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LP-ESTIMATES FOR THE VARIATION FOR SINGULAR INTEGRALS
ON UNIFORMLY RECTIFIABLE SETS

ALBERT MAS AND XAVIER TOLSA

ABSTRACT. The L? (1 < p < oo) and weak-L' estimates for the variation for Calderén-
Zygmund operators with smooth odd kernel on uniformly rectifiable measures are proven.
The L? boundedness and the corona decomposition method are two key ingredients of the
proof.

1. INTRODUCTION

This article is devoted to obtain LP (1 < p < co) and weak-L! estimates for the variation
for Calderén-Zygmund operators with smooth odd kernel with respect to uniformly rectifiable
measures. As a matter of fact, we prove that if the L? estimate holds then the L? and weak-L!
estimates follow; the results in [I7] deal with the L? case.

Regarding the Calderén-Zygmund operators, given 1 < n < d integers, in this article we
consider kernels K : R?\ {0} — R such that K(—xz) = —K(x) for all 2 # 0 (K is odd) and

c c C
forall z = (z1,...,24) € R\{0} and all 1 < i,j < d, where and C > 0 is some constant. The
growth estimate on the second derivatives required in (I]) comes from the fact that it is also
assumed in [I7, Theorem 1.3 and Corollary 4.2], which are used in this article (see Theorem
B.2). We should mention that this growth estimate is usually required in what concerns to
L? boundedness of singular integral operators and uniformly rectifiable measures, see for
example [5] [0 [16], 17, 20]. However, in Theorem [[.4] below we consider more general kernels.

Given a Radon measure p in R, f € L'(u) and 2 € R?, we set

(2) T f(2) = To(f 1) (x) = / Kz — ) f(y) du(y),

lz—y|>e

and we denote T%' f(z) = sup~o |T¢ f(z)], T = {T.}es0 and TH = {T¥}.~¢. Given p > 2 and
f € L} (1), the p-variation operator acting on THf = {T! f}c>0 is defined as

1/p
) (Vy o TH)f(x) = sup (Z T () —T;‘mﬂf(w)rp)

€m meEZ

where the pointwise supremum is taken over all the non-increasing sequences of positive
numbers {€;, }mez.
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Concerning the notion of uniform rectifiability, recall that a Radon measure p in R¢
is called n-rectifiable if there exists a countable family of n-dimensional C' submanifolds
{M;}ien in R? such that u(E \ U;en M;) = 0 and p < H", where H" stands for the n-
dimensional Hausdorff measure. Moreover, p is said to be n-dimensional Ahlfors-David
regular, or simply n-AD regular, if there exists some constant C' > 0 such that

Clr™ < u(B(z,r)) < Cr"

for all z € suppu and 0 < r < diam(suppp). Note that if diam(suppu) < +oo then
p(R?) < oo and so the condition p(B(z,r)) < Cr™ in the definition of AD regularity actually
holds for all » > 0. Finally, one says that p is uniformly n-rectifiable if it is n-AD regular
and there exist §, M > 0 so that, for each = € suppu and 0 < r < diam(suppp), there is a
Lipschitz mapping g from the n-dimensional ball B"(0,r) C R™ into R? such that Lip(g) < M
and
w(Bla,r) N g(B(0,1))) = 0r",

where Lip(g) stands for the Lipschitz constant of g. In particular, uniform rectifiability
implies rectifiability. A set F' C R? is called n-rectifiable (or uniformly n-rectifiable) if H"|g
is n-rectifiable (or uniformly n-rectifiable, respectively).

We are ready now to state our main result. In the statement M (R%) stands for the Banach
space of finite real Radon measures in R? equipped with the total variation norm.

Theorem 1.1. Let p be a uniformly n-rectifiable measure in R%. Let K be an odd kernel
satisfying (@) and, for p > 2, consider the associated variation operator defined in [Bl). Then

Voo TH: LP(u) — LP(n) (1<p<oo) and V,oT : M(RY) — LY(u)
are bounded operators. In particular, V,o T : L'(u) — LY*(p) is bounded.

The variation operator has been studied in different contexts during the last years, being
probability, ergodic theory, and harmonic analysis three areas where variational inequalities
turned out to be a powerful tool to prove new results or to enhace already known ones (see
for example [1, 8 @, 10, [IT], 13 18], and the references therein). Inspired by the results
on variational inequalities for Calderén-Zygmund operators in R"™ like [2, 3], in [16] we
began our study of such type of inequalities when one replaces the underlying space R™ and
its associated Lebesgue measure by some reasonable measure in R?, being the Hausdorff
measure on a Lipschitz graph a first natural candidate. In this regard, Theorem [ should
be considered as a natural generalisation of variational inequalities for Calderén-Zygmund
operators in R™ from a geometric measure-theoretic point of view.

A big motivation to prove Theorem [[L1] is its connection to the so called David-Semmes
problem regarding the Riesz transform and rectifiability. Given a Radon measure p in
R9, one defines the n-dimensional Riesz transform of a function f € L'(u) by R:f(x) =
lime o RE f(x) (whenever the limit exists), where

x

-y
REf(x) = /xy>E [z — g1 f(y) du(y), z € R

Note that the kernel of the Riesz transform is the vector (x!, ..., 29)/|z|**! (so, in this case,
the kernel K in (1)) is vectorial). We also use the notation R¥f(x) := {RF f(z)}e=0 and, as
usual, we define the maximal operator RY f(z) = sup,~ | Rt f(z)].

G. David and S. Semmes asked more than twenty years ago the following question, which
is still open (see, for example, [19, Chapter 7]):

Question 1.2. Is it true that an n-dimensional AD regular measure i is uniformly n-
rectifiable if and only if RY is bounded in L*(u)?
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By [B], the “only if” implication of this question above is already known to hold. Also in
6], G. David and S. Semmes gave a positive answer to the other implication if one replaces
the L? boundedness of RY by the L? boundedness of T for a wide class of odd kernels K.
In the case n = 1 the “if” implication was proved in [14] using the notion of curvature of
measures. Later on, the same implication was answered affirmatively for n = d — 1 in the
work [12] by combining quasiorthogonality arguments with some variational estimates which
use the maximum principle derived from the fact that the Riesz kernel is (a multiple) of
the gradient of the fundamental solution of the Laplacian in R? when n = d — 1. Question
is still open for the general case 1 < n < d — 1. However, thanks to Theorem [L.T] and
[I7, Theorem 2.3] we get the following corollary, which characterizes uniform rectifiability in
terms of variational inequalities for the Riesz transform and more general Calderén-Zygmund
operators.

Corollary 1.3. Let pu be an n-dimensional AD regular Radon measure in RE. Then, the
following are equivalent:

(a) w is uniformly n-rectifiable,

(b) for any odd kernel K as in (@) and any p > 2, V, 0 T* is bounded in LP(u) for all
1 < p < oo, and from L'(u) into LY (p),

(c) for some p>0,V,0R" is bounded in L*(y).

Comparing Corollary [[3]to Question [[L2] note that the corollary asserts that if we replace
the L?(11) boundedness of RY by the stronger assumption that V, o R* is bounded in L?(y),
then g must be uniformly rectifiable. On the other hand, the corollary claims that the
variation for singular integral operators with any odd kernel satisfying (), in particular for
the n-dimensional Riesz transforms, is bounded in LP(u) for all 1 < p < oo and it is of
weak-type (1,1), which is a stronger conclusion than the one derived from an affirmative
answer to Question

The proof of (¢) = (a) in Corollary [[3] is not as hard as the converse implications.
Essentally, a combination of the arguments in [20] with the fact that, in a sense, V, o R*
controls RY does the job (see [17]). Theorem [[lis used to prove that (a) = (b) in Corollary
3] the corresponding result in [I7] was only proved for p = 2. Theorem [L] allows us to
get it in full generality, completing the whole picture on variation for singular integrals and
uniform rectifiability. As far as we know, neither the LP estimates with 1 < p < oo nor the
weak-L! estimate for V, o T# on uniform rectifiable measures p were known, except for the
case p = 2 treated in [I7] and the case where 1 < p < oo but suppp is a Lipschitz graph
with slope strictly smaller than 1, solved in [I5]. Let us stress that from the latter result one
can not easily deduce the LP estimates on uniformly rectifiable measures (as in the standard
situation in Calderén-Zygmund theory), basically because the good-A method does not work
properly for V, o 7. To avoid this obstacle, our method relies on the corona decomposition
technique combined with some ideas from the Lipschitz case in [15] and from [2] and [I3] to
deal with variational inequalities, as well as the L? result from [17].

Finally we wish to remark that the same techniques used to prove Theorem [[.1] yield the
following result, which applies to more general Calderén-Zymund operators. See Section
for the proof.

Theorem 1.4. For 1 < n < d, let p be a uniformly n-rectifiable measure in R Let
K :RYx RN\ {(z,y) : 2 =y} — R be a kernel such that

|K (z,y)| < for allm#yERd,

|z —y|™



4 ALBERT MAS AND XAVIER TOLSA

and

C e — 2|
/ /
K (2,y) — K(2',y)| + [K(y,z) — K(y,2")| < [z — gt

for all z,2',y € R with |z — 2'| < Y|z —y|. For ¢ > 0, denote

T f(2) = To(f11) () = / K(2,9)f () dyu(y).

|z—y|>e
Let TFf = {T¥ f}eso and let (V, 0 TH) be defined as in @). If V, o T* is bounded in L*(u),
then it is also bounded in LP(p) for 1 < p < oo and from L*(u) to LY>°(u). Also, V,o T is
bounded from M(R?) to LY (p).
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2. PRELIMINARIES AND AUXILIARY RESULTS

2.1. Notation and terminology. As usual, in the paper the letter ‘C” (or ‘c’) stands for
some constant which may change its value at different occurrences, and which quite often
only depends on n and d. Given two families of constants A(t) and B(t), where ¢ stands
for all the explicit or implicit parameters involving A(t) and B(t), the notation A(t) < B(t)
(A(t) z B(t)) means that there is some fixed constant C' such that A(t) < CB(t) (A(t) >
CB(t)) for all ¢, with C' as above. Also, A(t) ~ B(t) is equivalent to A(t) < B(t) < A(t).

