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MUTUAL ABSOLUTE CONTINUITY OF INTERIOR AND EXTERIOR
HARMONIC MEASURE IMPLIES RECTIFIABILITY

JONAS AZZAM, MIHALIS MOURGOGLOU, AND XAVIER TOLSA

ABSTRACT. We show that, for disjoint domains in the Euclidean spacesgtboundaries

satisfy a non-degeneracy condition, mutual absolute goityi of their harmonic measures
implies absolute continuity with respect to surface measurd rectifiability in the inter-

section of their boundaries.
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1. INTRODUCTION

The relationship between the properties of harmonic meaand the geometry of its
support has attracted the attention of many mathematicianthis paper we study a two-
phase problem in connection with this topic. More preciselg show that, for disjoint
domains inR"*! whose boundaries satisfy the so calldgregularity condition, mutual
absolute continuity of their harmonic measures implieoals continuity with respect to
surface measure amdrectifiability in the intersection of their boundaries. i result solves
a conjecture of Chris Bishop from 1990, under th@¢egularity assumption. See Conjecture
8 from [8] or Section 6 from T].

To state our results in detail we need to introduce someinataGiven a domain (i.e.,
an open and connected s&)c R+, with n > 2, we denote byv® or wg its harmonic
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measure with respect to a patec (). If the precise pole of the harmonic measure is not
relevant, we may also write justor wgq,.

For the precise notion ak-regularity, we refer the reader to Definitidr2 below. How-
ever, we mention that by a result of Ancor this is equivalent to the more known “ca-
pacity density condition” (CDC), and by a deep theorem of isg&5], it follows that(2 is
A-regular if and only if there exists somae> 0 and someR > 0 such that

H Bz, )\ Q) ~ "1 forallz e 9Qand allo < r < R,

where?{_ stands for thes-dimensional Hausdorff content. We also remark that, in par
ticular, the nontangentially accessible domains of Jaraued Kenig P0] are examples of
A-regular domains. More generally, it is easy to check thabraain (2 is alsoA-regular
if it just satisfies a two sided corkscrew condition, thatdsy ball B(z,r) centered at
x € 09,0 < r < R, contains two ballf3; C B(z,r) NQ andBy C B(z,r) \ ©Q with
r(B1) =r(B2) = .

Recall that a point € R” is ann-dimensional tangerfor a setE ¢ R+ if there is an
n-dimensional plan&” containingz so that

di
lim  sup M =0.
=0 ¢eB(a,r)NE r
Our main result is the following:
Theorem 1.1. For n > 2, let @+t c R"*! be open and lef~ = (QF)°. Assume that

OF, Q™ are both connected and-regular andoQt = 9Q~. Letw™ be the respective
harmonic measures 6i*. Let £ C 0Q be a Borel set and Ief’ the set of tangent points
for 9Q*. Thenw™ L w™ onE ifand only if H"(E NT) = 0. Further, ifw™ < w™ < w™
on E, then E contains ann-rectifiable subsef' upon whichw® are mutually absolutely
continuous with respect tH".

From this result we derive other local versions for two sidedegular domains. We
say that a domaift C R"*! is two sidedA-regular if both2 andext(Q2) := (Q) are
connected and\-regular.

Corollary 1.2. For n > 2, let Q' ¢ R™*! be an open domain. Suppose tli#t is two

sidedA-regular and thato2! = d(ext(Q2}!)). LetQ? c R"*! be a domain disjoint from
QL. Fori = 1,2, letw® be the respective harmonic measure§iafLet £ c 09! N 902 be

a Borel set. Ifv! <« w? < w! on E, thenE contains am-rectifiable subseF’ upon which
w! andw? are mutually absolutely continuous with respectb.

Corollary 1.3. For n > 2, let Q' ¢ R™*! be an open domain. Suppose tli#t is two
sided A-regular and thato2! = J(ext(Q')). LetQ? ¢ R"*! be a domain disjoint with
QL. Fori = 1,2, letw’ be the respective harmonic measure$)af Let £ ¢ 9Q! N 092
be relatively open both inQ! and 99Q2. LetT be the set of tangent points fof2'. Then
w! L w?onEifandonly ifH*(ENT) = 0.

The referee shared with us an example that shows Cordll&goes not hold for general
domains. Construct a domainlR? as follows. Lets;, | 0 and

Q=Rr3\J U (B(£,e,27F) NR2) x 2k,
k=0 ¢e2-k(Zx7Zx{0})
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If £, | O fast enough, thewq andwge is mutually absolutely continuous @if2 N R? but
no point indf is a tangent point. Thus, a condition like-regularity is necessary for the
result to hold.

In the case of the plane: (= 1), the above results are already known, and basically they
follow from the following nice theorem of Chris Bishop][

Theorem A. LetQ! and? be disjoint domains ifR? and letw! andw? be their harmonic
measures. Then' | w? if and only if the set of points Q! N 9Q? satisfying a weak dou-
ble cone condition with respect @' and Q2 has zero 1-dimensional Hausdorff measure.
Moreover, ifw! andw? are mutually absolutely continuous on a Borel 82t 9Q' N 992,
then E contains al-rectifiable subsef' upon whichw! and w? are mutually absolutely
continuous with respect ti!.

For the definition of the weak double cone condition we réfierreader to the original
paper of BishopT]. We also mention that in the particular case whérn N9Q? is a Jordan
arc in the plane, the preceding result is a direct consegueiha previous work by Bishop,
Carleson, Garnett and Joné}. [

The main obstacle for the challenge of extending the afondioveed results of Bishop
and Bishop, Carleson, Garnett and Jones to higher dimenaiises from the fact that the
arguments in these works rely heavily on the use of complekyais. Up to now, the main
contribution on this objective was the work of Kenig, Preisd Toro P1], whose result
we paraphrase below.

Theorem B. Let QT and Q~ = ext(Q") be two NTA domains ifR"*!, n > 2, and
w® = wy’ their harmonic measures. ThéQ™ =T, UT, U N U S, where

(1) UJ+|S 1 w_|5!

(2) w*(N) =0,

(3) dimy (T U Fg) =n,

(4) each¢ € I', U T is ann-dimensional tangent point fa@i<2,
(5) w+|rg <H"r, <wr, < w+|rg, and

(6) if E C Ty is Borel withw™ (E) > 0, thenH"(E) = cc.

Again, see (] for the definition of NTA domains. In (34dimy stands for the Hausdorff
dimension. Let us remark that i2]] it was also proved thaf, U Iy is n-rectifiable and
Iy = @ under the assumption that2 has locally finiteH{"-measure (in fact, the whole
boundary isn-rectifiable in this case by the Besicovitch-Federer ptigectheorem). An
immediate consequence of Theorémi is that in the preceding result of Kenig, Preis and
Toro we can assert thay, = @, because the set whete” andw™ are mutually absolutely
continuous satisfies the same propertyi’asn (5), up to a set of null harmonic measure
wi.

The proof of Theorem B above is a beautiful marriage of tephes from partial dif-
ferential equations and geometric measure theory. Théattools are the theory of non-
tangentially accessible domains introduced by Jerisonkardg [20], the monotonicity
formula of Alt, Caffarelli, and Friedmani], the theory of tangent measures introduced by
Preiss B2], and the blow up technigues for harmonic measures at inffait unbounded
NTA domains due to Kenig and Tor@3, 22].

The authors used Theorem B to resolve a conjecture put fegrthetwis, Verchota, and
Vogel. In [34], Wolff showed that there are two-sided NTA domainsHA whose har-
monic measures may have dimensions strictly bigger or sméidan2. In [26], Lewis,
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Verchota, and Vogel generalized this to higher dimensionsshowed that there are two-
sided NTA domains ilR"*! for anyn > 2 whose interior and exterior harmonic measures
can have dimensions either below or abavén any combination). They also conjectured
that there should be such a two-sided NTA domain whose hacmoeasures —in addition
to having fractional dimensions— should be mutually abst®ucontinuous. However, a
consequence of Theorem B is that the dimension of the hammoeasures is equal toif
mutual absolute continuity occurs. Additionally, by Cdaoy 1.3, in this case the harmonic
measures are concentrated on a countable union of Lipggpisiphs, and hence on a set of
o-finite H"-measure.

Our arguments for the proof of Theorel improve on the techniques of the afore-
mentioned work of Kenig, Preiss and Toro and include a newok@teas involving the
n-dimensional Riesz transform. The connection between tbgzRransform and harmonic
measure is due to the fact that the Riesz kernel is the gitadighe Newtonian potential,
and the relationship between the Riesz transform and edditifiy is a subject that has been
in constant development for the last twenty years and hasicated in the solution of the
David-Semmes conjecture by Nazarov, Tolsa and Volb2egJ0]. For recent examples of
Riesz transform techniques used to study harmonic measeeefor instancel, 4, 29].
The arguments in the current paper use a new recent resulirblaGarrion and Tolsa
[18] on the connection between Riesz transforms and quatitidteectifiability for general
Radon measures (see Theorgrmbelow for more details).

One can view the works described above as sort of an endpasetaf a larger class of
two phase problems where one is interested in studying tl@tsmess ob(2 in terms of
the smoothness cg‘:%; in other words, better behavior gfj; implies better regularity of
0f). For example, most recently, Engelsteirb][showed that for two-sided NTA domains
in R™*! (Reifenberg flat ifn. > 2), if o € (0,1), & > 0 is an integer, antbg ZZ—f e ke,
then locallyos) is the graph of aC**1 function. See alsol], [6], [13], [14], as well as
the references therein, for example.

The authors are very grateful to the anonymous referee ffulisuggestions that im-
proved the paper and for providing an example to show thenigs of theA-regularity
assumption.

2. PRELIMINARIES

We will write a < b if there isC' > 0 so thata < Cb anda <, b if the constant”
depends on the parameteMe writea ~ b to mean: < b < a and define: ~; b similarly.
For setsd, B C R"*! let

dist(A, B) = inf{|lz —y| : © € A,y € B}, dist(z, A) = dist({z}, 4),
and
diam A = sup{|z —y| : z,y € A}.
For a subsefl ¢ R"*t! and0 < ¢ < oo one sets
H(A) = int {Z diam(4,)" : A € | JA;, diam(4;) < 5} :
Then-dimensional Hausdorff measuot A is defined as
H"(A) = 1587'15 (4),
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andH” (A) is called then-dimensional Hausdorff contenf A. See P7, Chapter 4] for
more details.

We recall now the notion ofi-rectifiability and its quantitative analogue (uniform
rectifiability).

