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MUTUAL ABSOLUTE CONTINUITY OF INTERIOR AND EXTERIOR
HARMONIC MEASURE IMPLIES RECTIFIABILITY

JONAS AZZAM, MIHALIS MOURGOGLOU, AND XAVIER TOLSA

ABSTRACT. We show that, for disjoint domains in the Euclidean space whose boundaries
satisfy a non-degeneracy condition, mutual absolute continuity of their harmonic measures
implies absolute continuity with respect to surface measure and rectifiability in the inter-
section of their boundaries.
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1. INTRODUCTION

The relationship between the properties of harmonic measure and the geometry of its
support has attracted the attention of many mathematicians. In this paper we study a two-
phase problem in connection with this topic. More precisely, we show that, for disjoint
domains inRn+1 whose boundaries satisfy the so called∆-regularity condition, mutual
absolute continuity of their harmonic measures implies absolute continuity with respect to
surface measure andn-rectifiability in the intersection of their boundaries. This result solves
a conjecture of Chris Bishop from 1990, under the∆-regularity assumption. See Conjecture
8 from [8] or Section 6 from [7].

To state our results in detail we need to introduce some notation. Given a domain (i.e.,
an open and connected set)Ω ⊂ Rn+1, with n ≥ 2, we denote byωx or ωx

Ω its harmonic
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measure with respect to a polex ∈ Ω. If the precise pole of the harmonic measure is not
relevant, we may also write justω or ωΩ.

For the precise notion of∆-regularity, we refer the reader to Definition4.2below. How-
ever, we mention that by a result of Ancona [2] this is equivalent to the more known “ca-
pacity density condition” (CDC), and by a deep theorem of Lewis [25], it follows thatΩ is
∆-regular if and only if there exists someε > 0 and someR > 0 such that

Hn−1+ε
∞ (B(x, r) \ Ω) ≈ rn−1+ε for all x ∈ ∂Ω and all0 < r ≤ R,

whereHs
∞ stands for thes-dimensional Hausdorff content. We also remark that, in par-

ticular, the nontangentially accessible domains of Jerison and Kenig [20] are examples of
∆-regular domains. More generally, it is easy to check that a domainΩ is also∆-regular
if it just satisfies a two sided corkscrew condition, that is,any ballB(x, r) centered at
x ∈ ∂Ω, 0 < r ≤ R, contains two ballsB1 ⊂ B(x, r) ∩ Ω andB2 ⊂ B(x, r) \ Ω with
r(B1) = r(B2) ≈ r.

Recall that a pointx ∈ Rn is ann-dimensional tangentfor a setE ⊂ Rn+1 if there is an
n-dimensional planeV containingx so that

lim
r→0

sup
ζ∈B(x,r)∩E

dist(ζ, V )

r
= 0.

Our main result is the following:

Theorem 1.1. For n ≥ 2, let Ω+ ⊂ Rn+1 be open and letΩ− =
(
Ω+
)c

. Assume that
Ω+,Ω− are both connected and∆-regular and∂Ω+ = ∂Ω−. Let ω± be the respective
harmonic measures ofΩ±. LetE ⊂ ∂Ω+ be a Borel set and letT the set of tangent points
for ∂Ω+. Thenω+ ⊥ ω− onE if and only ifHn(E ∩ T ) = 0. Further, ifω+ ≪ ω− ≪ ω+

on E, thenE contains ann-rectifiable subsetF upon whichω± are mutually absolutely
continuous with respect toHn.

From this result we derive other local versions for two sided∆-regular domains. We
say that a domainΩ ⊂ Rn+1 is two sided∆-regular if bothΩ andext(Ω) :=

(
Ω
)c

are
connected and∆-regular.

Corollary 1.2. For n ≥ 2, let Ω1 ⊂ Rn+1 be an open domain. Suppose thatΩ1 is two
sided∆-regular and that∂Ω1 = ∂(ext(Ω1)). LetΩ2 ⊂ Rn+1 be a domain disjoint from
Ω1. For i = 1, 2, letωi be the respective harmonic measures ofΩi. LetE ⊂ ∂Ω1 ∩ ∂Ω2 be
a Borel set. Ifω1 ≪ ω2 ≪ ω1 onE, thenE contains ann-rectifiable subsetF upon which
ω1 andω2 are mutually absolutely continuous with respect toHn.

Corollary 1.3. For n ≥ 2, let Ω1 ⊂ Rn+1 be an open domain. Suppose thatΩ1 is two
sided∆-regular and that∂Ω1 = ∂(ext(Ω1)). LetΩ2 ⊂ Rn+1 be a domain disjoint with
Ω1. For i = 1, 2, let ωi be the respective harmonic measures ofΩi. LetE ⊂ ∂Ω1 ∩ ∂Ω2

be relatively open both in∂Ω1 and∂Ω2. LetT be the set of tangent points for∂Ω1. Then
ω1 ⊥ ω2 onE if and only ifHn(E ∩ T ) = 0.

The referee shared with us an example that shows Corollary1.3does not hold for general
domains. Construct a domain inR3 as follows. Letεk ↓ 0 and

Ω = R3
+\

∞⋃

k=0

⋃

ξ∈2−k(Z×Z×{0})

(B(ξ, εk2−k) ∩ R2)× 2−k.
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If εk ↓ 0 fast enough, thenωΩ andωΩ
c is mutually absolutely continuous on∂Ω ∩ R2 but

no point in∂Ω is a tangent point. Thus, a condition like∆-regularity is necessary for the
result to hold.

In the case of the plane (n = 1), the above results are already known, and basically they
follow from the following nice theorem of Chris Bishop [7]:

Theorem A. LetΩ1 andΩ2 be disjoint domains inR2 and letω1 andω2 be their harmonic
measures. Thenω1 ⊥ ω2 if and only if the set of points in∂Ω1∩∂Ω2 satisfying a weak dou-
ble cone condition with respect toΩ1 andΩ2 has zero 1-dimensional Hausdorff measure.
Moreover, ifω1 andω2 are mutually absolutely continuous on a Borel setE ⊂ ∂Ω1 ∩ ∂Ω2,
thenE contains a1-rectifiable subsetF upon whichω1 and ω2 are mutually absolutely
continuous with respect toH1.

For the definition of the weak double cone condition we refer the reader to the original
paper of Bishop [7]. We also mention that in the particular case when∂Ω1∩∂Ω2 is a Jordan
arc in the plane, the preceding result is a direct consequence of a previous work by Bishop,
Carleson, Garnett and Jones [9].

The main obstacle for the challenge of extending the aforementioned results of Bishop
and Bishop, Carleson, Garnett and Jones to higher dimensions arises from the fact that the
arguments in these works rely heavily on the use of complex analysis. Up to now, the main
contribution on this objective was the work of Kenig, Preiss, and Toro [21], whose result
we paraphrase below.

Theorem B. Let Ω+ and Ω− = ext(Ω+) be two NTA domains inRn+1, n ≥ 2, and
ω± = ω

x±

Ω±
their harmonic measures. Then∂Ω+ = Γg ∪ Γb ∪N ∪ S, where

(1) ω+|S ⊥ ω−|S ,
(2) ω±(N) = 0,
(3) dimH(Γb ∪ Γg) = n,
(4) eachξ ∈ Γb ∪ Γg is ann-dimensional tangent point for∂Ω,
(5) ω+|Γg ≪ Hn|Γg ≪ ω−|Γg ≪ ω+|Γg , and
(6) if E ⊂ Γb is Borel withω±(E) > 0, thenHn(E) = ∞.

Again, see [20] for the definition of NTA domains. In (3),dimH stands for the Hausdorff
dimension. Let us remark that in [21] it was also proved thatΓb ∪ Γg is n-rectifiable and
Γb = ∅ under the assumption that∂Ω has locally finiteHn-measure (in fact, the whole
boundary isn-rectifiable in this case by the Besicovitch-Federer projection theorem). An
immediate consequence of Theorem1.1 is that in the preceding result of Kenig, Preis and
Toro we can assert thatΓb = ∅, because the set whereω+ andω− are mutually absolutely
continuous satisfies the same property asΓg in (5), up to a set of null harmonic measure
ω±.

The proof of Theorem B above is a beautiful marriage of techniques from partial dif-
ferential equations and geometric measure theory. The crucial tools are the theory of non-
tangentially accessible domains introduced by Jerison andKenig [20], the monotonicity
formula of Alt, Caffarelli, and Friedman [1], the theory of tangent measures introduced by
Preiss [32], and the blow up techniques for harmonic measures at infinity for unbounded
NTA domains due to Kenig and Toro [23, 22].

The authors used Theorem B to resolve a conjecture put forth by Lewis, Verchota, and
Vogel. In [34], Wolff showed that there are two-sided NTA domains inR3 whose har-
monic measures may have dimensions strictly bigger or smaller than2. In [26], Lewis,
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Verchota, and Vogel generalized this to higher dimensions and showed that there are two-
sided NTA domains inRn+1 for anyn ≥ 2 whose interior and exterior harmonic measures
can have dimensions either below or aboven (in any combination). They also conjectured
that there should be such a two-sided NTA domain whose harmonic measures —in addition
to having fractional dimensions— should be mutually absolutely continuous. However, a
consequence of Theorem B is that the dimension of the harmonic measures is equal ton if
mutual absolute continuity occurs. Additionally, by Corollary 1.3, in this case the harmonic
measures are concentrated on a countable union of Lipschitzgraphs, and hence on a set of
σ-finite Hn-measure.

Our arguments for the proof of Theorem1.1 improve on the techniques of the afore-
mentioned work of Kenig, Preiss and Toro and include a new setof ideas involving the
n-dimensional Riesz transform. The connection between the Riesz transform and harmonic
measure is due to the fact that the Riesz kernel is the gradient of the Newtonian potential,
and the relationship between the Riesz transform and rectifiability is a subject that has been
in constant development for the last twenty years and has culminated in the solution of the
David-Semmes conjecture by Nazarov, Tolsa and Volberg [29, 30]. For recent examples of
Riesz transform techniques used to study harmonic measure,see for instance [10, 4, 28].
The arguments in the current paper use a new recent result by Girela-Sarrión and Tolsa
[18] on the connection between Riesz transforms and quantititative rectifiability for general
Radon measures (see Theorem3.1below for more details).

One can view the works described above as sort of an endpoint case of a larger class of
two phase problems where one is interested in studying the smoothness of∂Ω in terms of
the smoothness ofdω

+

dω− ; in other words, better behavior ofdω
+

dω− implies better regularity of
∂Ω. For example, most recently, Engelstein [15] showed that for two-sided NTA domains
in Rn+1 (Reifenberg flat ifn ≥ 2), if α ∈ (0, 1), k ≥ 0 is an integer, andlog dω+

dω− ∈ Ck,α,
then locally∂Ω is the graph of aCk+1,α function. See also [1], [6], [13], [14], as well as
the references therein, for example.

The authors are very grateful to the anonymous referee for useful suggestions that im-
proved the paper and for providing an example to show the tightness of the∆-regularity
assumption.

2. PRELIMINARIES

We will write a . b if there isC > 0 so thata ≤ Cb anda .t b if the constantC
depends on the parametert. We writea ≈ b to meana . b . a and definea ≈t b similarly.

For setsA,B ⊂ Rn+1, let

dist(A,B) = inf{|x− y| : x ∈ A, y ∈ B}, dist(x,A) = dist({x}, A),

and
diamA = sup{|x− y| : x, y ∈ A}.

For a subsetA ⊂ Rn+1 and0 < δ ≤ ∞ one sets

Hn
δ (A) = inf

{∑
diam(Ai)

n : A ⊂
⋃

Ai, diam(Ai) ≤ δ
}
.

Then-dimensional Hausdorff measureof A is defined as

Hn(A) = lim
δ↓0

Hn
δ (A),



MUTUAL ABSOLUTE CONTINUITY OF INTERIOR AND EXTERIOR HARMONIC 5

andHn
∞(A) is called then-dimensional Hausdorff contentof A. See [27, Chapter 4] for

more details.
We recall now the notion ofn-rectifiability and its quantitative analogue (uniformn-

rectifiability).

Definition 2.1. A Borel setE ⊂ Rn+1 isn-rectifiableif there existEi ⊂ Rn andfi : Ei →
Rn+1 Lipschitz so thatHn(E\

⋃∞
i=1 fi(Ei)) = 0.

Definition 2.2. A setE ⊂ Rn+1 is n-Ahlfors-David regular (orn-AD-regular) if

(2.1) C−1rn ≤ Hn(E ∩B(x, r)) ≤ C rn for all x ∈ E and0 < r ≤ diam(E).

A setE ⊂ Rn+1 is uniformlyn-rectifiable if it is n-AD-regular and there existθ,M > 0
such that for allx ∈ E and allr > 0 there is a Lipschitz mappingg : Bn(0, r) ⊂ Rn →
Rn+1 with Lip(g) ≤ M such that

Hn(B(x, r) ∩ g(Bn(0, r)) ∩ E) ≥ θrn.

In the casen = 1, it is known thatE is uniformly 1-rectifiable if and only ifE is
contained in a1-AD-regular curve inRn+1. We will call the constantsM , θ andC in (2.1)
the UR constants ofE.