Throughout all the paper we assume that 1 < n < d are integers and that p is an n-
dimensional AD-regular measure in R%. Given a bounded Borel set A C R? and f € L, (1),
we write the mean of f on A with respect to pu as follows:

1

We consider the centered maximal Hardy-Littlewood operator:

Mf(-%') = Sume(a},r)‘f"
r>0

This is known to be bounded in LP(u), for 1 < p < oo, and from M (R?) to LY*(u). For
1 < g < o0, we also set

Mgf = M(|f|")e.
This is bounded in LP(u), for ¢ < p < oo, and from L9(u) to L9°(u).
Given 0 < a < b, consider the closed annulus

A(z,a,b) := B(z,b) \ B(z,a).
Given k € Z, set
I, = [27F 1 27k,
One defines the short and long variation operators V;,g oTH and Vlf o TH, respectively, by

1/p
@ = (X X W@ T, wp)

{em} kEZ €m,em+1€1l

1/p
(V/f o TH)f(x) := sup < Z T4 f(x) = Th .| f(x)‘p> J

{em} \ ez em€lj, em+1€l},
for some j<k
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where, in both cases, the pointwise supremum is taken over all the non-increasing sequences
of positive numbers {¢,, }mez. Given a finite Borel measure v in R?, one defines (V;,S oT)v(x)

and (Vpﬁ o T)v(x) similarly. For convenience of notation, given 0 < € < § we set
(4) Tse :=Ts — T, and T§, analogously.

Let ¢r : [0, +00) — [0,+00) be a non-decreasing C? function with x4 00y < ¥R < X[1/4,00)
and set ¢ (z) = or(|z[*/€?). We define

(5) T, v(x) = /(p5(1' —y)K(z —y)dv(y) for z e RY

(with K (z—y) replaced by K(z,y) if K is as in Theorem[[4)). Finally, write 7, := {1, }e>o0.
Compare the operator in () to

T(a) = [ xlo = y)K(e ~ ) dvly),
where xe(-) := X(1,00)(| - |/€), and the family 7, to T

2.2. Dyadic lattices. For the study of the uniformly rectifiable measures we will use the
“dyadic cubes” built by G. David in [4, Appendix 1] (see also [6, Chapter 3 of Part I]). These
dyadic cubes are not true cubes, but they play this role with respect to a given n-dimensional
AD regular Radon measure p, in a sense.

Let us explain which are the precise results and properties of this lattice of dyadic cubes.
Given an n-dimensional AD regular Radon measure g in R? (for simplicity, here we may
assume that diam(suppu) = 00), for each j € Z there exists a family D;»‘ of Borel subsets of
suppp (the dyadic cubes of the j-th generation) such that:

(a) each Dﬁ»‘ is a partition of suppp, i.e. suppy = UQeD‘.‘ Q and Q N Q' = @ whenever
J
Q,Q € D;‘ and Q # Q’;
(0) if @ € DY and Q' € D with k < j, then either Q C Q' or QNQ = o; ‘
(c) for all j € Z and Q € D;L, we have 277 < diam(Q) < 277 and p(Q) =~ 277,
(d) there exists C' > 0 such that, for all j € Z, Q € D;»L, and 0 < 7 < 1,

,u({x € @ :dist(x,suppp \ Q) < 72_j})
+ p({z € suppp \ Q : dist(z,Q) < 7277}) < Crl/Comin,

This property is usually called the small boundaries condition. From (@), it follows
that there is a point zg € @ (the center of Q) such that dist(zq,suppp \ Q) 2 27/
(see [0, Lemma 3.5 of Part IJ).
We set D .= UjeZ D;»‘. Given a cube Q € Dé‘, we say that its side length is 277, and we
denote it by £(Q). Notice that diam(Q) < ¢(Q). For A > 1, we also write

AQ = {x € suppp : dist(z,Q) < (A —1) E(Q)}.

(6)

We denote
(7) Bg = B(z2q,c14(Q)),

where ¢; > 1 is some big constant which will be chosen below, depending on other parameters.
Let P(Q) denote the cube in D;‘_l which contains @ (the parent of @), and set

Ch(Q) :={Q" e Dj,,: Q' C Q},
V(Q) = {Q € D! : dist(Q. Q) < CL(Q)}
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for some constant C; > 0 big enough (Ch(Q) are the children of @, and V(Q) stands for
the vicinity of Q). Notice that P(Q) is a cube from D* but Ch(Q) and V(Q) are collections
of cubes from D*. It is not hard to show that the number of cubes in Ch(Q) and V(Q) is
bounded by some constant depending only on n and the AD regularity constant of u, and
on (] in the case of the vicinitiy.

The following assumptions will be used in the sequel: ¢; in ([7) is big enough so that

Q U Bg C Bg for all Q" € Ch(Q)
and C is big enough so that

Bg N suppp C UQ’EV(Q)Q/'

Finally, we write

I :=1; = [6(Q)/2,£(Q))-

2.3. The corona decomposition. Given an n-dimensional AD regular Radon measure p
on R? consider the dyadic lattice D* introduced in Subsection Following [6, Definitions
3.13 and 3.19 of Part I], one says that u admits a corona decomposition if, for each n > 0
and 6 > 0, one can find a triple (B, G, Trs), where B and G are two subsets of D* (the “bad
cubes” and the “good cubes”) and Trs is a family of subsets S C G (that we will call trees),
which satisfy the following conditions::

(a) D =BUG and BNG=g.
) B satisfies a Carleson packing condition, i.e., 3 ocp ocr #M(Q) S p(R) for all R € DX

) G =Wgens S, i-e., any Q € G belongs to only one S € Trs.

) Each S € Trs is coherent. This means that each S € Trs has a unique maximal

element Qg which contains all other elements of S as subsets, that Q' € S as soon

as Q' € DH satisfies Q C Q' C Qg for some @ € S, and that if Q € S then either all

of the children of @ lie in S or none of them do (recall that if Q € D;‘ , the children

of Q is defined as the collection of cubes Q' € D;—H such that Q' C Q).

(e) The maximal cubes Qg, for S € Trs, satisfy a Carleson packing condition. That is,
> sets: Qscr M@s) S pu(R) for all R € DA

(f) For each S € Trs, there exists an n-dimensional Lipschitz graph I'g with constant
smaller than 7 such that dist(z,I's) < 6 diam(Q) whenever z € 2Q) and @ € S (one
can replace “z € 2Q” by “x € c2@” for any constant ¢y > 2 given in advance, by [6]
Lemma 3.31 of Part IJ).

It is shown in [5] (see also [6]) that if p is uniformly rectifiable then it admits a corona
decomposition for all parameters k& > 2 and 7,6 > 0. Conversely, the existence of a corona
decomposition for a single set of parameters k& > 2 and 7,60 > 0 implies that p is uniformly
rectifiable.

We set

(b
(c
(d

Topg = {Qs:S € Trs} and Top = Topg UB.

If p is uniformly rectifiable, then, by the properties (b) and (e) above, for all R € D we
have
> w@) S uR).
Q€Top: QCR
If R € S for some S € Trs, we denote by Tree(R) the set of cubes @ € S such that
Q@ C R (the tree of R). Otherwise, that is, if R € B, we set Tree(R) := {R}. Finally, Stp(R)
stands for the set of cubes @ € BU (G \ Tree(R)) such that Q@ C R and P(Q) € Tree(R)
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(the stopping cubes relative to R), so actually @ C R. Notice that if R € B, then we have
Stp(R) = Ch(R).

2.4. Auxiliary results. The following lemma follows directly from [2I, Lemma 2.14] (see
also [15, Lemma 2.2] for the case of Lipschitz graphs).

Lemma 2.1 (Calderén-Zygmund decomposition). Let p be a compactly supported uniformly
n-rectifiable measure in R, For every positive measure v € M(R%) with compact support
and every X > 24 |v||/||pl|, the following hold:

(a) There exists a finite or countable collection of cubes {Q;}; centered at supp v which
are almost disjoint, that is Zj XQ; < C (with C depending only on d), and a function
f € LY (u) such that

(8) v(Qj) > 277 An(2Q;),
(9) v(nQy) <27 Au(20Qy)  forn > 2,
(10) v=fuinRI\Q with | f| <\ p-a.e, where Q = |J;Q;.

(b) For each j, let Rj := 6Q; and denote w; := xq,; (D_} X0.) ' Then, there ezists a
family of functions {b;}; with suppb; C R; and with constant sign satisfying

(11) /bj dy = /wj dv,

(12) 1651 ooy (Rj) < Cv(Qy), and
(13) >_1bj| < CoA,  where Co is some absolute constant.

Let us remark that the cubes in the preceding lemma are “true cubes”, i.e. they do not
belong to D*.
Notice that from () it follows that 4.5Q; N suppu # @, which implies that

(14) u(1Q;) ~ (n@;)"  for n> 5 such that ((nQ;) < diam(suppp).
Additionally, if we assume that

(15) suppv C udiam(suppu) (supp,u),

where U;(A) stands for the ¢t-neighborhood of A, then we infer that ¢(Q;) < Cdiam(supppu),
for all j and for some absolute constant C. Otherwise, for C' big enough we would deduce
that

suppy U suppr C 2Q);,
and thus (2Q;) = ||l and v(Q;) < ||v]l, so by ()
Il > 27N,
but this contradicts the choice of A. In particular, under the assumption (I5), we infer that
(16) p(R;y) ~ L(R))" = Q)"
We will need the following version of the dyadic Carleson embedding theorem.
Theorem 2.2 (Dyadic Carleson embedding theorem). Let p be a Radon measure on RZ.

