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HARMONIC MEASURE AND RIESZ TRANSFORM IN UNIFORM AND GENERAL
DOMAINS

MIHALIS MOURGOGLOU AND XAVIER TOLSA

ABSTRACT. LetQ C R™"! be open and lgt be some measure supportedisasuch thag(B(z, 7)) <
Cr™forall z € R™™, » > 0. We show that if the harmonic measurefinsatisfies some scale in-
variant A, type conditions with respect {o, then then-dimensional Riesz transform

(2) = / e ) dn)

is bounded inL?(1:). We do not assume any doubling condition,ariWe also consider the particular
case when is a bounded uniform domain. To this end, we need first to nlstharp estimates that
relate the harmonic measure and the Green function in thésdfdomains, which generalize classical
results by Jerison and Kenig for the well-known class of NDingins.

1. INTRODUCTION

In this paper we study the relationship between harmonicarean a general domaia ¢ R+
and theL? boundedness of the-dimensional Riesz transform with respect to some meagure
supported o®<2. We do not assume any doubling condition on the surface mea$ds? or on the
underlying measurg. We also consider the particular case when the dofaga uniform domain.
Further, for this type of domains we obtain sharp estimateisiwrelate the harmonic measure and
the Green function of2 which are of independent interest and are new in such gétyees far as
we know.

Letn > 1, letQ C R**! be an open set, and letbe a Radon measure supportedidhsatisfying
the growth condition

(1.2) p(B(z,r)) < Cpr" for allz € R**! and allr > 0.

Roughly speaking, our first theorem asserts that if the haltrmmeasure irf) satisfies some scale
invariant A, type condition with respect tp, then the Riesz transform

/, et ) dty)

is bounded inl.%(11). To state the theorem in detail, we need some additionatiantand terminol-
ogy.

Given a pointp € (2, we denote by? the harmonic measure i with polep. Givena,b > 1,
we say that a balB ¢ R"*! is u-(a, b)-doubling foru (or just (a, b)-doubling if the measurg is
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clear from the context) if
n(aB) < bu(B),
wherea B stands for the ball concentric with with radiusa times the radius oB.
Our main result is the following:

Theorem 1.1.Givenn > 1, let0 < k < 1 be some constant small enough apgl> 1 another con-
stant big enough, both depending onlyrari_et() be an open set iR"*! and . be a Radon measure
supported ord? satisfying the growth condition (1.1). Suppose that theiste, s’ € (0,1) such
that for everyu-(2, cgp)-doubling ball B centered atupp p with diam(B) < diam(supp ) there
exists a pointcg € xB N  such that the following holds: for any subdetC B,

(1.2) if u(E)<ew(B), then w*B(E) << w(B).
Then the Riesz transfor®,, : L?(u) — L%(u) is bounded.

Let us remark that it does not matter if in the theorem thesldalare assumed to be either open
of closed. Observe that we do not ask the pojeto be at some distance frofif2 comparable to
diam(B). On the contraryg g can be arbitrarily close t02. Notice also that, by taking comple-
ments, we deduce thatifandw®? satisfy the conditions above for a fixé#l c4;,)-doubling ball B
centered atupp p, then the following holds: for any subseétcC B,

if Ww"B(E) < (1-¢)w"8(B), then u(E)<(1-c¢)u(B).

Under the assumptions of the theorem, in the particular wass ., is mutually absolutely con-
tinuous with respect to the Hausdorff meas@é& on a subsetr C 0f2, we deduce thatr is
n-rectifiable, by the Nazarov-Tolsa-Volberg theorem [NTdMR2urther, whery = H"|g and E' is
AD-regular, we infer that is uniformly rectifiable, by[[NToV1], and we “essentially&prove (by
different methods) a recent result of Hofmann and MarteNMBj. See the next section for the no-
tions of AD-regularity and uniform rectifiability. Our themm extends to a more general framework
some of the recent results in [HM2], where the AD-regulagfythe surface measurl” |y, is a
basic assumption. See Sectiod 11 for more details about th@eréni 1.1l specializes whenis
AD-regular and how this is connected to the main result in BiM_et us also mention that, under
the assumption thdi() is AD-regular, an interesting partial converse in termshif‘pieces” to the
aforementioned result from [HM2] has been obtained regdntiBortz and Hofmann iri [BH].

When the measurg is not absolutely continuous with respect to the HausdogasureH",
then from theL?(x) boundedness dR,, we cannot deduce thatis n-rectifiable. However, in this
situation theL? boundedness of the Riesz transform still provides some gea@mninformation on
1. This is specially clear when = 1, as shown in the works [To1] and [AT], for example.

We also remark that Theorem ]L.1 can be considered as a logatitgtive version of the main
theorem in[[AHM3TV], where it is shown that if the harmonic asere and the Hausdorff measure
H™ are mutually absolutely continuous in some suliset 9 with 0 < H"(F) < oo, thenE is
n-rectifiable. To prove this, it is shown in [AHM3TV] that anuch setE contains another subset
F C Ewith H"(F) > 0 such thatRyn,,. is bounded inL?(H"|r). Some of the arguments to prove
Theorenm 1.1l are inspired by the techniques in [AHM3TV].

In this paper we also consider the particular case whéna bounded uniform domain R+,
that is, a bounded domain satisfying the interior corkscaet the Harnack chain conditions (see
the next section for the precise definitions). For this typelmmains a variant of the preceding
theorem with the harmonic measure with respect to a fix pdields. Now the assumptioh (1.2) is
replaced by a weaker (apparently) variant of the well knotyp condition. Lety ando be Radon
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measures ilR”*!. Forcg > 1 and0 < e,¢/ < 1, we writeo € Eoo(u,cdb,s,s’) if for every
u-(2, cqp)-doubling ball B centered agupp p with diam(B) < diam(supp p) the following holds:
for any subsety C B,

(1.3) if u(E)<euw(B), then o(E) < a(B).

It is easy to check that i € Xoo(u, cap, €,€'), thenu ando are mutually absolutely continuous on

supp i. The conditions € A (i, cap, €,€") can be considered as a quantitative version of this fact.
Then we have:

Theorem 1.2. Letn > 1,  be a bounded uniform domain ®"*+! and 1 be a Radon measure
supported ord( satisfying the growth conditiof (1.1). Lef, > 1 be some constant big enough
depending only om and let0 < ¢,&’ < 1. Letp € Q and suppose that? € A (i, cap,e,e’).
Then the Riesz transfor®,, : L?(u) — L?(p) is bounded.

Analogously to Theorern 1.1, whemn coincides withH"|sq and is AD-regular, by[[NToV/1]
it follows that 992 is uniformly rectifiable (see Sectidd 2 for the definition)hig corollary was
previously obtained by Hofmann, Martell and Uriarte-Tu@idIU] by quite different arguments.
Further, we remark that in this case the converse statermaaito true, by another theorem due
to Hofmann and Martell[ [HM1]. An alternative argument forstitonverse implication appears in
the recent work [AHMNT], where it is shown that any uniformndain with uniformly rectifiable
boundary is an NTA domain and then, by a well-known result a¥iD and Jerisor_[DJ]y? is an
Aso(H"an) weight. So notice that for a bounded uniform domain whosentlaty is AD-regular,
the following nice characterization holds:

08 is uniformlyn-rectifiable if and only itv? is an A, (H"|sq) Weight.

Theorem[_1.R follows from Theorefn 1.1 and the following téchhresult, which may be of
independent interest.

Theorem 1.3. Letn > 1, Q be a uniform domain ifR”t! and let B be a ball centered a®{). Let
p1,p2 € Q2 such thadist(p;, BNoN) > cgl r(B)fori = 1,2. Then, for any Borel set ¢ BNoX,
wPb1 (E) wPb2 (E)

Wi (B)  wr(B)

with the implicit constant depending only anand the uniform behavior &b.

This result is already known to hold for the class of NTA dansaintroduced by Jerison and
Kenig [JK] and also for the uniform domains satisfying th@aeity density condition of Aikawa
[Ai2]. However it seems to be new for the case of arbitraryfamh domains. To prove Theorem
1.3 we study first the relationship between harmonic measudeGreen’s function in this type of
domains. In particular, in the case> 2 we show that ifB is a ball with radius- centered abf2
andzp € Qis a corkscrew point foB (see Sectiohl2 for the precise definition), then

w®(B) ~ w"B(B)r" 1 G(x,rp) forall z € Q\2B.
If 2is an NTA domain or a uniform domain satisfying the capacéysgity condition, then”s (B) ~

1 and the preceding estimate reduces to well known resultsegpectively to Jerison and Kenig
[JK] and to Aikawa [[Ai2].

The plan of the paper is the following. In Sectldn 2 some mmteind terminology is introduced.
Sectior_B reviews some auxiliary results regarding harmoreasure, most of them well known in
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the area. Sections[4-9 are devoted to the proof of ThelorenT helmain step consists in proving the
Main Lemmad4.1l, stated in Sectibh 4. Some of the argument®t@ his (specially the ones for the
Key Lemmd_Z.1l ) are inspired by similar techniques from [AHMW3. The proof of Theorenh 1]1
is completed in Sectidn 9 by means of the Main Leniméa 4.1 andanadype decomposition valid
for non-doubling measures. Some analogous corona typenesitions have already appeared in
works such as [Tdl] and [AT].

Sectior 1D is devoted to the study of harmonic measure opmmilomains and the application
of the obtained results (such as Theofenh 1.3) to the proohebfieni 1.2. A basic ingredient for our
results on harmonic measure in these domains is the bouht#anack principle of Aikawa [AIl].
Finally, Section Ill deals with the situation wheis assumed to be AD-regular.

Acknowledgement. We would like to thank Jonas Azzam for very helpful discussiin con-
nection with this paper.

2. NOTATION AND PRELIMINARIES

2.1. Generalities. We will write a < bif there isC > 0 so thata < Cb anda < b if the constant
C depends on the parameteMe writea ~ b to meana < b < a and define: ~; b similarly.

We denote the open ball of radiusentered at by B(z,r). ForaballB = B(z,r) andd > 0
we write r(B) for its radius andB = B(z,dr). We letU.(A) to be thes-neighborhood of a set
A C R,

2.2. Measures and Riesz transforms.The Lebesgue measure of a setc R"*! is denoted by
m(A). Given0 < § < oo, we set
HY(A) = inf {3, diam(4;)" : 4; C R"™!, diam(A;) <6, AC U; 4}
We define the:-dimensional Hausdorff measuas
M (A) = lim 3 (4)
and then-dimensional Hausdorff conteasH” (A).