Definition 2.1. A Borel setE ¢ R"*! is n-rectifiableif there existE; ¢ R* andf; : E; —
R+ Lipschitz so tha™(E\ U2, fi(E;)) = 0.

Definition 2.2. A setEE ¢ R™*! is n-Ahlfors-David regular (om-AD-regular)if

1) CY"<HYENB(z,r) <Cr" forallz € Eand0 < r < diam(FE).

A setE c R"*! is uniformly n-rectifiableif it is n-AD-regular and there exigt, M > 0
such that for alz € E and allr > 0 there is a Lipschitz mapping : B, (0,r) C R" —
R™*+! with Lip(g) < M such that

H"(B(x,r) Ng(Bp(0,7)) N E) > Or".

In the casen = 1, it is known thatE is uniformly 1-rectifiable if and only ifE is
contained in d-AD-regular curve inR"*+!. We will call the constantd/, # andC in (2.1)
the UR constants af.

Definition 2.3. A function f € L}, (U) haslocally bounded variatiorin an open set/ C
R™*+! and we writef € BVjoc(U), if for each open set’ € U,

sup{/ fdivg dC™ ¢ e CO(V R, |6 < 1} < 00,
\%

where£" ! stands for thén + 1)-dimensional Lebesgue measure. Afit!-measurable
setE ¢ R"*! haslocally finite perimetein U if xg € BVj,.(U). Recall that the Radon
measures ilR"*! are just the Borel measures which are locally finite (and tbay out to
be inner regular).

We now state the Structure Theorem 8V, functions, whose proof can be found in
[16, p. 167].
Theorem 2.4. Let f € BV),.(U). Then there exists a Radon measuren U and a u-
measurable function : U — R"*! so that
(1) |o(z)| =1, for p-a.e.x € U and
() [, f divg de"t = — [¢-odu, forall ¢ € C(U,R™).
If f = xr andE has locally finite perimeter ity, then we denot@oE|| = pandvg = —o.
Definition 2.5. Let E be a set of locally finite perimeter iR"*! andz € R"t!. The
reduced boundargf E, which we denote by* E, is the set of points € 9F such that
(1) ||oE||(B(z,r)) > 0, forall r > 0,
(2) lim, m fB(x,r) ve(y) d||OFE| = ve(z), and
@) lve(z)| = 1.
Definition 2.6. For eache € 0* E we define théwyperplane
H(z) = {y eR"™ iup(x)- (y—x) = O}
and thehalf-spaces
H*(z) = {y e R""" :wp(z) - (y —2) > 0},
H (z)={yeR"" 1vp(x)-(y—2) <0
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A unit vectorvg(z) is called themeasure theoretic unit outer normial E at x if
LY B(z,r)NnEN H(x))

}i—% rntl =0
and »
fo LB \E) N H ()

r—0 rntl

Definition 2.7. Letz € R**!. We say that: € 9, F, themeasure theoretic boundaof £,
if
LBz, r) N E)

liI:ljélp TS >0
and .

: L (B(x,r) \ E)

hrrn_%lp T > 0.

Remark 2.8. Note thatt*E C d,F andH" (0. FE \ 0*E) = 0 (se€[16, p. 208). Moreover,
if E has locally finite perimeter, thefD E|| = H"|s+ g (Se€[16, p. 205).

A useful criterion that allows us to determine whether a setlbcally finite perimeter,
whose proof can be found id§, p. 222], is the following:

Theorem 2.9.1f E ¢ R**! is £*1—measurable, then it has locally finite perimeter if and
only if H"(K N 0, F) < oo, for each compact sét’ ¢ R**+1.

We now state thgeneralized Gauss-Green theorelRor a proof seell6, p. 209].

Theorem 2.10.Let E ¢ R™*! have locally finite perimeter. Then for eache 0* E there
exists a unique measure theoretic unit outer normalz) such that

(2.2) / divg dcnt! = / (¢-vE)dH™,
E O E
for all ¢ € C}(R"H1; RH),

3. RIESZ TRANSFORM AND RECTIFIABILITY

In this section we will state a theorem involving the relatibip between Riesz trans-
forms and rectifiability and derive a version of this whiclbetter suited for our purposes.
First we need to introduce some additional notation. Giveigaed Radon measuren

R+ we consider the.-dimensional Riesz transform

Rila) = [ s ),

whenever the integral makes sense (for example, whbas bounded support and ¢
suppv). Fore > 0, thee-truncated Riesz transform is given by

Rev(z) = /| % dv(y).

x—y|>e ‘x -
Foré > 0 we set

R.sv(z) = sup [ Rev(@).
e>0

In the case) = 0 we write R,.v(z) := Ry ov(x).
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If 1 is a fixed Radon measure ayficc L;.,. (1), we also write

Ruf =R(f1); Ruef =Re(f1), Rpywsf =Res(f1), Ryuf = Rulf1),

whenever these notions make sense. We sayRhat bounded inL2(u) if the operators
R . are bounded it.% () uniformly one > 0.
Given a ballB ¢ R"*!, we denote

0,(B) = f(SBB)L, P.(B) =Y 270,2B)

720
So00,(B) is then-dimensional density of on B and P,,(3) is some kind of smoothened
version of this density. Fof € L},.(1) andA C R™™!, we write

1
muA(f) = m/Afd/i-

Given ann-planeL ¢ R**!, we also denote
1 dist(z, L)
L )
B) = du(x).
58) = o [ S )
The following theorem has been recently provedlig][ This will be a fundamental tool
for the proof of Theorem.. 1.

Theorem 3.1(Girela-Sarrion, Tolsa)Let ;. be a Radon measure &+ and B ¢ R**!
a ball so that the following conditions hold:
(a) For some constar®y > 0, C; 'r(B)" < u(B) < Cor(B)™
(b) P,(B) < Co, andpu(B(z,r)) < Cor™forall x € Band0 < r < r(B).
(c) There is some-plane L passing through the center & such that for somé <
i< 1, it holdsﬁﬁ,l(B) < 0.
(d) Ry, is bounded inl?(u|p) With | R, | L2 () L2(
(e) For some constarnii < 7 < 1,

/B Ris(z) — mp p(Ru)? du(z) < 7 pu(B).

Then there exists some constént 0 such that ify, 7 are small enough (depending 6y
andC}), there is a uniformly:-rectifiable sef” ¢ R™+! such that

w(BNT) >0 u(B).
The UR constants df depend on all the constants above.

)SCl

KB

In the statement (e)R (x) should be understood in the principal value sense. That is,
Ru(x) = lim Rop(x).
e—0

The fact thatk , , is bounded inC2 (11| g) guaranties the existence of the principal value for
u-a.e.x € B. This follows easily from the results o8(], arguing as in $3, Chapter 8]
with the Cauchy transform replaced by the Riesz transform.

Note that, in particular, a remarkable consequence of teerédm above is that a big
piece ofu|p is mutually absolutely continuous with respect to (a bigpief) H" |r.

By applying Theoren3.1to the normalized measuﬁé%u, we obtain the following.
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Corollary 3.2. Letu be a Radon measure &' and B ¢ R**! a ball with (B) > 0
so that the following conditions hold:

(a) For some constanty > 0, P,(B) < Cy0,(B) andO,(B(z,r)) < Cy0O,(B)
forall x € Band0 < r < r(B).

(b) There exists some-plane L passing through the center & such that for some
D<ok l,it holdsﬁil(B) <60,(B).

(c) RH\B is bounded inLQ(u|B) with HRH\B||L2(MB)—>L2(H|B) < (Ch QH(B)

(d) For some constarti < 7 < 1,

/B Riu(z) — myy p(R)|? da(z) < 7 ©,(B)? u(B).

Then there exists some constént 0 such that ify, 7 are small enough (depending 6y
andC}), there is a uniformly:-rectifiable sef” ¢ R™+! such that

u(BNT) > 0 u(B).
The UR constants df depend on all the constants above.

For our purposes in connection with harmonic measure, thewimg variant of the
preceding result will be more appropriate.

Theorem 3.3. Let u be a Radon measure & ™! and B ¢ R™*! a ball with (B) > 0 so
that the following conditions hold:

(a) For some constanty > 0, P,(B) < Cy ©,(B).

(b) There is some-plane L passing through the center &f such that, for some con-
stant0 < ¢ < 1, 87, (B) < §©,(B).

(c) For some constant, > 0, there isGp C B such that

B
sup L‘:’T)) + Ru(x2 1) (z) < C10,(B) forallz € Gp
0<r<2r(B) r

and
u(B\ Gp) < 6 u(B).
(d) For some constarti < 7 < 1,

/G (Ris(z) — mp o (Rp)|? dps() < 7 ©,(B)2u(B).

Then there exists some constént 0 such that ifd, 7 are small enough (depending on
Cy and C}), then there is a uniformly-rectifiable sef” ¢ R"*! such that

w(GpNT) >0 u(B).
The UR constants @f depend on all the constants above.

Remark 3.4. The condition that
B(z,r
sip HPEI) | 2 (an (@) < CLOWB)
0<r<2r(B) r
for everyx € G given by (c) ensures that the principal value

Ryu(ir) = lim Rep()
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exists foru-a.e.x € G . Thisis due to the fact that the assumption (d) impliedthe:|c )

boundedness a2, . This is shown in the proof below.

Proof of Theoren8.3. We will show that the assumptions of Theor&m hold for

f= | BeuG -
The assumptions (a) and (b) are clearly satisfied (becassel) and thus we only have to
check (c) and (d).
Suppose that the assumptions of Theofefhold. Leto = p|op and letpy, po > 0 be
two big constants to be chosen momentarily. Denote

B
M, o(x) = sup M.
r>0 r
Let us also set
E;l = {z e R"™: Myo(x) > p1 0,(B)}
and
Ef,Q = {2z e R"™ : R.0(x) > p20,(B)}.
Forz € E} , we denote
p1(z) =sup{r > 0: o(B(z,7)) > p1O(B) "}
and forz € E2,,
p2(z) = sup{r > 0: |R,o(z)| > p20,(B)}.
Define
zEB],
Note thatH; and H, are open sets and fpf andps big enough it not hard to show that
2BN(H1UH2) C 2B\Gp. Indeed, itis clear that every ba, with o(B,) > p; ©,(B)r"
satisfiesB, C H,. Notice thatify € BNH, thenthereis: € E sothaty € B(z, p1(x)),
and so
o(B(y,2p1(x))) = o(B(x, p1(x))) = p1 O (B)p1(x)" = p1 O5(B)27"[2p1 (2)]".