Definition 2.3. A function f ∈ L1
loc(U) haslocally bounded variationin an open setU ⊂

Rn+1 and we writef ∈ BVloc(U), if for each open setV ⋐ U ,

sup

{∫

V
f divφ dLn+1 : φ ∈ C∞

c (V ;Rn+1), |φ| ≤ 1

}
< ∞,

whereLn+1 stands for the(n + 1)-dimensional Lebesgue measure. AnLn+1-measurable
setE ⊂ Rn+1 haslocally finite perimeterin U if χE ∈ BVloc(U). Recall that the Radon
measures inRn+1 are just the Borel measures which are locally finite (and theyturn out to
be inner regular).

We now state the Structure Theorem forBVloc functions, whose proof can be found in
[16, p. 167].

Theorem 2.4. Let f ∈ BVloc(U). Then there exists a Radon measureµ on U and aµ-
measurable functionσ : U → Rn+1 so that

(1) |σ(x)| = 1, for µ-a.e.x ∈ U and
(2)

∫
U f divφ dLn+1 = −

∫
φ · σ dµ, for all φ ∈ C∞

c (U,Rn+1).

If f = χE andE has locally finite perimeter inU , then we denote‖∂E‖ = µ andνE = −σ.

Definition 2.5. Let E be a set of locally finite perimeter inRn+1 andx ∈ Rn+1. The
reduced boundaryof E, which we denote by∂∗E, is the set of pointsx ∈ ∂E such that

(1) ‖∂E‖(B(x, r)) > 0, for all r > 0,
(2) limr→0

1
‖∂E‖(B(x,r))

∫
B(x,r) νE(y) d‖∂E‖ = νE(x), and

(3) |νE(x)| = 1.

Definition 2.6. For eachx ∈ ∂∗E we define thehyperplane

H(x) =
{
y ∈ Rn+1 : νE(x) · (y − x) = 0

}

and thehalf-spaces

H+(x) =
{
y ∈ Rn+1 : νE(x) · (y − x) ≥ 0

}
,

H−(x) =
{
y ∈ Rn+1 : νE(x) · (y − x) ≤ 0

}
.
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A unit vectorνE(x) is called themeasure theoretic unit outer normaltoE atx if

lim
r→0

Ln+1(B(x, r) ∩ E ∩H+(x))

rn+1
= 0

and

lim
r→0

Ln+1((B(x, r) \ E) ∩H−(x))

rn+1
= 0.

Definition 2.7. Let x ∈ Rn+1. We say thatx ∈ ∂∗E, themeasure theoretic boundaryof E,
if

lim sup
r→0

Ln+1(B(x, r) ∩ E)

rn+1
> 0

and

lim sup
r→0

Ln+1(B(x, r) \ E)

rn+1
> 0.

Remark 2.8. Note that∂∗E ⊂ ∂∗E andHn(∂∗E \∂∗E) = 0 (see[16, p. 208]). Moreover,
if E has locally finite perimeter, then‖∂E‖ = Hn|∂∗E (see[16, p. 205]).

A useful criterion that allows us to determine whether a set has locally finite perimeter,
whose proof can be found in [16, p. 222], is the following:

Theorem 2.9. If E ⊂ Rn+1 is Ln+1–measurable, then it has locally finite perimeter if and
only ifHn(K ∩ ∂∗E) < ∞, for each compact setK ⊂ Rn+1.

We now state thegeneralized Gauss-Green theorem. For a proof see [16, p. 209].

Theorem 2.10.LetE ⊂ Rn+1 have locally finite perimeter. Then for eachx ∈ ∂∗E there
exists a unique measure theoretic unit outer normalνE(x) such that

(2.2)
∫

E
divφ dLn+1 =

∫

∂∗E
(φ · νE) dH

n,

for all φ ∈ C1
c (R

n+1;Rn+1).

3. RIESZ TRANSFORM AND RECTIFIABILITY

In this section we will state a theorem involving the relationship between Riesz trans-
forms and rectifiability and derive a version of this which isbetter suited for our purposes.

First we need to introduce some additional notation. Given asigned Radon measureν in
Rn+1 we consider then-dimensional Riesz transform

Rν(x) =

∫
x− y

|x− y|n+1
dν(y),

whenever the integral makes sense (for example, whenν has bounded support andx 6∈
supp ν). Forε > 0, theε-truncated Riesz transform is given by

Rεν(x) =

∫

|x−y|>ε

x− y

|x− y|n+1
dν(y).

Forδ ≥ 0 we set
R∗,δν(x) = sup

ε>δ
|Rεν(x)|.

In the caseδ = 0 we writeR∗ν(x) := R∗,0ν(x).
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If µ is a fixed Radon measure andf ∈ L1
loc(µ), we also write

Rµf = R(fµ), Rµ,εf = Rε(fµ), Rµ,∗,δf = R∗,δ(fµ), Rµ,∗f = R∗(fµ),

whenever these notions make sense. We say thatRµ is bounded inL2(µ) if the operators
Rµ,ε are bounded inL2(µ) uniformly onε > 0.

Given a ballB ⊂ Rn+1, we denote

Θµ(B) =
µ(B)

r(B)n
, Pµ(B) =

∑

j≥0

2−j Θµ(2
jB).

SoΘµ(B) is then-dimensional density ofµ onB andPµ(B) is some kind of smoothened
version of this density. Forf ∈ L1

loc(µ) andA ⊂ Rn+1, we write

mµ,A(f) =
1

µ(A)

∫

A
f dµ.

Given ann-planeL ⊂ Rn+1, we also denote

βL
µ,1(B) =

1

r(B)n

∫

B

dist(x,L)

r(B)
dµ(x).

The following theorem has been recently proved in [18]. This will be a fundamental tool
for the proof of Theorem1.1.

Theorem 3.1(Girela-Sarrión, Tolsa). Letµ be a Radon measure onRn+1 andB ⊂ Rn+1

a ball so that the following conditions hold:

(a) For some constantC0 > 0, C−1
0 r(B)n ≤ µ(B) ≤ C0 r(B)n.

(b) Pµ(B) ≤ C0, andµ(B(x, r)) ≤ C0 r
n for all x ∈ B and0 < r ≤ r(B).

(c) There is somen-planeL passing through the center ofB such that for some0 <
δ ≪ 1, it holdsβL

µ,1(B) ≤ δ.
(d) Rµ|B is bounded inL2(µ|B) with ‖Rµ|B‖L2(µ|B)→L2(µ|B) ≤ C1.
(e) For some constant0 < τ ≪ 1,

∫

B
|Rµ(x)−mµ,B(Rµ)|2 dµ(x) ≤ τ µ(B).

Then there exists some constantθ > 0 such that ifδ, τ are small enough (depending onC0

andC1), there is a uniformlyn-rectifiable setΓ ⊂ Rn+1 such that

µ(B ∩ Γ) ≥ θ µ(B).

The UR constants ofΓ depend on all the constants above.

In the statement (e),Rµ(x) should be understood in the principal value sense. That is,

Rµ(x) = lim
ε→0

Rεµ(x).

The fact thatRµ|B is bounded inL2(µ|B) guaranties the existence of the principal value for
µ-a.e. x ∈ B. This follows easily from the results of [30], arguing as in [33, Chapter 8]
with the Cauchy transform replaced by the Riesz transform.

Note that, in particular, a remarkable consequence of the theorem above is that a big
piece ofµ|B is mutually absolutely continuous with respect to (a big piece of)Hn|Γ.

By applying Theorem3.1to the normalized measurer(B)n

µ(B) µ, we obtain the following.
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Corollary 3.2. Letµ be a Radon measure onRn+1 andB ⊂ Rn+1 a ball withµ(B) > 0
so that the following conditions hold:

(a) For some constantC0 > 0, Pµ(B) ≤ C0 Θµ(B) andΘµ(B(x, r)) ≤ C0Θµ(B)
for all x ∈ B and0 < r ≤ r(B).

(b) There exists somen-planeL passing through the center ofB such that for some
0 < δ ≪ 1, it holdsβL

µ,1(B) ≤ δΘµ(B).
(c) Rµ|B is bounded inL2(µ|B) with ‖Rµ|B‖L2(µ|B)→L2(µ|B) ≤ C1Θµ(B).
(d) For some constant0 < τ ≪ 1,

∫

B
|Rµ(x)−mµ,B(Rµ)|2 dµ(x) ≤ τ Θµ(B)2 µ(B).

Then there exists some constantθ > 0 such that ifδ, τ are small enough (depending onC0

andC1), there is a uniformlyn-rectifiable setΓ ⊂ Rn+1 such that

µ(B ∩ Γ) ≥ θ µ(B).

The UR constants ofΓ depend on all the constants above.

For our purposes in connection with harmonic measure, the following variant of the
preceding result will be more appropriate.

Theorem 3.3. Letµ be a Radon measure inRn+1 andB ⊂ Rn+1 a ball withµ(B) > 0 so
that the following conditions hold:

(a) For some constantC0 > 0, Pµ(B) ≤ C0 Θµ(B).
(b) There is somen-planeL passing through the center ofB such that, for some con-

stant0 < δ ≪ 1, βL
µ,1(B) ≤ δΘµ(B).

(c) For some constantC1 > 0, there isGB ⊂ B such that

sup
0<r≤2r(B)

µ(B(x, r))

rn
+R∗(χ2B µ)(x) ≤ C1 Θµ(B) for all x ∈ GB

and
µ(B \GB) ≤ δ µ(B).

(d) For some constant0 < τ ≪ 1,
∫

GB

|Rµ(x)−mµ,GB
(Rµ)|2 dµ(x) ≤ τ Θµ(B)2µ(B).

Then there exists some constantθ > 0 such that ifδ, τ are small enough (depending on
C0 andC1), then there is a uniformlyn-rectifiable setΓ ⊂ Rn+1 such that

µ(GB ∩ Γ) ≥ θ µ(B).

The UR constants ofΓ depend on all the constants above.

Remark 3.4. The condition that

sup
0<r≤2r(B)

µ(B(x, r))

rn
+R∗(χ2B µ)(x) ≤ C1 Θµ(B)

for everyx ∈ GB given by (c) ensures that the principal value

Rµ(x) = lim
ε→0

Rεµ(x)
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exists forµ-a.e.x ∈ GB . This is due to the fact that the assumption (d) implies theL2(µ|GB
)

boundedness ofRµ|GB
. This is shown in the proof below.

Proof of Theorem3.3. We will show that the assumptions of Theorem3.2hold for

µ̃ = µ|Bc∪GB
.

The assumptions (a) and (b) are clearly satisfied (becauseδ ≪ 1) and thus we only have to
check (c) and (d).

Suppose that the assumptions of Theorem3.3hold. Letσ = µ|2B and letp1, p2 > 0 be
two big constants to be chosen momentarily. Denote

Mnσ(x) = sup
r>0

σ(B(x, r))

rn
.

Let us also set
E1

p1 = {x ∈ Rn+1 : Mnσ(x) > p1Θσ(B)}

and
E2

p2 = {x ∈ Rn+1 : R∗σ(x) > p2Θσ(B)}.

Forx ∈ E1
p1 , we denote

ρ1(x) = sup
{
r > 0 : σ(B(x, r)) > p1Θσ(B) rn}

and forx ∈ E2
p2,

ρ2(x) = sup
{
r > 0 : |Rrσ(x)| > p2Θσ(B)

}
.

Define
Hi =

⋃

x∈Ei
pi

B(x, ρi(x)), i = 1, 2.

Note thatH1 andH2 are open sets and forp1 andp2 big enough it not hard to show that
2B∩(H1∪H2) ⊂ 2B\GB . Indeed, it is clear that every ballBr with σ(Br) > p1 Θσ(B)rn

satisfiesBr ⊂ H1. Notice that ify ∈ B∩H1, then there isx ∈ E1
p1 so thaty ∈ B(x, ρ1(x)),

and so

σ(B(y, 2ρ1(x))) ≥ σ(B(x, ρ1(x))) ≥ p1Θσ(B)ρ1(x)
n = p1 Θσ(B)2−n[2ρ1(x)]

n.

We conclude that2B ∩H1 ⊂ 2B \GB , if we choosep1 so thatp1 > 2nC1.
We turn our attention toH2. If y ∈ B ∩ H2 \ H1, then there existsx ∈ E2

p2 so that
y ∈ B(x, ρ2(x)). We shall show that

(3.1) |Rρ2(x)σ(x)−Rρ2(x)σ(y)| ≤ Cp1Θσ(B),

whereC > 0 is some absolute constant depending only on the dimension. Indeed, we have
that

|Rρ2(x)σ(x)−Rρ2(x)σ(y)|

≤|Rρ2(x)(χB(y,2ρ2(x))σ)(x)| + |Rρ2(x)(χB(y,2ρ2(x))σ)(y)|

+ |Rρ2(x)(χRn+1\B(y,2ρ2(x))σ)(x) −Rρ2(x)(χRn+1\B(y,2ρ2(x))σ)(y)|

=: I1 + I2 + I3.