Let D be some dyadic lattice from R¢ and let {aq}oep be a family of non-negative numbers.
Suppose that for every cube R € D we have

(17) Y. ag<czp(R).

QED:QCR
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Then every family of non-negative numbers {yg}qep satisfies

(18) Z vQagQ < c3 / sup vq dp(x).
QeD Q>

Also, for p € (1,00), if f € LP(),

(19) 3 Imoftag < cesllf Ly,
QeD

where mqg f = fQ fdu/u(Q) and c is an absolute constant.

In the preceding theorem, the lattice D can be, for example, either the usual dyadic lattice
of R? or, in the case when u is AD-regular, the lattice of cubes associated with . For the
proof of this classical result, see |21, Theorem 5.8], for example.

We say that C C D is a Carleson family of cubes if

> w@Q) <csp(R)  forall ReD.
QeC:QCR
By (9, it follows that for such a family C and any f € LP(u),

> ImofP (@) < cesl|f 7,

QeC

Lemma 2.3. Let v € M(R?) be a positive measure with compact support and X > 2974 |v|| /|||
Consider cubes {Q;}; and {R;}; as in Lemma [ZTl. Denote

vy = Z (wjv —bjp),
J

where the b;’s satisfy (), (I2) and ([@3), and w; = xq, D _x x0,) ' Let C C D* be a
family of cubes and {as}sec be a family of non-negative numbers such that

(20) Z ags S C3 ,u(R)
SeC:SCR

For each S € C consider the ball Bg given by (), so it is centered on S, S C Bg and
r(Bg) ~ £(S). Suppose that there exists some constant ¢ > 0 such that for each S € C, the
ball ¢Bg contains some cube R;. Then, for every p € (1,00),

(21) 5 (%) as S X

seC
and
v(Bs) b -1
(22) z( ) as < X ],
s \HS)

with the implicit constants depending on p, c3, and C.

In particular, this lemma applies to the case when ag = 1 for all S € C and C is a Carleson
family satisfying the additional conditions stated in the lemma.

Proof. First we will show (2I). By (I8) in Theorem 2.2 one gets

v (Bs) \” / v (Bs) \”
2 E — < — .
@) ( oy ) = ) (8 e ) W)

Sec
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Write
vy, = iju and ¢g= ij,
J J
so that, for every S € C,

wil(Bs) <7(Bs)+ | Gan
Bg
Note that the measure v, and the functions b;, g are positive because v is assumed to be a
positive measure. By (23] then we have

e X (M) ess [ (s ) @+ [ (supmasa) due)

SecC

where mp,g = st gdu/u(Bg) and we have taken into account that u(Bg) = £(S)™.

To deal with the last integral on the right hand side of (24]) we use the non-centered
maximal Hardy-Littlewood operator defined by

— 1
M) = sup oo /B Fldu,

where the supremum is taken over all the balls which contain z and whose center lies on
suppy. Recalling that M is bounded in LP(u), and using that gl () < cA (by (I3)) and
1921wy < cllv| (by (@2)), we obtain

p —
(25) / (supm35§> du(z) < c/(./\/l:(})pd,u < c/ﬁp dp < e\P~1 /ﬁd,u < X! v

S>x

Now we turn our attention to the first integral on the right hand side of ([24]). We write

S (B\ P
sup %(Bs) du(z) = ceoF o=+ D
LS)n
53z £(9) U, 2Q; R\, 2Q;

To estimate I, we claim that

Up(Bs)
(s
This follows from the fact that ¢Bg contains some cube R;, which in turn implies that, for
some 7 > 6 with n ~ £(5)/¢(Q;), Bs is contained in some cube nQ; with £(nQ;) ~ €(S),

and then

u(Bs) o v(nQ;)

(s~ Lm@)n
which together with (I4]) and (@) yields the claim above. Then, using also (8) and the fact
the cubes {Q;}; have finite overlap, we deduce that

nEx Yuee) £ 3 <y

J J

Finally we deal with the integral Io. Consider 2 € R?\ Uj 2Q); and S such that z € S € C
(which, in particular, tells us that S\ |J; 2Q; # ©). Notice that

W(Bs)< D w(Q)

1:Q;NBg#2

<A
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From the conditions @; N Bg # @ and S\, 2Q; # @, we infer that r(Bg) > 10(Q;). So we
deduce that Q; C ¢4 Bg, for some constant ¢4 = 1. Hence,

wBs < Y v Y [wan

1:Q;CcaBg 1:Q;Cc4Bg
where we used (II) for the last estimate. Observe now that if Q; C ¢4Bg, then R; C ¢5Bg,
for some absolute constant ¢; > c4. So recalling that g = >_ ;bj, we obtain

7(Bs) < / ddu,
c5Bg

Therefore,
p(Bgs) < 1 / ~ ~_
S gdp S Mg(z
(48"~ uBs) Jun, )

for every x € S. So arguing as in (25]) we deduce that

L < / (M) da(z) S W= ]|

Together with the estimate we obtained for Iy, this yields

(26) [ (s ) duta) < 0 o,

and so using (25) we get (21]).
In order to show (22)), recall that v = 1, + fu with f as in (I0). Thus,

v(Bs) = 7(Bs) + / fdu < 5 (Bs) + mpg f4(S)",

Bs
and then
v(Bs)\" 7(Bs) \"
(27) Z( n> as S Y ) ag+ > _ (mpgf)as.
SecC E(S) seC 6(5) seC
We easily get ([22]) from (27)), combinig (I8) and (I9) in Theorem 2.2 with (26]) and the fact
that £, < -] by (D). .

Let ;o be a uniformly n-rectifiable measure in R%. Consider the splitting D* = B U
(Wrems T) given by the corona decomposition of . For a fixed constant A > 1, we denote
by OT the family of cubes @ € T for which either @ = Qr with Q7 as in (d) in Section 2.3]
or there exists some P € D*\ T such that

(28) %6(P)§£(Q)§2€(P) and  dist(P,Q) < AL(Q).

We call T the boundary of T'. If T' = Tree(R), with R € Topg, we also write 0Tree(R) :=
dT. We set
0Trs = U oT.
TeTrs
Notice that 9T C T.
The following lemma has been proved in [6, (3.28) in page 60].

Lemma 2.4. Let i be a uniformly n-rectifiable measure in R®. The family 0Trs is a Carleson
family.

We will also need the following auxiliary result.
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Lemma 2.5 (Annuli estimates). Assume that the constants 1 and 0 in property (f) of
the corona decomposition (see Section 2.3]) are small enough. Let Q@ € DH, = € Q and
€ € [0(Q)/2,4(Q)]. Let k € Z be such that 27% < £(Q). Given R € V(Q) and C > 0, denote

A = {P € Tree(R) UStp(R) : {(P) =27F P c A(z,e — C27% e+ 02_k)} .
Then
(29) i (Upea, P) S 275 0(R)",

where the implicit constant in the last inequality above only depends on n, d, p and C.

In the lemma, if € — C27% < 0 we set A(z,e — C27% e + C27F) := B(x,e + C27F). For
the proof, see [I7, Lemma 5.9]. In fact, in this reference the annuli estimates are proved
only for R € G. However, for R € B, the inequality (29) is trivial. Further, in [I7, Lemma
5.9] one states that the result holds only for some constant C' depending on n, d, and the
AD-regularity constant of u, and with a slight difference in the definition of V' (Q). However,
it is trivial to check that this extends to the more general version above.

3. V,0T : M(R?) — L1*°(u) 1S A BOUNDED OPERATOR

In this section we will prove the following result.

Theorem 3.1. Let pi be a uniformly n-rectifiable measure in R%. Let K be an odd kernel
satisfying ([Il) and consider the operator T associated to K defined in ([2)). Then, for p > 2,

(1) Vf oT : M(R?) — LY%°(u) is bounded,
(17) Vf oT : M(RY) — LY°(u) is bounded.

In particular, V, o T is a bounded operator from M(R®) to LY°(u) for all p > 2.

Notice that by the triangle inequality we can easily split the variation operator into the
short and long variations, that is, (V, o TH)f < (V;)S oTH)f + (Vpﬁ o TH)f. Therefore, that
V,o T is a bounded operator from M (R?) to L1*°(u) for all p > 2 follows from (i) and (ii)
above, whose proofs are given below.

We will use the next result, which is contained in [I7, Theorem 1.3 and Corollary 4.2].

Theorem 3.2. Let u be a uniformly n-rectifiable measure in R%. Let K be an odd kernel
satisfying ([{l) and consider the operator T associated to K defined in ([2)). Then, for p > 2,

(i) VpoTH: L*(n) — L*(u) is bounded,
(ii) Vpo Ty M(RT) — L1*°(u) is bounded.

