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Lp-ESTIMATES FOR THE VARIATION FOR SINGULAR INTEGRALS

ON UNIFORMLY RECTIFIABLE SETS

ALBERT MAS AND XAVIER TOLSA

Abstract. The Lp (1 < p < ∞) and weak-L1 estimates for the variation for Calderón-
Zygmund operators with smooth odd kernel on uniformly rectifiable measures are proven.
The L2 boundedness and the corona decomposition method are two key ingredients of the
proof.

1. Introduction

This article is devoted to obtain Lp (1 < p < ∞) and weak-L1 estimates for the variation
for Calderón-Zygmund operators with smooth odd kernel with respect to uniformly rectifiable
measures. As a matter of fact, we prove that if the L2 estimate holds then the Lp and weak-L1

estimates follow; the results in [17] deal with the L2 case.
Regarding the Calderón-Zygmund operators, given 1 ≤ n < d integers, in this article we

consider kernels K : Rd \ {0} → R such that K(−x) = −K(x) for all x 6= 0 (K is odd) and

(1) |K(x)| ≤
C

|x|n
, |∂xiK(x)| ≤

C

|x|n+1
and |∂xi∂xjK(x)| ≤

C

|x|n+2

for all x = (x1, . . . , xd) ∈ Rd\{0} and all 1 ≤ i, j ≤ d, where and C > 0 is some constant. The
growth estimate on the second derivatives required in (1) comes from the fact that it is also
assumed in [17, Theorem 1.3 and Corollary 4.2], which are used in this article (see Theorem
3.2). We should mention that this growth estimate is usually required in what concerns to
L2 boundedness of singular integral operators and uniformly rectifiable measures, see for
example [5, 6, 16, 17, 20]. However, in Theorem 1.4 below we consider more general kernels.

Given a Radon measure µ in Rd, f ∈ L1(µ) and x ∈ Rd, we set

(2) T µ
ǫ f(x) ≡ Tǫ(fµ)(x) :=

∫

|x−y|>ǫ
K(x− y)f(y) dµ(y),

and we denote T µ
∗ f(x) = supǫ>0 |T

µ
ǫ f(x)|, T = {Tǫ}ǫ>0 and T µ = {T µ

ǫ }ǫ>0. Given ρ > 2 and
f ∈ L1

loc(µ), the ρ-variation operator acting on T µf = {T µ
ǫ f}ǫ>0 is defined as

(Vρ ◦ T
µ)f(x) := sup

{ǫm}

(∑

m∈Z
|T µ

ǫmf(x)− T µ
ǫm+1

f(x)|ρ
)1/ρ

(3)

where the pointwise supremum is taken over all the non-increasing sequences of positive
numbers {ǫm}m∈Z.
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Concerning the notion of uniform rectifiability, recall that a Radon measure µ in Rd

is called n-rectifiable if there exists a countable family of n-dimensional C1 submanifolds
{Mi}i∈N in Rd such that µ(E \

⋃
i∈NMi) = 0 and µ ≪ Hn, where Hn stands for the n-

dimensional Hausdorff measure. Moreover, µ is said to be n-dimensional Ahlfors-David
regular, or simply n-AD regular, if there exists some constant C > 0 such that

C−1rn ≤ µ(B(x, r)) ≤ Crn

for all x ∈ suppµ and 0 < r ≤ diam(suppµ). Note that if diam(suppµ) < +∞ then
µ(Rd) < ∞ and so the condition µ(B(x, r)) ≤ Crn in the definition of AD regularity actually
holds for all r > 0. Finally, one says that µ is uniformly n-rectifiable if it is n-AD regular
and there exist θ,M > 0 so that, for each x ∈ suppµ and 0 < r ≤ diam(suppµ), there is a
Lipschitz mapping g from the n-dimensional ball Bn(0, r) ⊂ Rn into Rd such that Lip(g) ≤ M
and

µ
(
B(x, r) ∩ g(Bn(0, r))

)
≥ θrn,

where Lip(g) stands for the Lipschitz constant of g. In particular, uniform rectifiability
implies rectifiability. A set E ⊂ Rd is called n-rectifiable (or uniformly n-rectifiable) if Hn|E
is n-rectifiable (or uniformly n-rectifiable, respectively).

We are ready now to state our main result. In the statement M(Rd) stands for the Banach
space of finite real Radon measures in Rd equipped with the total variation norm.

Theorem 1.1. Let µ be a uniformly n-rectifiable measure in Rd. Let K be an odd kernel
satisfying (1) and, for ρ > 2, consider the associated variation operator defined in (3). Then

Vρ ◦ T
µ : Lp(µ) → Lp(µ) (1 < p < ∞) and Vρ ◦ T : M(Rd) → L1,∞(µ)

are bounded operators. In particular, Vρ ◦ T
µ : L1(µ) → L1,∞(µ) is bounded.

The variation operator has been studied in different contexts during the last years, being
probability, ergodic theory, and harmonic analysis three areas where variational inequalities
turned out to be a powerful tool to prove new results or to enhace already known ones (see
for example [1, 8, 9, 10, 11, 13, 18], and the references therein). Inspired by the results
on variational inequalities for Calderón-Zygmund operators in Rn like [2, 3], in [16] we
began our study of such type of inequalities when one replaces the underlying space Rn and
its associated Lebesgue measure by some reasonable measure in Rd, being the Hausdorff
measure on a Lipschitz graph a first natural candidate. In this regard, Theorem 1.1 should
be considered as a natural generalisation of variational inequalities for Calderón-Zygmund
operators in Rn from a geometric measure-theoretic point of view.

A big motivation to prove Theorem 1.1 is its connection to the so called David-Semmes
problem regarding the Riesz transform and rectifiability. Given a Radon measure µ in
Rd, one defines the n-dimensional Riesz transform of a function f ∈ L1(µ) by Rµf(x) =
limǫց0R

µ
ǫ f(x) (whenever the limit exists), where

Rµ
ǫ f(x) =

∫

|x−y|>ǫ

x− y

|x− y|n+1
f(y) dµ(y), x ∈ Rd.

Note that the kernel of the Riesz transform is the vector (x1, . . . , xd)/|x|n+1 (so, in this case,
the kernel K in (1) is vectorial). We also use the notation Rµf(x) := {Rµ

ǫ f(x)}ǫ>0 and, as
usual, we define the maximal operator Rµ

∗f(x) = supǫ>0 |R
µ
ǫ f(x)|.

G. David and S. Semmes asked more than twenty years ago the following question, which
is still open (see, for example, [19, Chapter 7]):

Question 1.2. Is it true that an n-dimensional AD regular measure µ is uniformly n-
rectifiable if and only if Rµ

∗ is bounded in L2(µ)?
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By [5], the “only if” implication of this question above is already known to hold. Also in
[5], G. David and S. Semmes gave a positive answer to the other implication if one replaces
the L2 boundedness of Rµ

∗ by the L2 boundedness of T µ
∗ for a wide class of odd kernels K.

In the case n = 1 the “if” implication was proved in [14] using the notion of curvature of
measures. Later on, the same implication was answered affirmatively for n = d − 1 in the
work [12] by combining quasiorthogonality arguments with some variational estimates which
use the maximum principle derived from the fact that the Riesz kernel is (a multiple) of
the gradient of the fundamental solution of the Laplacian in Rd when n = d − 1. Question
1.2 is still open for the general case 1 < n < d − 1. However, thanks to Theorem 1.1 and
[17, Theorem 2.3] we get the following corollary, which characterizes uniform rectifiability in
terms of variational inequalities for the Riesz transform and more general Calderón-Zygmund
operators.

Corollary 1.3. Let µ be an n-dimensional AD regular Radon measure in Rd. Then, the
following are equivalent:

(a) µ is uniformly n-rectifiable,
(b) for any odd kernel K as in (1) and any ρ > 2, Vρ ◦ T

µ is bounded in Lp(µ) for all
1 < p < ∞, and from L1(µ) into L1,∞(µ),

(c) for some ρ > 0, Vρ ◦ R
µ is bounded in L2(µ).

Comparing Corollary 1.3 to Question 1.2, note that the corollary asserts that if we replace
the L2(µ) boundedness of Rµ

∗ by the stronger assumption that Vρ ◦R
µ is bounded in L2(µ),

then µ must be uniformly rectifiable. On the other hand, the corollary claims that the
variation for singular integral operators with any odd kernel satisfying (1), in particular for
the n-dimensional Riesz transforms, is bounded in Lp(µ) for all 1 < p < ∞ and it is of
weak-type (1, 1), which is a stronger conclusion than the one derived from an affirmative
answer to Question 1.2.

The proof of (c) =⇒ (a) in Corollary 1.3 is not as hard as the converse implications.
Essentally, a combination of the arguments in [20] with the fact that, in a sense, Vρ ◦ Rµ

controls Rµ
∗ does the job (see [17]). Theorem 1.1 is used to prove that (a) =⇒ (b) in Corollary

1.3, the corresponding result in [17] was only proved for p = 2. Theorem 1.1 allows us to
get it in full generality, completing the whole picture on variation for singular integrals and
uniform rectifiability. As far as we know, neither the Lp estimates with 1 < p < ∞ nor the
weak-L1 estimate for Vρ ◦ T

µ on uniform rectifiable measures µ were known, except for the
case p = 2 treated in [17] and the case where 1 < p < ∞ but suppµ is a Lipschitz graph
with slope strictly smaller than 1, solved in [15]. Let us stress that from the latter result one
can not easily deduce the Lp estimates on uniformly rectifiable measures (as in the standard
situation in Calderón-Zygmund theory), basically because the good-λ method does not work
properly for Vρ ◦ T . To avoid this obstacle, our method relies on the corona decomposition
technique combined with some ideas from the Lipschitz case in [15] and from [2] and [13] to
deal with variational inequalities, as well as the L2 result from [17].

Finally we wish to remark that the same techniques used to prove Theorem 1.1 yield the
following result, which applies to more general Calderón-Zymund operators. See Section 5
for the proof.

Theorem 1.4. For 1 ≤ n < d, let µ be a uniformly n-rectifiable measure in Rd. Let
K : Rd ×Rd \ {(x, y) : x = y} → R be a kernel such that

|K(x, y)| ≤
C

|x− y|n
for all x 6= y ∈ Rd,
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and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤
C |x− x′|
|x− y|n+1

for all x, x′, y ∈ Rd with |x− x′| ≤ 1
2 |x− y|. For ǫ > 0, denote

T µ
ǫ f(x) ≡ Tǫ(fµ)(x) :=

∫

|x−y|>ǫ
K(x, y)f(y) dµ(y).

Let T µf = {T µ
ǫ f}ǫ>0 and let (Vρ ◦ T

µ) be defined as in (3). If Vρ ◦ T
µ is bounded in L2(µ),

then it is also bounded in Lp(µ) for 1 < p < ∞ and from L1(µ) to L1,∞(µ). Also, Vρ ◦ T is

bounded from M(Rd) to L1,∞(µ).

Acknowledgement
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2. Preliminaries and auxiliary results

2.1. Notation and terminology. As usual, in the paper the letter ‘C’ (or ‘c’) stands for
some constant which may change its value at different occurrences, and which quite often
only depends on n and d. Given two families of constants A(t) and B(t), where t stands
for all the explicit or implicit parameters involving A(t) and B(t), the notation A(t) . B(t)
(A(t) & B(t)) means that there is some fixed constant C such that A(t) ≤ CB(t) (A(t) ≥
CB(t)) for all t, with C as above. Also, A(t) ≈ B(t) is equivalent to A(t) . B(t) . A(t).

Throughout all the paper we assume that 1 ≤ n < d are integers and that µ is an n-
dimensional AD-regular measure in Rd. Given a bounded Borel set A ⊂ Rd and f ∈ L1

loc(µ),
we write the mean of f on A with respect to µ as follows:

mAf :=
1

µ(A)

∫

A
f dµ.

We consider the centered maximal Hardy-Littlewood operator:

Mf(x) = sup
r>0

mB(x,r)|f |.

This is known to be bounded in Lp(µ), for 1 < p ≤ ∞, and from M(Rd) to L1,∞(µ). For
1 ≤ q < ∞, we also set

Mqf := M(|f |q)1/q.

This is bounded in Lp(µ), for q < p ≤ ∞, and from Lq(µ) to Lq,∞(µ).
Given 0 ≤ a < b, consider the closed annulus

A(x, a, b) := B(x, b) \B(x, a).

Given k ∈ Z, set
Ik := [2−k−1, 2−k).