Notice now that

I1 + I2 ≤ Cn
σ(B(y, 2ρ2(x)))

ρ2(x)n
≤ 2np1Θσ(2B) ≤ C p1Θσ(B),
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where the second inequality follows form the fact thaty 6∈ H1. It just remains to handleI3.
To this end,

I3 = |R(χRn+1\B(y,2ρ2(x))σ)(x)−R(χRn+1\B(y,2ρ2(x))σ)(y)|

≤ C̃n

∫

Rn+1\B(y,2ρ2(x))

|x− y|

|z − y|n+1
dσ(z)

≤ C̃n

∑

j≥1

ρ2(x)

(2jρ2(x))n+1
σ(B(y, 2j+1ρ2(x))

≤ C̃n 2
np1Θσ(B),

where in the last inequality we used thaty 6∈ H1. This concludes the proof of (3.1). There-
fore, since|Rρ2(x)σ(x)| > p2Θσ(B), we have that2B∩H2 \H1 ⊂ 2B \GB , if we choose
p2 so thatp2 − C 2np1 > C1.

LetH = H1 ∪H2 and consider the1-Lipschitz function

Φ(x) = dist(x,Hc) ≥ max(ρ1(x), ρ2(x)),

and the associated “suppressed kernel”

KΦ(x, y) =
x− y

(
|x− y|2 +Φ(x)Φ(y)

)(n+1)/2
.

We consider the operatorRΦ,σ defined by

RΦ,σf(x) =

∫
KΦ(x, y) f(y) dσ(y),

and itsε-truncated version (forε > 0)

RΦ,ε,σf(x) =

∫

|x−y|>ε
KΦ(x, y) f(y) dσ(y).

We also set
RΦ,∗,σf(x) = sup

ε>0
RΦ,ε,σf(x).

We say thatRΦ,σ is bounded inL2(σ) if the operatorsRΦ,ε,σ are bounded inL2(σ) uni-
formly on ε > 0.

We now prove that

(3.2) RΦ,∗,σ1(x) ≤ C(p1, p2)Θσ(B),

for all x ∈ Rn+1. To do so, we need the following lemma which proof can be foundin [33,
Lemma 5.5].

Lemma 3.5. Let x ∈ Rn+1 and r0 ≥ 0 so thatσ(B(x, r)) ≤ A1r
n for r ≥ r0 and

|Rεσ(x)| ≤ A2 for ε ≥ r0. If Φ(x) ≥ r0, then there existsC > 0, so that|RΦ,ε,σ1(x)| ≤
C A1 +A2 for all ε > 0.

By Lemma3.5 for A1 = p1Θσ(B), A2 = p2Θσ(B) andr0 = max{ρ1(x), ρ2(x)}, we
obtain (3.2). We further apply theTb theorem for suppressed operators by Nazarov–Treil–
Volberg [31] (see also Corollary 5.33 in [33]) and it follows thatRΦ,σ : L2(σ) → L2(σ) is
bounded with norm

‖RΦ,σ‖L2(σ)→L2(σ) . Θσ(B) = Θµ(B).
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SinceΦ vanishes onGB ⊂ Hc, we have thatRµ̃|B : L2(µ̃|B) → L2(µ̃|B) is bounded and
‖Rµ̃|B‖L2(µ̃|B)→L2(µ̃|B) . Θµ̃(B).

To check that the condition (e) in Theorem3.1holds, we write
∫

B
|Rµ̃(x)−mµ̃,B(Rµ̃)|2 dµ̃(x) .

∫

GB

|Rµ(x)−mµ,GB
(Rµ)|2 dµ(x)

+

∫

GB

|R(µ − µ̃)|2 dµ

= I1 + I2.

ConcerningI1, by assumption we have

I1 ≤ τ Θµ(B)2 µ(B) ≈ τ Θµ̃(B)2 µ̃(B).

For I2, notice thatµ − µ̃ = µ|B\GB
and, further, recall thatΦ vanishes onGB because

GB ⊂ Hc and soR(µ− µ̃)(x) = RΦ(µ− µ̃)(x) for all x ∈ GB . Further,RΦ,σ is bounded
in L4(σ), by using the boundedness ofRΦ,σ from L1(σ) to L1,∞(σ) (see Lemma 5.27 of
[33], for example) and duality. So we have

∫

GB

|R(µ − µ̃)|2 dµ ≤ µ(GB)
1/2 ‖RΦ(µ|B\GB

)‖2L4(µ|GB
)

. Θσ(B)2 µ(GB)
1/2 µ(B \GB)

1/2 . δ1/2 Θµ̃(B)2 µ̃(B).

Gathering the estimates obtained forI1 andI2 we get
∫

B

∣∣Rµ̃(x)−mµ̃,B(Rµ̃)
∣∣2 dµ̃(x) . (τ + δ1/2)Θµ̃(B)2 µ̃(B),

which shows that the assumption (d) of Theorem3.2holds. �

4. BACKGROUND ON HARMONIC MEASURE

Let us first recall some definitions and basic facts concerning harmonic measure and
Green functions.

4.1. Harmonic measure and Green function.For a (possibly unbounded) domainΩ ⊂
Rn+1 andx ∈ Ω, one can construct the harmonic measureωx

Ω (see e.g. [3, p. 172] or [19, p.
217]). In fact, for any continuous functionf , the Perron solution for the boundary function
f is given by

Hf (x) =

∫

∂∞Ω
f(y) dωx

Ω(y),

where∂∞Ω = ∂Ω if Ω is bounded and∂∞Ω = ∂Ω∪{∞} otherwise. Remark that constant
functions are continuous and sinceH1(x) = 1, for anyx ∈ Ω, we have thatωx

Ω(∂∞Ω) = 1,
for anyx ∈ Ω.

Let E denote the fundamental solution for the Laplace equation inRn+1, so thatE(x) =
cn |x|

1−n for n ≥ 2, cn > 0. A Green functionGΩ : Ω × Ω → [0,∞] for an open set
Ω ⊂ Rn+1 is a function with the following properties: for eachx ∈ Ω, GΩ(x, y) = E(x−
y) + hx(y) wherehx is harmonic onΩ, and whenevervx is a nonnegative superharmonic
function that is the sum ofE(x−·) and another superharmonic function, thenvx ≥ GΩ(x, ·)
([19, Definition 4.2.3]).
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An open subset ofRn+1 having a Green function is called aGreenianset. By [19,
Theorem 4.2.10], all open subsets ofRn+1 are Greenian forn ≥ 2. Moreover, Green
function can be written as follows (see [3, Lemma 6.8.1]): forx, y ∈ Ω, x 6= y, define

(4.1) GΩ(x, y) = E(x− y)−

∫

∂Ω
E(x− z) dωy(z).

Forx ∈ Rn+1 \ Ω andy ∈ Ω, we will also set

(4.2) GΩ(x, y) = 0.

The kernel of the Riesz transform is

(4.3) K(x) = cn∇E(x),

for a suitable absolute constantcn. Forx ∈ Rn+1 \Ω, sinceK(x− ·) is harmonic inΩ, we
have

(4.4) Rωy(x) =

∫
K(x− z) dωy(z) = K(x− y).

Forx ∈ Ω, by (4.3) and (4.1) we get

Rωy(x) = cn∇x

∫
E(x− z) dωy(z) = cn∇x

(
E(x− z)−GΩ(x, y)

)

= K(x− y)− cn∇xGΩ(x, y).(4.5)

The following result is also standard. For the proof of the precise statements, see [4], for
example.

Lemma 4.1. Letn ≥ 2 andΩ ⊂ Rn+1 be a domain. LetB = B(x0, r) be a closed ball
with x0 ∈ ∂Ω and0 < r < diam(∂Ω). Then, for alla > 0,

(4.6) ωx
Ω(aB) & inf

z∈2B∩Ω
ωz
Ω(aB) rn−1 GΩ(x, y) for all x ∈ Ω\2B andy ∈ B ∩ Ω,

with the implicit constant independent ofa.

The above lemma was originally stated in [4] for bounded domains, but it holds for
unbounded domains with the same proof using the fact that, for n ≥ 2, any domainΩ ⊂
Rn+1 is Greenian and, if it is unbounded,∞ is a Wiener regular point (see [3, Theorem
6.7.1]).

4.2. ∆-regular domains.

Definition 4.2. A domainΩ ( Rn+1 is (β,R)-∆-regular if there areR, β > 0 so that

(4.7) sup
ξ∈∂Ω

sup
x∈∂B(ξ,r/2)∩Ω

ωx
B∩Ω(∂B(ξ, r) ∩ Ω) ≤ β < 1 for r ∈ (0, R).

We call a domainΩ two-sided∆-regular if ext(Ω) := (Ω)c is also a∆-regular domain.

If we want to specify the constantsβ,R above, we will talk about(β,R)-∆-regularity.
It can be shown that one obtains an equivalent definition if the second supremum above is
taken overx ∈ ∂B(ξ, δr) ∩Ω, for any fixed constant0 < δ < 1.

Definition 4.3. Letn ≥ 2 and letCap denote the Newtonian capacity. A domainΩ ⊂ Rn+1

satisfies thecapacity density condition(or CDC) if there isRΩ > 0 andcΩ > 0 so that
Cap(B\Ω) ≥ cΩ r(B)n−1 for any ballB centered on∂Ω of radiusr(B) ∈ (0, RΩ).
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Although this result will be not used in this paper, we recallthat the CDC is equivalent
to∆-regularity forn ≥ 2:

Theorem 4.4. [2, Lemma 3]For n ≥ 2, if Ω ⊂ Rn+1 and B is centered on∂Ω, then
Cap(B\Ω) & r(B)n−1 if and only if there isβ ∈ (0, 1) so thatωx

B∩Ω(∂B ∩ Ω) ≤ β on
∂(12B) ∩ Ω. In particular,Ω is∆-regular if and only if it satisfies the CDC.

Below we recall some estimates that are written in more generality but will be applied
in the setting of∆-regular domains. The following result is well known and follows by
standard techniques, see for example [5, Lemma 2.3].

Lemma 4.5. LetΩ ⊂ Rn+1, δ ∈ (0, 1), ξ ∈ ∂Ω and suppose that

ωx
B(ξ,r)∩Ω(∂B(ξ, r) ∩ Ω) ≤ β < 1 for x ∈ ∂B(ξ, δr) ∩ Ω andr ∈ (0, R).

Then there isα = α(β, δ, n) so that for allr ∈ (0, R)

(4.8) ωx
Ω(B(ξ, r)c) .β,δ

(
|x− ξ|

r

)α

for x ∈ Ω ∩B(ξ, r).

In particular, ξ is a regular point for∂Ω.

By the maximum principle, this implies the following.

Corollary 4.6. LetΩ ⊂ Rn+1, δ ∈ (0, 1), ξ ∈ ∂Ω and suppose thatωx
B(ξ,r)∩Ω(∂B(ξ, r) ∩

Ω) ≤ β < 1 for x ∈ ∂B(ξ, δr) ∩ Ω andr ∈ (0, R). Letu be a nonnegative function which
is continous inB(ξ, δr) ∩Ω and harmonic inB(ξ, δr) ∩ Ω, and vanishes continuously on
B(ξ, r) ∩ ∂Ω. Then there isα = α(β, δ, n) so that for allr ∈ (0, R),

(4.9) u(x) .β,δ

(
sup

B(ξ,r)∩Ω
u

)(
|x− ξ|

r

)α

for x ∈ Ω ∩B(ξ, r).

Lemma 4.7. LetΩ ⊂ Rn+1 be a(β,R)-∆-regular domain, forβ ∈ (0, 1), R > 0. Then
there areδ0 ∈ (0, 1) and ρ > 0, both depending onβ, n, so that for allr ∈ (0, R) and
ξ ∈ ∂Ω,

(4.10) ωx
Ω(B(ξ, r)) ≥ 1/2 for all x ∈ B(ξ, δ0r) ∩Ω.

Proof. By Lemma4.5, if |x−ξ| < δ0 for some positiveδ0 small enough depending onβ, n,
thenωx

Ω(∂∞Ω \B(ξ, r)c) ≤ 1
2 and thusωx

Ω(B(ξ, r)) ≥ 1
2 . �

If Ω is∆-regular, then by (4.10) and Lemma4.1, we have
(4.11)

ωx
Ω(2δ

−1
0 B) & rn−1GΩ(x, y) for all x ∈ Ω\2B andy ∈ B ∩ Ω, 0 < r(B) <

δ0R

2
.

4.3. Admissible domains and relevant estimates.

Definition 4.8. A domainΩ ⊂ Rn+1 is admissibleif

(1) Ω+ = Ω andΩ− = ext(Ω) are Wiener regular;
(2) ∂Ω+ = ∂Ω− = ∂Ω;
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(3) There existx± ∈ Ω± such that if

(4.12) u(x) =

{
GΩ+(x, x+), for x ∈ Ω+,

−GΩ−(x, x−), for x ∈ Ω−,

whereGΩ±(x, x±) is the Green function inΩ± with pole atx±, and δ(x) :=
dist(x, ∂Ω), then for everyξ ∈ ∂Ω there existsR > 0withR < min{δ(x+), δ(x−)}
so thatu ∈ C(B(ξ,R)) ∩W 1,2(B(ξ,R)).

Theorem 4.9. [1, Lemma 5.1]LetΩ ⊂ Rn+1 be an admissible domain andu± = GΩ±(·, x±).
Then forx ∈ ∂Ω there is0 < R < min{dist(x+, ∂Ω),dist(x−, ∂Ω)} such that the quantity

(4.13) γ(x, r) =

(
1

r2

∫

B(x,r)

|∇u+(y)|2

|y − x|n−1
dy

)
·

(
1

r2

∫

B(x,r)

|∇u−(y)|2

|y − x|n−1
dy

)

is a non-decreasing function ofr ∈ (0, R) andγ(x,R) < ∞, that is,

(4.14) γ(x, r1) ≤ γ(x, r2) < ∞ for 0 < r1 ≤ r2 < R.

