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5 HARMONIC MEASURE AND RIESZ TRANSFORM IN UNIFORM AND GENERAL

DOMAINS

MIHALIS MOURGOGLOU AND XAVIER TOLSA

ABSTRACT. LetΩ ( Rn+1 be open and letµ be some measure supported on∂Ω such thatµ(B(x, r)) ≤
C rn for all x ∈ Rn+1, r > 0. We show that if the harmonic measure inΩ satisfies some scale in-
variantA∞ type conditions with respect toµ, then then-dimensional Riesz transform

Rµf(x) =

∫
x− y

|x− y|n+1
f(y) dµ(y)

is bounded inL2(µ). We do not assume any doubling condition onµ. We also consider the particular
case whenΩ is a bounded uniform domain. To this end, we need first to obtain sharp estimates that
relate the harmonic measure and the Green function in this type of domains, which generalize classical
results by Jerison and Kenig for the well-known class of NTA domains.

1. INTRODUCTION

In this paper we study the relationship between harmonic measure in a general domainΩ ⊂ Rn+1

and theL2 boundedness of then-dimensional Riesz transform with respect to some measureµ
supported on∂Ω. We do not assume any doubling condition on the surface measure of∂Ω or on the
underlying measureµ. We also consider the particular case when the domainΩ is a uniform domain.
Further, for this type of domains we obtain sharp estimates which relate the harmonic measure and
the Green function onΩ which are of independent interest and are new in such generality, as far as
we know.

Letn ≥ 1, letΩ ( Rn+1 be an open set, and letµ be a Radon measure supported on∂Ω satisfying
the growth condition

(1.1) µ(B(x, r)) ≤ Cµ r
n for all x ∈ Rn+1 and allr > 0.

Roughly speaking, our first theorem asserts that if the harmonic measure inΩ satisfies some scale
invariantA∞ type condition with respect toµ, then the Riesz transform

Rµf(x) =

∫
x− y

|x− y|n+1
f(y) dµ(y)

is bounded inL2(µ). To state the theorem in detail, we need some additional notation and terminol-
ogy.

Given a pointp ∈ Ω, we denote byωp the harmonic measure inΩ with polep. Givena, b > 1,
we say that a ballB ⊂ Rn+1 is µ-(a, b)-doubling forµ (or just (a, b)-doubling if the measureµ is
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clear from the context) if
µ(aB) ≤ b µ(B),

whereaB stands for the ball concentric withB with radiusa times the radius ofB.
Our main result is the following:

Theorem 1.1.Givenn ≥ 1, let0 < κ < 1 be some constant small enough andcdb > 1 another con-
stant big enough, both depending only onn. LetΩ be an open set inRn+1 andµ be a Radon measure
supported on∂Ω satisfying the growth condition (1.1). Suppose that there exist ε, ε′ ∈ (0, 1) such
that for everyµ-(2, cdb)-doubling ballB centered atsuppµ with diam(B) ≤ diam(suppµ) there
exists a pointxB ∈ κB ∩ Ω such that the following holds: for any subsetE ⊂ B,

(1.2) if µ(E) ≤ ε µ(B), then ωxB (E) ≤ ε′ ωxB(B).

Then the Riesz transformRµ : L2(µ) → L2(µ) is bounded.

Let us remark that it does not matter if in the theorem the ballsB are assumed to be either open
of closed. Observe that we do not ask the polexB to be at some distance from∂Ω comparable to
diam(B). On the contrary,xB can be arbitrarily close to∂Ω. Notice also that, by taking comple-
ments, we deduce that ifµ andωxB satisfy the conditions above for a fixed(2, cdb)-doubling ballB
centered atsuppµ, then the following holds: for any subsetE ⊂ B,

if ωxB (E) < (1− ε′)ωxB (B), then µ(E) < (1− ε)µ(B).

Under the assumptions of the theorem, in the particular casewhenµ is mutually absolutely con-
tinuous with respect to the Hausdorff measureHn on a subsetE ⊂ ∂Ω, we deduce thatE is
n-rectifiable, by the Nazarov-Tolsa-Volberg theorem [NToV2]. Further, whenµ = Hn|E andE is
AD-regular, we infer thatE is uniformly rectifiable, by [NToV1], and we “essentially” reprove (by
different methods) a recent result of Hofmann and Martell [HM2]. See the next section for the no-
tions of AD-regularity and uniform rectifiability. Our theorem extends to a more general framework
some of the recent results in [HM2], where the AD-regularityof the surface measureHn|∂Ω is a
basic assumption. See Section 11 for more details about how Theorem 1.1 specializes whenµ is
AD-regular and how this is connected to the main result in [HM2]. Let us also mention that, under
the assumption that∂Ω is AD-regular, an interesting partial converse in terms of “big pieces” to the
aforementioned result from [HM2] has been obtained recently by Bortz and Hofmann in [BH].

When the measureµ is not absolutely continuous with respect to the Hausdorff measureHn,
then from theL2(µ) boundedness ofRµ we cannot deduce thatµ is n-rectifiable. However, in this
situation theL2 boundedness of the Riesz transform still provides some geometric information on
µ. This is specially clear whenn = 1, as shown in the works [To1] and [AT], for example.

We also remark that Theorem 1.1 can be considered as a local quantitative version of the main
theorem in [AHM3TV], where it is shown that if the harmonic measure and the Hausdorff measure
Hn are mutually absolutely continuous in some subsetE ⊂ ∂Ω with 0 < Hn(E) < ∞, thenE is
n-rectifiable. To prove this, it is shown in [AHM3TV] that any such setE contains another subset
F ⊂ E with Hn(F ) > 0 such thatRHn|F is bounded inL2(Hn|F ). Some of the arguments to prove
Theorem 1.1 are inspired by the techniques in [AHM3TV].

In this paper we also consider the particular case whenΩ is a bounded uniform domain inRn+1,
that is, a bounded domain satisfying the interior corkscrewand the Harnack chain conditions (see
the next section for the precise definitions). For this type of domains a variant of the preceding
theorem with the harmonic measure with respect to a fix polep holds. Now the assumption (1.2) is
replaced by a weaker (apparently) variant of the well knownA∞ condition. Letµ andσ be Radon
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measures inRn+1. For cdb > 1 and0 < ε, ε′ < 1, we writeσ ∈ Ã∞(µ, cdb, ε, ε
′) if for every

µ-(2, cdb)-doubling ballB centered atsuppµ with diam(B) ≤ diam(suppµ) the following holds:
for any subsetE ⊂ B,

(1.3) if µ(E) ≤ ε µ(B), then σ(E) ≤ ε′ σ(B).

It is easy to check that ifσ ∈ Ã∞(µ, cdb, ε, ε
′), thenµ andσ are mutually absolutely continuous on

suppµ. The conditionσ ∈ Ã∞(µ, cdb, ε, ε
′) can be considered as a quantitative version of this fact.

Then we have:

Theorem 1.2. Let n ≥ 1, Ω be a bounded uniform domain inRn+1 andµ be a Radon measure
supported on∂Ω satisfying the growth condition (1.1). Letcdb > 1 be some constant big enough
depending only onn and let0 < ε, ε′ < 1. Let p ∈ Ω and suppose thatωp ∈ Ã∞(µ, cdb, ε, ε

′).
Then the Riesz transformRµ : L2(µ) → L2(µ) is bounded.

Analogously to Theorem 1.1, whenµ coincides withHn|∂Ω and is AD-regular, by [NToV1]
it follows that ∂Ω is uniformly rectifiable (see Section 2 for the definition). This corollary was
previously obtained by Hofmann, Martell and Uriarte-Tuero[HMU] by quite different arguments.
Further, we remark that in this case the converse statement is also true, by another theorem due
to Hofmann and Martell [HM1]. An alternative argument for this converse implication appears in
the recent work [AHMNT], where it is shown that any uniform domain with uniformly rectifiable
boundary is an NTA domain and then, by a well-known result of David and Jerison [DJ],ωp is an
A∞(Hn|∂Ω) weight. So notice that for a bounded uniform domain whose boundary is AD-regular,
the following nice characterization holds:

∂Ω is uniformlyn-rectifiable if and only ifωp is anA∞(Hn|∂Ω) weight.

Theorem 1.2 follows from Theorem 1.1 and the following technical result, which may be of
independent interest.

Theorem 1.3. Letn ≥ 1, Ω be a uniform domain inRn+1 and letB be a ball centered at∂Ω. Let
p1, p2 ∈ Ω such thatdist(pi, B∩∂Ω) ≥ c−1

0 r(B) for i = 1, 2. Then, for any Borel setE ⊂ B∩∂Ω,

ωp1(E)

ωp1(B)
≈
ωp2(E)

ωp2(B)
,

with the implicit constant depending only onc0 and the uniform behavior ofΩ.

This result is already known to hold for the class of NTA domains introduced by Jerison and
Kenig [JK] and also for the uniform domains satisfying the capacity density condition of Aikawa
[Ai2]. However it seems to be new for the case of arbitrary uniform domains. To prove Theorem
1.3 we study first the relationship between harmonic measureand Green’s function in this type of
domains. In particular, in the casen ≥ 2 we show that ifB is a ball with radiusr centered at∂Ω
andxB ∈ Ω is a corkscrew point forB (see Section 2 for the precise definition), then

ωx(B) ≈ ωxB(B) rn−1G(x, xB) for all x ∈ Ω\2B.

If Ω is an NTA domain or a uniform domain satisfying the capacity density condition, thenωxB (B) ≈
1 and the preceding estimate reduces to well known results duerespectively to Jerison and Kenig
[JK] and to Aikawa [Ai2].

The plan of the paper is the following. In Section 2 some notation and terminology is introduced.
Section 3 reviews some auxiliary results regarding harmonic measure, most of them well known in



4 MIHALIS MOURGOGLOU AND XAVIER TOLSA

the area. Sections 4-9 are devoted to the proof of Theorem 1.1. The main step consists in proving the
Main Lemma 4.1, stated in Section 4. Some of the arguments to prove this (specially the ones for the
Key Lemma 7.1 ) are inspired by similar techniques from [AHM3TV]. The proof of Theorem 1.1
is completed in Section 9 by means of the Main Lemma 4.1 and a corona type decomposition valid
for non-doubling measures. Some analogous corona type decompositions have already appeared in
works such as [To1] and [AT].

Section 10 is devoted to the study of harmonic measure on uniform domains and the application
of the obtained results (such as Theorem 1.3) to the proof of Theorem 1.2. A basic ingredient for our
results on harmonic measure in these domains is the boundaryHarnack principle of Aikawa [Ai1].
Finally, Section 11 deals with the situation whenµ is assumed to be AD-regular.

Acknowledgement. We would like to thank Jonas Azzam for very helpful discussions in con-
nection with this paper.

2. NOTATION AND PRELIMINARIES

2.1. Generalities. We will write a . b if there isC > 0 so thata ≤ Cb anda .t b if the constant
C depends on the parametert. We writea ≈ b to meana . b . a and definea ≈t b similarly.

We denote the open ball of radiusr centered atx byB(x, r). For a ballB = B(x, r) andδ > 0
we write r(B) for its radius andδB = B(x, δr). We letUε(A) to be theε-neighborhood of a set
A ⊂ Rn+1.

2.2. Measures and Riesz transforms.The Lebesgue measure of a setA ⊂ Rn+1 is denoted by
m(A). Given0 < δ ≤ ∞, we set

Hn
δ (A) = inf

{∑
i diam(Ai)

n : Ai ⊂ Rn+1, diam(Ai) ≤ δ, A ⊂
⋃

iAi

}
.

We define then-dimensional Hausdorff measureas

Hn(A) = lim
δ↓0

Hn
δ (A)

and then-dimensional Hausdorff contentasHn
∞(A).

Given a signed Radon measureν in Rn+1 we consider then-dimensional Riesz transform

Rν(x) =

∫
x− y

|x− y|n+1
dν(y),

whenever the integral makes sense. Forε > 0, its ε-truncated version is given by

Rεν(x) =

∫

|x−y|>ε

x− y

|x− y|n+1
dν(y).

For a positive Radon measureµ and a functionf ∈ L1
loc(µ), we set

Rµf ≡ R(f µ), Rµ,εf ≡ Rε(f µ).

We say that the Riesz transformRµ is bounded inL2(µ) if the truncated operatorsRµ,ε : L
2(µ) →

L2(µ) are bounded uniformly onε > 0.
For δ ≥ 0 we set

R∗,δν(x) = sup
ε>δ

|Rεν(x)|.
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We also consider the maximal operator

Mn
δ ν(x) = sup

r>δ

|ν|(B(x, r))

rn
,

In the caseδ = 0 we writeR∗ν(x) := R∗,0ν(x) andMnν(x) :=Mn
0 ν(x).

2.3. Rectifiability. A setE ⊂ Rd is calledn-rectifiable if there are Lipschitz mapsfi : Rn → Rd,
i = 1, 2, . . ., such that

(2.1) Hn

(
E \

⋃

i

fi(R
n)

)
= 0,

whereHn stands for then-dimensional Hausdorff measure. Also, one says that a Radonmeasureµ
onRd is n-rectifiable ifµ vanishes out of ann-rectifiable setE ⊂ Rd and moreoverµ is absolutely
continuous with respect toHn|E .