Given a signed Radon measurén R"*! we consider the:-dimensional Riesz transform

Ro@) = [ e i),

whenever the integral makes sense. &or 0, its e-truncated version is given by
=Y
Rev(z) = / ——dv(y).
: |z—y|>e |$ - y|n+1

For a positive Radon measutieand a functionf < L}Oc(u), we set

Ruf = R(f 1), Ru,af = R(f 1)

We say that the Riesz transforR), is bounded in.?(y) if the truncated operato®, . : L*(u) —
L?(p) are bounded uniformly on > 0.
Foré > 0 we set

R sv(x) = sup |Rev(x)|.
e>6



HARMONIC MEASURE AND RIESZ TRANSFORM IN UNIFORM AND GENERALDOMAINS 5
We also consider the maximal operator

B
Vo) = sup B
r>0 r

In the case) = 0 we writeR,.v(z) := Ry ov(xz) andM"v(x) := Mjv(z).

)

2.3. Rectifiability. A setE c R is calledn-rectifiable if there are Lipschitz mags: R* — R,
1=1,2,...,such that

(2.1) H" <E\Liin<R">) =0,

whereH" stands for the:-dimensional Hausdorff measure. Also, one says that a Rad@sure,
onR% is n-rectifiable if x vanishes out of an-rectifiable set? ¢ R¢ and moreovey: is absolutely
continuous with respect " | .

A measureu is calledn-AD-regular (or just AD-regular or Ahlfors-David regulaf)there exists
some constant > 0 such that

" < p(B(z,r)) <cr™  forall z € supp(p) and0 < r < diam(supp(p)).

A measureu is uniformly n-rectifiable if it isn-AD-regular and there exigt, M > 0 such that
for all z € supp(r) and allr > 0 there is a Lipschitz mappingfrom the ballB,, (0, ) in R™ to R¢
with Lip(g) < M such that

w(B(z,r) N g(By(0,r))) > Or".

In the casen = 1, p is uniformly 1-rectifiable if and only ifsupp(u) is contained in a rectifiable
curveT in R¢ such that the arc length measurelois 1-AD-regular.

A setE c R?is calledn-AD-regular if H"|g is n-AD-regular, and it is called uniformly:-
rectifiable if H" | is uniformly n-rectifiable.

2.4. Uniform and NTA domains. Following [JK], we say that an open s@t ¢ R"t! satisfies
the “corkscrew condition” if there exists some constant 0 such that for allf € 992 and all
0 < r < diam(99) there is a ballB(z,cr) C B(&,r) N . The pointz is called a “Corkscrew
point” relative to the ballB(&, ).

Again as in[[JK], we say thd® satisfies the Harnack Chain condition if there is a constanth
that for everyp > 0, A > 1, and every pair of points;, xo €  with dist(z;,0Q) > pfori =1,2
and|z; —z2| < Ap, there is a chain of open bal%,, ..., By C Q, with N < C(A), withz; € By,
x9 € By, B N By # @ anddist(By, 092) ~. diam(By) for all k. The preceding chain of balls
is called a “Harnack chain”.

A domainQ ¢ R"*! is called uniform if it satisfies the corkscrew and the Hakneleain con-
ditions. On the other hand) is uniform and the exterior df is non-empty and also satisfies the
corkscrew condition, thef is called NTA (which stands for “non-tangentially accetsip

3. SOME GENERAL ESTIMATES CONCERNING HARMONIC MEASURE

The following is a classical result due Bourgain. For theopraf this in the precise way it is
stated below, see [AMT] of [AHM3TV].
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Lemma 3.1. There isdy € (0,1) depending only om > 1 so that the following holds far < ¢ <
So. LetQ C R™"! be a domaing € 9, r > 0, B = B(£,r). Forall s > n — 1 we have

. H3(09N00B)
~? (6r)*

Remark 3.2. If i is some measure supported@ such thafu(B(x,r)) < Cr™, from the preced-
ing lemma we deduce that

forall x € 6B NAQ.

u(0Q2NIB)
(or)"

For a Greenian open set, we may write the Green function Esv®lsee([Hel, Lemma 4.5.1]):

(3.1) w&(B) > for all 2 € 6B N Q.

(3.2) G(z,y) =& —y) — E(x —2)dw¥(z), forz,yeQ,x+#vy,
o0

where€ denotes the fundamental solution of Laplace’s equatidiih!, so thatf (z) = ¢, |z|'™"
forn > 2, and€(x) = —c; log|z|forn =1, ¢1,¢, > 0.
Forz € R*™1\ Q andy € Q, we will also set

(3.3) G(z,y) =0.

The next result is proved in [AHM3TV] too.

Lemma 3.3. Let(2 be a Greenian domain and Igtec 2. For m-almost allz € Q2 we have
(3.4) E(x—y) — E(x — z)dw’(z) = 0.
a0
Remark 3.4. As a corollary of the preceding lemma we deduce that
Gz,y) =&z —y) — / E(x — 2)dw?(z) form-a.e.x € R" andally € Q.
a0
We will also need the following auxiliary result, which fols by standard arguments involving
the maximum principle. For the proof, sée [HMMTV] or [AHM3TV

Lemma 3.5. Letn > 2 and2 C R"*! be a bounded open connected set. Bet B(z,r) be a
closed ball withz € 9Q and0 < r < diam(952). Then, for alla > 0,

(3.5) w*(aB) 2 12%me wq(aB)r" 1 G(x,y) forall z € Q\2B andy € BN,
zE

with the implicit constant independent af

4. THE MAIN LEMMA
Given a fixed Radon measuysewe say that a balB hasC-thin boundary (or just thin boundary)
if
(4.1) p({z € 2B : dist(z,0B) < tr(B)}) < Citpu(2B) forallt € (0,1).
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Main Lemma 4.1. Letn > 1,  be an open set ilR”*! and ;. be a Radon measure supported
on 9% and such thay(B(z,r)) < C,r", for everyz € 0Q andr > 0. For someC;,Cy > 1,
let B ¢ R™*! be a ball withC;-thin boundary centered atipp i such thatu(2B) < Cy u(%OB),

whered is the constant in Lemnia 3.1. Suppose that there exist %OB NQande, &’ € (0,1)
such that for any subsét C B,

(4.2) if wE)<eu(B), then w"B(E) < w"(B).
Then, for every) € (0, 1—10), one of the following alternatives holds:
(i) Either

w(B(xp,nr(B))) =2 7 u(B),
wherer is some positive constant depending@n ¢, ', C; and C5 (but not ony); or

(i) there exists some subggtC B with u(G) > 6u(B), 6 > 0, such that the Riesz transform
Ryl : L*(pla) = L*(p]e) is bounded. The constafiand theL? (| ) norm depend only
on CH’ g, 6/, Cl, 02, andn.

From now on, we assume that the constafiom Theoreni L1 is
_%
=5
The first step for the proof of the Main Lemma is the following.

Lemma 4.2. Let(2, y1, and B be as in the Main Lemnia4.1. Let= 1 — 5. The ballBy = AB
is 41-(2, 2C3)-doubling,w®2-(A~1, (1 — £)~!)-doubling, and satisfies the following: for any subset
FE C B(],

(4.3) it u(E) <

K

w(Bp), then w*B(E) <& w”(By).

N ™

Note that in the preceding lemma, the pole for harmonic nredsu: 5, the same as for the ball
B. Observe also that € (1/2,1) and thus

1

Sinceu(B) < u(2B) < Co u(2B) anddy < 1, we have

(4.4) 1(B) < Cy u(Bo).

Note also that, by taking complements, the assertion (fmplies that

(4.5) if w'B(E)<(1-¢)w™(By), then wu(E)< (1—e¢/2)u(Bo).

Proof of Lemm&4]2From the thin boundary property and the doubling conditiea,deduce that

(4.6) H(B\AB) < C1(1=Ma(2B) < C1 Cy (1= Nu(B) = < u(B).
This implies that
HOB) = u(B) ~ p(B\AB) 2 (1= 5) u(B) 2 T2 u2B) 2~ 2 u(2B),

and sincelg—f > 3¢5, Bo = AB is (2,2C,)-doubling.
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From [4.6) and(4]2) we deduce that
w"B(B\ AB) < &' w"8(B) = ¢ w"8(B\ AB) + ¢ w"5(\B).
Thus,
W (B\ AB) < 15— W (\B),
and so
4 1

w8 (B) < w"B(AB) + ]

In other words, By = A B isw®-(A~1, (1 — ¢)~1)-doubling.
To prove that forE C By the condition[(4.B) holds, consider the auxiliary set

E=EU(B\AB).
Using [4.6), we deduce that
p(E) = p(E) + p(B\ AB) <
So from the condition (4]12) we infer that
wB(E) < € w'B(B),
which is equivalent to saying that
w*B(E) + w8 (B \ AB) < ¢’ w"B(AB) + & w*B(B\ AB).

This implies that
w*B(E) < &' w"(AB),

as wished.

Lemma 4.3. We have

1(Bo)
4.7 *B(By) 2>
Proof. By (3.1) we have
Wt (By) 2 0B g0 a4 € 5By N Q.
(Sor)™

So [4.7) holds because; € %B C dpBy (sinceB C 2By) and

1(Bo) < u(B) < Ca (% B) < C3 (80 Bo).
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5. THE DYADIC LATTICE OF DAVID AND MATTILA

Now we will consider the dyadic lattice of cubes with smalubdaries of David-Mattila associ-
ated with a Radon measuwre This lattice has been constructedlin [DM, Theorem 3.2]pitperties
are summarized in the next lemma.

Lemma 5.1 (David, Mattila) Leto be a compactly supported Radon measur&fi!. Consider
two constants’y > 1 and Ay > 5000 Cy and denotd? = supp o. Then there exists a sequence of
partitions of W into Borel subsets), Q € D, ;,, with the following properties:

e For each intege > 0, W is the disjoint union of the “cubes®, Q € D, ;, and ifk < [,
Q € Dy, andR € D, 1, then either) N R = @ or else C R.

e The general position of the cubéscan be described as follows. For eakh> 0 and each
cubeQ € D, , there is a ballB(Q) = B(zg, r(Q)) such that

g eW, AR <r(Q) < CoAyF,

WNB(Q) CQCWn28B(Q) =W N B(zq,28(Q)),
and
the balls5B(Q), Q € D, , are disjoint.

e The cubes) € D, ; have small boundaries. That is, for eahc D, ;. and each integer

[ >0, set
N Q) = {z e W\ Q: dist(z,Q) < A" '},
Nli"t(Q) ={re: dist(z, W\ Q) < Agk_l},
and '
N(Q) = NF™(Q) U N™(Q).
Then
(5.1) o(N(Q)) < (C71Cy 01 Ag) T 0 (90B(Q))-

e Denote byD%, the family of cube€) € D, for which
(5.2) a(100B(Q)) < Coo(B(Q))-
We have that(Q) = A" whenQ € D, \ D%, and
(5.3) o(100B(Q)) < Cy' o(100"' B(Q)) forall I > 1 with 100! < Cp andQ € Dy, \ DL,

We use the notatio®, = (J,( D,k Observe that the familieB,, . are only defined fok > 0.