We conclude tha2B N H; C 2B\ G, if we choosep; so thatp; > 2"C}.
We turn our attention td». If y € B N Hy \ Hy, then there exists € E§2 so that
y € B(x, p2(z)). We shall show that

(3.1) IR ps(2)0(2) = Rpy(2y0 (y)| < Cp1©4(B),
whereC > 0 is some absolute constant depending only on the dimensideetl, we have
that
|Rp2(ac)o-($) - Rpg(m)a(y)|
<R pa @) (XB(y,202(2)) ) (@)] + [Rpa (2) (X B(y,2p2.())7) (W)

+ R o (2) (XRA+1\ B (3,202 (2)) 9)(T) — Ropy (2) (XR+1\ B(y,202 (2)) T) (V)]

=0+ 1+ Is.
Notice now that
a(B(y,2p2(2)))

p2(x)"

L+ <C, <2"p10,(2B) < Cp16,(B),



10 AZZAM, MOURGOGLOU, AND TOLSA

where the second inequality follows form the fact that H;. It just remains to handlé;.
To this end,

I3 = [R(Xrn4+1\ B(y,200(2))7) (T) — R(XRn+1\B(y,2p2(2))7) (V)]

= |z —yl
<C, B B e
R\ B(y,2p2(2)) |2 — y[" ! )

~ pa(z) :
<Cn ; W a(B(y, 2" pa())

S 67n 2np1®0(B)7

where in the last inequality we used tha# H,. This concludes the proof 08(1). There-
fore, sincgR , ()0 ()| > p26,(B), we have thae BN Hy \ Hy C 2B\ G, if we choose
P2 SO thatp2 — C 2% > (4.
Let H = H; U H, and consider thé-Lipschitz function
®(x) = dist(z, H®) > max(py (), pa(x)),

and the associated “suppressed kernel”

Kae(x,y) = Ty .
o(z,9) (o — 2+ D(2) D(y)) 2

We consider the operat®q , defined by

Raof (@) = [ Kole.9) §(0) doo),

and itse-truncated version (for > 0)

Rocof(x) = / Ko(z,y) f(y) do(y).

|lz—y|>e
We also set

R<I>,*70f(x) = sup R@,a,af(x)'
e>0

We say thatRe ,, is bounded inL?(o) if the operatorsRs . , are bounded i.%(o) uni-
formly one > 0.
We now prove that

(32) R¢7*,Ul(w) < C(pl7p2) GU(B)7

for all z € R**!. To do so, we need the following lemma which proof can be faar{@3,
Lemma 5.5].

Lemma 3.5. Letz € R*" andry > 0 so thato(B(x,r)) < Ayr™ for r > ro and
|Reo(z)| < Ag fore > rg. If ®(x) > 1o, then there exist§’ > 0, so that|Re - ,1(z)| <
CA; + Asforall e > 0.

By Lemma3.5for A; = p10,(B), A2 = p20,(B) andry = max{p;(z), p2(x)}, we
obtain B.2). We further apply thd's theorem for suppressed operators by Nazarov—Treil—
Volberg [31] (see also Corollary 5.33 ir8B]) and it follows thatRe , : L%(0) — L%(0) is
bounded with norm

Ra.0ll2(0)>12(0) S O0(B) = ©,(B).



MUTUAL ABSOLUTE CONTINUITY OF INTERIOR AND EXTERIOR HARMONC 11

Since® vanishes o’z C H¢, we have thaR;,, : L*(1i|z) — L*(zz|5) is bounded and

i
1R 5l 22 a1 ) L2 1) S Op(B)- _
To check that the condition (e) in Theoréiri holds, we write

/ Rii(z) — mi (R di(z) < / Riu() — myn e (Ry1) 2 dp(z)
B Gp

[ RGP d
Gp
=1+ I
Concerningl,, by assumption we have
I < 70,(B)? u(B) ~ 7 0:(B)? ji(B).
For I, notice that — i1 = u|p\g, and, further, recall tha® vanishes orGGz because
Gp C H°and soR (. — j1)(x) = Re(pu— i) (z) for all z € Gp. Further,Rg , is bounded

in L4(o), by using the boundedness B, from L' (o) to L1>°(0) (see Lemma 5.27 of
[33], for example) and duality. So we have

[ 1R B < G (Rl g,

< 0,(B)? u(Gp)"? W(B\ Gp)'/? < 6% ©:(B)? ji(B).

Gathering the estimates obtained fprand I, we get
| [Riita) = mz (R dia) 5 (7 +8/%) ©5(B)? ().

which shows that the assumption (d) of Theorgmholds. O

4. BACKGROUND ONHARMONIC MEASURE

Let us first recall some definitions and basic facts concgrhiarmonic measure and
Green functions.

4.1. Harmonic measure and Green function. For a (possibly unbounded) domdihC
R+ andz € €, one can construct the harmonic measufesee e.g.3, p. 172] or [L9, p.
217]). In fact, for any continuous functiofy the Perron solution for the boundary function
f is given by

Hy(x) = / ) o).

whered,. 2 = 09 if Q2 is bounded and..$2 = 9Q U {co} otherwise. Remark that constant
functions are continuous and sinBe (z) = 1, for anyz € 2, we have thav (0,.Q2) = 1,
foranyzx € (.

Let £ denote the fundamental solution for the Laplace equatid@tin', so thatf (z) =
cn |z|t~" for n > 2, ¢, > 0. A Green functionGg, : Q x Q — [0, 00] for an open set
Q) c R™*! is a function with the following properties: for eaghe 2, Go(z,y) = E(x —
y) + h.(y) whereh, is harmonic orf2, and whenever,, is a nonnegative superharmonic
function that is the sum & (x —-) and another superharmonic function, ther> Gq(z, -)
([19, Definition 4.2.3]).
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An open subset oR"*! having a Green function is called @reenianset. By [L9,
Theorem 4.2.10], all open subsets®*+! are Greenian forn > 2. Moreover, Green
function can be written as follows (se& Lemma 6.8.1]): forr,y € , x # y, define

(4.1) Ga(z,y) =&(x —y) — - E(x — z) dwV(z).

Forz € R*™1\ Q andy € ©, we will also set
(4.2) Ga(z,y) =0.
The kernel of the Riesz transform is
(4.3) K(z) = ¢, VE&(x),

for a suitable absolute constant Forx € R"*1\ Q, sinceK (x — -) is harmonic in2, we
have

(4.4) Ru¥ (z) / K(z - 2)du’(2) = K(z — y).
Forz € Q, by (4.3) and ¢@.1) we get

Rl(z) = ey Vs /5(3: L) dw(2) = e Vo (E(x — 2) — Galz,y))
(4.5) = K(z —y) — ¢, VoGalz,y).

The following result is also standard. For the proof of thecge statements, sed,[for
example.

Lemma 4.1. Letn > 2 andQ C R"*! be a domain. LeB = B(x,r) be a closed ball
with g € 92 and0 < r < diam(952). Then, for alla > 0,

(4.6) wq(aB) 2 iz%f Qwé(aB) "L Go(x,y) forallz € Q\2Bandy € BNQ,
ze2BN
with the implicit constant independent af

The above lemma was originally stated i for bounded domains, but it holds for
unbounded domains with the same proof using the fact that; fo 2, any domairt? C
R"™*! is Greenian and, if it is unboundeds is a Wiener regular point (se&,[Theorem
6.7.1]).

4.2. A-regular domains.

Definition 4.2. A domain2 C R"*!is (3, R)-A-regular if there areR, 3 > 0 so that

4.7) sup sup wWhAa(0B(E,r)NN) < g < 1forr e (0,R).
£€00 2€aB(E,r/2)NQ

We call a domairnf two-sidedA-regular if ext(£2) := (2)¢ is also aA-regular domain.

If we want to specify the constants R above, we will talk abouts, R)-A-regularity.
It can be shown that one obtains an equivalent definitiongfsicond supremum above is
taken over: € 9B(&, dr) N Q, for any fixed constart < § < 1.

Definition 4.3. Letn > 2 and letCap denote the Newtonian capacity. A dom&inc R*+!
satisfies thecapacity density conditiofor CDC) if there isRg > 0 andcq > 0 so that
Cap(B\Q) > cq r(B)"~! for any ball B centered o2 of radiusr(B) € (0, Rq).
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Although this result will be not used in this paper, we rediadit the CDC is equivalent
to A-regularity forn > 2:

Theorem 4.4.[2, Lemma 3]For n > 2, if Q@ ¢ R**! and B is centered ordf2, then
Cap(B\Q) 2 r(B)"~! if and only if there is8 € (0,1) so thatw$, (0B N ) < B on
8(%B) N €. In particular, Q is A-regular if and only if it satisfies the CDC.

Below we recall some estimates that are written in more gdibebut will be applied

in the setting ofA-regular domains. The following result is well known andldals by
standard techniques, see for exampldlemma 2.3].

Lemma 4.5. LetQ c R"*1, 6 € (0,1), £ € 99 and suppose that
Wiernne(0B(E,r)NQ) < <1 for z € 0B(£,6r)NQ andr € (0, R).
Then there isv = «(f, §, n) so that for allr € (0, R)

(4.8) wi(B(&,7)%) <ps (@) for z € QN B(E, 7).
In particular, £ is a regular point foro«).

By the maximum principle, this implies the following.

Corollary 4.6. LetQ c R**!, 6 € (0,1), £ € 9Q and suppose thatf, . o (9B(E7) N
) <p<lforxzedB(dr)nQandr € (0, R). Letu be a nonnegative function which
is continous inB(&, r) N Q and harmonic inB(&, ér) N 2, and vanishes continuously on

B(&,r) N 0. Then there isy = a(3, §,n) so that for allr € (0, R),

4.9 w(z) Sa.s ( sup u> <M>a forz € QN B(E, ).

B(£,r)NQ r

Lemma 4.7. LetQ c R™*! be a(B, R)-A-regular domain, for3 € (0,1), R > 0. Then
there aredy € (0,1) and p > 0, both depending o, n, so that for allr € (0, R) and
& € 09,

(4.10) wH(B(&, 7)) >1/2 forall x € B(&, dor) N
Proof. By Lemma4.5, if |z —&| < & for some positive)y small enough depending ¢hn,
thenwd (8.2 \ B(£, 7)) < 1 and thusvg(B(€, 7)) > 3. O
If Q2 is A-regular, then by4.10) and Lemmat.1, we have
(4.12)
w§ (2051 B) 2 r" Go(x,y) forallz € Q\2Bandy € BNQ,0< r(B) < (SOTR

4.3. Admissible domains and relevant estimates.

Definition 4.8. A domainQ ¢ R™*! is admissibleif

(1) O = QandQ™ = ext(Q2) are Wiener regular;
(2) 90T =00~ = 09;
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(3) There exist:* € Q* such that if

+ +
(4.12) u(z) = Go+(z, @ )_, for x € Q_7
~Gq-(z,z7), forzecQ,

where G (z,2%) is the Green function if2* with pole atz®, andd(z) :=
dist(z, 092), then for every € 99 there exists > 0 with R < min{d(z™),d(z~)}
so thatu € C(B(&, R)) N WY2(B(E, R)).