One defines the short and long variation operators VS
ρ ◦ T µ and VL

ρ ◦ T µ, respectively, by

(VS
ρ ◦ T µ)f(x) := sup

{ǫm}

(∑

k∈Z

∑

ǫm,ǫm+1∈Ik
|T µ

ǫmf(x)− T µ
ǫm+1

f(x)|ρ
)1/ρ

,

(VL
ρ ◦ T µ)f(x) := sup

{ǫm}

( ∑

m∈Z: ǫm∈Ij , ǫm+1∈Ik
for some j<k

|T µ
ǫmf(x)− T µ

ǫm+1
f(x)|ρ

)1/ρ

,
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where, in both cases, the pointwise supremum is taken over all the non-increasing sequences
of positive numbers {ǫm}m∈Z. Given a finite Borel measure ν in Rd, one defines (VS

ρ ◦T )ν(x)

and (VL
ρ ◦ T )ν(x) similarly. For convenience of notation, given 0 < ǫ ≤ δ we set

(4) Tδ,ǫ := Tδ − Tǫ and T ν
δ,ǫ analogously.

Let ϕR : [0,+∞) → [0,+∞) be a non-decreasing C2 function with χ[4,∞) ≤ ϕR ≤ χ[1/4,∞)

and set ϕǫ(x) = ϕR

(
|x|2/ǫ2

)
. We define

Tϕǫν(x) :=

∫
ϕǫ(x− y)K(x− y) dν(y) for x ∈ Rd(5)

(with K(x−y) replaced by K(x, y) if K is as in Theorem 1.4). Finally, write Tϕ := {Tϕǫ}ǫ>0.
Compare the operator in (5) to

Tǫν(x) =

∫
χǫ(x− y)K(x− y) dν(y),

where χǫ(·) := χ(1,∞)(| · |/ǫ), and the family Tϕ to T .

2.2. Dyadic lattices. For the study of the uniformly rectifiable measures we will use the
“dyadic cubes” built by G. David in [4, Appendix 1] (see also [6, Chapter 3 of Part I]). These
dyadic cubes are not true cubes, but they play this role with respect to a given n-dimensional
AD regular Radon measure µ, in a sense.

Let us explain which are the precise results and properties of this lattice of dyadic cubes.
Given an n-dimensional AD regular Radon measure µ in Rd (for simplicity, here we may
assume that diam(suppµ) = ∞), for each j ∈ Z there exists a family Dµ

j of Borel subsets of

suppµ (the dyadic cubes of the j-th generation) such that:

(a) each Dµ
j is a partition of suppµ, i.e. suppµ =

⋃
Q∈Dµ

j
Q and Q ∩ Q′ = ∅ whenever

Q,Q′ ∈ Dµ
j and Q 6= Q′;

(b) if Q ∈ Dµ
j and Q′ ∈ Dµ

k with k ≤ j, then either Q ⊂ Q′ or Q ∩Q′ = ∅;

(c) for all j ∈ Z and Q ∈ Dµ
j , we have 2−j . diam(Q) ≤ 2−j and µ(Q) ≈ 2−jn;

(d) there exists C > 0 such that, for all j ∈ Z, Q ∈ Dµ
j , and 0 < τ < 1,

µ
(
{x ∈ Q : dist(x, suppµ \Q) ≤ τ2−j}

)

+ µ
(
{x ∈ suppµ \Q : dist(x,Q) ≤ τ2−j}

)
≤ Cτ1/C2−jn.

(6)

This property is usually called the small boundaries condition. From (6), it follows
that there is a point zQ ∈ Q (the center of Q) such that dist(zQ, suppµ \ Q) & 2−j

(see [6, Lemma 3.5 of Part I]).

We set Dµ :=
⋃

j∈ZD
µ
j . Given a cube Q ∈ Dµ

j , we say that its side length is 2−j , and we

denote it by ℓ(Q). Notice that diam(Q) ≤ ℓ(Q). For λ > 1, we also write

λQ =
{
x ∈ suppµ : dist(x,Q) ≤ (λ− 1) ℓ(Q)

}
.

We denote

(7) BQ := B(zQ, c1ℓ(Q)),

where c1 ≥ 1 is some big constant which will be chosen below, depending on other parameters.
Let P (Q) denote the cube in Dµ

j−1 which contains Q (the parent of Q), and set

Ch(Q) := {Q′ ∈ Dµ
j+1 : Q

′ ⊂ Q},

V (Q) := {Q′ ∈ Dµ
j : dist(Q′, Q) ≤ C1ℓ(Q)}
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for some constant C1 > 0 big enough (Ch(Q) are the children of Q, and V (Q) stands for
the vicinity of Q). Notice that P (Q) is a cube from Dµ but Ch(Q) and V (Q) are collections
of cubes from Dµ. It is not hard to show that the number of cubes in Ch(Q) and V (Q) is
bounded by some constant depending only on n and the AD regularity constant of µ, and
on C1 in the case of the vicinitiy.

The following assumptions will be used in the sequel: c1 in (7) is big enough so that

Q ∪BQ′ ⊂ BQ for all Q′ ∈ Ch(Q)

and C1 is big enough so that

BQ ∩ suppµ ⊂
⋃

Q′∈V (Q)Q
′.

Finally, we write

IQ := Ij = [ℓ(Q)/2, ℓ(Q)).

2.3. The corona decomposition. Given an n-dimensional AD regular Radon measure µ
on Rd consider the dyadic lattice Dµ introduced in Subsection 2.2. Following [6, Definitions
3.13 and 3.19 of Part I], one says that µ admits a corona decomposition if, for each η > 0
and θ > 0, one can find a triple (B,G,Trs), where B and G are two subsets of Dµ (the “bad
cubes” and the “good cubes”) and Trs is a family of subsets S ⊂ G (that we will call trees),
which satisfy the following conditions::

(a) Dµ = B ∪ G and B ∩ G = ∅.
(b) B satisfies a Carleson packing condition, i.e.,

∑
Q∈B:Q⊂R µ(Q) . µ(R) for all R ∈ Dµ.

(c) G =
⊎

S∈Trs S, i.e., any Q ∈ G belongs to only one S ∈ Trs.
(d) Each S ∈ Trs is coherent. This means that each S ∈ Trs has a unique maximal

element QS which contains all other elements of S as subsets, that Q′ ∈ S as soon
as Q′ ∈ Dµ satisfies Q ⊂ Q′ ⊂ QS for some Q ∈ S, and that if Q ∈ S then either all
of the children of Q lie in S or none of them do (recall that if Q ∈ Dµ

j , the children

of Q is defined as the collection of cubes Q′ ∈ Dµ
j+1 such that Q′ ⊂ Q).

(e) The maximal cubes QS , for S ∈ Trs, satisfy a Carleson packing condition. That is,∑
S∈Trs:QS⊂R µ(QS) . µ(R) for all R ∈ Dµ.

(f) For each S ∈ Trs, there exists an n-dimensional Lipschitz graph ΓS with constant
smaller than η such that dist(x,ΓS) ≤ θ diam(Q) whenever x ∈ 2Q and Q ∈ S (one
can replace “x ∈ 2Q” by “x ∈ c2Q” for any constant c2 ≥ 2 given in advance, by [6,
Lemma 3.31 of Part I]).

It is shown in [5] (see also [6]) that if µ is uniformly rectifiable then it admits a corona
decomposition for all parameters k > 2 and η, θ > 0. Conversely, the existence of a corona
decomposition for a single set of parameters k > 2 and η, θ > 0 implies that µ is uniformly
rectifiable.

We set

TopG = {QS : S ∈ Trs} and Top = TopG ∪ B.

If µ is uniformly rectifiable, then, by the properties (b) and (e) above, for all R ∈ Dµ we
have ∑

Q∈Top:Q⊂R

µ(Q) . µ(R).

If R ∈ S for some S ∈ Trs, we denote by Tree(R) the set of cubes Q ∈ S such that
Q ⊂ R (the tree of R). Otherwise, that is, if R ∈ B, we set Tree(R) := {R}. Finally, Stp(R)
stands for the set of cubes Q ∈ B ∪ (G \ Tree(R)) such that Q ⊂ R and P (Q) ∈ Tree(R)
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(the stopping cubes relative to R), so actually Q ( R. Notice that if R ∈ B, then we have
Stp(R) = Ch(R).

2.4. Auxiliary results. The following lemma follows directly from [21, Lemma 2.14] (see
also [15, Lemma 2.2] for the case of Lipschitz graphs).

Lemma 2.1 (Calderón-Zygmund decomposition). Let µ be a compactly supported uniformly
n-rectifiable measure in Rd. For every positive measure ν ∈ M(Rd) with compact support
and every λ > 2d+1‖ν‖/‖µ‖, the following hold:

(a) There exists a finite or countable collection of cubes {Qj}j centered at supp ν which
are almost disjoint, that is

∑
j χQj ≤ C (with C depending only on d), and a function

f ∈ L1(µ) such that

ν(Qj) > 2−d−1λµ(2Qj),(8)

ν(ηQj) ≤ 2−d−1λµ(2ηQj) for η > 2,(9)

ν = fµ in Rd \ Ω with |f | ≤ λ µ-a.e, where Ω =
⋃

jQj.(10)

(b) For each j, let Rj := 6Qj and denote wj := χQj (
∑

k χQk
)−1. Then, there exists a

family of functions {bj}j with suppbj ⊂ Rj and with constant sign satisfying
∫

bj dµ =

∫
wj dν,(11)

‖bj‖L∞(µ)µ(Rj) ≤ Cν(Qj), and(12)
∑

j |bj | ≤ C0λ, where C0 is some absolute constant.(13)

Let us remark that the cubes in the preceding lemma are “true cubes”, i.e. they do not
belong to Dµ.

Notice that from (9) it follows that 4.5Qj ∩ suppµ 6= ∅, which implies that

(14) µ(ηQj) ≈ ℓ(ηQj)
n for η > 5 such that ℓ(ηQj) . diam(suppµ).

Additionally, if we assume that

(15) supp ν ⊂ Udiam(suppµ)(suppµ),

where Ut(A) stands for the t-neighborhood of A, then we infer that ℓ(Qj) ≤ Cdiam(suppµ),
for all j and for some absolute constant C. Otherwise, for C big enough we would deduce
that

suppµ ∪ suppν ⊂ 2Qj ,

and thus µ(2Qj) = ‖µ‖ and ν(Qj) ≤ ‖ν‖, so by (8)

‖ν‖ > 2−d−1λ‖µ‖,

but this contradicts the choice of λ. In particular, under the assumption (15), we infer that

(16) µ(Rj) ≈ ℓ(Rj)
n ≈ ℓ(Qj)

n.

We will need the following version of the dyadic Carleson embedding theorem.

Theorem 2.2 (Dyadic Carleson embedding theorem). Let µ be a Radon measure on Rd.
Let D be some dyadic lattice from Rd and let {aQ}Q∈D be a family of non-negative numbers.
Suppose that for every cube R ∈ D we have

(17)
∑

Q∈D:Q⊂R

aQ ≤ c3 µ(R).
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Then every family of non-negative numbers {γQ}Q∈D satisfies

(18)
∑

Q∈D
γQ aQ ≤ c3

∫
sup
Q∋x

γQ dµ(x).

Also, for p ∈ (1,∞), if f ∈ Lp(µ),

(19)
∑

Q∈D
|mQf |

p aQ ≤ c c3‖f‖
p
Lp(µ),

where mQf =
∫
Q f dµ/µ(Q) and c is an absolute constant.

In the preceding theorem, the lattice D can be, for example, either the usual dyadic lattice
of Rd or, in the case when µ is AD-regular, the lattice of cubes associated with µ. For the
proof of this classical result, see [21, Theorem 5.8], for example.

We say that C ⊂ D is a Carleson family of cubes if
∑

Q∈C:Q⊂R

µ(Q) ≤ c3 µ(R) for all R ∈ D.

By (19), it follows that for such a family C and any f ∈ Lp(µ),
∑

Q∈C
|mQf |

p µ(Q) ≤ c c3‖f‖
p
Lp(µ).

Lemma 2.3. Let ν ∈ M(Rd) be a positive measure with compact support and λ > 2d+1‖ν‖/‖µ‖.
Consider cubes {Qj}j and {Rj}j as in Lemma 2.1. Denote

νb :=
∑

j

(wjν − bjµ) ,

where the bj ’s satisfy (11), (12) and (13), and wj := χQj (
∑

k χQk
)−1. Let C ⊂ Dµ be a

family of cubes and {aS}S∈C be a family of non-negative numbers such that

(20)
∑

S∈C:S⊂R

aS ≤ c3 µ(R).

For each S ∈ C consider the ball BS given by (7), so it is centered on S, S ⊂ BS and
r(BS) ≈ ℓ(S). Suppose that there exists some constant c̃ > 0 such that for each S ∈ C, the
ball c̃BS contains some cube Rj . Then, for every p ∈ (1,∞),

(21)
∑

S∈C

(
|νb|(BS)

ℓ(S)n

)p

aS . λp−1 ‖ν‖

and

(22)
∑

S∈C

(
ν(BS)

ℓ(S)n

)p

aS . λp−1 ‖ν‖,

with the implicit constants depending on p, c3, and c̃.