Proof of Theorem [B.11(i7). We will deal with the long variation Vf o T by comparing it with
the smoothened version V, o 7, using Theorem [B.2(i7), estimating the error terms by the
short variation V;)S o T, and applying Theorem [B.Jii). More precisely, the triangle inequality
yields

[Tev(z) = Tov(@)| < |Tow(x) = Tov ()| + [Tev(x) = To v ()] + [Tov(2) — Tysv(2)]
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for any 0 < § < €. Therefore,
(Vg o Tv(@))’” 5 (Vo Tp)v(a))”

tswp S () = T @)+ T () = T, ()
(30) {em} me”Z: Emelj,€m+1elk
for some j<k

S(VpoTow(@)’+  sup > |Te,v(x) — Ty, v(@))”.
Cnbiimely gt

Let us estimate the second term on the right hand side of [B0). Since x400) < YR <
X[1/4,00) Py definition, we have

4

Xitoo)(B) — pr(t) = / PR ~ X 0

for all £ > 0. This means that x[; ) — ¥R is a convex combination of the functions x[; o) —
X[s,00) for 1/4 < s < 4. Then, Fubini’s theorem gives

L) = Tpovla) = [ (oo = 9P /) = oxlla = y7/€) ) Ko — g) du(y)

4
@1 = [ O [ Ot =il = s ) ) ds

4 /

— /1/4 or(s) (Teu(x) — Teﬁu(x)> ds.
It is easy to see that
1/p
(32) ( ST 0a) - Temﬁuw) < (VS o Tu(a)
meZ

for all s € [1/4,4] with uniform bounds, where {€, }mez is any sequence such that €, € I,
for all m € Z. Using (B1]), Minkowski’s integral inequality and (B2]), we get

sup ( S ITe, v(x) - T%my(x)\p> v

{em}: em€lm

for all mez, €L
4 1/p
(33) < sup / go]’R(s)< Z |Te, v(x) — Tem\/EV($)|p> ds
{em}:em€lm J1/4 meZ
for all meZ
4
= PRI 0 T ds £ 0 0 Thvte)

Finally, applying (33]) to (30) yields
(V5 o Thv(z) S (Vo Tp)v(a) + (V5 o T)v(x),
and Theorem [B.1](7i) follows by Theorems B.2)(z7) and B.I7). O

Proof of Theorem [B.1(i). We have to prove that there exists some constant C' > 0 such that

(34) p({z e RY - (Vf oT)v(z) > A}) < % 1]
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for all v € M(R?) and all A > 0. The proof of (34) combines the Calderén-Zygmund decom-
position developed in Lemma 2] the corona decomposition of i described in Subsection 23]
and other standard techniques for proving variational inequalities. We will start following
the lines of the proof of [15, Theorem 1.4], until the application of the corona decomposition.

Since V;S o T is sublinear, we can assume without loss of generality that v is a positive
measure. Let us first check that we can also assume both ¢ and v to be compactly supported.
Given v € M(R?) and M € N, set

Vpn = XB(O,2M)V'
If diam(suppu) < +oo then p is compactly supported. In case diam(suppu) = +o0o we are
going to restrict 4 to a set Ky C R such that |k, it is still uniformly rectifiable (with
constants independent of N). For this purpose, for each N € N consider the family of cubes
PN e D", i € Iy, (thus £(PYN) = 2N for all i € Iy) such that B(0,2V) N PN # . We
denote
Ky = U PiN and  un = plry-
icly
It is immediate to check that p|p~ is uniformly rectifiable for each i, N. Since Ky is a finite
union of uniformly rectifiable sets (because #I is uniformly bounded), pp is also uniformly
rectifiable, with constants independent of V.
Suppose that there exists some constant C > 0 such that

uy({z € R - (VS 0 Thupr(z) > A}) < % vl
for all A > 0, all v € M(R?) and all M, N € N. This implies that
(35) p({o € BO2Y): (VS o Thar(@) > A}) < 5 ol
for all A > 0, all v € M(R?) and all M, N € N. It is not hard to show that

Cl
(VS o Tv(z) — (V5 o Tun(a)] < BT v(R?\ B(0,2M))
for all z € B(0,2") and all M > N > 1. In particular, if M — oo then (V;)S o Tva(x) —
(Vf o T)v(z) uniformly in B(0,2Y). Since ([35) holds for vy, by assumption, we deduce that
it also holds for v. Now, by letting N — oo and using monotone convergence, ([B5) with vy,
replaced by v yields (B4]), as desired. In conclusion, for proving the theorem, we only have
to verify (B4]) when p and v have compact support. Moreover, since (34]) obviously holds for
A < 2%yl /|lpll, we can also restrict ourselves to the case A > 21 |[y| /||l
We are going to verify that we can assume (I5]), which will allows us to use (If) in the
sequel, when we pursue the Calderon-Zygmund decomposition of v with respect to p. Let
M := diam(suppu) < +oo and set ve 1= Xga\y,, (suppp)?- Lhen dist(suppve, suppu) > M.
By Chebyshev’s inequality,

p({zeR?: (VS oT)ve(z) > A}) < %/(vf o Tve(x) du(x)
(36)

© el
= gy el

For any z € suppy, ||u]| = w(B(z,M)) S M™ by the AD regularity assumption on p. Thus
B6)) yields

(37) p({o e B (U o Thela) > A}) < S el < S v

S% /\x—y\"dvc(y)du(x) <
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with C'independent of M. Note that v = v.+(v—v.) and supp(v—v,) C Ugiam(suppp) (SUPPH)-
Using that V;,S o T is sublinear and (B7) we see that, in order to prove the theorem, it is
enough to show that

w({z € R (VS o T — we)(x) > A}) < & Sl

that is, we can assume that v satisfies (I5]). In conclusion, for proving (34]), from now on we
assume that both p and v are compactly supported and they satisfy (IH]).
Let {Q;}; be the almost disjoint family of cubes of Lemma [Z1] and set  := Uj Q; and

Rj := 6Q);. Then we can write v = gu + 13, with
gp == Xpa\oV + Z bjp and v = Z l/g = Z (wjv —bjp),
J J J

where the b;’s satisfy ([II), (I2) and (I3)), and w; := xq, (>_; X0,) ' Since (@) holds, in
the sequel we can also assume that (I6]) holds.
Since V;)S o T is sublinear,

p({z eRY: (V5o T)v(z) > A})
<p({zeR?: (VS oTMg(x) > A/2}) + u({z € RY : (V5 o Tn(x) > A/2}).

We obviously have V;S oTH <V,oTH, so Theorem B.2)(7) yields that V;g o T* is bounded in
L?(p1). Note that |g| < C\ by (I0) and (I3). Hence, using (I2),

M({xGRd:(Vf‘?oTﬂ) (z) > A/2}) N)\2/’V$o7'“ 9‘2dMN>\2/‘g’2d,u
(39) NA/!g\du< ( v(R7\ Q) +Z/ ]b\du>
A((Rd\Q +Z Qj>ww

Set = U, 2Q;. By @), we have u() < ¥, 1(2Q;) S A~ 12 v(Q)) S Al We are
going to prove that

(38)

(40) p({z e RN : (VS o Tup(e) > A/2}) S I H

Then (34) follows directly from (38]), (39), (40) and the estimate ,u(ﬁ) < A7Yv|| above-
mentioned, finishing the proof of Theorem B.1I(%).

To prove (@), given = € R%\ Q we first write
a0 o Thuta) < 05 o T (Xm0 ) )+ (0 0 T) (X x93 ) o).
J J

Notice that x2r, () and xga\og, () are evaluated at the fixed point « on the right hand side.

The first term on the right hand side of (1)) is easily handled using the L?(x) boundedness
of V;)S o TH and standard estimates. More precisely, since V;)S o T is sublinear,

05 o7 Loan, (00 ) @

(42)
< Z Xor; (@) (V5 o TH)bj(x) + Z Xar, (@) (Vy o T")wj(x)
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because I/g = wjv —bju. On one hand, using Theorem B.2(4), that p(2R;) < p(R;) (by (I6))
and (12I), we get

1/2
/ <v,fo’r“>bjdug( / I(V;SOT“)bJIQdu> u(2R)V?
2R 2

j R;

S 05l 2o 2R)Y? S 16l poo oy i (R)) S v(Q5)-

On the other hand, if x € 2R; \ 2Q); then dist(z, Q;) ~ ¢(Q;). Therefore, given k € Z,

(43)

(44) B(z,27")nQ; = @ « dist(z,Q;) > 27F —= 0(Q;) > 27"

Since the ¢P-norm is not bigger than the ¢'-norm for p > 1, and since suppw; C @; and
|lwj| <1, from (@) and @) we get

(VS oT") wj ) < sup Z Z ’ €Vrn75m+1wj(x)‘

{em} k€EZ em,em+1€l)

S v(@j) > 2" S (@U@

keZ: B(z,2=*F)NQ;#£2

and therefore, using again that u(2R;) S pu(R;) = £(R;)" =~ £(Q;)" by ([18), we obtain
(45) L o 0V 0 Ty S W(@0)AQi) "R 5 (@)
Finally, applying [@3]) and ({@H]) to [#2), we conclude that
fo TS o )t
<Z/ S o TH), du+2/ VS o Ty dn S 37 0(@)) S vl
J

2R;j\2Q;

Thanks to ([#1), (48) and Chebyshev’s inequality, to prove (0] it is enough to verify that
~ v
an u({eerna: 0f o (Lm0 > a4} ) < Kl
J

Our task now is to prove ([{7)). Given x € suppp, let {€,, }mez be a non-increasing sequence
of positive numbers (which depends on z, i.e. €, = €,(x)) such that
p) 1/p

(48) (V5oT) (Z xwan @001 ) @) <2( 5 3
kEZ €m,em+1€1)

Typically, the problem of the existence of such a sequence can be avoided by defining an
auxiliary operator VS ;o T along the same lines of VS o T and requiring the supremum to
be taken over a ﬁmte set of indices I (thus the supremum is a maximum in this case). One
then proves the desired estimate for VS o T with bounds independent of I and deduces the
general result by taking the supremum over all finite sets  and using monotone convergence.
For the sake of shortness, we omit the details.