Theorem 4.9.[1, Lemma 5.1 etQ C R"*! be an admissible domain and = G (-, zF).
Then forz € 92 there is) < R < min{dist(z™, 90), dist(z~, 9) } such that the quantity

1 [Vt (y)f? 1 / [V~ (y)f?
4.13 2,7) = —/ e W gy ) - [ = Mu W,
( ) ’7( ) (72 B(z,r) |y _$|n—1 Y r? B(z,r) |y _$|n—1 Y

is a non-decreasing function ofe (0, R) andvy(z, R) < oo, that is,

(4.14) Y(z, 1) < v(x,re) < oo for 0<r; <ry <R.

Lemma 4.10. [21, Theorem 3.3LetQ c R™*! be an admissible domain and let" =
wos. Let0 < R < min{dist(z, 09), dist(z~,09Q)} be as in Theorerd.9. Then for
0<r< R/4and¢ € 09,

EBEr) _ (1 Vet \F (1 o)
415) L2 o 2 MW gy ) < [ ——
(4-15) rr ~ <7”2 /B(g,2r) ly — &t y) ~ <7"“+3 /19(5,4r)(u )

and in particular,

wh(B(§ 1) w (B 1)

7477/ rn

(4.16) <A(€,2r)7,

wherey(¢, 2r) is defined by4.13).

Lemma4.11. LetQt = Q Cc R*"! and Q™ = ext(Q2) be A-regular domains. If
0 < R < min{dist(z™,0Q"),dist(z~,0Q7)},

then for{ € 9Q andr < 6o R/4,
(4.17)

1 1

2 2 + —1
_1+1/ ]Vuilz < 1+3/ (ui)2 5‘*’ (3(5,450 T))
T I BErnot 3 Be 2rynnt n

In particular,

wh(B(,40; ') w™ (B(&,40; ')

T?’L TTL

=

(4.18) ()

wherey(¢, r) is defined by4.13).

S

)
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Proof. We shall only deal witf2™ since the result fof2~ is identical. Let¢ € 9Q* and

4r < §pR. Sinceu™ vanishes continuously at the boundaryast™, we may extend it
by zero inR™"*! \ QF. Then, as the extended function (which we still denote'i) is

non-negative and subharmonici%*!, by Caccioppoli’'s inequality, we infer

1

1
2 2
(/ rVu+12> 5(% / <u+>2> < wH(B(E, 4651 r) 17,
B(&,r) = JB(g2r)

where the second inequality follows from.{1). This shows4.17), which in turn implies
(4.18. O

Lemma4.12.1f QF = Q c R**! andQ~ are R;-A-regular andoQ*+ = 9Q~, then they
are admissible domains.

Proof. Fix x* € QF so thaté(x*) > 0. The first two conditions of Definitior.8 readily
follow from our hypotheses. Fix no € 0¢) and choose

R <min{Ry,6(z"),0(z7)}/4.

Sincer® € QF \ B(£,4R), we have that* is harmonic inB(&,2r) N Q*. Moreover,
the common boundarg( is Wiener regular foi2* by Lemma4.5, which implies that
u® vanishes continuously of2. Sou € C(B(£, R)) and, by Lemmat.11, it holds that
u € WH2(B(&,2R) N Q). Further, since/™ is continuous inB(¢, 2R) N Q* and vanishes
on 022, if we consider a functionp € C'* which equalsl on B(¢, R) and vanishes our of
B(¢,2R), by standard arguments it turns out thai* € W,(B(&,2R) N Q*) (see 2,

Theorem 9.17], for example). Henaey € W, (B(€,2R)), and sou € Wh2(B(E, R)).
This concludes our proof. O

5. BLOWUPS AT POINTS OF MUTUAL ABSOLUTE CONTINUITY

Given a setz ¢ R*t! and a ballB ¢ R™*!, we denote
) dist(z, L)
BG,00(B) =inf sup ————,
(B) L zeanp T(B)
where the infimum is taken over altplanesL. Also, we set
dg(GNB,SNB)
r(B) ’
wheredy stands for the Hausdorff distance and the infimum is taken alidalf-spaces
S ¢ R™*! whose boundary contains the centeifTo shorten notation, for a balt (z, r),

we also WriteS o (x, ) and Bg o0 (z,7) intead of Bg o0 (B(x, 7)) and Bg o0 (B(z, 7)), re-
spectively.

BVG,OO(B) = lgf

This entire section is devoted to proving the following then.

Theorem 5.1. Let Q* ¢ R and Q~ = (QF)° be twoA-regular domains, so that
00T = 0Q~. Letw™ be the harmonic measures fo with polesz* € QF, andu® =
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Gax (2T, ). Suppose there iB ¢ 90+ such thatwt | < w™|p < wt|p andw* (E) >
0. Then, forvt-a.e.€ € E,

lim Bpa+ o (§,7) =0 and  lim Egj (& r)=0.
r—0 ’ r—0 ,O0

5.1. Tangent Measures.Fora € R"*! andr > 0, we consider the map
r—a

Tor(z) = "

Note thatT, ,(B(a,r)) = B(0,1). Recall also that, given a Radon measuy¢he notation
T,,-[1] stands for the image measureioby 7, .. That is,

Tor[t](A) = p(rA+ a), AcC RV

Definition 5.2. Let 1 be a Radon measure R**!. We say thav is atangent measuref

p at a pointa € R™*! if v is a non-zero Radon measure RA*! and there are sequences
{ri}: and{c;}; of positive numbers, with; — 0, so thatc; T, ,, 1] converges weakly to
asi — oo.

Definition 5.3. Given two Radon measuyeando, we set
Fp(p,0) = s?p/fd(u —0),

where the supremum is taken over all theipschitz functions supported aB. Forr > 0,
we write

B = By B = B 0) = [ (= 2D

Lemma 5.4. [32, Proposition 1.11] et {x;} be a sequence of Radon measures such that
lim sup p;(B(0,7)) < oo for all » > 0. Thenu; converges weakly to a measuyref and
only if F,.(u;, ) — 0 for everyr > 0.

Definition 5.5. [32, Section 2]

(@) A set.# of non-zero Radon measuresRii*! is aconeif ciu € .# wheneven ¢ .#
andc > 0.

(b) A cone.# is ad-coneif Ty .[p] € .# for all p € .# andr > 0.

(c) For ad-cone.#,r > 0, andu a Radon measure with < F,.(1) < oo, we define the
distancebetweery, and.# as

dy(pt, ) = inf {F (ﬁﬁ v e M F(v) = 1}

For example, the set of measures
(5.1) F = {cH"|p : ¢ > 0, Lis ann-plane inR"*! through the origir}

is a d-cone.
The only fact about distances to cones that we will requier lia the following equality,
see P1, Remark 2.8]: for any Radon measurged-cone.#, andr > 0,
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(5.2) dr(p, A) = di(To 1], A )

Theorem 5.6. [32, Theorem 2.5)f u is a Radon measure dR"*!, then Taifu, x) # @
for p-almost everyr € R™*1,

Theorem 5.7.[27, Theorem 14.16) et . be a Radon measure dk"t!. For p-almost
everyz € R if v € Tan(u, ), the following hold:

(1) T, [v] € Tan(u, x) for all y € suppr andr > 0.
(2) Tan(v,y) C Tan(u, x) for all y € suppv.

5.2. The Proof of Theorem5.1. Assume the conditions of Theorehl. Set

e g S ENBED) e (EOBE)
B = {SGE'LO TBEr) BT (BE) 1}

By [27, Corollary 2.14 (1)] and because™ andw™ are mutually absolutely continuous on
E,

wH(BE\E*) = w™ (E\E*) = 0.

Also, set
A = {f e E:0<h(§) := ZZ—;—(S) - ll—% Z;Egg::;;
. w_(EﬂB(§7T))
= A ENBED) OO}
and

I' = {¢ € Ay : is a Lebesgue point for with respect tav™ } .
Again, by Lebesgue differentiation for measures (s&& Corollary 2.14 (2) and Remark
2.15 (3)]),I" has full measure iz* and hence irE.

The following is essentially taken fron2]], but we adjust it slightly so that we don’t
need to assume any doubling properties of harmonic measure.

Lemma5.8. Let{ € I, ¢; > 0, andr; — 0 be such tha;” = ¢;T¢ . [w'] — wi,. Then

w; = ¢jTe (W] = R(§w.

Proof. Let$ € C.(R™*!) have support il3(0, M) for someM > 0. Let¢e,, = po Ty,
Then

lim [ ¢dw; = lim cj/qbg,rjdw_
J—00

j—o0

= lim Cj/ Ge r;dw™ + lim cj/ Perydw™ = lim IJ1 + lim IJ2
E 90-\E

j—0o0 j—o0 j—00 j—o0
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Observe thatupp ¢ ., C Tg‘rlj(B(O, M)) = B(¢, Mrj),and sinc& € I' C Ay,

limsup ¢jw™ (B(&, Mr;)) = h(§) limsupc; wh (B(&, Mr;))

j—o00 Jj—roo
(5.3) = h(¢) 1irisupw;-r(3(0’M)) < h(€) wi(B(0,M)) <

Thus, using the condition thate E*,
lilf‘nsupI]2 < l#lloo limsupcjw_(B(f,Mrj) \ E)

J—00 J—00

<l (li;gs;,gp X M)\»E))

On the other hand,
+
]ll)rglol —]li)rgocj/ h e r; dw

= h(¢) lim ¢; (bg,rjduﬁ — h(§) lim cj/ qﬁgﬁ,duﬁ
O0+\E

J—00 o0+ J—00

(lim supcjw™ (B(&, Mrj))) = 0.

j—o00

+ lim ¢; /E (h — h(¢)) ¢§7Tjdw+

]—)OO

=h(¢) lim [ ¢dwl — lim I? + lim I}.

Since the first term on right hand side equal§) [ ¢ dwZ;, all that remains to show is that
lim; o0 I = lim;_, I = 0. This follows easily using that € I":

5 |y B Mry) \ E) 59
Jim T < 6] 11ﬁgpc]w (B(€, Mr))) & ST (B(E M) 0

and analogously,

hm I4 < ||l oo lim sup ¢;w (B(g,Mrj))][ |h — h(&)| dw™ &3
i j—roo B(g,Mr;)

O

Next we prove an analogue of some of the tools2f] and [22]. We show that blow
ups of harmonic measure and Green function converge toitjgargimilar to the harmonic
measure and Green function with pole at infinity introducgdbnig and Toro.