So the diameter of the cubes frainhare uniformly bounded from above. We gé)) = 56 Cj AO"€
and we call it the side length @). Notice that

25 G5 0(Q) < diam(28B(Q) < ((Q).

Observe that(Q) ~ diam(Q) ~ ¢(Q). Also we callzg the center of), and the cub&)’ € D, ;,_,
such thaty’ O Q the parent of). We setBg = 28B(Q) = B(zg,287(Q)), so that

WN5Bg CQC Bg.
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We assumel big enough so that the constmrlco_g("ﬂ)_le in (5.1) satisfies
C1oy B 40 > AV > 10,
Then we deduce that, for dll< A < 1,

o({z € Q:dist(z, W\ Q) < A(Q)}) + o({z € 3.5Bq : dist(z,Q) < X (Q)})
(5.4) < cA/? 0(3.5Bq).

We denoteD = | J,, D Note that, in particular, froni(5.2) it follows that
(5.5) 7(3Bg) < 0(100B(Q)) < Coo(Q)  if Q € DY

For this reason we will call the cubes fraRf® doubling. Given@ € D,,, we denote byD, (Q) the
family of cubes fromD,, which are contained i§. Analogously, we writeD?(Q) = D% N D(Q).

As shown in [DM, Lemma 5.28], every cub@ € D, can be covered-a.e. by a family of
doubling cubes:

Lemmab5.2. LetR € D,. Suppose that the constantg andCy in LemmdXb.ll are chosen suitably.
Then there exists a family of doubling culfeg; };c; ¢ D%, with Q; C R for all 4, such that their
union coversr-almost all R.

The following result is proved i [DM, Lemma 5.31].

Lemma 5.3. Let R € D, and letQ C R be a cube such that all the intermediate cul$es) C
S C R are non-doubling (i.e. belong tB, \ D%). Then

(5.6) o(100B(Q)) < Ay " @=TB=15100B(R)).

Given a ball (or an arbitrary sef} ¢ R"*!, we consider its:-dimensional density:

0,(B) = %.

From the preceding lemma we deduce:

Lemmab5.4. LetQ, R € D, be as in Lemma®’.3. Then
0,(100B(Q)) < Co Ay " @@=/~ g _(100B(R))

and

Z 0,(100B(S)) < c0,(100B(R)),
SEDs:QCSCR

with ¢ depending orCy and Ag.

For the easy proof, see [To3, Lemma 4.4], for example.
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6. GOOD AND BAD COLLECTIONS OF CUBES FROMD,,

6.1. Definition of good and bad cubes.From now on,B and B are the balls in Main Lemma
41 and Lemm&4l]2. To simplify notation, we denate= A~*, so thatBy is w*?-(«, (1 — &')71)-
doubling. We consider the dyadic lattice of Lemimd 5.1 asdediwith the measure = w”5|9p,,
and we denote this b, to shorten notation.

We now need to define a family of bad cubes. We say¢hatD,, is bad and we write) € Bad,
if Q € D, is a maximal cube which is contained B = aB satisfying one of the conditions
below:

Q) 4 @)
e By = By
pQ) _ 4w (Q)
©2 W(Bo) = (B

where A is some big constant to be chosen below. If the condifion) (Golds, we write() € Bad;
and in the casé (6.2]) € Bad2(R). Thefore,Bad = Bad; U Bads.

We say that) € D, is good, and we write) € Good if @ is contained imBy and @ is not
contained in any cube from the famiBad.

6.2. Packing conditions. Abusing notation, below we writBad; instead ofl J,cg,q4, Q- Notice
that, using the definition dBad;, Bads, and the doubling properties pfandw®z,

_1 (Bady) 1 u(aBy) _
6.3) w'#(Bad;) < A 1“(71wa By) < A7V 2 7B (By) < C A™ YW (By),
( ) ( 1) = ,M(Bo) ( 0) = ,M(Bo) ( 0) = ( 0)
_jw"B(Bads) _w*B(aBy) _
. < g1 (Bady) < AT1EZ 720 <CE)At .
(6.4) p(Bads) < A 75 (By) w(By) < A =77 (Bo) 1(Bo) < C(e") A~ p(Bo)
In view of (4.3) and[(4.b), ifA is large enough, there exist, c; € (0, 1) such that
(6.5) p(Badi N By) < e1 pu(Bo),
(6.6) wa(Badg N BO) < gqw*B (B())

Combining [(6.8),[(64)[(6]15) and (6.6) we obtain that
w®B (Bad N By) < (c, A1 4 £2) w™B (By),
1(Bad N By) < (e, A™! + 1) u(Bo).

Choose nowA so large that, A~! +¢; = 1—¢} andc, A~ +e9 = 1 — &}, for somes}, £, € (0,1).
If we setGo := By \ Ugepaq @ We deduce that

(6.7) w”B(Go) = w*B(By \ Bad) > ¢, w”B(By)
and also that
(6.8) 1(Go) = u(Bo \ Bad) > €} u(By).

Notice that by Lebesgue’s differentiation theoreim,l(6ah) [6.2) we have that

_Lw"B(By) _ dw"B w®B(By)
6.9 AY (Bo z) < A———2  for p-a.e.x € Gy,
(6.9) w(Bo) — dp () < 1(Bo) : ‘
and also
_1_#(Bo) dp 1(Bo) .

, < < A— B-a.e. :

(6.10) A w75 (By) = dus (x) waB(BO) for w*B-a.e.xz € Gy
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We can think ofdfle =: k”B as the Poisson kernel with respectitwvith pole atz 5. What we just
proved is that®? is bounded from above and away from zerd3g apart from a set ofi-measure
zero.

6.3. The growth of w®2 on the good cubes.

Lemma6.1. If Q € D, N Good, 100B(Q) C aBy, and@ N By # @, then

w"® (By)
6.11 w*B(100B <C——20Q)".
(6.11) ( (@) < (B0 (Q)
Proof. Suppose first tha € DI. Then, using also thap is good,

TB( B,
SHI0B(Q) < Cwr(Q) < CAu(@) L),
0
and by the polynomial growth of (6.11) follows.
Suppose now thap ¢ DP. LetQ’ be the cube fromD with minimal side length that contains
Q. If Q' C a By, thenQ’ € Good and we have already shown that (6.11) holds@ér Thus, by

Lemmd5.4 and (6l1), we get

ez (100B(Q)) < C O (100B(Q')) < C“‘Zé/i{) <A Zg)l WM? 1(3]5)0) <4 W;Z(;jf),

and so[(6.111) also holds.

Suppose now that there is not any cuplec D% such that) ¢ Q' C o By. Then denote by)”
the cube containing) which has maximal side length such thadB(Q") is contained imBy. It
turns out that(Q") =, r(By) (for this we use the fact that > 1 and that) N B, # &). Then we
deduce that

0,25 (100B(Q")) < C Oye5(By).
Then applying Lemm@a5.4 again,
O,75(100B(Q)) < C Oyr5(100B(Q")) < C Oye5 (By),
and hence[(6.11) also holds in this case. O
From Lemma&6.J1 we easily get the following.

Lemma6.2. If Q € D, N Good, Q C aBy, and@ N By # &, then

TR
w*B(B(x,7)) < CL(BO) r*  forall z € Qandr > ¢(Q).
1(Bo)
Proof. Notice first that, by Lemmia 4.3, any bal(z, ) with » = r(By) satisfies
w” (By) w"? (Bo)
6.12 w8 (B(z,r)) <1 S ———=7r(By)" S ————1r".
(6.12) (B(z.) 1(Bo) (Bo) 1(Bo)

Suppose now that < c¢r(By) for smallc > 0. Let R € D, be the smallest cube containidg
such thatB(z,r) C 100B(R), so that moreover ~ /(R) andRN By # & (becaus&) N By # 9).
If 100B(R) C aBy (in particular this implies thak € Good), by Lemmd.6.11,

w8 (By) , ovn . W (Bo)
< w(Bo) HR)" ~ 1(Bo)

n

(6.13) w'B(B(z,r)) < wB(100B(R))
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If 100B(R) ¢ aBy, from the factk N By # @ we deduce that ~ ¢(R) =, r(Bp) and so[(6.13)
also holds, because ¢f (6]12).
The lemma follows easily from the previous discussion. O

7. THE KEY LEMMA ABOUT THE RIESZ TRANSFORM ON GOOD CUBES

Key Lemma 7.1. Let 2, u, n, B and By be as in the Main Lemnia 4.1 and Lemimd 4.2. Let also
Q € Good be such that) N (By \ B(zp,n7(B))) # @, 100B(Q) C B, dyr(Bg) < nr(B) and
Q C 00\ B(zp, 27(B)). Forall z € Q we have

*B me(BO)
(7.1) Ry (2)| < ~Bo)

where the implicit constant depends@n ¢, ¢, C1, Co, A andr.

Proof in the casen > 2. Lety : R? — [0, 1] be a radialC> function which vanishes o (0, 1)
and equald onR?\ B(0,2), and fore > 0 andz € R"*! denotep.(z) = ¢ (£) andy. =1 — ..
We set

Rew™ (z) = /K(z — ) ez — y) dw™ (y),

whereK (-) is the kernel of the:-dimensional Riesz transform.

We consider first the case whéhe D%, Take a ballB, centered at some point 6f such that
r(Bg) = % 7(Bg) andu(Bg) 2 u(Bg), with the implicit constant depending @p. Notice that
for anyz € Bg we have thatz — 2| > ¢(n)r(B) > 2r(Bg). To shorten notation, in the rest of
the proof we will writer = T(EQ).