Lemma 4.10. [21, Theorem 3.3]Let Ω ⊂ Rn+1 be an admissible domain and letω± =
ω
x±

Ω± . Let 0 < R < min{dist(x+, ∂Ω),dist(x−, ∂Ω)} be as in Theorem4.9. Then for
0 < r < R/4 andξ ∈ ∂Ω,

(4.15)
ω±(B(ξ, r))

rn
.

(
1

r2

∫

B(ξ,2r)

|∇u±(y)|2

|y − ξ|n−1
dy

) 1

2

.

(
1

rn+3

∫

B(ξ,4r)
(u±)2

) 1

2

and in particular,

(4.16)
ω+(B(ξ, r))

rn
ω−(B(ξ, r))

rn
. γ(ξ, 2r)

1

2 ,

whereγ(ξ, 2r) is defined by (4.13).

Lemma 4.11. LetΩ+ = Ω ⊂ Rn+1 andΩ− = ext(Ω) be∆-regular domains. If

0 < R < min{dist(x+, ∂Ω+),dist(x−, ∂Ω−)},

then forξ ∈ ∂Ω andr < δ0R/4,
(4.17)(

1

rn+1

∫

B(ξ,r)∩Ω±

|∇u±|2

) 1

2

.

(
1

rn+3

∫

B(ξ,2r)∩Ω±

(u±)2

) 1

2

.
ω±(B(ξ, 4δ−1

0 r))

rn
.

In particular,

(4.18) γ(ξ, r)
1

2 .
ω+(B(ξ, 4δ−1

0 r))

rn
ω−(B(ξ, 4δ−1

0 r))

rn
,

whereγ(ξ, r) is defined by (4.13).
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Proof. We shall only deal withΩ+ since the result forΩ− is identical. Letξ ∈ ∂Ω+ and
4r < δ0R. Sinceu+ vanishes continuously at the boundary of∂Ω+, we may extend it
by zero inRn+1 \ Ω+. Then, as the extended function (which we still denote itu+) is
non-negative and subharmonic inRn+1, by Caccioppoli’s inequality, we infer

(∫

B(ξ,r)
|∇u+|2

) 1

2

.

(
1

r2

∫

B(ξ,2r)
(u+)2

) 1

2

. ω+(B(ξ, 4δ−1
0 r)) r

1−n
2 ,

where the second inequality follows from (4.11). This shows (4.17), which in turn implies
(4.18). �

Lemma 4.12. If Ω+ = Ω ⊂ Rn+1 andΩ− areR1-∆-regular and∂Ω+ = ∂Ω−, then they
are admissible domains.

Proof. Fix x± ∈ Ω± so thatδ(x±) > 0. The first two conditions of Definition4.8 readily
follow from our hypotheses. Fix nowξ ∈ ∂Ω and choose

R < min{R1, δ(x
+), δ(x−)}/4.

Sincex± ∈ Ω± \ B(ξ, 4R), we have thatu± is harmonic inB(ξ, 2r) ∩ Ω±. Moreover,
the common boundary∂Ω is Wiener regular forΩ± by Lemma4.5, which implies that
u± vanishes continuously on∂Ω. Sou ∈ C(B(ξ,R)) and, by Lemma4.11, it holds that
u ∈ W 1,2(B(ξ, 2R)∩Ω±). Further, sinceu± is continuous inB(ξ, 2R)∩Ω± and vanishes
on ∂Ω, if we consider a functionϕ ∈ C∞ which equals1 onB(ξ,R) and vanishes our of
B(ξ, 2R), by standard arguments it turns out thatϕu± ∈ W 1,2

0 (B(ξ, 2R) ∩ Ω±) (see [12,
Theorem 9.17], for example). Hence,ϕu ∈ W 1,2

0 (B(ξ, 2R)), and sou ∈ W 1,2(B(ξ,R)).
This concludes our proof. �

5. BLOWUPS AT POINTS OF MUTUAL ABSOLUTE CONTINUITY

Given a setG ⊂ Rn+1 and a ballB ⊂ Rn+1, we denote

βG,∞(B) = inf
L

sup
x∈G∩B

dist(x,L)

r(B)
,

where the infimum is taken over alln-planesL. Also, we set

β̃G,∞(B) = inf
S

dH(G ∩B,S ∩B)

r(B)
,

wheredH stands for the Hausdorff distance and the infimum is taken over all half-spaces
S ⊂ Rn+1 whose boundary contains the center ofB. To shorten notation, for a ballB(x, r),
we also writeβG,∞(x, r) andβ̃G,∞(x, r) intead ofβG,∞(B(x, r)) andβ̃G,∞(B(x, r)), re-
spectively.

This entire section is devoted to proving the following theorem.

Theorem 5.1. Let Ω+ ⊂ Rn+1 and Ω− = (Ω+)c be two∆-regular domains, so that
∂Ω+ = ∂Ω−. Letω± be the harmonic measures forΩ± with polesx± ∈ Ω±, andu± =
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GΩ±(x±, ·). Suppose there isE ⊂ ∂Ω+ such thatω+|E ≪ ω−|E ≪ ω+|E andω+(E) >
0. Then, forω+-a.e.ξ ∈ E,

lim
r→0

β∂Ω+,∞(ξ, r) = 0 and lim
r→0

β̃
Ω+,∞

(ξ, r) = 0.

5.1. Tangent Measures.Fora ∈ Rn+1 andr > 0, we consider the map

Ta,r(x) =
x− a

r
.

Note thatTa,r(B(a, r)) = B(0, 1). Recall also that, given a Radon measureµ, the notation
Ta,r[µ] stands for the image measure ofµ by Ta,r. That is,

Ta,r[µ](A) = µ(rA+ a), A ⊂ Rn+1.

Definition 5.2. Let µ be a Radon measure inRn+1. We say thatν is a tangent measureof
µ at a pointa ∈ Rn+1 if ν is a non-zero Radon measure onRn+1 and there are sequences
{ri}i and{ci}i of positive numbers, withri → 0, so thatci Ta,ri [µ] converges weakly toν
asi → ∞.

Definition 5.3. Given two Radon measureµ andσ, we set

FB(µ, σ) = sup
f

∫
f d(µ− σ),

where the supremum is taken over all the1-Lipschitz functions supported onB. Forr > 0,
we write

Fr(µ, ν) = FB(0,r), Fr(µ) = Fr(µ, 0) =

∫
(r − |z|)+dµ.

Lemma 5.4. [32, Proposition 1.11]Let {µi} be a sequence of Radon measures such that
lim supµi(B(0, r)) < ∞ for all r > 0. Thenµi converges weakly to a measureµ if and
only if Fr(µi, µ) → 0 for everyr > 0.

Definition 5.5. [32, Section 2]

(a) A setM of non-zero Radon measures inRn+1 is aconeif cµ ∈ M wheneverµ ∈ M

andc > 0.
(b) A coneM is ad-coneif T0,r[µ] ∈ M for all µ ∈ M andr > 0.
(c) For ad-coneM , r > 0, andµ a Radon measure with0 < Fr(µ) < ∞, we define the

distancebetweenµ andM as

dr(µ,M ) = inf

{
Fr

(
µ

Fr(µ)
, ν

)
: ν ∈ M , Fr(ν) = 1

}

For example, the set of measures

(5.1) F =
{
cHn|L : c > 0, L is ann-plane inRn+1 through the origin

}

is a d-cone.
The only fact about distances to cones that we will require later is the following equality,

see [21, Remark 2.8]: for any Radon measureµ, d-coneM , andr > 0,
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(5.2) dr(µ,M ) = d1(T0,r[µ],M )

Theorem 5.6. [32, Theorem 2.5]If µ is a Radon measure onRn+1, then Tan(µ, x) 6= ∅

for µ-almost everyx ∈ Rn+1.

Theorem 5.7. [27, Theorem 14.16]Let µ be a Radon measure onRn+1. For µ-almost
everyx ∈ Rn+1, if ν ∈ Tan(µ, x), the following hold:

(1) Ty,r[ν] ∈ Tan(µ, x) for all y ∈ supp ν andr > 0.
(2) Tan(ν, y) ⊂ Tan(µ, x) for all y ∈ supp ν.

5.2. The Proof of Theorem5.1. Assume the conditions of Theorem5.1. Set

E∗ =

{
ξ ∈ E : lim

r→0

ω+(E ∩B(ξ, r))

ω+(B(ξ, r))
= lim

r→0

ω−(E ∩B(ξ, r))

ω−(B(ξ, r))
= 1

}
.

By [27, Corollary 2.14 (1)] and becauseω+ andω− are mutually absolutely continuous on
E,

ω+(E\E∗) = ω−(E\E∗) = 0.

Also, set

Λ1 =

{
ξ ∈ E∗: 0 < h(ξ) :=

dω−

dω+
(ξ) = lim

r→0

ω−(B(ξ, r))

ω+(B(ξ, r))

= lim
r→0

ω−(E ∩B(ξ, r))

ω+(E ∩B(ξ, r))
< ∞

}

and

Γ =
{
ξ ∈ Λ1 : ξ is a Lebesgue point forh with respect toω+

}
.

Again, by Lebesgue differentiation for measures (see [27, Corollary 2.14 (2) and Remark
2.15 (3)]),Γ has full measure inE∗ and hence inE.

The following is essentially taken from [21], but we adjust it slightly so that we don’t
need to assume any doubling properties of harmonic measure.

Lemma 5.8. Let ξ ∈ Γ, cj ≥ 0, andrj → 0 be such thatω+
j = cjTξ,rj [ω

+] → ω+
∞. Then

ω−
j = cjTξ,rj [ω

−] → h(ξ)ω+
∞.

Proof. Letφ ∈ Cc(R
n+1) have support inB(0,M) for someM > 0. Letφξ,rj = φ◦Tξ,rj .

Then

lim
j→∞

∫
φdω−

j = lim
j→∞

cj

∫
φξ,rjdω

−

= lim
j→∞

cj

∫

E
φξ,rjdω

− + lim
j→∞

cj

∫

∂Ω−\E
φξ,rjdω

− = lim
j→∞

I1j + lim
j→∞

I2j
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Observe thatsuppφξ,rj ⊂ T−1
ξ,rj

(B(0,M)) = B(ξ,Mrj), and sinceξ ∈ Γ ⊂ Λ1,

lim sup
j→∞

cj ω
−(B(ξ,Mrj)) = h(ξ) lim sup

j→∞
cj ω

+(B(ξ,Mrj))

= h(ξ) lim sup
j→∞

ω+
j (B(0,M)) ≤ h(ξ)ω+

∞(B(0,M)) < ∞.(5.3)

Thus, using the condition thatξ ∈ E∗,

lim sup
j→∞

I2j ≤ ‖φ‖∞ lim sup
j→∞

cjω
−(B(ξ,Mrj) \E)

≤ ‖φ‖∞

(
lim sup
j→∞

ω−(B(ξ,Mrj) \ E)

ω−(B(ξ,Mrj))

) (
lim sup
j→∞

cj ω
−(B(ξ,Mrj))

)
(5.3)
= 0.

On the other hand,

lim
j→∞

I1j = lim
j→∞

cj

∫

E
hφξ,rjdω

+

= h(ξ) lim
j→∞

cj

∫

∂Ω+

φξ,rjdω
+ − h(ξ) lim

j→∞
cj

∫

∂Ω+\E
φξ,rjdω

+

+ lim
j→∞

cj

∫

E
(h− h(ξ)) φξ,rjdω

+

= h(ξ) lim
j→∞

∫
φdω+

j − lim
j→∞

I3j + lim
j→∞

I4j .

Since the first term on right hand side equalsh(ξ)
∫
φdω+

∞, all that remains to show is that
limj→∞ I3j = limj→∞ I4j = 0. This follows easily using thatξ ∈ Γ:

lim
j→∞

I3j ≤ ‖φ‖∞ lim sup
j→∞

cjω
+(B(ξ,Mrj))

ω+(B(ξ,Mrj) \ E)

ω+(B(ξ,Mrj))

(5.3)
= 0

and analogously,

lim
j→∞

I4j ≤ ‖φ‖∞ lim sup
j→∞

cjω
+(B(ξ,Mrj)) −

∫

B(ξ,Mrj)
|h− h(ξ)| dω+ (5.3)

= 0

�

Next we prove an analogue of some of the tools in [23] and [22]. We show that blow
ups of harmonic measure and Green function converge to quantities similar to the harmonic
measure and Green function with pole at infinity introduced by Kenig and Toro.

Lemma 5.9. LetΩ+ ⊂ Rn+1 be a∆-regular domain andΩ− = ext(Ω+), so that∂Ω+ =
∂Ω−. Letω± be the harmonic measures forΩ±. Letξ ∈ ∂Ω+ andω+

∞ ∈ Tan(ω+, ξ), with
cj ≥ 0, andrj → 0 such thatω+

j = cjTξ,rj [ω
+] → ω+

∞. LetΩ±
j = Tξ,rj(Ω

±). Then there
is a subsequence and a closed setΣ ⊂ Rn+1 such that

(a) ∂Ω+
j ∩K → Σ ∩K in the Hausdorff metric for any compact setK.

