher order derivatives

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

Local charts: Second order derivative

First order derivative Second order derivative Higher order derivatives Skip higher order derivatives
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Local charts: Higher order derivatives

First order derivative Second order derivative Higher order derivatives Skip higher order derivatives
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Local charts: Higher order derivatives

First order derivative Second order derivative Higher order derivatives Skip higher order derivatives
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Bounding the polynomial region

We can choose R small enough (depending on the Lipschitz condition of
the boundary) so that the following proposition holds:

Proposition
If we denote by ΩQ the region with boundary a minimizing polynomial for
β(n)(Φ(Q)), we get ∣∣∂nBχΩQ

∣∣ ≤ C

Rn
.

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

Bounding the polynomial region

We can choose R small enough (depending on the Lipschitz condition of
the boundary) so that the following proposition holds:

Proposition
If we denote by ΩQ the region with boundary a minimizing polynomial for
β(n)(Φ(Q)), we get ∣∣∂nBχΩQ

∣∣ ≤ C

Rn
.

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

Bounding the interstitial region

Proposition
Choosing a minimizing polynomial for β(n)(Φ(Q)), we get∫

Ω∆ΩQ

dm(w)

|z − w |n+2
.

∑
I∈D

Φ(Q)⊂I⊂Φ(Qk )

β(n)(I )

`(I )n
+

1

Rn
.
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Hölder inequalities do the rest

Theorem
Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

‖∂nBχΩ‖pLp(Ω) .
N∑

k=1

∑
I∈Dk

(
β(n)(I )

`(I )n−1/p

)p

`(I ) +H1(∂Ω)2−np.
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Hölder inequalities do the rest

Theorem
Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

‖∂nBχΩ‖pLp(Ω) .
N∑

k=1

‖Ak‖p
Ḃ

n−1/p+1
p,p

+H1(∂Ω)2−np.
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Hölder inequalities do the rest

Theorem
Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

‖∂nBχΩ‖pLp(Ω) .
N∑

k=1

‖N∂Ω∩Qk
‖p
B

n−1/p
p,p

+H1(∂Ω)2−np.

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

Hölder inequalities do the rest

Theorem
Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

‖∂nBχΩ‖pLp(Ω) . ‖N‖
p

B
n−1/p
p,p (∂Ω)

+H1(∂Ω)2−np.

Mart́ı Prats Smoothness of the Beurling transform in Lipschitz domains



Introduction

Conclusions

I The Besov regularity B
n−1/p
p,p of the normal vector to the boundary

of the domain gives us a bound of BχΩ in W n,p (and 0 < s < 1).

I We think we are close to proving that if we assume N ∈ B
n−1/p
p,p ,

we get also the boundedness of the Beurling transform in W n,p(Ω)
as long as p > 2.

I Next steps are proving analogous results for any s ∈ R+ and
giving a necessary condition for the boundedness
of the Beurling transform when p ≤ 2.
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Thank you!
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