A measureµ is calledn-AD-regular (or just AD-regular or Ahlfors-David regular)if there exists
some constantc > 0 such that

c−1rn ≤ µ(B(x, r)) ≤ c rn for all x ∈ supp(µ) and0 < r ≤ diam(supp(µ)).

A measureµ is uniformly n-rectifiable if it isn-AD-regular and there existθ,M > 0 such that
for all x ∈ supp(µ) and allr > 0 there is a Lipschitz mappingg from the ballBn(0, r) in Rn toRd

with Lip(g) ≤M such that

µ(B(x, r) ∩ g(Bn(0, r))) ≥ θrn.

In the casen = 1, µ is uniformly 1-rectifiable if and only ifsupp(µ) is contained in a rectifiable
curveΓ in Rd such that the arc length measure onΓ is 1-AD-regular.

A setE ⊂ Rd is calledn-AD-regular if Hn|E is n-AD-regular, and it is called uniformlyn-
rectifiable ifHn|E is uniformlyn-rectifiable.

2.4. Uniform and NTA domains. Following [JK], we say that an open setΩ ⊂ Rn+1 satisfies
the “corkscrew condition” if there exists some constantc > 0 such that for allξ ∈ ∂Ω and all
0 < r < diam(∂Ω) there is a ballB(x, cr) ⊂ B(ξ, r) ∩ Ω. The pointx is called a “Corkscrew
point” relative to the ballB(ξ, r).

Again as in [JK], we say thatΩ satisfies the Harnack Chain condition if there is a constantc such
that for everyρ > 0, Λ ≥ 1, and every pair of pointsx1, x2 ∈ Ω with dist(xi, ∂Ω) ≥ ρ for i = 1, 2
and|x1−x2| < Λρ, there is a chain of open ballsB1, . . . , BN ⊂ Ω, withN ≤ C(Λ), with x1 ∈ B1,
x2 ∈ BN , Bk ∩ Bk+1 6= ∅ anddist(Bk, ∂Ω) ≈c diam(Bk) for all k. The preceding chain of balls
is called a “Harnack chain”.

A domainΩ ⊂ Rn+1 is called uniform if it satisfies the corkscrew and the Harnack chain con-
ditions. On the other hand,Ω is uniform and the exterior ofΩ is non-empty and also satisfies the
corkscrew condition, thenΩ is called NTA (which stands for “non-tangentially accessible”).

3. SOME GENERAL ESTIMATES CONCERNING HARMONIC MEASURE

The following is a classical result due Bourgain. For the proof of this in the precise way it is
stated below, see [AMT] or [AHM3TV].



6 MIHALIS MOURGOGLOU AND XAVIER TOLSA

Lemma 3.1. There isδ0 ∈ (0, 1) depending only onn ≥ 1 so that the following holds for0 < δ ≤
δ0. LetΩ ( Rn+1 be a domain,ξ ∈ ∂Ω, r > 0,B = B(ξ, r). For all s > n− 1 we have

ωx
Ω(B) &s

Hs
∞(∂Ω ∩ δB)

(δr)s
for all x ∈ δB ∩ Ω.

Remark 3.2. If µ is some measure supported on∂Ω such thatµ(B(x, r)) ≤ C rn, from the preced-
ing lemma we deduce that

(3.1) ωx
Ω(B) &

µ(∂Ω ∩ δB)

(δr)n
for all x ∈ δB ∩ Ω.

For a Greenian open set, we may write the Green function as follows (see [Hel, Lemma 4.5.1]):

(3.2) G(x, y) = E(x− y)−

∫

∂Ω
E(x− z) dωy(z), for x, y ∈ Ω, x 6= y,

whereE denotes the fundamental solution of Laplace’s equation inRn+1, so thatE(x) = cn |x|
1−n

for n ≥ 2, andE(x) = −c1 log |x| for n = 1, c1, cn > 0.
Forx ∈ Rn+1 \Ω andy ∈ Ω, we will also set

(3.3) G(x, y) = 0.

The next result is proved in [AHM3TV] too.

Lemma 3.3. LetΩ be a Greenian domain and lety ∈ Ω. Form-almost allx ∈ Ωc we have

(3.4) E(x− y)−

∫

∂Ω
E(x− z) dωy(z) = 0.

Remark 3.4. As a corollary of the preceding lemma we deduce that

G(x, y) = E(x− y)−

∫

∂Ω
E(x− z) dωy(z) for m-a.e.x ∈ Rn+1 and ally ∈ Ω.

We will also need the following auxiliary result, which follows by standard arguments involving
the maximum principle. For the proof, see [HMMTV] or [AHM3TV].

Lemma 3.5. Let n ≥ 2 andΩ ⊂ Rn+1 be a bounded open connected set. LetB = B(x, r) be a
closed ball withx ∈ ∂Ω and0 < r < diam(∂Ω). Then, for alla > 0,

(3.5) ωx(aB) & inf
z∈2B∩Ω

ωz
Ω(aB) rn−1G(x, y) for all x ∈ Ω\2B andy ∈ B ∩ Ω,

with the implicit constant independent ofa.

4. THE MAIN LEMMA

Given a fixed Radon measureµ, we say that a ballB hasC1-thin boundary (or just thin boundary)
if

(4.1) µ
(
{x ∈ 2B : dist(x, ∂B) ≤ t r(B)}

)
≤ C1 t µ(2B) for all t ∈ (0, 1).
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Main Lemma 4.1. Let n ≥ 1, Ω be an open set inRn+1 andµ be a Radon measure supported
on ∂Ω and such thatµ(B(x, r)) ≤ Cµ r

n, for everyx ∈ ∂Ω and r > 0. For someC1, C2 ≥ 1,
letB ⊂ Rn+1 be a ball withC1-thin boundary centered atsuppµ such thatµ(2B) ≤ C2 µ(

δ0
2 B),

whereδ0 is the constant in Lemma 3.1. Suppose that there existxB ∈ δ0
2 B ∩ Ω andε, ε′ ∈ (0, 1)

such that for any subsetE ⊂ B,

(4.2) if µ(E) ≤ ε µ(B), then ωxB(E) ≤ ε′ ωxB (B).

Then, for everyη ∈ (0, 1
10 ), one of the following alternatives holds:

(i) Either
µ(B(xB , η r(B))) ≥ τ µ(B),

whereτ is some positive constant depending onCµ, ε, ε′, C1 andC2 (but not onη); or

(ii) there exists some subsetG ⊂ B with µ(G) ≥ θµ(B), θ > 0, such that the Riesz transform
Rµ|G : L2(µ|G) → L2(µ|G) is bounded. The constantθ and theL2(µ|G) norm depend only
onCµ, ε, ε′, C1, C2, andη.

From now on, we assume that the constantκ from Theorem 1.1 is

κ =
δ0
2
.

The first step for the proof of the Main Lemma is the following.

Lemma 4.2. LetΩ, µ, andB be as in the Main Lemma 4.1. Letλ = 1− ε
2C1C2

. The ballB0 = λB

is µ-(2, 2C2)-doubling,ωxB -(λ−1, (1 − ε)−1)-doubling, and satisfies the following: for any subset
E ⊂ B0,

(4.3) if µ(E) ≤
ε

2
µ(B0), then ωxB (E) ≤ ε′ ωxB(B0).

Note that in the preceding lemma, the pole for harmonic measure isxB, the same as for the ball
B. Observe also thatλ ∈ (1/2, 1) and thus

1

2
B ⊂ B0 ⊂ B.

Sinceµ(B) ≤ µ(2B) ≤ C2 µ(
δ0
2 B) andδ0 ≤ 1, we have

(4.4) µ(B) ≤ C2 µ(B0).

Note also that, by taking complements, the assertion (4.3) implies that

(4.5) if ωxB (E) < (1− ε′)ωxB (B0), then µ(E) < (1− ε/2)µ(B0).

Proof of Lemma 4.2.From the thin boundary property and the doubling condition,we deduce that

(4.6) µ(B \ λB) ≤ C1(1− λ)µ(2B) ≤ C1C2 (1− λ)µ(B) =
ε

2
µ(B).

This implies that

µ(λB) = µ(B)− µ(B \ λB) ≥
(
1−

ε

2

)
µ(B) ≥

1− ε
2

C2
µ(2B) ≥

1− ε
2

C2
µ(2λB),

and since
1− ε

2

C2
≥ 1

2C2
,B0 = λB is (2, 2C2)-doubling.
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From (4.6) and (4.2) we deduce that

ωxB(B \ λB) ≤ ε′ ωxB(B) = ε′ ωxB (B \ λB) + ε′ ωxB (λB).

Thus,

ωxB (B \ λB) ≤
ε′

1− ε′
ωxB(λB),

and so

ωxB(B) ≤ ωxB(λB) +
ε′

1− ε′
ωxB(λB) =

1

1− ε′
ωxB(λB).

In other words,B0 = λB is ωxB -(λ−1, (1− ε)−1)-doubling.
To prove that forE ⊂ B0 the condition (4.3) holds, consider the auxiliary set

Ẽ = E ∪ (B \ λB).

Using (4.6), we deduce that

µ(Ẽ) = µ(E) + µ(B \ λB) ≤
ε

2
µ(B) +

ε

2
µ(B) = ε µ(B).

So from the condition (4.2) we infer that

ωxB(Ẽ) ≤ ε′ ωxB (B),

which is equivalent to saying that

ωxB(E) + ωxB (B \ λB) ≤ ε′ ωxB (λB) + ε′ ωxB(B \ λB).

This implies that

ωxB (E) ≤ ε′ ωxB(λB),

as wished. �

Lemma 4.3. We have

(4.7) ωxB(B0) &
µ(B0)

r(B0)n
.

Proof. By (3.1) we have

ωx(B0) &
µ(δ0B0)

(δ0r)n
for all x ∈ δ0B0 ∩ Ω.

So (4.7) holds becausexB ∈ δ0
2 B ⊂ δ0B0 (sinceB ⊂ 2B0) and

µ(B0) ≤ µ(B) ≤ C2 µ(
δ0
2 B) ≤ C2 µ(δ0B0).

�
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5. THE DYADIC LATTICE OF DAVID AND MATTILA

Now we will consider the dyadic lattice of cubes with small boundaries of David-Mattila associ-
ated with a Radon measureσ. This lattice has been constructed in [DM, Theorem 3.2]. Itsproperties
are summarized in the next lemma.

Lemma 5.1(David, Mattila). Let σ be a compactly supported Radon measure inRn+1. Consider
two constantsC0 > 1 andA0 > 5000C0 and denoteW = suppσ. Then there exists a sequence of
partitions ofW into Borel subsetsQ,Q ∈ Dσ,k, with the following properties:

• For each integerk ≥ 0, W is the disjoint union of the “cubes”Q, Q ∈ Dσ,k, and ifk < l,
Q ∈ Dσ,l, andR ∈ Dσ,k, then eitherQ ∩R = ∅ or elseQ ⊂ R.

• The general position of the cubesQ can be described as follows. For eachk ≥ 0 and each
cubeQ ∈ Dσ,k, there is a ballB(Q) = B(zQ, r(Q)) such that

zQ ∈W, A−k
0 ≤ r(Q) ≤ C0A

−k
0 ,

W ∩B(Q) ⊂ Q ⊂W ∩ 28B(Q) =W ∩B(zQ, 28r(Q)),

and
the balls5B(Q),Q ∈ Dσ,k, are disjoint.

• The cubesQ ∈ Dσ,k have small boundaries. That is, for eachQ ∈ Dσ,k and each integer
l ≥ 0, set

N ext
l (Q) = {x ∈W \Q : dist(x,Q) < A−k−l

0 },

N int
l (Q) = {x ∈ Q : dist(x,W \Q) < A−k−l

0 },

and
Nl(Q) = N ext

l (Q) ∪N int
l (Q).

Then

(5.1) σ(Nl(Q)) ≤ (C−1C
−3(n+1)−1
0 A0)

−l σ(90B(Q)).

• Denote byDdb
σ,k the family of cubesQ ∈ Dσ,k for which

(5.2) σ(100B(Q)) ≤ C0 σ(B(Q)).

We have thatr(Q) = A−k
0 whenQ ∈ Dσ,k \ D

db
σ,k and

(5.3) σ(100B(Q)) ≤ C−l
0 σ(100l+1B(Q)) for all l ≥ 1 with 100l ≤ C0 andQ ∈ Dσ,k \ D

db
σ,k.

We use the notationDσ =
⋃

k≥0Dσ,k. Observe that the familiesDσ,k are only defined fork ≥ 0.

So the diameter of the cubes fromD are uniformly bounded from above. We setℓ(Q) = 56C0 A
−k
0

and we call it the side length ofQ. Notice that

1

28
C−1
0 ℓ(Q) ≤ diam(28B(Q)) ≤ ℓ(Q).

Observe thatr(Q) ≈ diam(Q) ≈ ℓ(Q). Also we callzQ the center ofQ, and the cubeQ′ ∈ Dσ,k−1

such thatQ′ ⊃ Q the parent ofQ. We setBQ = 28B(Q) = B(zQ, 28 r(Q)), so that

W ∩ 1
28BQ ⊂ Q ⊂ BQ.
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We assumeA0 big enough so that the constantC−1C
−3(n+1)−1
0 A0 in (5.1) satisfies

C−1C
−3(n+1)−1
0 A0 > A

1/2
0 > 10.