Note that, for every € Q C 09, by standard Calderbn-Zygmund estimates
w*B(B(x,3r(Bg))

TTL
o, @PU0BQ) WP (Q) (B
1(Q) 1(Q) 1(Bo)
where in the penultimate inequality we used tQat D% and in the last one th& < Good.
For afixedz € Q C 9Q andz € R"™ \ [supp(¢r(z — ) w™2) U {zp}], consider the function

wn(2) = E(z — 2p) — / E(z —y) orle — y) dw® (y),
so that, by Remark 3.4,

~

‘férwa (.Z) - RT(BQ)WIB (Z)| S

(7.2) G(z,zp) = ur(z) — /5(73 —y) ¢ (z —y)dw®B(y) form-a.e.z € R

Since the kernel of the Riesz transform is
(7.3) K(z) = ¢, VE&(x),
for a suitable absolute constant, we have
Vup(2) = cn K(z —xp) — cn R(or(- — ) w8)(2).
In the particular case = x we get

Vu(z) =c, K(x —xp) — ¢, Ryw B (),
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and thus

(7.4) R ()] < % + [V (2)].

Observe that, by Lemnia 4.3,
1 5 0(77) Sﬂ] w*B (BO) ]
[z —xp[" ™ r(Bo)" 1(Bo)

Now we deal with the last summand in([7.4). Singeis harmonic inR"*! \ [supp(¢,(z —
Jw®8) U {zp}| (and so inB(z,r)), we have

(75) V@IS f )

From the identity[(Z.2) we deduce that

|V, (z)] < %]{B(x’r)G(z xp)dm(z ][B(wr /5 z—y)Yr(x —y) dw™ (y) dm(z)

(7.6) =14+1I
To estimate the termh/ we use Fubini and the fact thalpp Y, C B(zx,2r):

S dm(z) dw™ (y)
Tn+2 /yGB(x 2r) /zeer |Z— |n [z =yt

< .Z' 2T)) < w*B (3BQ) A IB(BO)
~ 7"" ~oow@ Y7 wu(Bo)
where the last inequality follows from the fact th@tc D% N Good. We intend to show now that
WEB
I=< ﬂ Clearly it is enough to show that
1(Bo)
1 w*B (BO)
7.7 -Gy, z)| S ———= forally € B(x,r) N 1.
(7.7) " |G(y, zB) 11(Bo) y € B(z,r)

To prove this, observe that by Leminal3.5 (Wwith= B(z,7), a = 26, 1), forally € B(z,r) N Q,
we have

wa(B(x,Qéo_lr)) > inf wZ(B(:E,%o_lr))r"_l |G(y,zB)|.
z€B(z,2r)NQ

On the other hand, by Lemrha B.1, for ang B(x,2r) N €,

o (B(a, 250 1r)) > PB@:20) | w(Ba)

~ 7/.77/ rn
Therefore we have
1(Bg)

Tn

WP (B(x,200 1)) > "Gy, zB)l,

and thus
w?B(B(z, 250_1r))

1(Bg)

1
|Gy wp)| €
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Now, recall that by constructiop(Bg) > u(Bg) > u(Q) andB(x, 28, 'r) = 26,"' By C 3By,
sincer(Bg) = %r(Bg) and sincey € D N Good, we have
wa(B(:E,N%O_lr)) < w*B(3Bg) <4 wa(BO).

1(Bg) Q) 1(Bo)

So [7.7) is proved and the proof of the Key lemma is completbércase: > 2, Q € D%,

1
(G2l £

Consider now the cas@ € Good \ D¥. Let Q' € D be the cube with minimal side length
such thatQ ¢ Q" C aBy \ B(zp,47(B)). If such cube does not exist, we I&X € D, be
the largest cube such thg ¢ Q' C aBy \ B(x, 4r(B)), so that/(Q") ~ r(By) (because
Q' N (By \ B(zp,nr(B))) # @). Forallz € Q then we have

w?B(100B(P
> (100B(P))

(78) ’RZ(Q)wa (Z)’ < ’RE(Q/)CUEB (Z)’ + C E(P)n

PeD,:QCPCQ’

In any case, the first term on the right hand side is boundeaime onstant multiple o%.

This has already been showr()f € D%, while in the cas®)’ ¢ D, since/(Q’) ~ r(By) we have
waBH < 1 < w*B (BO)
(@)™~ r(Bo)* ~ w(Bo)

IRegryw™® (z)] <

by Lemmd4.B.
To bound the last sum i (7.8), we first notice that evBrg D, such that) c P C Q' isin
D,, \ D% and thus, by Lemmia 5.4, we obtain

w®B(100B(P)) _ w®B(100B(Q"))
Z @(P)" 5 E(Q’)" .

PED,:QCPCQ
Since()’ satisfies the assumptions of Lemima 6.1,[by (6.11) we have
WP (100B(Q’)) _ w"(Bo)
(" ~ w(Bo)
So [7.1) also holds foR € D,, \ DP. O

Proof of the Key Lemma in the planar casen = 1. We note that the arguments to prove Lemma
[3.3 fail in the planar case. Therefore this cannot be appbegrove the Key Lemma and some
changes are required.

We follow the same scheme and notation as in the aase2 and highlight the important modi-
fications. We start by assuming th@te D and claim that for any constantc R,

1 w5 (Q)
+ .
|z —zp| Q)
To check this, we can argue as in the proof of the Key Lemma for2 to get

1 me(B())
+ |Vur ()] <) ————=.
g Ve S T

79  |[Rw()] < % L [6lzs) ol dmy) +

T

(7.10) IRrwP(z)] <



16 MIHALIS MOURGOGLOU AND XAVIER TOLSA

Sinceu, is harmonic inR?\ [supp(¢,(z — ) w*?)U{zp}] (and so inB(z, r)), for any constant
o' € R, we have

r

1
Vur(x) < 1 ]{B @) =l

Note that this estimate is the same as the one ifid (7.5) ircdlsen > 2 with o/ = 0. Let
o =a+ B [(z—y)dws (y) wheres = fp  E(z — z)dm(z). From the identity[(Z]2), we
deduce that

r

1
V()] < & ]{B |GGz —alan(?

trf [ B - e i)
(7.11) =T +1I,

foranya € R.
To estimate the termh! we apply Fubini:

el ey - 8 ) drty)
T JyeB(z,2r)J2€B(x,r)

Observe that for alj € B(x, 2r),
f o - -sldme S
z€B(x,r)

since&(-) = —¢; log| - | is in BMO. So, by the choice aB, and that € D% we obtain
W (B(r,2r)) _ "R (100B(Q)) _ w(Q)

r ~ou@) Y (@)
Hence [(7.B) follows from (7.10)_(7.11) arid (7.12).

Choosinga = G(z,xp) with z € B(z,r) in (Z.9) and averaging with respect Lebesgue measure
for suchz’s, we get

. 1
Rere(@)] < 5 [ oy Gs) = Glasizn) dm(y) dmz) +
B(x,r)x B(x,r

(7.12) IT<

w(By) | w™(Q)
1(Bo) w@)

where we understand thét(z,zp) = 0 for z ¢ 2. Now fory, z € B(z,r) and¢ a radial smooth
function such that = 0in B(0,2) and¢ = 1in R\ B(0, 3) we write

25 (Gl o) — Gevan)) = log =20 = [ 1o E= (e

(o Je—as (s—w> - g >
‘<1°g|y—:c3| /M ) 18—

5_3: |Z_£| T
- - B :Az z*
fa1=2 (557) e =g @ = a5,

Notice that the above identities also hold/if: ¢ Q2. Let us observe that

~1 and 2= ¢
ly — B ly — ¢

|z — zp|

~1 for¢&¢& B(xz,2r).
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We claim that

25 (B(x, 200"
(7.13) A< —Y ( (x; 0 1)) S
1nfz€B(:c,2r)ﬂQw (B(:L'7250 T))

We defer the details till the end of the proof. Then, by Leninih ®e get

B
inf CUZ(B(Z?,Q(S(]_lT‘)) > N(B(x72T)) > /‘( Q)'
z€B(z,2r)NQ r r

and thus
Ayl w?? (B(x,25 ")) < w(Q)
ro 1(Bg) ~ou@)

by the doubling properties @ (for w®2) and the choice oﬁQ.
To deal with the terni3,, . we write:
dw®? (€
=)

Byl < | (
B(z,3r)
So we have

// Byl dm(y) dm(z) < 7* /
B(z,r)xB(z,r) B(z,r) J B(z,3r)

Notice that for all¢ € B(x, 3r),

/B(w r)

So by Fubini and) € D% we obtain

log
Iy alr

log

de d
= 5|‘ W () dmly).

log < re.

ly — él‘

1 wB(B(xz,3r)) _ w'B(Q)
_ < <
75 //B(z,r)XB(x,r) [By.q| dm(y) dm(z) 5 r ~ou(@)

Together with the bound for the terrh, ., this gives

< wP(Q) | w'B(By) o wP(Bo)
~ NA )

1(Q) 1(Bo) 1(Bo)
where the last inequality follows from the fact ti@te Good.

|7€7«me (3:)|

It remains now to show (7.13). The argument uses ideas amadap the ones for the proof of
Lemmad3.b with some modifications. Recall that

_ e 2Bl —u R
Ay,z - Ay,z(mB) - log ’y o xB‘ /E;Qqs < r > log ’ o g’ dw (6)

|z — zp]
ly — xp
wherey, z € B(x,r). The two functions

— Uzy,2(7B)

cw?(B(z,250"'r))
inszB(x,Zr)ﬁQ wé(B(x, 250_1T))

qg— Ay -(q) and q+—
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are harmonic if2 \ B(x, 2r). Note that for all; € 0B(x, 2r) we clearly have
cw?(B(z,200 1))
inf ¢ po,2rno wi(Blz, 260 ')
SinceA, .(q) = 0 forall ¢ € 092\ B(x,3r) except for a polar set we can apply the maximum

principle in [Hel, Lemma 5.2.21] and obtain (7113), as deir
The case&) ¢ D% can be handled exactly as for the case 0f 2 and the proof is omitted. [

[Ayz(g)] < e <

From the lemma above we deduce the following corollary.
Lemma 7.2. Let(, u, n, B and By be as in the Main Lemnia 4.1 and Lemimd 4.2. Let
Go = Go \ B(zp,nr(B)).
For all z € G, we have

TR w"b (BO)
(7.14) Raw™(x) < m,

with the implicit constant depending en A, ¢, ', 1, do, 7.

Proof. We need to show that for all € éo and allt > 0,

TB (4 me(BO)
(7.15) R ()] £ S,

Recall that the cubes from®,, are only defined for generatioris> 0. However, by a suitable
rescaling we can assume that they are defined: for kq, whereky € Z can be arbitrary. So we
suppose that there are culigs= D,, such that’(Q) > r(B).