ZXRd\zRJ TerremsaVy (%)
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Define the interior and boundary sum, respectively, by

n=(Y ¥

kEZ €m,em+1€1k

-(x =

k€EZ em,em+1€l)

p> 1/p
p> 1/p

Z XRd\ZRj (x)Tfmyeerl Vg (.%')

J: RjCA(Z,€m+1,6m)

Z XRd\QRj (x)T€m7€m+l Vlg (.%')
J: RjNOA(x,€m41,6m)#D

If Rj N A(z, €mt1,€m) = @ then T, v (x) = 0, thus

€Em,Em—+1
Vo) (Zde\QRx W) @) < 2085 + )
by (48]) and the triangle inequality, and so
u({x R\ Q : (Vf o T)(ZXRd\QRj (w)ui) (x) > )\/4}>
J

<p({z e RINQ : Si(x) > M/16}) + p({z e RT\ Q : Sy(z) > A/16}).

(49)

To estimate p({z € R?\ Q Si(x) > A\/16}) we use the fact that the ¢’-norm is not
bigger than the ¢!-norm for p > 1, and that supp(vj) C R;:

Si(z) < )

MmeEZ

Z XRd\QRJ (x)T€m7€m+lyg (ﬂj)

J: R CA(Z,em+t1,€m)

< ZXRd\sz (z) Z T emir V(%) < ZXRd\ZR ‘TVb( )],
J

mEZ: A(T,€m+1,6m) DR

(50)

Recall that Vg (Rj) =0 and HugH S v(Qj) by (I2). Thus, if z; denotes the center of R;, we
have

Lo imldus [ [ 1K=y - K- )| di () du)
R7\2R; RI\2R; JR;

Z .
61) Lo fo ,x_z‘i'“ v (9) d(a)
J
S, e ) S Wl S (@)

Finally, from Chebyshev’s inequality, (50) and (5I) we conclude that
5 1 Il
52) w({z eRINQ: Six) > N/16}) <_Z/ Tl dp S 5 D v(@)) ST

R4\2R; 7

By (@9), (52]) and Chebyshev’s inequality once again we see that, in order to prove (47,
it is enough to show that

(5% [ staug .
RA\O

The proof of this estimate is much more involved than the previous ones and requires the
use of the corona decomposition of y, that is, we need to introduce the splitting D* =
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U (Wsemys S)- We denote

Tjm(z) := Xpa\2r, (2) T e Vi ().

Recall that for P € Dy, we write Ip = [27%71,27F). Since p > 2, the £P-norm is not bigger
than the ¢%-norm, and we get

SZdy < /
/gd“) b O j{:

PeB em,em+1€Ip

DD NS

SeTrs PeS

dp(x)

Z Tjm(z)

j: RjNOA(x,€m41,6m)#D

> Tjm(x)

J: RjNOA(,€m11,6m)#D

(54) 2

du(x).

emsemt1€lp
Observe that

(55) I Tj.m(@)] S €P) " Xparar, (@)1 | (A(@; mi1, m))

for all €y, €mt1 € Ip. If in addition € P\ 2R; and R; N OA(x, €my1,€m) # 9, taking into
account that €, ~ ep1 = ((P) 2 dist(z, R;) 2 > ((R;), we deduce that

(56) R; C Bp,

assuming the constant ¢; in (7)) big enough. ‘

Concerning the first term on the right hand side of (54), from (5E) and using that ||} || <
v(Q;), that the @;’s have bounded overlap and that (); C Bp for all j such that R; C Bp,
we get

>

PeB em,em+1€Ip

2
du(z)

> T ()

J: RjNOA(x,€m1,6m)#D

(57) =30 D YD SR <x,em+1,em>>)2du<x>

PeB €Em €m+1€lp_] R CBp
||V]|| v(Br)\?, oy
PEB VE R CBp PGB:SRJ'CBP

where we also used Lemma 23] in the last inequality, because B is a Carleson family.
From now on, all our efforts are devoted to estimate the second term on the right hand

side of (B4)).

Claim 3.3. Assume ¢y in ({0) is big enough, and let also a > 0 be big enough depending on
n, d, and on the AD regualrity constants of . Given Q € Topg, P € Tree(Q) and R; C Bp,
at least one of the following holds:

(i) There exists R € Tree(Q) such that R C aBp, R; C Bg and {(R;) € Ig.
(t7) There ezists R € 0Tree(Q) such that R C aBp and R; C Bg.

We postpone the proof of the preceding statement till the end of the proof of the theorem.
Thanks to this claim, given Q € Topg and P € Tree(Q) we can split

{] RjCBP}CJlUJQ,
where
Ji:={j: Rj C Bp, 3R € Tree(Q) such that R C aBp, R; C B, {(R)) € Ig},
Jy:={j: R; C Bp, 3R € 0Tree(Q) such that R C aBp, R; C Br}.
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Recall that if x € P\ 2R;, €m,€mt1 € Ip and Rj N OA(z, €mq1,€m) # @ then R; C Bp
(see (B6l)). Thus, we can decompose the second term on the right hand side of (54) using J;
and Jy as follows

2
dp()

>3

SeTrs PeS Em,€m+1elp

> T ()

J: RjNOA(x,€m41,6m)#D

(58) sy Y [.00% \ > Tjm(2)

Q€Topg PeTree(Q) P\ emem+1€Ip ' jEJ1: RjNIA(Z, €m41,€m)#D

RV > X LW

Q€cTopg PeTree(Q J€J2: RjNOA(Z €m1,6m ) F#D

2
du(z)

2
du(x).

€m,em+1€I1p

Despite that the arguments to estimate both terms on the right hand side of (58] are similar,
we will deal with them separately, due to its different nature with respect to the structure
of the corona decomposition.

Claim 3.4. Let Q, P, x, €, and €y+1 be as on the right hand side of (B68)). We have

2

> (A2, emi1, em))

JET1: RjNOA(Z €m s 1,6m)#D

9—k 1/2
VLS <@) S (A i em).

k: 2=k <0(P) JET:L(R))ED,

(59)

Given j € Ja, denote by R(j) € 0Tree(Q) some cube such that R(j) C aBp and R; C Bg;),
where a > 0 is as in Claim B.3. We have

2

> (A2, emi1, €m))

JEJo: RjNOA(Z €m s 1,6m)#D

1/4
SA2PyPu(Bp) 2 Y Z( ﬁ) [ [(Br N A2, ems1, €m))-

RedTree(Q): jeJa:
RCaBp R(_])

(60)

Again we postpone the proof of the preceding claim till the end of the proof of the theorem.
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For the case j € J; in (B8), using (53)), (B9) and (B6) we get

2
dp(z)

> Tjm(x)

QETOpg PcTree(Q /P\Q emem4+1€Ip ' jEJ1: RjNOA(T, €m1,6m)#D

<A Z Soooup)

Q€Topg PeTree(Q)

o~k 1/2 ;
/ \0 Z Z <m> Z l”b‘(A(% €m-+15€m)) du(x)

(61) €my€m+1€1p k: 2=k <¢(P) jeJi: L(R;)€el

Y Y% (%)/ S

Q€Topg PeTree(Q) k: 2=+ <¢(P JEJ1:U(Ry)€E])

9k 1/2

Y @) 3 (75) AL v@) <A
J k:¢(R;)€l, PED*: R;CBp j

27k <e(P)

In the third inequality we used that j € J; implies that R; C Bp.
Concerning the case j € Jo in (B8], by (B5) and (G0) we see that

2
dp(z)

> Tjm(x)

JjE€J2: RjNOA(T,€m11,6m)F#D

/P\ €m,em+1€I1p

1% /2
vy s (i)

Q€Topg PeTree(Q

R 1/4
X > > Z L) I(BRN Az, ems, €m)) dp(z)
P\O {(P)

€m,em+1€1p Re0Tree(Q): jng
RCaBp

e p v () s s (i

Q€Topg PeTree(Q RedTree(Q): je€Ja:
RCaBp R(j)=R

/4 1/2
< A\L/2 @ 1 v(Bp) v(BR) (R,
QEZTO:pg PE’I%:e(Q) Reaﬁés;(%):BRc Bp <£(P)> <€(P)n ) (f(R)n >

QGTOpg PcTree(Q
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where we also used in the last inequality above that HugH < v(Q;) and that the Q;’s have
bounded overlap. Since al/2b < a®/2 + v3/2 for all a,b > 0, we obtain

2
> > T
P\ €m75m+1 elp

dp(x)
j€J2: RiNIOA(T,€m+41,6m)F#D
3/2 3/2 1/4
< \1/2 v(Bp) v(Br) {(R) n
SR VPP > () ) )am) @
Q€ETopg PeTree(Q) REITree(Q): RCaBp
JR;CBRr

SA2 Yy Y v(Bp) )" FAZ Ny v(Br) 3/26(1%)”
wpy) (R ’
QETopg PeTree(Q) Q€Topg RedTree(Q)
3R CceBp SRJ'CBR

QETopg PeTree(Q

where we have set ap := Y peotvee(Q): RCaBp (¢(R)/L(P))Y*¢(R)" whenever P € Tree(Q) for
some () € Topg (otherwise, we set ap = 0). Since 9Trs is a Carleson family, we see that the
ap’s satisfy a Carleson packing condition because, for a given T" € D,

R\ V4
Yesy ¥ > (§p) e

PCT PCT Q€cTopg: PeTree(Q) RedTree(Q): RCaBp

T v B 1)

PCT RedTrs: RCaBpCaBr

1/4
< > oar Y (fp) = X unr s

RcOTrs: RCaBr PCT: RCaBp RcOTrs: RCaBr

/P\ €m,em+1€I1p

3/2
N Z( ) (ap + (P xoms(P)) S Al

PeDw

Therefore,
2

dp(z)

> Tjm(x)

JjE€J2: RiNOA(,€m11,6m)#D

(62) QETopg PcTree(Q

because the coefficients ap + ¢(P)"xs1ys(P) satisfy a Carleson packing condition and thus
we can use Lemma 2.3

Finally, (53) follows from (&4]), (57), (B8), (©I) and (©62), so Theorem B.II7) is proved

except for the claims.

