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THE RIESZ TRANSFORM AND QUANTITATIVE RECTIFIABILITY FOR GENERAL
RADON MEASURES

DANIEL GIRELA-SARRION AND XAVIER TOLSA

ABSTRACT. In this paper we show that ji is a Borel measure ilR™*! with growth of ordern,
so that then-dimensional Riesz transfor®,, is bounded inZ?(u), and B C R™*! is a ball with
w(B) =~ r(B)" such that:
(a) thereis some-planeL passing through the center Bfsuch that for somé > 0 small enough,
it holds

dist(z, L)
———du(z) < du(B),
/B B @) <Iu(B)
(b) for some constart > 0 small enough,

[ 1RA@) = (R d(o) < e (),

wherem,, g(R,1) stands for the mean @&,1 on B with respect tq.,
then there exists a uniformiy-rectifiable sel”, with u(I'N B) > u(B), and so that|r is absolutely
continuous with respect t&("|r. This result is an essential tool to solve an old question tmca
phase problem for harmonic measure in a subsequent paperzay Mourgoglou and Tolsa.
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1. INTRODUCTION

In the work [NToV1] it was shown that, given andAD-regular measure ilR"*+!, the L?(u)
boundedness of the-dimensional Riesz transform implies the uniforrrectifiability of x. In the
codimensioril case, this result solved a long standing problem raised bidRad Semmes [D$1].
In the present paper we obtain a related quantitative reslitd for general Radon measures in
R+ with growth of ordern. Our result turns out to be an essential tool for the solutiban old
question on harmonic measure which will appear in a subsequerk by Azzam, Mourgoglou and
the second author of this paper [AMT].

To state our main theorem in detail we need to introduce sategion and terminology. Let
be a Radon measure Ri**!. We say thaj: has growth of orden (with constaniC) if

w(B(z,r)) < Cor™ forallz € R™! and allr > 0.

A measurey is calledn-AD-regular (or just AD-regular or Ahlfors-David regulaif)there exists
some constant’ > 0 such that

C™ " < w(B(z,r)) < Cr™  forall z € supp(p) and0 < r < diam(supp()).
Given a signed Radon measurén R™*! we consider the:-dimensional Riesz transform

Ru(x) —/‘xiﬁdl/( ),

whenever the integral makes sense. &or 0, its e-truncated version is given by

Rev(z) = / — Y du(y).
|lz—y|>e |$ - |n+1
For a positive Radon measyteand a functionf € L} (1), we denoteR, f = R(fu) andR,, . f =
R.(fu). We say that the Riesz transforRy, is bounded in.?(y) if the truncated operator® , . :
L?(u) — L?(u) are bounded uniformly oa > 0.
If 12 is a measure with no point masses such ®gaiis bounded inL?(u:) andv is a finite Radon

measure, the principal value

pvRv(x) = 31_1% Rev(x)

existsyu-a.e. This follows easily from the results of [NToV?2], amggias in[[To2, Chapter 8] with the
Cauchy transform replaced by the Riesz transform. Abusaotgtion, we also writéRv(x) instead
of pvRv(x).

For f € L}, .(n) andA c R™*! with (A) > 0, we consider the.-mean

mya(f ][f = (A)/Afd“'

Also, given a ballB ¢ R"*! and ann-planeL in R**!, we denote

1 dist(zx, L)
58) = e | e dute),

wherer(B) stands for the radius @B. In a sense, this coefficient measures how close the points
from supp p are to then-planelL in the ball B.
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We also set

Ou(B) = n’ PM(B) = ZQ_j @u(sz)-
r(B) =
So00,(B) is then-dimensional density of. on B and P, (B) is some kind of smoothened version
of this density.

Our main theorem is the following.

Theorem 1.1. Let ; be a Radon measure "' and B ¢ R"*! a ball so that the following
conditions hold:

(a) For some constanty > 0, Cy 'r(B)" < u(B) < Cor(B)".

(b) P.(B) < Cy,andu(B(z,r)) < Cor"forall x € Band0 < r < r(B).

(c) There is some-plane L passing through the center &f such that for somé < ¢ < 1, it

holdsﬁﬁ,l(B) <.
(d) R#‘B is bounded |I'L2(/J,’B) with ”RMBHLQ(MB)—)LQ(MB) < (1.
(e) For some constarl < ¢ < 1,

[ 1Ria) = 5(Rp) P ) < < ().

Then there exists some constant 0 such that ifd, ¢ are small enough (depending 6y andC1),
then there is a uniformly-rectifiable sef” ¢ R"*! such that

n(BNT) > 7 u(B).
The constant and the UR constants ©fdepend on all the constants above.

Some remarks are in order. First, we mention that the notfomndorm n-rectifiability will
be introduced in Sectionl 2. For the moment, for the readers@nience, let us say that this a
quantitative (and stronger) version of the notionnefectifiability. The UR constants are just the
constants involved in the definition of uniformrectifiability. We also remark that it is immediate to
check that the condition (b) above holds, for examplge his growth of orden (with constan%()o).
The statement in (b) which involve3, (B) is somewhat more general and it is more convenient for
applications. Finally, we warn the reader that in the caagytlis not a finite measure, the statement
(e) should be understood in the BMO sense. The fact h@B) < oo by the assumption (b)
guarantees tha&k.(x) — m, g(Ru) is correctly defined.

Note that, in particular, the theorem above ensures theeexis of some piece of positiye
measure oB wherey and the Hausdorff measuf¢’™ are mutually absolutely continuous on some
subset of". This fact, which at first sight may appear rather surprisimgne of the main difficulties
for the proof of this result.

It is worth comparing Theoreim 1.1 to Léger’s theorem on Mgraurvature. Given three points
z,7, 2 € R?, their Menger curvature is

1
R(z,y,z)’

whereR(x, y, z) is the radius of the circumference passing through, = if they are pairwise dif-
ferent, and:(x, y, z) = 0 otherwise. The curvature ¢fis defined by

) = [[[ w2 dute) duty) due).

c(z,y,2) =
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This notion was first introduced by Melnikov [Me] when studlyianalytic capacity and, modulo an
“error term”, is comparable to the squaréd(n) norm of the Cauchy transform ¢f (see [MV]).
One of the main ingredients of the proof of Vitushkin’s canige for removable singularities for
bounded analytic functions by Guy David [Da] is Léger'satam [L&] (sometimes called also
David-Léger theorem). The quantitative version of thesaitem asserts thatifis a Radon measure
in R? with growth of orderl and B a ball such thau(B) ~ r(B), and furtherc?(u|g) < e u(B)
for somes > 0 small enough, then there exists some (possibly rotatedjchifz graphl’ ¢ R?
such thatu(BNT) > 1%M(B). In particular, as in Theorem 1.1, it follows that a big pietg:| s

is mutually absolutely continuous with respect#3 on some subset df. In a sense, one can
think that Theoren 111 is an analogue for Riesz transfornthe@fquantitative Léger theorem for
Menger curvature. Indeed, the role of the assumption (ehgofeni 111 is played by the condition
c(u|) < ep(B). Further, it is not difficult to check that this condition itigs that there exists
some lineL such thatBil(B) < du(B), with § = d(¢) — 0 ase — 0, analogously to the
assumption (c) of Theorem 1.1.

On the other hand, from the theorem of Léger described alitdfediows easily that ifH!(E) <
oo andc?(H!|g) < oo, thenE is 1-rectifiable. The analogous result in the codimensiarase in
R+ (proved in [NToV2]) asserts it? ¢ R"*!, H*(E) < oo, H"|g has growth of order, and
IR(H"E)llL2(1m| ) < 00, then E is n-rectifiable. However, as far as we know, this cannot be
proved easily using Theorem 1.1.

The proof of Theorend 111 is substantially different from thee of Léger’'s theorem. When
estimating thel.?(x) norm of Ry we are dealing with a singular integral and there may be ¢ance
lations among different scales. So the situation is moreatel than in the case of the curvature
(1), which is defined by a non-negative integrand (namely, teussgl Menger curvature of three
points).

To prove Theorermn 111 we will apply some of the techniquesldeee in [ENV] and [NToV1]. In
particular, by using a variational argument we will estienfiom below thel.? (1) norm of the Riesz
transform of a suitable periodization of a smoothened warsi the measurg restricted to some
appropriate cub&)y. The assumption thﬁ,ﬁl(B) < din (c) is necessary for technical reasons, and
we do not know if the theorem holds without this condition.

Finally we are going to describe the aforementioned resulh@amonic measure from [AMT]
whose proof uses Theordm 1.1 as an essential tool. For sitgpive will only announce this for
domains();, 2, C R**+! satisfying the condition

(1.2) HE (RN Q)N B(z,r) =~ forallz € 99; and0 < r < rg,

for some fixeds € (n — 1,n + 1], o > 0, whereH?_ stands for thes-dimensional Hausdorff
content. For example, the so-called NTA domains introdunederison and Kenig [JK] satisfy this
condition, and also the simply connected domains in thegplan

Theorem 1.2 (Azzam, Mourgoglou, Tolsa)Let;,Q, C R™!, n > 2, be two disjoint connected
domains withQ' = 9Q? so that [1.1) holds. For = 1,2, letw’ = w):, z; € €, be the respective
harmonic measures with pole at, and letE C 99, be a Borel set. Ifv! < w? < w!' on E,
then E contains an-rectifiable subsef” with w!(E \ F) = w?(E \ F) = 0 wherew! andw? are

mutually absolutely continuous with respect{8.

Up to now this result was known only in the case wlign 25 are planar domains, by results of
Bishop, Carleson, Garnett and Jories [BCGJ] and Bishop [Bif] it was an open problem to extend
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this to higher dimensions (see Conjecture &in [Bi2]). Foadipl result in the higher dimensional
case, see the nice wolk [KPT] by Kenig, Preiss, and Toro.

2. PRELIMINARIES

In this paper we will use the letteks C' to denote constants (quite often absolute constants,
perhaps depending am which may change their values at different occurrences. ti@nother
hand, constants with subscripts, suctCasdo not change their values at different occurrences.

We will write a < b if there isC' > 0 so thate < Cbanda <, b if the constanC' depends on the
parametet. We writea ~ b to mearnu < b < a and definer ~; b similarly.

We denote the open ball of radiusentered at by B(z,r). For aballB = B(z,r) anda > 0
we write r(B) for its radius anduB = B(z,ar). The notationA(z,r,r2) stands for an open
annulus centered atwith inner radius; and outer radiuss,.

Given a cubgy, we denote by(Q) its side length. Unless otherwise stated, we assume that its
sides are parallel to the coordinate axe®R6f!. By aQ we denote a cube concentric withwith
side lengthu?(Q). We write

W)
(e

0.(Q) = PM(Q) = Z 277 @u(QjQ)'

7>0
We also consider the pointwise densities

o u(B(r) e p(Bla,r)
Ot =t S O™ o)~ lima S

A setE C R%is calledn-rectifiable if there are Lipschitz mags: R” — R%, i =1,2,..., such
that

(2.1) H" <E\Liin<R">) =0,

whereH" stands for the:-dimensional Hausdorff measure. Also, one says that a Rad@sure,
onR4 is n-rectifiable if . vanishes out of an-rectifiable set? ¢ R? and moreovey: is absolutely
continuous with respect " .

A measureu in R is uniformly n-rectifiable if it isn-AD-regular and there exigt M > 0 such
that for allz € supp(n) and allr > 0 there is a Lipschitz mapping from the ball B,,(0,r) in R™
to R? with Lip(g) < M such that

w(B(x,r) N g(B,(0,1))) > 6r".

In the caser = 1, it is known thatu is uniformly 1-rectifiable if and only ifsupp(x) is contained in
a rectifiable curv@ in R? such that the arc length measurelois 1-AD-regular.

A setE c R?is calledn-AD-regular if H"|g is n-AD-regular, and it is called uniformly.-
rectifiable if H" | is uniformly n-rectifiable.
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3. THE MAIN LEMMA

3.1. Preliminaries and statement of the Main Lemma. Given two Radon measune ando in
R"*! and a cub&) c R"*!, we set

(3.1) o) =sup [ i~ o),
f

where the supremum is taken over all th&ipschitz functions supported ag. Given ann-plane
Lin R™t! then we denote

1
a(Q) = Q) igng(MaCH"h)'

Givent > 0, we say that) hast-thin boundary if
w({x €2Q : dist(x,0Q) < AN(Q)}) <tAu(2Q) forall A > 0.

It is well known that for any given cub@, ¢ R"*! anda > 1, there exists another culgg with
t-thin boundary such th&, C Q C aQo, with ¢ depending just on anda. For the proof, we refer
the reader to Lemma 9.43 6f [To2], for example.

Main Lemma 3.1. Letn > 1 and letCy,C; > 0 be some arbitrary constants. There exists
A = A(Cp,C1,n) > 10 big enough andt = ¢(Cp, C1,n) > 0 small enough such that & =
§(A, Cy, C1,n) > 0 is small enough, then the following holds. Lebe a Radon measure !
and@, c R"*! a cube centered at the origin satisfying the following prtigs:

(@) 1(Qo) = £(Qo)"™

(b) P.(AQo) < Co.

(c) Forall z € AQp and0 < r < Al(Qo), ©,(B(z,r)) < Co.
(d) Qo hasCy-thin boundary.

(e) aﬁ(?;AQO) < 4, whereH = {x ¢ R"*!: 2, = 0}.

() Ry, is bounded inL?(ulaq,) with R
(g) We have

o 1 L2 (a0 L2 (ulagy) < C1-

/Q Riu() — mye o (Rit)? dpl) < e i(Qo).

Then there exists some constant 0 and a uniformlyn-rectifiable sef” ¢ R**! such that
w(QoNT) > 7 u(Qo)-
The constant and the UR constants ¢f depend on all the constants above.

Note that the condition (c) in the Main Lemma implies thé2Q) < Co u(Qo)-

3.2. Reduction of Theorem [L.1to the Main Lemma. Assume that the Main Lemma is proved.
Then in order to prove Theordm 1.1 it is enough to show theviaiig.

Lemma3.2. Lety and B ¢ R™*! satisfy the assumptions of Theorem 1.1 with const@pis’;,
0, ande. Forall A’ > 10 and all¢,&’ > 0, if § ande are small enough, there exists a cuidg
satisfying:
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(@) 3A'Qy C B anddist(A’'Qy,dB) > C’(’)‘l r(B), with C{; depending only o, andn.
(b) For some constant = (&) > 0, vr(B) < £(Qo) < A~r(B).

©) 1(Qo) > CL(Qo)".

(d) Qo hasC{-thin boundary.

(e aﬁ(?,A’Qo) < ¢, whereL is somen-plane that passes through the center(af and is
parallel to one of the faces.