(b) Σc = Ω+
∞ ∪ Ω−

∞ whereΩ+
∞ is a nonempty open set andΩ−

∞ is also open but possibly
empty. Further, they satisfy that for any ballB with B ⊂ Ω±

∞, a neighborhood ofB is
contained inΩ±

j for all j large enough.
(c) suppω+

∞ ⊂ Σ.
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(d) Letu+(x) = GΩ+(x, x+) onΩ+ andu+(x) = 0 on (Ω+)c. Set

u+j (x) = cj u
+(xrj + ξ) rn−1

j .

Thenu+j converges uniformly on compact subsets ofRn+1 to a nonzero functionu+∞
that is harmonic onΩ+

∞ and satisfies

(5.4) u+∞(y) . ω+
∞(B(x, 2δ−1

0 r)) r1−n for x ∈ Σ, r > 0, and y ∈ B(x, r) ∩ Ω+
∞.

and for any smooth compactly supported functionφ,

(5.5)
∫

∂Ω+

φdω+
∞ =

∫

Ω+

∆φu+∞ dx

Suppose now thatΩ− is also connected and∆-regular. Define analogouslyω−
j , u−, u−j

andu−∞ and suppose thatω−
j converges weakly toω−

∞ = h(ξ)ω+
∞ for some numberh(ξ) ∈

(0,∞) (which happens, for example, ifξ ∈ Γ whereΓ is as in Lemma5.8). ThenΩ−
∞ 6= ∅

and for a suitable subsequence, (d) holds foru−j , u−∞, andΩ−
∞. Furthermore, if we set

u∞ = h(ξ)u+∞ − u−∞, then:

(e) u∞ extends to a continuous harmonic function onRn+1.
(f) Σ = {u∞ = 0}, withu∞ > 0 onΩ+

∞ andu∞ < 0 onΩ−
∞. Further,Σ is a real analytic

variety of dimensionn.
(g) dω+

∞ = −∂u∞

∂ν dσ∂Ω+
∞

, whereσS stands for the surface measure on a surfaceS and ∂
∂ν

is the outward normal derivative.

Proof. First, we establish a few estimates. Note that if bothΩ+ andΩ− are connected, then
for j large enough,

∫
φdω±

j = cj

∫
φξ,rjdω

± = cj

∫
∆φξ,rju

± dx = cj r
−2
j

∫
∆φ

(
x− ξ

rj

)
u±(x) dx

(5.6)

= cj r
n−1
j

∫
∆φ(y)u±(rjy + ξ) dy =

∫
∆φ u±j dx,

since the pole lies outside thesuppφξ,rj for sufficiently largej. Moreover, ifB is centered
on∂Ω±

j , then forx ∈ B ∩ Ωj andj large enough,

u±j (x) = cj r
n−1
j u(rjx+ ξ)(5.7)

(4.11)
. cj r

n−1
j (rjr(B))1−n ω±(2δ−1

0 rjB + ξ) = r(B)1−n ω±
j (2δ

−1
0 B).

Next we prove the statements (a)-(g):

(a) This follows from a standard diagonalization argument,and so we omit its proof.

(b) First we show that there are ballsB± so that, by passing to a subsequence,B± ⊂ Ω±
j

for all j large.
We will focus first on showing the existence ofB+. Suppose there is no such ball. Letφ

be any continuous compactly supported nonnegative function for which
∫
φdω+

∞ 6= 0, and
let M > 0 be so thatsuppφ ⊂ B(0,M). Thus, there must bex0 ∈ B(0,M) ∩ suppω+

∞.
Let δj = sup{dist(x, (Ω+

j )
c) : x ∈ suppφ}, which goes to zero by assumption. For

x ∈ suppφ, let ζj(x) ∈ (Ω+
j )

c be closest tox, so that|x− ζj(x)| ≤ δj . Notice that for all
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x ∈ suppφ, |x−x0| ≤ |x|+ |x0| < 2M and also|x−ζj(x)| ≤ δj < 2M for j big enough.
Thus, forj large enough, taking into account thatζj(x) ∈ ∂Ω+

j if x ∈ Ω+
j , we get

0 <

∫
φdω+

j =

∫

Ω+

j

∆φu+j dx
(4.9)
.

∫

Ω+

j

|∆φ|

(
sup

B(ζj(x),2M)
u+j

)(
|x− ζj(x)|

2M

)α

dx

≤

∫
|∆φ| dx

(
sup

B(x0,4M)
u+j

)(
δj
2M

)α

(5.7)
.

∫
|∆φ| dx ω+

j (B(x0, 8δ
−1
0 M)) (4M)1−n

(
δj
2M

)α

and thus

0 <

∫
φdω+

∞ . lim sup
j→∞

∫
|∆φ| dx ω+

j (B(x0, 8δ
−1
0 M))(4M)1−n

(
δj
2M

)α

.M,φ

(
lim sup
j→∞

ω+
j (B(x0, 8δ

−1
0 M))

)
lim
j

δαj

≤ ω+
∞(B(x0, 8δ

−1
0 M)) · 0 = 0,

which is a contradiction. Thus, there isB+ ⊂ Ω+
j for all largej (after passing to a subse-

quence). In case thatΩ− is a∆-regular domain, ifξ ∈ Γ, we run the same argument on
Ω−
j , recalling from the previous lemma thatω−

j → h(ξ)ω+
∞.

Let Q be the collection of open balls with rational centers and rational radii whose clo-
sure is contained inΣc. By the previous claim,Q 6= ∅. Let B ∈ Q, so that for some
αB > 1, αBB ⊂ Ω+

j ∪ Ω−
j for all sufficiently largej. In particular, eitherαBB ⊂ Ω+

j for

infinitely manyj, orαBB ⊂ Ω−
j for infinitely manyj. By a diagonalization argument, we

can pass to a subsequence so that for all such ballsB, αBB ⊂ Ω+
j for all but finitely many

j or αBB ⊂ Ω−
j for all but finitely manyj. Let Q+ be those balls inQ that are contained

in all but finitely manyΩ+
j (after passing to this subsequence),Q− = Q\Q+, and set

Ω±
∞ =

⋃

B∈Q±

B.

By the previous claim,Ω+
∞ 6= ∅, and alsoΩ−

∞ 6= ∅ if Ω− is a connected∆-regular domain.
It is easy to check thatΩ+

∞ andΩ−
∞ satisfy the properties stated in (b).

(c) To prove this we consider a ballB ⊂ B ⊂ Σc. Then

ω+
∞(B) ≤ lim inf

j→∞
ω+
j (B) ≤ lim inf

j→∞
ω+
j ((∂Ω

+
j )

c) = 0.

Thus,suppω+ ⊂ Σ.



MUTUAL ABSOLUTE CONTINUITY OF INTERIOR AND EXTERIOR HARMONIC 21

(d) Let B ⊂ Ω+
∞ be a ball centered atxB such thatr(B) = dist(xB , ∂Ω

+
∞)/2. For j

large enough, there isyj ∈ 3B ∩ ∂Ω+
j . Then

lim sup
j→∞

sup
B

u+j ≤ lim sup
j→∞

sup
B(yj ,6r(B))

u+j

(5.7)
. lim sup

j→∞
r(B)1−nω+

j (B(yj , 12δ
−1
0 r(B)))

≤ lim sup
j→∞

r(B)1−nω+
j (24δ

−1
0 B) ≤ r(B)1−nω+

∞

(
24δ−1

0 B
)
< ∞.

Thus,u+j is uniformly bounded on compact subsets ofΩ+
∞ and thus we may pass to a

subsequence so that it converges uniformly on compact subsets of Ω+
∞ to a functionu+∞

harmonic inΩ+
∞. Defineu+∞ = 0 on (Ω+

∞)c. We now claim thatu+j → u+∞ uniformly on
compact subsets ofRn+1.

To prove our claim letM,ε > 0 and consider the sets

F = {x ∈ B(0,M) : dist(x, (Ω+
∞)c) ≥ δ} and G = B(0,M)\F.

Forx ∈ G ∩ Ω+
∞, let x′ ∈ ∂Ω+

∞ be closest tox, so that|x − x′| < δ. There isxj ∈ ∂Ω+
j

converging tox′, and so, forj big enough,

u+j (x)
(4.9)
. sup

B(xj ,M/2)
u+j

(
|x− xj|

M/2

)α

(5.7)
. ω+

j (B(xj , δ
−1
0 M)) (M/2)1−n

(
δ

M

)α

.M ω+
j (B(0, 2Mδ−1

0 )) δα.

The same estimate holds trivially in the casex ∈ G\Ω+
∞. Thus, for everyx ∈ G,

u+∞(x) .M ω+
∞(B(0, 2δ−1

0 M))δα,

and so

lim sup
j→∞

sup
G

|u+j − u+∞| . ω+
∞(B(0, 2δ−1

0 M)) δα.

On the other hand, sinceF has compact closure inΩ+
∞,

lim sup
j→∞

sup
F

|u+j − u+∞| = 0.

Hence, for anyδ > 0, sinceB(0,M) = F ∪G, the last two inequalities imply

lim sup
j→∞

sup
B(0,M)

|u+j − u+∞| . ω+
∞(B(0, 2δ−1

0 M)) δα,

which impliesu+j → u+∞ uniformly onB(0,M). Since this holds for eachM > 0, the
claim follows. In particular,u+∞ is continuous on all ofRn+1.

The estimate (5.4) follows by arguments analogous to the ones above. Equation(5.5)
now follows from uniform convergence and (5.6).

(e) Letu∞ = u+∞−h(ξ)−1u−∞. To show thatu∞ is harmonic, letφ ∈ C∞
c (Rn+1). Then,

sinceω−
j → ω−

∞ = h(ξ)ω+
∞ by assumption,
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∫
∆φu∞ dx = lim

j→∞

∫
∆φ (u+j − h(ξ)−1u−j ) dx

= lim
j→∞

(∫
φdω+

j − h(ξ)−1

∫
φdω−

j

)

=

∫
φdω+

∞ − h(ξ)−1

∫
φdω−

∞ =

∫
φdω+

∞ −

∫
φdω+

∞ = 0.

and sou∞ is a harmonic function onRn+1.

(f) By construction it is clear thatu∞ = 0 in Σ. To show thatu∞ does not vanish out
of Σ first we check thatu∞ is not identically0. To see this, we take a non-negative and
smooth compactly supported functionφ such that

∫
φdω+

∞ > 0. By (5.6) we have
∫

φdω+
j =

∫
∆φu+j dx,

and so lettingj → ∞, we get

0 <

∫
φdω+

∞ =

∫
∆φu+∞ dx.

This implies thatu+∞ is not identically zero, and thus neither isu∞.
By the definition ofu∞, it is clear thatu∞ ≥ 0 onΩ+

∞ andu∞ ≤ 0 onΩ−
∞. Suppose

there isz ∈ Ω+
∞ such thatu+∞(z) = 0, say. Then by the mean value property,u+∞ should

vanish in some ballB ⊂ Ω+ centered atz. But sinceu∞ coincides withu+∞ on B, and
u∞ is harmonic in the wholeRn+1, this should vanish identically inRn+1, which is a
contradiction. An analogous argument shows thatu−∞ > 0 onΩ−, and completes the proof
of Σ = {u∞ = 0}.

On the other hand, sinceu∞ is harmonic, it is also real analytic, and thusΣ is a real
analytic variety. Its dimension is less thatn + 1 becauseΣ 6= Rn+1. To show that it has
dimension equal ton, consider two ballsB1 ⊂ Ω+ andB2 ⊂ Ω−, so thatu∞ > 0 onB1

andu∞ < 0 on B2. By continuity, each segmentL joining B1 andB2 should contain a
point whereu∞ vanishes. That is,L ∩ Σ 6= ∅. This shows thatHn(Σ) > 0, and henceΣ
has dimension at leastn.

(g) This follows from Theorem2.10 once we show thatΩ+
∞ is a set of locally finite

perimeter andHn(∂Ω+
∞ \∂∗Ω+

∞) = 0, where∂∗Ω+
∞ ⊂ ∂Ω+

∞ stands for the reduced bound-
ary ofΩ+

∞. Note that∂Ω+
∞ is real analytic and by Theorem 3.4.8 in [17] it has locally finite

Hn measure. Therefore, Theorem2.9implies thatΩ+
∞ has locally finite perimeter.