Then we deduce that, for all0 < λ ≤ 1,

σ
(
{x ∈ Q : dist(x,W \Q) ≤ λ ℓ(Q)}

)
+ σ

({
x ∈ 3.5BQ : dist(x,Q) ≤ λ ℓ(Q)}

)

≤ c λ1/2 σ(3.5BQ).(5.4)

We denoteDdb
σ =

⋃
k≥0D

db
σ,k. Note that, in particular, from (5.2) it follows that

(5.5) σ(3BQ) ≤ σ(100B(Q)) ≤ C0 σ(Q) if Q ∈ Ddb
σ .

For this reason we will call the cubes fromDdb
σ doubling. GivenQ ∈ Dσ, we denote byDσ(Q) the

family of cubes fromDσ which are contained inQ. Analogously, we writeDdb
σ (Q) = Ddb

σ ∩D(Q).
As shown in [DM, Lemma 5.28], every cubeR ∈ Dσ can be coveredσ-a.e. by a family of

doubling cubes:

Lemma 5.2. LetR ∈ Dσ. Suppose that the constantsA0 andC0 in Lemma 5.1 are chosen suitably.
Then there exists a family of doubling cubes{Qi}i∈I ⊂ Ddb

σ , withQi ⊂ R for all i, such that their
union coversσ-almost allR.

The following result is proved in [DM, Lemma 5.31].

Lemma 5.3. LetR ∈ Dσ and letQ ⊂ R be a cube such that all the intermediate cubesS, Q (

S ( R are non-doubling (i.e. belong toDσ \ Ddb
σ ). Then

(5.6) σ(100B(Q)) ≤ A
−10n(J(Q)−J(R)−1)
0 σ(100B(R)).

Given a ball (or an arbitrary set)B ⊂ Rn+1, we consider itsn-dimensional density:

Θσ(B) =
σ(B)

diam(B)n
.

From the preceding lemma we deduce:

Lemma 5.4. LetQ,R ∈ Dσ be as in Lemma 5.3. Then

Θσ(100B(Q)) ≤ C0A
−9n(J(Q)−J(R)−1)
0 Θσ(100B(R))

and
∑

S∈Dσ:Q⊂S⊂R

Θσ(100B(S)) ≤ cΘσ(100B(R)),

with c depending onC0 andA0.

For the easy proof, see [To3, Lemma 4.4], for example.
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6. GOOD AND BAD COLLECTIONS OF CUBES FROMDω

6.1. Definition of good and bad cubes.From now on,B andB0 are the balls in Main Lemma
4.1 and Lemma 4.2. To simplify notation, we denoteα = λ−1, so thatB0 is ωxB -(α, (1 − ε′)−1)-
doubling. We consider the dyadic lattice of Lemma 5.1 associated with the measureσ = ωxB |10B0

,
and we denote this byDω, to shorten notation.

We now need to define a family of bad cubes. We say thatQ ∈ Dω is bad and we writeQ ∈ Bad,
if Q ∈ Dω is a maximal cube which is contained inB ≡ αB0 satisfying one of the conditions
below:

ωxB(Q)

ωxB (B0)
≤ A−1 µ(Q)

µ(B0)
,(6.1)

µ(Q)

µ(B0)
≤ A−1 ω

xB(Q)

ωxB(B0)
,(6.2)

whereA is some big constant to be chosen below. If the condition (6.1) holds, we writeQ ∈ Bad1
and in the case (6.2),Q ∈ Bad2(R). Thefore,Bad = Bad1 ∪ Bad2.

We say thatQ ∈ Dω is good, and we writeQ ∈ Good if Q is contained inαB0 andQ is not
contained in any cube from the familyBad.

6.2. Packing conditions. Abusing notation, below we writeBadi instead of
⋃

Q∈Badi
Q. Notice

that, using the definition ofBad1, Bad2, and the doubling properties ofµ andωxB ,

ωxB (Bad1) ≤ A−1µ(Bad1)

µ(B0)
ωxB(B0) ≤ A−1µ(αB0)

µ(B0)
ωxB(B0) ≤ C A−1ωxB (B0),(6.3)

µ(Bad2) ≤ A−1ω
xB(Bad2)

ωxB(B0)
µ(B0) ≤ A−1ω

xB (αB0)

ωxB (B0)
µ(B0) ≤ C(ε′)A−1µ(B0).(6.4)

In view of (4.3) and (4.5), ifA is large enough, there existε1, ε2 ∈ (0, 1) such that

µ(Bad1 ∩B0) < ε1 µ(B0),(6.5)

ωxB (Bad2 ∩B0) < ε2 ω
xB(B0).(6.6)

Combining (6.3), (6.4), (6.5) and (6.6) we obtain that

ωxB(Bad ∩B0) < (cωA
−1 + ε2)ω

xB(B0),

µ(Bad ∩B0) < (cµA
−1 + ε1)µ(B0).

Choose nowA so large thatcµA−1+ε1 = 1−ε′1 andcωA−1+ε2 = 1−ε′2, for someε′1, ε
′
2 ∈ (0, 1).

If we setG0 := B0 \
⋃

Q∈BadQ, we deduce that

ωxB(G0) = ωxB(B0 \ Bad) ≥ ε′2 ω
xB(B0)(6.7)

and also that

µ(G0) = µ(B0 \ Bad) ≥ ε′1 µ(B0).(6.8)

Notice that by Lebesgue’s differentiation theorem, (6.1),and (6.2) we have that

(6.9) A−1ω
xB(B0)

µ(B0)
≤
dωxB

dµ
(x) ≤ A

ωxB(B0)

µ(B0)
for µ-a.e.x ∈ G0,

and also

(6.10) A−1 µ(B0)

ωxB(B0)
≤

dµ

dωxB
(x) ≤ A

µ(B0)

ωxB(B0)
for ωxB -a.e.x ∈ G0.
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We can think ofdω
xB

dµ =: kxB as the Poisson kernel with respect toµ with pole atxB. What we just
proved is thatkxB is bounded from above and away from zero inG0 apart from a set ofµ-measure
zero.

6.3. The growth of ωxB on the good cubes.

Lemma 6.1. If Q ∈ Dω ∩ Good, 100B(Q) ⊂ αB0, andQ ∩B0 6= ∅, then

(6.11) ωxB (100B(Q)) ≤ C
ωxB (B0)

µ(B0)
ℓ(Q)n.

Proof. Suppose first thatQ ∈ Ddb
ω . Then, using also thatQ is good,

ωxB(100B(Q)) ≤ C ωxB (Q) ≤ C Aµ(Q)
ωxB (B0)

µ(B0)
,

and by the polynomial growth ofµ (6.11) follows.
Suppose now thatQ 6∈ Ddb

ω . LetQ′ be the cube fromDdb
ω with minimal side length that contains

Q. If Q′ ⊂ αB0, thenQ′ ∈ Good and we have already shown that (6.11) holds forQ′. Thus, by
Lemma 5.4 and (6.1), we get

ΘωxB (100B(Q)) ≤ CΘωxB (100B(Q′)) ≤ C
ωxB (Q′)

ℓ(Q′)n
. A

µ(Q′)

ℓ(Q′)n
ωxB(B0)

µ(B0)
. A

ωxB(B0)

µ(B0)
,

and so (6.11) also holds.
Suppose now that there is not any cubeQ′ ∈ Ddb

ω such thatQ ⊂ Q′ ⊂ αB0. Then denote byQ′′

the cube containingQ which has maximal side length such that100B(Q′′) is contained inαB0. It
turns out thatℓ(Q′′) ≈α r(B0) (for this we use the fact thatα > 1 and thatQ ∩B0 6= ∅). Then we
deduce that

ΘωxB (100B(Q′′)) ≤ C ΘωxB (B0).

Then applying Lemma 5.4 again,

ΘωxB (100B(Q)) ≤ C ΘωxB (100B(Q′′)) ≤ C ΘωxB (B0),

and hence (6.11) also holds in this case. �

From Lemma 6.1 we easily get the following.

Lemma 6.2. If Q ∈ Dω ∩ Good,Q ⊂ αB0, andQ ∩B0 6= ∅, then

ωxB (B(x, r)) ≤ C
ωxB (B0)

µ(B0)
rn for all x ∈ Q andr ≥ ℓ(Q).

Proof. Notice first that, by Lemma 4.3, any ballB(x, r) with r & r(B0) satisfies

(6.12) ωxB(B(x, r)) ≤ 1 .
ωxB(B0)

µ(B0)
r(B0)

n .
ωxB (B0)

µ(B0)
rn.

Suppose now thatr ≤ c r(B0) for smallc > 0. LetR ∈ Dω be the smallest cube containingQ
such thatB(x, r) ⊂ 100B(R), so that moreoverr ≈ ℓ(R) andR∩B0 6= ∅ (becauseQ∩B0 6= ∅).
If 100B(R) ⊂ αB0 (in particular this implies thatR ∈ Good), by Lemma 6.1,

(6.13) ωxB(B(x, r)) ≤ ωxB (100B(R)) .
ωxB(B0)

µ(B0)
ℓ(R)n ≈

ωxB(B0)

µ(B0)
rn
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If 100B(R) 6⊂ αB0, from the factR ∩ B0 6= ∅ we deduce thatr ≈ ℓ(R) &α r(B0) and so (6.13)
also holds, because of (6.12).

The lemma follows easily from the previous discussion. �

7. THE KEY LEMMA ABOUT THE RIESZ TRANSFORM ON GOOD CUBES

Key Lemma 7.1. LetΩ, µ, η, B andB0 be as in the Main Lemma 4.1 and Lemma 4.2. Let also
Q ∈ Good be such thatQ ∩

(
B0 \ B(xB, η r(B))

)
6= ∅, 100B(Q) ⊂ B, δ0r(BQ) ≤ η r(B) and

Q ⊂ ∂Ω \B(xB ,
η
2 r(B)). For all z ∈ Q we have

(7.1)
∣∣Rℓ(Q)ω

xB(z)
∣∣ . ωxB(B0)

µ(B0)
,

where the implicit constant depends oncω, ε, ε′, C1, C2,A andη.

Proof in the casen ≥ 2. Let ϕ : Rd → [0, 1] be a radialC∞ function which vanishes onB(0, 1)
and equals1 onRd \B(0, 2), and forε > 0 andz ∈ Rn+1 denoteϕε(z) = ϕ

(
z
ε

)
andψε = 1−ϕε.

We set

R̃εω
xB (z) =

∫
K(z − y)ϕε(z − y) dωxB (y),

whereK(·) is the kernel of then-dimensional Riesz transform.
We consider first the case whenQ ∈ Ddb

ω . Take a ballB̃Q centered at some point ofQ such that
r(B̃Q) =

δ0
10 r(BQ) andµ(B̃Q) & µ(BQ), with the implicit constant depending onδ0. Notice that

for anyx ∈ B̃Q we have that|x− xB| ≥ c(η) r(B) > 2 r(B̃Q). To shorten notation, in the rest of
the proof we will writer = r(B̃Q).

Note that, for everyz ∈ Q ⊂ ∂Ω, by standard Calderón-Zygmund estimates
∣∣R̃rω

xB(x)−Rr(BQ)ω
xB(z)

∣∣ . ωxB(B(x, 3 r(BQ))

rn

.δ0

ωxB(100B(Q))

µ(Q)
.
ωxB (Q)

µ(Q)
.A

ωxB (B0)

µ(B0)
,

where in the penultimate inequality we used thatQ ∈ Ddb
ω and in the last one thatQ ∈ Good.

For a fixedx ∈ Q ⊂ ∂Ω andz ∈ Rn+1 \
[
supp(ϕr(x− ·)ωxB ) ∪ {xB}

]
, consider the function

ur(z) = E(z − xB)−

∫
E(z − y)ϕr(x− y) dωxB (y),

so that, by Remark 3.4,

(7.2) G(z, xB) = ur(z)−

∫
E(z − y)ψr(x− y) dωxB (y) for m-a.e.z ∈ Rn+1.

Since the kernel of the Riesz transform is

(7.3) K(x) = cn∇E(x),

for a suitable absolute constantcn, we have

∇ur(z) = cnK(z − xB)− cn R(ϕr(· − x)ωxB )(z).

In the particular casez = x we get

∇ur(x) = cnK(x− xB)− cn R̃rω
xB(x),
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and thus

(7.4) |R̃rω
xB(x)| .

1

|x− xB |n
+ |∇ur(x)|.

Observe that, by Lemma 4.3,

1

|x− xB|n
.

C(η)

r(B0)n
.η

ωxB(B0)

µ(B0)
.

Now we deal with the last summand in (7.4). Sinceur is harmonic inRn+1 \
[
supp(ϕr(x −

·)ωxB ) ∪ {xB}
]

(and so inB(x, r)), we have

(7.5) |∇ur(x)| .
1

r
−

∫

B(x,r)
|ur(z)| dm(z).