In particular, this lemma applies to the case when aS = 1 for all S ∈ C and C is a Carleson
family satisfying the additional conditions stated in the lemma.

Proof. First we will show (21). By (18) in Theorem 2.2, one gets

(23)
∑

S∈C

(
|νb|(BS)

ℓ(S)n

)p

aS ≤ c3

∫ (
sup
S∋x

|νb|(BS)

ℓ(S)n

)p

dµ(x).
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Write

ν̃b =
∑

j

wjν and g̃ =
∑

j

bj ,

so that, for every S ∈ C,

|νb|(BS) ≤ ν̃b(BS) +

∫

BS

g̃ dµ.

Note that the measure ν̃b and the functions bj , g̃ are positive because ν is assumed to be a
positive measure. By (23) then we have

(24)
∑

S∈C

(
|νb|(BS)

ℓ(S)n

)p

aS .

∫ (
sup
S∋x

ν̃b(BS)

ℓ(S)n

)p

dµ(x) +

∫ (
sup
S∋x

mBS
g̃

)p

dµ(x),

where mBS
g̃ =

∫
BS

g̃ dµ/µ(BS) and we have taken into account that µ(BS) ≈ ℓ(S)n.

To deal with the last integral on the right hand side of (24) we use the non-centered
maximal Hardy-Littlewood operator defined by

M̃f(x) = sup
B∋x

1

µ(B)

∫

B
|f | dµ,

where the supremum is taken over all the balls which contain x and whose center lies on

suppµ. Recalling that M̃ is bounded in Lp(µ), and using that ‖g̃‖L∞(µ) ≤ c λ (by (13)) and
‖g̃‖L1(µ) ≤ c ‖ν‖ (by (12)), we obtain

(25)

∫ (
sup
S∋x

mBS
g̃

)p

dµ(x) ≤ c

∫
(M̃g̃) p dµ ≤ c

∫
g̃ p dµ ≤ cλp−1

∫
g̃ dµ ≤ cλp−1 ‖ν‖.

Now we turn our attention to the first integral on the right hand side of (24). We write
∫ (

sup
S∋x

ν̃b(BS)

ℓ(S)n

)p

dµ(x) =

∫
⋃

j 2Qj

. . . +

∫

Rd\⋃j 2Qj

. . . =: I1 + I2.

To estimate I1, we claim that

ν̃b(BS)

ℓ(S)n
. λ.

This follows from the fact that c̃BS contains some cube Rj, which in turn implies that, for
some η ≥ 6 with η ≈ ℓ(S)/ℓ(Qj), BS is contained in some cube ηQj with ℓ(ηQj) ≈ ℓ(S),
and then

ν̃b(BS)

ℓ(S)n
.

ν(ηQj)

ℓ(ηQj)n
,

which together with (14) and (9) yields the claim above. Then, using also (8) and the fact
the cubes {Qj}j have finite overlap, we deduce that

I1 . λp
∑

j

µ(2Qj) . λp
∑

j

ν(Qj)

λ
. λp−1 ‖ν‖.

Finally we deal with the integral I2. Consider x ∈ Rd \
⋃

j 2Qj and S such that x ∈ S ∈ C

(which, in particular, tells us that S \
⋃

j 2Qj 6= ∅). Notice that

ν̃b(BS) ≤
∑

i:Qi∩BS 6=∅

ν(Qi).
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From the conditions Qi ∩BS 6= ∅ and S \
⋃

j 2Qj 6= ∅, we infer that r(BS) ≥
1
2ℓ(Qi). So we

deduce that Qi ⊂ c4BS , for some constant c4 & 1. Hence,

ν̃b(BS) ≤
∑

i:Qi⊂c4BS

ν(Qi) ≤
∑

i:Qi⊂c4BS

∫
bi dµ,

where we used (11) for the last estimate. Observe now that if Qi ⊂ c4BS, then Ri ⊂ c5BS,
for some absolute constant c5 ≥ c4. So recalling that g̃ =

∑
j bj , we obtain

ν̃b(BS) .

∫

c5BS

g̃ dµ,

Therefore,
ν̃b(BS)

ℓ(S)n
.

1

µ(BS)

∫

c5BS

g̃ dµ . M̃g̃(x)

for every x ∈ S. So arguing as in (25) we deduce that

I2 .

∫
(M̃g̃(x))p dµ(x) . λp−1 ‖ν‖.

Together with the estimate we obtained for I1, this yields

(26)

∫ (
sup
S∋x

ν̃b(BS)

ℓ(S)n

)p

dµ(x) . λp−1 ‖ν‖,

and so using (25) we get (21).
In order to show (22), recall that ν = ν̃b + fµ with f as in (10). Thus,

ν(BS) = ν̃b(BS) +

∫

BS

f dµ . ν̃b(BS) +mBS
f ℓ(S)n,

and then

(27)
∑

S∈C

(
ν(BS)

ℓ(S)n

)p

aS .
∑

S∈C

(
ν̃b(BS)

ℓ(S)n

)p

aS +
∑

S∈C
(mBS

f)p aS .

We easily get (22) from (27), combinig (18) and (19) in Theorem 2.2 with (26) and the fact
that ‖f‖pLp(µ) ≤ λp−1‖ν‖ by (10). �

Let µ be a uniformly n-rectifiable measure in Rd. Consider the splitting Dµ = B ∪
(
⊎

T∈Trs T ) given by the corona decomposition of µ. For a fixed constant A ≥ 1, we denote
by ∂T the family of cubes Q ∈ T for which either Q = QT with QT as in (d) in Section 2.3
or there exists some P ∈ Dµ \ T such that

(28)
1

2
ℓ(P ) ≤ ℓ(Q) ≤ 2ℓ(P ) and dist(P,Q) ≤ Aℓ(Q).

We call ∂T the boundary of T . If T = Tree(R), with R ∈ TopG , we also write ∂Tree(R) :=
∂T . We set

∂Trs :=
⋃

T∈Trs
∂T.

Notice that ∂T ⊂ T .
The following lemma has been proved in [6, (3.28) in page 60].

Lemma 2.4. Let µ be a uniformly n-rectifiable measure in Rd. The family ∂Trs is a Carleson
family.

We will also need the following auxiliary result.
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Lemma 2.5 (Annuli estimates). Assume that the constants η and θ in property (f) of
the corona decomposition (see Section 2.3) are small enough. Let Q ∈ Dµ, x ∈ Q and
ǫ ∈ [ℓ(Q)/2, ℓ(Q)]. Let k ∈ Z be such that 2−k ≤ ℓ(Q). Given R ∈ V (Q) and C > 0, denote

Λk :=
{
P ∈ Tree(R) ∪ Stp(R) : ℓ(P ) = 2−k, P ⊂ A(x, ǫ− C2−k, ǫ+ C2−k)

}
.

Then

(29) µ
(⋃

P∈Λk
P
)
. 2−kℓ(R)n−1,

where the implicit constant in the last inequality above only depends on n, d, µ and C.

In the lemma, if ǫ − C2−k < 0 we set A(x, ǫ − C2−k, ǫ + C2−k) := B(x, ǫ+ C2−k). For
the proof, see [17, Lemma 5.9]. In fact, in this reference the annuli estimates are proved
only for R ∈ G. However, for R ∈ B, the inequality (29) is trivial. Further, in [17, Lemma
5.9] one states that the result holds only for some constant C depending on n, d, and the
AD-regularity constant of µ, and with a slight difference in the definition of V (Q). However,
it is trivial to check that this extends to the more general version above.

3. Vρ ◦ T : M(Rd) → L1,∞(µ) is a bounded operator

In this section we will prove the following result.

Theorem 3.1. Let µ be a uniformly n-rectifiable measure in Rd. Let K be an odd kernel
satisfying (1) and consider the operator T associated to K defined in (2). Then, for ρ > 2,

(i) VS
ρ ◦ T : M(Rd) → L1,∞(µ) is bounded,

(ii) VL
ρ ◦ T : M(Rd) → L1,∞(µ) is bounded.

In particular, Vρ ◦ T is a bounded operator from M(Rd) to L1,∞(µ) for all ρ > 2.

Notice that by the triangle inequality we can easily split the variation operator into the
short and long variations, that is, (Vρ ◦ T

µ)f ≤ (VS
ρ ◦ T µ)f + (VL

ρ ◦ T µ)f. Therefore, that

Vρ ◦ T is a bounded operator from M(Rd) to L1,∞(µ) for all ρ > 2 follows from (i) and (ii)
above, whose proofs are given below.

We will use the next result, which is contained in [17, Theorem 1.3 and Corollary 4.2].

Theorem 3.2. Let µ be a uniformly n-rectifiable measure in Rd. Let K be an odd kernel
satisfying (1) and consider the operator T associated to K defined in (2). Then, for ρ > 2,

(i) Vρ ◦ T
µ : L2(µ) → L2(µ) is bounded,

(ii) Vρ ◦ Tϕ : M(Rd) → L1,∞(µ) is bounded.

Proof of Theorem 3.1(ii). We will deal with the long variation VL
ρ ◦ T by comparing it with

the smoothened version Vρ ◦ Tϕ, using Theorem 3.2(ii), estimating the error terms by the
short variation VS

ρ ◦ T , and applying Theorem 3.1(i). More precisely, the triangle inequality
yields

|Tǫν(x)− Tδν(x)| ≤ |Tϕǫν(x)− Tϕδ
ν(x)|+ |Tǫν(x)− Tϕǫν(x)|+ |Tδν(x)− Tϕδ

ν(x)|
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for any 0 < δ ≤ ǫ. Therefore,
(
(VL

ρ ◦ T )ν(x)
)ρ

.
(
(Vρ ◦ Tϕ)ν(x)

)ρ

+ sup
{ǫm}

∑

m∈Z: ǫm∈Ij , ǫm+1∈Ik
for some j<k

(
|Tǫmν(x)− Tϕǫm

ν(x)|ρ + |Tǫm+1ν(x)− Tϕǫm+1
ν(x)|ρ

)

.
(
(Vρ ◦ Tϕ)ν(x)

)ρ
+ sup

{ǫm}: ǫm∈Im
for all m∈Z

∑

m∈Z
|Tǫmν(x)− Tϕǫm

ν(x)|ρ.

(30)

Let us estimate the second term on the right hand side of (30). Since χ[4,∞) ≤ ϕR ≤
χ[1/4,∞) by definition, we have

χ[1,∞)(t)− ϕR(t) =

∫ 4

1/4
ϕ′
R(s)(χ[1,∞) − χ[s,∞))(t) ds

for all t ≥ 0. This means that χ[1,∞) −ϕR is a convex combination of the functions χ[1,∞) −
χ[s,∞) for 1/4 ≤ s ≤ 4. Then, Fubini’s theorem gives

Tǫν(x)− Tϕǫν(x) =

∫ (
χ[1,∞)(|x− y|2/ǫ2)− ϕR(|x− y|2/ǫ2)

)
K(x− y) dν(y)

=

∫ 4

1/4
ϕ′
R(s)

∫
(χ[ǫ,∞) − χ[ǫ

√
s,∞))(|x− y|)K(x− y) dν(y) ds

=

∫ 4

1/4
ϕ′
R(s)

(
Tǫν(x)− Tǫ

√
sν(x)

)
ds.

(31)

It is easy to see that

(32)

(∑

m∈Z
|Tǫmν(x)− Tǫm

√
sν(x)|

ρ

)1/ρ

. (VS
ρ ◦ T )ν(x)

for all s ∈ [1/4, 4] with uniform bounds, where {ǫm}m∈Z is any sequence such that ǫm ∈ Im
for all m ∈ Z. Using (31), Minkowski’s integral inequality and (32), we get

sup
{ǫm}: ǫm∈Im
for all m∈Z

(∑

m∈Z
|Tǫmν(x)− Tϕǫm

ν(x)|ρ
)1/ρ

≤ sup
{ǫm}: ǫm∈Im
for all m∈Z

∫ 4

1/4
ϕ′
R(s)

(∑

m∈Z
|Tǫmν(x)− Tǫm

√
sν(x)|

ρ

)1/ρ

ds

.

∫ 4

1/4
ϕ′
R(s)(V

S
ρ ◦ T )ν(x) ds . (VS

ρ ◦ T )ν(x).