We claim thatHn(∂Ω+
∞ \ ∂∗Ω+

∞) = 0. By Lojasiewicz’s structure theorem for real ana-
lytic varieties (see e.g. [24, Theorem 6.3.3, p. 168]), ifQ is a small enough neighborhood
of a pointx0 ∈ ∂Ω+

∞, we have that

Q ∩ ∂Ω+
∞ = V n ∪ V n−1 ∪ · · · ∪ V 0,

whereV 0 is either the empty set or the singleton{x0} and for eachk ∈ {1, . . . , n}, we
may writeV k as a finite, disjoint unionV k =

⋃Nk

j=1 Γ
k
j , of k-dimensional real analytic

submanifolds. Further, for each1 ≤ k ≤ n,

Q ∩ V k ⊃ V k−1 ∪ · · · ∪ V 0,
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which, in fact, says that the lower dimensional varieties cannot occur as isolated sets (strat-
ification). Moreover, for1 ≤ k ≤ n and1 ≤ j ≤ Nk, we have thatQ ∩ ∂Γk

j is a union of
sets of the formΓℓ

i , for 1 ≤ ℓ < k and1 ≤ i ≤ Nℓ and possiblyV 0. Notice now that, by
the mean value property, then-dimensional varieties should separate the connected compo-
nents of{u∞ > 0} and{u∞ < 0}. Therefore, since the lower dimensional varieties have
Hn-measure zero, it is clear that∂Ω+

∞ = ∂∗Ω+
∞∪N , whereHn(N) = 0, which proves our

claim.
In light of Theorem2.10, for Hn-a.e.x ∈ ∂∗Ω+

∞ there exists a unique measure theoretic
unit outer normalνΩ+

∞
(x) such that

∫

∂Ω+
∞

φdω+
∞ =

∫

Ω+
∞

∆φu+∞ dx = −cn

∫

∂∗Ω+
∞

φ (νΩ+
∞
·∇u+∞) dHn,

for all φ ∈ C∞
c (Rn+1), with cn dH

n|∂∗Ω+
∞

= dσ∂Ω+
∞

. The statement (g) follows from this
fact and the identity above. �

A corollary of the previous lemma is the following.

Lemma 5.10. LetΩ+ andΩ− be as in Lemma5.9. Let ξ ∈ Γ. For everyω ∈ Tan(ω+, ξ),
there is a harmonic functionu onRn+1 such that

(5.8) dω = −νΩ ·∇u dHn|Σ,

(5.9) suppω ⊂ Σ = {u = 0} = ∂Ω, Ω = {u > 0}

(5.10) u(y) . ω(B(x, 2δ−1
0 r)) r1−n for x ∈ Σ, r > 0, and y ∈ B(x, r) ∩ Ω,

and
(5.11)
|u(y)| . h(ξ)ω(B(x, 2δ−1

0 r)) r1−n for x ∈ Σ, r > 0, and y ∈ B(x, r) ∩ ext(Ω).

Moreover, there is a subsequence of{rj} so thatTξ,rj(∂Ω
+) → {u = 0} locally in the

Hausdorff metric.

Lemma 5.11. LetΩ+ andΩ− be as in Lemma5.9and letξ ∈ Γ. LetF be given by (5.1).
If Tan(ω+, ξ) ∩ F 6= ∅, then

lim
r→0

d1(Tξ,r[ω
+],F ) = 0.

In particular, Tan(ω+, ξ) ⊂ F .

The proof combines ideas from Theorem 2.15 and Lemma 4.1 in [21]. In this work the
proof relies on the compactness of the cone of tangent measures. In our situation we cannot
assume compactness and we overcome this difficulty by working specifically with the flat
measuresF andby using the additional information on the tangent measuresdescribed by
the previous lemma.

Proof. Let cj > 0 andrj ↓ 0 be such thatcjTξ,rj [ω
+] → µ ∈ F . Then, given an arbitrary

ε > 0,

(5.12) d1(Tξ,rj [ω
+],F ) = d1(cjTξ,rj [ω

+],F ) < ε

if j is big enough. Assume for the sake of a contradiction that there issj ↓ 0 so that

(5.13) d1(Tξ,sj [ω
+],F ) > ε
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We can assumesj < rj . Then by (5.12) and (5.13), letρj ∈ (sj, rj) be the maximal number
such that

(5.14) d1(Tξ,ρj [ω
+],F ) = ε.

Then by the maximality ofρj ,

(5.15) sup
t∈[ρj ,rj ]

d1(Tξ,t[ω
+],F ) ≤ ε.

We claimρj/rj → 0. If not, then we may pass to a subsequence so thatρj/rj → t ∈ (0, 1),
and so

cjTξ,ρj [ω
+] = T0,ρj/rj

[
cjTξ,rj [ω

+]
]
→ T0,t[µ] ∈ F

which contradicts (5.14). Thus,ρj/rj → 0, and so (5.15) implies that for1 ≤ α < rj/ρj
andj large, if we setωj = Tξ,ρj [ω

+], then

(5.16) dα(ωj,F ) = dα(Tξ,ρj [ω
+],F )

(5.2)
= d1(Tξ,αρj [ω

+],F ) ≤ ε.

Let r ≥ 1 be such that2r < rj/ρj . Letµj ∈ F be such thatF2r(µj) = 1 and

(5.17) Fr

(
ωj

F2r(ωj)
, µj

)
≤ F2r

(
ωj

F2r(ωj)
, µj

)
(5.16)
< 2ε.

Thus,

(5.18) Fr(µj)− 2ε ≤
Fr(ωj)

F2r(ωj)
≤ Fr(µj) + 2ε.

Sinceµj = bjH
n|Vj

for somebj > 0 and ann-planeVj , for anys > 0,

Fs(µj) = bj
cn
n
sn+1

and soFr(µj) = 2−(n+1)F2r(µj) and thus

2−(n+1) F2r(µj)− 2ε ≤
Fr(ωj)

F2r(ωj)
≤ 2−(n+1) F2r(µj) + 2ε.

Recalling thatF2r(µj) = 1, we deduce

2−(n+1) − 2ε ≤
Fr(ωj)

F2r(ωj)
≤ 2−(n+1) + 2ε.

We choose nowε = 1
8 2

−(n+1) = 2−(n+4). With this particular choice we get

3

4
2−(n+1) ≤ 2−(n+1)

(
1−

1

4

)
≤

Fr(ωj)

F2r(ωj)
≤ 2−(n+1)

(
1 +

1

4

)
≤

4

3
2−(n+1).

Let β = log2
4
3 , so thatβ ∈ (0, 1) and

2−(n+1+β) ≤
Fr(ωj)

F2r(ωj)
≤ 2−(n+1−β).

Iterating, we see that for anyℓ ∈ N for which2ℓ < rj/ρj ,

2−(n+1+β)ℓ ≤
F1(ωj)

F2ℓ(ωj)
≤ 2−(n+1−β)ℓ.
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Sincerj/ρj → ∞, we have that

(5.19) 2−(n+1+β)ℓ ≤ lim inf
j

F1(ωj)

F2ℓ(ωj)
≤ lim sup

j→∞

F1(ωj)

F2ℓ(ωj)
≤ 2−(n+1−β)ℓ.

Thus, if we setνj = ωj/F1(ωj) and letρ > 0, and pickℓ so that2ℓ > 2ρ, then forj large,

lim sup
j→∞

νj(B(0, ρ)) ≤ lim sup
j→∞

νj(B(0, 2ℓ/2))

≤ lim sup
j→∞

2F2ℓ(νj) = 2
F2ℓ(ωj)

F1(ωj)

(5.19)
≤ 2(n+1+β)ℓ+1.

Therefore,νj has a subsequence that converges weakly to some measureω ∈ Tan(ω+, ξ).
Further,ω satisfies

2(n+1−β)ℓ ≤ F2ℓ(ω) ≤ 2(n+1+β)ℓ and F1(ω) = 1.

Let u be the harmonic function onRn+1 satisfying the conclusions of Lemma5.10. For
a multiindexα with |α| = m ≥ 2, we have by the Cauchy estimates that, forℓ ∈ N,

|∂αu(0)|(2
ℓ)m . sup

B(0,2ℓ)

|u| . ω(B(0, 2δ−1
0 2ℓ))(2ℓ)1−n . Fδ−1

0
2ℓ+2(ω)(2

ℓ)−n

. 2(n+1+β)ℓ(2ℓ)−n = 2ℓ+βℓ

Sinceβ < 1, letting ℓ → ∞, we get

|∂αu(0)| . lim inf
ℓ→∞

2(β+1−m)ℓ = 0.

Thus, the second order Taylor coefficients and higher are allzero. Hence, sinceu is real
analytic,u is linear, and in particular,ω ∈ F , by (5.8) and (5.9). Therefore,

ε
(5.14)
= d1(Tξ,ρj [ω

+],F ) = d1(ωj ,F ) → 0,

which gives a contradiction. �

We now finish the proof of Theorem5.1. Let

G1 =
{
ξ ∈ Γ : for everyν ∈ Tan(ω+, ξ) with ζ ∈ supp ν, Tan(ν, ζ) ⊂ Tan(ω+, ξ)

}

and
G2 =

{
ξ ∈ Γ : Tan(ω+, ξ) 6= ∅

}
.

Thenω+(Γ\(G1 ∩ G2)) = 0 by Theorem5.6 and Theorem5.7. Let ξ ∈ G1 ∩ G2. Since
ξ ∈ G2, there isω∞ ∈ Tan(ω+, ξ) and its support is ann-dimensional analytic variety.
Hence, there is an open set insuppω∞ on whichω∞ = gHn|M whereM is a smooth
n-dimensional surface. In particular, for anyx ∈ M , Tan(ω∞, x) ⊂ F . Sinceξ ∈ G1, this
implies Tan(ω+, ξ)∩F 6= ∅. Thus, by Lemma5.11Tan(ω+, ξ) ⊂ F andΣ is ann-plane.

Suppose that there is a sequencerj → 0 so thatβ∂Ω+,∞(ξ, rj) ≥ ε > 0 for some
ε > 0. By Lemma5.9, there is a subsequence such thatTξ,rj(∂Ω

+) converges in the
Hausdorff metric toΣ, this impliesβ∂Ω+,∞(ξ, rj) → 0, and we get a contradiction. Thus
β∂Ω+,∞(ξ, r) → 0 asr → 0 for eachξ ∈ G1 ∩ G2, with G1 ∩ G2 ⊂ Γ ⊂ E having full
harmonic measure inE.

We claim now that if Tan(ω+, ξ) ⊂ F , then

lim
r→0

β̃
Ω+,∞

(ξ, r) = 0.
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If this fails, then there is anε > 0 and a sequencerj → 0 such that

(5.20) inf
S

distH
(
Ω+ ∩B(ξ, rj), S ∩B(ξ, rj))

rj
≥ ε,

where the infimum is taken over all halfspacesS whose boundaries containξ. We consider
now a subsequencerjk such that the measuresω+

jk
converge weakly to some measureω ∈

F . The arguments for the proof of Lemma5.11 show that ifω+
jk

= Tξ,rjk
[ω+] andω+

jk

converges weakly to some measureω+
∞ ∈ F , then the associated functionu∞ from Lemma

5.9 must be linear. Then the statement (f) from the same lemma asserts thatΩ+
∞ andΩ−

∞

are disjoint half-spaces with boundaryΣ = {u∞ = 0}. Taking into account thatΩ+
jk

=

{ujk ≥ 0}, whereujk = u+jk − u−jk , and thatujk converges uniformly on compact subsets
to u∞, it easy to check that

distH
(
Ω+ ∩B(ξ, rjk), S ∩B(ξ, rjk)

)

rjk
→ 0 for S = ξ +Ω+

∞,

which contradicts (5.20) (becauseΩ+
∞ is a half-space whose boundary containsξ). This

proves our claim and concludes the proof of Theorem5.1.

6. THE PROOF OFTHEOREM 1.1

Under the assumptions of the theorem, we will prove first thatif E ⊂ ∂Ω+ andω+ ≪
ω− ≪ ω+ on E, thenE contains ann-rectifiable subsetF on whichω± are mutually
absolutely continuous with respect toHn. So for the moment, unless otherwise stated, we
assume thatΩ+ andΩ− are as in Theorem1.1 and thatE ⊂ ∂Ω+ is a Borel set such that
ω+ ≪ ω− ≪ ω+ onE.

Givenγ > 0, a Borel measureµ and a ballB ⊂ Rd, we denote

Pγ,µ(B) =
∑

j≥0

2−jγ Θµ(2
jB),

whereΘµ(B) = µ(B)
r(B)n , so thatP1,µ(B) = Pµ(B). Note thatPγ,µ(B) ≤ PΓ,µ(B) if γ > Γ.

It is immediate to check that if‖µ‖ < ∞, thenPγ,µ(B) < ∞ for any ballB. Indeed, we
just take into account that

(6.1) Pγ,µ(B) =
∑

j≥0

2−jγ Θµ(2
jB) ≤

∑

j≥0

2−jγ ‖µ‖

(2j r(B))n
< ∞.

Givena, γ > 0, we say that a ballB is a-Pγ,µ-doublingif

Pγ,µ(B) ≤ aΘµ(B).

Lemma 6.1. There isγ0 ∈ (0, 1) so that the following holds. LetΩ ⊂ Rn+1 be any
domain andω its harmonic measure. For allγ > γ0, there exists some big enough constant
a = a(γ, n) > 0 such that forω-a.e.x ∈ Rn+1 there exists a sequence ofa-Pγ,ω-doubling
ballsB(x, ri), with ri → 0 asi → ∞.

Proof. Form ≥ 1, let

(6.2) Zm := {x ∈ ∂Ω : for all j ≥ m, B(x, 2−j) is nota-Pγ,ω-doubling}.
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So it is enough to show thatω(Zm) = 0 for all m ≥ 1.
Fix m ≥ 1 and takex ∈ Zm, so that

(6.3) Θω(B(x, 2−j)) ≤ a−1 Pγ,ω(B(x, 2−j)) for all j ≥ m.