Proof of Claim B3l Let @Q € Topg, P € Tree(Q) and R; C Bp. For the purpose of the
claim, we can assume that ¢(Q) > ¢(R;), otherwise we can take R = @ which fulfills (i7).
Without loss of generality, we can also assume that ¢(P) > ¢(R;) (recall that R; C Bp, so
((P) Z £(R;)). Otherwise, we replace P by a suitable ancestor from Tree(Q) with side length
comparable to £(R;), which must exists thanks to the previous assumption ¢(Q) > ¢(R;).
Let R € Tree(®) be a cube with minimal side length such that R; C Bg and ¢(R) > {(R;),
that is, £(R) < £(S) for all S € Tree(Q) with R; C Bg and E(S) > ((R;). In particular,
notice that P may coincide with R, and in any case ¢(R) < ¢(P). If {(R;) € Ig, that is
((R) > ((Rj) > L(R)/2, then R fulfills (i) if « is big enough, and we are done. On the
contrary, assume that ¢(R)/2 > ¢(R;). Since R; C Bg and R; Nsuppu # @, there exists
R’ € D* such that ¢(R') = {(R), dist(R', R) < ¢(R) and R'NR; # &. Therefore, there exists
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a son R” of R’ such that R” N R; # &, so R; C By if ¢; is big enough. By the minimality
of R, we must have R” ¢ Tree(Q), thus R € 9Tree(Q) if A > 1 in (28) is big enough, and
then (i) is fulfilled for some a big enough. O

Proof of Claim 3.4 Let us first prove (589). If j € J; then R; C Bp and, in particular,
¢(R;) S ¢(P). Thus, by Cauchy-Schwarz inequality,

2

> VL [(A(z, €ms1, ém))

JEJ1: RjNOA(,€m11,6m)#D

g\ 1/4 1/4 '
> (55) (32) X Moo

2

(63) ki 2k <4(P) jen: ((R))ElL
R;NOA(Z,em+1,6m)FED
(P2 } 2
s ¥ (5%) Y MA@ o)
k:2=k<e(P) JeEJ1: L(Rj)ET

R;NOA(T,em+t1,6m)#D

Using that |1/Z|(A(x, €m+1,€6m)) S v(Q;) and that the @;’s have bounded overlap, from the
definition of J; we see that

> RlA@ e em) S > v(Br).
(64) JEJ1:6(Rj)€ely RETree(Q): {(R)El,
R;NOA(Z,em+1,6m)F#D BRrNOA(T,em41,6m )£,
RCO&BP73RJ'CBR

If 6Q; = Rj C Bg then v(6Q;) < v(Bgr) S AMu(Br) S Au(R) by (@). From (64) we infer

> IRIA® ens1em)) S A S R
(65) jeJi: L(Rj)€EL ReTree(Q): L(R)EIL,
R;NOA(z,€m+1,6m)#D BRNOA(Z em+1,6m )7,
RCaBp, HR]'CBR

We want to show that the right hand side of (BH) can be estimated by A27%¢(P)"~1. To this
end, we can suppose that ¢(R) < ¢(P), otherwise the estimate becomes trivial because we
are already assuming 27% < ¢(P) and ¢(R) € I, (so in this last case there is only a finite
and uniformly bounded number of terms in the sum above). Suppose now that £(R) < ¢(P).
Since R C aBp then R C Up/cy(p P’ if the constant C; in the definition of V(P) is big
enough. Thus, R C P’ for some P’ € V(P). Note that P’ € Tree(Q) because R € Tree(Q),
and so we finally get R € Tree(P’). Then, from (65) and the estimates on annuli from
Lemma [2.5] we obtain

Z |Vg|(A(CUa€m+1,€m)) SA Z Z wu(R)

(66) JeJ1: U(R;)EI, P'eV(P) ReTree(P’):4(R)EIy,
R;NOA(z,€m+1,6m)FED BRrNOA(z,€m+1,6m)#D

< 2Ry,
as desired. Finally, (59) follows from (63]) and (66l).

Let us turn our attention to (60)) now. Recall that, given j € Ja, R(j) € 0Tree(Q) denotes
some cube such that R(j) C aBp and R; C Bp;). Similarly to (63]), by Holder’s inequality
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we get
‘ 3/2
\ > WI(A( emi1, m))
jE€Ja:
R;NOA(T,em+t1,6m)#D
‘ 3/2
< Z Z ‘Vg’(BRmA(xame?Em))
(67) REOTree(Q): RCaBp j€Ja: R(j)=R
BrNOA(z,em+1,6m)#D
o(P) 1/4 ' 3/2
D SN C R D SEND D T )

RedTree(Q): j€J2: R(j)=R
RCaBp,{(R)=2"F
BRrNOA(z,€m+1,6m)#D

k:2-F<e(P)

For the cubes R = R(j) in the last sum above, note that R; C Bg (see the definition of J3).
So, as we did before @8), v(Br) < Au(Br) S Au(R) by [@). Using that ||| < v(Q;), that
the @);’s have bounded overlap and that v(Br) S Au(Br), we deduce that

Z Z ’Vg‘(BRmA(x7€m+l7€m))

REOTree(Q): RCaBp,L(R)=2"F j€J2: R(j)=R
BrNOA(z,€m+1,6m)F#D

DS >, v@)s ), wBr)

(68) Re0Tree(Q): jeJ2: R(j)=R Re0Tree(Q):
RCaBp,l(R)=2"F RCaBp,(R)=2"F
BRﬂaA(:B,em+1,€m)75® BRﬂaA(:B,em+1,€m)75®
<A > p(R).

R€OTree(Q): RCaBp, L(R)=2"F
BRrNOA(z, €m+1,6m)#D

As we did in the case of Ji, now we want to show that the last term above can be estimated
by A27*¢(P)"~!. We argue similarly to what we did before (G8]). If R is as in the right hand
side of the last inequality in (68]), since R C aBp we have {(R) < ¢(P), and thus we can
assume ¢(R) < {(P) (otherwise the estimate that we want to show becomes trivial). Since
R C aBp then R C Upicy(p P’ if the constant Cy in the definition of V(P) is big enough.
Thus, R C P’ for some P’ € V(P) and R € Tree(P’) (recall that R € 9Tree(Q) implies
R € Tree(Q)). Then, from (68]) and the estimates on annuli from Lemma 2.5 we obtain

> S IBROAE enirem)
Re0Tree(Q): RCaBp,{(R)=2"* jeJa2: R(j)=R
BRﬂaA(l‘,em+1,em);£®
SA Y > p(R) S A27Fe(Pyt,

P'eV(P) R€eTree(P'):4(R)EIL,
BrNOA(z,em+1,6m)#D

(69)

as desired.
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Combining ([€9) with (67]) we get

3/2

‘ Z |Vg|(A(x’€m+la€m))
JjEJ2:
RiNOA(z,em+y1,6m)#D

1/2 2 27k \ V1 j
q SNt Y (F5) Y W0 A en))

k:2=k<p(P) RedTree(Q): JE€Ja:
RCaBp,0(R)=2"" R(j)=R
BRﬂaA(I,Em+1,Em);£®

/4
S )\1/2€(P)n/2 Z Z (%) |I/g|(BR N A($,€m+1,5m))-

Re0Tree(Q): RCaBp je€J2: R(j)=R

Finally, (60) is a consequence of (0] and the trivial estimate

Z |Vlj) (A(x’ €m+1, Em)) 5 I/(BP),
jEJQ:ijaA(xvﬂm*FlvEm)?é@

which holds if ¢; in (7)) is big enough because HugH < v(Q;) and the @;’s have bounded
overlap.
O

4. V,oTH: LP(u) — LP(u) IS A BOUNDED OPERATOR FOR 1 < p < 00

Under the assumptions of Theorem [Tl the boundedness of V, o T# in LP(u) for 1 < p < 2
follows by interpolation, taking into account that it is bounded in L?(x) and from L!(u) to
LY*°(11), by Theorem and Theorem Bl So it only remains to prove the boundedness in
LP(p) for 2 < p < co. This task is carried out in the next theorem.

Theorem 4.1. Let u be a uniformly n-rectifiable measure in R%. Let K be an odd kernel
satisfying (@) and consider the operator T' associated to K defined in ([2). Then V,o TH is
a bounded operator in LP(u) for all p > 2 and all 2 < p < 0.

Proof. We are going to prove that if y is a uniformly n-rectifiable measure then ./\/lg)H oV,oT#

is a bounded operator in LP(u) for all 2 < p < oo, where M%# denotes the dyadic sharp
maximal function, that is,

Mo, f(x)= sup  mpl|f—mpf|.

DeDH:xeD

The theorem will then follow from the fact that the maximal operator defined by Mpu f ()

SUP pepi. yep Mp| f| can be controlled in LP(x) norm by Mb,. That is, [Mopr fllrey S

D)
”Mg),uf”[,?(u) (see [7, Lemma 6.9], for example).

Fix f € LP(u) and z¢ € suppp. Then,
(71) (M oV, 0 T")f(mo) =  sup  mp|(V, 0 TH)f —mp((V, o T*)f)|-

DeDH:xogeD
Given D € D* such that xg € D, we decompose f = f1+ fo with f1 := fxsp and fo := f— f1.
Since V, o T# is sublinear and positive, |(V, o TH)f — (V, 0 T#)fa| < (V, 0 TH)f1 and so
(Voo TH)f—c| < (Voo TH)fr+|(V,oTH) f2—c for all ¢ € R. If we take ¢ = (V,0TH) fa(zp),
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where zp denotes the center of D (we may assume that ¢ < 00), then

mp|(Vp o T") f=mp((V, 0 T*)[)]
< QmD’(Vp oTH)f — (Vp o TH) fa(zp)|
Smp(Vpo TH) fr +mp|(Vp o TH) fo = (V, 0 TH) fa(zD)]
=11 + 5.