0 /Q IRiu(w) — myn o (Ryt) 2 du() < &' 5(Q).

Before proving this lemma, we show how this is used to redueoient 1.1l to the Main Lemma.

Proof of Theorem [L.Zusing Lemma[3.2 and the Main Lemma[3.1l Let B ¢ R"*! be some ball
satisfying the assumptions of Theorem| 1.1 with constapts”;, 6, ande. LetQ, be the cube given
by Lemmd 3.2, for some constam$ > 10 andd’, &’ > 0 to be fixed below.

We just have to check that the assumptions (a)-(g) of the Manma are satisfied by the measure

Qo))"
= 1(Qo) :

if A’is big enough and’, ¢’ are small enough. Obviously, the assumption (a) from theaMamma
is satisfied by.
To show that (b) holds (with a constant different frary), note first that

Qo))"

~

L,
w(Qo)
with the implicit constant depending ary, andC{,. Indeed, from the assumption (c) in Theorem
LT, 1(Qo) < Cob(Qo)™, and by (c) in Lemma3124(Qo) > C14(Qo)". Then we have

Pa(A'Qo) SPu(AQo) = > 270,@AQ)+ > 270,(274Qu).
j>0:27A’QoCB j>0:29A'Qo¢ B
The first sum on the right hand side does not exa@e&d, because® (2 A’'Qo) < Cy for all cubes
27 A'Qo contained inB. Also, one can check that the last sum is bounded’hy, (B) because
0(2A4"Qq) Z r(B) for all thej’s in this sum, taking into account thaist(A'Qg, dB) > C;~ ' r(B).
The assumptions (c)-(e) in the Main Lemma are obviouslysetli too because of (3.2) and

the analogous conditions in Lemrhal3.2, with somewhat diffeconstants”{/, 6", ¢” replacing
Cy, 6, €. O

(3.2)

3.3. The proof of Lemma[3.2 Below we identifyR"™ with the horizontaln-plane H = {x €
R+ : 2,1 = 0}. Then, given a Radon measurén R” and a cub&) C R", we denote

1
R" o . n "
(33) Oéo. (Q) - E(Q)n_i_l égng(O‘76H |R )7
whered, is defined as if(3]1) (although na@ C R" instead ofQ C R"*!) and the infimum runs
over all constants > 0. Note that

oy (Q) = af (Q),
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whereQ = Q x [—£(Q)/2, £(Q)/2]. This follows easily from the fact that antyLipschitz function

supported inR can be extended to@-Lipschitz function supported i@, with C < 1.
We need a couple of auxiliary results. The first one is th@Walhg.

Lemma 3.3. Suppose that is some finite Radon measure supportedRihsuch thatdo(z) =
p(x) dH" |gn, With [|p||cc < c0. Then, for evenyk € D(R™) we have

S QP B3QUQ)" S Il UR)".
QED(R”):QcR

In this lemma,D(R"™) stands for the family of the usual dyadic cube®Rih

This lemma can be proved by arguments similar to the onesing&dl] to show that the analo-
gous estimate holds for Lipschitz graphs. Alternativelgan be deduced as a corollary of that result
for the case where the Lipschitz graph is just a horizontplane, using the auxiliary AD-regular
measures = 2|p|l H"|rn + o and taking into account thats (Q) = oX"(Q) for any cube
Q C R",

The second auxiliary result we need is the next one.
Lemma 3.4. Leto be some finite Radon measurelifi and R € D(R™) such that
o(Q) < C2l(Q)"
for all the cubes) € D(R™) with £(Q) > ¢y. Then, for eveny? € D(R"™) we have

Y & (3Q)UQ)" < CRUR)"
QED(R™):QCR
2Q)>4o

Proof. Let o(x) = m(B(0, )" XB(0,60)(z). Consider the functiop = ¢ x o and the measure
v = pdx. We have||p|| < Co, since for allz € R™

1 o(B(z,lo))
T)=—F— r—y)do(y) = ———-5 S Co.
o) = oy | P~ ) = g S G
Let us see that
(3.4) distzg (v, 0) S Colpl(Q)"  for any cubel) with £(Q) > .
For any functionl-Lipschitz functionf supported o3(Q), we have

/fdu—/fda /f(<p*a)dx—/fda /fwda—/fda

Sincef is 1-Lipschitz we have

@) - f=olll = | [ y “(f(w)—f(y))so(w—y)dy's [oete =y =to
yeb(x,to

Thus,
/fdu — /fda S o (6Q) S Colpl(Q)

sincesupp(f) Usupp(f * ¢) C 6@Q, and so[(314) holds.
From [3.4) we infer that

¥ (3Q) S o' (Q) + O ef—g),
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and by Lemma 313,

> Qs Y (a6 + G s )HQr s R ury
QEDR™):QCR QeDR™):QCR
£(Q)=Lo £(Q)=Lo

0

Proof of Lemmal32. Lety andB be as in Theorefn 1.1. By a suitable translation and rotatien w
may assume that the-planeL from Theoreni_LJ1 coincides with the horizontaplaneH = {z €
R 2,11 =0} and thatB = B(0,70).

Our first objective consists in finding an auxiliary cuBg contained inB, centered inH, and
far from 0B, so thatu(Ry) ~ u(B). The cube®)y, to be chosen later, will be an appropriate cube
contained inRy. To find Ry, for some constart < d < 1/10 to be fixed below, we consider a
grid Q of n-dimensional cubes with side leng?d ¢ in H, so that they coveH{ and have disjoint
interiors. We also consider the family @f + 1)-dimensional cubes

Q= {Q x [~dro,dro] : Q € O},
so that the union of the cubes fro@equals the strip
V ={z e R"" : dist(z, H) < dro}.
For any constar < a < 1 we have

p(B\(@BnV) < > u(PﬂB)Jru(B\ U P> =: 81+ Ss.

Ped: Ped
PN(B\aB)+£o

To boundS; we use the growth condition of orderof | p:

S1 Sep Z (P SH"(HNA(,(a— n22d)rg, (1 + n1/22d)r0)) Scp (d+1—a)rg.

Pe @:
Pn(B\aB)#2

To estimateS, we use the fact that the pointse B \ | peg P areata distance fror larger that
drg and apply Chebyshev:

dist(z, H) 1 g n
s0< [ T du(o) = 3 LB,

So we obtain

u(B\ @B Y)) = €@ (@410 + 354 (E) ) ).

We taked anda so that

1
1 D2d=(1-a)= ——-
0(n+1)""d = {1 - a) = 5aEy
and we assume
J1(B) <6< 4 .

10C(Co) ~ 10(n + 1)1/2(10C(Cp))?’
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so thatu(B \ (aBNV)) < 13—0 wu(B). Now we chooseR, to be a cube fronQ which intersects
aB NV and has maximagl-measure. Obviously,
N(RO) ~Co M(CLB N V) ~Cy N(B)7
and sinceliam(Ry) = 2(n + 1)/2drg = =%y, it follows that
(3.5) dist(4Ry, 0B) ~¢, (1 — a)ro ~¢, 0.
The cube@), we are looking for will be an appropriate cube containedjn To find this, first
we consider the thin strip

Vs={ze R™: dist(z, H) < 51/27’0}.

Observe that
dist(x, H 7, (B) n
(3.6) W(B\Vy) < /B 51(/7%) dule) = 2 08 S, 62 (),

Denote bylI the orthogonal projection off and consider the measure= I1..(u|v;). SinceVs has
width 26'/2, from the growth condition (b) in Theorem 1.1, it follows tha Q) <, /(Q)" for any
cube@ centered o with ¢(Q) > 61/2 ry. Assume without loss of generality th&t, is a dyadic
cube. Then, by Lemnia 3.4,

> e (3Q)UQ)" Sep URo)"
QeD(R™,Ry)
2Q)>62rg

whereD(R", Ry) stands for the family of dyadic cubesif" contained inR,. From this inequality,
it easily follows that, for any constant’ > 10,

> aE" (4A'Q)%UQ)™ Scooar L(Ro)™
QED(R™,Ro):L(A'Q)<l(Ro)
Z(Q)Zél/(4n+1)ro

Note that we have used the fact that(“»+1) > §1/2. Since the number of dyadic generations
between the largest cubése D(R"™) with £(A’'Q) < ¢(Ry) and the smallest ones with side length
Q) > 6%+ )y is comparable to
C(A"){(Ro)
2 51/
we deduce that there exists some intermediate generasooh that

C(A', Cy)

log 2 51/(4n+1)

~ log

n 1
> o (A Q*Q)" Scon —ga UR)™
QED;(R™,Ro):4(A'Q)<l(Ro) logy 51/t
Thus, for any’ > 0, if § is small enough, we derive
n n 5/2
Y. Al (AQP@<CC) Y ag (1AQPUQ)" < 5o(Ro).
QEIDJ‘(R",R()): QE'D]'(R”,RO):
L(A’'Q)<{(Ro) £(A'Q)<{(Ro)

Denote byg the subfamily of cubes fro®;(R", Ry) such tha®,(Q) > % ©,(R,). Observe that
1 1 1
> o(Q) < 5 05 (Fo) > UQ)" = 5 Os(Ro) {(Ro)" = 5 o(Ro).

2
Q€ED;(R",Ro)\G QeD;(R™,Ro)\G



THE RIESZ TRANSFORM AND RECTIFIABILITY FOR GENERAL RADON MASURES 11

Hence,Y g 0(Q) > 5 o(Ro), and so

, 5/2 5/2
Z "(4A'Q )o(Q) < s5o(Re) < o (UQ)

Qeg

Then we deduce that there exists some a@be G such thab" (44'Q) < £.

DenoteQ = Q x [~£(Q)/2, £(Q)/2]. We wish now to bound/’ (44'Q) in terms ofak" (44'Q).
Let cy be the constant that minimizes the infimum in the definition®f (44’'Q) in (3.3). Given
any 1-Lipschitz functionf supported orznA’@ we have

‘/fd(u—CH”H"IH)‘ <[ Ifldu+‘/fd(ulv5—0)
1415\Vs
=01+ 1+ Is.

+ ‘/fd(ff —cy H'u)

By (3.8), using also that(Q) > ¢'/4**+4)r, we have
Iy < || flloo (B \ Vs) S 87 L(AA'Q) 1(B) Scpoar 62 UQ) 15 Scig,ar 871 £(Q)™H

Now we deal withls. By the definition ofo and the Lipschitz condition ofi, we get:

I, = f(@) = f((z)) dplv; (z)

4A'Q
< / _dist(z, H) dply; (z) < Bua(B)rgt < orftt < 634 0@Q)m
A'Q

Finally, concerning/s, we have

&

I3 < ¥ (4A'Q) L(4A Q)" < 5 ((4A'Q)" T,

Gathering the estimates obtained 1oy I, I3 and choosing small enough we obtain
5
‘/fd —en ") < 5 ((4A' Q)

and thusa/ (44'Q) < 4.

Finally, we choose&), to be a cube with thin boundary such t@tc Qo C 1.1@. Since
34'Qy C 4A'Q C ARy and((3A'Q) ~ ((44'Q), we deduce th&84'Q, C B (by (3.8)) and that
af(3A’Q0) < a{f(4A’@) < ¢. Thenitis easy to check th@l, satisfies all the properties (a)-(e)
by construction. Regarding (f), we have

| Rute) =m0, (Ra) P din(a) <2 [ [Rta) = Ry di)
Qo Qo
< 2epu(B) =cy,5 € 1(Qo)-

Thus ife is small enough, (f) holds. d
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4. THE LOCALIZATION LEMMA

This and the remaining sections of this paper are devotdtetproof of the Main Lemma3.1. We
assume that the hypotheses of the Main Lernmh 3.1 hold. Frenmonpwe allow all the constants
denoted byC' and all the implicit constants in the relations™and “~” to depend on the constants
Cp andC1 in the Main Lemma (but not od, 6 or €).

Recall thatH stands for the horizontal hyperplade € R™*! : z,,; = 0}. Also we let
cy be some constant that minimizes the infimum in the definitiba®(34Q,) and we denote
ﬁH = CH 7—["|H

Lemma4.1. If § is small enough (depending of), then we havey ~ 1 andu(AQy) < A"u(Qo).

Proof. Let ¢ be a non-negative€’® function supported 08Q, which equalsl on Q, and satisfies
IVolloo < 1/6(Qo). Then we have

N /wd(u—ﬁH)

Note that the left hand side above equals

‘/sﬁdu—CH/ sﬁd’H"' :|CI—CH|/ pdH",
H H

Sy odH ’

(4.1) < [ Vllao £(3AQ0)™ ! o (34Q0) S A™1 6 £(Q0)".

with

taking into account that

H(@Q) < [ < n(2Q0) 5 Co(2Qu)" £ Con(Qu):
So from [4.1) we deduce that
£(Qo)"

c1 —cp| SAVTLE 2L < Antls
The right hand side i< 1 = ¢ if ¢ is small enough (depending of), and so we infer that
CHg~C~ 1.

The estimate.(AQy) < A™ ¢(Qo)™ is an immediate consequence of the assumptions either (b)
or (c) in the Main Lemma_3]1. O

Lemma 4.2 (Localization Lemma)If § is small enough (depending of), then we have
1
[ R 5 (=4 g+ A28 ) Qo)
0
Proof. Note first that, by standard estimates, foy € Q,,

|z — y|
Rux e(x) — Rux c(y SJ/ ————du(z
‘ nX(AQo)e (%) KX (AQo) ( )| (AQ0)¢ |z — 2|7t ()

|z — | 1

ﬁ(AQo) PN(AQO) S PM(AQO) 5

< —
~ NA

S
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taking into account the assumption (b) of the Main LemmaHerast inequality. As a consequence,
1
A Y

[ RuX(400) () = M0 (RuX(400))| S
and so

2 1
| Rixanr(a) = mn (Rixiagoe) ) 5 5 Qo).
0

Together with the assumption (g) in the Main Lemma this gives

2
/Q Ryxaqo — Myo(Ruxaga) 2 dia < 2 /Q Ryt =m0 (Rit) 2dp
0

0

2
+ 2/62 IRux(400) — Mo (RuX (o))
0

1
S eu(Qo) + VP 1(Qo)-
Hence, to conclude the proof of the lemma it suffices to shaw th
M0 (Ruxaqo)| S A28 Bn48) 14(Qq).

By the antisymmetry of the Riesz kernel we havg o, (R.xq,) = 0, and so the preceding estimate
is equivalent to

(4.2) My 00 (Ruxagngy)| < A% 1Y E8) 14(Q).