Let α ∈ (0, 1) to be chosen below. Forj ≥ m,

Pαγ,ω(B(x, 2−j)) =
∑

k≤j

2−αγ(j−k)Θω(B(x, 2−k))

≤ a−1
∑

k:m≤k≤j

2−αγ(j−k)Pγ,ω(B(x, 2−k)) +
∑

k≤m

2−αγ(j−k)Θω(B(x, 2−k))

= a−1
∑

k:m≤k≤j

2−αγ(j−k)
∑

h≤k

2−γ(k−h)Θω(B(x, 2−h)) + 2−αγ(j−m)Pαγ,ω(B(x, 2−m))

(6.3)
≤ a−1

∑

h≤j

Θω(B(x, 2−h))
∑

k:h≤k≤j

2−γ(k−h)−αγ(j−k) + 2−αγ(j−m)Pαγ,ω(B(x, 2−m)).

Observe now that
∑

k:h≤k≤j

2−γ(k−h)−αγ(j−k) = 2γh−αγj
∑

k:h≤k≤j

2−γ(1−α)k

≤ C(γ, α) 2γh−αγj 2−(1−α)γh = C(γ, α) 2−αγ(j−h).

Thus we obtain

Pαγ,ω(B(x, 2−j)) ≤ C(γ, α) a−1Pαγ,ω(B(x, 2−j)) + 2−αγ(j−m)Pαγ,ω(B(x, 2−m)).

Hence, choosinga ≥ 2C(γ, α) and recalling thatPαγ,ω(B(x, 2−j)) < ∞, we infer that

Θω(B(x, 2−j)) ≤ Pαγ,ω(B(x, 2−j)) ≤ 21−αγ(j−m)Pαγ,ω(B(x, 2−m)).

Observe now that for allx ∈ Zm,

Pαγ,ω(B(x, 2−m)) ≤
∑

k≥0

2−kγ ‖ω‖

(2k 2−m)n
≤ C(m).

Then we get
Θω(B(x, 2−j)) ≤ C(m)2−αγj for all j ≥ m,

which implies that

ω(B(x, r)) ≤ C(m)rn+αγ for all x ∈ Zm and allr ≤ 2−m.

Thus,ω(A) ≤ C(m)Hn+αγ
∞ (A) for anyA ⊂ Zm.

Recall that, for a measureµ,

dimµ = inf{s : there isF ⊂ ∂Ω so thatHs(F ) = 0 and

µ(F ∩K) = µ(∂Ω ∩K) for all compact setsK ⊂ Rn+1.

Let s = n + αγ andF ⊂ ∂Ω be such thatHs(F ) = 0. Let K be any compact subset of
Zm with ω(K) > 0. Thenω(F ∩K) ≤ Hs

∞(F ∩K) = 0. Thus,dimω ≥ s.
A well known theorem of Bourgain’s asserts that there isε(n) > 0 (not depending onΩ)

so thatdimω < n + 1 − ε(n) [11]. In particular,s = n + αγ < n + 1 − ε(n), which is
a contradiction ifαγ ≥ 1− ε(n). So it just remains to notice that ifγ > 1− ε(n), we can
now pickα ∈ (0, 1) so that stillαγ > 1− ε(n). �
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From now on we assume thata andγ are fixed constants such that forω-a.e.x ∈ Rn+1

there exists a sequence ofa-Pγ,ω+ -doubling ballsB(x, ri), with ri → 0 asi → ∞.

Recall that the harmonic measuresω+ andω− are mutually absolutely continuous on
E ⊂ ∂Ω+ = ∂Ω−, and thath denotes the density functionh(ξ) = dω−

dω+ (ξ).

For technical reasons we need now to introduce setsEm ⊂ E where β̃
Ω+,∞

(x, r) is
uniformly small. Givenm ≥ 1, we denote byEm the subset of thosex ∈ E such that
β̃
Ω+,∞

(x, r) ≤ 1/100 for 0 < r ≤ 1/m. By Theorem5.1, it turns out that

(6.4) ω+

(
E \

⋃

m≥1

Em

)
= 0.

Lemma 6.2. Let m ≥ 1 and δ > 0. For ω+-a.e.x ∈ Em, there isrx > 0 so that for
any a-Pγ,ω+ -doubling ballB(x, r) with radiusr ≤ rx there exists a subsetGm(x, r) ⊂
Em ∩B(x, r) such that

(6.5) Θω+(B(z, t)) . Θω+(B(x, r)) for all z ∈ Gm(x, r), 0 < t ≤ 2r,

and so thatω+(B(x, r) \Gm(x, r)) ≤ δ ω+(B(x, r)).

Proof. For 0 < δ < 1 andk ∈ N, letAδ,k be the set ofz ∈ Em such that for0 < r < 1/k
we have

(6.6) −

∫

B(z,r)
|h(y)− h(z)| dω+(y) <

δ

4
h(z).

Sinceh(z) > 0 for ω+-a.e.z ∈ Em, by the Lebesgue differentiation theorem (see [27,
Corollary 2.14 (2) and Remark 2.15 (3)])

Em =
⋃

k≥1

Aδ,k ∪ Z,

with ω+(Z) = 0. Then, for allz ∈ Aδ,k andt < 1/k, we have

(6.7)

∣∣∣∣
ω−(B(z, t))

ω+(B(z, t))
− h(z)

∣∣∣∣ =
∣∣∣∣∣−
∫

B(z,t)
(h(y)− h(z)) dω+(y)

∣∣∣∣∣ <
δ

4
h(z) <

1

4
h(z).

and so

(6.8)
3

4
h(z) ≤

ω−(B(z, t))

ω+(B(z, t))
≤

5

4
h(z) for z ∈ Aδ,k, 0 < t < 1/k.

Let x ∈ Aδ,k be a point ofω+-density forAδ,k and letrx < 1/k be such that

(6.9) ω+(Aδ,k ∩B(x, r)) ≥

(
1−

δ

2

)
ω+(B(x, r)) for 0 < r ≤ rx.

Now set
Gm(x, r) = {z ∈ B(x, r) ∩Aδ,k : |h(z) − h(x)| ≤ h(x)/2}.

Then by Chebychev’s inequality and (6.6),

ω+(B(x, r) ∩Aδ,k\Gm(x, r)) ≤
2

h(x)

∫

B(x,r)
|h(z) − h(x)|dω+(z) ≤

δ

2
ω+(B(x, r)),
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and thus, together with (6.9), for r ≤ rx,

ω+(B(x, r) \Gm(x, r)) ≤ ω+(B(x, r) ∩Aδ,k \Gm(x, r)) + ω+(B(x, r) \ Aδ,k)

≤

(
δ

2
+

δ

2

)
ω+(B(x, r)) = δ ω+(B(x, r)).

We intend to show now that (6.5) holds for allz ∈ Gm(x, r). Observe first that, for
z ∈ Gm(x, r) andr ≤ rx,

1

2
h(x) ≤ h(z) ≤

3

2
h(x)

and then, by (6.8),

(6.10)
3

8
h(x) ≤

ω−(B(z, t))

ω+(B(z, t))
≤

15

8
h(x) for all z ∈ Gm(x, r) with r, t ≤ rx.

Recall that by Lemmas4.10and4.11, for 0 < t < 2r,

ω+(B(z, t))

tn
ω−(B(z, t))

tn
. γ(z, 2t)

1

2

≤ γ(z, 4r)
1

2 .
ω+(B(z, 16δ−1

0 r))

rn
ω−(B(z, 16δ−1

0 r))

rn
.

Take0 < r ≤ 1
100δ0rx and0 < t ≤ 2r. Applying (6.10) twice, we derive

(
ω+(B(z, t))

tn

)2

.

(
ω+(B(z, 16δ−1

0 r))

rn

)2

.

Sincez ∈ B(x, r), we haveB(z, 16δ−1
0 r) ⊂ B(x, 32δ−1

0 r), and then taking into account
thatB(x, r) is a-Pγ,ω+ -doubling,

ω+(B(z, 16δ−1
0 r)) ≤ ω+(B(x, 32δ−1

0 r)) . ω+(B(x, r)).

Therefore,
ω+(B(z, t))

tn
.

ω+(B(z, 16δ−1
0 r))

rn
.

ω+(B(x, r))

rn
,

which shows that (6.5) holds for allz ∈ Gm(x, r), t ≤ 2r, with r such that0 < r ≤
1

100δ0rx. �

Givenm ≥ 1 andδ > 0, we denote bỹEm,δ the subset of the pointsx ∈ Em for which
there existsrx > 0 as in Lemma6.2, so thatω+

(
Em \ Ẽm,δ

)
= 0.

Lemma 6.3. Letm ≥ 1 andδ > 0. Letx0 ∈ Ẽm,δ and

0 < r0 ≤ min(rx0
, 1/m, c1dist(x

+, ∂Ω+)),

for somec1 > 0 small enough (recall thatω± = ω
x±

Ω± and x± ∈ Ω± are as in Def-
inition 4.8). Suppose that the ballB0 = B(x0, r0) is a-Pγ,ω+ -doubling. Then for all
x ∈ Gm(x0, r0) it holds that

(6.11) R∗(χ2B0
ω+)(x) ≤ C1Θµ(B0).
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Proof. To estimate|Rr(χ2B0
ω+)(x)| for x ∈ Gm(x0, r0) we may assume thatr ≤ r0/4

because|Rr(χ2B0
ω+)(x)| = 0 if r ≥ 4r0 and (6.11) is trivial in the caser0/4 < r < 4r0.

So we takex ∈ Gm(x0, r0) and0 < r ≤ r0/4. First we turn our attention toRrω
+(x).

Sinceβ̃
Ω+,∞

(x, r) ≤ 1/100 (by the definition ofEm,δ and the fact thatr0 ≤ 1/m), there

is xB ∈ B := B(x, r) with B(xB , r/4) ⊂ B(x, r) ∩ Ω−. Then, by (4.4), we have

(6.12) Rω+(xB) = K(xB − x+).

By standard estimates, and becauseB(xB, r/4) ⊂ B(x, r) \ ∂Ω+,

|Rω+(xB)−Rrω
+(x)|(6.13)

=

∣∣∣∣∣

∫

B(xB ,r/4)c

xB − y

|xB − y|n+1
dω+(y)−

∫

B(x,r)c

x− y

|x− y|n+1
dω+(y)

∣∣∣∣∣

.

∫

B(x,r)c

|x− xB |

|x− y|n+1
dω+(y)

+

∫

B(x,r)∆B(xB ,r/4)

(
1

|xB − y|n
+

1

|x− y|n

)
dω+(y)

. Pω+(B(x, r)).

Using thatB(x, r) ⊂ 2B0, we deduce that

|Rr(χ2B0
ω+)(x)| =

∣∣∣∣∣

∫

2B0\B(x,r)

x− y

|x− y|n+1
dω+(y)

∣∣∣∣∣

=

∣∣∣∣∣

∫

B(x,r)c

x− y

|x− y|n+1
dω+(y)−

∫

2Bc
0

x− y

|x− y|n+1
dω+(y)

∣∣∣∣∣

≤ |Rrω
+(x)−Rr0ω

+(x)|+ C Θω+(2B0)

. |Rω+(xB)−Rω+(xB0
)|+ Pω+(B0) + Pω+(B(x, r)).

wherexB0
is a point such thatB(xB0

, r/4) ⊂ B0 ∩Ω−. By (6.12), we have

|Rω+(xB)−Rω+(xB0
)| = |K(xB − x+)−K(xB0

− x+)| .
r0

|x+ − x0|n+1
.

On the other hand, lettingN be the largest natural number such that2Nr ≤ 2r0, by (6.5)
we get

Pω+(B(x, r)) =
∑

j≥0

2−jΘω+(B(x, 2jr))(6.14)

(6.5)
.

∑

0≤j≤N

2−jΘω+(B(x0, r0)) +
∑

j>N

2−jΘω+(B(x0, 2
jr))

. Pω+(B0).

From the last estimates we infer that

|Rr(χ2B0
ω+)(x)| .

r0
|x+ − x0|n+1

+ Pω+(B0).
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Note now that

r0
|x+ − x0|n+1

(4.10)
.

ω+(B(x0, 2δ
−1
0 |x+ − x0|))

|x+ − x0|n
r0

|x+ − x0|
(6.15)

= Θω+(B(x0, 2δ
−1
0 |x+ − x0|))

r0
|x+ − x0|

. Pω+(B0).

Therefore, recalling thatB0 is a-Pω+ -doubling,

|Rr(χ2B0
ω+)(x)| . Pω+(B0) . Θω+(B0),

which concludes (6.11). �

Letm ≥ 1, δ > 0, andx0 ∈ Ẽm,δ, and denote

Gzd
m (x0, r0) = {x ∈ Gm(x0, r0) : lim

r→0
Θω+(B(x, r)) = 0},

and

Gpd
m (x0, r0) = {x ∈ Gm(x0, r0) : lim sup

r→0
Θω+(B(x, r)) > 0}.

The notation “zd” stands for “zero density”, and “pd” stands for “positive density”.

Lemma 6.4. Letm ≥ 1 andδ > 0. Letx0 ∈ Ẽm,δ and

0 < r0 ≤ min(rx0
, 1/m, c1dist(x

+, ∂Ω+)),

for somec1 > 0 small enough. Suppose that the ballB0 = B(x0, r0) is a-Pγ,ω+ -doubling.