Denote byg, the family of the cubes) € Good such thatQ N (B, \ B(zp,nr(B))) # 2,
100B(Q) C B, éor(Bg) < nr(B), andQ C 09\ B(xp, 4 r(B)), so that[(ZI) holds for all
z2€Q g,

Givenzx € 50, let Q. be the maximal cube frorgi, that containse. From the definition 0@0
andg, it follows that such cubé&), exists and/(Q..) ~ r(B) ~ r(By), with the implicit constant
depending ony, 1, anddy. Given0 < t < ¢(Q.), let P € D, be the cube containing such that
((P) < t < £(P), whereP stands for the parent @?. Note thatP, P € G,, and by the Key Lemma
[71, we have (Bo)

T < W (Bo)
R @] < =gy

Then, taking also into account Leminal6.1, we get

(R (2)] < |Ry(py®® ()] + %w)
< w¥E (By) wa(B(f’e(ﬁ))) _ wa(BO).
#(Bo) Py~ ulBo)

In the case > ¢(Q.), using that/(Q..) ~ r(By) together with a brutal estimate and Lemmd 4.3
we obtain I I . (Bo)
wrB w*B (B
Rw B (x)| S < S .
R D] % 4G = Wy~ aiy)
So the proof of{(7.15) is concluded. O

A
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8. PROOF OF THEMAIN LEMMA [4.7]
Recall thato = By \ Ugep,q @ and that in[(6.7) and (6.8) we saw that

(8.1) wB(Go) > 4w (By),  u(Go) = € u(Bo).
By Lemmd6.2 is clear that there exists some congfarguch that
TB
(8.2) w*B(B(z,r)) < Cs w'(Bo) r"  forallz € Gp and allr > 0.
1(Bo)
Recall also that in Lemnia 7.2 we introduced theGgt= Gy \ B(zp,nr(B)) and we showed that
wrB (BO) ~
8.3 R.w™(x) S ————= forallz € Gy.

We intend to apply the following T1 theorem:

Theorem 8.1. Let v be a compactly supported Borel measur&ih Suppose that there is an open
setH c R¢ with the following properties.

(1) If B, is a ball of radiusr such that/(B,.) > Cyr", thenB, C H.
(2) There holds thaf]Rn\H R.vdy < Cs||v].
(3) v(H) < d1|lv||, whered; < 1.
Then there is a closed sétsatisfying thatz ¢ R?\ H and the following properties:
@) v(G) Z (v
(b) v(G N B,.) < Cyr™ for every ball B, of radiusr.
©) MeRu fllr2) S 11flln2) for everyf € L2(v) such thasupp f C G.
The implicit constants in (a) and (c) depend onlyrgnl, Cy, C5, andd;.

This result is a particular case of the deep non-homogen€bukeorem of Nazarov, Treil and
Volberg in [NTrV] (see also [Vo] and [Td2, Theorem 8.14]).

Set (Bo)
_ pw(Bo) g
- wa(BQ) w ’(XBO'
Observe thafjv|| ~ u(By), becausess (aBy) < (1 — ') 1w (By). Also, by [8.2),
(8.4) v(B(z,r)) < Cs3r™ forallz € Gy and allr > 0.

From this fact, it easily follows that any balt, such that/(B,) > 2"Csr™ does not intersedf.
Indeed, if there exists € Gy N B, then

v(B(z,2r)) > v(B,) > C3(2r)",

which contradicts[(814).
To simplify notation, we denote

B, = B(zp,nr(B)).

There are two alternatives: eithets (B, N Gy) > %2 w*B(By) orw”B(B, N Gp) < %2 w®B(By).
In the first case, froni_(6.10) we deduce that

(Bo) _ & pys ©

1 1
TB
M(Bn N Go) > —w (Bn N GQ) xB(B()) 24 M( 0) = 202 A M(B)7
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by (4.4). So lettingr = £,/(2C>A) (which does not depend oy), the alternative (i) of the Main
Lemmd4.1 holds.
In the second case, from (8.1) we infer that

_ / /
W (Go) = W™ (Go) = w"™ (B, N Go) > ehw™ (By) = 2 w" (Bo) = 2w (By).
We consider a closed s€t C G with ™= (G) > 2 w™ (By), which is equivalent to saying that

v(Gh) > 2 v(By), and we denotél = a By \ G;. Because of the discussion just bel@w18.4), the
assumption (1) of the theorem holds with = 2"C5. Further, since/(By) ~ v(aBy), we have

- /
v(Ch) 2 e 2 v(aB),
and thus

(1) = vaBy) - (@) < (1= %) viaBo) = (1-c2 ) oL

which ensures that the assumption (3) holds withk= 1 — ¢ %
To check that the assumption (2) is satisfied, note that

1(Bo)  up  1(Bo)

_ _ B
= 7(,‘)%3 (BO) w 7B (B()) w |(aBO)C>

and then it holds that

1(Bo) , 1(Bo) ,
* < — * B IS — * B o c).
RI/_wa(BO)Rw +wa(BO)R(w ‘( Bo))

By (8.3), foranyz € aBy \ H = G4, the first term on the right hand side is uniformly bounded by

some constant’. On the other hand, using tha C B, and taking into account Lemma 4.3, for
the last term we have

1(Bo)

p(Bo) w((aBo)?) o p(Bo) L
w”B(By) '

“wB(By)  r(Bo)® "~ w®B(Bo) r(Bo)" ~

Ra(w™[(apo)e) (#) S

So we gefR.v(z) < 1, for v-a.e.x € H¢, which yields (2) in Theorermn 8.1.
We can now apply Theoreim 8.1 to obtaihc G; € Gy C By such that

@) v(G) 2 [lvll = n(Bo) ~ pu(B).

(b) v(G N B,) < Cyr™ for every ballB, of radiusr.

© leRuflle2w) S I fllz2q) forevery f € L?(v) satisfying thatupp f C G.

Recall now that, by (619),

LYB — duw™” ~ wa(BO)
dp 1(Bo)

.
=
»
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and thatr = wi‘g%)o) k™5 plap,. First this implies thap(G) ~a ., 1(By), and second, for any
f € L?(n) supported irG it holds that

t/\Rﬂdeuma/\waPdv
G G

_ _ B _1M v ’ vix

- | K@= nrwurm) SgSlaw)| aew)
B (p _17&]”3(30) 2 v(x

< [ @i @) S a)

~Ja

~ [ @) duo)
G

This concludes the proof of the Main Lemmal4.1.

9. PROOF OFTHEOREMI[L.]

In this section we will assume th@tandy. satisfy the assumptions in Theoreml|1.1. For the proof
we will need to work with the dyadic lattice of David-Mattifeom Sectior b with the associated
measurer = p. This new dyadic lattice is now denoted BY,. Recall that the cubes frof, are
only defined for generation's > 0. However, by a suitable rescaling we can assume that they are
defined fork > ko, wherek, € Z can be arbitrary.

9.1. The Final Lemma and the good\ inequality. Our next objective consists in proving the
following.

Lemma 9.1(Final Lemma) For everyR € D’ there exists a subsétr C R with 1(Gr) 2 p(R)
such thatRMGR : L*(ulgp) — L*(u|cy,) is bounded, with norm bounded above uniformly by some
constant depending on the various constants in the assonsptif Theorer 11.1.

Recall that by standard non-homogeneous Calderon-Zydnthweory, the boundedness of the
operatorr,, . L*(ulap) — L*(ule,) implies thatR. is bounded from the space of finite real
Radon measurel/ (R"+1) to L1>°(u). Seel[To2, Chapter 2], for example. Then, from Lenima 9.1,
we deduce Theorem 1.1 by means of the following result:

Theorem 9.2. Let , be a Radon measure measureRfit! such thatu(B(xz,r)) < Cr" for all
r > 0. Suppose that the constafig in the construction oD, in Lemmd 5.1l is big enough and let
6o > 0. Suppose that for every cubeec ijb there exists a subsétr C R with 4(GRr) > 6ou(R),
such thatR., is bounded froml (R™) to L1°(u|¢,, ), with norm bounded uniformly oR. ThenR,,
is bounded inLP(u), for 1 < p < oo, with its norm depending omand on the preceding constants.

This theorem is a variant of Theorem 2.22 fram [[To2]. In factthis reference the theorem is
stated in terms of “true” dyadic cubes and it is proved by gisirsuitable good inequality. Similar
arguments, with minor variations, work with cubes from thttiteD,,. Below we just give a brief
sketch of the proof, which highlights the modifications riegd with respect to Theorem 2.22 from
[To2].
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Sketch of the proof of Theorém 9 Renote by)M,, the centered Hardy-Littlewood maximal opera-
tor:

1

Arguing as in Theorem 2.22 from _[T02], it is enough to showtttea all ¢ > 0 there exists
~v = v(e) > 0 such that for all\ > 0,

01 p({w: Ryuf (@) > (14 A, Mf(2) < 90}) < (1- %) p({z: Ry f(z) > A})

for every compactly supportefic L'(p).
Denote

O = {2: Ryaf(z) > A},

The first step to prové (9.1) consists in decomposingp N2, into Whitney cubes from the David-
Mattila latticeD,,. Let us remark that in Theorem 2.22 from [To2], the Whitnegateposition is
performed in terms of “true” dyadic cubes frdR#*!. The analogous result with the David-Mattila
cubes is the following.

Claim 1. Assume that the cubes frdi, are defined for the generatiors> ko, with kq € Z small
enough. Then there are cub@s € D,, such that

O Nsuppp = | Qs
iel
and so that for some constarifs > 10* and D, > 1 the following holds:

(i) 10*B(Q;) c Q) for eachi € I.
(i) ToB(Q;) N Qe +# o for eachi € I.
(iiiy For each cubey);, there are at mosD, cubesQ; such thatl0* B(Q;) N 10'B(Q;) # .
Further, for such cube®);, Q;, we have/(Q;) ~ £(Q;).
(iv) The family of doubling cubes
{Qj}jes ={Qi}icr NDY

satisfies
1
(9-2) u( U Q;») > 5 (),
jES
assuming the paramet€r, in the construction ob,, in Lemma5.]1 big enough.