To prove [4.2) first we take some small constant « < 1/10 to be fixed below. We lep be
someC' function which equals on (1 — k) AQo \ (1 + x)Qo and vanishes out o1Qo \ (1+ %) Qo,
so thaty is even and furthelfVp|« < (k4(Qo)) L. Then we split

/ RUXAQO\QO dlu' S / |RM(XAQ0\QO - w)‘ d,LL + ‘/ R}/«(JD du‘ .
Qo Qo Qo

To bound the first integral on the right hand side note thaj,\q, — ¥ = ¥1 + 12, with

(4.3)

U1l < XaQo\1-r)AQe AN [¥2] < X(144)Q0\Qo-
Then we have

| Rutcsana, =l dn < [ [Ruis|dns | R
Qo Qo Qo

S ARul o (ul ) M(Q0) + IRu2ll 24, ) 11(Qo) /2.

Sincedist(supp ¥1, Qo) ~ AE(QO) we have

IRyl uiay) S Ty Wl < ageyye MAQ0 \ (1 = K)AQo).

On the other hand, sin@e,, is bounded in.? (11l (1+4)Q0)» Py the assumption (d) in the Main Lemma,
and by the thin boundary property & (in combination with the fact thgi(2Q¢) ~ 1(Qo)), we
get

IRl 22(ul0y) < CilltballLzuy < Cr (14 £)Qo \ Qo)'* < C(Co, Cr) kM2 1(Qo) 2.
Therefore,

(4.4) /Q IR (Xago\0o — ©)| die S A” 1(AQo \ (1 — K)AQo) + k2 1(Qo).
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To estimateu(AQo \ (1 — k) AQo) we will use the fact thatyf(i%AQo) < 4. To this end, first we
consider a functiop supported o (1+x)Qo \ (1—2k)AQo Which equald on AQo \ (1 —~)AQo,
with |V |e < 1/(AKL(Qo)). Then we have

(4.5) -

1(AQo \ (1 — K)AQy) < / Fdy
< \/&dw - cm' + [Gacn
< [V Bloo £3AQ0)™ 0 (34Q0) + Lz (1 + £)AQo \ (1 — 26) AQo)
S (Soo4ea)

where we used the estimate for; in Lemmal4.1 for the last inequality. Hence, plugging this
estimate into[(4]4) we obtain

1 )
(4.6) /Q IR (Xago\00 — ©)] div S <; 0+ K+ Hl/2> w(Qo) S <E + Hl/z) w(Qo)-
0
It remains to estimate the last summand in the inequali§) (4o this end we write

@7 Roo du' <

Rupd(p— L)
Qo

+ ‘ R(pLr) dﬁH'
Qo

:T1+T2+T3.

Sinceyp is even, by the antisymmetry of the Riesz kernel it followsilgahat 75 = 0.
To deal withTy, consider another auxiliary functiop supported orf)y which equalsl on (1 —
k)Qo, for some small constalt< x < &, so that|| V|l < 1/(k€(Qo)). Then we write

[ #Rupt- cm‘ T ‘ [x@ = @ Ruspl — )| = Taa + 7o
To estimatel’ , we set
Ti0 < V(@ Rup)|locl(3AQ0)™ ™ o (3AQ0).

‘ + ‘ R(pp —9Ly) dﬁH‘
Qo Qo

Ty <

We write
HV(@RM(P)”OO < ”V(RMD)HOO,QO + ”VSBHOO ”RM(P)”OQQO'
Sincedist(supp ¢, Qo) > 54(Qo) andu(AQo) < €(AQo)™ (by Lemme 4.1), we have

< M(AQo) _ A"
HR,U«SDHOO,QO ~ (KE(Q()))” ~ I{n’

and, anagously,
(wAQy) A"
(Kl(Qo))™ T ~ K HL(Qo)

A" An A"
V(OR S + = S = :
V(@R Qo) T REM(Qo) ™ R K™M(Qo)

HV(RH()D)HOO,QO 5

Hence,
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So we have

A
Tl,a S k\lin 6#’(@0)
Now we consider the terifi ;. We write

Tip < lIxQo = Pl (usca) Ru®lloo.o-

n

Recall that| R, ¢ s.0, < “x. Also, by the construction gb and the thin boundary a,

~ RN

IXQo = Pl () S Qo \ (1 =&)Qo) + Lu(Qo \ (1 —&)Qo) S K u(Qo)-
So we obtain

n

A"
Tip < P Rk 1(Qo)-
Thus,

A2n+1 A" R
T1§< o~ (54——”%) ,u(Q()).
R K K
Choosingz = §'/2, say, we get

A2n+1 n
Ty 5 < + —n> 3% 1(Qo) <

K" K

2n+1

52 1(Qo).

,{n
Finally, we turn our attention t@>. By Fubini we have
= ‘/R(XQO’CH) palp = 'CH)' < [IV(R(xqo L) #) llo L(3BAQ0)" ™ o (3AQ0).
Observe that

IV (R(x@oLH) #)lloc < IV (R(x@uL)lloosuppe + [R(XQo L)) llso,supp eI VePlloo-
Using thatdist (supp ¢, Qo) > §£(Qo) and thatl i (Qo) = cg H™(Qo N H) =~ £(Qp)" , we derive

L1(Qo) 1
IR(x@o L)) llsosuppie < HU(Q0))" S

and

La(Qo) 1
(K€(Qo))" T~ K" HH(Qo)

An—i—l
T2 rs H”+1 6#’(@0)

Gathering the estimates f@k and75, by (4.7) we deduce

IV (R(XQoﬁH) ”oo7supp ® <

So we obtain

A2n+1 An-l—l A2n+1
0 Rupdp| < 751/2 w(Qo) + | 6 1(Qo) < ] 52 1(Qo).
0

Plugging this estimate and (4.6) info (4.3), we obtain

5 " A2n+1 "
/Q RiuXaQo\@o 1| S | — + 5 w(Qo) + prrsald #(Qo)
0

AL
S (Wé +K > 1(Qo).
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So if we choose: = 6%/t we get

‘ / RuXAQo\Qo A
Qo

which yields [4.2) and finishes the proof of the lemma. O

§ (A2n+1 51/4 + 51/(8”+8)> ,U(QO) 5 A2n+151/(8n+8) /L(QO)v

From now on we will assume thatis small enough, depending oh so that the conclusion in
the preceding lemma holds.

5. THE DYADIC LATTICE OF DAVID AND MATTILA

Now we will consider the dyadic lattice of cells with smalllaaries of David-Mattila associated
with a Radon measure [DM] Theorem 3.2]. Its properties are summarized in the texima.

Lemma 5.1 (David, Mattila) Leto be a compactly supported Radon measur&fi!. Consider
two constantd(y > 1 and Ay > 5000 K, and denoté? = supp o. Then there exists a sequence of
partitions of W into Borel subsets), Q € D, ;,, which we will refer to as cells, with the following
properties:

e For each integerk > 0, W is the disjoint union of the cell®, Q € D,;, and ifk < [,
Q € Dy, andR € D, 1, then either) N R = @ or else C R.

e The general position of the celf3 can be described as follows. For eakh> 0 and each
cellQ € D, , there is a ballB(Q) = B(zq, r(Q)) such that

QeW, AP <r(Q) < KoAp",

WNB(Q)CQCWn28B(Q) =W N B(zg,28(Q)),
and
the balls58(Q), Q € D, , are disjoint.

e The cellsQ € D, ; have small boundaries. That is, for ea¢he D, ; and each integer

[ >0, set
NEYQ) = {x e W\ Q : dist(x,Q) < AgF11,
Nf"t(Q) ={re: dist(x, W\ Q) < Agk_l},
and '
N(Q) = NF™(Q) U N™(Q).
Then
(5.1) o(N(Q)) < (O Ky "V 40) T 0 (90B(Q)).

e Denote byD, the family of cells) € D, for which
(5.2) 0(100B(Q)) < Koo (B(Q)).
We have that(Q) = Ay" when@ € D, \ D%, and
(5.3) ¢(100B(Q)) < K;' 0(100"'B(Q)) forall I > 1 with 100! < Ky andQ € Dy, \ DY,
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We use the notatio®, = | J;~, Do,x. Observe that the familieB, ;. are only defined fok > 0.
So the diameters of the cells framare uniformly bounded from above.

Remark 5.2. Any two disjoint cellsQ, Q' € D, satisfy: B(Q) N 3B(Q’) = @. This holds with}
replaced by by the statements in the lemma above in the case}hé@ are of the same generation
Dyi. If Q € D,j and@’ € D,y with j # k, this follows easily too. Indeed, assunje< k,
and suppose thatB(Q) N $B(Q’) # @. Sincer(Q') < r(Q) (by choosing4, big enough), this
implies thatB(Q') € B(Q), and so

BQ)NW CB@Q)NWCQ,
which implies that)’ N Q # @ and gives a contradiction.
GivenQ € D, , we denote/ (Q) = k. We set!(Q) = 56 Ky Agk and we call it the side length
of . Note that
1
o5 Ko Q) < diam(28B(Q)) < U(Q)-

Observe that(Q) ~ diam(Q) ~ £(Q). Also we callzg the center of), and the celly’ € D, ;4
such that)’ O Q the parent of). We setBg = 28B(Q) = B(zg,287(Q)), so that

WN5Bg CQC Bg.
We assumel to be big enough so that the constahthO_g("“)_le in (5.1) satisfies
CE AT A > AV > 10,
Then we deduce that, for dll< A < 1,
o({z € Q : dist(z, W\ Q) < M(Q)}) + o({z € 3.5Bq : dist(z,Q) < A (Q)})

(5.4) < eAY?6(3.5Bg).
We denoteD}’ = J,.~, D Note that, in particular, froni(5.2) it follows that
(5.5) 0(3.5Bg) < 0(100B(Q)) < Koo (Q)  if Q € DX.

For this reason we will call the cells froRZ® doubling. GivenQ € D,, we denote byD, (Q) the
family of cells fromD, which are contained if9. Analogously, we writeD%(Q) = D% N D(Q).

As shown in[DM, Lemma 5.28], every celt € D, can be covered-a.e. by a family of doubling
cells:

Lemmab.3. LetR € D,. Suppose that the constamtg and K in LemmadX5.1l are chosen suitably.
Then there exists a family of doubling cefl9;}ic; € D, with Q; C R for all 4, such that their
union coversr-almost all R.

The following result is proved ir [DM, Lemma 5.31].

Lemma5.4. LetR € D, and letQ) C R be a cell such that all the intermediate cefisQ) C S C R
are non-doubling (i.e. belong B, \ P%). Then

(5.6) o(100B(Q)) < Ay "V @~/ =1 5100 B(R)).

From the preceding lemma we deduce:
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Lemmab.5. LetQ, R € D, be as in LemmaZB5.4. Then
0,(100B(Q)) < Ko Ay "=~ g _(100B(R))
and
> 04(100B(S)) < CO,(100B(R)),

SeD,:QCSCR
with C depending ok and Ag.

For the easy proof, see [To3, Lemma 4.4], for example.

6. THE LOW DENSITY CELLS AND THE STOPPING CELLS

We consider the measuse= 1|, and the associated dyadic lattiPg introduced in Sectiohl5,
re-scaled appropriately, so that we can assume(pas a cell fromD,. Below we allow all the
constants denoted @y and all the implicit constants in the relations™and “~” to depend on the
constantsdy and Ky from the construction of the latticB,,.

Let0 < 6y < 1 be a very small constant to be fixed later. We denoté&Dyhe family of those
cells fromD,, such tha©,(3.5B¢) < 6, and have maximal side length.

The main difficulty for the proof of the Main Lemnia 8.1 consist showing that the following
holds.

Key Lemma 6.1. There exists some constaftsuch that ifA is big enough andy, §, ¢ are small
enough (withy possibly depending o), then

M( U Q) < (1 —€0) (Qo)-

Q€LD

The proof of this result will be carried out along the nexttgets of this paper. In what follows
we will assume that

(6.2) u( U @) > (1~ £0) u(Qo)

QeLD

and we will get a contradiction foty small enough To this end, first we need to construct another
family of stopping cells which we will denote I8top. This is defined as follows. For ea¢he LD

we consider the family of maximal cells contained@rfrom D2 (so they are doubling) with side
length at most ¢(Q), where0 < t < 1 is some small parameter which will be fixed below. We
denote this family bystop(Q). Then we define

Stop = U Stop(Q).
QeLD

Note that, by LemmB5l3, it is immediate that, for edghe LD, the cells fromStop(Q) cover
p-almost allQ. So proving the assumption (6.1) is equivalent to showing

M( U Q) > (1= £9) u(Qo)

QEStop
We need the following auxiliary result.
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Lemma6.2. If we choose = 95/(”“), then we have:
©,(2Bg) < P,(2Bg) < 65/ forall Q € Stop.

Proof. Let Q € Stop andR € LD such that) C R. The first inequality in the lemma is trivial and
so we only have to prove the second one. Ret D, the maximal cell such th@ c R’ C R with
(R") < t4(R), sothat!/(R') ~ t {(R). Then we write
6Q) 6Q)
Pu(2Bg) > ©,.(2Bp) o) + > ©.(2Bp) 3]
PeD,:QCPCR! PeD,:R'CPCR

+ Z ©,.(2Bp) % + Z 0,(2"Qo) %

PeDs:RCPCQo k>1
=51+ 55+ 53+ S4.

~—

To deal with the sum$; and S,, note that for allP C R, since2Bp C 2Bg (assuming4, to be
big enough), we have

3

w(2Bp) w(2BR) — 0,(2Bg) M ~ 0,(2BRr) (R)

T(QBP)" T(QBP)" T(Bp)" E(P)" '
Therefore, sinc®,(2Br) < 6y and all the cellsP appearing inS, satisfy ((P) > t{(R), we
deduce that all such cells satigdy,(2Bp) < & ©,(2Bg) < %, and thus

~ tn ~ tn

)

@u(QBP) = <

6o 0(Q) _ o

< = w2
D - wp) <
PED,:R'CPCR

Also, since there are ng-doubling cells betweek’ and @, from Lemmd5.b we deduce that the
cells P in the sumS; satisfy

04(2B7) £ 0,(2Bp) 5 1 0,(2Br) S 2,

~ in

and therefore we also get

90 E(Q) 00
< <
PeDs:QCPCR/

For the cellsP in the sumS3 we just take into account thét,(2Bp) < 1, and thus

Q) _ Q)
55 % 1) A9 <y,
’ PEDU%;PCQO K(P) (R)

Regarding the sury, note that

Sy = Z @“(QkQO)Ei

1<k<logy, A

= S4,a + S4,b-

For the indices: in Sy, we use the fact thad,,(2¥Qo) < Co, and so we get

1Q _ Q)
S0 2 Tatgy S age =

1<k<logy A
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For Sy, we write

“Q) (AQy) _ Q) “Q)

Sup < A0 ]Z:O@M(WAQO) {27 400) ~ 1(AQy) P,(AQo) < 1A00) <t
Hence,
Pu(2Bo) < f_s bt e gL/ D),
recalling thatt = Hé/("+1). -

(n+1)

From now on we assume that we have cha‘serﬁé/ , S0 that the conclusion of the preceding

lemma holds.