From the identity (7.2) we deduce that

|∇ur(x)| .
1

r
−

∫

B(x,r)
G(z, xB) dm(z) +

1

r
−

∫

B(x,r)

∫
E(z − y)ψr(x− y) dωxB (y) dm(z)

=: I + II.(7.6)

To estimate the termII we use Fubini and the fact thatsuppψr ⊂ B(x, 2r):

II .
1

rn+2

∫

y∈B(x,2r)

∫

z∈B(x,r)

1

|z − y|n−1
dm(z) dωxB (y)

.
ωxB (B(x, 2r))

rn
.
ωxB (3BQ)

µ(Q)
.A

ωxB(B0)

µ(B0)
,

where the last inequality follows from the fact thatQ ∈ Ddb
ω ∩ Good. We intend to show now that

I .
ωxB(B0)

µ(B0)
. Clearly it is enough to show that

(7.7)
1

r
|G(y, xB)| .

ωxB(B0)

µ(B0)
for all y ∈ B(x, r) ∩ Ω.

To prove this, observe that by Lemma 3.5 (withB = B(x, r), a = 2δ0
−1), for all y ∈ B(x, r) ∩ Ω,

we have

ωxB(B(x, 2δ0
−1r)) & inf

z∈B(x,2r)∩Ω
ωz(B(x, 2δ0

−1r)) rn−1 |G(y, xB)|.

On the other hand, by Lemma 3.1, for anyz ∈ B(x, 2r) ∩ Ω,

ωz(B(x, 2δ0
−1r)) &

µ(B(x, 2r))

rn
≥
µ(B̃Q)

rn
.

Therefore we have

ωxB(B(x, 2δ0
−1r)) &

µ(B̃Q)

rn
rn−1 |G(y, xB)|,

and thus
1

r
|G(y, xB)| .

ωxB(B(x, 2δ0
−1r))

µ(B̃Q)
.
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Now, recall that by constructionµ(B̃Q) & µ(BQ) ≥ µ(Q) andB(x, 2δ0
−1r) = 2δ0

−1B̃Q ⊂ 3BQ,
sincer(B̃Q) =

δ0
10r(BQ) and sinceQ ∈ Ddb

ω ∩ Good, we have

1

r
|G(y, xB)| .

ωxB(B(x, 2δ0
−1r))

µ(B̃Q)
.
ωxB(3BQ)

µ(Q)
.A

ωxB (B0)

µ(B0)
.

So (7.7) is proved and the proof of the Key lemma is complete inthe casen ≥ 2,Q ∈ Ddb
ω .

Consider now the caseQ ∈ Good \ Ddb
ω . LetQ′ ∈ Ddb

ω be the cube with minimal side length
such thatQ ⊂ Q′ ⊂ αB0 \ B(xB ,

η
2r(B)). If such cube does not exist, we letQ′ ∈ Dω be

the largest cube such thatQ ⊂ Q′ ⊂ αB0 \ B(xB ,
η
2r(B)), so thatℓ(Q′) ≈ r(B0) (because

Q′ ∩
(
B0 \B(xB , ηr(B))

)
6= ∅). For allz ∈ Q then we have

(7.8) |Rℓ(Q)ω
xB(z)| ≤ |Rℓ(Q′)ω

xB(z)| + C
∑

P∈Dω:Q⊂P⊂Q′

ωxB(100B(P ))

ℓ(P )n
.

In any case, the first term on the right hand side is bounded by some constant multiple ofω
xB (B0)
µ(B0)

.

This has already been shown ifQ′ ∈ Ddb
ω , while in the caseQ′ /∈ Ddb

ω , sinceℓ(Q′) ≈ r(B0) we have

|Rℓ(Q′)ω
xB(x)| .

‖ωxB‖

ℓ(Q′)n
.

1

r(B0)n
.
ωxB (B0)

µ(B0)
,

by Lemma 4.3.
To bound the last sum in (7.8), we first notice that everyP ∈ Dω such thatQ ⊂ P ⊂ Q′ is in

Dω \ Ddb
ω and thus, by Lemma 5.4, we obtain

∑

P∈Dω:Q⊂P⊂Q′

ωxB (100B(P ))

ℓ(P )n
.
ωxB(100B(Q′))

ℓ(Q′)n
.

SinceQ′ satisfies the assumptions of Lemma 6.1, by (6.11) we have

ωxB(100B(Q′))

ℓ(Q′)n
.
ωxB(B0)

µ(B0)
.

So (7.1) also holds forQ ∈ Dω \ Ddb
ω . �

Proof of the Key Lemma in the planar casen = 1. We note that the arguments to prove Lemma
3.5 fail in the planar case. Therefore this cannot be appliedto prove the Key Lemma and some
changes are required.

We follow the same scheme and notation as in the casen ≥ 2 and highlight the important modi-
fications. We start by assuming thatQ ∈ Ddb

ω and claim that for any constantα ∈ R,

(7.9)
∣∣R̃rω

xB(x)
∣∣ . 1

r
−

∫

B(x,r)
|G(y, xB)− α| dm(y) +

1

|x− xB |
+
ωxB (Q)

µ(Q)
.

To check this, we can argue as in the proof of the Key Lemma forn ≥ 2 to get

(7.10) |R̃rω
p(x)| .

1

|x− xB |
+ |∇ur(x)| .η

ωxB (B0)

µ(B0)
.
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Sinceur is harmonic inR2 \
[
supp(ϕr(x−·)ωxB )∪{xB}

]
(and so inB(x, r)), for any constant

α′ ∈ R, we have

|∇ur(x)| .
1

r
−

∫

B(x,r)
|ur(z)− α′| dm(z).

Note that this estimate is the same as the one in in (7.5) in thecasen ≥ 2 with α′ = 0. Let
α′ = α + β

∫
ψr(x − y)dωxB (y) whereβ = −

∫
B(x,r) E(x − z)dm(z). From the identity (7.2), we

deduce that

|∇ur(x)| .
1

r
−

∫

B(x,r)
|G(z, xB)− α| dm(z)

+
1

r
−

∫

B(x,r)

∫
|E(z − y)− β|ψr(x− y) dωxB (y) dm(z)

=: I + II,(7.11)

for anyα ∈ R.
To estimate the termII we apply Fubini:

II ≤
c

r

∫

y∈B(x,2r)
−

∫

z∈B(x,r)
|E(z − y)− β| dm(z) dωp(y).

Observe that for ally ∈ B(x, 2r),

−

∫

z∈B(x,r)
|E(z − y)− β| dm(z) . 1,

sinceE(·) = −c1 log | · | is in BMO. So, by the choice of̃BQ and thatQ ∈ Ddb
ω we obtain

(7.12) II .
ωxB(B(x, 2r))

r
.
ωxB(100B(Q))

µ(Q)
.
ωxB (Q)

µ(Q)
.

Hence (7.9) follows from (7.10), (7.11) and (7.12).
Choosingα = G(z, xB) with z ∈ B(x, r) in (7.9) and averaging with respect Lebesgue measure

for suchz’s, we get

∣∣R̃rω
xB(x)

∣∣ . 1

r5

∫∫

B(x,r)×B(x,r)
|G(y, xB)−G(z, xB)| dm(y) dm(z) +

ωxB(B0)

µ(B0)
+
ωxB (Q)

µ(Q)
,

where we understand thatG(z, xB) = 0 for z 6∈ Ω. Now for y, z ∈ B(x, r) andφ a radial smooth
function such thatφ ≡ 0 in B(0, 2) andφ ≡ 1 in R2 \B(0, 3) we write

2π (G(y, xB)−G(z, xB)) = log
|z − xB |

|y − xB |
−

∫

∂Ω
log

|z − ξ|

|y − ξ|
dωxB (ξ)

=

(
log

|z − xB |

|y − xB |
−

∫

∂Ω
φ

(
ξ − x

r

)
log

|z − ξ|

|y − ξ|
dωxB (ξ)

)

−

∫

∂Ω

(
1− φ

(
ξ − x

r

))
log

|z − ξ|

|y − ξ|
dωxB (ξ) = Ay,z +By,z.

Notice that the above identities also hold ify, z 6∈ Ω. Let us observe that

|z − xB|

|y − xB|
≈ 1 and

|z − ξ|

|y − ξ|
≈ 1 for ξ 6∈ B(x, 2r).
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We claim that

(7.13) |Ay,z| .
ωxB(B(x, 2δ0

−1r))

infz∈B(x,2r)∩Ω ωz(B(x, 2δ0
−1r))

.

We defer the details till the end of the proof. Then, by Lemma 3.1, we get

inf
z∈B(x,2r)∩Ω

ωz(B(x, 2δ0
−1r)) &

µ(B(x, 2r))

r
≥
µ(B̃Q)

r
.

and thus
|Ay,z|

r
.
ωxB(B(x, 2δ0

−1r))

µ(B̃Q)
.
ωxB(Q)

µ(Q)
,

by the doubling properties ofQ (for ωxB ) and the choice of̃BQ.
To deal with the termBy,z we write:

|By,z| ≤

∫

B(x,3r)

(∣∣∣∣log
r

|y − ξ|

∣∣∣∣+
∣∣∣∣log

r

|z − ξ|

∣∣∣∣
)
dωxB (ξ).

So we have
∫∫

B(x,r)×B(x,r)
|By,z| dm(y) dm(z) . r2

∫

B(x,r)

∫

B(x,3r)

∣∣∣∣log
r

|y − ξ|

∣∣∣∣ dω
xB (ξ) dm(y).

Notice that for allξ ∈ B(x, 3r),
∫

B(x,r)

∣∣∣∣log
r

|y − ξ|

∣∣∣∣ dm(y) . r2.

So by Fubini andQ ∈ Ddb
ω we obtain

1

r5

∫∫

B(x,r)×B(x,r)
|By,z| dm(y) dm(z) .

ωxB (B(x, 3r))

r
.
ωxB (Q)

µ(Q)
.

Together with the bound for the termAy,z, this gives

∣∣R̃rω
xB(x)

∣∣ . ωxB (Q)

µ(Q)
+
ωxB (B0)

µ(B0)
.A

ωxB(B0)

µ(B0)
,

where the last inequality follows from the fact thatQ ∈ Good.

It remains now to show (7.13). The argument uses ideas analogous to the ones for the proof of
Lemma 3.5 with some modifications. Recall that

Ay,z = Ay,z(xB) = log
|z − xB |

|y − xB |
−

∫

∂Ω
φ

(
ξ − x

r

)
log

|z − ξ|

|y − ξ|
dωxB (ξ)

=: log
|z − xB |

|y − xB |
− vx,y,z(xB)

wherey, z ∈ B(x, r). The two functions

q 7−→ Ay,z(q) and q 7−→
c ωq(B(x, 2δ0

−1r))

infz∈B(x,2r)∩Ω ω
z
Ω(B(x, 2δ0

−1r))
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are harmonic inΩ \B(x, 2r). Note that for allq ∈ ∂B(x, 2r) we clearly have

|Ay,z(q)| ≤ c ≤
c ωq(B(x, 2δ0

−1r))

infz∈B(x,2r)∩Ω ω
z
Ω(B(x, 2δ0

−1r))
.

SinceAy,z(q) = 0 for all q ∈ ∂Ω \ B(x, 3r) except for a polar set we can apply the maximum
principle in [Hel, Lemma 5.2.21] and obtain (7.13), as desired.

The caseQ 6∈ Ddb
ω can be handled exactly as for the case ofn ≥ 2 and the proof is omitted. �

From the lemma above we deduce the following corollary.

Lemma 7.2. LetΩ, µ, η, B andB0 be as in the Main Lemma 4.1 and Lemma 4.2. Let

G̃0 = G0 \B(xB, η r(B)).

For all x ∈ G̃0 we have

(7.14) R∗ω
xB (x) .

ωxB (B0)

µ(B0)
,

with the implicit constant depending onn,A, ε, ε′, η, δ0, η.

Proof. We need to show that for allx ∈ G̃0 and allt > 0,

(7.15)
∣∣Rtω

xB (x)
∣∣ . ωxB(B0)

µ(B0)
,

Recall that the cubes fromDω are only defined for generationsk ≥ 0. However, by a suitable
rescaling we can assume that they are defined fork ≥ k0, wherek0 ∈ Z can be arbitrary. So we
suppose that there are cubesQ ∈ Dω such thatℓ(Q) ≥ r(B).

Denote byGη the family of the cubesQ ∈ Good such thatQ ∩
(
B0 \ B(xB , η r(B))

)
6= ∅,

100B(Q) ⊂ B, δ0r(BQ) ≤ η r(B), andQ ⊂ ∂Ω \ B(xB,
η
2 r(B)), so that (7.1) holds for all

z ∈ Q ∈ Gη.
Givenx ∈ G̃0, letQx be the maximal cube fromGη that containsx. From the definition ofG̃0

andGη it follows that such cubeQx exists andℓ(Qx) ≈ r(B) ≈ r(B0), with the implicit constant
depending onα, η, andδ0. Given0 < t ≤ ℓ(Qx), let P ∈ Dω be the cube containingx such that
ℓ(P ) < t ≤ ℓ(P̂ ), whereP̂ stands for the parent ofP . Note thatP, P̂ ∈ Gη, and by the Key Lemma
7.1, we have

∣∣Rℓ(P )ω
xB(x)

∣∣ . ωxB (B0)

µ(B0)
.