Lemma5.9. LetQ™ c R™"*! be aA-regular domain and)™ = ext(Q21), so thatoQ+ =

00~ Letw* be the harmonic measures faF. Leté € 90+ andwd € Tan(w™, €), with

¢j > 0,andr; — 0 such thav‘w;.r = ¢jTe p;[wT] = wi. LetQ;.t = Tg,,,j(Qi). Then there

is a subsequence and a closed Set R"*! such that

(@) 8Qj N K — ¥ N K in the Hausdorff metric for any compact g&t

(b) ¢ = QF U Q whereQ2f is a nonempty open set afitf_ is also open but possibly
empty. Further, they satisfy that for any ballwith B ¢ Q% , a neighborhood oB is
contained iani for all 5 large enough.

(c) suppwd C .
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(d) Letu™(z) = Gq+ (z,21) onQT andu™(z) = 0 on (Q1)¢. Set
uj(x) =cjut (zr; + ) r]"_l

Thenuj converges uniformly on compact subset®6f ! to a nonzero function,
that is harmonic o7, and satisfies

(5.4) ul (y) Swh(B(x,205'r))r™™ forze X, r>0, and y € B(z,r) N QL.
and for any smooth compactly supported functign

(5.5) /{)Q+ ddwd = /Q+ Apul, dx

Suppose now thd2~ is also connected and-regular. Define analogouslgoj‘, u, uj

andug, and suppose that;” converges weakly to;, = h(¢)wZ, for some numbeh (&) €

(0, 00) (which happens, for example &fe I wherel is as in Lemm&.8). ThenQ_ # &

and for a suitable subsequence, (d) holds ﬂgr, us,, and Q5. Furthermore, if we set

Uso = h(E)ud, —uy,, then:

(e) us extends to a continuous harmonic functionRit .

(f) X = {uw = 0}, withu, > 00n QL andu., < 00nQ, . Further,X is a real analytic
variety of dimensiom.

Q) dwi = —ag—;jo dogos whereog stands for the surface measure on a surfacand %
is the outward normal derivative.

Proof. First, we establish a few estimates. Note that if Hothand2~ are connected, then
for j large enough,

(5.6)

/qﬁdw —cj/qﬁwdw —C]/A¢5ru de =cjr; /A(b( - éh>ujt(alc)dm
J

—c]J /A(b r]y+§ dy—/Aqﬁu dz,

since the pole lies outside thepp ¢ ., for sufficiently largej. Moreover, if B is centered
on 8th, then forz € BN Q; and; large enough,

(5.7) uji(:n) =¢j ’I";L_l u(rjz +¢§)
4.11)
<

~

¢ 75~ (ryr(B)' " w (20 ' B + €) = 1(B)' " wi (205 B).

Next we prove the statements (a)-(Q):

(a) This follows from a standard diagonalization argumant so we omit its proof.

(b) First we show that there are balls™ so that, by passing to a subsequernge, c QjE
for all 5 large.

We will focus first on showing the existence Bf. Suppose there is no such ball. lget
be any continuous compactly supported nonnegative fumétiowhich [ ¢ dwl, # 0, and
let M > 0 be so thatupp ¢ C B(0, M). Thus, there must bey € B(0, M) N suppwd,.
Let §; = sup{dist(z, (Qj)c) : & € supp ¢}, which goes to zero by assumption. For

x € supp ¢, let(;(z) € (Qj)c be closest ta, so thatjz — ;(x)| < ¢;. Notice that for all
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x € supp ¢, |x —zo| < |x|+|xo| < 2M and alsdz — (;(z)| < ¢; < 2M for j big enough.
Thus, for; large enough, taking into account thigtx) € 097 if = € Q, we get

+ 4, @ A (l2=G@IN
0< | ¢dw; = Apuf dr < |Ag| sup ——2 ) dx
ar ar B(Gy(x),2M) 2M

5 \¢
< [ |A¢ dm( sup u*) <—]>
/’ | B(zo,AM) 2M
(5<7) + -1 1-n 5j “
and thus
0< /(bdw;ro < limsup/ |A¢| dx W;F(B(xo,85o_1M))(4M)1—" <5_J>
Jj—o0 2M

SMo <lim sup w;f(B(a:o,Séo_lM))> lim &%

j—o0 J

< wh (B(zo,85, ' M)) -0 =0,

which is a contradiction. Thus, there " C Qj for all large j (after passing to a subse-
guence). In case th&~ is a A-regular domain, i€ € T", we run the same argument on
Q;, recalling from the previous lemma thaf — h(&)wZ.

Let 2 be the collection of open balls with rational centers antbnat radii whose clo-
sure is contained .. By the previous claim2 # @. Let B € 2, so that for some
ap > 1,apB C Qj Uy for all sufficiently largej. In particular, eitherng B C Qj for
infinitely manyj, oragpB C Qj‘ for infinitely many ;. By a diagonalization argument, we
can pass to a subsequence so that for all such Ballsg B C Qj for all but finitely many
jorapB C Qj‘ for all but finitely many;. Let 2% be those balls in2 that are contained
in all but finitely manyQ;r (after passing to this subsequencg), = 2\ 2%, and set

oz = |J B

Beo*

By the previous claimQ} # @, and alsd) # @ if Q~ is a connected\-regular domain.
It is easy to check tha? !, andQ_ satisfy the properties stated in (b).

(c) To prove this we consider a ball ¢ B C . Then

wh(B) < liminfw;f(B) < lim infw;f(((?Q;r)c) =0.

J—00 J—00

Thus,suppw™ C X.
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(d) Let B C Q be a ball centered atg such that(B) = dist(zp,00Q7%)/2. Forj
large enough, there ig; € 3B N Z?Qj. Then

(6.7
lim sup sup uj <limsup sup u;r < limsup r(B)l_”w;f(B(yj, 126, 'r(B)))
j—oo B j—oo  B(y;,6r(B)) j—oo
< lim sup T(B)l_”w;'(2450_13) <r(B)'" 7wl (2450_13) < 00.

j—o0

Thus,u;r is uniformly bounded on compact subsets(tf, and thus we may pass to a

subsequence so that it converges uniformly on compact subs€7 to a functionuZ,
harmonic inQ%,. Defineut, = 0 on (). We now claim that] — wf, uniformly on

compact subsets "1,
To prove our claim lef\/, e > 0 and consider the sets

F={z € B(0,M) :dist(x, (QL)°) >} and G = B(0, M)\F.

Forz € GNQL, letz’ € 907, be closest ter, so thatlz — 2’| < 6. There isz; € 99
converging tar’, and so, forj big enough,

4.9 — .\ ¢
uf(r) < sup uf <M>

Ba;y2) © \ M/2

) wl(B(z;,05 ' M)) (M/2)' ™ <%>a Surwj (B(0,2M 65 1)) 6.

~Y ‘] ~Y
The same estimate holds trivially in the case G\QZ . Thus, for every: € G,

o0 ~

ud (v) Sar wh (B(0, 26, M))s%,

and so

lim sup sup \u;r —ul| Swi(B(0,26; ' M))5°.
j—oo G

On the other hand, sindg has compact closure nt,

: + ot —
limsupsup [u — ug| = 0.
j—ooo F

Hence, for any > 0, sinceB(0, M) = F U G, the last two inequalities imply

limsup sup |uj —ul] Swlk(B(0,20, M)) 6,
j—oo  B(0,M)
which implieSuj — ul, uniformly on B(0, M). Since this holds for each/ > 0, the
claim follows. In particularuZ, is continuous on all oR"*+1.
The estimateq.4) follows by arguments analogous to the ones above. Equéiiéh
now follows from uniform convergence ang. ).

(e) Letuy, = ul —h(€)~tuz,. To show that., is harmonic, lety € C°(R™1). Then,
sincew; — wg, = h(§)ws, by assumption,
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/A¢uoo dr = lim | A (uF — h(E) " ur) du

j—o0

:}E& </¢dwj+ —h(g)—l/qsdwj—)
= /qsdw; —h({)_l/qﬁdwgo = /¢dwo+o —/¢>dw; =0.
and sou., is a harmonic function o™ 1.

() By construction it is clear that,, = 0 in X. To show thatu., does not vanish out
of X first we check that:., is not identically0. To see this, we take a non-negative and
smooth compactly supported functigrsuch thatf ¢ dwZ, > 0. By (5.6) we have

/qbdw;-r :/AQSu;-dZL',
and so lettingi — oo, we get

0< /qﬁdw:o :/Aqﬁu:odw.

This implies that.} is not identically zero, and thus neitheris. .

By the definition ofu., it is clear thatu,, > 0 on Q% andu., < 00onQ_ . Suppose
there isz € QF such thaw (z) = 0, say. Then by the mean value property, should
vanish in some balB c Q" centered at. But sinceu, coincides withu}, on B, and
Us IS harmonic in the whol@®”+!, this should vanish identically ilR”*!, which is a
contradiction. An analogous argument shows tfjgt> 0 on{2~, and completes the proof
of ¥ = {us = 0}.

On the other hand, since,, is harmonic, it is also real analytic, and thtisis a real
analytic variety. Its dimension is less that- 1 because. # R"*1. To show that it has
dimension equal ta, consider two balls3; ¢ QT andB, C Q~, so thatu,, > 0 on By
andu., < 0 on By. By continuity, each segmetit joining B, and B, should contain a
point whereu, vanishes. That is, N3 # @. This shows that{"(X) > 0, and henc&
has dimension at least

(g) This follows from Theoren®.10 once we show tha®Z is a set of locally finite
perimeter and{™(0Q% \ *QL)) = 0, whered*Qf, C 907 stands for the reduced bound-
ary of QF_ . Note that)Q7 is real analytic and by Theorem 3.4.8 i it has locally finite
H™ measure. Therefore, Theoréh®implies thatQ has locally finite perimeter.