The familyStop may consist of an infinite number of cells. For technical oeasit is convenient
to consider a finite subfamily &top which contains a very big proportion of themeasure obtop.
So we letStop,, be afinite subfamily ofStop such that

(6.2) M( U Q) > (1= 2e9) u(Qo)-
Q

€Stopy

We denote byBad the family of the cellsP € Stop such thatl.1Bp N 90Qy # <.

Lemma6.3. We have
u( U Q) < 05/ 1(Qo).
Q€eBad

Proof. Let I C Bad an arbitrary finite family of bad cells. We apply the coverthgorem of triple
balls of Vitali to the family{1.15B¢ }gcr, SO that we get a subfamily C I satisfying

e 1.15Bp N 1.15Bg = & for different cellsP, @ < J, and
o Uper 1.15Bp C Uge, 3-45Bg.
Then, using that
1(3.45B0) < u(3.5B0) < u(Bgo) < 03/ r(Bg)"  forallQ e J,
we get

n(U Br) < 3 uisas8q) <6 3 r(so)”

Pel QeJ QeJ
For eachy € J we havel.1Bg N 0Qo # @ and so we deduce that

7‘[”(1.15BQ NOoQo) 2 T(BQ)”.
Thus, using also that the ballsl5Bg, @ € J, are pairwise disjoint,

N<U P) <0y ST UM (1.15Bg N 0Qo) < 6y TV 1M 0Qo) ~ 65" 1(Qu),
pPel QeJ

and the lemma follows. O
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We will now define an auxiliary measuyeg). First, given a small constait < kg < 1 (to be

fixed below) and) € D,, we denote

(6.3) I.,(Q) = {z € Q : dist(x,suppo \ Q) > kol(Q)}.

Sol,,(Q) is some kind of inner subset ¢f. We set

o = plog + Z N‘IHO(Q)-
Q&Stopy \Bad

Observe that, by the doubling and small boundary condiod) (of @ € Stop,, we have
HQ\ Iny(Q)) S kg 1(35Bq) 5 vyl n(Q).
Combining this estimate witlh (6.2) and Lemmal6.3, we get
6.4)  [lp—poll = 1(Qo) — 1o(Qo)
=u(@Q)— Y, k(@)

Q€Stop,\Bad
=M<Q0\ U Q) + @+ D> @\ 1y (Q)
QEStop, QeBad Q€Stopy\Bad

< 20 u(Qo) + 093/(n+1) w(Qo) + Cméﬂ 1(Qo)-
Together with Lemmp_412 this yields the following.

Lemma6.4. If § is small enough (depending of), then we have
1 n
/Q ’R(XAQONO)F d,UO 5 <E 4 F + 51/(8114-8) +EO + Hé/( +1) + K‘é/2> M(QO)
0
Proof. We have

/Q IR (xagopo)l? dio < 2 / IR (xacom)? dp +2 / IR (xagu (1 — 10)) 2 di
0

Qo Qo
1 n
< <€+E+A4n+251/(4n+4) ‘1‘504‘95/( +1) —1-1-4(1)/2) 1(Qo),

by Lemmd 4., the*(uu|g,) boundedness &, , and [6.4). O

7. THE PERIODIC MEASURE/

Let M be the lattice of cubes iR"*! obtained by translating), in directions parallel taH,
so thatH coincides with the union of the-dimensional cubes from the famify? N H} pc o4 and
the cubes have disjoint interiors. For eaéhc M, denote byzp the center ofP and consider the
translationTp :  — = + zp, so thatP = Tp(Qp). Note that{zp : P € M} coincides with the set
(£(Qo)Z"™) x {0}. We define

=Y (Te)u(nolqo):
PEM
That is,
AE) = po(QnTp'(E) =Y no(QoN(E - zp)).

PeM PeM
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It is easy to check that:
(i) 11 is periodic with respect td, thatis, for allP € M and allE ¢ R**!, i(E+zp) = ju(E).
(i) Xqok = ko-
The latter property holds becaugg(0Q,) = 0.
For simplicity, from now on we will assume thdtis a big enough odd natural number.

Lemma7.1. We have
a,if(:%AQo) < O ANt <€0 +95/(n+1) + 5(1)/2 +51/2>'
In fact,
distsaq, (@i, L) < C3 A" (5 + 6/ kg 51/2> 0(3AQo)",

whereLy is the same minimizing measure as the oneyfé(?)AQO).

Proof. Let f be a Lipschitz function supported 8l with Lipschitz constant at modt Denote
by M, the family of cubes fromM which are contained iBAQ,. Letx > 0 be some small
parameter to be fixed below. Considet afunctiony supported o), which equald on (1—x)Qo,
with |[Vo|le < 1/(k€(Qo)) and denotepp(z) = ¢(z — zp). Then we write

(7.0) ‘/fdu .cH‘ [ 1d- ca)

‘/sopfdu ﬁH‘

PeMo

> /\ xp —p) fld(i+ L)

PEM PeMo

Let us estimate the first sum on the right hand side. Spige = (Tp)xpolg, and Ly =
(Tp)#Lu, we have

[erfati-en| = | [ @) e+ 2p)ao - )

IN

‘/sﬁ(x)f(erzp (o — ‘ '/ f(z+zp)d(p— L)
=L+ D

To estimatel; we use [(64) and the fact that, by the mean value theoflenf,(- + zp)|co
£(3AQ0)

I <

N

[ ta) e+ 20) o - m\ (0 + 60D 4 k1/2) 1(3AQ0)™.
Concerninglz, we write

I SIV(f (- + 2p)) oo (3BAQ0)" T ol (3A).
Note that

1 A
pe

Thus,
I £ A2 63AQy)"™ .
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Hence,
~ n 5 n
‘/cppfd(u _ cH)' <A <€o 4o/ 4 b2y E) 0(3AQ0)" 1.

To deal with the last sum on the right hand side[of](7.1) weewrit

/ (ep — 0p) £+ L) < xp — 0Pl |l

S (p+ L) (Qo\ (1 - £)Qo) £(3AQ0).
By the thin boundary condition of),,

1(Qo\ (1= k)Qo) Sk u(Qo) = Kl(Qo)".

Clearly, the same estimate holds replacinby £z. So we deduce

/\(XP —op) fld(i+ La) S K L(Qo)" .

Taking into account that the number of cublesE M, is comparable tol”, we get

[ £t 2| 5 4 (c0 000 40y L k) (30

Choosings = §'/2, the lemma follows. 0
From now on, to simplify notation we will denote

(7.2) 5= Cy A <eo 40y el 4 51/2>.

So the preceding lemma ensures thg't(BAQo) < 5. We assume that the parametegs 6y, ko,
and¢ are small enough so that< 1.

Lemma7.2. We have
(7.3)
1 1

- - 1 1 L ~_ 2 '\
/Q IR (xaqoi)|* dii < Cy (s +5+ A2 ETAT g + 05T + kG 4+ A2 54n+5> 11(Qo).
0

Proof. Sinceyi|g, = 1olg,, we have

(7.4) /Q IR (xagui)|? di < 2 /Q R (xagosio)? djio + 2 /Q R(xagy (i — 10)[2 dyio.
0 0 0

The first integral on the right hand side has been estimatednmma6.4. So we only have to deal
with the second one. The arguments that we will use will belaimo some of the ones in Lemma

4.2.
First, note that, using again thalg, = (10)lq, and that(uo)|qg = 1lqg, we have

R(xaQo (B — 10)) = R(Xa0e\Qo (It — 1))

Let0 < x < 1/10 be some small constant to be fixed below. fdie aC* function which equals
on (1 —k)AQo \ (1 + k)Qp and vanishes out Qo \ (1 + §)Qo, With [[Vo|lee < (k4(Q0)) .
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We split
(7.5)

g IR (x Qo (Fi— o) |* dpo < 2/@ !R((XAQO\QO—sD)(ﬁ—M))lzduo+2/Q IR(p(ii—p)) [ dpo.
0 0 0
Concerning the first integral on the right hand side notexh@},\q, — ¥ = ¥1 + 2, with

1] < Xago\a-mage  aNd Y2 < X(14r)Q0\Qo-

So we have
/ R((xago — )7 — 1) 2 dpio < / R (i — )| dfi + / IR (a(E — )2 da
Qo Qo Qo

< IR (W1 (E = m) o0 1, ) #(Q0)
+ IR (Y2 — 1)) ”2L4(,7|Q0) 1(Qo)'?.

Sincedist(supp 11, Qo) = AL(Qo), we get
- 1 1 -
IR (¢1(7 = 1)) | oo il gy) S PUCHE 1 o1 iy < Ao (114 p)(AQo \ (1 - K)AQo)-

Recall that in[(4.b) it has been shown that

n

H(AQo \ (1 - 1) AQo) S (A— 5+ HA") (Qo)"

To prove this we used the fact th@f(?)AQo) < ¢4, or more precisely, thatistsag, (i, Lr) < 0.

The same inequality holds replacipgby /i ands by &, as shown in Lemmia7.1. So by arguments
analogous to the ones in_(4.5) it follows that

4G (1= 0AQ0) S (577 414" ) Qo)™

So we deduce that

~ 546 5
||R(7/’1(# - M))HLw(mQO) S e +rK S - + K,

taking into account that < § for the last inequality.
Next we will estimateﬂR(z/zg(ﬁ — M)) ”L4(ﬁ\Q0)' By the triangle inequality, we have

IR (W2(f — 1)) l2aG10,) < IRut2llLtqulgy) + IRaV2I L4 Gilg,)-

Recall thatR , is bounded inL? (1|20, ), and so inL* (|2, ), and thatupp 12 C (1+kQ0)\ Qo C
2@Qy. Hence, using also the thin boundary property)gf we obtain

||R“7'Z)2”4L4(MQO) S H¢2H%4(“|2QO) S (1 + £Qo) \ Qo) <k p(Qo)-

We can apply the same argument to estinjﬁ%zz)gnm(m%). This is due to the fact thak; is
bounded inL?(ji|ag, ). This is an easy consequence of the fact that, given two mesysuand -
with growth of ordem such that, fori = 1,2, R,,, is bounded inL?(y;), thenR,,, 4, is bounded
in L2(u1 + p2). For the proof, see Proposition 2.25 [of [To2], for example aBplying this result to
a finite number of translated copiesaffy,, we deduce thaR; is bounded inL?(fi|2q,) and so in
L4(jil2g, )- Thus we also have

||Rﬁ¢2||4L4(ﬁ|QO) S K Qo) < K p(Qo)-
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Gathering the estimates above, it turns out that the firsgiad on the right side of (7.5) satisfies the
following:

~ 2 ~

(7.6) / (xaQo (B — po)|* dpo < <% + "‘) 1(Qo) + £ u(Qo) < (5

It remains to estimate the second integral on the right hael of (Z.5). To this end for any
T € Qo we set

IR(¢(f — po)(z))| = ‘/ K(z —y)p(y) d(i — u)(y)‘

2
+ k! ) 1(Qo)-

<|[ K= wetw i~ cam)
'/m_ y)d(p— Lu)y >‘

<IV(E (@ =) ©)lloo [daqo (i, Lrr) + d3aqo (ks L)),
where in the first identity we used the fact thgtcoincides withu on the support of. Taking into
account thatlist(x, supp ¢) 2 k€(Qp), we obtain

1
IV(E (2 =) @)lloc < IVE(x =)o suppe + [ E (2 = )llocsupp i [Vlloo S Qo)

By Lemma 7.1 dist3aq, (11, L) < 5 £(3AQo)™ ! and, by the assumption (€) in the Main Lemma,
distzag, (1, Lrr) < 6 L(3AQp)" . Therefore,

n+1l _

(54 8) (3AQo)™ < 2

~ 1
|R(90(,U - #0)(33))| S W N antl

So the last integral on the right hand side[of (7.5) satisfies
_ 5 AL L 2
(7.7) /Q IR(xaqo (1t — po)|”dp S (Hnﬂ 5> 1(Qo).
0
From [7.5),[(Z.6) and (7] 7) we deduce that
B ) - 5 14 Antl 5 2
0 R(XxAQo (1 — 0)|” do < PR 1(Qo)
0
An—i—l N\ 2
S (’41/4 T 5) 1(Qo).

Choosingx = 4475, the right hand side above equals

(5 At 5) #(Qo) S A5 1(Qo).
Together with[(7Z.4) and Lemnla 7.2, this yields (7.3). O
To simplify notation we will write

~ 1 L 1 ~ 2
(78) F= 04 < + F + A4n+2 54nl+4 + €0 _|_90n+1 + ’%5 +A2n+2 54n2+5> ’
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so that the preceding lemma guarantees that

/Q R (xa0e®)? i < ET(Qo).

We will also need the following auxiliary result below.

Lemma7.3. Forall Q € Stop, \ Bad, we have

1 o T ~
/ / e dji(@) dji(y) S 05" Q).
1.1Bo\Q /@ |z — |

Proof. Since for any) € Stop, \ Bad the ball1.1B, is contained inQy, we have thaf: coincides
with p in the above domain of integration.
Let0 < x < 1 be some small constant to be fixed below. Then we split

(7.9)

1 - " 1 - -
/ / ——— dfi(y) dfi(x) = / / —— dji(y) dfi(x)
1.1Bo\Q Y@ |z —yl 2€1.1Bo\Q JyeQ:|z—y|>rL(Q) |z —y

1 ~ ~
+/ / - du(y) dp().
z€1.1Bo\Q JyeQ:|lz—y|<rl(Q) |$ - y|

First we deal with the first integral on the right hand side:

1 1
T dp(y) du(z) < (1.1Bq) p(Q)
/:(:61.13@\62 /yEQ:x—y>n€(Q) |z —y|" KM(Q)" N
1
<1 ~o) < %"

by Lemmd6.P.

Let us turn our attention to the last integrallin (7.9). Tareate this we take into account the fact
that givenz € 1.1B¢ \ @, if y € Q, then|z — y| > dist(z, Q). Then by the growth of order of
tt|g, and standard estimates, we get

. R UQ)
di(y) < log <2 + 7> forallz € 1.1Bg \ Q.
/yEQ:|m—y|§n€(Q) |3§‘ - y|n ( ) dlSt(:L'v Q) 9 \

For eachy > 0, denote

U; ={z € 1.1Bg \ Q : dist(z, Q) < 277 k£(Q)}.