(33)

Finally, applying (33) to (30) yields

(VL
ρ ◦ T )ν(x) . (Vρ ◦ Tϕ)ν(x) + (VS

ρ ◦ T )ν(x),

and Theorem 3.1(ii) follows by Theorems 3.2(ii) and 3.1(i). �

Proof of Theorem 3.1(i). We have to prove that there exists some constant C > 0 such that

(34) µ
({

x ∈ Rd : (VS
ρ ◦ T )ν(x) > λ

})
≤

C

λ
‖ν‖
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for all ν ∈ M(Rd) and all λ > 0. The proof of (34) combines the Calderón-Zygmund decom-
position developed in Lemma 2.1, the corona decomposition of µ described in Subsection 2.3,
and other standard techniques for proving variational inequalities. We will start following
the lines of the proof of [15, Theorem 1.4], until the application of the corona decomposition.

Since VS
ρ ◦ T is sublinear, we can assume without loss of generality that ν is a positive

measure. Let us first check that we can also assume both µ and ν to be compactly supported.
Given ν ∈ M(Rd) and M ∈ N, set

νM := χB(0,2M )ν.

If diam(suppµ) < +∞ then µ is compactly supported. In case diam(suppµ) = +∞ we are
going to restrict µ to a set KN ⊂ Rd such that µ|KN

it is still uniformly rectifiable (with
constants independent of N). For this purpose, for each N ∈ N consider the family of cubes
PN
i ∈ Dµ

−N , i ∈ IN , (thus ℓ(PN
i ) = 2N for all i ∈ IN ) such that B(0, 2N ) ∩ PN

i 6= ∅. We
denote

KN =
⋃

i∈IN
PN
i and µN = µ|KN

.

It is immediate to check that µ|PN
i

is uniformly rectifiable for each i,N . Since KN is a finite

union of uniformly rectifiable sets (because #IN is uniformly bounded), µN is also uniformly
rectifiable, with constants independent of N .

Suppose that there exists some constant C > 0 such that

µN

({
x ∈ Rd : (VS

ρ ◦ T )νM (x) > λ
})

≤
C

λ
‖νM‖

for all λ > 0, all ν ∈ M(Rd) and all M,N ∈ N. This implies that

(35) µ
({

x ∈ B(0, 2N ) : (VS
ρ ◦ T )νM (x) > λ

})
≤

C

λ
‖νM‖

for all λ > 0, all ν ∈ M(Rd) and all M,N ∈ N. It is not hard to show that

∣∣(VS
ρ ◦ T )ν(x)− (VS

ρ ◦ T )νN (x)
∣∣ ≤ C ′

(2M − 2N )n
ν
(
Rd \B(0, 2M )

)

for all x ∈ B(0, 2N ) and all M > N > 1. In particular, if M → ∞ then (VS
ρ ◦ T )νM (x) →

(VS
ρ ◦ T )ν(x) uniformly in B(0, 2N ). Since (35) holds for νM by assumption, we deduce that

it also holds for ν. Now, by letting N → ∞ and using monotone convergence, (35) with νM
replaced by ν yields (34), as desired. In conclusion, for proving the theorem, we only have
to verify (34) when µ and ν have compact support. Moreover, since (34) obviously holds for
λ ≤ 2d+1‖ν‖/‖µ‖, we can also restrict ourselves to the case λ > 2d+1‖ν‖/‖µ‖.

We are going to verify that we can assume (15), which will allows us to use (16) in the
sequel, when we pursue the Calderón-Zygmund decomposition of ν with respect to µ. Let
M := diam(suppµ) < +∞ and set νc := χRd\UM (suppµ)ν. Then dist(suppνc, suppµ) ≥ M .
By Chebyshev’s inequality,

µ
({

x ∈ Rd : (VS
ρ ◦ T )νc(x) > λ

})
≤

1

λ

∫
(VS

ρ ◦ T )νc(x) dµ(x)

≤
C

λ

∫∫
|x− y|−n dνc(y) dµ(x) ≤

C

Mnλ
‖νc‖‖µ‖.

(36)

For any x ∈ suppµ, ‖µ‖ = µ(B(x,M)) . Mn by the AD regularity assumption on µ. Thus
(36) yields

(37) µ
({

x ∈ Rd : (VS
ρ ◦ T )νc(x) > λ

})
≤

C

λ
‖νc‖ ≤

C

λ
‖ν‖,
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with C independent ofM . Note that ν = νc+(ν−νc) and supp(ν−νc) ⊂ Udiam(suppµ)(suppµ).

Using that VS
ρ ◦ T is sublinear and (37) we see that, in order to prove the theorem, it is

enough to show that

µ
({

x ∈ Rd : (VS
ρ ◦ T )(ν − νc)(x) > λ

})
≤

C

λ
‖ν‖,

that is, we can assume that ν satisfies (15). In conclusion, for proving (34), from now on we
assume that both µ and ν are compactly supported and they satisfy (15).

Let {Qj}j be the almost disjoint family of cubes of Lemma 2.1, and set Ω :=
⋃

j Qj and
Rj := 6Qj . Then we can write ν = gµ+ νb, with

gµ := χRd\Ων +
∑

j

bjµ and νb :=
∑

j

νjb :=
∑

j

(wjν − bjµ) ,

where the bj ’s satisfy (11), (12) and (13), and wj := χQj (
∑

k χQk
)−1. Since (15) holds, in

the sequel we can also assume that (16) holds.
Since VS

ρ ◦ T is sublinear,

µ
({

x ∈ Rd : (VS
ρ ◦ T )ν(x) > λ

})

≤ µ
({

x ∈ Rd : (VS
ρ ◦ T µ)g(x) > λ/2

})
+ µ

({
x ∈ Rd : (VS

ρ ◦ T )νb(x) > λ/2
})

.
(38)

We obviously have VS
ρ ◦ T µ ≤ Vρ ◦ T

µ, so Theorem 3.2(i) yields that VS
ρ ◦ T µ is bounded in

L2(µ). Note that |g| ≤ Cλ by (10) and (13). Hence, using (12),

µ
({

x ∈ Rd : (VS
ρ ◦ T µ)g(x) > λ/2

})
.

1

λ2

∫
|(VS

ρ ◦ T µ)g|2 dµ .
1

λ2

∫
|g|2 dµ

.
1

λ

∫
|g| dµ ≤

1

λ

(
ν(Rd \ Ω) +

∑

j

∫

Rj

|bj | dµ

)

≤
1

λ

(
ν(Rd \ Ω) +

∑

j

ν(Qj)

)
.

‖ν‖

λ
.

(39)

Set Ω̂ :=
⋃

j 2Qj . By (8), we have µ(Ω̂) ≤
∑

j µ(2Qj) . λ−1
∑

j ν(Qj) . λ−1‖ν‖. We are
going to prove that

(40) µ
({

x ∈ Rd \ Ω̂ : (VS
ρ ◦ T )νb(x) > λ/2

})
.

‖ν‖

λ
.

Then (34) follows directly from (38), (39), (40) and the estimate µ(Ω̂) . λ−1‖ν‖ above-
mentioned, finishing the proof of Theorem 3.1(i).

To prove (40), given x ∈ Rd \ Ω̂ we first write

(VS
ρ ◦ T )νb(x) ≤ (VS

ρ ◦ T )

(∑

j

χ2Rj (x)ν
j
b

)
(x) + (VS

ρ ◦ T )

(∑

j

χRd\2Rj
(x)νjb

)
(x).(41)

Notice that χ2Rj (x) and χRd\2Rj
(x) are evaluated at the fixed point x on the right hand side.

The first term on the right hand side of (41) is easily handled using the L2(µ) boundedness
of VS

ρ ◦ T µ and standard estimates. More precisely, since VS
ρ ◦ T is sublinear,

(VS
ρ ◦ T )

(∑

j

χ2Rj (x)ν
j
b

)
(x)

≤
∑

j

χ2Rj (x)(V
S
ρ ◦ T µ)bj(x) +

∑

j

χ2Rj (x)(V
S
ρ ◦ T ν)wj(x)

(42)
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because νjb = wjν− bjµ. On one hand, using Theorem 3.2(i), that µ(2Rj) . µ(Rj) (by (16))
and (12), we get

∫

2Rj

(VS
ρ ◦ T µ)bj dµ ≤

(∫

2Rj

|(VS
ρ ◦ T µ)bj |

2 dµ

)1/2

µ(2Rj)
1/2

. ‖bj‖L2(µ)µ(2Rj)
1/2 . ‖bj‖L∞(µ)µ(Rj) . ν(Qj).

(43)

On the other hand, if x ∈ 2Rj \ 2Qj then dist(x,Qj) ≈ ℓ(Qj). Therefore, given k ∈ Z,

B(x, 2−k) ∩Qj = ∅ ⇐⇒ dist(x,Qj) ≥ 2−k ⇐⇒ ℓ(Qj) & 2−k.(44)

Since the ℓρ-norm is not bigger than the ℓ1-norm for ρ ≥ 1, and since suppwj ⊂ Qj and
|wj | ≤ 1, from (44) and (4) we get

(VS
ρ ◦ T ν)wj(x) ≤ sup

{ǫm}

∑

k∈Z

∑

ǫm,ǫm+1∈Ik
|T ν

ǫm,ǫm+1
wj(x)|

. ν(Qj)
∑

k∈Z:B(x,2−k)∩Qj 6=∅

2kn . ν(Qj)ℓ(Qj)
−n,

and therefore, using again that µ(2Rj) . µ(Rj) ≈ ℓ(Rj)
n ≈ ℓ(Qj)

n by (16), we obtain

∫

2Rj\2Qj

(VS
ρ ◦ T ν)wj dµ . ν(Qj)ℓ(Qj)

−nµ(2Rj) . ν(Qj).(45)

Finally, applying (43) and (45) to (42), we conclude that

∫

Rd\Ω̂
(VS

ρ ◦ T )

(∑

j

χ2Rj (x)ν
j
b

)
(x) dµ(x)

≤
∑

j

∫

2Rj

(VS
ρ ◦ T µ)bj dµ+

∑

j

∫

2Rj\2Qj

(VS
ρ ◦ T ν)wj dµ .

∑

j

ν(Qj) . ‖ν‖.

(46)

Thanks to (41), (46) and Chebyshev’s inequality, to prove (40) it is enough to verify that

(47) µ

({
x ∈ Rd \ Ω̂ : (VS

ρ ◦ T )

(∑

j

χRd\2Rj
(x)νjb

)
(x) > λ/4

})
.

‖ν‖

λ
.

Our task now is to prove (47). Given x ∈ suppµ, let {ǫm}m∈Z be a non-increasing sequence
of positive numbers (which depends on x, i.e. ǫm ≡ ǫm(x)) such that

(48) (VS
ρ ◦T )

(∑

j

χRd\2Rj
(x)νjb

)
(x) ≤ 2

(∑

k∈Z

∑

ǫm,ǫm+1∈Ik

∣∣∣∣
∑

j

χRd\2Rj
(x)Tǫm,ǫm+1ν

j
b (x)

∣∣∣∣
ρ)1/ρ

.

Typically, the problem of the existence of such a sequence can be avoided by defining an
auxiliary operator VS

ρ,I ◦ T along the same lines of VS
ρ ◦ T and requiring the supremum to

be taken over a finite set of indices I (thus the supremum is a maximum in this case). One
then proves the desired estimate for VS

ρ,I ◦ T with bounds independent of I and deduces the
general result by taking the supremum over all finite sets I and using monotone convergence.
For the sake of shortness, we omit the details.
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Define the interior and boundary sum, respectively, by

Si(x) :=

(∑

k∈Z

∑

ǫm,ǫm+1∈Ik

∣∣∣∣
∑

j:Rj⊂A(x,ǫm+1,ǫm)

χRd\2Rj
(x)Tǫm,ǫm+1ν

j
b (x)

∣∣∣∣
ρ)1/ρ

,

Sb(x) :=

(∑

k∈Z

∑

ǫm,ǫm+1∈Ik

∣∣∣∣
∑

j:Rj∩∂A(x,ǫm+1,ǫm)6=∅

χRd\2Rj
(x)Tǫm,ǫm+1ν

j
b (x)

∣∣∣∣
ρ)1/ρ

.

If Rj ∩A(x, ǫm+1, ǫm) = ∅ then Tǫm,ǫm+1ν
j
b (x) = 0, thus

(VS
ρ ◦ T )

(∑

j

χRd\2Rj
(x)νjb

)
(x) ≤ 2(Si + Sb)

by (48) and the triangle inequality, and so

µ

({
x ∈Rd \ Ω̂ : (VS

ρ ◦ T )

(∑

j

χRd\2Rj
(x)νjb

)
(x) > λ/4

})

≤ µ
({

x ∈ Rd \ Ω̂ : Si(x) > λ/16
})

+ µ
({

x ∈ Rd \ Ω̂ : Sb(x) > λ/16
})

.