We claim thatH" (0Q1 \ 9*Q1)) = 0. By Lojasiewicz’s structure theorem for real ana-
Iytic varieties (see e.g.2§, Theorem 6.3.3, p. 168]), i is a small enough neighborhood
of a pointzy € 9O, we have that

Qnoat =vruvrty...uvo,
whereV? is either the empty set or the singletém,} and for eachk ¢ {1,...,n}, we

may write V* as a finite, disjoint unioi’* = Uj.vzkl I'%, of k-dimensional real analytic
submanifolds. Further, for eadh< k < n,

QNVESVETy...uVO,
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which, in fact, says that the lower dimensional varietiesntd occur as isolated sets (strat-
ification). Moreover, forl < k£ < n andl < j < N, we have that) N 81“5? is a union of

sets of the forrrff, forl1 < ¢ < kandl < i < N, and possibly’?. Notice now that, by
the mean value property, thedimensional varieties should separate the connected@omp
nents of{u., > 0} and{u., < 0}. Therefore, since the lower dimensional varieties have
H"-measure zero, it is clear tha@2}, = 9*Q% U N, whereH"(NN) = 0, which proves our
claim.

In light of Theorem2.10Q, for #™-a.e.x € 9*Q1 there exists a unique measure theoretic
unit outer normab,+ (x) such that

/ pdwd, = / Apul dr = —cn/ <;3(VQO+O-VU:O) dH",
ok QL Q%

for all ¢ € C°(R"*1), with ¢, dHn|8*Q; =doyo+ - The statement (g) follows from this
fact and the identity above. O

A corollary of the previous lemma is the following.

Lemma 5.10. Let Q™ andQ~ be as in Lemma.9. Let¢ € T'. For everyw € Tanw™, €),
there is a harmonic function on R™*+! such that

(5.8) dw = —VQ-VU d%n‘z,
(5.9) suppw C X ={u=0} =09, Q={u>0}

(5.10) wu(y) < w(E(m,250_17‘))r1_” forz e, r>0, and y € B(z,r)NQ,

and
(5.11)
lu(y)| < h(€)w(B(x, 205 r))r'™ forz e X, r>0, and y € B(z,r) Next(Q).

Moreover, there is a subsequence{of} so thatT,, (0Q") — {u = 0} locally in the
Hausdorff metric.

Lemma5.11. LetQ ™ andQ~ be as in Lemm&.9and leté € I'. Let.Z be given by%.1).
If Tan(w™,&) N.F # 2, then

; 1z —
lim dy (Tg r[w™], 7) = 0.
In particular, Tanw™, &) C Z.

The proof combines ideas from Theorem 2.15 and Lemma 4.41in [n this work the
proof relies on the compactness of the cone of tangent mesasrour situation we cannot
assume compactness and we overcome this difficulty by woikirecifically with the flat
measures” andby using the additional information on the tangent measdessribed by
the previous lemma.

Proof. Letc; > 0 andr; | 0 be such that; T, [w™] — € #. Then, given an arbitrary
e >0,

(5.12) di(Te ., [0, F) = d(¢Te,,[w7], F) <&
if j is big enough. Assume for the sake of a contradiction thaettses; | 0 so that
(5.13) dy (Tf,s]- [w+], 3?) > €
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We can assume; < r;. Thenby .12 and 6.13), letp; € (s;, r;) be the maximal number
such that

(514) dl (Tﬁ,pj [w+], f%\) =¢&.

Then by the maximality op;,

(5.15) sup dy(Teqw™], F) <e.
t€(p;,r;]

We claimp; /r; — 0. If not, then we may pass to a subsequence sqihat — ¢ € (0,1),
and so

¢t p,; wt] = T07pj/7"j [Cijﬂ“j [W+]] = Toulp] € 7

which contradicts§.14). Thus,p;/r; — 0, and so §.15 implies that forl < a < r;/p;
andj large, if we setv; = T ,.[w™], then

(5.16) (@, F) = da(Te p [w*],.7) ) dy (T o, [0, ) < e
Letr > 1 be such tha2r < r;/p;. Letu; € .# be such thaty,(1;) =1 and
Wi Wi (5.19
5.17 F. [ —1—, ) <FT<7J, > < 2.
( ) <F2T(wj) i) == Py (wy) Hi
Thus,
F(w;
(5.18) Fo(pj) —2e < ;) < Fr(pg) + 2e.

~ For(wy)
Sincey; = b;H"|y, for someb; > 0 and ann-planeV;, for anys > 0,
Cn
Fy(py) = bj;'s !
and soF;.(u;) = 2~ "V Fy, (u;) and thus
—(n Fr(wj —(n
2~ By () — 26 < # <2~ D &y () + 2e.

2r \Wj

Recalling thatf, (1;) = 1, we deduce

2r \Wj
We choose now = £ 2~ (1) = 2=(+4) Wijth this particular choice we get
3 g=(n+1) < 9—(n+1) (1 B }) o Frwy)
4 - 4) — Fgr(w]')

Let 3 = log, 3, so that3 € (0,1) and

< 9~ (n+1) <1 n i) < %2—(n+1)‘

9—(n+148) Fr(wj) < 9—(n+1-5)
T For(wy) T

lterating, we see that for anfye N for which 2¢ < r;/p;,

o—(nt18)e o F1W5) o a1y
T Fye(wy) T
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Sincer;/p; — oo, we have that

(5.19) o—(n+1+8)¢ < liminf M < lim sup Fy(wj) < 9—(n+1-B)¢
J 2¢ (w]) j—o0 o (wj)

Thus, if we sev; = w;/F;(w;) and letp > 0, and pickl so that2® > 2p, then forj large,
limsup vj(B(0, p)) < limsup v;(B(0, 2¢/2))

j—o0 j—o0

Fye(w) 629

< limsup 2Fy (v;) = 2 o(n+14+8)e+1

=00 Fi(wy)

Therefore,v; has a subsequence that converges weakly to some measufanw™, §).
Further,w satisfies

2 H1=0f < Py (w) < 20148 and Fy(w) = 1.

Let « be the harmonic function dR™*! satisfying the conclusions of LemngalQ For
a multiindexa with |a| = m > 2, we have by the Cauchy estimates that,fer N,

[Bau(0)](2)™ < i [ul S w(B(0,265129))(2)' 7" S Fyo1pen (w)(2)7"

< 2(n+1+5)€(2€)—n — of+pBt
Sincefs < 1, letting ¢ — oo, we get

douu(0)] < lim inf 208+H1=m)¢ — ¢,
{—00

Thus, the second order Taylor coefficients and higher areeatl. Hence, since is real
analytic, is linear, and in particulaty € .#, by (5.8) and 6.9). Therefore,

e 2V iy (Te [0, F) = di(wj, F) = 0,
which gives a contradiction. O

We now finish the proof of Theorefm 1 Let
Gy ={¢eT: foreveryr € Tanw™,¢) with ¢ € suppr, Tanv,¢) C Tanw™, &)}
and

Gy ={¢ el : Tanw™,¢) # o}.

Thenw™ (I'\(G1 N G2)) = 0 by Theorem5.6 and Theoren®.7. Leté € G; N Ga. Since
£ € Go, there isw,, € Tanw™, &) and its support is an-dimensional analytic variety.
Hence, there is an open setdpp w., 0N Whichw,, = g H™|); where M is a smooth
n-dimensional surface. In particular, for anye M, Tanwe, z) C % . Sinceé € G, this
implies Tarjw™, £)N.Z # @. Thus, by Lemm&.11Tanw™, £) C .% andX is ann-plane.

Suppose that there is a sequemge— 0 so thatByq+ (£,7j) > ¢ > 0 for some
e > 0. By Lemma5.9, there is a subsequence such tifiaf, (0Q1) converges in the
Hausdorff metric ta, this impliesfsqn+ (£, 7;) — 0, and we get a contradiction. Thus
Baa+ (&,7) — 0asr — 0 for each§ € G N Go, with Gy NGy C T' C E having full
harmonic measure if.

We claim now that if Taw™,¢) C .#, then

}L}I% /BQj’OO(Sa T) = 0.
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If this fails, then there is an > 0 and a sequencg — 0 such that

(5.20) iréf distH(Q+ NB(,r;),SNB(,rj)) Sl

Ty

where the infimum is taken over all halfspaceg/hose boundaries contag§n We consider
now a subsequenesg, such that the measurez;’; converge weakly to some measurec

7. The arguments for the proof of Lemngallshow that ifw] = T, [w*] andw]

converges weakly to some measutg € .#, then the associated functien, from Lemma
5.9 must be linear. Then the statement (f) from the same lemneatagbat andQ,

are disjoint half-spaces with bounda¥®/= {u., = 0}. Taking into account tham;; =
{uj, > 0}, whereu;, = u;; — u;,, and thatu;, converges uniformly on compact subsets
to uo, it easy to check that
disty (QF N B(&,7j,), SN B 1))
T

-0 forS:§+@,

k

which contradicts §.20 (becauseﬂ—;g is a half-space whose boundary contagis This
proves our claim and concludes the proof of Theofefn

6. THE PROOF OFTHEOREM 1.1

Under the assumptions of the theorem, we will prove first th&t ¢ 00" andw™ <
w™ < wt on E, then E contains am-rectifiable subsef’ on whichw® are mutually
absolutely continuous with respect#’. So for the moment, unless otherwise stated, we
assume tha™ andQ~ are as in Theorerti.1 and thatE c 99" is a Borel set such that
wh < w” <whonE.

Given~ > 0, a Borel measurg and a ballB C R4, we denote

Pyu(B) = Z 277 @u(2j3)7
320

where®, (B) = £, so thatPy ,(B) = P,(B). Note thatP, ,,(B) < Pr,(B)if v > T.

It is immediate to check that ifu:|| < oo, thenP, ,(B) < oo for any ball B. Indeed, we
just take into account that

_» : Sy el
— Jv J Jy o n
(6.1) P, ,.(B) = Zz 0.(2B) < Zz @@ <>
Jj=0 Jj=0
Givena,~y > 0, we say that a balB is a-P, ,,-doublingif
P, ,(B) <a©,(B).

Lemma 6.1. There isy, € (0,1) so that the following holds. Le&R c R™*! be any
domain andv its harmonic measure. For alf > ~,, there exists some big enough constant

a = a(vy,n) > 0 such that foro-a.e.z € R""! there exists a sequence®fP, ,,-doubling
balls B(z,r;), withr; — 0 asi — oo.