Using the above decomposition, by arguments which are \iamjas to the ones in the proof of
Theorem 2.22 froni [Td2], one proves that fora# 1N .S,

C
u({e € Go, : Ryuuf (@) > (14N, Muf (@) <A} < = (@),
and then one shows that this implies {9.1) and the theordowfel O

The arguments to prove the Claith 1 are quite similar to thes daeLemma 2.23 of Theorem
2.22 from [To2]. However, the proof of the property (iv) is mdricky and so we show the detalils.
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Proof of Clain{1.Note that the open sél, is bounded (sincg € L'(u) is assumed to be com-
pactly supported). So assumikg € Z to be sufficiently small (recall the comment at the beginning
of Sectior{ 9), the existence of cubes fréime D,, with £(Q) ~ diam(£2,) is guarantied and so by
standard arguments one can find cu@esc D,, satisfying the properties (i) and (ii) above. Indeed,
the cubeg);, i € I, can be defined as follows. Léet< §; < ﬁ be some small constant to be fixed
below. Then, for all: € supp 1 N Q, letQ, € D, be the maximal cube containingsuch that

(9.3) Q) < 61 dist(x,0Qy).

Let {Q;}icr be the subfamily of the maximal and thus disjoint cubes /&P } »csupp un, - The
properties (i) and (ii) are immediate (assumingsmall enough). On the other hand, (iii) follows
easily from the following:

(iy If 10'B(Q;) N 10"B(Q;) # o for somei,j € I, then|J(Q;) — J(Q;)| < 1, assuming
91 small enough in[(9I3) (heré(Q;) and J(Q;) are the generations to whiah; andQ;
belong, respectively).

To prove this, take,j € I as above. By definition, there exists some pginte @); such that
0(Q;) < 61 dist(ps, 002)). So for anyp; € @Q;, by the triangle inequality

0(Qi) < 61 (Ipi — py| + dist(pj, 0)).

From the conditionl0*B(Q;) N 10*B(Q;) # @, we getp; — p;| < C(Ao, Co)(U(Q:) + £(Q;))
and thus

K(QZ) < C(AQ, CO) (E(Qz) + E(Qj)) + 0 diSt(pj, aQ)\)) .
On the other hand, from the definition &(),) we infer that the parer@j of Q; satisfies

Ag £(Q;) = U(Q;) > by dist(p;, 02y).
So we derive
0(Q;) < 01 C(Ag, Co) (€(Q:) + £(Q;)) + Ao £(Q;).
Takingd; small enough (depending oty andCy), this implies that
£(Qi) <240 £(Qy).

Since the side-lengths of cubes frdm, are of the form56CAE, k € Z, and Ay > 2, the above
estimate is equivalent to saying that);) < A, ¢(Q;). By analogous arguments, it follows that
0(Qj) > Ap£(Q;), and so (iii’) is proved.

Finally, we show that the property (iv) holds.df; € I\ S, then

u@ﬂéwmwmmﬁééyﬂ¢MQm,

by (5.3), assuming’y > 100. Then we deduce

(9.4) S w@) < o 3 w(10'B@Q))

iel\S Yiens

To bound the last sum we need to estimate the number of a@hes € I\ S, such thatr €
10*B(Q;), for a givenz € supp p. From the property (iii") it is clear that such cubes can bglat
most to two different generations. Since the cuesi € I \ S, are not fromefb, by construction

we haver(B(Q;)) = Ag‘](Q’i). So all the cubeg); of a given generatiod, such thatr € 10*B(Q;)
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are contained(z, 2-10* Ag‘]o). Since the ball3(Q);) of a fixed generatiod, are disjoint, arguing
with Lebesgue measure, we have

A7) b e 1\ 5 2 € 10'B(Q:) and J(Q;) = Jo} = ST r(BQ)H
i€I\S:x€10*B(Q;)
J(Q:)=Jo

Using this estimate and the fact there are at most two pesgéles for/y, we get
#{ieI\S:2e€10'B(Q,;)} <2(2-10H)"t

The key point of this estimate is that the value on the righdhside is an absolute constant that
does not depend on the parametégsand A, from the construction of the lattic®,, in Lemmég5.1.
Then, plugging this inequality intd (9.4) and using alson@ deduce

1 2(2- 101"+t 1
Z wQi) < F/Q Z X101B(Q:) () dp(w) < T#(Q/\) < §M(Q>\)>

ie\S 07 iens

assuming that the paramet€y is chosen big enough in Lemrhab.1 for the last inequality.sThi
yields

(U@) 20 - 3 (@) = i)

jes Je\S
as wished and concludes the proof[of [9.2). O

The next Subsections 9.2-D.5 are devoted to the proof ofitre Eemmd 9.11.

9.2. The nice and the ugly cubes.GivenQ € D%, for A > 0, denote

Q)= {w € Q : dist(z,suppp \ Q) > )\E(Q)}.
Recall that, by the thin boundary propeiity (5.4) and the tlaat() is doubling,

1(Q\ Q) < eAY2 u(3.5Bg) < ¢ A2 u(Q).
Thus, for)\g > 0 small enough,

Q).

N |

1(Qx) >

Now consider an open balt’ whose center lies i), with r(B’) = %040 2(Q), such thafu(B’)

. . 10
is maximal among such balls, and so

1(B') > C(do, Mo) 11(Qre) 2 1(Q).

Suppose that the constafit in the definition of balls with thin boundaries in (#.1) hagbehosen
big enough. Then there is another bAl] concentric withB’, with C;-thin boundary, and such
that250‘1B’ C B C 2.250‘13’. For the proof, with cubes instead of balls, we refer the eednl
Lemma 9.43 of[[ToR], for example. Observe now tliasatisfies the assumptions of Main Lemma
4.1, assumin@’, big enough. Indeed, since

do

(9.5) 2B Nsuppp C 4460 !B’ Nsuppp c Q and B c =B,
2
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we get
1(2B) < p(44807 B') < pu(Q) < Ca(do, Ao) i(B') < Ca(0, o) (% B).

Notice thatCy = Ca(dg, Ag) is an absolute constant which dependsipbut not on other parameters
such as the parameterande’ in Theoreni 111. The existence of a pains as in the Main Lemma
such that[(4.2) holds is guarantied by the assumptions obrene 1.1 applied td3, with ¢y =
C2(d0, Mo)-
By the Main Lemma, one of the following statement holds:
(i) Either
u(B(zp,nr(B))) = 7 u(B),
wherer is some positive constant depending@p ¢, ', C; andC, (but not onn); or
(i) there exists some subsétp C B with u(Gp) > 0u(B), # > 0, such that the Riesz
transformR,, .+ L*(ulc,) — L*(plc;) is bounded. The constafitand theL?(ulc,, )
norm depend only o, ¢, ¢/, C1, Co, andn.

If (i) holds, we say that) is nice, and we writeQ) € A/. Otherwise, i.e., in case (i), we say that
Q is ugly and we write) € U. Clearly, sinc&B Nsupp 1 C Q (by (9.3)), we have:

o If @ € D NN, then there exist&'; = G C Q such that

(9.6) 1(Go) ~ u(Q) and Rils,, 12(lg,) = L2(ul5,) is bounded,
with the implicit constants in both estimates uniform@nFurther,
(9.7) dist(Gg, suppp\ Q) > r(B) 2 £(Q).

o If Q € DPNU, then
(9.8) W(Bep,nr(B))) > 7C (6, o)u(B).
Note that since: 5 € % B, we have
supp N B(xpg,nr(B)) C supppuN B C Q.

Assuming@ € D,‘jb NU, sinceB(zp,nr(B)) is covered by a bounded number of cubes of side
length comparable tgr(B), we infer that there exists a cu% C @ which satisfies:

(9.9) UPg) = nr(B) = C(d, \)n U(Q),
(9.10) 1(Pg) > C (8o, 2o, 7) 1(Q),
and

(9.11) 0,(Fy) > 0(507’7:0’7) 0,(Q).

Consider now the smallest doubling cuBg € D% such thatP, c P C Q. Clearly, P, € Q

and the estimateg (9.9) anid (9.10) also hold \ﬁ@wreplaced byPy. It also easy to see that (9111)
is satisfied:
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Claim 2. Assume € D@ Nu/. Then

C (60, Ao, 7)
n

Proof. Indeed, by Lemma 54, since all the intermediate cupesgith ﬁQ c S ¢ Py are non-

doubling, we have

@u(PQ) > c! @u(ﬁQ) > @u(Q)-

Ou(Po) S ©,(100B(Fy)) < Co A"/ 6, (100B(Py)) < ©,(Py).

sinceJ (Pg) — J(Pg) > 0and®,(100B(Py)) ~ ©,(Py), because?, € DP. O
Note that forQ € D% N1, from the estimate$(9.110) arid (9.11) applied’tn we deduce that

C(,00,Ao)
nn

(9.12) Ou(FQ) pn(Fq) = 0,(Q) Q) > 0,(Q) (@),

assuming; small enough.

9.3. The corona decomposition.In order to prove the Final Lemnia 9.1 we have to show that for
any R € D there exists a subsétr C R with (Gr) ~ p(R) such thaR,,i, .+ L*(ulcy) —

L*(ui|y,) is bounded uniformly orR. If R € N, then we take7p = Gr and we are done. For
a general cub&® € Dﬁb, in order to find an appropriate sétz we have to construct a corona
decomposition ofi| 5.

For everyQ € D% (R) we define a family of stopping cub&sop(Q) C D, as follows:

(@) If @ € NV, then we seftop(Q) = 2.
(b) If @ € U, thenStop(Q) consists of all the cubes froM,, which are contained iy and are
of the same generation as the cuRg defined in Subsectidn 9.2.

Given a cubeP € D,, we denote byMD(P) the family of maximal cubes (with respect to
inclusion) fromejb(P). Recall that, by Lemm@a 5.2, this family coversalmost allP. Moreover,
by Lemmd5.4 it follows that i € MD(P), then

©.(2Bs) < cO,(2Bp).

Given(Q € ijb, we denote
Next(Q) = |J MD(P).
PeStop(Q)

So if @ € NV, thenNext(Q) = @. On the other hand, if) € U/, thenPy € Next(Q), and thus by
(©.12), ifn is chosen small enough in the Main Lemma 4.1,

(9.13) Y OuP)u(P) = 0,(Po) u(Pg) > 20,(Q) n(Q).
PeNext(Q)

We are now ready to construct the family of thep cubes of the corona construction. We will
haveTop = |J;>, Topy. First we set

Top, = {R}.
Assuming thafTop,, has been defined, we set

Topy,1 = U Next(P).
PeTopy,
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Note that the familieNext(Q), with @ € Top,,, are pairwise disjoint. Observe also thatp C
DP(R).
w

9.4. The packing condition. Next we prove a key estimate.

Claim 3. If n is chosen small enough (so that (9.13) holds@oe /), then
(9.14) Y 0u(Q) (@) < Cu(R).
QETop
Proof. For a givenk < 0, we denote
Topk = U Top,,
0<j<k
and also
NF=NnNTopk and UY =un Topt.
To prove [9.14), first we deal with the cubes from the farbilyRecall that, by[(9.13), the cubes
Q from this family satisfy

> OuP)u(P) >26,(Q) uQ),
PeNext(Q)
and thus
1
> 0.QuQ) <5 Z S e )<5 DL 0uQu(@)
QGZ/{éc SequENext (S) QeTop’SJr1
because the cubes froext(Q) with Q € TopO belong toTopchrl So we have
Z O0u(Q) Q) = Z 0,(Q) n(Q) + Z 0,.(Q
QETop QeNE Qeuk
1
<D 0uQu@Q+5 Y Ou@QuQ) +cCup(R),
QeNE QETopk

where we took into account thé&t,(Q) < C,, for every@ € Top (and in particular for all) €
Topy, 1) for the last inequality. So we deduce that

Y 0uQ)u@) <2 Y 0uQ) u(Q) +cCun(R).