By the small boundary property ¢f and the fact thaf) is doubling,

u(U;) S (279 6)2 u(3.5Bq) < (277 k)2 u(Q).
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Then we obtain

1 Kkl
———du(y) dp(x) < / log<2—|—.7>d,ux
/mGl.lBQ\Q /yGQ:x—ygld(Q) |33‘ - y|n ( ) ( ) Z Uj\Uj+1 d St(ﬂj‘, Q) ( )

< Z log <2 + = fé(izQ) > N(Uj)

7>0

SO G+ RV u(Q)

j=0
<SRV Q).

Thus we have

1 nrl)
[ dnt) di) £ 6 R ) (@)
1.1Bo\Q Y@ |z — |

1
Choosings = 6{"*"”, the lemma follows. O

It is easy to check that
(7.10) f(B(x,r)) <r"  forallz € R* ! and allr > 0.

This follows from the analogous estimate fdp,, and the periodicity of:, and is left for the reader.
On the other hand, in general, we cannot guarantee thattineaéss for the coefficients), (25¢)
in Lemmd6.2 also hold with replaced by:. However, we have following substitute.

Lemma 7.4. The function

pa(r)= Y xqPi(2Bg)
Q€eStop,\Bad

satisfies
2
/Q P2 dii S 0577 Qo).
0

Proof. Once more, leb < k < 1 be some small constant to be fixed below. We split
(7.11)

/ p2di = / pa(z)? di(z) + / py(x)? dfi(z).
Qo 2€Qo:dist(z,0Q0)<k £(Qo) 2€Qo:dist(z,0Q0)>k £(Qo)

For the first integral on the right hand side we just take itwoant thatp;(z) < 1 by (Z.10), and
thus

e o) dpi(x < p({z € Qo : dist(z,0Q0) < k4(Qo)})

S r Qo) = K 1(Qo)-
Let us deal with the the last integral on the right hand sid€/dfl). Consider: € @ € Stop,
such thadist(x, Qo) > k £(Qo). We assume that > ¢ = 93”‘1“). Sincel(Q) < t4(Qo),
dist(z, 0Qo) ~ dist(2Bg, 0Qo) 2 k{(Qo)-

/xEQO:dist(:c,é)Qo)<n £(Qo)
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Then, we can write
pa(e) SP.2Bo)+ Y, 27€a(@Bo) <6+ Y 27,
j21:2jBQﬂaQ0;£® j21:2jBQﬂaQ07$®

by Lemmd.6.P. For the last sum we have

L HQ) Qo) 6T
2 2R dist(z, 0Qo) & KOQo) K

j21:2jBQﬂaQ05£@

and so we obtain )
1 Hm 9n+1
pa(x) SO + 20~

Therefore,

A

=)
E
O
N

/ p()? dji(x)
2€Qo:dist(z,0Q0)>k £(Qo)

Gathering the estimates above, we obtain

_2
n+1

~ 0 _
| i s (n+ 8 ) @)
0

2
Choosings = 6, the lemma follows. 0

8. THE APPROXIMATING MEASUREN

We consider the measure
an+1
EB(Q)

FHn+1 (iB(Q)) ’

So, in a sensey, can be considered as an approximation:@fy, which is absolutely continuous
with respect ta{"+1. Further, since the famil§top, is finite, the density of; with respect ta{"*!
is bounded.

Recall that, by Remaifk 3.2, the ba§3(Q), Q € D, are pairwise disjoint. So the balls3(Q)
in the sum above satisfy

dist(1B(Q), 1 B(Q) = 7 [(B@Q) +r(B@Q)] Q#Q.

Now we define the following periodic version gf. Let M be the lattice of cubes from"+!
introduced in Sectioh]7. Recall that, fét ¢ M, zp stands for the center dP and Tr is the
translation?’»(z) = x + zp. We define

n=Y_ (Tpr)sm.
PeM

In this way,n can be considered as a kind of approximatiof.of
The following result should be compared to Lemimad 7.2.

m= Y, (Q)

Q&Stop,\Bad

] =
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Lemma8.1. We have
2 /
/Q R (x> dn < < 1(Qu),
0

1
~ — _ 2
wheree’ = &+ A" kg 220",

Proof. To simplify notation, we denot§ = Stop,, \ Bad. We consider the function

f=> muq(R(xaq.) X

Qes
It is clear that
(8.1) 1£1Z2 ) < IR(xa@o) |72 (lay) = €M(Q0) = En(Qo)-
Forallz € 1B(Q), Q € S, we write
82 [R(xagm(@)] < [ROx1 pgm @) + R0 101 5 M@ ~ R{Xa0o\P) ()]

+ [R(xag0\0®) (@) — mi.q(R(xago)| + |[ma.q(R(xagoi))]
=T+ Ts + T3 + |mj.o(R(xaqo1t))|-
Using that
n+1
" ‘iB(Q)
'Hn+1(%B(Q)) ’
it follows easily that
Q) L(41)
T, = < M) <
Next we will deal with the tern®3 in (8.2). To this end, for € %B(Q) we set
(8-3) ‘R(XAQO\Qﬁ)(x) - mﬁ,Q(R(XAQo/j))‘
< |R(X1.1Bo\01) ()] + [R(Xa00\1.18, ) () — Mi,0(R(Xago\1.18, )]
+ |mjo(R(x1.180\0M)|,

taking into account thain; o(R(xq)) = 0, by the antisymmetry of the Riesz kernel. The first
term on the right hand side satisfies
1 - (1. 1BQ

[R50 < [ ) S B

recalling thatr € 1 B(Q) and that©,(1.1B¢) < Hé/("“) for the last estimate.

Now we turn our attention to the second term on the right hatelaf (8.3). Forr’ € Q € S, we
have

‘R(XAQ0\1.1BQ17)(35) - R(XAQ0\1.1BQﬁ)(x/)| < / |K(9€ —y) — K(wl - ?J)‘ di(y)

AQo\1.1Bg
S Pa(2Bq).

taking into account that the distance both freranda’ to (1.1B¢)¢ is larger tharcr(Bg). Aver-
aging onz’ € Q with respect tqu we get

| R(XaQo\1.1Bo M) () — Mo (R(XA@o\1.18o1)| S Pa(2Bg)-

) 1/(n+1)
n n ’S 0 " ’
1Bo\@Q |z —y
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To estimate the last term ih (8.3) we just apply Lenima 7.3:

1
n
N 7

- 1 1 _ B
mio(Rmgei)| < =5 [ e | = iy

Thus, we obtain
(8.4)
1 1 1
Ty = [R(xa0\0M) (@) —mjo(R(xaqol)| S 05 +Pa(2Bg)+6," """ < 05" + Pi(2Bg).
To deal with the term¥} in (8.2) we need to introduce some additional notation. \We se
J = U {Tp(R') : R' € Stop, \ Bad}.
PeM

For R € J such thatR = Tp(R'), R’ € Stop, \ Bad, we setB(R) = Tp(B(R’')) and By =
Tp(Bg/). Also, we denote by/ 4 the family of cellsR € J which are contained islQ. In this
way, we have

5 S ) o st
XAQoH = flr, and  xaqyn = i(R)
ReJy ReJ4 H +1(ZB(R))

(recall that we assumé to be a big odd natural number). Note that the cBlls J are pairwise
disjoint. Further, by the definition of the famiBad, if R € J is contained in some culti&(Qy),
then the balll.1Bp is also contained iffp(Qq). Together with the doubling property of the cells
from Stop,, this guarantees that, for &l € .J,

i(1.1BR) S Co i(R).
Now for z € 1 B(Q) we write

(8.5) T, = |R(XAQO\%B(Q)?7)(96) — R(xago\@M))(2)]
< 5 |[ K dogu - )
ReJA:R#Q

< Y [IK@- ) - K-l o + le)
REJ4:RAQ
using thaty(1 B(R)) = fi(R) for the last inequality.
We claim that, forr € 1 B(Q) andy € 1B(R) Usupp(fi|r),
((R)
%LH D(Q,R)”'H’

(8.6) |K(z—y) = K(z—2r)| S

where

D(Q,R) = £(Q) + £(R) + dist(Q, R).
To show [(8.6) note first that
(8.7) z € 1B(Q), zr€ ;B(R) = |z —zr| 2 D(Q, R),
since%B(Q) N %B(R) = @. Analogously, because of the same reason,
(8.8) v €3B(@Q), y€3B(R) = |r—y 2 DQR)
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Also,
1 -
(89) T € ZB(Q)7 Y € Supp(,u|R) = |3: - y| 2 K/OD(Qv R)7
To prove this, note that
(8.10) y € supp(fi|r) = Ix,(R) C R,

which implies thaty ¢ B(Q) and thuslz — y| > 3r(B(Q)) ~ ¢(Q). In the caser(B(Q)) >
2kof(R) this implies that

|z —y| 2 UQ) + Kol(R).
Otherwise, from[(8.10), since, € supp iz andy € I,,,(R), by the definition ofl,., (R),
l2q — yl > Kol(R),
and then, agzg — z| < 17(B(Q)) < 3kol(R), we infer that

Ko
|z —yl > [2q —yl — |2 — 2] > 74(3)-

So in any case we have — y| = xo(4(Q) + £(R)). Itis easy to deducé (8.9) from this estimate.
We leave the details for the reader.

From [8.7), [(8.B), and (8.9), and the fact ttéf-) is a standard Calderon-Zygmund kernel, we
get [8.6). Plugging this estimate intﬂB 5), we obtain

N n+1 Z
Ro REJa
So from [8.2) and the estimates for the terfasT, andT3, we infer that for alke € %B(Q) with
QesS

(8.11) |R(xa0,m)(2)| < [mp.o(R(xaqo)) \+92<”+” +P;(2Bg) + nH Z

Ko Regs
Denote
=D Xing FaBe) and glx)=> > & Q R Do Ryt FEB) X1pg)(®)-
QeJ QeS ReJy
Squaring and integrating_(8]11) with respectjton Q, we get
(8.12) HR XAQoM HLz (nlay) ~ Z‘muQ R(XAQOIU | n( % (Q))
Qes
i ~ 1 -
+05" 1(Qo) + 1PNz (g1, + WHQH%Q("\%)’

Note that, since)($B(Q)) = f(Q), the first sum on the right hand side bf(8.12) equigh§?,
which does not exceetl(Qy), by (8.1). By an analogous argument we deduce|tﬁ@MzL2(n|Q )=
0

HpuHm (FlQy) and”§H2L2(n|Q HQ”Lz (filoy)’ where

pa(®) =) xeFi(2Bg) and g(2)=)_ » — Q R"+1 Ji(R) xq().

QeJ QES ReJy
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We will estimatel|g|| 7.
(8.13)

~ ~ /(R ~
/ghd,u—z Z QR”+1 (R)/th#: Z#(R)ZW/QIWW

QES ReJy ReJy QeSs

(ilay) by duality: for any non-negative functione L*(fi|q,), we set

Foreach: € R € JA we have

Ji {(R)h -
Z D Q R D(Q, R)"+1 / hd </ ( ) (yszn—i-l d'u(y)

Qes (R)+ |2

/z—ySK(R) Z

i>1 /2j1£(R)<|z—y|§2j1£(R)

_ 279 i(B(z,27{(R)))
: ][(Zw( g (27¢(R))"

7>0
< Mih(z) Pi(B(z,((R))),
where M}; stands for the centered maximal Hardy-Littlewood operaititn respect tq:. Then, by

(8.13),

/ghdﬂ S D inf [Mzh(z) Pa(B(=, (R) ] i(R) < [ Mzh p dji
ReJa AQo
< Ml oy Il 2ot S Il Il 22 -

Thus, by Lemma 7]4 and recalling thats M-periodic,

2
H9||L2 (1) S Hpu||L2(u|AQ ) = A" ||pu||L2(u|Q ) S S An@i(nﬂ) Qo).

Plugging this estimate int@ (8.112) and recalling tﬂ\@nLg(on) = |lgllz2(z), we obtain

1 2 1
2 ~ iz AT o ~ AV e
HR(XAQon)Hm(mQO) < <E o7 n%"” 0" +1)> n(Qo) < (5 + 2 N > 1(Qo),

as wished. O

Note that the Riesz kernel is locally integrable with resgee) (recall that the number of cells
from Stop,, is finite). So for any bounded functiofi with compact support the integrdl K (z —
y) f(y) dn(y) is absolutely convergent for all € R"*+1.

Now we wish to extend the definition 6®, f(x) to M-periodic functionsf € L*°(n) in a
pointwise way (not only in &M O sense, say). We consider a non-negative radiafunction ¢
supported orB(0, 2) which equalsl on B(0, 1), and we set,(z) = ¢ (£) for r > 0. We denote

K, (z —y) = K(z — y)é,(z — y) and we define

Ry f (@) = R (f1) () = / B, (z — y) £y) dn(y),
and

(8.14) PVR,f (2) = pvR(fn)(@) = lim R, f(x),
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whenever the limit exists. Let us remark that one may alsméefie principal value in a more
typical way by

(8.15) lim K(z —y) f(y)dn(y).

r—00 ‘:B—y‘<7’

However, the definition (8.14) has some technical advastage simplifies the exposition below.
Nevertheless, one can show that both definitions {8.14) [@A&) coincide, at least for th&1-
periodic functionsf € L*°(n) (we will not prove this fact because this will be not needeldwg

Lemma8.2. Let f € L>=(n) be M-periodic, that is,f (z + zp) = f(x) for all z € R"*! and all
P e M. Then:
e pvR, f(x) exists forall z € R"*! and ﬁn,rf — pvR, f asr — oo uniformly in compact
subsets oR"*!. The convergence is also uniform empp . Further, given any compact
setF ¢ R™*!, there isrg = 7(F) > 0 such that fors > r > r,

(8.16) 1Ro(F1) = Ro ()] o S = 1l

wherecg is some constant depending 6h
e The functionpvR, f is M-periodic and continuous iR"*1, and harmonic inR™*! \

supp(fn).

The arguments to prove the lemma are standard. Howevehdaetder’'s convenience we will
show the details.