(49)

To estimate µ
({

x ∈ Rd \ Ω̂ : Si(x) > λ/16
})

we use the fact that the ℓρ-norm is not

bigger than the ℓ1-norm for ρ ≥ 1, and that supp(νjb ) ⊂ Rj :

Si(x) ≤
∑

m∈Z

∣∣∣∣
∑

j:Rj⊂A(x,ǫm+1,ǫm)

χRd\2Rj
(x)Tǫm,ǫm+1ν

j
b (x)

∣∣∣∣

≤
∑

j

χRd\2Rj
(x)

∑

m∈Z:A(x,ǫm+1,ǫm)⊃Rj

|Tǫm,ǫm+1ν
j
b (x)| ≤

∑

j

χRd\2Rj
(x)|Tνjb (x)|,

(50)

Recall that νjb (Rj) = 0 and ‖νjb‖ . ν(Qj) by (12). Thus, if zj denotes the center of Rj, we
have ∫

Rd\2Rj

|Tνjb | dµ ≤

∫

Rd\2Rj

∫

Rj

|K(x− y)−K(x− zj)| d|ν
j
b |(y) dµ(x)

.

∫

Rd\2Rj

∫

Rj

|y − zj |

|x− zj |n+1
d|νjb |(y) dµ(x)

. ‖νjb‖

∫

Rd\2Rj

ℓ(Rj)

|x− zj|n+1
dµ(x) . ‖νjb‖ . ν(Qj).

(51)

Finally, from Chebyshev’s inequality, (50) and (51) we conclude that

µ
({

x ∈ Rd \ Ω̂ : Si(x) > λ/16
})

≤
16

λ

∑

j

∫

Rd\2Rj

|Tνjb | dµ .
1

λ

∑

j

ν(Qj) .
‖ν‖

λ
.(52)

By (49), (52) and Chebyshev’s inequality once again we see that, in order to prove (47),
it is enough to show that

∫

Rd\Ω̂
S2
b dµ . λ‖ν‖.(53)

The proof of this estimate is much more involved than the previous ones and requires the
use of the corona decomposition of µ, that is, we need to introduce the splitting Dµ =
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B ∪ (
⊎

S∈Trs S). We denote

Tj,m(x) := χRd\2Rj
(x)Tǫm,ǫm+1ν

j
b (x).

Recall that for P ∈ Dk we write IP = [2−k−1, 2−k). Since ρ > 2, the ℓρ-norm is not bigger
than the ℓ2-norm, and we get

∫

Rd\Ω̂
S2
b dµ ≤

∑

P∈B

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

+
∑

S∈Trs

∑

P∈S

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x).

(54)

Observe that

(55) |Tj,m(x)| . ℓ(P )−nχRd\2Rj
(x)|νjb |(A(x, ǫm+1, ǫm))

for all ǫm, ǫm+1 ∈ IP . If in addition x ∈ P \ 2Rj and Rj ∩ ∂A(x, ǫm+1, ǫm) 6= ∅, taking into
account that ǫm ≈ ǫm+1 ≈ ℓ(P ) & dist(x,Rj) & ℓ(Rj), we deduce that

(56) Rj ⊂ BP ,

assuming the constant c1 in (7) big enough.

Concerning the first term on the right hand side of (54), from (55) and using that ‖νjb‖ .
ν(Qj), that the Qj’s have bounded overlap and that Qj ⊂ BP for all j such that Rj ⊂ BP ,
we get

∑

P∈B

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

.
∑

P∈B

∫

P

( ∑

ǫm,ǫm+1∈IP

∑

j:Rj⊂BP

ℓ(P )−n|νjb |(A(x, ǫm+1, ǫm))

)2

dµ(x)

.
∑

P∈B

∫

P

( ∑

j:Rj⊂BP

‖νjb‖

ℓ(P )n

)2

dµ(x) .
∑

P∈B:∃Rj⊂BP

(
ν(BP )

ℓ(P )n

)2

ℓ(P )n . λ‖ν‖,

(57)

where we also used Lemma 2.3 in the last inequality, because B is a Carleson family.
From now on, all our efforts are devoted to estimate the second term on the right hand

side of (54).

Claim 3.3. Assume c1 in (7) is big enough, and let also α > 0 be big enough depending on
n, d, and on the AD regualrity constants of µ. Given Q ∈ TopG, P ∈ Tree(Q) and Rj ⊂ BP ,
at least one of the following holds:

(i) There exists R ∈ Tree(Q) such that R ⊂ αBP , Rj ⊂ BR and ℓ(Rj) ∈ IR.
(ii) There exists R ∈ ∂Tree(Q) such that R ⊂ αBP and Rj ⊂ BR.

We postpone the proof of the preceding statement till the end of the proof of the theorem.
Thanks to this claim, given Q ∈ TopG and P ∈ Tree(Q) we can split

{j : Rj ⊂ BP } ⊂ J1 ∪ J2,

where

J1 : = {j : Rj ⊂ BP , ∃R ∈ Tree(Q) such that R ⊂ αBP , Rj ⊂ BR, ℓ(Rj) ∈ IR},

J2 : = {j : Rj ⊂ BP , ∃R ∈ ∂Tree(Q) such that R ⊂ αBP , Rj ⊂ BR}.
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Recall that if x ∈ P \ 2Rj , ǫm, ǫm+1 ∈ IP and Rj ∩ ∂A(x, ǫm+1, ǫm) 6= ∅ then Rj ⊂ BP

(see (56)). Thus, we can decompose the second term on the right hand side of (54) using J1
and J2 as follows

∑

S∈Trs

∑

P∈S

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

.
∑

Q∈TopG

∑

P∈Tree(Q)

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j∈J1:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

+
∑

Q∈TopG

∑

P∈Tree(Q)

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j∈J2:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x).

(58)

Despite that the arguments to estimate both terms on the right hand side of (58) are similar,
we will deal with them separately, due to its different nature with respect to the structure
of the corona decomposition.

Claim 3.4. Let Q, P , x, ǫm and ǫm+1 be as on the right hand side of (58). We have

∣∣∣∣
∑

j∈J1:Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm))

∣∣∣∣
2

. λℓ(P )n
∑

k: 2−k.ℓ(P )

(
2−k

ℓ(P )

)1/2 ∑

j∈J1: ℓ(Rj)∈Ik

|νjb |(A(x, ǫm+1, ǫm)).

(59)

Given j ∈ J2, denote by R(j) ∈ ∂Tree(Q) some cube such that R(j) ⊂ αBP and Rj ⊂ BR(j),
where α > 0 is as in Claim 3.3. We have

∣∣∣∣
∑

j∈J2:Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm))

∣∣∣∣
2

. λ1/2ℓ(P )n/2ν(BP )
1/2

∑

R∈∂Tree(Q):
R⊂αBP

∑

j∈J2:
R(j)=R

(
ℓ(R)

ℓ(P )

)1/4

|νjb |(BR ∩A(x, ǫm+1, ǫm)).

(60)

Again we postpone the proof of the preceding claim till the end of the proof of the theorem.
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For the case j ∈ J1 in (58), using (55), (59) and (56) we get

∑

Q∈TopG

∑

P∈Tree(Q)

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j∈J1:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

. λ
∑

Q∈TopG

∑

P∈Tree(Q)

ℓ(P )−n

×

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∑

k: 2−k.ℓ(P )

(
2−k

ℓ(P )

)1/2 ∑

j∈J1: ℓ(Rj)∈Ik

|νjb |(A(x, ǫm+1, ǫm)) dµ(x)

. λ
∑

Q∈TopG

∑

P∈Tree(Q)

∑

k: 2−k.ℓ(P )

(
2−k

ℓ(P )

)1/2 ∑

j∈J1: ℓ(Rj)∈Ik

‖νjb‖

. λ
∑

j

ν(Qj)
∑

k: ℓ(Rj)∈Ik

∑

P∈Dµ:Rj⊂BP

2−k.ℓ(P )

(
2−k

ℓ(P )

)1/2

. λ
∑

j

ν(Qj) . λ‖ν‖.

(61)

In the third inequality we used that j ∈ J1 implies that Rj ⊂ BP .
Concerning the case j ∈ J2 in (58), by (55) and (60) we see that

∑

Q∈TopG

∑

P∈Tree(Q)

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j∈J2:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

. λ1/2
∑

Q∈TopG

∑

P∈Tree(Q)

ℓ(P )−n

(
ν(BP )

ℓ(P )n

)1/2

×

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∑

R∈∂Tree(Q):
R⊂αBP

∑

j∈J2:
R(j)=R

(
ℓ(R)

ℓ(P )

)1/4

|νjb |(BR ∩A(x, ǫm+1, ǫm)) dµ(x)

. λ1/2
∑

Q∈TopG

∑

P∈Tree(Q)

(
ν(BP )

ℓ(P )n

)1/2 ∑

R∈∂Tree(Q):
R⊂αBP

∑

j∈J2:
R(j)=R

(
ℓ(R)

ℓ(P )

)1/4

‖νjb‖

. λ1/2
∑

Q∈TopG

∑

P∈Tree(Q)

∑

R∈∂Tree(Q):R⊂αBP
∃Rj⊂BR

(
ℓ(R)

ℓ(P )

)1/4(ν(BP )

ℓ(P )n

)1/2(ν(BR)

ℓ(R)n

)
ℓ(R)n,
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where we also used in the last inequality above that ‖νjb‖ . ν(Qj) and that the Qj’s have

bounded overlap. Since a1/2b . a3/2 + b3/2 for all a, b ≥ 0, we obtain

∑

Q∈TopG

∑

P∈Tree(Q)

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j∈J2:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

. λ1/2
∑

Q∈TopG

∑

P∈Tree(Q)

∑

R∈∂Tree(Q):R⊂αBP
∃Rj⊂BR

((
ν(BP )

ℓ(P )n

)3/2

+

(
ν(BR)

ℓ(R)n

)3/2)(ℓ(R)

ℓ(P )

)1/4

ℓ(R)n

. λ1/2
∑

Q∈TopG

∑

P∈Tree(Q)
∃Rj⊂cBP

(
ν(BP )

ℓ(P )n

)3/2

aP + λ1/2
∑

Q∈TopG

∑

R∈∂Tree(Q)
∃Rj⊂BR

(
ν(BR)

ℓ(R)n

)3/2

ℓ(R)n,

where we have set aP :=
∑

R∈∂Tree(Q):R⊂αBP
(ℓ(R)/ℓ(P ))1/4ℓ(R)n whenever P ∈ Tree(Q) for

some Q ∈ TopG (otherwise, we set aP = 0). Since ∂Trs is a Carleson family, we see that the
aP ’s satisfy a Carleson packing condition because, for a given T ∈ Dµ,

∑

P⊂T

aP ≤
∑

P⊂T

∑

Q∈TopG :P∈Tree(Q)

∑

R∈∂Tree(Q):R⊂αBP

(
ℓ(R)

ℓ(P )

)1/4

ℓ(R)n

≤
∑

P⊂T

∑

R∈∂Trs:R⊂αBP⊂αBT

(
ℓ(R)

ℓ(P )

)1/4

ℓ(R)n

≤
∑

R∈∂Trs:R⊂αBT

ℓ(R)n
∑

P⊂T :R⊂αBP

(
ℓ(R)

ℓ(P )

)1/4

.
∑

R∈∂Trs:R⊂αBT

ℓ(R)n . ℓ(T )n.

Therefore,

∑

Q∈TopG

∑

P∈Tree(Q)

∫

P\Ω̂

∑

ǫm,ǫm+1∈IP

∣∣∣∣
∑

j∈J2:Rj∩∂A(x,ǫm+1,ǫm)6=∅

Tj,m(x)

∣∣∣∣
2

dµ(x)

. λ1/2
∑

P∈Dµ

(
ν(BP )

ℓ(P )n

)3/2(
aP + ℓ(P )nχ∂Trs(P )

)
. λ‖ν‖,

(62)

because the coefficients aP + ℓ(P )nχ∂Trs(P ) satisfy a Carleson packing condition and thus
we can use Lemma 2.3.

Finally, (53) follows from (54), (57), (58), (61) and (62), so Theorem 3.1(i) is proved
except for the claims. �

Proof of Claim 3.3. Let Q ∈ TopG , P ∈ Tree(Q) and Rj ⊂ BP . For the purpose of the
claim, we can assume that ℓ(Q) ≥ ℓ(Rj), otherwise we can take R = Q which fulfills (ii).
Without loss of generality, we can also assume that ℓ(P ) ≥ ℓ(Rj) (recall that Rj ⊂ BP , so
ℓ(P ) & ℓ(Rj)). Otherwise, we replace P by a suitable ancestor from Tree(Q) with side length
comparable to ℓ(Rj), which must exists thanks to the previous assumption ℓ(Q) ≥ ℓ(Rj).