Then, taking also into account Lemma 6.1, we get
∣∣Rtω

xB(x)
∣∣ ≤

∣∣Rℓ(P )ω
xB (x)

∣∣+ ωxB(B(x, t))

ℓ(P )n

.
ωxB (B0)

µ(B0)
+
ωxB(B(x, ℓ(P̂ )))

ℓ(P̂ )n
.
ωxB (B0)

µ(B0)
.

In the caset > ℓ(Qx), using thatℓ(Qx) ≈ r(B0) together with a brutal estimate and Lemma 4.3
we obtain ∣∣Rtω

xB(x)
∣∣ . ‖ωxB‖

ℓ(Qx)n
.

1

r(B0)n
.
ωxB (B0)

µ(B0)
.

So the proof of (7.15) is concluded. �
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8. PROOF OF THEMAIN LEMMA 4.1

Recall thatG0 = B0 \
⋃

Q∈BadQ, and that in (6.7) and (6.8) we saw that

(8.1) ωxB(G0) ≥ ε′2 ω
xB(B0), µ(G0) ≥ ε′1 µ(B0).

By Lemma 6.2 is clear that there exists some constantC3 such that

(8.2) ωxB (B(x, r)) ≤ C3
ωxB (B0)

µ(B0)
rn for all x ∈ G0 and allr > 0.

Recall also that in Lemma 7.2 we introduced the setG̃0 = G0 \B(xB, η r(B)) and we showed that

(8.3) R∗ω
xB (x) .

ωxB(B0)

µ(B0)
for all x ∈ G̃0.

We intend to apply the following T1 theorem:

Theorem 8.1. Let ν be a compactly supported Borel measure inRd. Suppose that there is an open
setH ⊂ Rd with the following properties.

(1) If Br is a ball of radiusr such thatν(Br) > C4r
n, thenBr ⊂ H.

(2) There holds that
∫
Rn\H R∗ν dν ≤ C5‖ν‖.

(3) ν(H) ≤ δ1‖ν‖, whereδ1 < 1.

Then there is a closed setG satisfying thatG ⊂ Rd \H and the following properties:

(a) ν(G) & ‖ν‖.
(b) ν(G ∩Br) ≤ C4r

n for every ballBr of radiusr.
(c) ‖1GRνf‖L2(ν) . ‖f‖L2(ν) for everyf ∈ L2(ν) such thatsupp f ⊂ G.

The implicit constants in (a) and (c) depend only onn, d, C4, C5, andδ1.

This result is a particular case of the deep non-homogeneousTb theorem of Nazarov, Treil and
Volberg in [NTrV] (see also [Vo] and [To2, Theorem 8.14]).

Set

ν :=
µ(B0)

ωxB(B0)
ωxB |αB0

.

Observe that‖ν‖ ≈ µ(B0), becauseωxB (αB0) ≤ (1− ε′)−1ωxB(B0). Also, by (8.2),

(8.4) ν(B(x, r)) ≤ C3 r
n for all x ∈ G0 and allr > 0.

From this fact, it easily follows that any ballBr such thatν(Br) > 2nC3r
n does not intersectG0.

Indeed, if there existsx ∈ G0 ∩Br, then

ν(B(x, 2r)) ≥ ν(Br) > C3(2r)
n,

which contradicts (8.4).
To simplify notation, we denote

Bη = B(xB, η r(B)).

There are two alternatives: eitherωxB (Bη ∩ G0) >
ε′2
2 ω

xB(B0) or ωxB (Bη ∩ G0) ≤
ε′2
2 ω

xB (B0).
In the first case, from (6.10) we deduce that

µ(Bη ∩G0) ≥
1

A
ωxB (Bη ∩G0)

µ(B0)

ωxB (B0)
>

ε′2
2A

µ(B0) ≥
ε′2

2C2A
µ(B),
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by (4.4). So lettingτ = ε′2/(2C2A) (which does not depend onη), the alternative (i) of the Main
Lemma 4.1 holds.

In the second case, from (8.1) we infer that

ωxB (G̃0) = ωxB (G0)− ωxB(Bη ∩G0) ≥ ε′2 ω
xB(B0)−

ε′2
2
ωxB (B0) =

ε′2
2
ωxB(B0).

We consider a closed set̃G1 ⊂ G̃0 with ωxB (G̃1) ≥
ε′2
3 ω

xB(B0), which is equivalent to saying that

ν(G̃1) ≥
ε′
2

3 ν(B0), and we denoteH = αB0 \ G̃1. Because of the discussion just below (8.4), the
assumption (1) of the theorem holds withC4 = 2nC3. Further, sinceν(B0) ≈ ν(αB0), we have

ν(G̃1) ≥ c
ε′2
3
ν(αB0),

and thus

ν(H) = ν(αB0)− ν(G̃1) ≤

(
1− c

ε′2
3

)
ν(αB0) =

(
1− c

ε′2
3

)
‖ν‖,

which ensures that the assumption (3) holds withδ1 = 1− c
ε′2
3 .

To check that the assumption (2) is satisfied, note that

ν =
µ(B0)

ωxB (B0)
ωxB −

µ(B0)

ωxB(B0)
ωxB |(αB0)c ,

and then it holds that

R∗ν ≤
µ(B0)

ωxB(B0)
R∗ω

xB +
µ(B0)

ωxB (B0)
R∗(ω

xB |(αB0)c).

By (8.3), for anyx ∈ αB0 \H = G̃1, the first term on the right hand side is uniformly bounded by
some constantC. On the other hand, using that̃G1 ⊂ B0 and taking into account Lemma 4.3, for
the last term we have

µ(B0)

ωxB (B0)
R∗(ω

xB |(αB0)c)(x) .α
µ(B0)

ωxB (B0)

ωxB((αB0)
c)

r(B0)n
.

µ(B0)

ωxB (B0)

1

r(B0)n
. 1.

So we getR∗ν(x) . 1, for ν-a.e.x ∈ Hc, which yields (2) in Theorem 8.1.
We can now apply Theorem 8.1 to obtainG ⊂ G̃1 ⊂ G0 ⊂ B0 such that

(a) ν(G) & ‖ν‖ ≈ µ(B0) ≈ µ(B).
(b) ν(G ∩Br) ≤ C4r

n for every ballBr of radiusr.
(c) ‖1GRνf‖L2(ν) . ‖f‖L2(ν) for everyf ∈ L2(ν) satisfying thatsupp f ⊂ G.

Recall now that, by (6.9),

kxB =
dωxB

dµ
≈
ωxB (B0)

µ(B0)
in G0
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and thatν = µ(B0)
ωxB (B0)

kxB µ|αB0
. First this implies thatµ(G) ≈A,ε′

2
µ(B0), and second, for any

f ∈ L2(µ) supported inG it holds that
∫

G
|Rµf |

2 dµ ≈

∫

G
|Rµf |

2 dν

=

∫

G

∣∣∣∣
∫
K(x− y)f(y)(kxB (y))−1ω

xB (B0)

µ(B0)
dν(y)

∣∣∣∣
2

dν(x)

.

∫

G

∣∣∣∣f(x)(k
xB (x))−1ω

xB (B0)

µ(B0)

∣∣∣∣
2

dν(x)

≈

∫

G
|f(x)|2 dµ(x).

This concludes the proof of the Main Lemma 4.1.

9. PROOF OFTHEOREM 1.1

In this section we will assume thatΩ andµ satisfy the assumptions in Theorem 1.1. For the proof
we will need to work with the dyadic lattice of David-Mattilafrom Section 5 with the associated
measureσ = µ. This new dyadic lattice is now denoted byDµ. Recall that the cubes fromDµ are
only defined for generationsk ≥ 0. However, by a suitable rescaling we can assume that they are
defined fork ≥ k0, wherek0 ∈ Z can be arbitrary.

9.1. The Final Lemma and the goodλ inequality. Our next objective consists in proving the
following.

Lemma 9.1(Final Lemma). For everyR ∈ Ddb
µ there exists a subsetGR ⊂ R with µ(GR) & µ(R)

such thatRµ|GR
: L2(µ|GR

) → L2(µ|GR
) is bounded, with norm bounded above uniformly by some

constant depending on the various constants in the assumptions of Theorem 1.1.

Recall that by standard non-homogeneous Calderón-Zygmund theory, the boundedness of the
operatorRµ|GR

: L2(µ|GR
) → L2(µ|GR

) implies thatR∗ is bounded from the space of finite real

Radon measuresM(Rn+1) toL1,∞(µ). See [To2, Chapter 2], for example. Then, from Lemma 9.1,
we deduce Theorem 1.1 by means of the following result:

Theorem 9.2. Let µ be a Radon measure measure inRn+1 such thatµ(B(x, r)) ≤ C rn for all
r > 0. Suppose that the constantC0 in the construction ofDµ in Lemma 5.1 is big enough and let
θ0 > 0. Suppose that for every cubeR ∈ Ddb

µ there exists a subsetGR ⊂ R with µ(GR) ≥ θ0µ(R),
such thatR∗ is bounded fromM(Rn) toL1,∞(µ|GR

), with norm bounded uniformly onR. ThenRµ

is bounded inLp(µ), for 1 < p <∞, with its norm depending onp and on the preceding constants.

This theorem is a variant of Theorem 2.22 from [To2]. In fact,in this reference the theorem is
stated in terms of “true” dyadic cubes and it is proved by using a suitable goodλ inequality. Similar
arguments, with minor variations, work with cubes from the latticeDµ. Below we just give a brief
sketch of the proof, which highlights the modifications required with respect to Theorem 2.22 from
[To2].
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Sketch of the proof of Theorem 9.2.Denote byMµ the centered Hardy-Littlewood maximal opera-
tor:

Mµf(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)
|f | dµ.

Arguing as in Theorem 2.22 from [To2], it is enough to show that for all ε > 0 there exists
γ = γ(ε) > 0 such that for allλ > 0,

(9.1) µ
({
x : Rµ,∗f(x) > (1 + ε)λ, Mµf(x) ≤ γλ

})
≤

(
1−

θ0
4

)
µ
({
x : Rµ,∗f(x) > λ

})

for every compactly supportedf ∈ L1(µ).
Denote

Ωλ = {x : Rµ,∗f(x) > λ
}
.

The first step to prove (9.1) consists in decomposingsuppµ∩Ωλ into Whitney cubes from the David-
Mattila latticeDµ. Let us remark that in Theorem 2.22 from [To2], the Whitney decomposition is
performed in terms of “true” dyadic cubes fromRn+1. The analogous result with the David-Mattila
cubes is the following.

Claim 1. Assume that the cubes fromDµ are defined for the generationsk ≥ k0, withk0 ∈ Z small
enough. Then there are cubesQi ∈ Dµ such that

Ωλ ∩ suppµ =
⋃

i∈I

Qi,

and so that for some constantsT0 > 104 andD0 ≥ 1 the following holds:

(i) 104B(Qi) ⊂ Ω for eachi ∈ I.
(ii) T0B(Qi) ∩ Ωc 6= ∅ for eachi ∈ I.
(iii) For each cubeQi, there are at mostD0 cubesQj such that104B(Qi) ∩ 104B(Qj) 6= ∅.

Further, for such cubesQi,Qj , we haveℓ(Qi) ≈ ℓ(Qj).
(iv) The family of doubling cubes

{Qj}j∈S := {Qi}i∈I ∩ Ddb
µ

satisfies

(9.2) µ

( ⋃

j∈S

Qj

)
≥

1

2
µ(Ωλ),

assuming the parameterC0 in the construction ofDµ in Lemma 5.1 big enough.

Using the above decomposition, by arguments which are very similar to the ones in the proof of
Theorem 2.22 from [To2], one proves that for alli ∈ I ∩ S,

µ
(
{x ∈ GQi

: Rµ,∗f(x) > (1 + ε)λ, Mµf(x) ≤ γλ}
)
≤
c γ

ε
µ(Qi),

and then one shows that this implies (9.1) and the theorem follows. �

The arguments to prove the Claim 1 are quite similar to the ones for Lemma 2.23 of Theorem
2.22 from [To2]. However, the proof of the property (iv) is more tricky and so we show the details.
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Proof of Claim 1.Note that the open setΩλ is bounded (sincef ∈ L1(µ) is assumed to be com-
pactly supported). So assumingk0 ∈ Z to be sufficiently small (recall the comment at the beginning
of Section 9), the existence of cubes fromQ ∈ Dµ with ℓ(Q) ≈ diam(Ωλ) is guarantied and so by
standard arguments one can find cubesQi ∈ Dµ satisfying the properties (i) and (ii) above. Indeed,
the cubesQi, i ∈ I, can be defined as follows. Let0 < δ1 <

1
100 be some small constant to be fixed

below. Then, for allx ∈ suppµ ∩ Ωλ, letQx ∈ Dµ be the maximal cube containingx such that

(9.3) ℓ(Qx) ≤ δ1 dist(x, ∂Ωλ).

Let {Qi}i∈I be the subfamily of the maximal and thus disjoint cubes from{Qx}x∈suppµ∩Ωλ
. The

properties (i) and (ii) are immediate (assumingδ1 small enough). On the other hand, (iii) follows
easily from the following:

(iii’) If 104B(Qi) ∩ 104B(Qj) 6= ∅ for somei, j ∈ I, then |J(Qi) − J(Qj)| ≤ 1, assuming
δ1 small enough in (9.3) (hereJ(Qi) andJ(Qj) are the generations to whichQi andQj

belong, respectively).