QETopk QENF

Letting k — oo, we derive

(9.15) DA )<2 ) 0uQ) Q)+ cCuu(R).
QeTop QeTopNN

Now notice that
Z @u(Q) N(Q) < CCu N(R)a
QeTopNN
using the polynomial growth gf and that the nice cub&3 € Top N N are pairwise disjoint, since
Next(Q)) = @ for such cubes), by construction. O
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9.5. The measurerv and the L1 (v) norm of R.v. Recall that in[(9.6) we have introduced the

good setsf;Q for the nice cubes) € N. In particular, Gr has already been defined in the case
R € N. WhenR € U we set

Gin = <R\ U Q>u U G
QeEN QeN
Note that this identity is also valid iR € V. Sinceu(éQ) ~ u(Q) for every@ € N, we deduce
that
w(Gr) = p(R).
Denoter = l‘|c~;R- To complete the proof of Lemnia 9.1, we wish to show that thexists

Gr C Gg with v(Gg) ~ v(GR) such thatR : L*(vlg,) — L*(v|y) is bounded. The main
step is the following.

V\GR

Claim 4. We have
[Rav|[ 1) < CV(R).

Proof. Given(@ € Top andxz € @, we denote by(x, Q) the radius of the balB(P) with P ¢
Next(Q) such thatr € P. If such cubeP does not exist (for example, becaugec N), we set

r(z,Q)=0.
Forz € R, we write
(9.16) Rev(z) < sup |Rev(x)|+ Z xo(x) sup |Rev(z)|
e>r(B(R)) QETopnid r(B(Q))>e>r(z,Q)
+ Z xo(x) sup  |Rev(z)l].
QETopn NV r(B(Q))=e>0
Observe first that
1l

sup |Rev(x)| < <
b oy RS S Ry)

On the other hand, for € Q € Top NN, we write

<O,(R) <O,(R) 5 C

~

sup  |Rev(2)] S Ra(V100B(Q)) (2)-
r(B(Q))2e>0

Finally, consider case € @ € Top NU. Let P, € Next(Q) be such thaf’, > = (with P, = &
is P, does not exist). Then we have

sup Rev(z)| S Z ©,(1005(5))
r(B(Q))>e>r(z,Q) SE€D,:QDSDP;,

< > 6,(100B(S)).
SEDL:QOSOP;
Recall now the way that the cubé, € Next(Q) has been constructed: there exists some cube
P, € Stop(Q) such that/(P,) ~ £(Q) and P, is the maximal cube fror®®(P,) that containsc.
Then by Lemméa5l4,
Y ©u(100B(S)) < ©,(100B(F;)) S ©,(100B(Q)),
S€ED:PrDSOP,
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taking into account for the last inequality tH&0B(P,) C 100B(Q) and that"(B(P,)) ~ r(B(Q)).
This trivial estimate also yields

> 0,(100B(S)) < ©,(100B(Q)).
S€D,:QDSDP;

So we deduce that, fare Q € TopN U,

sup [Rev(z)| < ©,(100B(Q)) < 0,(Q),
r(B(Q)ze>r(z,Q)

using also thag) € D" for the last inequality.
From [9.16) and the above estimates, we infer that

Rav(r) SOUBR)+ Y xo@0u(@)+ Y xo@)Rulvhoon@)(®)-
QcTopnUd QEcTopnNN
Integrating onR with respect ta/, we get

9.17) Rl SOLR VR + > 0,Qu@Q+ Y. /Q R (V1005(0)) dv

QeTopnUd QeTopnN

N Z 0,(Q) (@) + Z [R«(|100B(@))II L1 (v]0)

QeTop QeTopNN

where we took into account th& € Top in the last inequality. By[(9.14) we know that the first sum
on the right hand side does not excéeg (R). To deal with the last sum, recall first that, by (9.7),

dist(Q Nsupp v, suppr \ Q) > dist(Gg, suppu \ Q) = £(Q).
Thus, for allz € Q Nsupp v,
R*(”’lOOB(Q))(x) < R*(”’lOOB(Q)\Q)(w) + Ra(v]@)(z)
< 6,(100B(Q)) + R (v]@)(#) S ©,(Q) + Ra(vlg)(@).
By the Cauchy-Schwarz inequality we obtain

IR+(vh008@) 121 (w1g) < Ou(@) V(@) + IR(V]Q) | 2(s10) (@)

SinceRMé is bounded inLZ(u|§Q), by standard non-homogeneous Calderén-Zygmund theory, i
Q

follows thatR « is bounded iri/?(méQ), and thus

M\@Q,
IR« L2 w10) = HR*(uI@Q)HLz(M@Q) S u(Go)'? =v(Q)'2.
Therefore,

IR«(v100B@) 21 (v]q) < Ou(@) (Q) +1(Q) < W(Q)-
Since the cubes fromop N N are pairwise disjoint, froni (9.17) we deduce that

IRl SR+ > 1@ S uR) =~ v(R).
Q€eTopnN
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9.6. Proof of Lemmal[9.1. To find the setGr C R with u(Ggr) 2 w(R) such thatR

~

wleg -
L%(u|cr) — L*(i|cy) is bounded (with norm independent B) we just have to apply Theorem
to the measure, with H = &, and take into account that

IR«vlz1y S IVl

and that||v|| = v(R) ~ p(R). This completes the proof of LemrhaB.1, and hence of Thepbrdm 1
(]

10. HARMONIC MEASURE IN UNIFORM DOMAINS

First, in this section we will prove some general estimate®lving harmonic measure and
Green’s function on uniform domains. In particular, we vpitbve Theoreni 113. Finally we will
show how Theorem 11.2 follows from Theorém]1.1 and Thedrein 1.3

LetQ2 Cc R™"! be a uniform domain and lefy € €. Letd(zo) = dist(zg, ). In the caser > 2,
it is easy to check that for all € 0B(z, d(zo)/4),

(10.1) G(xo,y) ~ @)1

In the caser = 1, we have
(10.2) G(z0,y) 2 1.

However, as far as we know, the converse inequality is natagnii@d. On the other hand, by a Har-
nack chain argument it is easy to check &4, y) =~ G(xg,y’) for all y,y' € 0B(xo, d(z0)/4),
where the implicit constant is an absolute constant.

For anyn > 1, for a givenz, € 2, we define

plan) = | Glxo,y) dH" (3),
OB(z0,d(z0)/4)
x so thatG(xg,y) =~ p(xg) for all y € 0B(xg,d(x¢)/4). In the caser > 2, by (10.1) we have
p(z0) ~ d(zo)'~", and in the case = 1, by (10.2) it follows just thap(zg) > 1.

Lemma 10.1. Letn > 1 and letQ) C R™*+1 be a uniform domain an@ a ball centered ad{2 with
radius . Suppose that there exists a point € 2 so that the ballBy := B(xp,r/C) satisfies
4By C QN BforsomeC > 1. Then, for) < r < rq (whererg is some constant sufficiently small),
andt > 0,

(10.3) w®(B) =~ w8 (B) p(zp) ' G(z,zp) forall z € Q\(1 +7)B.

The implicit constant i (1013) depends odly , n, and the uniform character ¢f. The constant
rq depends only on and the uniform character @2, andrg = co whendiam(€2) = oc.

In the caser > 2, (10.3) says that
w®(B) = w™B (B)r" ' G(z,zp) forall z € Q\(1 +7)B.
Recall that the inequality
w®(B) 2 w"B(B)r" ' G(x,x5) forall x € Q\By

is already known to hold for arbitrary Greenian domains,tated in [3.5). To prove the converse
estimate we need to assume the domain to be uniform.
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Let us remark that in Lemma 3.6 of Aikawa’s wolk [Ail] it hasdmeshown that
Ww*(B) S r" Gz, xp)  forall z € Q\By.

Clearly, the analogous inequality in (1D.3) is sharperdast in the case > 2). The essential tool
for the proof of Lemma10]1 is the following boundary Harnaciciple for uniform domains, also
due to Aikawal[Ail].

Theorem 10.2. Let Q ¢ R™*! be a uniform domain. Then there ary > 1 andrq > 0 with
the following property: Let € 02 and0 < r < ro. Suppose:, v are bounded positive harmonic
functions o2 N B(¢, A;r) vanishing quasi-everywhere @2 N B(§, Agr). Then

(10.4) W) 1) gor z,y € QN B(E, 7).

(@) "~ oly)

The constantq, depends only on the uniform character of?, andrg = co whendiam(Q2) = oo.

Proof of Lemmal[10.1. We may assume that< = < 1. Consider the annulus
A = A, (1 +7)r,2r),

where is the center ofB. We coverA, N2 by a family of open ballsB;, ¢ € I, centered at
& € AN Q, all with radius equal te,r, wherec, is some positive constant small enough so that
4A:B;,NB=wforalli e I.

From the discussion above and the Harnack chain conditiennfer that

(10.5) G(y,zp) =~ p(zp) if ly—xzp|~r anddist(y,00) 2 r.
Also, by analogous arguments,
(10.6) w/(B) = w*B(B) if |y —xp| <r anddist(y, 00Q) 2 r.
Therefore, if2B; N 02 = &, then

Y
(10.7) G(y,zB) =~ p(xp) =~ p(rp) :;%(BB)) forally € B; N .