Let R ∈ Tree(Q) be a cube with minimal side length such that Rj ⊂ BR and ℓ(R) ≥ ℓ(Rj),
that is, ℓ(R) ≤ ℓ(S) for all S ∈ Tree(Q) with Rj ⊂ BS and ℓ(S) ≥ ℓ(Rj). In particular,
notice that P may coincide with R, and in any case ℓ(R) ≤ ℓ(P ). If ℓ(Rj) ∈ IR, that is
ℓ(R) ≥ ℓ(Rj) ≥ ℓ(R)/2, then R fulfills (i) if α is big enough, and we are done. On the
contrary, assume that ℓ(R)/2 > ℓ(Rj). Since Rj ⊂ BR and Rj ∩ suppµ 6= ∅, there exists
R′ ∈ Dµ such that ℓ(R′) = ℓ(R), dist(R′, R) . ℓ(R) and R′∩Rj 6= ∅. Therefore, there exists
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a son R′′ of R′ such that R′′ ∩Rj 6= ∅, so Rj ⊂ BR′′ if c1 is big enough. By the minimality
of R, we must have R′′ /∈ Tree(Q), thus R ∈ ∂Tree(Q) if A ≥ 1 in (28) is big enough, and
then (ii) is fulfilled for some α big enough. �

Proof of Claim 3.4. Let us first prove (59). If j ∈ J1 then Rj ⊂ BP and, in particular,
ℓ(Rj) . ℓ(P ). Thus, by Cauchy-Schwarz inequality,

∣∣∣∣
∑

j∈J1:Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm))

∣∣∣∣
2

=

∣∣∣∣
∑

k: 2−k.ℓ(P )

(
2−k

ℓ(P )

)1/4(ℓ(P )

2−k

)1/4 ∑

j∈J1: ℓ(Rj)∈Ik
Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm))

∣∣∣∣
2

.
∑

k: 2−k.ℓ(P )

(
ℓ(P )

2−k

)1/2 ∣∣∣∣
∑

j∈J1: ℓ(Rj)∈Ik
Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm))

∣∣∣∣
2

.

(63)

Using that |νjb |(A(x, ǫm+1, ǫm)) . ν(Qj) and that the Qj’s have bounded overlap, from the
definition of J1 we see that

∑

j∈J1: ℓ(Rj)∈Ik
Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm)) .
∑

R∈Tree(Q): ℓ(R)∈Ik ,
BR∩∂A(x,ǫm+1,ǫm)6=∅,

R⊂αBP ,∃Rj⊂BR

ν(BR).

(64)

If 6Qj = Rj ⊂ BR then ν(6Qj) ≤ ν(BR) . λµ(BR) . λµ(R) by (9). From (64) we infer

∑

j∈J1: ℓ(Rj)∈Ik
Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm)) . λ
∑

R∈Tree(Q): ℓ(R)∈Ik ,
BR∩∂A(x,ǫm+1,ǫm)6=∅,

R⊂αBP ,∃Rj⊂BR

µ(R).

(65)

We want to show that the right hand side of (65) can be estimated by λ2−kℓ(P )n−1. To this
end, we can suppose that ℓ(R) ≤ ℓ(P ), otherwise the estimate becomes trivial because we
are already assuming 2−k . ℓ(P ) and ℓ(R) ∈ Ik (so in this last case there is only a finite
and uniformly bounded number of terms in the sum above). Suppose now that ℓ(R) ≤ ℓ(P ).
Since R ⊂ αBP then R ⊂

⋃
P ′∈V (P ) P

′ if the constant C1 in the definition of V (P ) is big

enough. Thus, R ⊂ P ′ for some P ′ ∈ V (P ). Note that P ′ ∈ Tree(Q) because R ∈ Tree(Q),
and so we finally get R ∈ Tree(P ′). Then, from (65) and the estimates on annuli from
Lemma 2.5 we obtain

∑

j∈J1: ℓ(Rj)∈Ik
Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm)) . λ
∑

P ′∈V (P )

∑

R∈Tree(P ′): ℓ(R)∈Ik ,
BR∩∂A(x,ǫm+1,ǫm)6=∅

µ(R)

. λ2−kℓ(P )n−1,

(66)

as desired. Finally, (59) follows from (63) and (66).
Let us turn our attention to (60) now. Recall that, given j ∈ J2, R(j) ∈ ∂Tree(Q) denotes

some cube such that R(j) ⊂ αBP and Rj ⊂ BR(j). Similarly to (63), by Hölder’s inequality
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we get

∣∣∣∣
∑

j∈J2:
Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm))

∣∣∣∣
3/2

≤

∣∣∣∣
∑

R∈∂Tree(Q):R⊂αBP

BR∩∂A(x,ǫm+1,ǫm)6=∅

∑

j∈J2:R(j)=R

|νjb |(BR ∩A(x, ǫm+1, ǫm))

∣∣∣∣
3/2

.
∑

k: 2−k.ℓ(P )

(
ℓ(P )

2−k

)1/4∣∣∣∣
∑

R∈∂Tree(Q):

R⊂αBP , ℓ(R)=2−k

BR∩∂A(x,ǫm+1,ǫm)6=∅

∑

j∈J2:R(j)=R

|νjb |(BR ∩A(x, ǫm+1, ǫm))

∣∣∣∣
3/2

.

(67)

For the cubes R = R(j) in the last sum above, note that Rj ⊂ BR (see the definition of J2).

So, as we did before (65), ν(BR) . λµ(BR) . λµ(R) by (9). Using that ‖νjb‖ . ν(Qj), that
the Qj ’s have bounded overlap and that ν(BR) . λµ(BR), we deduce that

∑

R∈∂Tree(Q):R⊂αBP , ℓ(R)=2−k

BR∩∂A(x,ǫm+1,ǫm)6=∅

∑

j∈J2:R(j)=R

|νjb |(BR ∩A(x, ǫm+1, ǫm))

.
∑

R∈∂Tree(Q):
R⊂αBP , ℓ(R)=2−k

BR∩∂A(x,ǫm+1,ǫm)6=∅

∑

j∈J2:R(j)=R

ν(Qj) .
∑

R∈∂Tree(Q):
R⊂αBP , ℓ(R)=2−k

BR∩∂A(x,ǫm+1,ǫm)6=∅

ν(BR)

. λ
∑

R∈∂Tree(Q):R⊂αBP , ℓ(R)=2−k

BR∩∂A(x, ǫm+1,ǫm)6=∅

µ(R).

(68)

As we did in the case of J1, now we want to show that the last term above can be estimated
by λ2−kℓ(P )n−1. We argue similarly to what we did before (66). If R is as in the right hand
side of the last inequality in (68), since R ⊂ αBP we have ℓ(R) . ℓ(P ), and thus we can
assume ℓ(R) ≤ ℓ(P ) (otherwise the estimate that we want to show becomes trivial). Since
R ⊂ αBP then R ⊂

⋃
P ′∈V (P ) P

′ if the constant C1 in the definition of V (P ) is big enough.

Thus, R ⊂ P ′ for some P ′ ∈ V (P ) and R ∈ Tree(P ′) (recall that R ∈ ∂Tree(Q) implies
R ∈ Tree(Q)). Then, from (68) and the estimates on annuli from Lemma 2.5 we obtain

∑

R∈∂Tree(Q):R⊂αBP , ℓ(R)=2−k

BR∩∂A(x,ǫm+1,ǫm)6=∅

∑

j∈J2:R(j)=R

|νjb |(BR ∩A(x, ǫm+1, ǫm))

. λ
∑

P ′∈V (P )

∑

R∈Tree(P ′): ℓ(R)∈Ik ,
BR∩∂A(x,ǫm+1,ǫm)6=∅

µ(R) . λ2−kℓ(P )n−1,
(69)

as desired.
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Combining (69) with (67) we get

∣∣∣∣
∑

j∈J2:
Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm))

∣∣∣∣
3/2

. λ1/2ℓ(P )n/2
∑

k: 2−k.ℓ(P )

(
2−k

ℓ(P )

)1/4 ∑

R∈∂Tree(Q):

R⊂αBP , ℓ(R)=2−k

BR∩∂A(x,ǫm+1,ǫm)6=∅

∑

j∈J2:
R(j)=R

|νjb |(BR ∩A(x, ǫm+1, ǫm))

. λ1/2ℓ(P )n/2
∑

R∈∂Tree(Q):R⊂αBP

∑

j∈J2:R(j)=R

(
ℓ(R)

ℓ(P )

)1/4

|νjb |(BR ∩A(x, ǫm+1, ǫm)).

(70)

Finally, (60) is a consequence of (70) and the trivial estimate
∑

j∈J2:Rj∩∂A(x,ǫm+1,ǫm)6=∅

|νjb |(A(x, ǫm+1, ǫm)) . ν(BP ),

which holds if c1 in (7) is big enough because ‖νjb‖ . ν(Qj) and the Qj’s have bounded
overlap.

�

4. Vρ ◦ T
µ : Lp(µ) → Lp(µ) is a bounded operator for 1 < p < ∞

Under the assumptions of Theorem 1.1, the boundedness of Vρ ◦T
µ in Lp(µ) for 1 < p < 2

follows by interpolation, taking into account that it is bounded in L2(µ) and from L1(µ) to
L1,∞(µ), by Theorem 3.2 and Theorem 3.1. So it only remains to prove the boundedness in
Lp(µ) for 2 < p < ∞. This task is carried out in the next theorem.

Theorem 4.1. Let µ be a uniformly n-rectifiable measure in Rd. Let K be an odd kernel
satisfying (1) and consider the operator T associated to K defined in (2). Then Vρ ◦ T

µ is
a bounded operator in Lp(µ) for all ρ > 2 and all 2 < p < ∞.

Proof. We are going to prove that if µ is a uniformly n-rectifiable measure then M♯
Dµ ◦Vρ◦T

µ

is a bounded operator in Lp(µ) for all 2 < p < ∞, where M♯
Dµ denotes the dyadic sharp

maximal function, that is,

M♯
Dµf(x) = sup

D∈Dµ:x∈D
mD|f −mDf |.

The theorem will then follow from the fact that the maximal operator defined byMDµf(x) =

supD∈Dµ:x∈D mD|f | can be controlled in Lp(µ) norm by M♯
Dµ . That is, ‖MDµf‖Lp(µ) .

‖M♯
Dµf‖Lp(µ) (see [7, Lemma 6.9], for example).

Fix f ∈ Lp(µ) and x0 ∈ suppµ. Then,

(71) (M♯
Dµ ◦ Vρ ◦ T

µ)f(x0) = sup
D∈Dµ:x0∈D

mD|(Vρ ◦ T
µ)f −mD((Vρ ◦ T

µ)f)|.

Given D ∈ Dµ such that x0 ∈ D, we decompose f = f1+f2 with f1 := fχ3D and f2 := f−f1.
Since Vρ ◦ T µ is sublinear and positive, |(Vρ ◦ T µ)f − (Vρ ◦ T µ)f2| ≤ (Vρ ◦ T µ)f1 and so
|(Vρ ◦T

µ)f −c| ≤ (Vρ ◦T
µ)f1+ |(Vρ ◦T

µ)f2−c| for all c ∈ R. If we take c = (Vρ ◦T
µ)f2(zD),
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where zD denotes the center of D (we may assume that c < ∞), then

mD|(Vρ ◦ T
µ)f−mD((Vρ ◦ T

µ)f)|

≤ 2mD|(Vρ ◦ T
µ)f − (Vρ ◦ T

µ)f2(zD)|

. mD(Vρ ◦ T
µ)f1 +mD|(Vρ ◦ T

µ)f2 − (Vρ ◦ T
µ)f2(zD)|

=: I1 + I2.

(72)

A good estimate for I1 can be easily derived using Cauchy-Schwarz’s inequality, Theorem
3.2(i) and that µ is n-AD regular. More precisely,

I1 .

(
1

µ(D)

∫

D
|(Vρ ◦ T

µ)f1|
2 dµ

)1/2

.

(
1

µ(D)

∫

3D
|f |2 dµ

)1/2

. M2f(x0).(73)

The estimate of I2 is much more involved. Given x ∈ D, by the triangle inequality we
have

|(Vρ ◦ T
µ)f2(x)− (Vρ ◦ T

µ)f2(zD)|

≤ sup
{ǫm}m∈Z

(∑

m∈Z

∣∣∣T µ
ǫm,ǫm+1

f2(x)− T µ
ǫm,ǫm+1

f2(zD)
∣∣∣
ρ
)1/ρ

,
(74)

where the supremum is taken over all non-increasing sequences {ǫm}m∈Z of positive numbers
ǫm. In order to estimate the right hand side of (74), take one of such sequences {ǫm}m∈Z
and note that, by the triangle inequality again,

∣∣∣T µ
ǫm,ǫm+1

f2(x)− T µ
ǫm,ǫm+1

f2(zD)
∣∣∣

≤

∫
χ(ǫm+1,ǫm](|x− y|) |K(x− y)−K(zD − y)| |f2(y)| dµ(y)

+

∫ ∣∣χ(ǫm+1,ǫm](|x− y|)− χ(ǫm+1,ǫm](|zD − y|)
∣∣ |K(zD − y)||f2(y)| dµ(y)

=: am + bm.