To prove this, takei, j ∈ I as above. By definition, there exists some pointpi ∈ Qi such that
ℓ(Qi) ≤ δ1 dist(pi, ∂Ωλ). So for anypj ∈ Qj, by the triangle inequality

ℓ(Qi) ≤ δ1
(
|pi − pj|+ dist(pj , ∂Ωλ)

)
.

From the condition104B(Qi) ∩ 104B(Qj) 6= ∅, we get|pi − pj| ≤ C(A0, C0)
(
ℓ(Qi) + ℓ(Qj)

)

and thus
ℓ(Qi) ≤ δ1 C(A0, C0)

(
ℓ(Qi) + ℓ(Qj)

)
+ δ1 dist(pj , ∂Ωλ)

)
.

On the other hand, from the definition ofℓ(Qj) we infer that the parent̂Qj of Qj satisfies

A0 ℓ(Qj) = ℓ(Q̂j) > δ1 dist(pj, ∂Ωλ).

So we derive
ℓ(Qi) ≤ δ1 C(A0, C0)

(
ℓ(Qi) + ℓ(Qj)

)
+A0 ℓ(Qj).

Takingδ1 small enough (depending onA0 andC0), this implies that

ℓ(Qi) ≤ 2A0 ℓ(Qj).

Since the side-lengths of cubes fromDµ are of the form56C0A
k
0 , k ∈ Z, andA0 ≫ 2, the above

estimate is equivalent to saying thatℓ(Qi) ≤ A0 ℓ(Qj). By analogous arguments, it follows that
ℓ(Qj) ≥ A0 ℓ(Qj), and so (iii’) is proved.

Finally, we show that the property (iv) holds. IfQi ∈ I \ S, then

µ(Qi) ≤ µ(100B(Qi)) ≤
1

C0
µ(104B(Qi)),

by (5.3), assumingC0 > 100. Then we deduce

(9.4)
∑

i∈I\S

µ(Qi) ≤
1

C0

∑

i∈I\S

µ(104B(Qi)).

To bound the last sum we need to estimate the number of cubesQi, i ∈ I \ S, such thatx ∈
104B(Qi), for a givenx ∈ suppµ. From the property (iii’) it is clear that such cubes can belong at
most to two different generations. Since the cubesQi, i ∈ I \ S, are not fromDdb

µ , by construction

we haver(B(Qi)) = A
−J(Qi)
0 . So all the cubesQi of a given generationJ0 such thatx ∈ 104B(Qi)
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are containedB(x, 2·104 A−J0
0 ). Since the ballsB(Qi) of a fixed generationJ0 are disjoint, arguing

with Lebesgue measure, we have

A
−J0(n+1)
0 #

{
i ∈ I \ S : x ∈ 104B(Qi) andJ(Qi) = J0

}
=

∑

i∈I\S:x∈104B(Qi)
J(Qi)=J0

r(B(Qi))
n+1

≤ (2 · 104A−J0
0 )n+1.

Using this estimate and the fact there are at most two possible values forJ0, we get

#
{
i ∈ I \ S : x ∈ 104B(Qi)

}
≤ 2 (2 · 104)n+1.

The key point of this estimate is that the value on the right hand side is an absolute constant that
does not depend on the parametersC0 andA0 from the construction of the latticeDµ in Lemma 5.1.
Then, plugging this inequality into (9.4) and using also (i)we deduce

∑

i∈I\S

µ(Qi) ≤
1

C0

∫

Ωλ

∑

i∈I\S

χ104B(Qi)(x) dµ(x) ≤
2 (2 · 104)n+1

C0
µ(Ωλ) ≤

1

2
µ(Ωλ),

assuming that the parameterC0 is chosen big enough in Lemma 5.1 for the last inequality. This
yields

µ

( ⋃

j∈S

Qj

)
≥ µ(Ωλ)−

∑

j∈I\S

µ(Qj) ≥
1

2
µ(Ωλ),

as wished and concludes the proof of (9.2). �

The next Subsections 9.2-9.5 are devoted to the proof of the Final Lemma 9.1.

9.2. The nice and the ugly cubes.GivenQ ∈ Ddb
µ , for λ > 0, denote

Qλ =
{
x ∈ Q : dist(x, suppµ \Q) ≥ λ ℓ(Q)

}
.

Recall that, by the thin boundary property (5.4) and the factthatQ is doubling,

µ
(
Q \Qλ

)
≤ c λ1/2 µ(3.5BQ) ≤ c′ λ1/2 µ(Q).

Thus, forλ0 > 0 small enough,

µ
(
Qλ0

)
≥

1

2
µ(Q).

Now consider an open ballB′ whose center lies inQλ0
, with r(B′) =

δ0 λ0
10

ℓ(Q), such thatµ(B′)

is maximal among such balls, and so

µ(B′) ≥ C(δ0, λ0)µ(Qλ0
) & µ(Q).

Suppose that the constantC1 in the definition of balls with thin boundaries in (4.1) has been chosen
big enough. Then there is another ballB, concentric withB′, with C1-thin boundary, and such
that2δ0

−1B′ ⊂ B ⊂ 2.2δ0
−1B′. For the proof, with cubes instead of balls, we refer the reader to

Lemma 9.43 of [To2], for example. Observe now thatB satisfies the assumptions of Main Lemma
4.1, assumingC2 big enough. Indeed, since

(9.5) 2B ∩ suppµ ⊂ 4.4δ0
−1B′ ∩ suppµ ⊂ Q and B′ ⊂

δ0
2
B,
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we get

µ(2B) ≤ µ(4.4δ0
−1B′) ≤ µ(Q) ≤ C2(δ0, λ0)µ(B

′) ≤ C2(δ0, λ0)µ(
δ0
2 B).

Notice thatC2 = C2(δ0, λ0) is an absolute constant which depends onn, but not on other parameters
such as the parametersε andε′ in Theorem 1.1. The existence of a pointxB as in the Main Lemma
such that (4.2) holds is guarantied by the assumptions of Theorem 1.1 applied toB, with cdb =
C2(δ0, λ0).

By the Main Lemma, one of the following statement holds:

(i) Either

µ(B(xB , η r(B))) ≥ τ µ(B),

whereτ is some positive constant depending onCµ, ε, ε′, C1 andC2 (but not onη); or

(ii) there exists some subsetGB ⊂ B with µ(GB) ≥ θµ(B), θ > 0, such that the Riesz
transformRµ|GB

: L2(µ|GB
) → L2(µ|GB

) is bounded. The constantθ and theL2(µ|GB
)

norm depend only onCµ, ε, ε′, C1, C2, andη.

If (ii) holds, we say thatQ is nice, and we writeQ ∈ N . Otherwise, i.e., in case (i), we say that
Q is ugly and we writeQ ∈ U . Clearly, since2B ∩ suppµ ⊂ Q (by (9.5)), we have:

• If Q ∈ Ddb
µ ∩ N , then there exists̃GQ ≡ GB ⊂ Q such that

(9.6) µ(G̃Q) ≈ µ(Q) and Rµ|
G̃Q

: L2(µ|G̃Q
) → L2(µ|G̃Q

) is bounded,

with the implicit constants in both estimates uniform onQ. Further,

(9.7) dist(G̃Q, suppµ \Q) ≥ r(B) & ℓ(Q).

• If Q ∈ Ddb
µ ∩ U , then

(9.8) µ(B(xB, η r(B))) ≥ τ C(δ0, λ0)µ(B).

Note that sincexB ∈ δ0
2 B, we have

suppµ ∩B(xB, η r(B)) ⊂ suppµ ∩B ⊂ Q.

AssumingQ ∈ Ddb
µ ∩ U , sinceB(xB, η r(B)) is covered by a bounded number of cubes of side

length comparable toη r(B), we infer that there exists a cubẽPQ ⊂ Q which satisfies:

(9.9) ℓ(P̃Q) ≈ η r(B) ≈ C(δ0, λ) η ℓ(Q),

(9.10) µ(P̃Q) ≥ C(δ0, λ0, τ)µ(Q),

and

(9.11) Θµ(P̃Q) ≥
C(δ0, λ0, τ)

ηn
Θµ(Q).

Consider now the smallest doubling cubePQ ∈ Ddb
µ such thatP̃Q ⊂ PQ ⊂ Q. Clearly,PQ ⊂ Q

and the estimates (9.9) and (9.10) also hold withP̃Q replaced byPQ. It also easy to see that (9.11)
is satisfied:
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Claim 2. AssumeQ ∈ Ddb
µ ∩ U . Then

Θµ(PQ) ≥ C−1Θµ(P̃Q) ≥
C(δ0, λ0, τ)

ηn
Θµ(Q).

Proof. Indeed, by Lemma 5.4, since all the intermediate cubesS with P̃Q ( S ( PQ are non-
doubling, we have

Θµ(P̃Q) . Θµ(100B(P̃Q)) ≤ C0A
−9n(J(P̃Q)−J(PQ)−1)
0 Θµ(100B(PQ)) . Θµ(PQ),

sinceJ(P̃Q)− J(PQ) ≥ 0 andΘµ(100B(PQ)) ≈ Θµ(PQ), becausePQ ∈ Ddb
µ . �

Note that forQ ∈ Ddb
µ ∩ U , from the estimates (9.10) and (9.11) applied toPQ, we deduce that

(9.12) Θµ(PQ)µ(PQ) ≥
C(τ, δ0, λ0)

ηn
Θµ(Q)µ(Q) ≫ Θµ(Q)µ(Q),

assumingη small enough.

9.3. The corona decomposition.In order to prove the Final Lemma 9.1 we have to show that for
anyR ∈ Ddb

µ there exists a subsetGR ⊂ R with µ(GR) ≈ µ(R) such thatRµ|GR
: L2(µ|GR

) →

L2(µ|GR
) is bounded uniformly onR. If R ∈ N , then we takeGR = G̃R and we are done. For

a general cubeR ∈ Ddb
µ , in order to find an appropriate setGR we have to construct a corona

decomposition ofµ|R.
For everyQ ∈ Ddb

µ (R) we define a family of stopping cubesStop(Q) ⊂ Dµ as follows:

(a) If Q ∈ N , then we setStop(Q) = ∅.

(b) If Q ∈ U , thenStop(Q) consists of all the cubes fromDµ which are contained inQ and are
of the same generation as the cubePQ defined in Subsection 9.2.

Given a cubeP ∈ Dµ, we denote byMD(P ) the family of maximal cubes (with respect to
inclusion) fromDdb

µ (P ). Recall that, by Lemma 5.2, this family coversµ-almost allP . Moreover,
by Lemma 5.4 it follows that ifS ∈ MD(P ), then

Θµ(2BS) ≤ cΘµ(2BP ).

GivenQ ∈ Ddb
µ , we denote

Next(Q) =
⋃

P∈Stop(Q)

MD(P ).

So ifQ ∈ N , thenNext(Q) = ∅. On the other hand, ifQ ∈ U , thenPQ ∈ Next(Q), and thus by
(9.12), ifη is chosen small enough in the Main Lemma 4.1,

(9.13)
∑

P∈Next(Q)

Θµ(P )µ(P ) ≥ Θµ(PQ)µ(PQ) ≥ 2Θµ(Q)µ(Q).

We are now ready to construct the family of theTop cubes of the corona construction. We will
haveTop =

⋃
k≥0 Topk. First we set

Top0 = {R}.

Assuming thatTopk has been defined, we set

Topk+1 =
⋃

P∈Topk

Next(P ).
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Note that the familiesNext(Q), with Q ∈ Topk, are pairwise disjoint. Observe also thatTop ⊂
Ddb

µ (R).

9.4. The packing condition. Next we prove a key estimate.

Claim 3. If η is chosen small enough (so that (9.13) holds forQ ∈ U ), then

(9.14)
∑

Q∈Top

Θµ(Q)µ(Q) ≤ C µ(R).

Proof. For a givenk ≤ 0, we denote

Topk0 =
⋃

0≤j≤k

Topj,

and also
N k

0 = N ∩ Topk0 and Uk
0 = U ∩ Topk0.

To prove (9.14), first we deal with the cubes from the familyU . Recall that, by (9.13), the cubes
Q from this family satisfy

∑

P∈Next(Q)

Θµ(P )µ(P ) ≥ 2Θµ(Q)µ(Q),

and thus
∑

Q∈Uk
0

Θµ(Q)µ(Q) ≤
1

2

∑

S∈Uk
0

∑

Q∈Next(S)

Θµ(Q)µ(Q) ≤
1

2

∑

Q∈Topk+1

0

Θµ(Q)µ(Q),

because the cubes fromNext(Q) with Q ∈ Topk0 belong toTopk+1
0 . So we have

∑

Q∈Topk0

Θµ(Q)µ(Q) =
∑

Q∈N k
0

Θµ(Q)µ(Q) +
∑

Q∈Uk
0

Θµ(Q)µ(Q)

≤
∑

Q∈N k
0

Θµ(Q)µ(Q) +
1

2

∑

Q∈Topk0

Θµ(Q)µ(Q) + cCµ µ(R),

where we took into account thatΘµ(Q) . Cµ for everyQ ∈ Top (and in particular for allQ ∈
Topk+1) for the last inequality. So we deduce that

∑

Q∈Topk0

Θµ(Q)µ(Q) ≤ 2
∑

Q∈N k
0

Θµ(Q)µ(Q) + cCµ µ(R).