Proof. By the M-periodicity of the measure := f 7, it is immediate that the functioriér(fn),

r > 0, are M-periodic too. On the other hand, using thait absolutely continuous with respect
to Lebesgue measure with a uniformly bounded density, itrEghtforward to check that each
R, (fn) is also continuous and boundedRri*L. Then, except harmonicity iR \ supp(f7), all

the statements in the lemma follow if we show that the famfljunctions {R,.(f7)},~o satisfies
(8.16) for any compact subsét ¢ R™*!. Indeed this clearly implies the uniform convergence on
compact subsets and enpp 7, sincesupp n is M-periodic,

Lets > r > ry and, denotds,. ,(x —y) = K,(z —y) — K,(z —y). Notice thatk,., is a standard
Calderbn-zZygmund kernel (with constants independemtarids). We write

V= Z (TP)#(XQOV)v
PeM
so that
Ro(fm)@) - Re(f)(a) = [ Beae = 9)d( Y- (Tr)sran) )
PeM

Since the support dEr,s(x —y) is compact, the last sum only has a finite number of non-zenaste
and so we can change the order of summation and integration:

(817)  Ru(fn)@) - R, = 3 [ Rt - 9 dl@)s o] )

PeM

= > / (x —y—zp)dv(y).

PeMm
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By the antisymmetry of the kerneﬂ’r s, from the last equation we derive

Ro(fn)(@) - R, -y / (2 — (2 — 1)) dv(y).

PeM

Also, by the definition ofM, it is clear thatP € M if and only if —P € M. So replacing:p by
—zp does not change the last sum[in (8.17). Hence we have

Ro(f)a@) = Relfn)o) = 3 [ Roler + (o =) dv).
Pem Qo
Averaging the last two equations we get
(8.18) R, (fn)(x) — R > / Rra(ep+ (@ =) — Kralzp — (— )] du(y).
PeM

Note that ifz belongs to a compact sétc R™*! andy € Qq, then both(z — ) and—(z — %)
lie in some compact sef. Observe also thak, r,s vanishes inB(0,r). So if we assume, >
2 diam(F), say, then botIKm(zp + (. —y)) andKrs(zp — (x —y)) vanish unles$zp| > r. For
suchz, y we havelz — y| < diam(F) < 1 $r < 3|2plandso

lzp + (z —y)| = |zp + (z —y)| = [2p] > 7.
Then we obtain

~ ~ Y diam(F
e o) = Foster = =) % (e <

Plugging this estimate int@ (8.118) we obtain

R -Fmwls Y D) > D ey,

PeM:|zp|>r PEM:|zp|>r 2P
It is easy to check that
n
> sy
PeMilzp|>r T "
So we deduce

dlam( F)

[Rs(F1) = Re(f)]] o p S [fllc =0 asr— oo,

as wished.

It remains to prove thaivR, f is harmonic inR"*! \ supp(fn). Consider a closed bal¥ (0, 71)
andz € B(0,71). Then we have

R(fé,m)(x) — Rolf) (x) = / K(x 1) (6r(y) — ol — 9)) F) dn(y).

We write
le

|6r(y) = &r(x = 9)| S [ Vrlloo 2] S
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Forr > 4rq, itis easy to check thag, (y) — ¢, (x — y) = O unless|z — y| = |y| ~ r. Thus

RU9) @ =R S [, g

i n
S ycor T

X r
< e n(BO,C) £ e

That is to say,

IR(Férm) = Re(Fm) | o ) S = I1Flloc =0 asT = 00,

Sinceﬁr(fn) converges uniformly tpvR,, f in F asr — oo, it follows thatR(f¢,n) also con-
verges uniformly tovR, f in B(0,71).

Note now thatR ( f¢,n) is harmonic out ofupp(fn) becausef ¢,.n has compact support, and so
by its local uniform convergence &R, f, we deduce thapvR, f is harmonic out obupp(fn)
too. g

From now on, to simplify notation we will denoterR,, f just by R, f.

Lemma 8.3. Let LS, (n) denote the Banach space of thd-periodic functions which belong to
L*>(n) equipped with the normi - || o< (;;). The mapR,; : L5 (n) — L5, (n) is bounded. Further,
forall f € L3y (n) andr > 0 big enough we have

(8.19) IR(f1) — Ro(f0) | oo () S

We remark that the bound on the norm7f, from L3 (n) to L3 (n) depends strongly on the
construction ofp. This is finite due to the fact that the number of cells frépap, is finite, but
it may explode as this number grows. The precise value of ¢l will not play any role in the
estimates below, we just need to know that this is finite.

| £1l oo ()
D

Proof. Sincef is M-periodic, from [8.16) we infer that for > r > ry = r4(Qp),
HRs(fn) - Rr(fn)HoQFS 7 HfHocn

Letting s — oo, R,(fn) converges uniformly t&Rv and so we gef(8.19).

To prove the boundedness&f, : LY (n) — L3 (n), note first tha’rf{r0 is compactly supported
andy is absolutely continuous with respect to Lebesgue measuascompact set with a uniformly
bounded density. Hence we deduce ﬁ@yo : LS (n) — LS (n) is bounded, which together with

(819) applied tav,, implies thatR,, : L () — L3 (n) is bounded. O
From now on, giverr € R**!, we denote
cg = (21, 2,
so thatr = (zg, z,41). AlsO, we write
RE = (Ry,...,Ry),
whereR ; stands for thg-th component oR, so thatR = (R, R, 11).
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For simplicity, in the arguments below we will assume thatfiimction¢ defined slightly above
(8.13) is of the formp(z) = ¢(|z|?), for some everC! function ¢ which equalsl on [0, 1] and
vanishes out of0, 2/2].

Lemma84. Letf € L} (n) be M-periodic. Then,
(a) Let A > 5 be some odd natural number. For alle 2Q,,

1
RO oy (@)] S ——— /Q f]dn.

Al(Qo)"
(b) For all z € R™*! such thatdist(z, H) > ¢(Qo),
8.20) RUDE < g |, 11
and
1
821) R0 £ e ae 19

Proof. We denoter = f7. The arguments to prove the estimate in (a) are quite sirailtre ones
used in the proof of Lemnia 8.2. Since we are assumingAhstsome odd number, there is a subset
M 7 C M such that

X(AVQO)cV: Z (TP)#(XQOV)

PeM;
Further the cube® ¢ M ; satisfy|zp| 2 Al(Qo). So for anyz € Qo and allr > 0 we have
R ((igne)e) = [ Bola—)d( Y (T)xam)) ).
PEMZ

Since the support oﬁ}(m —y) is compact, the last sum only has a finite number of non-zenoste
and so we can change the order of summation and integratidrthas

(8.22) R, (X (g = > / K (z —y)d[(Tp)4(xqo¥)] (%)

PeMz

= Z K. (z —y — zp) dv(y).

PEMAN Qo

By the antisymmetry of the kernd{,, from the last equation we get
7ér(X(ﬁQO)CV)(x) == Z [N{T(ZP — (z—y))dv(y).
PGMA* Qo

Also, by the definition ofM 3, it follows that P € M 7 if and only if —P € M 3. So replacing:p
by —zp does not change the last sum[in (8.22), and then we have

Re(X (i) PZ/;I N K (zp + (x = y)) dv(y).
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Averaging the last two equations we get

(8.23)  Rilx(ig,))(@) = % > /Q (K (zp + (z = y)) = Ko (zp — (z —y))] dv(y).
PeMz V0

Note now that: € 2Q, y € Qo and, recalling thalzp| > A¢(Q,) for P € M 3, we have
lzp + (z —y)| = |zp — (z —y)| = [2p|.

Thus,

- - _ °Q
Roler+ @ =) = Roler (o =) £ 15ty |zf)|n°21.

Then, from this estimate and (8]123) we deduce that

|R AQo) )(1')‘ 5 Z |f( |n—21 ‘ ‘(QO) S ~

PeM:|zp|>C—1A0(Qo)

as wished.

To prove the first estimate in (b), lete R™*! be such thatlist(z, H) > ¢(Qo). SinceRv is
M-periodic, we may assume that; € Qo N H. As in (8.23), for any- > 0 we have

@20 Ro)=3 Y [ [Reert )~ Roler @ 9)] o).

PGM
We claim that forz as above ang € Q,
~ ~ dist(x, H)
(8.25) K (zp + (2 = y)) = Ke(zp — (z = y))| S (i, ) + o)
(x,H) + |z — zp| = |z — y| + |zp| = |zp|, and thus
|z —y| _ dist(z,H) _ dist(x, H)
zp|"1 T Jzp[ttl T (dist(z, H) + |zp|)n+17

Indeed, ifjzp| > 2|z —y

|, (2p + (2 — y)) — Kr(zp — (z — )| S ‘

which shows thaf{(8.25) holds in this case.

ol < 1 . 1
e —y) +ar o [(epty) -2l

It is immediate to check thalist(x,y — zp) ~ dist(z, zp + y) =~ dist(z, H) ~ |z — y|, and so we
deduce that

VZ—T’(ZP +(x—y)) — kr(

1

|, (2p + (z —y)) — Ko (2p — (2 Py

-y))| S
Further from the conditiofzp| < 2|z — y| we infer that
[z =yl =[x =yl + [zp| = dist(z, H) + |2p],

and thus

B _ |z — dist(z, H)
K. (zp+ (x—vy) — Ky (zp — (z —y))| S L nt1’
| S e )™ ot 1)+ )

which completes the proof df (8.25).
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From [8.24) and (8.25) we deduce
~ dist(z, H)
Ryv( d
| o P;v(/ dist(xz, H) + |zp |)n+1 v
— 1bl(Qo) dlSt(:L' H) Z QP

Py pen (dist(z, H) + ]2p])n+1

It is straightforward to check that
Z QP < 1
P (dist(z, H) + ]2p])n+1 ™~ dist(z, H)’
and thus([(8.20) follows.

We turn now our attention to the last estimate in (b). Againle R"*+! be such thadlist(z, H) >
(Qp) andxy € Qo N H, so that the identity (8.24) is still valid. We claim that fere @, andr
big enough,

~ ~ 2(Qo)
: Hy z—y) - KH(zp — (x — <
(8.26) |KM (zp + (z —y)) = K (zp — (z — 9))| £ @t H) + o)

where K is the kernel ofRZ . To prove this observe that

REG) = e (), with o, (t) = f_t)

Then we have
K (zp + (x —y) = K[ (zp — (& — y))]
= ((zrm + (@ —ym) e (|2p + (2 = 9)?) = (21 — (@r — ym)) b (l2p — (& — y)P)]
< 2|z —yu| e (lzp + (z — y)*)
+|zpa — (xr —ym)| [ (l2p — (@ = y)I?) — e (l2p + (= — y)?) |
=11 + Ts.
To deal withT; we write
2|zy — yu|
P+ (z -yt
Note then thatzy — yu| < £(Qo), while |z — y| ~ dist(x, H). Further, it is easy to check that
(8.27) lzp + (= y)| = |zp — (z — y)| = [zp| + dist(z, H),

Th <
|z

which implies that
l
T < — (Qo) .
(dlSt(:L', H) + |zp|)
Now we will estimatels. To this end we intend to apply the mean value theorem. ItSy &a
check that for all-, ¢ > 0,
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and then, by{(8.27),
lzp — (z —y)|* = |zp + (z — y)|?|

zp — (& —y)|?) — (|2 z—1y))| <
[vr(lzp = (& = y)[) — ¥r(Jzp + (z — y)?)| (diSt(:L',H)—l—|ZP|)n+3

Now we have
llzp — (= y)I* = [zp + (x = y)I?| = |[(zr.r — (@1 — y#))* + (Tnt1 — Yns1)?]
- [(ZP,H +(@n —yu))? + (@41 — yn+1)2] |
=4 |zpu - (x5 —ym)| < 4|2p| €(Qo).
Thus we infer that
T < \zp — (xr — ym)| 2P| £(Qo) < £(Qo) '
(dist(:n, H)+ |zp|)n+3 (dist(:n, H)+ |2P|)n+1

Together with the estimate above fby this yields [8.26).
From [8.24) and. (8.26) we obtain

~ £(Qo)
Ryv(x)| < |v .
Ryv(z)| S | !(QO)PEEM (distle, H) + o)

It is easy to check that
0(Qo)" ! < Qo)
sy (dist(z, H) + |zp|)" T~ dist(z, H)’
and then[(8.21) follows. O

Lemma8.5. We have

1
/Q Rn|* dn < <€'+ p) n(Qo)-
0
Proof. By Lemmd38.1 it is enough to show that

1
IR(X(aQo)m|* dn S —5 n(Qo),
A

Qo
which is an immediate consequence of Lenima 8.4 (a). O

Remark 8.6. By taking A big enough and,s small enough in the assumptions of the Main
Lemmd 3.1, and then choosing appropriately the parameteks, 0y, it follows that

(8.28) | 1Rnl i < (@)
0
Indeed, the preceding lemma asserts that
1
2 < / -
/QO Ryl dn < (E + A2> 1n(Qo),
with &’ given in Lemma&8J1 by

1
~ _ _ 2
g =F4 A" g2 {7
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wherez is defined in[(7Z.B) by

~ 1 1 - 1 ~_2
E:C4 <E+F+A4n+254n1+4 +€O_|_90n+1 +’%S +A2"+254n2+5>7

ands in (7.2) by
§=CyAnt (60 + 6/ kg 51/2>.
Hence if we take firstd big enough and thesy, kg, 9, 8 small enough (depending ot), so that
1

moreoverd, < ko (to ensure that"x, 2" =2 """ < 1), then [8.28) follows.

9. PROOF OF THEKEY LEMMA BY CONTRADICTION
9.1. A variational argument and an almost everywhere inequality.

Lemma9.1. Suppose that, for sonte< \ < 1, the inequality
/ [Rn|?dn < An(Qo)
Qo

holds. Then, there is a functidne L>°(n) such that
() 0<b<2,
(i) bis M-periodic,

(i) / bdn = n(Qy),

Qo
and such that the measure= by satisfies
(9.1) | Ref < 20(@0)
Qo
and
(9.2) |Ruv(z)|* + 2R*((Rv)v)(x) < 6 forv-a.e.x € R,
Proof. In order to find such a functioly we consider the following class of admissible functions
(9.3) A= {a € L>®(n): a >0, ais M-periodic, andeO adn = n(Qo)}
and we define a functional on A by
(0.4) @) = Nl @) + | [Ron) o
0

Observe that € A4 and
J(1) = An(Qy) + / Rl dn < 221(Qu).