(72)

A good estimate for I; can be easily derived using Cauchy-Schwarz’s inequality, Theorem
B2l7) and that u is n-AD regular. More precisely,

(™) < (@ | I(VpOT“)ﬁIQdu)l/z < (@ /| |f|2dﬂ>1/2 < Mo (a0).

The estimate of Is is much more involved. Given x € D, by the triangle inequality we
have

(Vo o TH) fa(x) = (Vp o T") fa(2D)|

(74) - (Z

{Em }mEZ meZ

1/p

p
T8 o) = Th e olen)|)

where the supremum is taken over all non-increasing sequences {€,, } mez of positive numbers
€m- In order to estimate the right hand side of (4], take one of such sequences {€,, }mez
and note that, by the triangle inequality again,

Tl iy Fo@) =T Foe0)|
< / Xemaren (2 = D) 1K (@ — 1) = K(2p — )| | fo ()] dpw)

+ / X(ems1,em] (12 = YD) = X(emi1.6m] (12D = D[ K (2D = 9)]| f2(y)] dpa(y)
= G + by

Since z and zp belong to D and f2 vanishes in 3D, we can assume that €41 > ¢(D) in the
definition of a,, and b,, for all m € Z.

Let us first look at the sum relative to the a,,’s for m € Z. Using that p > 1, the regularity
of the kernel K, that fs vanishes in 3D, and that p is n-AD regular, for each x € D we have

1/p
(Sab) =X [ ) Ko IR

meEZ meZ
|f2(v)]
76 < oD AWl
(76) S )mze:z/em+1<|my|§€m ly — zp|ntl 1(y)
<) [ L) < M) < Maf(a0)
SUD) oo Ty—eplt W) = < |

where we also used Cauchy-Schwarz’s inequality in the last estimate above.
The sum relative to the b,,’s for m € Z requires a more delicate analysis. We split
7. = J1 U Jo, where
Jii={meZ:en—eni1>LD)},
Jy:={me€Z:€en—ems1 <lD)}.
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To shorten notation, we also set
Al (2p) := A(zp,em — €(D), e +£(D)) and A2 (z) := A(z, €mi1, €m).

Since we are assuming €41 > ¢(D) for all m € Z, both Al (zp) and A}, (2p) are well
defined for all m € J;. Moreover, since |z — zp| < (D) for all x € D, we easily get

(77) Xemrrieml (12 =) = Xeemiriem) (12D = D] < Xt zp) T Xa1 2y for all m € J1,
|X(6m+1,em}(|x - |) - X(em+1,em}(|2D - |)| < XA2,(zp) + X A2 (z) for all m € Js.

We are going to split the sum associated with the b,,’s in terms of J; and J5, using in each
case the corresponding estimate from (7).
Concerning the sum over Jy, since p > 2, ([T7) yields

(2 b&)w < ( >(/ G —y)!\fQ(y)!du(y)>2) "

meJy meJy
(78) o 1/2
+ <w;1 (/A}W(ZD |K (2D —y)!\fa(y)!du(y)> >
=: 51 + 5.

The arguments for estimating S; and Sy are almost the same, so we will only give the details
for S1. Since fo vanishes in 3D,

=2 2 (/ K (zp = )| ov)| diy ) <y Z!!fz!u 2n2D>>|.

k€eZ medy: QEDH: meJy:

Our task now is to bound |(|f2|p) (A}n(zD)){Q. This is done by splitting the annulus
Al (zp), whose width equals 2¢(D), into disjoint cubes P € D such that ¢(P) = ¢(D) and
grouping them properly in terms of the corona decomposition, in order to be able to apply
Carleson’s embedding theorem later. More precisely, for ¢ O D and €, € Ip, we have

AL o) supp( € | RC( U U )p> ( U U(R>P>'

ReV(Q) ReV(Q) PeTree(R ReV(Q) PeStp
{(P)=L(D) LP)>4(D)

Recall also that the number of cubes in V(@) is bounded independently of Q). Therefore,

2

(o) (AL o) P s S0

ReV(Q)

p>

ReV(Q)

Y (flw) (AL (p)NP)

PcTree(R):
L(P)=¢(D)

> (f2lw) (Al (zp) N P)

PeStp(R):
{(P)=e(D)

2
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The first term on the right hand side of (80) can be easily estimated using Cauchy-Schwarz’s
inequality, that the P’s such that ¢(P) = E(D) are disjoint and Lemma That is,

S (hol) (A (oo ' > 2

XA}n(zD)ﬂP> | f2| dpn

PcTree(R): PeTree (R):
({(P)=£(D) £{(P)=t(D)
- (X s@hennn))( X (ko henn) )
PeTree(R): PeTree(R):
£(P)=£(D) {(P)=£(D)
SUDNR™ Y (Iflu) (AL(zp) N P).
PcTree(R):
£{(P)=t(D)

The second term on the right hand side of (80) is estimated similarly but, since the cubes
in Stp(R) may have different side length, we need to introduce an auxiliary splitting of
the sum in terms of the side length. This extra splitting, combined with an application of
Cauchy-Schwarz inequality yields

2 ; 2
97 /4
> (falw) (A (zp) N P) ZW > (If2l1) (A% (2p) N P)
PeStp(R): j=0 PeStp(R): £(P)>£4(D)
L(P)=£(D) U(P)=2"74(R)

2

522]’/2

(82) >0

3 (|f2l1) (A} (2p) N P)
PeStp(R): ¢(P)>¢(D)
L(P)=2"74(R)

<2 X whennn) )X (8P (hinp) ).

>0 PeStp(R): PeStp(R):
{(P)>£(D) ({(P)>L(D)
L(P)=2"74(R) L(P)=2"74(R)

where we also used in the last inequality above that the P’s which belong to Stp(R) are
disjoint and Cauchy-Schwarz’s inequality. Since the width of the annulus Al (zp) equals
20(D), if P € Stp(R) is such that ¢(P) = 277¢(R) > ¢(D) and A}, (zp) N P # @ then

P C A(zp, €m — C279U(R), €, + C277U(R))
for some C' > 0 depending only on n, d and p. Hence, Lemma gives
S a(ALGn)nP) S2IR)

PeStp(R): L(P)>4(D)
L(P)=2"74(R)

which plugged into (82)) yields

2
Yo (flw) (Aneo)nP) | £ 27720R)" Y (Iflu) (AL(zp) N P)

PeStp(R): Jj=0 PeStp(R):
{(P)>4(D) {P)>((D)
( ((P)=2774(R)

1/2
<y ((—P)) {R)" (1ol 1) (AL (2p) 1 P)

((R)
PeStp(R)
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Applying (8I)) and (83]) to (80), we see that

(D)

(| falp) (A, S DD @AR)" (If2°1) (A (2p) N P)
REV(Q) PcTree(R):
(84) ¢{P)= Z(D)

1/2
DY (%) UR)™ (| fol*1) (A (20) N P) .

ReV(Q) PeStp(R)

Now that we have estimated ‘(\fg\,u) (A}, (2p)) ? we can derive a bound for S2. Since
Q) =L(R) for all R € V(Q), ([9) and (84]) imply that

<Y Y Y% %E(R)"(Ilezﬂ)(%(zp)ﬂl’)

QeDH: meJy: ReEV(Q) PeTree(R):
QDD em€lq £(P)=£(D)

P S Y S (T e ) (a4 Gorn ).

QEDH: mEJ1 ReV(Q) PeStp(R)
Q:)D em€l Q

Note that, for m € Ji, each (closed) annulus Al (2p) overlaps only with the two neigh-
bors AL 1 (2p), Ay, 1(2p) at the boundaries because {€, }mez is a non-increasing sequence.
Therefore, from (85) we deduce that

£y Y% %am—"(\fﬂ?u)(m

QeDH: ReV(Q) PeTree(R):
QoD «(P)=((D)

1/2
fX Y S (im) @R,

QQGD“ ReV(Q) PeStp(R

For the first term on the right hand side of (8], using that the P’s in D* such that ¢(P) =
¢(D) are disjoint, that p is n-AD regular and that xg € D, we have

{(D (D) f2
VDV L CICES YY) D ®

QeD*: REV(Q) PeTree(R): QeD*: REV(Q
@>D L(P)=¢(D) @>D
87 (D)
(&7) Z Z Q) M2f (z0)?
QGD“ ReV(Q
Ssz(xo) :

In order to estimate the second term on the right hand side of (8], note that R € V(Q) if
and only if @ € V(R) and that if D C @ and R € V(Q) then D C 3R, thus by changing the

order of summation and using that the number of cubes in V(R) is bounded independently
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of R and that D" = (Jger,, Tree(S) we see that

1/2
> Y X (GF) ww sk @

QGD” ReV(Q) PeStp(R)
oD

1/2
<Y YT (%) (R (112P) (P)

éz}%w QEV(R) PeStp(R)

1/2
X X% (i) @ 0aH®

S€Top ReTree(S): PEStp(R

3RDD
SE S AR e 5w
SeTop PeStp(S ReTree(S):
3RDDUP

where we also used in the last inequality above that, for S € Top, if P € Stp(R) for some
R € Tree(S) then P € Stp(S) and P C R. Moreover, denoting

D(P, D) := ((P) + dist(P, D) + ¢(D),

we have

Yo URTTIES Y > (2'D(P, D))" 1/?
]9 ReTree(S): JEZ ReTree(S): 3BRDDUP,
(89) 3RDDUP 27 D(P,D)<£(R)<27t1D(P,D)