Letting k → ∞, we derive

(9.15)
∑

Q∈Top

Θµ(Q)µ(Q) ≤ 2
∑

Q∈Top∩N

Θµ(Q)µ(Q) + cCµ µ(R).

Now notice that ∑

Q∈Top∩N

Θµ(Q)µ(Q) ≤ cCµ µ(R),

using the polynomial growth ofµ and that the nice cubesQ ∈ Top ∩ N are pairwise disjoint, since
Next(Q) = ∅ for such cubesQ, by construction. �
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9.5. The measureν and the L
1(ν) norm of R∗ν. Recall that in (9.6) we have introduced the

good setsG̃Q for the nice cubesQ ∈ N . In particular,G̃R has already been defined in the case
R ∈ N . WhenR ∈ U we set

G̃R =

(
R \

⋃

Q∈N

Q

)
∪

⋃

Q∈N

G̃Q.

Note that this identity is also valid ifR ∈ N . Sinceµ(G̃Q) ≈ µ(Q) for everyQ ∈ N , we deduce
that

µ(G̃R) ≈ µ(R).

Denoteν = µ|G̃R
. To complete the proof of Lemma 9.1, we wish to show that thereexists

GR ⊂ G̃R with ν(GR) ≈ ν(G̃R) such thatRν|GR
: L2(ν|GR

) → L2(ν|GR
) is bounded. The main

step is the following.

Claim 4. We have
‖R∗ν‖L1(ν) ≤ C ν(R).

Proof. GivenQ ∈ Top andx ∈ Q, we denote byr(x,Q) the radius of the ballB(P ) with P ∈
Next(Q) such thatx ∈ P . If such cubeP does not exist (for example, becauseQ ∈ N ), we set
r(x,Q) = 0.

Forx ∈ R, we write

R∗ν(x) ≤ sup
ε>r(B(R))

|Rεν(x)|+
∑

Q∈Top∩U

χQ(x) sup
r(B(Q))≥ε>r(x,Q)

|Rεν(x)|(9.16)

+
∑

Q∈Top∩N

χQ(x) sup
r(B(Q))≥ε>0

|Rεν(x)|.

Observe first that

sup
ε>r(B(R))

|Rεν(x)| ≤
‖ν‖

r(B(R))
. Θν(R) ≤ Θµ(R) . Cµ.

On the other hand, forx ∈ Q ∈ Top ∩ N , we write

sup
r(B(Q))≥ε>0

|Rεν(x)| . R∗(ν|100B(Q))(x).

Finally, consider casex ∈ Q ∈ Top ∩ U . LetPx ∈ Next(Q) be such thatPx ∋ x (with Px = ∅

is Px does not exist). Then we have

sup
r(B(Q))≥ε>r(x,Q)

|Rεν(x)| .
∑

S∈Dµ:Q⊃S⊃Px

Θν(100B(S))

≤
∑

S∈Dµ:Q⊃S⊃Px

Θµ(100B(S)).

Recall now the way that the cubePx ∈ Next(Q) has been constructed: there exists some cube
P̃x ∈ Stop(Q) such thatℓ(P̃x) ≈ ℓ(Q) andPx is the maximal cube fromDdb

µ (P̃x) that containsx.
Then by Lemma 5.4,

∑

S∈Dµ:P̃x⊃S⊃Px

Θµ(100B(S)) . Θµ(100B(P̃x)) . Θµ(100B(Q)),
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taking into account for the last inequality that100B(P̃x) ⊂ 100B(Q) and thatr(B(P̃x)) ≈ r(B(Q)).
This trivial estimate also yields

∑

S∈Dµ:Q⊃S⊃P̃x

Θµ(100B(S)) . Θµ(100B(Q)).

So we deduce that, forx ∈ Q ∈ Top ∩ U ,

sup
r(B(Q))≥ε>r(x,Q)

|Rεν(x)| . Θµ(100B(Q)) . Θµ(Q),

using also thatQ ∈ Ddb
µ for the last inequality.

From (9.16) and the above estimates, we infer that

R∗ν(x) . Θµ(R) +
∑

Q∈Top∩U

χQ(x)Θµ(Q) +
∑

Q∈Top∩N

χQ(x)R∗(ν|100B(Q))(x).

Integrating onR with respect toν, we get

‖R∗ν‖L1(ν) . Θµ(R) ν(R) +
∑

Q∈Top∩U

Θµ(Q) ν(Q) +
∑

Q∈Top∩N

∫

Q
R∗(ν|100B(Q)) dν(9.17)

.
∑

Q∈Top

Θµ(Q)µ(Q) +
∑

Q∈Top∩N

‖R∗(ν|100B(Q))‖L1(ν|Q),

where we took into account thatR ∈ Top in the last inequality. By (9.14) we know that the first sum
on the right hand side does not exceedC µ(R). To deal with the last sum, recall first that, by (9.7),

dist(Q ∩ supp ν, supp ν \Q) ≥ dist(G̃Q, suppµ \Q) & ℓ(Q).

Thus, for allx ∈ Q ∩ supp ν,

R∗(ν|100B(Q))(x) ≤ R∗(ν|100B(Q)\Q)(x) +R∗(ν|Q)(x)

. Θν(100B(Q)) +R∗(ν|Q)(x) . Θµ(Q) +R∗(ν|Q)(x).

By the Cauchy-Schwarz inequality we obtain

‖R∗(ν|100B(Q)‖L1(ν|Q) ≤ Θµ(Q) ν(Q) + ‖R∗(ν|Q)‖L2(ν|Q) ν(Q)1/2.

SinceRµ|
G̃Q

is bounded inL2(µ|G̃Q
), by standard non-homogeneous Calderón-Zygmund theory, it

follows thatRµ|
G̃Q

,∗ is bounded inL2(µ|G̃Q
), and thus

‖R∗(ν|Q)‖L2(ν|Q) = ‖R∗(µ|G̃Q
)‖L2(µ|

G̃Q
) . µ(G̃Q)

1/2 = ν(Q)1/2.

Therefore,

‖R∗(ν|100B(Q)‖L1(ν|Q) ≤ Θµ(Q) ν(Q) + ν(Q) . µ(Q).

Since the cubes fromTop ∩ N are pairwise disjoint, from (9.17) we deduce that

‖R∗ν‖L1(ν) . µ(R) +
∑

Q∈Top∩N

µ(Q) . µ(R) ≈ ν(R).

�



30 MIHALIS MOURGOGLOU AND XAVIER TOLSA

9.6. Proof of Lemma 9.1. To find the setGR ⊂ R with µ(GR) & µ(R) such thatRµ|GR
:

L2(µ|GR
) → L2(µ|GR

) is bounded (with norm independent ofR) we just have to apply Theorem
8.1 to the measureν, withH = ∅, and take into account that

‖R∗ν‖L1(ν) . ‖ν‖

and that‖ν‖ = ν(R) ≈ µ(R). This completes the proof of Lemma 9.1, and hence of Theorem 1.1.
�

10. HARMONIC MEASURE IN UNIFORM DOMAINS

First, in this section we will prove some general estimates involving harmonic measure and
Green’s function on uniform domains. In particular, we willprove Theorem 1.3. Finally we will
show how Theorem 1.2 follows from Theorem 1.1 and Theorem 1.3.

LetΩ ⊂ Rn+1 be a uniform domain and letx0 ∈ Ω. Letd(x0) = dist(x0,Ω). In the casen ≥ 2,
it is easy to check that for ally ∈ ∂B(x, d(x0)/4),

(10.1) G(x0, y) ≈
1

d(x0)n−1
.

In the casen = 1, we have

(10.2) G(x0, y) & 1.

However, as far as we know, the converse inequality is not guarantied. On the other hand, by a Har-
nack chain argument it is easy to check thatG(x0, y) ≈ G(x0, y

′) for all y, y′ ∈ ∂B(x0, d(x0)/4),
where the implicit constant is an absolute constant.

For anyn ≥ 1, for a givenx0 ∈ Ω, we define

ρ(x0) = −

∫

∂B(x0,d(x0)/4)
G(x0, y) dH

n(y),

x so thatG(x0, y) ≈ ρ(x0) for all y ∈ ∂B(x0, d(x0)/4). In the casen ≥ 2, by (10.1) we have
ρ(x0) ≈ d(x0)

1−n, and in the casen = 1, by (10.2) it follows just thatρ(x0) & 1.

Lemma 10.1. Letn ≥ 1 and letΩ ( Rn+1 be a uniform domain andB a ball centered at∂Ω with
radius r. Suppose that there exists a pointxB ∈ Ω so that the ballB0 := B(xB, r/C) satisfies
4B0 ⊂ Ω∩B for someC > 1. Then, for0 < r ≤ rΩ (whererΩ is some constant sufficiently small),
andτ > 0,

(10.3) ωx(B) ≈ ωxB (B) ρ(xB)
−1G(x, xB) for all x ∈ Ω\(1 + τ)B.

The implicit constant in (10.3) depends onlyC, τ , n, and the uniform character ofΩ. The constant
rΩ depends only onn and the uniform character ofΩ, andrΩ = ∞ whendiam(Ω) = ∞.

In the casen ≥ 2, (10.3) says that

ωx(B) ≈ ωxB(B) rn−1G(x, xB) for all x ∈ Ω\(1 + τ)B.

Recall that the inequality

ωx(B) & ωxB(B) rn−1G(x, xB) for all x ∈ Ω\B0

is already known to hold for arbitrary Greenian domains, as stated in (3.5). To prove the converse
estimate we need to assume the domain to be uniform.
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Let us remark that in Lemma 3.6 of Aikawa’s work [Ai1] it has been shown that

ωx(B) . rn−1G(x, xB) for all x ∈ Ω\B0.

Clearly, the analogous inequality in (10.3) is sharper (at least in the casen ≥ 2). The essential tool
for the proof of Lemma 10.1 is the following boundary Harnackprinciple for uniform domains, also
due to Aikawa [Ai1].

Theorem 10.2. Let Ω ⊂ Rn+1 be a uniform domain. Then there areA1 > 1 and rΩ > 0 with
the following property: Letξ ∈ ∂Ω and0 < r ≤ rΩ. Supposeu, v are bounded positive harmonic
functions onΩ ∩B(ξ,A1r) vanishing quasi-everywhere on∂Ω ∩B(ξ,A0r). Then

(10.4)
u(x)

v(x)
≈
u(y)

v(y)
for all x, y ∈ Ω ∩B(ξ, r).

The constantrΩ depends only onn the uniform character ofΩ, andrΩ = ∞ whendiam(Ω) = ∞.

Proof of Lemma 10.1. We may assume that0 < τ < 1. Consider the annulus

Aξ := A(ξ, (1 + τ)r, 2r),

whereξ is the center ofB. We coverAξ ∩Ω by a family of open ballsBi, i ∈ I, centered at
ξi ∈ Aξ ∩ Ω, all with radius equal toc2r, wherec2 is some positive constant small enough so that
4A1Bi ∩B = ∅ for all i ∈ I.

From the discussion above and the Harnack chain condition, we infer that

(10.5) G(y, xB) ≈ ρ(xB) if |y − xB| ≈ r and dist(y, ∂Ω) & r.

Also, by analogous arguments,

(10.6) ωy(B) ≈ ωxB (B) if |y − xB | . r and dist(y, ∂Ω) & r.

Therefore, if2Bi ∩ ∂Ω = ∅, then

(10.7) G(y, xB) ≈ ρ(xB) ≈ ρ(xB)
ωy(B)

ωxB(B)
for all y ∈ Bi ∩ Ω.

Suppose now that2Bi ∩ ∂Ω 6= ∅, and take a ballB′
i centered on2Bi ∩ ∂Ω with radiusr(B′

i) =
4r(Bi), so that2Bi ⊂ B′

i ⊂ 4Bi, which, in particular, implies thatA1B
′
i∩B = ∅. For each ballB′

i,
consider a corkscrew pointxi ∈ B′

i, that is, a pointxi ∈ B′
i∩Ω such thatdist(xi, ∂Ω) ≈ r(B′

i) ≈ r,
with the implicit constant depending onτ , A1 and other constants above. Then (10.5) and (10.6)
hold fory = xi, and thus also

(10.8) G(xi, xB) ≈ ρ(xB) ≈ ρ(xB)
ωxi(B)

ωxB (B)
.

SinceA1B
′
i ∩ B = ∅, and bothG(·, xB) andw(·)(B) are bounded positive harmonic functions

which vanish q.e. onB′
i ∩ ∂Ω, by Aikawa’s Theorem 10.2 and (10.8) we have

(10.9)
G(y, xB)

ωy(B)
≈
G(xi, xB)

ωxi(B)
≈

ρ(xB)

ωxB(B)
for all y ∈ B′

i ∩Ω.