(75)

Since x and zD belong to D and f2 vanishes in 3D, we can assume that ǫm+1 > ℓ(D) in the
definition of am and bm for all m ∈ Z.

Let us first look at the sum relative to the am’s for m ∈ Z. Using that ρ > 1, the regularity
of the kernel K, that f2 vanishes in 3D, and that µ is n-AD regular, for each x ∈ D we have

(∑

m∈Z
aρm

)1/ρ

≤
∑

m∈Z

∫

ǫm+1<|x−y|≤ǫm

|K(x− y)−K(zD − y)||f2(y)| dµ(y)

. ℓ(D)
∑

m∈Z

∫

ǫm+1<|x−y|≤ǫm

|f2(y)|

|y − zD|n+1
dµ(y)

≤ ℓ(D)

∫

Rd\3D

|f(y)|

|y − zD|n+1
dµ(y) . Mf(x0) ≤ M2f(x0),

(76)

where we also used Cauchy-Schwarz’s inequality in the last estimate above.
The sum relative to the bm’s for m ∈ Z requires a more delicate analysis. We split

Z = J1 ∪ J2, where

J1 := {m ∈ Z : ǫm − ǫm+1 > ℓ(D)},

J2 := {m ∈ Z : ǫm − ǫm+1 ≤ ℓ(D)}.
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To shorten notation, we also set

A1
m(zD) := A(zD, ǫm − ℓ(D), ǫm + ℓ(D)) and A2

m(x) := A(x, ǫm+1, ǫm).

Since we are assuming ǫm+1 > ℓ(D) for all m ∈ Z, both A1
m(zD) and A1

m+1(zD) are well
defined for all m ∈ J1. Moreover, since |x− zD| ≤ ℓ(D) for all x ∈ D, we easily get

∣∣χ(ǫm+1,ǫm](|x− ·|)− χ(ǫm+1,ǫm](|zD − ·|)
∣∣ ≤ χA1

m(zD) + χA1
m+1(zD) for all m ∈ J1,

∣∣χ(ǫm+1,ǫm](|x− ·|)− χ(ǫm+1,ǫm](|zD − ·|)
∣∣ ≤ χA2

m(zD) + χA2
m(x) for all m ∈ J2.

(77)

We are going to split the sum associated with the bm’s in terms of J1 and J2, using in each
case the corresponding estimate from (77).

Concerning the sum over J1, since ρ > 2, (77) yields

( ∑

m∈J1
bρm

)1/ρ

.

(
∑

m∈J1

(∫

A1
m(zD)

|K(zD − y)||f2(y)| dµ(y)

)2
)1/2

+

(
∑

m∈J1

(∫

A1
m+1(zD)

|K(zD − y)||f2(y)| dµ(y)

)2
)1/2

=: S1 + S2.

(78)

The arguments for estimating S1 and S2 are almost the same, so we will only give the details
for S1. Since f2 vanishes in 3D,

S2
1 =

∑

k∈Z

∑

m∈J1:
ǫm∈Ik

(∫

A1
m(zD)

|K(zD − y)||f2(y)| dµ(y)

)2

.
∑

Q∈Dµ:
Q⊃D

∑

m∈J1:
ǫm∈IQ

∣∣(|f2|µ)
(
A1

m(zD)
)∣∣2

ℓ(Q)2n
.(79)

Our task now is to bound
∣∣(|f2|µ)

(
A1

m(zD)
)∣∣2. This is done by splitting the annulus

A1
m(zD), whose width equals 2ℓ(D), into disjoint cubes P ∈ Dµ such that ℓ(P ) = ℓ(D) and

grouping them properly in terms of the corona decomposition, in order to be able to apply
Carleson’s embedding theorem later. More precisely, for Q ⊃ D and ǫm ∈ IQ, we have

A1
m(zD) ∩ supp(µ) ⊂

⋃

R∈V (Q)

R ⊂

(
⋃

R∈V (Q)

⋃

P∈Tree(R):
ℓ(P )=ℓ(D)

P

)
∪

(
⋃

R∈V (Q)

⋃

P∈Stp(R):
ℓ(P )≥ℓ(D)

P

)
.

Recall also that the number of cubes in V (Q) is bounded independently of Q. Therefore,

∣∣(|f2|µ)
(
A1

m(zD)
)∣∣2 .

∑

R∈V (Q)

∣∣∣∣
∑

P∈Tree(R):
ℓ(P )=ℓ(D)

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

+
∑

R∈V (Q)

∣∣∣∣
∑

P∈Stp(R):
ℓ(P )≥ℓ(D)

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

.

(80)
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The first term on the right hand side of (80) can be easily estimated using Cauchy-Schwarz’s
inequality, that the P ’s such that ℓ(P ) = ℓ(D) are disjoint and Lemma 2.5. That is,

∣∣∣∣
∑

P∈Tree(R):
ℓ(P )=ℓ(D)

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

=

∣∣∣∣
∫ ( ∑

P∈Tree(R):
ℓ(P )=ℓ(D)

χA1
m(zD)∩P

)
|f2| dµ

∣∣∣∣
2

≤

( ∑

P∈Tree(R):
ℓ(P )=ℓ(D)

µ
(
A1

m(zD) ∩ P
))( ∑

P∈Tree(R):
ℓ(P )=ℓ(D)

(|f2|
2µ)

(
A1

m(zD) ∩ P
))

. ℓ(D)ℓ(R)n−1
∑

P∈Tree(R):
ℓ(P )=ℓ(D)

(
|f2|

2µ
) (

A1
m(zD) ∩ P

)
.

(81)

The second term on the right hand side of (80) is estimated similarly but, since the cubes
in Stp(R) may have different side length, we need to introduce an auxiliary splitting of
the sum in terms of the side length. This extra splitting, combined with an application of
Cauchy-Schwarz inequality yields

∣∣∣∣
∑

P∈Stp(R):
ℓ(P )≥ℓ(D)

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

=

∣∣∣∣
∑

j≥0

2j/4

2j/4

∑

P∈Stp(R): ℓ(P )≥ℓ(D)
ℓ(P )=2−jℓ(R)

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

.
∑

j≥0

2j/2
∣∣∣∣

∑

P∈Stp(R): ℓ(P )≥ℓ(D)
ℓ(P )=2−jℓ(R)

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

≤
∑

j≥0

2j/2
( ∑

P∈Stp(R):
ℓ(P )≥ℓ(D)

ℓ(P )=2−jℓ(R)

µ
(
A1

m(zD) ∩ P
))( ∑

P∈Stp(R):
ℓ(P )≥ℓ(D)

ℓ(P )=2−jℓ(R)

(
|f2|

2µ
) (

A1
m(zD) ∩ P

))
,

(82)

where we also used in the last inequality above that the P ’s which belong to Stp(R) are
disjoint and Cauchy-Schwarz’s inequality. Since the width of the annulus A1

m(zD) equals
2ℓ(D), if P ∈ Stp(R) is such that ℓ(P ) = 2−jℓ(R) ≥ ℓ(D) and A1

m(zD) ∩ P 6= ∅ then

P ⊂ A(zD, ǫm − C2−jℓ(R), ǫm + C2−jℓ(R))

for some C > 0 depending only on n, d and µ. Hence, Lemma 2.5 gives
∑

P∈Stp(R): ℓ(P )≥ℓ(D)
ℓ(P )=2−jℓ(R)

µ
(
A1

m(zD) ∩ P
)
. 2−jℓ(R)n,

which plugged into (82) yields
∣∣∣∣

∑

P∈Stp(R):
ℓ(P )≥ℓ(D)

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

.
∑

j≥0

2−j/2ℓ(R)n
∑

P∈Stp(R):
ℓ(P )≥ℓ(D)

ℓ(P )=2−jℓ(R)

(
|f2|

2µ
) (

A1
m(zD) ∩ P

)

≤
∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)n
(
|f2|

2µ
) (

A1
m(zD) ∩ P

)
.

(83)
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Applying (81) and (83) to (80), we see that

∣∣(|f2|µ)
(
A1

m(zD)
)∣∣2 .

∑

R∈V (Q)

∑

P∈Tree(R):
ℓ(P )=ℓ(D)

ℓ(D)

ℓ(R)
ℓ(R)n

(
|f2|

2µ
) (

A1
m(zD) ∩ P

)

+
∑

R∈V (Q)

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)n
(
|f2|

2µ
) (

A1
m(zD) ∩ P

)
.

(84)

Now that we have estimated
∣∣(|f2|µ)

(
A1

m(zD)
)∣∣2, we can derive a bound for S2

1 . Since
ℓ(Q) = ℓ(R) for all R ∈ V (Q), (79) and (84) imply that

S2
1 .

∑

Q∈Dµ:
Q⊃D

∑

m∈J1:
ǫm∈IQ

∑

R∈V (Q)

∑

P∈Tree(R):
ℓ(P )=ℓ(D)

ℓ(D)

ℓ(R)
ℓ(R)−n

(
|f2|

2µ
) (

A1
m(zD) ∩ P

)

+
∑

Q∈Dµ:
Q⊃D

∑

m∈J1:
ǫm∈IQ

∑

R∈V (Q)

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)−n
(
|f2|

2µ
) (

A1
m(zD) ∩ P

)
.

(85)

Note that, for m ∈ J1, each (closed) annulus A1
m(zD) overlaps only with the two neigh-

bors A1
m−1(zD), A

1
m+1(zD) at the boundaries because {ǫm}m∈Z is a non-increasing sequence.

Therefore, from (85) we deduce that

S2
1 .

∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

∑

P∈Tree(R):
ℓ(P )=ℓ(D)

ℓ(D)

ℓ(R)
ℓ(R)−n

(
|f2|

2µ
)
(P )

+
∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)−n
(
|f2|

2µ
)
(P ) .

(86)

For the first term on the right hand side of (86), using that the P ’s in Dµ such that ℓ(P ) =
ℓ(D) are disjoint, that µ is n-AD regular and that x0 ∈ D, we have

∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

∑

P∈Tree(R):
ℓ(P )=ℓ(D)

ℓ(D)

ℓ(R)
ℓ(R)−n

(
|f2|

2µ
)
(P ) ≤

∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

ℓ(D)

ℓ(R)

(
|f2|

2µ
)
(R)

ℓ(R)n

.
∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

ℓ(D)

ℓ(Q)
M2f(x0)

2

. M2f(x0)
2.

(87)

In order to estimate the second term on the right hand side of (86), note that R ∈ V (Q) if
and only if Q ∈ V (R) and that if D ⊂ Q and R ∈ V (Q) then D ⊂ 3R, thus by changing the
order of summation and using that the number of cubes in V (R) is bounded independently
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of R and that Dµ =
⋃

S∈Top Tree(S) we see that

∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)−n
(
|f2|

2µ
)
(P )

≤
∑

R∈Dµ:
3R⊃D

∑

Q∈V (R)

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)−n
(
|f2|

2µ
)
(P )

.
∑

S∈Top

∑

R∈Tree(S):
3R⊃D

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)−n
(
|f2|

2µ
)
(P )

.
∑

S∈Top

∑

P∈Stp(S)
ℓ(P )1/2

(
|f2|

2µ
)
(P )

∑

R∈Tree(S):
3R⊃D∪P

ℓ(R)−n−1/2,

(88)

where we also used in the last inequality above that, for S ∈ Top, if P ∈ Stp(R) for some
R ∈ Tree(S) then P ∈ Stp(S) and P ⊂ R. Moreover, denoting

D(P,D) := ℓ(P ) + dist(P,D) + ℓ(D),

we have
∑

R∈Tree(S):
3R⊃D∪P

ℓ(R)−n−1/2 .
∑

j∈Z

∑

R∈Tree(S): 3R⊃D∪P,
2jD(P,D)<ℓ(R)≤2j+1D(P,D)

(2jD(P,D))−n−1/2

. D(P,D)−n−1/2,

(89)

because the number of cubes R ∈ Dµ such that 3R ⊃ D ∪ P and 2jD(P,D) < ℓ(R) ≤
2j+1D(P,D) is bounded independently of j ∈ Z, and the statements “3R ⊃ D ∪ P” and
“2jD(P,D) < ℓ(R) ≤ 2j+1D(P,D)” are compatible each other only if j ≥ j0 for some j0 ∈ Z

which only depends on d, n and µ. Plugging (89) into (88), we get

∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)−n
(
|f2|

2µ
)
(P )

.
∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2
(
|f2|

2µ
)
(P )

ℓ(P )n
.