Proof. Form > 1, let
6.2)  Zy:={xeco: forall j >m, B(z,277)is nota-P,,-doubling}.
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So itis enough to show that(Z,,,) = 0 for all m > 1.
Fix m > 1 and taker € Z,,,, so that

(6.3) O, (B(z, 2_j)) <a ! P, ., (B(x, 2_j)) forall j > m.
Leta € (0, 1) to be chosen below. Fgr> m,
Payw(B(z,277)) = > 27*07Me,, (B(z,27"))
k<j
Y. 2P L (B@,27) + Y] 2710 e, (B(r,27h)
k:m<k<jy k<m
Z 9—ay(i—Fk) Z 9—7(k—h) Ou(B(z,27") + Q—M(j—m)pa%w(g(x, 27))
k:m<k<j h<k

(6.3 ) )
< a' ) 0u(B,27h) Yo 2hmealizk) g gmenlimmip ) (B, 27™)).
h<j k:h<k<j

Observe now that

Z 9—V(k=h)=ay(j=k) _ 9vh—avj Z o—V(1-a)k
k:h<k<j k:h<k<j

< C(v,a) gvh—avj 9—(1—a)yh _ Cly,a) 9—ay(i—h)
Thus we obtain
Ponw(B(2,277)) < Cly, @) a™' Poqw(B(x,279)) + 271U Py (B2, 27™)).
Hence, choosing > 2C(v, o) and recalling thaP,, ,,(B(z,277)) < oo, we infer that
Ou(B(2,277)) < Payw(B(x,277)) < 21=0=mp_ (B(z,27™)).
Observe now that for alt € Z,,,

el
Pay(B(z,27™) <) 277 @Rgomyn < O(m).
k>0

Then we get ' '
O,(B(z,277)) < C(m)2~*"7 forall j > m,
which implies that
w(B(z,r)) < C(m)r"t™  forallz € Z,, and allr < 27™.

Thus,w(A) < C(m) Ha*7(A) forany A C Z,,,.

Recall that, for a measuye

dim p = inf{s : there isF’ C 02 so thati*(F') = 0 and

w(F N K) = pu(0Qn K) for all compact setd’ ¢ R"*,

Lets = n 4+ ayandF C 02 be such tha#*(F') = 0. Let K be any compact subset of
Zm With w(K) > 0. Thenw(FNK) < H5 (FNK)=0. Thus,dimw > s.

A well known theorem of Bourgain’s asserts that therg(is) > 0 (not depending of)
so thatdimw < n+ 1 — &(n) [11]. In particular,s = n + ay < n+ 1 — £(n), which is

a contradiction ify > 1 — ¢(n). So it just remains to notice thatif > 1 — ¢(n), we can
now picka € (0,1) so that stillay > 1 — (n). O
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From now on we assume thatnd~ are fixed constants such that fora.e.z ¢ R**+!
there exists a sequence®f, ,+-doubling ballsB(z, r;), with r; — 0 asi — oco.
Recall that the harmonic measure$ andw™ are mutually absolutely continuous on
E C 90" = 9Q~, and thath denotes the density functidr(¢) = % (¢).

For technical reasons we need now to introduce ggisC E wheregﬂtm(:n,r) iS
gvniformly small. Givenm > 1, we denote byF,, the subset of those € E such that
Bar oo (w,7) < 1/100 for 0 < r < 1/m. By Theoremb.1, it turns out that

(6.4) wt (E\ U Em> = 0.

m>1

Lemma 6.2. Letmn > 1 and§ > 0. Forw™-a.e.x € E,,, there isr, > 0 so that for
any a-P, ,+-doubling ball B(z,r) with radiusr < r, there exists a subsét,, (z,r) C
E., N B(x,r) such that

(6.5) O,+(B(z,t) S O+ (B(z,r)) forall z € Gp(z,r),0 <t <2r,
and so thatw™ (B(z,r) \ G (z,r)) < dwt(B(z,1)).

Proof. For0 < 6 < 1 andk € N, let A, be the set ot € E,, such that fol0 < r < 1/k
we have

)
(6.6) fo 1) =) < Gh02)

Sinceh(z) > 0 for wt-a.e.z € E,,, by the Lebesgue differentiation theorem (s2g, [
Corollary 2.14 (2) and Remark 2.15 (3)])

E,, = U A&k U Z,
k>1

with w™(Z) = 0. Then, for allz € A and¢ < 1/k, we have

w™ (B(z,t)) ) 1
(6.7) ———2 — h(z :][ h(y) — h(2)) dwt (y)| < = h(z) < = h(2).
ey M| = |, () ) )| < $hE) < h)
and so
3 w(B(z,t)) _5
. - < oD )
(6.8) 1 h(z) < B = 4h(z) forz e Asp, 0 <t <1/k
Letx € Ay, be a point ofu™-density forA; ;, and letr, < 1/k be such that
(6.9) wt(Ask N B(z,r)) > <1 — g) wT(B(x,r)) foro<r <r,.
Now set

Grlz,7) = {2 € B(x,7) N A5y, : |h(z) — h(z)| < h(x)/2}.
Then by Chebychev’s inequality and.(),

2
wt(B(z,r) N As p\Gm(z,7)) < hz) /B(x’r) |h(2) — h(x)|dw™ (2) <

N >

wh (B(z,1)),
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and thus, together witt6(9), for r < r,,
wH(B(x, 1)\ Gm(z,7)) <w (B(z,7) N Asi \ Gm(z,7)) + 0w (B(z,7) \ Ask)

< (g + g) Wt (B, r)) = dwt(Bla,r).

We intend to show now that(5) holds for allz € G, (x,r). Observe first that, for
z € Gp(z,r) andr < r,,

1 ° h(e)

3 h(z) < h(z) <
and then, byg.8),

(6.10) gh(w) < % < %h(z) forall z € Gy, (z, ) with r, ¢t < 7.
Recall that by Lemmaé.10and4.11, for0 < t < 2r,
wh(B(2,t) w (B(2:1))
tn tn

< (2, 2)2

+ -1 _ 1
<5t 5 B0 ) W (Bl 163 )

Take0 < r < 3801, and0 < ¢ < 2r. Applying (6.10) twice, we derive

<w+<B<z,t>>>2 - <w+<B<z, 1660—%)))?

tm ~ T’

Sincez € B(x,r), we haveB(z, 165, 'r) C B(x,325; '), and then taking into account
that B(z,r) is a-P, ,+-doubling,

wh(B(2,168; 7)) < w(B(x,326;,'r)) < w (B(x,r)).

Therefore,
wt(B(z,t)) < wt(B(z, 1650_17‘)) < wt(B(z,1))
tn ~ rn ~ ™ ’
which shows thatq.5) holds for allz € G,,(z,r), t < 2r, with r such thatd < r <
ﬁé@?}c. O

Givenm > 1 andé > 0, we denote by@mﬁ the subset of the points € E,,, for which
there exists:, > 0 as in Lemméb.2, so thatw™ (Ey, \ En5) = 0.

Lemma 6.3. Letm > 1 andd > 0. Letzg € E,, 5 and
0 < 79 < min(ry,, 1/m, crdist(z™,0Q7)),

for somec; > 0 small enough (recall that® = w;i andaz® € QF are as in Def-
inition 4.8). Suppose that the balBy = B(xo,r0) is a-P, ,+-doubling. Then for all
& € G (0, 70) it holds that

(6.11) Ra(x2B,w™)(z) < C10,(By).
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Proof. To estimaté R, (xap,w™)(z)| for z € G, (2o, m9) We may assume that < r/4
becauséR, (x2p,w™)(z)| = 0if r > 4ry and 6.11) is trivial in the case/4 < r < 4r.

So we taker € Gy, (g, 79) and0 < r < ro/4. First we turn our attention t® ,w™ (z).
Sinceﬁgj’oo(:c,r) < 1/100 (by the definition ofE,, 5 and the fact that, < 1/m), there
iszp € B := B(x,r)with B(xp,r/4) C B(z,r) N Q™. Then, by ¢.4), we have

(6.12) RwT () = K(xp —2™).
By standard estimates, and becaéXe z,r/4) C B(z,r) \ 007,
(6.13) [Rw*(2p) — Ryw™ ()]

T — T —
2 7wt / 2 7wt
/B@Bm el SN e L)
|z — 2]
S —dw ™ (y
/B(:c,r)C ‘.Z' - y‘n—l—l ( )

1 1
A
B(z,r)AB(xzp,r/4) ‘xB - y’ ‘.Z' - y’
S P+ (B(z,7)).

Using thatB(x, ) C 2B, we deduce that

Y
Y gt
/ZBO\B(xr "T_ ’n—l—l ( )

L= Y
= 7Y gt Yy / 7Y gt
Jory a0 = [ s

< [Ryw™(2) = Rpgw™ (2)] + C ©,+(2B0)
S [Rw™(zp) — Rw™(25,)| + Pyt (Bo) + P (B(,1)).

Ry (X2Bow ™) ()] =

wherex g, is a point such thaB(zp,,7/4) C Bo N Q2~. By (6.12), we have

70

Rw*(zp) — Rw™ (zp,)| = |[K(xp —27) = K(zp, —27)| < 27—zt

On the other hand, lettingy be the largest natural number such &t < 2rg, by (6.5
we get

(6.14) P+ (B(x,r)) =Y 270,+(B(x,2'r))

§>0

69 .

S > 270, (B(xo,m0)) + > 2770,+(B(x0,2'7))
0<j<N j>N

§Pw+(B0)'

From the last estimates we infer that
7o
‘RT(XQBO(")—l—)(‘T)’ 5 ’I’+

— x| + B+ (Bo)-
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Note now that

(6.15) il (20 Wt (B(wo, 205 |2 —aol)) 1o
_ To
= ®w+ (B(.Z'(), 2(50 1’1‘+ — [L‘QD) M S Per (B())

Therefore, recalling thaB, is a- P+ -doubling,
‘RT(X2BO°J+)(‘T)’ 5 Pw+(BO) 5 ®w+ (B0)7
which concludes.11). O

Letm > 1,8 > 0, andz € E,, s, and denote
Gf,ff(woaro) = {‘T € Gm(xoﬂ’o) : hr% ®w+ (B(x,r)) = 0}7
r—

and
G’,;f(xo,ro) = {x € Gy (x0,70) : limsup O+ (B(z,r)) > 0}.

r—0

The notation %d” stands for “zero density”, andpd” stands for “positive density”.

Lemma 6.4. Letm > 1 andd > 0. Letzg € E,, s and
0 < 79 < min(ry,, 1/m, crdist(z™,0Q7)),
for somec; > 0 small enough. Suppose that the b8l = B(xo, o) is a-P, ,,+-doubling.

Then there is am-rectifiable setF (¢, 7o) C GEy (0, ro) such that

W (GP(x0,70) \ F(z0,70)) = 0

0,70

and so that™ | p(5,,ro) ANAH" | (s, o) @re mutually absolutely continuous.