From (10.7) and (10.9) we infer that

G(y, xB) ≈ ρ(xB)
ωy(B)

ωxB(B)
for all y ∈ Aξ ∩Ω.
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By the maximum principle, since bothG(·, xB) andω(·)(B) are bounded positive continuous har-
monic functions inΩ \B(ξ, (1+ τ)r) which vanish quasi-everywhere in(∂Ω) \B(ξ, (1+ τ)r), we
deduce that

G(y, xB) ≈ ρ(xB)
ωy(B)

ωxB(B)
for all y ∈ Ω \B(ξ, (1 + τ)r).

�

Lemma 10.3. Let Ω ( Rn+1, n ≥ 1, be a uniform domain and letτ > 0. LetB,B′ be balls
centered on∂Ω so that2B′ ⊆ B. Then for allx ∈ Ω\(1 + τ)B,

(10.10)
ωx(B′)

ωx(B)
≈τ

ωxB(B′)

ωxB(B)
,

wherexB ∈ B ∩ Ω is a corkscrew point ofB.

Proof. By the Harnack chain condition, we may assume thatxB ∈ B \ (1+ τ)B′. By Lemma 10.1,
we have that for allx ∈ Ω\(1 + τ)B,

ωx(B) ≈ ωxB(B) ρ(xB)
−1G(x, xB),

ωx(B′) ≈ ωxB′ (B′) ρ(xB′)−1G(x, xB′),

and
ωxB (B′) ≈ ωxB′ (B′) ρ(xB′)−1G(xB′ , xB).

So
ωx(B′)

ωx(B)
≈
ωxB′ (B′) ρ(xB′)−1G(x, xB′)

ωxB(B) ρ(xB)−1G(x, xB)
≈
ωxB (B′)

ωxB (B)

G(x, xB′)

ρ(xB)−1G(x, xB)G(xB′ , xB)
.

Thus the result will follow once we show

(10.11) G(x, xB′) ≈ ρ(xB)
−1G(x, xB)G(xB , xB′).

By the Harnack chain condition, it is immediate to check thatthis holds ifr(B) ≈ r(B′). Suppose
that this is not the case, and assume then thatr(B′) ≤ τ0r(B), for some0 < τ0 ≪ τ A−1

1 to be
fixed below. So if we consider an auxiliary ball̃B concentric withB′ of radiusr(B̃) = τ0 r(B),
then we have

B′ ⊂ B̃ ⊂ 2A1B̃ ⊂ (1 + τ)B.

In particular, this tells us thatx 6∈ 2A1B̃, and thus the functionu = G(x, ·) is harmonic and
bounded inA1B̃. Further, by takingτ0 small enough, we also havexB 6∈ A1B̃, and then the
functionv = G(xB , ·) turns out to be harmonic inA1B̃ too. Letx

B̃
∈ B̃ be a corkscrew point of

B̃. Note that by the Harnack chain condition,

u(x
B̃
) = G(x, x

B̃
) ≈ G(x, xB),

and also
v(x

B̃
) = G(xB , xB̃) ≈ ρ(xB).

Since both functionsu andv vanish quasi-everywhere in∂Ω, by the boundary Harnack principle of
Aikawa,

G(x, xB′)

G(x, xB)
≈
u(xB′)

u(xB̃)
≈
v(xB′)

v(xB̃)
≈ G(xB , xB′) ρ(xB)

−1,

which proves (10.11) and thus the lemma. �
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Remark 10.4. LetΩ ( Rn+1, n ≥ 1, be a uniform domain and letτ > 0. LetB be a ball centered
on∂Ω. By the preceding theorem, for allx ∈ Ω\(2 + τ)B,

ωx(2B) ≈τ
ωxB (2B)

ωxB(B)
ωx(B).

So if ωxB (B) ≈ 1, then we deduce that

ωx(2B) ≈τ ω
x(B)

In particular, ifΩ satisfies the so calledcapacity density condition, thenωxB(B) ≈ 1 for every ball
B centered on∂Ω and thusωx is doubling. In this way, we recover a well known result of Aikawa
and Hirata [AiH].1

Now we are ready to prove Theorem 1.3, which we state again here for the reader’s convenience.

Theorem. Letn ≥ 1 and letΩ be a uniform domain inRn+1. LetB be a ball centered at∂Ω. Let
p1, p2 ∈ Ω such thatdist(pi, B ∩ ∂Ω) ≥ c−1

0 r(B) for i = 1, 2. Then, for allE ⊂ B ∩ ∂Ω,

ωp1(E)

ωp1(B)
≈
ωp2(E)

ωp2(B)
,

with the implicit constant depending only onc0 and the uniform behavior of ofΩ.

Proof. It is enough to show that for anyp ∈ Ω such thatdist(p,B ∩ ∂Ω) ≥ c−1
0 r(B),

(10.12)
ωp(E)

ωp(B)
≈
ωxB(E)

ωxB(B)
.

By Lemma 10.3 and the Harnack chain condition it turns out that (10.12) holds in the particular case
whenE equals some ballB′ such that2B′ ⊂ B. Then, the comparability (10.12) for arbitrary Borel
setsE follows by rather standard arguments. We show the details for the reader’s convenience.

By taking a sequence of open balls containingB with radius converging tor(B), it is easy to
check that we may assume the ballB to be open. For an arbitraryε > 0, consider an open set
U ⊂ B which containsE and such thatωp(U \ E) ≤ ε. By Vitali’s covering theorem, we can find
a family of disjoint ballsBi, i ∈ I, centered atE, with 2Bi ⊂ U for everyi ∈ I, and such that⋃

i∈I Bi coversωxB -almost allE. So we have

ωxB (E) ≤
∑

i

ωxB (Bi) .
ωxB(B)

ωp(B)

∑

i

ωp(Bi)

≤
ωxB(B)

ωp(B)
ωp(U) ≤

ωxB (B)

ωp(B)

(
ωp(E) + ε

)
.

Letting ε→ 0, we get
ωp(E)

ωp(B)
.
ωxB(E)

ωxB(B)
.

The proof of the converse estimate is analogous. �

Finally we show how Theorem 1.2 follows from Theorem 1.1 in combination with the preceding
result.

1In fact, in [AiH] it is shown that, under the capacity densitycondition,ωx is doubling for the larger class of semi-
uniform domains.
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Proof of Theorem 1.2. The arguments are very standard but we give the details for the reader’s
convenience again. We assume that, for some pointp ∈ Ω, there existε, ε′ ∈ (0, 1) such that for
every(2, cdb)-doubling ballB with diam(B) ≤ diam(Ω) centered at∂Ω the following holds: for
any subsetE ⊂ B,

(10.13) if µ(E) ≤ ε µ(B), then ωp(E) ≤ ε′ ωp(B).

Fix E andB as above, so thatµ(E ∩B) ≤ εµ(B). LetxB be a corkscrew point forκB. That is,
xB ∈ κB ∩ Ω satisfiesdist(xB , ∂Ω) ≈ r(B). By the assumption (10.13),ωp(E) ≤ ε′ ωp(B), and
then by Theorem 1.3 we deduce that

(1− ε) ≤
ωp(Ec ∩B)

ωp(B)
≤ C

ωxB(Ec ∩B)

ωxB(B)
,

and thus
ωxB(E ∩B) ≤ (1− C−1(1− ε))ωxB (B).

So the assumptions of Theorem 1.1 are satisfied and henceRµ is bounded inL2(µ). �

11. THE CASE WHENµ IS AD-REGULAR

Recall that ifµ is ann-dimensional AD-regular measure inRn+1 andRµ is bounded inL2(µ),
then µ is uniformly n-rectifiable, by the Nazarov-Tolsa-Volberg theorem in [NToV1]. So from
Theorems 1.1 we deduce:

Corollary 11.1. Let n ≥ 1 and let0 < κ < 1 be some constant small enough depending only
on n. Let Ω be an open set inRn+1 and µ be ann-dimensional AD-regular measure supported
on ∂Ω. Suppose that there existε, ε′ ∈ (0, 1) such that for every ballB centered atsuppµ with
diam(B) ≤ diam(suppµ) there exists a pointxB ∈ κB ∩Ω such that the following holds: for any
subsetE ⊂ B,

(11.1) if µ(E) ≤ ε µ(B), then ωxB (E) ≤ ε′ ωxB(B).

Thenµ is uniformlyn-rectifiable.

Given a Radon measureσ, we writeσ ∈ A∞(µ) if there existε, ε′ ∈ (0, 1) such that for every ball
B centered atsuppµ with diam(B) ≤ diam(suppµ) the following holds: for any subsetE ⊂ B,

if µ(E) ≤ ε µ(B), then σ(E) ≤ ε′ σ(B).

From Theorem 1.2 we obtain the following:

Corollary 11.2. Let n ≥ 1, Ω be a bounded uniform domain inRn+1 andµ be ann-dimensional
AD-regular measure supported on∂Ω. Let p ∈ Ω and suppose thatωp ∈ A∞(µ). Thenµ is
uniformlyn-rectifiable.

It is worth comparing Corollary 11.1 with the main result of the work [HM2] of Hofmann and
Martell, which reads as follows:

Theorem A ([HM2]) . LetΩ be an open set inRn+1, withn ≥ 2, whose boundary isn-dimensional
AD-regular. Suppose that there exists some constantC6 ≥ 1 and an exponentp > 1 such that, for
every ballB = B(x, r) with x ∈ ∂Ω, 0 < r ≤ diam(Ω), there existsxB ∈ Ω ∩ B(x,C6r) with
dist(xB , ∂Ω) ≥ C−1

6 r satisfying
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(a) Bourgain’s estimate:ωxB (B) ≥ C−1
6 .

(b) Scale-invariant higher integrability:ω ≪ Hn|∂Ω in C7B and

(11.2)
∫

C7B∩∂Ω

(
dωxB

dHn
(y)

)p

dσ(y) ≤ C6 H
n(C7B ∩ ∂Ω)1−p.

whereC7 is a sufficiently large constant depending only onn and the AD-regularity constant of
∂Ω.

Then∂Ω is uniformlyn-rectifiable.

Observe that the assumption (a) in the last theorem is guarantied by Lemma 3.1 if we assume that
xB ∈ δ0B = κ2B, taking into account the AD-regularity of∂Ω. So if moreover we assumeC7 ≥ 2,
then from the condition (11.2) in Theorem A, for any setE ⊂ 2B, writing σ := Hn|∂Ω, we get

ωxB(E) =

∫

E

dωxB

dσ
(y) dσ(y)

≤ σ(E)1/p
′

(∫

2B

(
dωxB

dσ
(y)

)p

dσ(y)

)1/p

≤ C6 σ(E)1/p
′

σ(C7B)−1/p′ ,

Using the fact thatσ is doubling and the condition assumption (a) in the Theorem Awe obtain

ωxB(E) ≤ C

(
σ(E)

σ(2B)

)1/p′

≤ C ′

(
σ(E)

σ(2B)

)1/p′

ωxB(2B).

This implies that the condition (11.1) in Corollary 11.1, with µ = σ, is satisfied by2B. Thus the
corollary ensures that∂Ω is uniformly rectifiable. To summarize, Theorem A is a consequence of
Corollary 11.1 if we we suppose thatC7 ≥ 2 and we replace the assumption (a) in the theorem by
the (quite natural) assumption thatxB ∈ δ0B.

On the other hand, note that the support ofµ in Corollary 11.1 may be a subset strictly smaller
than∂Ω and so this can be considered as a local result. Observe also that in the corollary we allow
n = 1 and we do not ask the polexB for harmonic measure to satisfydist(xB , ∂Ω) & r(B),
unlike in Theorem A. However, this latter improvement is only apparent because, as Steve Hofmann
explained to us [Ho], it turns out that the assumption (11.1)implies thatdist(xB, ∂Ω) & r(B) when
µ is AD-regular.

In connection with harmonic measure in uniform domains, Hofmann, Martell and Uriarte-Tuero
[HMU] proved the following:

Theorem B ([HMU]) . Let n ≥ 2, Ω be a bounded uniform domain inRn+1 whose boundary is
n-dimensional AD-regular. Letp ∈ Ω and suppose thatωp ∈ A∞(Hn|∂Ω). Then∂Ω is uniformly
n-rectifiable.

Corollary 11.2, which also applies to the casen = 1, can be considered as a local version of this
result, because the support ofµ is allowed to be strictly smaller than∂Ω, analogously to Corollary
11.1.
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ULTAT DE CI ÈNCIES, 08193 BELLATERRA (BARCELONA)

E-mail address: xtolsa@mat.uab.cat


	1. Introduction
	2. Notation and preliminaries
	2.1. Generalities
	2.2. Measures and Riesz transforms
	2.3. Rectifiability
	2.4. Uniform and NTA domains

	3. Some general estimates concerning harmonic measure
	4. The Main Lemma
	5. The dyadic lattice of David and Mattila
	6. Good and bad collections of cubes from D
	6.1. Definition of good and bad cubes
	6.2. Packing conditions
	6.3. The growth of xB on the good cubes

	7. The key lemma about the Riesz transform on good cubes
	8. Proof of the Main Lemma ??
	9. Proof of Theorem ??
	9.1. The Final Lemma and the good  inequality
	9.2. The nice and the ugly cubes
	9.3. The corona decomposition
	9.4. The packing condition
	9.5. The measure  and the L1() norm of R*
	9.6. Proof of Lemma ??

	10. Harmonic measure in uniform domains
	11. The case when  is AD-regular
	References