Qo

Thus
inf <2 .
inf J(a) < 2A7(Qo)
SinceJ(a) > Allal| Lo () 7(Qo), itis clear that

inf J(a) = inf
acA H,GAZ”CL”LOO (n)§2
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We claim that/ attains a global minimum oA, i.e., there is a functioh € A such that/(b) < J(a)

for all a € A. Indeed, by the Banach-Alaoglu theorem there exists a seqyey}, C A, with

J(a) — infaen J(a), [lag| po@m < 2, SO thata, converges weakly * in.>°(n) to some function
b € A. ltis clear thab satisfiesl{i),[(ii) and(ili). Also, sincg — % belongs taL},.(n) (recall

thatn has bounded density with respect to Lebesgue measurdjowsécthat for allz € Qo and all
r >0, Rr(axn)(x) — R,(bn)(x) ask — co. To see that for alk € Qo, R(axn)(z) — R(bn)(x),

we write for anyk, » > 0 big enough

[R(axn) () = R(bn)(@)] < [Rlarn)(x) = Re(arn) ()] + | Ry (axn) (@) — Ry (bn)()]
+ Ry (bn) () — R(bn) ()|

llak oo () + 110l oo

L R (akm) (@) — Ry (bn) ()]

appliying [8.19) for the last inequality. Taking limits knin both sides we obtain

<C

lim sup|R(agn)(z) — R(bn)(z)| < % + lim sup!ﬁr(akn)(x) — ﬁr(bn)(ac)‘ = g

k—o0 k—o0

Since this holds for all > 0 big enough, we infer thaR (a;n)(x) — R(bn)(x) ask — oo, as
wished. Taking into account that

Rian)(a)] < 5+ [Roan)@)] < & +2 [ L dn(y) < C()

|lz—y|<r ‘.Z' - y‘n
for all r > 0 big enough, by the dominated convergence theorem we irdi¢r th
| R@nPan— | RonPay as k.
Qo Qo

Using also that|b|| @, < limsupy, [lax|[ze(y)., it follows that.J(b) < limsupy J(ax), which
proves the claim thaf(-) attains a minimum &t.

The estimate[(911) far = b7 follows from the fact that/(b) < J(1), because the property (jii)
implies that||b|| ) > 1.

To prove [9.2) we perform a blow-up argument taking advantafghe fact thab is a minimizer
for J. Let B be any ball contained i)y and centered omupp v N Q. Let

(9.5) Pu(B)= |J (B+2r)

ReM
be the “periodic extension” abB with respect toM. Now, for everyd < ¢ < 1, define
v(B)
v(Qo)

Itis clear thath; € A forall 0 <t < 1andby = b. Therefore,

J(b) < T(b) = Albelloon(Qo) + / (R (by) by di

(9.7) J(B) @o
< (1 T t—) 1Blm(Q0) + /Q R () by dy = ().

b.

(96) bt = (1_tXPM(B))b+t

v(Qo)
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Sinceh(0) = J(b), we have thak(0) < h(t) for 0 < ¢ < 1 and, thus’(0+) > 0 (assuming that
h'(0+) exists). Notice that

%LZO = ~XpPu(B)b :((50)) b,
Therefore,
0 H(04) = AT Wlon@) + g, [ RO
Az o) +2 [ R (%], n) -Roban+ [ o]
V((g)) (Qo) +2 /Q ® <<—XPM(B)b+ %Q n) R

) v(B)
—I—/QO |Ry| ( XPa(B)b + (Qo)b> dn
_,B) ) VB [ o
=32 blen(@ 2/ R(Xpp, (5 (QO)/QOIR 2d

/IRV\Z )/ IRv|? dv,
Qo) Qo

where we used thaPy((B) N Qo = B in the last identity. The fact that the derivatives above
commute with the integral sign and with the operéibis guaranteed by the fact thigtis an affine
function oft and then one can expand the integréRdb;n)|?b; and obtain a polynomial expression
ont. Using also thaf\ < 1 and that/(b) < 2Av(Qp), we get

2 v(B) [
9.8) /Bmy\ w42 | Rlxe ) Rvdv < o Aubuoon(qzo)m/%

< 3.J(b)v(B) < 6Av(B).

\Rulzdu]

We claim now that

(9.9) R(Xpy(B)V) - Rvdy = / R*((Rv)v) dv.
Qo B

Assuming this for the moment, fromn_(9.8) and (9.9), dividimgy(B), we obtain
1 / 9 2 / .
— Rv|“dv + ——— R*((Rv)v)dv < 6,
/(B J T iy RO

and so, letting/(B) — 0 and applying Lebesgue’s differentiation theorem, we abtai
|Rv(z)]? + 2R*(Rv)v)(z) < 6X forv-a.e.x € R*1,

as desired. B B
It remains to prove the claini (9.9). By the uniform convexgef R, (xp,,(z)v) andR,v to
R(Xp.(B)V) andRy, respectively, we have

(9.10) / R(Xpy(B)V) - Rvdv = lim ﬁr(XPM(B)V) Ry dy.
Qo

T—00 QO
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Sincel?,,(gc — ) has compact support, for alle Qo,

R (xrpmy)(e) = | RS = 3 [ Rale =) dl(Tr) 4 xa0)0).

PeM
For the last identity we have used the fact that the sum albave only over a finite number of

P € M because there is only a finite number of non-zero terms (i) ¥ae may assume these
P € M to be independent af € )y). Thus we have

R, (XPu(B)V) Z /K x—y—zp)dv(y Z R, (xBV)(z — zp),
PeM PeM
and so
Re(Xppy(p)V) (@) - Revdy(z Z (xBv)(@ — 2p) - Ryv(z) dv(z)
Qo PeM
P;/l /QO . +(xBV)(x) 'ﬁry(ac—kzp)d((Tp);éll/)(x)

SinceR,v is M-periodic, R,v(z + zp) = R,v(z) and(Tp);ﬁly = v, and then by Fubini,

(9-11) % ﬁr(XPM(B)V)(m) ’ 75'7"7/(1') dl/(l’) = P;\A /Qo . ﬁr(XBV)(x) ’ ’ﬁ,rlj(l’) dl/(SL')

_ / Ry (xsv) (@) - Rev() dv(x)
_ / Ri(Rov))(y) du(y).
B

SinceR,.v converges uniformly t®Ry asr — oo andR tends toR* in operator norm i () —
L% (n), we deduce that

lgn R *(Ryv) /R* ((Rv)v
Together with[(9.100) ancﬂllll) this yields (9.9). O

9.2. A maximum principle.

Lemma 9.2. Assume tha% |Rn|? dn < M(Qo) for somed < A < 1, and letb and v be as in
Q
Lemmd9ll. LeKg > 10 be gome (big) constant and I8tbe the horizontal strip
S = {x S Rn+1: \an] < ng(Qo)}

Also, set

. 1
f(x) =cszpr1ent1 = cs(0,...,0,2p41), With cg = / =T w(y)-
(lyr|* + (Ks(Qo))?) 2

Then, we have

(9.12) Rv(z) — f(2)]? + 4R* (Rv)v)(z) < AV/2 + Ki forall z € S.
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Further,
1

(9.13) cs < T

Proof. The inequality [(9.13) is very easy. Indeed, we just have &thaty(B(z,r)) < r™ for all
xz € R* ! andr > 0, and use standard estimates which we leave for the reader.
To prove [9.1R), we denote
F(z) = [Ru(z) = f(2)]” + 4R*(Rv)v) ().

It is clear thatF" is subharmonic iR"*! \ supp(v) and continuous in the whole spaié&+!, by
Lemmd8.2. So if we show that the estimate in (9.12) holdslfar & supp v U0S, then this will be
also satisfied in the whol§&. Indeed, sincd’ is M-periodic and continuous if, the maximum of

F'in S is attained, and sincg is subharmonic i@ \ supp v, this must be attained supp v U 9S.

First we check that the inequality in_(9]12) holds foralE supp v. To this end, recall that by
Lemmd9.1

|Rv(z)|* 4+ 2R*((Rv)v)(x) < 6\ v-almost everywhere isupp(v),
and this inequality extends to the whatepp(v) by continuity. Therefore we have, for all €
supp(v),
F(z) = [Rv(z) - f(x)]” +4R*((Rv)v)(z) < 2[Rv(x)* + 2| f(2)]* +4R*((Rv)v)(x)
1
<120+ 2/ f(2)]> < 120 + (csl(Qo))* S A+ el

S

where we took into account that, 1| < $/(Qo) for z € supp v and we used(9.13).

Our next objective consists in getting an upper boundifan 9S. By applying Lemma 814 to
the functionRv (which is M-periodic), withR* instead ofR (sinceR is antisymmetric we are
allowed to do this) we deduce that, for alke 9.5,

1 1
<
£(Qo)™ /Qo Ruldy % £(Qo)™
<

It suffices to show now thafRv(z) — f(z)|
(RYv(x), Ruy1v(x)). From [8.21) we infer that

1/2
R (Ro)(@)] < (f moar) vi@o s

= forallz € 05, We write Rv(z) =

1 1
RIva) < ———— v <
Hence it just remains to prove that
(9.14) |Rns1v() enpr — f(2)] S KL forall z € 0S.
S

To prove this estimate we can assume without loss of getethitz,, 1 = Ks/(Qp) and that
xyg € Qo N H, by the M-periodicity of R,,1v. Sincef(z) = cs Ks£(Qo) en+1 for this pointz,
(9.13) is equivalent to

(9.15) [Roia(e) — es Ks Q)| < 7
S
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Note first that
— Yn+1 [ T+l — Yn+t1
Rn+1l/ = hm / (bT’ — ﬁ dV(y) = W dl/(y),

by an easy application of the dominated convergence theqging thatz,, 1 —y,+1| < dist(z, H)+
£(Qo)). Consider the pointy = (0, Ks¢(Qo)). Since for ally € supp v,

1
|z — 0| + |y —yu| < Qo) < §|33 -yl

and since thén + 1)-th component of< (-), which we denote bys,,.(-), is a standard Calderon-
Zygmund kernel,

|z — 20| + |y — ym| £(Qo)
| Kni1(z —y) = Knga(wo —yu)| S |z — y[n T S |z — y[t L

Therefore, integrating with respecti#owe derive

/(Kn+1(9€ —y) = Kpt1(z0 — yn)) /| — y|"+1 ().

Sincedist(z, supp v) 2 Kg ¢(Qo) andv is a measure with growth of order by standard estimates

it follows that (
2(Qo) < 1
| ) 5 g

which proves[(9.15) and finishes the proof of the lemma. O

R av(@)—cs Ks ((Qo)| =

The next result is an immediate consequence of Lemnia 9.2.

Lemma 9.3. Assume that, for sonte< A\ < 1, the inequality
/ IRn|%dn < An(Qo)
Qo
is satisfied, and let andv be as in Lemm&a39.1. Then, we have
(9.16) IRu(z)|? + 4R*(Rv)v)(z) < AY?  forall & € R™H,

Proof. This follows by lettingKs — oo in the inequality [(9.12), taking into account that — 0,
by (9.13). O

9.3. Thecontradiction.

Lemma 9.4. Suppose that, for sonte< A\ < 1, the inequality
0.17) | 1Rnfdn < Anico)
0

is satisfied, and lei andv be as in Lemm@a8.1. Then, there exists some consgiant0 depending
onlyd onn, Cy, C; such that
A > C3.

Iin fact, keeping track of the dependencies, one can chetk4ligpends only on andCy, and not orC';. However,
this is not necessary for the proof of the Key Lemma.
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Proof. By Lemmd9.8, we have
(9.18) IRv(z)|? + 4R* (Rv)v)(z) < A/?  everywhere irR™+1,

Now pick a smooth functiop with x¢o, < ¢ < x20, and||Vellee S Z(éo). Sety = C5V, SO
that R* (¢ H" 1) = ¢. Then, we have

n(Qo) = v(Qy) < / dv — / R* (™) du

1/2 1/2
:/chm"“ < </|Ru|2|w|d’}-["+1> (/ |¢|d7{”+1> .

First of all, observe that

[$]e < and / ] A < 0(Qo)"

£(Qo)
and so
1/2
(9.19) n(Qo) S ( / rnvﬂwdﬂ"*l) 0(Qo)™>.
Furthermore, by (9.18) we have
(9.20)

/ R[] dH™ ! < C A2 / [ldH™ +4‘ / R (Rv)v)|| dH™!

< N/20(Qo)" + ‘/ R* (x(3020)c (R)) ] dH™

+ ' / R* (x50, (Rv)v) [ dH™ 1.

To estimate the first integral on the right hand side we ap@ynina[84 (a) withdA = 5 and
f = Rv b (whereb is such thabn = v), and then we deduce that for alle 2Q,,

1
E(QQ)" Qo

1 2 2 1/2
= — |Rv|dv S <][ |Rv| dz/) S A
E(QO) Qo Qo

Thus, recalling that) is supported ir2Q),

IR (X(50) (RV)V) (2) < |Rv bl dn

SA2 gl S A2 u(Qu).

/ R* (X(s0uy- (Ri))|10] dH™1

Concerning the last integral on the right hand sidé of (9.@@)have

Rv - R(|¢| dH™ ) dv
5Qo

1/2 1/2
< (/ mu\2dy> </ IR(J¢p| dH™ )2 du> .
5Q0 5Qo

\ [ R (e Rl anr
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The first integral on the right hand side does not exaeed(Q,) (by (8.1) and the periodicity of
Rv). For the second one, using tha{ < Z(Tlo)ngo, it follows easily tha|R(|y| H"1)||oo < 1.
So we get

/ R* (xso (Rv)) [ dH™1| < AV20(Qy).

So from [9.20) and the last estimates we deduce that
/\Ryy2\¢yd%"+1 < AV2(Qp).

Thus, by [9.1D),
v(Qo) S A *0(Qo).
Thatis,A 2> 1. O

Now to conclude the proof of the Key Lemrhal6.1 we only have talte¢hat, by Remark 816,
fQO |Rn|? dn < n(Qo) if Ais big enough and, ¢, kg, 6y small enough and chosen suitably, under
the assumption that, is small enough too. This contradicts the conclusion of Lexi®4. Hence,
(©.3) cannot hold and thus we are done.

10. CONSTRUCTION OF THEAD-REGULAR MEASURE( AND THE UNIFORMLY RECTIFIABLE
SETI' IN THE MAIN LEMMA

Denote

(10.1) F=@Qonsuppp\ |J @

QeLD

It is easy to check thdl < O} (x,u) < ©™*(x, ) < oo for y-a.e.x € F. SinceR,, is bounded
on L?(u|r) it follows that u| is n-rectifiable, by the Nazarov-Tolsa-Volberg theorém [NThV2
However, to get a big piece of a set contained in a uniformhgctifiable sef” like the one required
in the Main Lemma and in Theorem 1.1 we have to argue moreubreTo this end, first we will
construct an auxiliary AD-regular measufesuch that((F') > p(F'), and then we will apply the
Nazarov-Tolsa-Volberg theorem [NToV1] for AD-regular nseees.

Next we are going to construct the aforementioned auxillmeasure,. The arguments for this
construction can be considered as gquantitative versioheobhes from [NToV2], which rely on a
covering theorem of Pajot (see [Pa]).