Then there is ann-rectifiable setF (x0, r0) ⊂ Gpd
m (x0, r0) such that

ω+(Gpd
m (x0, r0) \ F (x0, r0)) = 0

and so thatω+|F (x0,r0) andHn|F (x0,r0) are mutually absolutely continuous.

Proof. From (6.5) we know thatΘω+(B(x, r)) . Θω+(B(x0, r0)) for all x ∈ Gm(x0, r0)
and allr ≤ 2r0. Thus,

0 < lim sup
r→0

Θω+(B(x, r)) < ∞ for all x ∈ Gpd
m (x0, r0).

Now the main the result from [4] asserts thatω+|
Gpd

m (x0,r0)
is n-rectifiable and proves the

lemma.
An alternative argument consists in using the fact thatR∗ω

+(x) < ∞ for all suchx (by
Lemma6.3) and then applying the Nazarov-Tolsa-Volberg theorem [30]. �

To deal with the setGzd
m (x0, r0) we intend to apply Theorem3.3. The next lemma will

be necessary to show that one the key assumptions of that theorem is satisfied.

Lemma 6.5. Letm ≥ 1 andδ > 0. Letx0 ∈ Ẽm,δ and

0 < r0 ≤ min(rx0
, 1/m, c1dist(x

+, ∂Ω+)),
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for somec1 > 0 small enough. Suppose that the ballB0 = B(x0, r0) is a-Pγ,ω+ -doubling,
then

(6.16)
∫

Gzd
m (x0,r0)

|Rω+(x)−mµ,Gzd
m (x0,r0)(Rω+)|2 dω+(x)

.

(
r0

|x+ − x0|

)2−2γ

Θω+(B0)
2 ω+(B0).

Note that the integral in the left hand side of (6.16) is overGzd
m (x0, r0), the subset of zero

density points ofGm(x0, r0). This is essential for the validity of the estimate.
In (6.16), Rω+(x) should be understood in the principal value sense. The existence of

this principal value forω+-a.e.x ∈ Gzd
m (x0, r0) is guaranteed by the fact that, by Lemmas

6.2and6.3,

sup
0<r≤2r0

ω+(B(x, r))

rn
+R∗(χ2B ω+)(x) . Θµ(B(x0, r0)),

and then using Remark3.4.
An alternative argument to prove the existence of the principal values is the following:

For ω+-a.e.x ∈ Gzd
m (x0, r0), there is a sequencerj → 0 so that each ballB(x, rj) is

a-Pω+ -doubling. By arguments analogous to the ones in the proof ofLemma6.3, one can
show that for0 < r < r′ < rj < r0,

|Rrω
+(x)−Rr′ω

+(x)| . Pω+(B(x, r′)) +
r′

|x− x+|n+1
.

As in (6.15) with r′ instead ofr0, it follows that

r′

|x− x+|n+1
. Pω+(B(x, r′)).

Then, arguing as in (6.14), we havePω+(B(x, r′)) . Pω+(B(x, rj)) and using thatB(x, rj)
is a-Pω+ -doubling, we derive

|Rrω
+(x)−Rr′ω

+(x)| . Pω+(B(x, rj)) . Θω+(B(x, rj)) → 0 as j → ∞,

sincelimr→0Θω+(B(x, r)) = 0. By the Cauchy criterion, we infer thatlimr→0Rrω
+(x)

exists.

Proof of Lemma6.5. We claim that forω+-a.e. x ∈ Gzd
m (x0, r0),

(6.17) Rω+(x) = K(x− x+).

Indeed, consider a sequencerj → 0 so thatBj = B(x, rj) is a-Pω+ -doubling for everyj.
For j large enough, we may find anxBj

∈ Bj\Ω
+ just as in Lemma6.3. Then

|K(xBj
− x+)−Rrjω

+(x)|
(6.12)
= |Rω+(xBj

)−Rrjω
+(x)|

(6.13)
. Pω+(Bj) . Θω+(Bj),

and sincelimr→0Θω+(B(x, r)) = 0, this implies (6.17).
We deduce that

(6.18)
|Rω+(x)−mω+,Gzd

m (x0,r0)(Rω+)| ≤ sup
y∈Gzd

m (x0,r0)

|K(x−x+)−K(y−x+)| .
r0

|x0 − x+|n+1
.
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We will estimate the last term in the equation above by arguments analogous to the ones in
(6.15), but now taking advantage of the fact thatB0 is a-Pγ,ω+-doubling withγ < 1. So we
write

r0
|x0 − x+|n+1

(4.10)
.

ω+(B(x0, 2δ
−1
0 |x0 − x+|))

|x0 − x+|n
r0

|x0 − x+|

= Θω+(B(x0, 2δ
−1
0 |x0 − x+|))

(
r0

|x0 − x+|

)γ ( r0
|x0 − x+|

)1−γ

. Pγ,ω+(B0)

(
r0

|x0 − x+|

)1−γ

. Θω+(B0)

(
r0

|x0 − x+|

)1−γ

.

The estimate (6.16) follows from (6.18) and the preceding inequality. �

We can now finish the proof of Theorem1.1. Recall that first we are assuming that
ω+ ≪ ω− ≪ ω+ on E ⊂ ∂Ω+ and we wish to show thatE contains ann-rectifiable
subsetF of full measureω+ on E on whichω± are mutually absolutely continuous with
respect toHn. By standard arguments, it is enough to show that for any subsetF0 ⊂ E with
ω+(F0) > 0 there exists somen-rectifiable subsetG0 ⊂ E0 with ω+(G0) > 0 on which
ω± are mutually absolutely continuous with respect toHn.

Let δ > 0 be some small constant to be fixed below. By (6.4), there exists somem such
thatω(F0 ∩ Em) > 0, which implies thatω(F0 ∩ Ẽm,δ) > 0. Let x0 be a point ofω+-
density ofF0 ∩ Ẽm,δ for which there exists a sequence ofa-Pω+-doubling ballsB(x0, rj)
with rj → 0 and such that

lim
r→0

β∂Ω+,∞(x0, r) = 0

(by Lemma6.1and Theorem5.1such pointx0 exists).
Let

0 < rj ≤ min(rx0
, 1/m, c1dist(x

+, ∂Ω+))

be such that

(6.19) β∂Ω+,∞(x0, rj) ≤ δ

and

(6.20) ω+(F0 ∩ Ẽm,δ ∩B(x0, rj)) ≥ (1− δ)ω+(B(x0, rj)).

By Lemmas6.2and6.3, we have

(6.21) ω+(B(x0, rj) \Gm(x0, rj)) ≤ δ ω+(B(x0, rj))

and

(6.22) sup
0<r<2rj

Θω+(B(x, r)) +R∗(χB(xj ,2rj)ω
+)(x) ≤ C2 Θω+(B(xj , rj))

for all x ∈ Gm(x0, rj). Clearly, from (6.20) it follows thatω+(F0 ∩ B(x0, rj)) ≥ (1 −
δ)ω+(B(x0, rj)), or equivalently,ω+(B(x0, rj) \ F0) ≤ δ ω+(B(x0, rj)). Together with
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(6.21), this yields

ω+(Gm(x0, rj) ∩ F0) = ω+(Gm(x0, rj))− ω+(Gm(x0, rj) \ F0)(6.23)

≥ (1− δ)ω+(B(x0, rj))− ω+(B(x0, rj) \ F0)

≥ (1− 2δ)ω+(B(x0, rj)).

By Lemma6.4, in the case thatω+(Gpd
m (x0, rj) ∩ F0) > 0, we are done because the

measureω+|
Gpd

m (x0,rj)
is n-rectifiable, and then we can choose the setG0 to be equal to

Gpd
m (x0, rj)∩F0 minus a set zero measureω+. In the case thatω+(Gpd

m (x0, rj)∩F0) = 0,
(6.23) tells us that

(6.24) ω+(Gzd
m (x0, rj) ∩ F0) ≥ (1− 2δ)ω+(B(x0, rj)).

Further, by Lemma6.5, given any arbitrary constantτ > 0, if rj = rj(τ) is small enough,
we have∫

Gzd
m (x0,rj)∩F0

|Rω+(x)−mµ,Gzd
m (x0,rj)∩F0

(Rω+)|2 dω+(x)(6.25)

≤

∫

Gzd
m (x0,rj)

|Rω+(x)−mµ,Gzd
m (x0,rj)(Rω+)|2 dω+(x)

≤ C

(
rj

|x+ − x0|

)2−2γ

Θω+(B(x0, rj))
2 ω+(B(x0, rj))

≤ τ Θω+(B(x0, rj))
2 ω+(B(x0, rj)).

For rj small enough, from (6.19), (6.22), (6.24) and (6.25) and the fact thatB(x0, rj)
is a-Pω+ -doubling, one easily checks that the assumptions of Theorem 3.3 hold withµ =
ω+, B = B(x0, rj), andGB = Gzd

m (x0, rj) ∩ F0, with δ replaced by2δ. An immediate
consequence of the theorem is that there exists ann-rectifiable subsetG0 ⊂ Gzd

m (x0, rj)∩F0

such thatω+(G0) > 0, as wished1.

To conclude the proof of Theorem1.1 it remains to show that, given a Borel setE ⊂
∂Ω+,

ω+|E ⊥ ω−|E ⇐⇒ Hn(E ∩ T ) = 0.

The fact thatω|+E ⊥ ω−|E implies thatHn(E ∩ T ) = 0 follows by standard arguments.
Indeed, the points in the setT satisfy the cone property and thusω+ andω− are both
mutually absolutely continuous withHn on a subsetT ′ ⊂ T with Hn(T\T ′) = 0. So

ω+|E∩T ′ ≈ Hn|E∩T ′ ≈ ω−|E∩T ′

(here “≈” denotes mutual absolute continuity), and so the statement

ω+|E ⊥ ω−|E

is false ifHn(E ∩ T ) > 0.
Conversely, ifω+|E ⊥ ω−|E does not hold, then there is some subsetF ⊂ E with

ω+(F ) > 0 such thatω+|F andω−|F are mutually absolutely continuous. By the part
of Theorem1.1 that we have already proved, there exists ann-rectifiable subsetG ⊂ F
with ω+(F \ G) = ω−(F \ G) = 0 such thatω+ andω− are both mutually absolutely

1In fact, it easily follows that forω+-a.e.x ∈ G0, limr→0 ω
+(B(x, r))r−n > 0. So the case when

ω+(Gpd
m (x0, rj) ∩ F0) = 0 does not occur.
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continuous withHn|G. LetG0 ⊂ G be some subset with0 < Hn(G0) < ∞. It is not hard
to show thatHn-a.e.x ∈ G0 is a tangent point for∂Ω+ sinceβ∂Ω+,∞(B(x, r)) → 0 and
supy∈B(x,r)∩E dist(y, V )/r → 0 whereV is the approximate tangentn-plane forG0 (see
[27, Chapter 15]. Hence,Hn(E ∩ T ) ≥ Hn(G0 ∩ T ) > 0. This completes the proof of
Theorem1.1.

7. PROOF OFCOROLLARIES 1.2 AND 1.3

Proof of Corollary1.2. DenoteΩ+ = Ω1 andΩ− =
(
Ω+
)c

. Let ω+ = ω1 and letω− be
the harmonic measure forΩ− with polex− ∈ Ω−.

By the maximum principle we haveω2 ≪ ω− on E. So there exists some function
g ∈ L1(ω−) such thatω2|E = g ω−. Hence if we setG = {x ∈ E : g(x) > 0}, it turns out
thatω2(E \G) = 0 andω2|G andω−|G are mutually absolutely continuous.

Sinceω1|E andω2|E are mutually absolutely continuous, we infer thatω1(E \G) = 0,
too, and thus

ω+|E = ω+|G ≈ ω−|G,

where “≈’ denotes mutual absolute continuity. Hence, asΩ+ satisfies the assumptions of
Theorem1.1, it follows that there exists somen-rectifiable subsetF ⊂ Gwith ω+(G\F ) =
0 on whichω+|F is are mutually absolutely continuous with respect toHn|F . �

Proof of Corollary1.3. As in the previous proof, we denoteΩ+ = Ω1 andΩ− =
(
Ω+
)c

.
Also, we letω± be the respective harmonic measures ofΩ±. We takeG as above, so that
ω2(E \G) = 0 andω2|G andω−|G are mutually absolutely continuous.

We deduce thatω1|E ⊥ ω2|E if and only if ω+|G ⊥ ω−|G. By Theorem1.1 applied
to Ω+ andG, this is equivalent toHn(G ∩ T 1) = 0, whereT 1 is the set of tangents for
∂Ω1 = ∂Ω+.

Sinceω2(E\G) = 0, using the cone property it is easy to check thatHn((E\G)∩T 2) =
0, whereT 2 is the set of tangents for∂Ω2. SinceE is relative open in∂Ω1 and∂Ω2, we
haveT 1 ∩ E = T 2 ∩ E = T ∩ E, and thus

Hn(E ∩ T ) = Hn(G ∩ T 1) +Hn((E \G) ∩ T 2) = 0.

Conversely, ifHn(E ∩ T ) = 0, then

Hn(G ∩ T 1) = Hn(G ∩ T ) ≤ Hn(E ∩ T ) = 0.

Thusω+|G ⊥ ω−|G by Theorem1.1. �
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