Suppose now thatB; N 90 # &, and take a balB; centered o2 B; N 9 with radiusr(B;) =
4r(B;), so thaB; C B C 4B;, which, in particular, implies thal, B, B = @. For each balB;,
consider a corkscrew point € Bj, thatis, a point:; € B, N such thatlist(z;, 0Q) ~ r(Bj) ~ r,
with the implicit constant depending an A; and other constants above. Then (10.5) and [10.6)
hold fory = z;, and thus also
w"i(B)

w?s (B)
Since A; B/ N B = @, and bothG(-, x5) andw()(B) are bounded positive harmonic functions
which vanish g.e. oB! N 99, by Aikawa’s Theorerh 1012 anfd (10.8) we have

Gy, xp) _ Gzi,zp)  pls)
wY(B) w?i(B) w?B(B)

From [10.T7) and (1019) we infer that

(10.8) G(zi,zp) = p(zp) = p(zB)

(10.9)

forally € B/ N Q.

forally € Ac N Q.

Glov0) ~ plan)
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By the maximum principle, since botfi(-, z3) andw()(B) are bounded positive continuous har-
monic functions iM2 \ B(&, (1 4+ 7)r) which vanish quasi-everywhere (02) \ B(¢, (1+7)r), we

deduce that -
G(y,z5) ~ plap) :}‘;B((B)) forally € Q\ B(&, (1+7)r).

O
Lemma 10.3. LetQ € R"*! n > 1, be a uniform domain and let > 0. Let B, B’ be balls
centered ord(2 so that2B” C B. Then for allz € Q\(1 + 7)B,
w:c(B/) B w:cB(B/)
w(B) T wB(B)’
wherexp € BN is a corkscrew point oB.

(10.10)

Proof. By the Harnack chain condition, we may assume that B\ (1+ 7)B’. By Lemmd 0.1,
we have that for alk € Q\(1 + 7)B,

w*(B) = w"B(B) p(zp)~" G(x,xp),
w(B') m w (B) plzp) ™ Glz, xp),
and

—_

w'?(B') = W' (B) p(xp) " G(zp, zB).
So
WH(B) _ w (B pla)” Gla,ap) _ w'(B) G, 2p)
w*(B) ~ w*B(B)p(xp)  G(x,zp)  w*B(B) p(zp)'G(z,zp)G(rp,zp)
Thus the result will follow once we show
(10.11) G(z,zp) ~ plep) Gz, z5) Glzp, zp).

By the Harnack chain condition, it is immediate to check that holds ifr(B) ~ r(B’). Suppose
that this is not the case, and assume thenith&t) < ror(B), for some0 < 7y < 7 A" to be

fixed below. So if we consider an auxiliary ba concentric withB’ of radiusr(B) = 7 r(B),
then we have

B' c BC2A4,BcC (1+7)B.
In particular, this tells us that ¢ 2A,B, and thus the function, = G(z,-) is harmonic and
bounded inA,B. Further, by takingry small enough, we also haves ¢ A1 B, and then the
functionv = G(x,-) turns out to be harmonic id, B too. Letzz € B be a corkscrew point of
B. Note that by the Harnack chain condition,
u(rg) =G(r,25) = G(z,vB),
and also
v(rg) = G(rp,v5) ~ p(zB).
Since both functions andwv vanish quasi-everywhere &2, by the boundary Harnack principle of
Aikawa,
G(z,zp) N u(zpr) _v(zp)
G(z,xp) — u(zy) — v(zp)
which proves[(10.11) and thus the lemma. O

~Glep,rp) plep) ™
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Remark 10.4. Let) C R™*+1 n > 1, be a uniform domain and let > 0. Let B be a ball centered
on 9f. By the preceding theorem, for alle Q\(2 + 7)B,

wB(2B)

W 2B) ~r

w?(B).

So ifw”B(B) ~ 1, then we deduce that
w*(2B) ~; w"(B)

In particular, if() satisfies the so callechpacity density conditiorthenw®?(B) = 1 for every ball
B centered odS2 and thusv® is doubling. In this way, we recover a well known result of Aika
and Hirata[AH]A

Now we are ready to prove Theorém]1.3, which we state agaafhethe reader’'s convenience.

Theorem. Letn > 1 and letQ) be a uniform domain iiR"*!. Let B be a ball centered a®<}. Let
p1,p2 € Q such thadist(p;, B N 0Q) > cgl r(B) fori = 1,2. Then, forallE C BN 0,

wPb1 (E) N wp2(E)
wPi(B) ~ wP2(B)’
with the implicit constant depending only anand the uniform behavior of ¢?.

Proof. It is enough to show that for any< Q such thatist(p, B N 9Q) > ¢; ' r(B),

wP(E)  w"2(E)

wP(B) " w*s(B)’

By Lemmd_10.B and the Harnack chain condition it turns out®@12) holds in the particular case
whenFE equals some bal’ such tha B’ ¢ B. Then, the comparability (10.112) for arbitrary Borel
setskE follows by rather standard arguments. We show the detailthéoreader’s convenience.

By taking a sequence of open balls containiBgvith radius converging te(B), it is easy to
check that we may assume the bBllto be open. For an arbitrary > 0, consider an open set
U C B which containsE and such thav? (U \ E) < e. By Vitali’s covering theorem, we can find
a family of disjoint ballsB;, i € I, centered afv, with 2B; C U for everyi € I, and such that
Uier Bi coversw®-almost allE. So we have

w*B (B
SCEWLIE e Y (s

(10.12)

w
rB B rpB B
< o) < 28 (@) +e).
Lettinge — 0, we get
W(E) _ w'B(E)
wP(B) ~ w'B(B)
The proof of the converse estimate is analogous. O

Finally we show how Theorefn 1.2 follows from Theorem| 1.1 imbination with the preceding
result.

Lin fact, in [AiH] it is shown that, under the capacity densiiyndition,w” is doubling for the larger class of semi-
uniform domains.



34 MIHALIS MOURGOGLOU AND XAVIER TOLSA

Proof of Theorem[1.2. The arguments are very standard but we give the details éorehader’s
convenience again. We assume that, for some point(2, there exist, e’ € (0,1) such that for
every (2, cqp)-doubling ball B with diam(B) < diam(2) centered abdf? the following holds: for
any subset C B,

(10.13) if w(E)<ewu(B), then wP(E) < wWP(B).
Fix E andB as above, so that(E N B) < eu(B). Letxp be a corkscrew point forB. That is,

xp € kBN Q satisfieddist(zp,9Q) = r(B). By the assumptio (10.13)?(F) < &’ wP(B), and
then by Theorerm 113 we deduce that

W(E°NB) _ "B (E°NB)

O Tam S Tem
and thus
WB(ENB) < (1-C711—¢)w™(B).
So the assumptions of Theoréml]1.1 are satisfied and fepég bounded inL?(1). O

11. THE CASE WHEN IS AD-REGULAR

Recall that if is ann-dimensional AD-regular measure Ri*™! and R, is bounded in?(u),
then y is uniformly n-rectifiable, by the Nazarov-Tolsa-Volberg theorem[in [NTp So from
Theorem$ 1)1 we deduce:

Corollary 11.1. Letn > 1 and let0 < x < 1 be some constant small enough depending only
onn. LetQ be an open set ilR"*! and ;. be ann-dimensional AD-regular measure supported
on 9. Suppose that there existe’ € (0,1) such that for every balB centered atupp i with
diam(B) < diam(supp ) there exists a pointz € xB N €2 such that the following holds: for any
subsetF C B,

(11.1) if u(E)<ew(B), then w’B(E) <& w8 (B).
Theny is uniformlyn-rectifiable.

Given a Radon measuse we writeo € A, () if there exist, e’ € (0, 1) such that for every ball
B centered atupp p with diam(B) < diam(supp u) the following holds: for any subséi C B,

if wE)<euB), then o(FE)<¢eo(B).
From Theoreni 112 we obtain the following:

Corollary 11.2. Letn > 1,  be a bounded uniform domain & +! and i be ann-dimensional
AD-regular measure supported a@f2. Letp € € and suppose that? € A, (un). Thenpy is
uniformly n-rectifiable.

It is worth comparing Corollary_ 1111 with the main result bétwork [HMZ2] of Hofmann and
Martell, which reads as follows:

Theorem A ([HM2)]). Let) be an open set iR"*!, withn > 2, whose boundary is-dimensional
AD-regular. Suppose that there exists some congtgnt 1 and an exponent > 1 such that, for
every ballB = B(x,r) withz € 99, 0 < r < diam(2), there existsep € Q N B(z, Cgr) with
dist(xp, 9Q) > Cg 'r satisfying
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(a) Bourgain’s estimatew®s (B) > Cﬁ‘l.
(b) Scale-invariant higher integrabilityy < H"|sq in C7B and

dwl’B p
(11.2) / < " (y)) do(y) < C¢ H™(C7B N o) P,
crBroa \ dH
where(? is a sufficiently large constant depending onlyroand the AD-regularity constant of
oq.

Thenos2 is uniformlyn-rectifiable.

Observe that the assumption (a) in the last theorem is giirdary Lemma 3.1 if we assume that
xp € 0B = k2B, taking into account the AD-regularity 6K). So if moreover we assunie; > 2,
then from the conditior (111.2) in Theorem A, for any &tC 2B, writing o := H"|5q, We get

w2 (B) = [ S wdoty)

<o(B)'" < /2 ; (dzzs (y))p do(y)> " < Cso(E)/ o(C1B)" 7,

Using the fact thatr is doubling and the condition assumption (a) in the Theorewefobtain

<o (55)" < (28) " oo

This implies that the conditiori (11.1) in Corolldry I11.1 thvi, = o, is satisfied by2B. Thus the
corollary ensures thalf2 is uniformly rectifiable. To summarize, Theorem A is a conszge of
Corollary[11.1 if we we suppose that > 2 and we replace the assumption (a) in the theorem by
the (quite natural) assumption thag € dyB.

On the other hand, note that the supporj.ah Corollary[11.1 may be a subset strictly smaller
thanod2 and so this can be considered as a local result. Observehalsm the corollary we allow
n = 1 and we do not ask the poleg for harmonic measure to satislist(zz,0Q) 2 r(B),
unlike in Theorem A. However, this latter improvement isyompparent because, as Steve Hofmann
explained to us [Hol, it turns out that the assumptlon ([Livilies thatdist(x 5, 92) = r(B) when
1 is AD-regular.

In connection with harmonic measure in uniform domains,rhnfn, Martell and Uriarte-Tuero
[HMU] proved the following:

Theorem B ([HMU)). Letn > 2, Q be a bounded uniform domain R"+! whose boundary is
n-dimensional AD-regular. Let € Q and suppose that? € A, (H"|sq). ThendQ is uniformly
n-rectifiable.

Corollary[11.2, which also applies to the case- 1, can be considered as a local version of this
result, because the supportofs allowed to be strictly smaller thai(), analogously to Corollary

11.1.
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