S D(P, D)—n—l/Q7

because the number of cubes R € D* such that 3R D> DU P and 2/D(P,D) < /(R) <
27+1D(P, D) is bounded independently of j € Z, and the statements “3R D D U P” and
“2ID(P,D) < (R) < 271 D(P, D)” are compatible each other only if j > jq for some jo € Z
which only depends on d, n and p. Plugging (89) into (88]), we get

1/2
S Y Y (fm) @ sko@

Qe’D“ ReV(Q) PcStp(R)

(90)
(P) \""* (1f2lw) (P)
S;%p Pe%;; < ) E(P)" .
Finally, by (&7), (@0)), and (86]), we conclude that
n+1/2
(91) StSMaf(xo)®+ > ), <%) mp (1f1?) -

S€Top PeStp(S)

As we pointed out before, the same estimate holds for S7, because the only properties
that we used from the annuli Al (zp)’s are that they have bounded overlap for m € Jy, that
their width is comparable to (D), that they are centered in some point lying in D C @ and
that they have diameter comparable to ¢(Q). Of course, these properties are also shared by
the annuli Al +1(2p)’s. Actually, for estimating So, one can argue exactly as in the case of
S1 but replacing {m € Jy : €, € Ig} by {m € J1 : €11 € Ig} in the involved arguments.
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Therefore, by (@1]), the analogous estimate for S, and (78]), we see that

(92) <ben>1/p<M2fmo <Z ) ( )>n+1/2mp(|f|2>>l/2-

meJy SeTop PeStp(S)

We now deal with the sum relative to the b,,’s for m € Js. The estimates are essentially as
in the case of m € Ji, but we include the sketch of the arguments for the reader’s convenience.

Since p > 2, (1) yields

< ) ba> "o (n; ( / L IRG —y)llfz(y)ldu(y)>2>l/2

medJda
(93) A\
+ <W§2 (/Am) |K (zp —y)Hfz(y)\du(y)> )
=: 53 + 54-

The arguments to estimate S3 and S4 are almost the same, so we will only give the details
for S3. Since fo vanishes in 3D,

o1) SE=2 Z(/ K (zp o)l fa(w)| duly ) sy Mt 2nzD>>‘.

k€Z meJa: QEDH: meJa:
em€l}, QDD em€lg

Once again, our task now is to estimate |(|f2|,u) (A2,(zp)) |2. As before, this is done by
splitting the annulus A2, (zp), whose width is €,, — €41, in disjoint cubes P € D* such that
€m — €m+1 € Ip and grouping them properly in terms of the corona decomposition. Arguing
as in (80), we now have

(fol) (A2,0))P s S

ReV(Q)

2

ReV(Q)

2

> (flw (A%(zp) N P)

PcTree(R):
em—€m+1€lp

S (k) (A2p) N P)
PeStp(R):
L(P)>em—€m+1

2

The first term on the right hand side of (O8] can be easily estimated using Cauchy-Schwarz’s
inequality, that the P’s in Tree(R) such that €, — €41 € Ip are disjoint and Lemma
Similarly to what we did in (BI]), we now obtain

2

S (Ifelw) (A%(p) N P)

PeTree(R):
em—€m+1€lp

(96) S (em—emr)(R™ 3" (If2Ph) (A% (z0) N P)
PeTree(R):

< UDYUR)" (| fol?n) (A% (2p) N R),

where we also used in the last inequality above that €, — €,4+1 < ¢(D), because we are
assuming m € Jy. As before, the second term on the right hand side of ([@3]) is estimated
similarly to ([@6) but introducing an auxiliary splitting of the sum in terms of the side length
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of the cubes. By applying the Cauchy-Schwarz inequality, we can proceed exactly as in (82])
and (83), but replacing (D) by €, — €m+1, and then we deduce that

2

D SN UARIVNEA LYY
PeStp(R):
(97) L(P)>€em—€m+1

1/2
< ¥ (5F) w0 ) (e n ).

PeStp(R)

Combining (94]) and (@5]) with ([@6) and (@7), and using that ¢(R) = ¢(Q) for all R € V(Q)
and that, for m € Z, the closed annuli A2, (zp)’s overlap only with the neighboring annuli
because {€,, }mez is a non-increasing sequence, we conclude that

S5 Y Y LR (AR (R)

QeDH ReEV(Q)
5D

1/2
£ S (GE) sk @),

QeD*: ReV(Q) PeStp(R)
QoD

(98)

Plugging (87) and (@0) into (98)) finally yields

n+1/2
(99) S5 SMaf(m)®+ > > (%) mp (1f1%) -

SeTop PeStp(S)

Similarly to what we said below (@1]), the same estimate that we have for S3 also holds
for Sy. Therefore, applying ([@9) (and the same estimate for Sy) to ([@3]), we see that

1/p P) n+1/2 1/2
(100) ( > bfn> S Mo f(o) ( >y ( > mp (|f|2)> :
meJsa S€Top PeStp(S)

To complete the proof of the theorem it only remains to put all the estimates together
and to use standard arguments. From (70), (O2) and (I00), we see that

(Stwsrr) s+ (3 (5)" )

meZ SeTop PeStp(S)

which, by (74) and (75]), implies that
1
b= g [ 100 T2 = (V0 T) o)

< Ma f (o) (Z > < P) )n+1/2mP(|f|2))1/2-

S€Top PeStp(S)

(101)
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Finally, combining (71l) and (Z2) with (73) and (10I)), and using that (Jge,, Stp(S) C Top,
we conclude that
(102)

(M 0V 0 T#)f (10)

ot g (5, % () meom)

DeD:20€D \ geTop Pestp(S)
o(P) n+1/2 , 1/2
§M2f($0)+< Z <m> mP(’f’))
PecTop
=: Ma f(x0) + E1/2.f (20),
for all 2y € supp(p), where we denoted
(103) D(P,xo) := ¢(P) + dist(P, zo).

In Lemma [4.2] below we prove that £, /; is a bounded operator in LP(u) for all 2 < p < oo.
Assuming this for the moment, by (I02)) and the LP(u)-boundedness of My, we see that
M%H oV, o TH is also bounded in LP(u) for all 2 < p < co. Then we obtain

(Vo 0 T) Fllogny < 1Mo 0 Vo T flliogey S 1M 0V o T) flliogey S I1fllo

for all 2 < p < oo, and the theorem is proved. ([l

Lemma 4.2. Given 6 > 0, set

i (3, (w5) ")

PcTop

for f € LP(n) and x € R, where D(P,z) is defined in (I03). Then s is a bounded operator
in LP(u) for all 2 < p < co.

Proof. The proof follows by duality and Carleson’s embedding theorem. Since 2 < p < oo,
if ¢ is such that 2/p+1/g =1 then 1 < g < oo, thus

1/2 1/2
(104) e e [€srrgau
Note that
2 2 (p) \""
aos) | [Errod < S me(sP) [ (pipks) el duto)

PecTop

Integrating over dyadic annuli and using that u is n-AD regular, it is easy to check that

1 K(P) n+90
(106) 5 [ (pias)  la@lduto) S Maty) for iy P
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(here it is crucial that § > 0). Thus, by (I03), ({I06), Holder’s inequality and Carleson’s
embedding Theorem (recall that p/2 and ¢ belong to (1,00)),

' / <asf>2gdu' < S mp (IFP) mp(Mg)u(P)

PecTop
107 2/p 1/q
(1o < (X e ue)) (X metma)uce))
PecTop PecTop
SFPI zerz ) 1Ml Loy S 112019l 2o -
From (I04)) and (I07) we conclude that ||Esf|rr(u) S IfllLr(y), as wished. O

5. THE PROOF OF THEOREM [I.4]

The arguments are very similar to the ones for the proof of Theorem [I.T] and so we will
only sketch the main ideas.

When K is an odd kernel satisfying (I), one of the main ingredients of the proof of the
boundedness of V, o T from M(R?) to LV*°(u) in Section B and of V, o T* in LP(u) for
2 < p < oo in Section @ is Theorem [3.2] which ensures the boundedness of V, o T# in
L%(p) — L?(p) and of V, o T, from M(R?) to L3*°(u). The reader can easily check that
exactly the same arguments contained in Sections Bl and Ml show that if K(-,-) is a Calderén-
Zygmund kernel as in Theorem [[4] and T is the associated operator, and moreover the
following assumptions hold:

(i) VpoTH: L?(u) — L*(u) is bounded,

(i3) Vyo Ty, : M(RT) — L1*°(u) is bounded,
then V,07 : M(RY) — LY (u) and V, 0 TH : LP(u) — LP(p), 2 < p < oo, are also bounded.
That is, the same conclusions of Theorems B.1] and [£.1] hold.

Thus, by interpolation, to conclude the proof of Theorem [[.4] it just remains to check that
the conditions (i) and (ii) above hold. This is obvious in the case of condition (i) because
this is indeed one of the main assumptions of Theorem [[L4l Concerning (i), note first that
the boundedness of V, o T# in L?(u) implies that V, o 7' is also bounded in L?(p). This is
an immediate consequence of the pointwise estimate

Voo To()(@) S Vp o TH(f)(2),

which can be obtained by writing

T, (f)(a) = [ ool = 9K () ) duty)

in terms of a convex combination of functions of the form

Tt i= [ K@) @) dul).
lz—y[>0
for 6 > 0 belonging to some interval depending on € and then applying Minkowski’s integral
inequality. The arguments are quite similar to the ones in (3I)-([33]) and we omit them.
Then, basically the same arguments for the proof of Theorem 2.5 in [I7] show that the
boundedness of V,07% in L%(u) implies that V,07,, is bounded from M (R%) to L1*°(u). This
is shown in [17] for the case when K is an odd kernel satisfying ({l) and p is the Hausdorff
measure H™ on a Lipschitz graph. However, the same proof with very minor changes works
in the more general situation when K(-,-) is a kernel such as in Theorem [[4] and x is just
and n-dimensional AD-regular measure.
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