(90)

Finally, by (87), (90), and (86), we conclude that

S2
1 . M2f(x0)

2 +
∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2

mP

(
|f |2

)
.(91)

As we pointed out before, the same estimate holds for S2
2 , because the only properties

that we used from the annuli A1
m(zD)’s are that they have bounded overlap for m ∈ J1, that

their width is comparable to ℓ(D), that they are centered in some point lying in D ⊂ Q and
that they have diameter comparable to ℓ(Q). Of course, these properties are also shared by
the annuli A1

m+1(zD)’s. Actually, for estimating S2, one can argue exactly as in the case of
S1 but replacing {m ∈ J1 : ǫm ∈ IQ} by {m ∈ J1 : ǫm+1 ∈ IQ} in the involved arguments.
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Therefore, by (91), the analogous estimate for S2, and (78), we see that
( ∑

m∈J1
bρm

)1/ρ

. M2f(x0) +

( ∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2

mP

(
|f |2

))1/2

.(92)

We now deal with the sum relative to the bm’s for m ∈ J2. The estimates are essentially as
in the case of m ∈ J1, but we include the sketch of the arguments for the reader’s convenience.
Since ρ > 2, (77) yields

( ∑

m∈J2
bρm

)1/ρ

.

(
∑

m∈J2

(∫

A2
m(zD)

|K(zD − y)||f2(y)| dµ(y)

)2
)1/2

+

(
∑

m∈J2

(∫

A2
m(x)

|K(zD − y)||f2(y)| dµ(y)

)2
)1/2

=: S3 + S4.

(93)

The arguments to estimate S3 and S4 are almost the same, so we will only give the details
for S3. Since f2 vanishes in 3D,

S2
3 =

∑

k∈Z

∑

m∈J2:
ǫm∈Ik

(∫

A2
m(zD)

|K(zD − y)||f2(y)| dµ(y)

)2

.
∑

Q∈Dµ:
Q⊃D

∑

m∈J2:
ǫm∈IQ

∣∣(|f2|µ)
(
A2

m(zD)
)∣∣2

ℓ(Q)2n
.(94)

Once again, our task now is to estimate
∣∣(|f2|µ)

(
A2

m(zD)
)∣∣2. As before, this is done by

splitting the annulus A2
m(zD), whose width is ǫm− ǫm+1, in disjoint cubes P ∈ Dµ such that

ǫm− ǫm+1 ∈ IP and grouping them properly in terms of the corona decomposition. Arguing
as in (80), we now have

∣∣(|f2|µ)
(
A2

m(zD)
)∣∣2 .

∑

R∈V (Q)

∣∣∣∣
∑

P∈Tree(R):
ǫm−ǫm+1∈IP

(|f2|µ)
(
A2

m(zD) ∩ P
) ∣∣∣∣

2

+
∑

R∈V (Q)

∣∣∣∣
∑

P∈Stp(R):
ℓ(P )≥ǫm−ǫm+1

(|f2|µ)
(
A2

m(zD) ∩ P
) ∣∣∣∣

2

.

(95)

The first term on the right hand side of (95) can be easily estimated using Cauchy-Schwarz’s
inequality, that the P ’s in Tree(R) such that ǫm − ǫm+1 ∈ IP are disjoint and Lemma 2.5.
Similarly to what we did in (81), we now obtain

∣∣∣∣
∑

P∈Tree(R):
ǫm−ǫm+1∈IP

(|f2|µ)
(
A2

m(zD) ∩ P
) ∣∣∣∣

2

. (ǫm − ǫm+1)ℓ(R)n−1
∑

P∈Tree(R):
ǫm−ǫm+1∈IP

(
|f2|

2µ
) (

A2
m(zD) ∩ P

)

≤ ℓ(D)ℓ(R)n−1
(
|f2|

2µ
) (

A2
m(zD) ∩R

)
,

(96)

where we also used in the last inequality above that ǫm − ǫm+1 ≤ ℓ(D), because we are
assuming m ∈ J2. As before, the second term on the right hand side of (95) is estimated
similarly to (96) but introducing an auxiliary splitting of the sum in terms of the side length
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of the cubes. By applying the Cauchy-Schwarz inequality, we can proceed exactly as in (82)
and (83), but replacing ℓ(D) by ǫm − ǫm+1, and then we deduce that

∣∣∣∣
∑

P∈Stp(R):
ℓ(P )≥ǫm−ǫm+1

(|f2|µ)
(
A1

m(zD) ∩ P
) ∣∣∣∣

2

.
∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)n
(
|f2|

2µ
) (

A2
m(zD) ∩ P

)
.

(97)

Combining (94) and (95) with (96) and (97), and using that ℓ(R) = ℓ(Q) for all R ∈ V (Q)
and that, for m ∈ Z, the closed annuli A2

m(zD)’s overlap only with the neighboring annuli
because {ǫm}m∈Z is a non-increasing sequence, we conclude that

S2
3 .

∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

ℓ(D)

ℓ(R)
ℓ(R)−n

(
|f2|

2µ
)
(R)

+
∑

Q∈Dµ:
Q⊃D

∑

R∈V (Q)

∑

P∈Stp(R)

(
ℓ(P )

ℓ(R)

)1/2

ℓ(R)−n
(
|f2|

2µ
)
(P ) .

(98)

Plugging (87) and (90) into (98) finally yields

S2
3 . M2f(x0)

2 +
∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2

mP

(
|f |2

)
.(99)

Similarly to what we said below (91), the same estimate that we have for S3 also holds
for S4. Therefore, applying (99) (and the same estimate for S4) to (93), we see that

( ∑

m∈J2
bρm

)1/ρ

. M2f(x0) +

( ∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2

mP

(
|f |2

))1/2

.(100)

To complete the proof of the theorem it only remains to put all the estimates together
and to use standard arguments. From (76), (92) and (100), we see that

(∑

m∈Z
(am + bm)ρ

)1/ρ

. M2f(x0) +

( ∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2

mP

(
|f |2

))1/2

,

which, by (74) and (75), implies that

I2 =
1

µ(D)

∫

D
|(Vρ ◦ T

µ)f2 − (Vρ ◦ T
µ)f2(zD)| dµ

. M2f(x0) +

( ∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2

mP

(
|f |2

))1/2

.
(101)
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Finally, combining (71) and (72) with (73) and (101), and using that
⋃

S∈Top Stp(S) ⊂ Top,
we conclude that

(M♯
Dµ ◦ Vρ ◦ T

µ)f(x0)

. M2f(x0) + sup
D∈Dµ: x0∈D

( ∑

S∈Top

∑

P∈Stp(S)

(
ℓ(P )

D(P,D)

)n+1/2

mP

(
|f |2

))1/2

. M2f(x0) +

( ∑

P∈Top

(
ℓ(P )

D(P, x0)

)n+1/2

mP

(
|f |2

))1/2

=: M2f(x0) + E1/2f(x0),

(102)

for all x0 ∈ supp(µ), where we denoted

(103) D(P, x0) := ℓ(P ) + dist(P, x0).

In Lemma 4.2 below we prove that E1/2 is a bounded operator in Lp(µ) for all 2 < p < ∞.
Assuming this for the moment, by (102) and the Lp(µ)-boundedness of M2, we see that

M♯
Dµ ◦ Vρ ◦ T

µ is also bounded in Lp(µ) for all 2 < p < ∞. Then we obtain

‖(Vρ ◦ T
µ)f‖Lp(µ) ≤ ‖(MDµ ◦ Vρ ◦ T

µ)f‖Lp(µ) . ‖(M♯
Dµ ◦ Vρ ◦ T

µ)f‖Lp(µ) . ‖f‖Lp(µ)

for all 2 < p < ∞, and the theorem is proved. �

Lemma 4.2. Given δ > 0, set

Eδf(x) :=

( ∑

P∈Top

(
ℓ(P )

D(P, x)

)n+δ

mP

(
|f |2

))1/2

for f ∈ Lp(µ) and x ∈ Rd, where D(P, x) is defined in (103). Then Eδ is a bounded operator
in Lp(µ) for all 2 < p < ∞.

Proof. The proof follows by duality and Carleson’s embedding theorem. Since 2 < p < ∞,
if q is such that 2/p+ 1/q = 1 then 1 < q < ∞, thus

‖Eδf‖Lp(µ) = ‖(Eδf)
2‖

1/2

Lp/2(µ)
= sup

‖g‖Lq(µ)≤1

∣∣∣∣
∫

(Eδf)
2g dµ

∣∣∣∣
1/2

.(104)

Note that

∣∣∣∣
∫
(Eδf)

2g dµ

∣∣∣∣ ≤
∑

P∈Top
mP

(
|f |2

) ∫ ( ℓ(P )

D(P, x)

)n+δ

|g(x)| dµ(x).(105)

Integrating over dyadic annuli and using that µ is n-AD regular, it is easy to check that

1

µ(P )

∫ (
ℓ(P )

D(P, x)

)n+δ

|g(x)| dµ(x) . Mg(y) for all y ∈ P(106)
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(here it is crucial that δ > 0). Thus, by (105), (106), Hölder’s inequality and Carleson’s
embedding Theorem 2.2 (recall that p/2 and q belong to (1,∞)),

∣∣∣∣
∫

(Eδf)
2g dµ

∣∣∣∣ .
∑

P∈Top
mP

(
|f |2

)
mP (Mg)µ(P )

≤

( ∑

P∈Top

(
mP

(
|f |2

))p/2
µ(P )

)2/p( ∑

P∈Top
(mP (Mg))qµ(P )

)1/q

. ‖|f |2‖Lp/2(µ)‖Mg‖Lq(µ) . ‖f‖2Lp(µ)‖g‖Lq(µ).

(107)

From (104) and (107) we conclude that ‖Eδf‖Lp(µ) . ‖f‖Lp(µ), as wished. �

5. The proof of Theorem 1.4

The arguments are very similar to the ones for the proof of Theorem 1.1 and so we will
only sketch the main ideas.

When K is an odd kernel satisfying (1), one of the main ingredients of the proof of the
boundedness of Vρ ◦ T from M(Rd) to L1,∞(µ) in Section 3 and of Vρ ◦ T µ in Lp(µ) for
2 < p < ∞ in Section 4 is Theorem 3.2, which ensures the boundedness of Vρ ◦ T µ in

L2(µ) → L2(µ) and of Vρ ◦ Tϕ from M(Rd) to L1,∞(µ). The reader can easily check that
exactly the same arguments contained in Sections 3 and 4 show that if K(·, ·) is a Calderón-
Zygmund kernel as in Theorem 1.4 and T is the associated operator, and moreover the
following assumptions hold:

(i) Vρ ◦ T
µ : L2(µ) → L2(µ) is bounded,

(ii) Vρ ◦ Tϕ : M(Rd) → L1,∞(µ) is bounded,

then Vρ ◦T : M(Rd) → L1,∞(µ) and Vρ ◦T
µ : Lp(µ) → Lp(µ), 2 < p < ∞, are also bounded.

That is, the same conclusions of Theorems 3.1 and 4.1 hold.
Thus, by interpolation, to conclude the proof of Theorem 1.4 it just remains to check that

the conditions (i) and (ii) above hold. This is obvious in the case of condition (i) because
this is indeed one of the main assumptions of Theorem 1.4. Concerning (ii), note first that
the boundedness of Vρ ◦ T

µ in L2(µ) implies that Vρ ◦ T
µ
ϕ is also bounded in L2(µ). This is

an immediate consequence of the pointwise estimate

Vρ ◦ T
µ
ϕ (f)(x) . Vρ ◦ T

µ(f)(x),

which can be obtained by writing

Tϕǫ(fµ)(x) :=

∫
ϕǫ(x− y)K(x, y) f(y) dµ(y)

in terms of a convex combination of functions of the form

Tδ(fµ)(x) :=

∫

|x−y|>δ
K(x, y) f(y) dµ(y),

for δ > 0 belonging to some interval depending on ǫ and then applying Minkowski’s integral
inequality. The arguments are quite similar to the ones in (31)-(33) and we omit them.

Then, basically the same arguments for the proof of Theorem 2.5 in [17] show that the
boundedness of Vρ◦T

µ
ϕ in L2(µ) implies that Vρ◦Tϕ is bounded fromM(Rd) to L1,∞(µ). This

is shown in [17] for the case when K is an odd kernel satisfying (1) and µ is the Hausdorff
measure Hn on a Lipschitz graph. However, the same proof with very minor changes works
in the more general situation when K(·, ·) is a kernel such as in Theorem 1.4 and µ is just
and n-dimensional AD-regular measure.
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Catalunya. Avda. Diagonal 647, 08028 Barcelona (Spain)

E-mail address: amasblesa@gmail.com
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