Recall the notatiow = 1|g,. Consider the maximal dyadic operator

1
= — do
Mp, f@)= s o /Q \f|do,

whereD,, is the David-Mattila lattice associated Let F' be as in[(10J1) and set
= : c < —_ — r.
F {:UGF Mo, (xre)(z) < 1 2}

We wish to show that

(10.2) o(F) >
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To this end, note that

F\F= {x € F: Mp, (xpe)(z) > 1 — 5—20}

and consider a collection of maximal (and thus disjointyscgl); }ics C D, such that (Q; \ F) >
(1 —%)o(Q;). Observe that

= U Q;NFE.
=
Clearly, the cellg); satisfyo(Q; N F) < 2L0(Q;) and so we have

o(F\F) <Y oQNF) <Y 2o(@) < 5 0(Q) <

ieJ ieJ

(F) )

l\')lr—t

which proves[(10J2).
For eachi € J we consider the family4; of maximal doubling cells fronD% which coverQ);,
and we define
A=A

ieJ
Finally, we denote by4, the subfamily of the cell®® € A such thato(P N F') > 0. Now, for
each@ € Ay we consider am-dimensional spheré (@) concentric withB(() and with radius
1r(B(Q)). We define

(=olz+ Z H"|s(q)-
QeA

Remark 10.1. If P € Ay andP C @, for somei € J, then
E(P) ~00,Co E(Ql)

Indeed, since” is a maximal doubling cell contained @, by Lemmad5.b and the fact th&a6 Bp C
100B(P),

0,(3.5Bp) < 0,(100B(P)) < Ay "I =7CQD @ _(100B(Q;)) Sy Ag ™)@

Sinces (P N F) > 0, it turns out thatP is not contained in any cell frohD, and so®,(3.5Bp) >

fy. So we have

b0 <y A-U(P)-T@))
~Co

which implies thatJ(P) — J(Q;)| Seo.co 1

9

A very similar argument shows that#f € D,, satisfiesP N F' # & (and so it is not contained in
any cell fromLD), then there exists son@ € D% which containg and such that

U(P) =,,c0 U(Q).
The details are left for the reader.
From the two statements above, if follows thatany cell P € D, which is not strictly contained
in any cell from.A, there exists some celt € D% which is not contained in any cel);, i € .J, SO
that P C P and/(P) =g, c, £(Q).

Lemma 10.2. The measuré is AD regular, with the AD-regularity constant depending @ 6,
andey.
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Proof. First we will show the upper AD-regularity @f. That is, we will prove that(B(z,r)) <
C(Cy,b0p) r™ for all z, r. By the upper AD-regularity of, it is enough to show that the measure

v="> MH'lsq

QeAo
is also upper AD-regular. So we have to prove that
(10.3) v(B(z,r)) < C(Co,0p)r™  forallz € Uge 4, S(Q) and allr > 0.

Takez € S(Q), for some@ € Ay. Clearly the estimate above holds if the only sph&fé),

P € Ay, that intersect®(z, r) is justS(Q) itself. So assume thd(z, r) intersects a spherg(P),

P € Ay, with P # Q. Recall that} B(Q) N $B(P) = @, by Remar 5, and thus for some
constaniCs, P C B(x,Cgr). Hence,

v(B(z,r)) < > v(35(P)) S > (pP)".
PeAo:PCB(z,Cér) PeAy:PCB(z,Cer)

Note now that by the definition ofly, o (F' N P) > 0, which implies thatP? ¢ LD and thatP is not
contained in any cell fromhD, and thus taking also into account thate D,

(10.4) o(P) 2 0(3.5Bp) = 0y L(P)".
Together with the upper AD-regularity efthis yields
1 1 "
VB S Y o(P)S g o(BCor)) Scom ™

PeAy:PCB(z,Csr)

which concludes the proof df (10.3).
It remains now to show the lower AD-regularity ¢f First we will prove that

(10.5) C(2Bg) Z00.c0.00 £Q)"  if Q € DP is not contained in any cel);, i € J.
Indeed, note that by the definition of the calls, i € J,

€0
< _ =
o(Q\F) < (1-3) Q).
or equivalently,
o(QNF) = Fo(Q).
Since( is not contained in any cell frohD (by the definitions of” and.A;) and is doubling,
(10.6) oc(QNF) Ze 0(3.5B) 26,20 LQ)"
On the other hand, by the construction(of
dQ@NF)=0c@QNF)+ >  o(PNF)Se, CQNE)+ > HYS(P)).
PcAy:PCQ PcAy:PCQ

We may assume that all the cel’sC @ satisfy.S(P) C 2B, just by choosing the constady, in
the construction of the latticB,, big enough. Then we get

o@QNF) S, CQNE)+ > ((S(P)) ey ((2Bg)-
PeAo:S(P)C2Bg
Together with[(10.J6), this gives (10.5).
To prove the lower AD regularity af, note that by Rematk 10.1 there is some constént, 6,)
such that ifr € S(Q), Q € Ag, andC’(Cy, o) £(Q) < r < diam(Qy), then there exist® € DP
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not contained in any cel;, i € J, such thaBp C B(x, ), with £(P) ~y, ¢, r.- The same holds
for 0 < r < diam(Qy) if z € F. From [10.5) we deduce that

((B(l’,’l")) > <(2BP) 290,80700 g(P)TL ~00,e0,Co T
In the case that < C'(Co, b) £(Q) for z € S(Q), Q € Ay, the lower AD-regularity ofH"|g(q)
gives the required lower estimate (B (z,)).

Lemma 10.3. The Riesz transfori®. is bounded inL2(¢), with a bound on the norm depending
on Cy, C1, 8y, andey.

To prove this result we will follow very closely the argumeii the last part of the proof of the
Main Lemma 2.1 of[NToVR2]. For completeness, we will showthé details.

For technical reasons, it will be convenient to work with aaregularized versior‘ﬁl,,€ of the
Riesz transfornkR,,. For a measure with growth of ordem, we set

Ruef(x /maX = y| STE f(y) dv(y).

It is easy to check that
Ryof(x) —Ry-f(z) < eM,f(z)  forallz e R™,
wherec is independent of and M, is the maximal operator defined by
1
My f(x) =sup— [ |f|dv.
r>0 1" JB(z,r)
SinceM,, is bounded in.?(v) (because/ has growth of order), it turns out thafR, is bounded in
L2( ) if and only if the operator®,, . are bounded i.2() uniformly one > 0. The advantage of
Rl,,€ overR, . is that the kernel

~ T
K(z)= ——
() max(|z], €)1

is continuous and satisfies the smoothness condition
= c
IVEc(2)] < EEe x| # ¢

(with ¢ independent of), which implies that[?g(m — y) is a standard Calderén-Zygmund kernel
(with constants independent &f, unlike the kernel ofR, ..

Proof of Lemma_10]3To shorten notation, in the arguments below we will allowth# implicit
constants in the relations and~ to depend oy, C1, 0, ¢.

Denote
v=> H'lsq
QeAo

so that¢ = o|z + v. SinceR, is bounded inL2(o), it is enough to show thak,, is bounded in
L?(v). Indeed, the boundedness of both operators implies thedeomess o, in L?(c + v)
(see Proposition 2.25 df [To2], for example).

As in (6.3), givens > 0, for each@ € Ay, we consider the set

I.(Q) = {z € Q : dist(z,suppo \ Q) > kl(Q)}.



THE RIESZ TRANSFORM AND RECTIFIABILITY FOR GENERAL RADON MASURES 51

By the small boundary condition @, the fact that is doubling, and that (Q) = 6 ¢(Q)" (as
shown in [10.4)), we deduce there exists same 0 small enough such that

1

(10.7) o(1:(Q)) = o o(Q) 2 0 L(Q)".
We consider the measure
6= ol
QeAo

with cg = H™(S(Q))/o(1.(Q)). By (10.7) it follows that the constants), @ € Ay, have a
uniform bound depending afy, and thusR; is bounded in.? () (with a norm possibly depending
onép). Furtherv(S(Q)) = o(Q) for each € Ay.

It is clear that, in a sens@, can be considered as an approxmatlon/c(hnd conversely). To

prove the boundedness &, in L?(v), we will prove that’R,,8 is bounded inZ%(v) uniformly on

e > 0 by comparing it toRa,a. First we need to introduce some local and non local opesagiven
z € Ugeu, 9(Q), we denote by5(z) the sphere5(Q), @ € Ao, that contains:. Then we write,

for z € Uge, S(Q),

RIF(2) = Rue(fxse) (), RELF(2) = Rue(fxmninse)(2):

We define analogousiR: f andRZ_f: givenz € [Jye 4, @, We denote by)(z) the cellQ € A,
that contains:. Then forz € (Jg 4, @, We set

RECF(2) = Roe(fxam)(2),  RE(2) = Roe(fxmning:) ().

It is straightforward to check thatf,?g is bounded in?(v), and thaﬂzf{‘; is bounded in?(5),

both uniformly one (in other words,R¢ is bounded inL?(») and R¥ is bounded inL?(5)).
Indeed,

HRlocf”L2 Z HXS(Q fXS ”L2(V ~ Z ”fXS(Q ”L2(V Hf”%ﬂ(u)y

QeAp QeAp

by the boundedness of the Riesz transformsS6Q). Using the boundedness &, in L%(o), it
follows analogously thaRf{‘; is bounded in.%().

Boundednessof R™ in L?(v). We must show thaR” is bounded inZ?(v). To this end, we will
compareR™ to R"l Observe first that, sincRz', = Roe — R, and bothR 5. and RLC are

bounded inZ?(), it follows thatRZ', is bounded |nL2( ) (all unlformly one > 0).
Note also that for two different ceIIE’ Q € Ay, we have

(10.8) dist(S(P), S(Q)) = dist(I,(P), I.(Q)) ~ dist(S(P), I.(Q)) = D(P,Q),

where D(P,Q) = ((P) + ¢(Q) + dist(P, Q) and the implicit constants may depend ©on The
arguments to prove this are exactly the same as the onds.fr (8.8) and[(819), and so we omit
them. In particular[(1018) implies th&s (P) U I,.(P)) N (S(Q) U 1.(Q)) = @, and thus for every
z € R™*! there is at most one cel) € Ay such that: € S(Q) U I.(Q), which we denote by)(z).
Hence we can exteri}). andR%_ to L*(d + v) by setting

RILF(2) = Rue(fXprins@en)(2),  RELF(2) = Ra(fXrni1 o) (2)-
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We will prove below that, for alf € L?(5) andg € L?(v) satisfying

(10.9) / fdo= / gdv forall P € A,
w(P) S(P)
we have
(10.10) I(f.9) / IRY.f = RyLgl? d(@ +v) S IFll72) + l9llF20)s

uniformly one. Let us see how the boundednessf in L?(v) follows from this estimate. As a
preliminary step, we show th&” : L?(v) — L?() is bounded. To this end, givenc L?(v), we
consider a functiorf € L?() satisfying [10.D) that is constant on each @yl It is straightforward
to check that

1fllz2@) < lgllz2w)-

Then from theL? () boundedness o2 and [ZED) we obtain

IR gl 23) < IRZfllre@) + 1(F, )% SN2 + lgllze) S lllzeg),s
which proves thaR?! : L?(v) — L?(c) is bounded.

It is straightforward to check that the adjoint (@7, ); : L?(v) — L?(5) (where(R,); stands
for the j-th component O(Rﬁfa)j) equals—(Rgfs)j : L2(5) — L3(v). So by duality we deduce
thatR2! : L%(5) — L?(v) is also bounded.

To prove now thel?(v) boundedness oR”, we consider an arbitrary function € L?(v),
and we construcf € L?(5) satisfying @9) which is constant in each bRll Again, we have

Iflz2@) < lgllz2()- Using the boundedness &2’ : L?(5) — L*(v) together with[(10.10), we
obtain

IR gl L2y < IRE fllrzwy + I(F.9)* S 1f 2@ + lgllze) S lglleew),

as wished.
It remains to prove thaf(10.10) holds fgr ¢ L?(5) andg € L%(v) satisfying [10.D). For
z € Upey, P» we have

REf(2) = RyLg(2)| <

/ Re(z = 9) () 4511,y (u) — 9() dvlsey (9)|

PEAO P#Q(z

Wherel?a(z) is the kernel of thes-regularizedn-Riesz transform. By standard estimates, using
(10.9) and[(10.8), and the smoothnesdof it follows that

' [ Bele = U@ 811 01(0) — o) sy )

[(Rele =)~ Ko = )T 8511 0) - o) s <y>>'

/ L] ) + 9] s ()
~ gm0 + ) dvlsie 1)
Recall that?)(z) stands for the cell), Q € Ay, such that: € S(Q) U 1,(Q).
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We consider the operators
((P) ~
T5(f)(2) = Z D(Q(), Pyt /de|IR(P)7
PcAy:P#£Q(2) ’

andT,, which is defined in the same way with, p) replaced by/|sp). Observe that

1(£,9) < llT5(17D) + T(lgD 32514
< 26| T5 (1 DlIZ2340) + 2¢ 1T (19Dl 22 540
= 4c | T5(1fD1Z2) + 4e 1T (gDl (),

where, for the last equality, we took into account that bibgh| f|) and 7, (]g|) are constant on
I.(P)U S(P)andthat(I.(P)) = v(S(P)) forall P € A.

To complete the proof of (10.10) it is enough to show tiatis bounded inL?(5) and T}, in
L?(v). We only deal withT’;, since the arguments f@, are analogous. We argue by duality again.
So we consider non-negative functiofish € L?(5) and we write

Jriomi-[( £ o f s woc

PEAO:P#Q(Z
1
: éP/de/ ; h(z)do(z).
P;eto o P rrt1\p (dist(z, P) + £(P))"+1 (2) do(z)
From the growth of orden of , it follows easily that
1 1
5(2) S —= Msh(y) forallye P
/]Rn+1\P (dist(z, P) + £(P))"+! h(z)do(z) S ) e (y) forallye P,

where M5 stands for the (centered) maximal Hardy-Littlewood opmrétvith respect tar). Then
we deduce that

[Tahnaz s 3 [ 1) Mah) d500) 5 1l elzo

PeAy
by the L?(5) boundedness af/z. ThusTs is bounded inl.%(5). O

Proof of the Main Lemma[3.1l By Lemmad 10.2[ 1013, and the Nazarov-Tolsa-Volberg thmore
of [NToV1], ¢ is a uniformly rectifiable measure. So it only remains to ribe the sefl” := F
satisfies the required properties from the Main Lemma: ibig@ined irsupp ¢, which is uniformly
rectifiable and, by(Z012)(T') = o(F) > 2 1(Qo). O
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