Proof. From (6.5) we know thato ,+ (B(x,r)) < O+ (B(zg,r0)) for all x € G, (xo,70)
and allr < 2rq. Thus,

0 < limsup©+(B(z,7)) < oo forall z € GEY (w0, 7).
r—0

Now the main the result fron¥] asserts that | G2 (2 is n-rectifiable and proves the

r0)

lemma.
An alternative argument consists in using the fact Rat ™ (z) < oo for all suchz (by
Lemma6.3) and then applying the Nazarov-Tolsa-Volberg theor8aj. [ (]

To deal with the seZ¢(x, o) we intend to apply Theorerd.3. The next lemma will
be necessary to show that one the key assumptions of thaethés satisfied.

Lemma 6.5. Letm > 1 andd > 0. Letzg € E,, 5 and

0 < 79 < min(ry,, 1/m, crdist(z™,0Q7)),
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for somec; > 0 small enough. Suppose that the bl = B(xo, 7o) is a-P, ,+-doubling,
then

(6.16) /G ) )|Rw+(:£)—mugfg(zo,ro)(Rer)Pdw+(m)
s (xo,T0

m

o 2—2v )
S <m> O+ (Bo)” w™ (Bo).

Note that the integral in the left hand side 6f16) is overGz%(z, ry), the subset of zero
density points of~,, (z¢, ). This is essential for the validity of the estimate.

In (6.16), Rw™ (x) should be understood in the principal value sense. Theesxistof
this principal value fotot-a.e.x € G2%4(x, o) is guaranteed by the fact that, by Lemmas
6.2and6.3,

+
sip BT LR (vapet)(@) S Ou(Blao, o),
0<r<2rg r
and then using Remafk 4.

An alternative argument to prove the existence of the puadcialues is the following:
Forwt-a.e.x € GZ4(xg,r), there is a sequence — 0 so that each balB(z,r;) is
a-P,,+-doubling. By arguments analogous to the ones in the probkaoima6.3 one can
show that for0 < r < ' <r; <o,

7,,/

[Ryw™(2) = Row™ (@) S P+ (Bl 1) + EEYsaas

As in (6.15 with 7’ instead ofr, it follows that

/

r
‘.Z' — Z’+‘n+1 5 P+ (B(x7rl))'

Then, arguing as ir6(14), we haveP,+ (B(z,r’)) < P,+(B(z,r;)) and using thaB(z, ;)
is a-P,,+-doubling, we derive
Ry (@) = Rpw™ (2)] S Por (B(2,75)) S Out (Bl 1)) =+ 0 asj — oo,

sincelim,_,o O+ (B(x,r)) = 0. By the Cauchy criterion, we infer théiin, o R,w™ (x)
exists.

Proof of Lemmé5.5. We claim that forut-a.e. z € GZ%(x, o),
(6.17) Rw't(z) = K(z —2™).

Indeed, consider a sequence— 0 so thatB; = B(x, ;) is a-P,+-doubling for every;.
For j large enough, we may find arg; € B;\Q™ just as in Lemm&.3. Then
+ + (6.12 + + 23
|K($Bj -z ) - RTjw ($)| = |Rw (mBj) - RTjw (:L')| 5 Pw+(Bj) 5 @w+(Bj)7
and sincdim,_,o ©+(B(z,r)) = 0, this implies §.17).
We deduce that
(6.18)
(R (2) =1t Grga ) (R < sup K (—a) =K (y—a™)
yEGf,fl(xo,T’o)

<0
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We will estimate the last term in the equation above by argusanalogous to the ones in
(6.19), but now taking advantage of the fact thag is a- P, ,+-doubling withy < 1. Sowe
write

To 429 Wt (B(wo, 265 Hzo —at]) o
lzg — at |t ™ |zg — x| |zg — x|

= O+ (B(wo, 205 V|20 — 27)) ( ro >v< - >1—v

|zg — x| |zo — x|
To 1=y
S Py e+ (Bo) <m>

<0, (By) <—°>1

|z — 27|

The estimate@.16) follows from (6.18 and the preceding inequality. O

We can now finish the proof of Theorefnl Recall that first we are assuming that
wt < W™ < whonE C 90" and we wish to show thab contains am-rectifiable
subsetF of full measurew™ on E on whichw™® are mutually absolutely continuous with
respect to{". By standard arguments, it is enough to show that for anyedufasc E with
wt(Fy) > 0 there exists some-rectifiable subse&y C FEy with w*(Gy) > 0 on which
w* are mutually absolutely continuous with respect®.

Letd > 0 be some small constant to be fixed below. By, there exists some: such
thatw(Fo N E,,) > 0, which implies thato(Fy N EW;) > 0. Letxy be a point ofw™-
density of Fy N Em,(; for which there exists a sequenceamf,,+ -doubling ballsB(zg, ;)
with r; — 0 and such that

lim Bya+ oo (w0, 7) =0
r—0 ’

(by Lemma6.1and Theoren®.1such pointz, exists).
Let

0 < rj <min(ry,, 1/m, cidist(z,007))
be such that

(6.19) Baat co(T0,75) < 0

and

(6.20) wh(Fo N B s 0 B(wo,75)) > (1 — 8) wt (B(xo,75)).

By Lemmast.2and6.3 we have

(6.21) w(B(xo,75) \ Gm(wo,7)) < dw" (B(o,75))

and

(6.22) i (B(z,7)) + Re(XB(a,2r)w ) (@) < C2 O+ (B(x,75))

for all x € Gy, (xo,7;). Clearly, from 6.20) it follows thatw™ (Fy N B(xg, 7)) > (1 —
§) wt(B(zo,rj)), or equivalentlyw™ (B(zo,7;) \ Fo) < dw' (B(xo,7;)). Together with
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(6.21), this yields

(6.23) w (G (z0,75) N Fo) = wH (G(z0,75)) — wH (G0, 75) \ Fo)
> (1— 6w (B(xo, ;) —wh (B(wo,5) \ Fo)
> (1 - 26) w* (B(x0,75))-

By Lemma6.4, in the case thabﬂG%l(;no,rj) N Fy) > 0, we are done because the
measurev| G2 (w0,r) is n-rectifiable, and then we can choose the Ggtto be equal to
m 2t

G5 (x0,7;) N Fo minus a set zero measure . In the case that™ (G4 (o, ;) N Fy) = 0,
(6.23 tells us that

(6.24) wT (G2 (xg,75) N Fy) > (1 — 28) wT (B(x0,75)).

Further, by Lemma&.5, given any arbitrary constant > 0, if »; = 7;(7) is small enough,
we have

(6.25) |Rwt (x) — m,, Gzd(

ynp (Rw™)[? dw™ ()
Gf,‘li(wo,Tj)ﬂFO

xo,T;

m

< / ]Rw+(ac) - mM7sz(x()7rj)(Rw+)]2 dw+ (1’)
G (zo,rs)

r 2—2v ;
<o) OBl )Pt (Blanr)

< 7O+ (B(xo, 7)) w (B(o,75))-

For r; small enough, fromg.19), (6.22), (6.24) and ©.25 and the fact thaf3(zo, ;)
is a-P,,+-doubling, one easily checks that the assumptions of Thet& hold with ;, =
wt, B = B(zg,r;), andGp = G24(zo,7;) N Fy, with & replaced by2s. An immediate

consequence of the theorem is that there exists@ttifiable subsety C GZ4(x, r;)NEy
such thatv™ (Gy) > 0, as wished.

To conclude the proof of Theorem1 it remains to show that, given a Borel sBtC
o0,
whlp Lw|g = H'(ENT)=0.
The fact thato|, L w™|g implies thati™(E N T) = 0 follows by standard arguments.
Indeed, the points in the s@t satisfy the cone property and thus™ andw™ are both
mutually absolutely continuous witH™ on a subsel” C T with H™(T\T") = 0. So

w | gnr = H prr = W™ | Ear
(here =" denotes mutual absolute continuity), and so the statement
w+|E 1 w_|E

is false ifH"(ENT) > 0.

Conversely, ifw™|z L w™|g does not hold, then there is some subBett E with
wt(F) > 0 such thatw™|r andw™ | are mutually absolutely continuous. By the part
of Theoreml.1 that we have already proved, there existsnarectifiable subset: C F
with w™(F \ G) = w™ (F \ G) = 0 such thatw™ andw™ are both mutually absolutely

Lin fact, it easily follows that for*-a.e.z € Go, lim,_o wt(B(z,r))r™™ > 0. So the case when
wH (GP4(z0,75) N Fy) = 0 does not occur.
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continuous with{"|¢. Let Gy C G be some subset with < H"(Gy) < co. Itis not hard
to show thati{"-a.e.z € Gy is a tangent point fodQ™" sinceSyo+ o (B(z,r)) — 0 and
SUPye p(z,rne dist(y, V) /r — 0 whereV is the approximate tangentplane forGy (see
[27, Chapter 15]. Hencel{"(ENT) > H"(Go NT) > 0. This completes the proof of
Theoreml.1

7. PROOF OFCOROLLARIES1.2AND 1.3

Proof of Corollary1.2. DenoteQ2™ = Q! andQ~ = (QF)°. Letw’ = w! and letw™ be
the harmonic measure fér~ with polex™ € Q.

By the maximum principle we have? < w~ on E. So there exists some function
g € LY(w™) such thatv?|z = gw~. Hence if we seG = {x € E : g(x) > 0}, it turns out
thatw?(E \ G) = 0 andw?|; andw™ | are mutually absolutely continuous.

Sincew!|r andw?|; are mutually absolutely continuous, we infer that{ £ \ G) = 0,
too, and thus

whe=wlle=wle,

where =’ denotes mutual absolute continuity. Hence (85 satisfies the assumptions of
TheoremL.1, it follows that there exists somerectifiable subsef’ ¢ G with wt(G\F) =
0 on whichw™ | is are mutually absolutely continuous with respecto 5. O

Proof of Corollary1.3. As in the previous proof, we denofe" = Q! andQ~ = (QF)".
Also, we letw™ be the respective harmonic measure§)6t We takeG as above, so that
w?(E\ G) = 0 andw?|g andw™ | are mutually absolutely continuous.

We deduce that'!|z L w?|g if and only if w*|g L w™|g. By Theoreml.1 applied
to QF and@, this is equivalent té{"(G N T') = 0, whereT'! is the set of tangents for
691 — 8Q+

Sincew?(E\G) = 0, using the cone property itis easy to check Ha{ (E\G)NT?) =
0, whereT? is the set of tangents f@?. SinceFE is relative open ir0Q!' and9Q?, we
haveT'NE =T?NE =TnN E, and thus

HYENT)=H"(GNTH +H"((E\G)NT? =0.
Conversely, ifH"(ENT) = 0, then
HY(GNTH =HY(GNT) <HY(ENT) =0.
Thusw™|¢ L w™|g by Theoreml.1 O
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